WorldWideScience

Sample records for waste solutions

  1. Reuse of hydroponic waste solution.

    Science.gov (United States)

    Kumar, Ramasamy Rajesh; Cho, Jae Young

    2014-01-01

    Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.

  2. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  3. Scientific Solutions to Nuclear Waste Environmental Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley R.

    2014-01-30

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the

  4. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  5. Importance of waste composition for Life Cycle Assessment of waste management solutions

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Götze, Ramona; Conradsen, Knut

    2017-01-01

    The composition of waste materials has fundamental influence on environmental emissions associated with waste treatment, recycling and disposal, and may play an important role also for the Life Cycle Assessment (LCA) of waste management solutions. However, very few assessments include effects...... of the waste composition and waste LCAs often rely on poorly justified data from secondary sources. This study systematically quantifiesy the influence and uncertainty on LCA results associated with selection of waste composition data. Three archetypal waste management scenarios were modelled with the waste...... LCA model EASETECH based on detailed waste composition data from the literature. The influence from waste composition data on the LCA results was quantified with a step-wise Global Sensitivity Analysis (GSA) approach involving contribution, sensitivity, uncertainty and discernibility analyses...

  6. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    DEFF Research Database (Denmark)

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-01-01

    of a Danish waste refinery solution against state-of-the-art waste technology alternatives (incineration, mechanical-biological treatment (MBT), and landfilling). In total, 252 scenarios were evaluated, including effects from source-segregation, waste composition, and energy conversion pathway efficiencies...

  7. Industrial Water Waste, Problems and the Solution

    Directory of Open Access Journals (Sweden)

    Alif Noor Anna

    2004-01-01

    Full Text Available Recently, the long term development in Indonesia has changed agricultural sector to the industrial sector. This development can apparently harm our own people. This is due to the waste that is produced from factories. The waste from various factories seems to have different characteristics. This defference encourages us to be able to find out different of methods of managing waste so that cost can be reduced, especially in water treatment. In order that industrial development and environmental preservation can run together in balance, many institutions involved should be consider, especially in the industrial chain, the environment, and human resource, these three elements can be examined in terms of their tolerance to waste.

  8. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Science.gov (United States)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  9. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkwon [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Um, Wooyong, E-mail: wooyong.um@pnnl.gov [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Choung, Sungwook [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of)

    2014-09-15

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl–KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl–KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl–KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl–KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  10. Sustainable solutions for solid waste management in Southeast Asian countries.

    Science.gov (United States)

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  11. Photochemical oxidation: A solution for the mixed waste dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A. [Vulcan Peroxidation Systems, Inc., Tucson, AZ (United States)] [and others

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  12. Women, e-waste, and technological solutions to climate change.

    Science.gov (United States)

    McAllister, Lucy; Magee, Amanda; Hale, Benjamin

    2014-06-14

    In this paper, we argue that a crossover class of climate change solutions (which we term "technological solutions") may disproportionately and adversely impact some populations over others. We begin by situating our discussion in the wider climate discourse, particularly with regard to the Millennium Development Goals (MDGs) and the Basel Convention. We then suggest that many of the most attractive technological solutions to climate change, such as solar energy and electric car batteries, will likely add to the rapidly growing stream of electronic waste ("e-waste"). This e-waste may have negative downstream effects on otherwise disenfranchised populations. We argue that e-waste burdens women unfairly and disproportionately, affecting their mortality/morbidity and fertility, as well as the development of their children. Building on this, we claim that these injustices are more accurately captured as problems of recognition rather than distribution, since women are often institutionally under-acknowledged both in the workplace and in the home. Without institutional support and representation, women and children are deprived of adequate safety equipment, health precautions, and health insurance. Finally, we return to the question of climate justice in the context of the human right to health and argue for greater inclusion and recognition of women waste workers and other disenfranchised groups in forging future climate agreements.

  13. Radioactive Waste...The Problem and Some Possible Solutions

    Science.gov (United States)

    Olivier, Jean-Pierre

    1977-01-01

    Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)

  14. Removal of fluoride ions from aqueous solution by waste mud

    Energy Technology Data Exchange (ETDEWEB)

    Kemer, Baris; Ozdes, Duygu; Gundogdu, Ali; Bulut, Volkan N.; Duran, Celal [Karadeniz Technical University, Faculty of Arts and Sciences, Department of Chemistry, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Erciyes University, Faculty of Arts and Sciences, Department of Chemistry, 38039 Kayseri (Turkey)

    2009-09-15

    The present study was carried out to assess the ability of original waste mud (o-WM) and different types of activated waste mud which are acid-activated (a-WM) and precipitated waste mud (p-WM), in order to remove excess of fluoride from aqueous solution by using batch technique. The p-WM exhibited greater performance than the others. Adsorption studies were conducted as a function of pH, contact time, initial fluoride concentration, adsorbent concentration, temperature, etc. Studies were also performed to understand the effect of some co-existing ions present in aqueous solutions. Adsorption process was found to be almost independent of pH for all types of waste mud. Among the kinetic models tested for p-WM, pseudo-second-order model fitted the kinetic data well with a perfect correlation coefficient value of 1.00. It was found that the adequate time for the adsorption equilibrium of fluoride was only 1 h. Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) revealed that adsorption of fluoride ions on the p-WM was feasible, spontaneous and endothermic in the temperature range of 0-40 deg. C. Experimental data showed a good fit with the Langmuir and Freundlich adsorption isotherm models. Results of this study demonstrated the effectiveness and feasibility of WM for removal of fluoride ions from aqueous solution.

  15. Removal of fluoride ions from aqueous solution by waste mud.

    Science.gov (United States)

    Kemer, Baris; Ozdes, Duygu; Gundogdu, Ali; Bulut, Volkan N; Duran, Celal; Soylak, Mustafa

    2009-09-15

    The present study was carried out to assess the ability of original waste mud (o-WM) and different types of activated waste mud which are acid-activated (a-WM) and precipitated waste mud (p-WM), in order to remove excess of fluoride from aqueous solution by using batch technique. The p-WM exhibited greater performance than the others. Adsorption studies were conducted as a function of pH, contact time, initial fluoride concentration, adsorbent concentration, temperature, etc. Studies were also performed to understand the effect of some co-existing ions present in aqueous solutions. Adsorption process was found to be almost independent of pH for all types of waste mud. Among the kinetic models tested for p-WM, pseudo-second-order model fitted the kinetic data well with a perfect correlation coefficient value of 1.00. It was found that the adequate time for the adsorption equilibrium of fluoride was only 1h. Thermodynamic parameters including the Gibbs free energy (DeltaG degrees ), enthalpy (DeltaH degrees ), and entropy (DeltaS degrees ) revealed that adsorption of fluoride ions on the p-WM was feasible, spontaneous and endothermic in the temperature range of 0-40 degrees C. Experimental data showed a good fit with the Langmuir and Freundlich adsorption isotherm models. Results of this study demonstrated the effectiveness and feasibility of WM for removal of fluoride ions from aqueous solution.

  16. An eco friendly solution to the food waste disposal

    Science.gov (United States)

    Babu, G. Reddy; Kumar, G. Madhav

    2017-07-01

    In recent years, waste disposal at workmen camp is one of the major problems being faced by many nations across the world. In the workmen colony at Chittapur, a series of kitchens were built for cooking purpose and a number of small canteens are also functioning. Considerable quantity of food waste is collected daily from these eateries and disposed at a faraway place. Food waste is highly degradable in nature, if not disposed properly it causes problems related to environmental pollution. Hence, it is very important to identify an environment friendly process rather than opt for land filling or any disposal method. We worked together to find a suitable eco-friendly solution for the food waste disposal at Chittapur site and suggested that biogas production through anaerobic digestion is a solution for the disposal and utilization of food waste for better purpose. This resulted in setting up a 500 kg per day food waste treatment biogas plant at Chittapur. This establishment is the first time in the construction industry at workmen camp in India. Anaerobic Digestion has been recognized as one of the best options that is available for treating food waste, as it generates two valuable end products, biogas and compost. Biogas is a mixture of CH4 and CO2 about (55:45). Biogas generated can be used for thermal applications such as cooking or for generating electricity. The digested slurry is a well stabilized organic manure and can be used as soil fertilizer. Plant design is to handle 500 kg of food waste /day. 27 kg LPG is obtained from 500kg of kitchen waste. The Value of 27 kg of LPG is Rs.2700/day. Daily 1000 litres of digested effluent was obtained. It is good organic manure with plant micro nutrients and macro nutrients. This can be used for growing plants and in agriculture. The value of manure per day is Rs.250/-. The annual revenue is Rs.10.62 lakhs and the annual expenditure is 1.8 lakhs. The net benefit is 8.82 lakhs. Payback period is 2.1 years. This process

  17. Production of ultrahigh purity copper using waste copper nitrate solution.

    Science.gov (United States)

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery.

  18. Community Solutions to Solid Waste Pollution. Operation Waste Watch: The New Three Rs for Elementary School. Grade 6. [Second Edition.

    Science.gov (United States)

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    This publication, the last in a series of seven for elementary schools, is an environmental education curriculum guide with a focus on waste management issues. It contains a unit of exercises selected for sixth grade students focusing on community solutions to solid waste pollution. Waste management activities included in this unit seek to…

  19. Geopolymerisation of fly ashes with waste aluminium anodising etching solutions.

    Science.gov (United States)

    Ogundiran, M B; Nugteren, H W; Witkamp, G J

    2016-10-01

    Combined management of coal combustion fly ash and waste aluminium anodising etching solutions using geopolymerisation presents economic and environmental benefits. The possibility of using waste aluminium anodising etching solution (AES) as activator to produce fly ash geopolymers in place of the commonly used silicate solutions was explored in this study. Geopolymerisation capacities of five European fly ashes with AES and the leaching of elements from their corresponding geopolymers were studied. Conventional commercial potassium silicate activator-based geopolymers were used as a reference. The geopolymers produced were subjected to physical, mechanical and leaching tests. The leaching of elements was tested on 28 days cured and crushed geopolymers using NEN 12457-4, NEN 7375, SPLP and TCLP leaching tests. After 28 days ambient curing, the geopolymers based on the etching solution activator showed compressive strength values between 51 and 84 MPa, whereas the commercial potassium silicate based geopolymers gave compressive strength values between 89 and 115 MPa. Based on the regulatory limits currently associated with the used leaching tests, all except one of the produced geopolymers (with above threshold leaching of As and Se) passed the recommended limits. The AES-geopolymer geopolymers demonstrated excellent compressive strength, although less than geopolymers made from commercial activator. Additionally, they demonstrated low element leaching potentials and therefore can be suitable for use in construction works. Copyright © 2016. Published by Elsevier Ltd.

  20. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between

  1. Ammonia nitrogen removal from aqueous solution by local agricultural wastes

    Science.gov (United States)

    Azreen, I.; Lija, Y.; Zahrim, A. Y.

    2017-06-01

    Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.

  2. Biosorption of arsenic from aqueous solution using dye waste.

    Science.gov (United States)

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water.

  3. 78 FR 14774 - U.S. Environmental Solutions Toolkit-Universal Waste

    Science.gov (United States)

    2013-03-07

    ...: (a) Mercury Recycling Technology (b) E-Waste Recycling Technology (c) CRT Recycling Technology (d... International Trade Administration U.S. Environmental Solutions Toolkit--Universal Waste AGENCY: International... of universal waste. The Department of Commerce continues to develop the web-based U.S....

  4. Arsenic: A Roadblock to Potential Animal Waste Management Solutions

    National Research Council Canada - National Science Library

    Keeve E. Nachman; Jay P. Graham; Lance B. Price; Ellen K. Silbergeld

    2005-01-01

    .... The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.

  5. Sustainable solutions for domestic solid waste management in Qatar

    OpenAIRE

    AHMAD, Farah

    2016-01-01

    Due to the fact that Qatar has increased its investments and projects worldwide, Qatar has become one of the world’s fastest growing economy and highest paid GDP. As a result, the population has increased in the last few years. This increase in population is associated with an increase in generated waste and accumulation of waste. Waste generation and accumulation is associated with hazards and is harmful to people and the environment. In line with Qatar National Vision 2030, it is important ...

  6. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Austin Kanayo ASIAGWU

    2009-07-01

    Full Text Available An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+ in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solution.

  7. Electrochemical processing of nitrate waste solutions. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

  8. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2007-11-15

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution.

  9. Measurement and Monte Carlo Calculation of Waste Drum Filled With Radioactive Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    XU; Li-jun; ZHANG; Wei-dong; YE; Hong-sheng; LIN; Min; CHEN; Xi-lin; GUO; Xiao-qing

    2012-01-01

    <正>Theoretically the best calibrating source of gamma scan system (SGS) is a waste drum filled with uniform distribution of medium and radioactive nuclides. However, in reality, waste drums usually full of solid substance, which are difficult to be prepared in a completely uniformly distributed state. To reduce measurement uncertainty of the radioactivity of waste drums prepared using the method of shell source, a waste drum filled with radioactive aqueous solution was prepared. Besides, its radioactivity was measured by a SGS device and calculated using Monte Carlo method to verify the exact geometric model, which

  10. Removal of radionuclides from partitioning waste solutions by adsorption and catalytic oxidation methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao; Yamaguchi, Isoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kubota, Masumitsu [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2000-09-01

    Adsorption of radionuclides with inorganic ion exchangers and catalytic oxidation of a complexant were studied for the decontamination of waste solutions generated in past partitioning tests with high-level liquid waste. Granulated ferrocyanide and titanic acid were used for adsorption of Cs and Sr, respectively, from an alkaline solution resulting from direct neutralization of an acidic waste solution. Both Na and Ba inhibited adsorption of Sr but Na did not that of Cs. These exchangers adsorbed Cs and Sr at low concentration with distribution coefficients of more than 10{sup 4}ml/g from 2M Na solution of pH11. Overall decontamination factors (DFs) of Cs and total {beta} nuclides exceeded 10{sup 5} and 10{sup 3}, respectively, at the neutralization-adsorption step of actual waste solutions free from a complexant. The DF of total {alpha} nuclides was less than 10{sup 3} for a waste solution containing diethylenetriaminepentaacetic acid (DTPA). DTPA was rapidly oxidized by nitric acid in the presence of a platinum catalyst, and radionuclides were removed as precipitates by neutralization of the resultant solution. The DF of {alpha} nuclides increased to 8x10{sup 4} by addition of the oxidation step. The DFs of Sb and Co were quite low through the adsorption step. A synthesized Ti-base exchanger (PTC) could remove Sb with the DF of more than 4x10{sup 3}. (author)

  11. Community Solutions for Solid Waste Pollution, Level 6. Teacher Guide. Operation Waste Watch.

    Science.gov (United States)

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  12. Municipal Solid Waste Management with Citizen Participation: An Alternative Solution to Waste Problems in Jakarta, Indonesia

    NARCIS (Netherlands)

    Aprilia, A.; Tezuka, T.; Spaargaren, G.

    2011-01-01

    The verity that ascertains waste as one of the contributors to CO2 emission leads the discourse to enter the limelight. Formulating suitable waste management scheme for developing countries such as Indonesia would require careful considerations that take into account the specific local context. This

  13. Construction materials as a waste management solution for cellulose sludge.

    Science.gov (United States)

    Modolo, R; Ferreira, V M; Machado, L M; Rodrigues, M; Coelho, I

    2011-02-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  14. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste

  15. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste util

  16. Vitrification: a solution for the wastes of wastes; La vitrification: ca chauffe pour les ultimes

    Energy Technology Data Exchange (ETDEWEB)

    Guihard, B. [Europlasma, 33 - Saint Medard en Jalles (France)

    1997-07-01

    The incineration of wastes generates other wastes (fly ashes) that concentrate a large amount of polluting substances (heavy metals, salts..). French law requires a stabilization of this kind of wastes before their storage. Today vitrification can be considered as an alternative to the stabilization and storage way, the vitrified products could be seen as an interesting material in the building industry or in road works. A few years ago the municipality of Bordeaux decided to launch a demonstration program and a REFIOM (fly ashes) vitrification unit has been operating since 1997. (A.C.)

  17. STRONTIUM AND ACTINIDE SEPARATIONS FROM HIGH LEVEL NUCLEAR WASTE SOLUTIONS USING MONOSODIUM TITANATE 1. SIMULANT TESTING

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS, D. T.; BARNES, M. J.; PULMANO, R. L.; MARSHALL, K. M.; EDWARDS, T. B.; BRONIKOWSKI, M. G.; FINK, S. D.

    2005-04-14

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 137}Cs, {sup 90}Sr and alpha-emitting radionuclides (i.e., actinides) prior to disposal. Separation processes planned at SRS include caustic side solvent extraction, for {sup 137}Cs removal, and ion exchange/sorption of {sup 90}Sr and alpha-emitting radionuclides with an inorganic material, monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu and {sup 240}Pu. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from simulated waste solutions. These tests evaluated the influence of ionic strength, temperature, solution composition and the oxidation state of plutonium.

  18. Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions.

    Science.gov (United States)

    Torres, Robinson; Lapidus, Gretchen T

    2017-02-01

    An integral closed circuit hydrometallurgical process is presented for base metal recovery from electronic waste. The leaching medium consists of a sodium citrate solution, from which base metals are retrieved by direct electrowinning, and the barren solution is recycled back to the leaching stage. This leaching-electrowinning cycle was repeated four times. The redox properties of the fresh citrate solution, as well as the leach liquors, were characterized by cyclic voltammetry to determine adequate conditions for metal reduction, as well as to limit citrate degradation. The leaching efficiency of electronic waste, employing the same solution after four complete cycles was 71, 83 and 94% for copper, iron and lead, respectively, compared to the original leach with fresh citrate solution.

  19. Safety assessment driving radioactive waste management solutions (SADRWMS Methodology) implemented in a software tool (SAFRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Kinker, M., E-mail: M.Kinker@iaea.org [International Atomic Energy Agency (IAEA), Vienna (Austria); Avila, R.; Hofman, D., E-mail: rodolfo@facilia.se [FACILIA AB, Stockholm (Sweden); Jova Sed, L., E-mail: jovaluis@gmail.com [Centro Nacional de Seguridad Nuclear (CNSN), La Habana (Cuba); Ledroit, F., E-mail: frederic.ledroit@irsn.fr [IRSN PSN-EXP/SSRD/BTE, (France)

    2013-07-01

    In 2004, the International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts which could be used to improve the mechanisms for applying safety assessment methodologies to predisposal management of radioactive waste. These flowcharts have since been incorporated into DS284 (General Safety Guide on the Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste), and were also considered during the early development stages of the Safety Assessment Framework (SAFRAN) Tool. In 2009 the IAEA presented DS284 to the IAEA Waste Safety Standards Committee, during which it was proposed that the graded approach to safety case and safety assessment be illustrated through the development of Safety Reports for representative predisposal radioactive waste management facilities and activities. To oversee the development of these reports, it was agreed to establish the International Project on Complementary Safety Reports: Development and Application to Waste Management Facilities (CRAFT). The goal of the CRAFT project is to develop complementary reports by 2014, which the IAEA could then publish as IAEA Safety Reports. The present work describes how the DS284 methodology and SAFRAN Tool can be applied in the development and review of the safety case and safety assessment to a range of predisposal waste management facilities or activities within the Region. (author)

  20. Valorization of mining waste and tailings through paste backfilling solution, Imiter operation, Morocco

    Institute of Scientific and Technical Information of China (English)

    Khaldoun Abdelhadi; Ouadif Latifa; Baba Khadija; Bahi Lahcen

    2016-01-01

    Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally stored on surface areas. The volume and chemical characteristics of these materials generate serious problem for required storage spaces and mainly environmental degradation. Paste backfill (PBF) is one of ingenious solutions to minimize the quantity of tailings to store. PBF is basically defined as a combination of mine processing tailings, binder, and water mixing. The purpose of this paper is to present backfilling components characterization and formula verification for a waste valorization solu-tion through paste backfilling technology in Imiter operation. Obtained results and realized analysis demonstrate PBF conformity and adequacy with assigned underground functions. However the studied recipe can be more ameliorated to obtain an optimal mixture ensuring the required mechanical strength.

  1. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  2. Direct Aqueous Mineral Carbonation of Waste Slate Using Ammonium Salt Solutions

    Directory of Open Access Journals (Sweden)

    Hwanju Jo

    2015-12-01

    Full Text Available The carbonation of asbestos-containing waste slate using a direct aqueous mineral carbonation method was evaluated. Leaching and carbonation tests were conducted on asbestos-containing waste slate using ammonium salt (CH3COONH4, NH4NO3, and NH4HSO4 solutions at various concentrations. The CH3COONH4 solution had the highest Ca-leaching efficiency (17%–35% and the NH4HSO4 solution had the highest Mg-leaching efficiency (7%–24% at various solid dosages and solvent concentrations. The CaCO3 content of the reacted materials based on thermogravimetric analysis (TGA was approximately 10%–17% higher than that of the as-received material for the 1 M CH3COONH4 and the 1 M NH4HSO4 solutions. The carbonates were precipitated on the surface of chrysotile, which was contained in the waste slate reacted with CO2. These results imply that CO2 can be sequestered by a direct aqueous mineral carbonation using waste slate.

  3. Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Murat [Department of Forest Industrial Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, 46060 Kahramanmaras (Turkey); Acemioglu, Bilal, E-mail: acemioglu@kilis.edu.tr [Department of Chemistry, Faculty of Science and Arts, Kilis 7 Aralik University, 79000 Kilis (Turkey); Alma, M. Hakki [Department of Forest Industrial Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, 46060 Kahramanmaras (Turkey); Usta, Mustafa [Department of Forest Industrial Engineering, Faculty of Forestry, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2010-11-15

    In this study, cotton stalk (CS), cotton waste (CW) and cotton dust (CD) was used as sorbents to remove methylene blue (MB) from aqueous solution by batch sorption technique. Effects of initial dye concentration, solution pH, solution temperature and sorbent dose on sorption were studied. It was seen that the removal of methylene blue increased with increasing initial dye concentration (from 25 to 100 mg/l), solution pH (from 5 to 10), solution temperature (from 20 to 50 deg. C) and sorbent dose (from 0.25 to 1.50 g/50 ml). The maximum dye removal was reached at 90 min. Sorption isotherms were analyzed by Langmuir and Freundlich models at different temperatures of 20, 30, 40 and 50 deg. C, and the results were discussed in detail. Moreover, the thermodynamics of sorption were also studied. It was found that the values of standard free energy ({Delta}G{sup o}) were positive for cotton stalk and negative for cotton waste and cotton dust. The values of standard enthalpy ({Delta}H{sup o}) and entropy ({Delta}S{sup o}) were found to be positive, and the obtained results were interpreted in detail. The results of this study showed that cotton stalk, cotton waste and cotton dust could be employed as effective and low-cost materials for the removal of dyes from aqueous solution.

  4. Extractive removal of chromium (VI) from industrial waste solution.

    Science.gov (United States)

    Agrawal, Archana; Pal, Chandana; Sahu, K K

    2008-11-30

    Extractive removal of Cr (VI) was carried out from chloride solutions using cyanex 923 mixed with kerosene. The efficiency of this extractant was studied under various experimental conditions, such as concentration of different mineral acids in the aqueous phase, concentration of cyanex 923 and Cr (VI) present in the initial aqueous feed, temperature and time of extraction, organic to aqueous (O/A) phase ratio. Percentage Cr (VI) extraction decreases with the increase in temperature at varying concentration of cyanex 923. The interference of the impurities usually associated with Cr (VI) such as Cr (III), Cu, Ni, Fe (II), Zn, Chloride and sulphate, etc., were examined under the optimized conditions and only Zn was found to interfere. Under the optimum experimental conditions 98.6-99.9% of Cr (VI) was extracted in 3-5 min at O/A of 2 with the initial feed concentration of 1g/L of Cr (VI). The extracted Cr (VI) was quantitatively stripped with 1M NaOH and the organic phase obtained after the stripping of Cr (VI) was washed with dilute HCl solution to neutralize any NaOH trapped/adhered to the solvent and then with distilled water. This regenerated solvent was reused in succeeding extraction of chromium (VI). Finally a few experiments were performed with the synthetic effluent from an electroplating industry.

  5. SHARING AND DEPLOYING INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS TO MANAGE WASTE ACROSS THE DOE COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Crolley, R.; Thompson, M.

    2011-01-31

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges and in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.

  6. MANAGEMENT OF SOLID WASTE GENERATED BY THE INTEGRATED STEELWORKS ACTIVITY AND SOLUTIONS TO REDUCE THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Anişoara CIOCAN

    2010-05-01

    Full Text Available The development of steel industry is subject to solve major problems arising from industry-nature relationship, strictly targeted on pollution control and protection of natural resources and energy. In this paper we discussed about the management of solid waste generated by an integrated steelwork located near a major urban area and the adopted solutions for the reduction of environmental impact. There are summarized technical solutions that are currently applied and were proposed some solutions that can be applied in accordance with the environmental legislations. The new solutions are proposed for integrated management of solid wastes in accordance with: the exact quantification (quantitative, qualitative and the generation sources of emissions and solid wastes; controlled storage; minimization of the wastes and its harmfulness; transformation of the wastes into valuable by-products used directly by the company in a subsequent process, or by external down-stream user.

  7. Surface layers on a borosilicate nuclear waste glass corroded in MgCl 2 solution

    Science.gov (United States)

    Abdelouas, Abdesselam; Crovisier, Jean-Louis; Lutze, Werner; Grambow, Bernd; Dran, Jean-Claude; Müller, Regina

    1997-01-01

    Surface layers on the French borosilicate nuclear waste glass, R7T7, corroded in MgCl 2 solution were studied to determine the composition, structure and stability of crystalline phases. The characteristics of the phases constituting the surface layer varied with the parameter {S}/{V} × t , the glass surface area ( S) to solution volume ( V) ratio, times time ( t). At low {S}/{V} × t values (intermediate {S}/{V} × t value (2800 d/m; 5.5 y) the surface layer contained hydrotalcite-, chlorite- and saponite-type phases. At the highest {S}/{V} × t value (10 7 d/m; 463 d) the major phases were saponite, powellite, barite and cerianite solid solutions. About 95% of the uranium and > 98% of the neodymium released from the glass were precipitated in the surface layer. In the 463 day experiment, 86% of the neodymium in the surface layer was in solid solution with powellite, the rest with saponite. Uranium was contained exclusively in saponite. High {S}/{V} ratios, typical of disposal conditions for vitrified high-level radioactive waste, favor retention of actinides in fairly insoluble corrosion products. Observation of similar corrosion products on natural glasses as on nuclear waste glasses lend support to the hypothesis that the host phases for actinides observed in the laboratory are stable over geological periods of time.

  8. Removal of arsenate and arsenite from aqueous solution by waste cast iron.

    Science.gov (United States)

    Choi, Nag-Choul; Kim, Song-Bae; Kim, Soon-Oh; Lee, Jae-Won; Park, Jun-Boum

    2012-01-01

    The removal of As(III) and As(V) from aqueous solution was investigated using waste cast iron, which is a byproduct of the iron casting process in foundries. Two types of waste cast iron were used in the experiment: grind precipitate dust (GPD) and cast iron shot (CIS). The X-ray diffraction analysis indicated the presence of Feo on GPD and CIS. Batch experiments were performed under different concentrations of As(III) and As(V) and at various initial pH levels. Results showed that waste cast iron was effective in the removal of arsenic. The adsorption isotherm study indicated that the Langmuir isotherm was better than the Freundlich isotherm at describing the experimental result. In the adsorption of both As(IH) and As(V), the adsorption capacity of GPD was greater than CIS, mainly due to the fact that GPD had higher surface area and weight percent of Fe than CIS. Results also indicated the removal of As(III) and As(V) by GPD and CIS was influenced by the initial solution pH, generally decreasing with increasing pH from 3.0 to 10.5. In addition, both GPD and CIS were more effective at the removal of As(III) than As(V) under given experimental conditions. This study demonstrates that waste cast iron has potential as a reactive material to treat wastewater and groundwater containing arsenic.

  9. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes.

    Science.gov (United States)

    Nakagawa, Kyuya; Namba, Akio; Mukai, Shin R; Tamon, Hajime; Ariyadejwanich, Pisit; Tanthapanichakoon, Wiwut

    2004-04-01

    Activated carbons were produced from several solid wastes, namely, waste PET, waste tires, refuse derived fuel and wastes generated during lactic acid fermentation from garbage. Activated carbons having various pore size distributions were obtained by the conventional steam-activation method and via the pre-treatment method (i.e., mixture of raw materials with a metal salt, carbonization and acid treatment prior to steam-activation) that was proposed by the authors. The liquid-phase adsorption characteristics of organic compounds from aqueous solution on the activated carbons were determined to confirm the applicability of these carbons, where phenol and a reactive dye, Black5, were employed as representative adsorbates. The hydrophobic surface of the carbons prepared was also confirmed by water vapor adsorption. The characteristics of a typical commercial activated carbon were also measured and compared. It was found that the activated carbons with plentiful mesopores prepared from PET and waste tires had quite high adsorption capacity for large molecules. Therefore they are useful for wastewater treatment, especially, for removal of bulky adsorbates.

  10. Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent

    OpenAIRE

    Mousavi,H. Z.; Hosseynifar,A.; Jahed,V.; S. A. M. Dehghani

    2010-01-01

    The purpose of this study was to investigate the possibility of the utilization of waste tire rubber ash (WTRA) as a low cost adsorbent for removal of lead (II) ion from aqueous solution. The effect of different parameters (such as contact time, sorbate concentration, adsorbent dosage, pH of the medium and temperature) were investigated. The sorption process was relatively fast and equilibrium was reached after about 90 min of contact. The experimental data were analyzed by the Freundlich iso...

  11. Researches on the Structure and Properties of Mullite Solid Solution Made from Industrial Waste

    Institute of Scientific and Technical Information of China (English)

    RUAN Yu-Zhong; YU Yan; WU Ren-Ping

    2006-01-01

    The waste slag from aluminum profile factory and silicon fine powder from ferroalloy factory were utilized as the main raw materials to synthesize mullite solid solution Al4+2xSi2-xO10-x/2, whose defect formation mechanism, crystalline phase composition, crystal cell parameters, microstructures and morphologies were characterized in detail by XRD and SEM. The results show that because of the ultrafine particle size of the materials, the content of mullite solid solution synthesized by this method is higher than that by regular method.

  12. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.

    Science.gov (United States)

    Xu, Ying; Chen, Yu

    2015-07-01

    The chelator [S,S]-ethylene diamine disuccinic acid, citric acid, and biosurfactant saponin are selected as leaching agents. In this study, the leaching effect of saponin mixed with either ethylene diamine disuccinic acid or citric acid on the levels of copper, zinc, lead, and cadmium in municipal solid waste incinerator fly ash is investigated. Results indicate that saponin separately mixed with ethylene diamine disuccinic acid and citric acid exhibits a synergistic solubilisation effect on copper, zinc, lead, and cadmium leaching from fly ash. However, saponin and ethylene diamine disuccinic acid mixed solution exhibits a synergistic solubilisation effect that is superior to that of a saponin and citric acid mixed solution. The extraction rate of heavy metal in fly ash leached with a saponin and chelator mixed solution is related to the pH of the leaching solution, and the optimal range of the pH is suggested to be approximately neutral. After leaching with a saponin and chelator mixed solution, copper, zinc, lead, and cadmium contents significantly decreased (p < 0.05) in the extractable or acid-soluble and reducible fractions. By adopting the proposed approach, the leaching concentrations of copper, zinc, lead, and cadmium in treated fly ash are in accordance with Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes GB18598-2001.

  13. Sustainable municipal solid waste management: A qualitative study on possibilities and solutions in Mutomo, Kenya

    OpenAIRE

    Selin, Emma

    2013-01-01

    This report investigates the possibilities and solutions for a sustainable municipal solid waste management in the community of Mutomo, situated in Kitui County, Kenya. The aim was to formulate an action plan to start reaching for a sustainable development in the waste sector, with citizen participation. Specific research questions were to find requests and ideas from the community members. Also, how the Swedish solid waste management system is built up in order to find potential good example...

  14. Tea Wastes Efficiency on Removal of Cd(II From Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mehrdad Cheraghi

    2016-07-01

    Full Text Available Background & Aims of the Study: Heavy metals, such as cadmium (Cd(II, enter into the environment and cause health hazard due to their toxicity and bioaccumulation in the human body. Therefore, they must be removed from water. In recent years, much attention has been focused on the use of material residues as low-cost adsorbents for the removal of heavy metal ions from aqueous solutions. The aim of this paper is the assessment of tea wastes efficiency on removal of Cd(II from aqueous solutions. Materials and Methods: The present study was conducted in experimental scale. In this paper, tea wastes were prepared and used as an adsorbent for the removal of Cd(II ions from water. In batch tests, the effect of parameters like pH (1.0-8.0, initial metal concentration (100-800 mg L-1, contact time (15-120 min, adsorbent dose (1.0-5.0 g and temperature (25-55 °C on the adsorption process was studied. Results: The results demonstrated that the maximum percentage of Cd(II adsorption was found at pH 6.0 and the equilibrium was achieved after 60 min with 3.0 g tea wastes. The experimental isotherm data were analyzed, using the Langmuir and Freundlich models and it was found that the removal process followed the Langmuir isotherm. In addition, the adsorption kinetics followed the pseudo-second-order kinetic model. The maximum adsorption capacity calculated by Langmuir fitting was 71.4 mg g−1. Conclusion: The results suggest that tea wastes could be employed as an effective material for the removal of Cd(II ions from aqueous solutions and the maximum adsorption capacity was found to be 71.4 mg g−1.

  15. Immobilization of Rose Waste Biomass for Uptake of Pb(II from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Tariq Mahmood Ansari

    2011-01-01

    Full Text Available Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4 and maximum Pb(II recovered when treated with sulphuric acid (95.67%. The presence of cometals Na, Ca(II, Al(III, Cr(III, Cr(VI, and Cu(II, reduced Pb(II adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II from aqueous streams.

  16. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions.

    Science.gov (United States)

    Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H(2)SO(4), HCl and H(3)PO(4)) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams.

  17. Removal of Pb (II from Aqueous Solutions Using Waste Tea Leaves

    Directory of Open Access Journals (Sweden)

    Mehrdad Cheraghi

    2015-03-01

    Full Text Available Background: The presence of lead in natural waters has become an important issue around the world. Lead has been identified as a highly toxic metal that can cause severe environmental and public health problems and its decontamination is of utmost importance. The aim of this work was to evaluate the adsorption of lead (Pb(II on waste tea leaves as a cheap purification method. Methods: In this experimental study, prepared waste tea leaves were used as adsorbent for the removal of Pb (II from aqueous solutions. Adsorption experiments were carried out as batch studies at different contact time, pH, amount of adsorbent, initial metal concentration and temperature. Results: The results showed that maximum removal efficiency was observed at pH 6. Also the adsorption of Pb (II ions increased with decreasing initial metal concentration. The Langmuir isotherm model fits well with the equilibrium adsorption isotherm data and its calculated maximum monolayer adsorption capacity was 166.6 mg g-1 at a temperature of 25±0.1˚C. The kinetic data obtained have been analyzed using pseudo-first-order and pseudo-second-order models. The best fitted kinetic model was found to be pseudo-second-order. Conclusion: The results suggest that tea wastes could be employed as cheap material for the removal of lead from aqueous solutions.

  18. Supplemental Report: Technetium-99 On-Line Monitoring by Beta Counting for Hanford Supernate Waste Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, R.A.

    2000-08-23

    SRTC is investigating approaches for near-real-time monitoring of 99Tc at selected points in the proposed pretreatment process for Hanford supernate waste solutions. The desired monitoring points include both the feed to and decontaminated product from a technetium-removal column. A Cs-removal column precedes technetium decontamination in the proposed process. Our earlier report (Ref. 1) showed that a simple flow-through beta counting system can easily meet 99Tc detection limit goals for solutions that do not contain interfering radionuclides; however, concentrations of residual interferences were too high in process solutions at the desired monitoring points. That is, technetium can not be measured without additional purification. In this supplement, ADS evaluated ion exchange cartridges to remove radionuclides that interfere with 99Tc beta measurements. Tests on radioactive standard solutions and on Hanford Envelope B (AZ-102) pretreated process solutions show that 99Tc passes through the cation removal cartridge to an on-line beta counter, and that interfering radionuclides were nearly totally removed. Envelope B solutions included both the process's Cs-removed feed to the Tc-removal column and product from the column. Analyses of these solutions before and after the cation exchange cartridge show that the concentration of the primary interference, 137Cs, was reduced to about 1/250th of the feed concentration.

  19. Removal of arsenate and arsenite from aqueous solution by waste cast iron

    Institute of Scientific and Technical Information of China (English)

    Nag-Choul Choi; Song-Bae Kim; Soon-Oh Kim; Jae-Won Lee; Jun-Boum Park

    2012-01-01

    The removal of As(Ⅲ) and As(Ⅴ) from aqueous solution was investigated using waste cast iron,which is a byproduct of the iron casting process in foundries.Two types of waste cast iron were used in the experiment:grind precipitate dust (GPD) and cast iron shot (CIS).The X-ray diffraction analysis indicated the presence of Fe0 on GPD and CIS.Batch experiments were performed under different concentrations of As(Ⅲ) and As(Ⅴ) and at various initial pH levels.Results showed that waste cast iron was effective in the removal of arsenic.The adsorption isotherm study indicated that the Langmuir isotherm was better than the Freundlich isotherm at describing the experimental result.In the adsorption of both As(Ⅲ) and As(Ⅴ),the adsorption capacity of GPD was greater than CIS,mainly due to the fact that GPD had higher surface area and weight percent of Fe than CIS.Results also indicated the removal of As(Ⅲ) and As(Ⅴ)by GPD and CIS was influenced by the initial solution pH,generally decreasing with increasing pH from 3.0 to 10.5.In addition,both GPD and CIS were more effective at the removal of As(Ⅲ) than As(Ⅴ) under given experimental conditions.This study demonstrates that waste cast iron has potential as a reactive material to treat wastewater and groundwater containing arsenic.

  20. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sayali; Ballal, Anand; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2013-11-15

    Highlights: • Deinococcus radiodurans was genetically engineered to overexpress alkaline phosphatase (PhoK). • Deino-PhoK bioprecipitated U efficiently over a wide range of input U concentration. • A maximal loading of 10.7 g U/g of biomass at 10 mM input U was observed. • Radioresistance and U precipitation by Deino-PhoK remained unaffected by γ radiation. • Immobilization of Deino-PhoK facilitated easy separation of precipitated U. -- Abstract: Bioremediation of uranium (U) from alkaline waste solutions remains inadequately explored. We engineered the phoK gene (encoding a novel alkaline phosphatase, PhoK) from Sphingomonas sp. for overexpression in the radioresistant bacterium Deinococcus radiodurans. The recombinant strain thus obtained (Deino-PhoK) exhibited remarkably high alkaline phosphatase activity as evidenced by zymographic and enzyme activity assays. Deino-PhoK cells could efficiently precipitate uranium over a wide range of input U concentrations. At low uranyl concentrations (1 mM), the strain precipitated >90% of uranium within 2 h while a high loading capacity of around 10.7 g U/g of dry weight of cells was achieved at 10 mM U concentration. Uranium bioprecipitation by Deino-PhoK cells was not affected in the presence of Cs and Sr, commonly present in intermediate and low level liquid radioactive waste, or after exposure to very high doses of ionizing radiation. Transmission electron micrographs revealed the extracellular nature of bioprecipitated U, while X-ray diffraction and fluorescence analysis identified the precipitated uranyl phosphate species as chernikovite. When immobilized into calcium alginate beads, Deino-PhoK cells efficiently removed uranium, which remained trapped in beads, thus accomplishing physical separation of precipitated uranyl phosphate from solutions. The data demonstrate superior ability of Deino-PhoK, over earlier reported strains, in removal of uranium from alkaline solutions and its potential use in

  1. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans.

    Science.gov (United States)

    Kulkarni, Sayali; Ballal, Anand; Apte, Shree Kumar

    2013-11-15

    Bioremediation of uranium (U) from alkaline waste solutions remains inadequately explored. We engineered the phoK gene (encoding a novel alkaline phosphatase, PhoK) from Sphingomonas sp. for overexpression in the radioresistant bacterium Deinococcus radiodurans. The recombinant strain thus obtained (Deino-PhoK) exhibited remarkably high alkaline phosphatase activity as evidenced by zymographic and enzyme activity assays. Deino-PhoK cells could efficiently precipitate uranium over a wide range of input U concentrations. At low uranyl concentrations (1 mM), the strain precipitated >90% of uranium within 2h while a high loading capacity of around 10.7 g U/g of dry weight of cells was achieved at 10 mM U concentration. Uranium bioprecipitation by Deino-PhoK cells was not affected in the presence of Cs and Sr, commonly present in intermediate and low level liquid radioactive waste, or after exposure to very high doses of ionizing radiation. Transmission electron micrographs revealed the extracellular nature of bioprecipitated U, while X-ray diffraction and fluorescence analysis identified the precipitated uranyl phosphate species as chernikovite. When immobilized into calcium alginate beads, Deino-PhoK cells efficiently removed uranium, which remained trapped in beads, thus accomplishing physical separation of precipitated uranyl phosphate from solutions. The data demonstrate superior ability of Deino-PhoK, over earlier reported strains, in removal of uranium from alkaline solutions and its potential use in bioremediation of nuclear and other waste. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Oxidative Leaching of metals from electronic waste with solutions based on quaternary ammonium salts

    OpenAIRE

    Pinheiro, Diana

    2009-01-01

    The treatment of electric and electronic waste (WEEE) is a problem which receives ever more attention. An inadequate treatment results in harmful products ending up in the environment. This project intends to investigate the possibilities of an alternative route for recycling of metals from printed circuit boards (PCBs) obtained from rejected computers. The process is based on aqueous solutions composed of an etchant, either 0.2 M CuCl2.2H2O or 0.2 M FeCl3.6H2O, and a quater...

  3. Synthesis of hydroxy sodalite from coal fly ash using waste industrial brine solution.

    Science.gov (United States)

    Musyoka, Nicholas M; Petrik, Leslie F; Balfour, Gillian; Gitari, Wilson M; Hums, Eric

    2011-01-01

    The effect of using industrial waste brine solution instead of ultra pure water was investigated during the synthesis of zeolites using three South African coal fly ashes as Si feedstock. The high halide brine was obtained from the retentate effluent of a reverse osmosis mine water treatment plant. Synthesis conditions applied were; ageing of fly ash was at 47 ° C for 48 hours, and while the hydrothermal treatment temperature was set at 140 ° C for 48 hours. The use of brine as a solvent resulted in the formation of hydroxy sodalite zeolite although unconverted mullite and hematite from the fly ash feedstock was also found in the synthesis product.

  4. Application of laser-induced photoacoustic spectroscopy for determination of plutonium concentration in nuclear waste solutions.

    Science.gov (United States)

    Surugaya, Naoki; Sato, Soichi; Jitsukata, Syu; Watahiki, Masaru

    2008-04-01

    Laser-induced photoacoustic spectroscopy was used in a quantitative analysis of Pu in HNO3 medium. Plutonium was quantitatively oxidized to Pu(VI) using Ce(IV). The photoacoustic measurement of Pu(VI) with maximum absorption at 830.5 nm was subsequently performed to determine the concentration. The photoacoustic signal was linearly proportional to the Pu(VI) ion concentration. The detection limit of Pu(VI) was estimated to be 0.5 microg mL(-1) (3sigma) in 3 M HNO3. By the proposed method, Pu concentration was successfully determined in a nuclear waste solution for use in nuclear materials management.

  5. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  6. Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent

    Directory of Open Access Journals (Sweden)

    H. Z. Mousavi

    2010-03-01

    Full Text Available The purpose of this study was to investigate the possibility of the utilization of waste tire rubber ash (WTRA as a low cost adsorbent for removal of lead (II ion from aqueous solution. The effect of different parameters (such as contact time, sorbate concentration, adsorbent dosage, pH of the medium and temperature were investigated. The sorption process was relatively fast and equilibrium was reached after about 90 min of contact. The experimental data were analyzed by the Freundlich isotherm and the Langmuir isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 22.35 mg/g. The adsorption kinetics was investigated and the best fit was achieved by a first-order equation. The results of the removal process show that the Pb (II ion adsorption on WTRA is an endothermic and spontaneous process. The procedure developed was successfully applied for the removal of lead ions in aqueous solutions.

  7. Thermal Properties of Simulated and High-Level Waste Solutions Used for the Solvent Extraction Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.F.

    2001-06-27

    Researchers measured the heat capacity and thermal conductivity of supernate from a blend of Tank 37H and 44F, of a simulant of this blend, and of a simulant specifically designed for solvent extraction experiments. The measured heat capacity of the blend from the Tanks 37H and 44F equaled 0.871 cal/(g degrees C). The simulant of this blend produced an identical result. The heat capacity of the simulant designed for solvent extraction testing equaled 0.859 cal/(g degrees C). All three solutions have thermal conductivities in the range of 0.54 to 0.6 Watts/(m degrees C). The slight variation in the thermophysical properties of these solutions successfully explains the different flowmeter readings observed during the real waste demonstration of the solvent extraction technology.

  8. Usefulness of Activated Carbon Prepared from Industrial Wastes in the Removal of Nickel from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    R. Rajalakshmi

    2009-01-01

    Full Text Available Elimination of heavy metals like nickel from waste water is an important subject in view of public health. In the present study, an attempt has been made to study the applicability of industrial by-products as potential metal adsorbents to remove nickel from aqueous solutions and polluted water. A direct proportionality between the percentage of Ni(II removal and adsorbent dosage was noted. Maximum removal ⁄ recovery of nickel was achieved at pH range of 10-12 for all adsorbents. An optimum temperature of 40 °C for efficient removal of Ni(II was observed. The effect of nickel adsorption was affected by salinity. The adsorption isotherm data confirmed to Freundlich and Langmuir isotherms. Conformation of data to the Lagergren᾽s rate equation indicated first order kinetics. The suitability of the industrial by-products in the successful removal of nickel from aqueous solution is quite obvious from the study.

  9. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite.

    Science.gov (United States)

    Gao, Hongling; Liu, Haitang; Pang, Bo; Yu, Guang; Du, Jian; Zhang, Yuedong; Wang, Haisong; Mu, Xindong

    2014-11-01

    This study aimed to produce furfural from waste aqueous hemicellulose solution of a hardwood kraft-based dissolving pulp production processing in a green method. The maximum furfural yield of 82.4% and the xylose conversion of 96.8% were achieved at 463K, 1.0g ZSM-5, 1.05g NaCl and organic solvent-to-aqueous phase ratio of 30:15 (V/V) for 3h. The furfural yield was just 51.5% when the same concentration of pure xylose solution was used. Under the optimized condition, furfural yield was still up to 67.1% even after the fifth reused of catalyst. Catalyst recycling study showed that ZSM-5 has a certain stability and can be efficiently reused.

  10. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tunsu, Cristian, E-mail: tunsu@chalmers.se; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-15

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I{sub 2}/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I{sub 2}/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe{sub 4}BTBP showed good removal of mercury

  11. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.

    Science.gov (United States)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-01

    With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent's concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I2/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5M I2/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe4BTBP showed good removal of mercury, with an extraction efficiency of 97.5 ± 0.7% being achieved in a single stage. Better removal of mercury was achieved in a single stage using the extractants Cyanex 302 and Cyanex 923 in kerosene, respectively.

  12. APPLYING AN INTEGRATED ROUTE OPTIMIZATION METHOD AS A SOLUTION TO THE PROBLEM OF WASTE COLLECTION

    Directory of Open Access Journals (Sweden)

    A. H. Salleh

    2016-09-01

    Full Text Available Solid waste management (SWM is very subjective to budget control where the utmost expenses are devoted to the waste collection’s travel route. The common understanding of the travel route in SWM is that shorter route is cheaper. However, in reality it is not necessarily true as the SWM compactor truck is affected by various aspects which leads to higher fuel consumption. Thus, this ongoing research introduces a solution to the problem using multiple criteria route optimization process integrated with AHP/GIS as its main analysis tools. With the criteria obtained from the idea that leads to higher fuel consumption based on road factors, road networks and human factors. The weightage of criteria is obtained from the combination of AHP with the distance of multiple shortest routes obtained from GIS. A solution of most optimum routes is achievable and comparative analysis with the currently used route by the SWM compactor truck can be compared. It is expected that the decision model will be able to solve the global and local travel route problem in MSW.

  13. Potential of Chromolaena odorata for phytoremediation of (137)Cs from solution and low level nuclear waste.

    Science.gov (United States)

    Singh, Shraddha; Thorat, Vidya; Kaushik, C P; Raj, Kanwar; Eapen, Susan; D'Souza, S F

    2009-03-15

    Potential of Chromolaena odorata plants for remediation of (137)Cs from solutions and low level nuclear waste was evaluated. When plants were exposed to solutions spiked with three different levels of (137)Cs, namely 1 x 10(3) kBqL(-1), 5 x 10(3) kBqL(-1) and 10 x 10(3) kBqL(-1), 89%, 81% and 51% of (137)Cs was found to be remediated in 15 d, respectively. At the lowest Cs activity (1 x 10(3) kBqL(-1)), accumulation of Cs was found to be higher in roots compared to shoots, while at higher Cs activities (5 x 10(3) kBqL(-1) and 10 x 10(3) kBqL(-1)), Cs accumulation was more in shoots than roots. When plants were incubated in low level nuclear waste, 79% of the activity was removed by plants at the end of 15 d. The present study suggests that C. odorata could be used as a potential candidate plant for phytoremediation of (137)Cs.

  14. Applying AN Integrated Route Optimization Method as a Solution to the Problem of Waste Collection

    Science.gov (United States)

    Salleh, A. H.; Ahamad, M. S. S.; Yusoff, M. S.

    2016-09-01

    Solid waste management (SWM) is very subjective to budget control where the utmost expenses are devoted to the waste collection's travel route. The common understanding of the travel route in SWM is that shorter route is cheaper. However, in reality it is not necessarily true as the SWM compactor truck is affected by various aspects which leads to higher fuel consumption. Thus, this ongoing research introduces a solution to the problem using multiple criteria route optimization process integrated with AHP/GIS as its main analysis tools. With the criteria obtained from the idea that leads to higher fuel consumption based on road factors, road networks and human factors. The weightage of criteria is obtained from the combination of AHP with the distance of multiple shortest routes obtained from GIS. A solution of most optimum routes is achievable and comparative analysis with the currently used route by the SWM compactor truck can be compared. It is expected that the decision model will be able to solve the global and local travel route problem in MSW.

  15. The electroremoval of copper from dilute waste solutions using Swiss-roll electrode cell

    Science.gov (United States)

    Saba, A. E.; El Sherif, A. E.; Elsayed, E. M.

    2007-10-01

    Copper is usually present in concentrations less than 5 g/L-1 in dilute waste solutions. The low concentrations make these solutions unsuitable for the electro-flow owinning processes via conventional electrolysis cells. Unconventional, two-and three-dimensional electrode cells with relatively large cathodic area are essential for such treatment. Different types of cells are mentioned in the literature. Among these cells, the two-dimensional Swiss-roll cell (SR) is considered in this study. The effects of cathodic current densities, initial copper concentrations, free sulfuric acid concentration, the presence of iron and zinc cations, and the rate of flow of the solution on both the cathodic current efficiency and power consumption were studied. Copper was removed from synthetic and industrial mixtures of Cu/Fe/Zn sulfate solutions to less than 5 ppm with power consumptions of 10.326 kWh/kg-1 and 8.61 kWh/kg-1, respectively. The correlation between the SR cell and packed-column cell on such treatment was also considered.

  16. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution. [JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    St. John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.

  17. EFFECT of blend ratio and compatibilizer on solution casted treated waste natural rubber latex/polystyrene blends

    OpenAIRE

    Orathai Boondamnoen; A. Rashid Azura; Masahiro Ohshima; Saowaroj Chuayjuljit; Azlan Ariffin

    2013-01-01

    Natural rubber latex waste (WL) was treated with natural rubber latex (NRL) prior to blend with polystyrene. Differentblend compositions of treated waste natural rubber latex (TWL) and PS were carried out through solution blending. Tensileand tear properties were investigated. The compatibility improvement of the 70/30 TWL/PS blends was further investigatedusing styrene butadiene rubber (SBR) and styrene graft natural rubber (SNR) as compatibilizer. The mechanical properties forTWL/PS blends ...

  18. Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wenfang [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhao, Yingxin, E-mail: yingxinzhao@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072 (China); Zheng, Xinyi [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Ji, Min [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072 (China); Zhang, Zhenya [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan)

    2016-01-01

    Graphical abstract: The main chemical components of Sakura leaves are cellulose 16.6%, hemicellulose 10.4%, lignin 18.3%, ash 11.4%, and others 43.3%. The adsorption capacity of Cr(VI) onto Sakura leaves can achieve 435.25 mg g{sup −1}, much higher than other similar agroforestry wastes. - Highlights: • Sakura leaves were prepared to remove Cr(VI) from aqueous solution. • The maximum adsorption capacity of Cr(VI) reached 435.25 mg g{sup −1}. • Cr(VI) adsorption fitted pseudo-second-order kinetic model. • Isotherm models indicated Cr(VI) adsorption occurred on a monolayer surface. • The influence order of coexisting ions followed PO{sub 4}{sup 3−} > SO{sub 4}{sup 2−} > Cl{sup −}. - Abstract: A forestall waste, Sakura leave, has been studied for the adsorption of Cr(VI) from aqueous solution. The materials before and after adsorption were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). To investigate the adsorption performance of Sakura waste, batch experiments were conducted under different adsorbent dosage, contact time, initial concentration of Cr(VI), and co-existing ions. Results showed the data fitted pseudo-second-order better than pseudo-first-order kinetic model. Equilibrium data was analyzed with Langmuir, Freundlich and Redlich–Peterson isotherm models at temperature ranges from 25 °C to 45 °C. The maximum adsorption capacity from the Langmuir model was 435.25 mg g{sup −1} at pH 1.0. The presence of Cl{sup −}, SO{sub 4}{sup 2−} and PO{sub 4}{sup 3−} would lead to an obvious negative effect on Cr(VI) adsorption, and their influence order follows PO{sub 4}{sup 3−} > SO{sub 4}{sup 2−} > Cl{sup −}. The study developed a new way to reutilize wastes and showed a great potential for resource recycling.

  19. Immobilization of zinc from metallurgical waste and water solutions using geopolymerization technology

    Directory of Open Access Journals (Sweden)

    Nikolići I.

    2014-07-01

    Full Text Available Geopolymeraization technology is recognized as a promising method for immobilization of heavy metals by the stabilization or solidification process. This process involves the chemical reaction of alumino-silicate oxides with highly alkaline activator yielding the new material with amorphous or semi-amorphous structure, called geopolymer. Fly ash and blast furnace slag were mainly used as a raw material for geopolymerization process. In this paper we have investigated the possibility of immobilization of Zn from electric arc furnace dust (EAFD through geopolymerization of fly ash and possibility of Zn2+ adsorption from waste waters using fly ash based geopolymers. Efficacy of Zn immobilization from electric arc furnace dust was evaluated by TCLP test while the immobilization of Zn2+ ions from the water solution was evaluated through the removal efficiency. The results have shown that geopolymerization process may successfully be used for immobilization of Zn by stabilization of EAFD and for production of low cost adsorbent for waste water treatment.

  20. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    Science.gov (United States)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  1. Adsorption of Cr(VI) and Pb(II) from aqueous solution using agricultural solid waste.

    Science.gov (United States)

    Geetha, A; Sivakumar, P; Sujatha, M; Palanisamy, P N

    2009-04-01

    Areca nut shell, an agricultural solid waste by-product, has been studied for the removal of heavy metals Cr(VI) and Pb(II) from aqueous solution. Parameters, such as equilibrium time, effect of initial metal ion concentration, effect of pH on the removal, were analyzed. An initial pH of 4.0 was found most favourable for Cr(VI) removal and 5.0 for Pb(II) removal. Two theoretical isotherm models, namely Langmuir and Freundlich, were analyzed for the applicability of the experimental data. The Langmuir adsorption capacity (Q0) was calculated. The results of thermodynamic parameters suggest the exothermic nature of the adsorption. The desorption studies were carried out using dilute hydrochloric acid. Maximum desorption of 88% for Cr(VI) and 91% for Pb(II) were achieved. Areca nut shell waste, the low cost adsorbent is found to be effective in the removal of Cr(VI) and Pb(II) ions, and hence it can be applied for the removal of heavy metals from industrial wastewater.

  2. Removal of cadmium from aqueous solutions by adsorption onto orange waste

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Marin, A.B. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Zapata, V. Meseguer [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain)]. E-mail: vzapata@um.es; Ortuno, J.F. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Aguilar, M. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Saez, J. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Llorens, M. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain)

    2007-01-02

    The use of orange wastes, generated in the orange juice industry, for removing cadmium from aqueous solutions has been investigated. The material was characterized by Fourier transform infrared spectroscopy and batch experiments were conducted to determine the adsorption capacity of the biomass. A strong dependence of the adsorption capacity on pH was observed, the capacity increasing as pH value rose. Kinetics and adsorption equilibrium were studied at different pH values (4-6). The adsorption process was quick and the equilibrium was attained within 3 h. The maximum adsorption capacity of orange waste was found to be 0.40, 0.41 and 0.43 mmol/g at pH 4-6, respectively. The kinetic data were analysed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using four isotherm models - Langmuir, Freundlich, Sips and Redlich-Peterson. The data were fitted by non-linear regression and five error analysis methods were used to evaluate the goodness of the fit. The Elovich equation provides the greatest accuracy for the kinetic data and the Sips model the closest fit for the equilibrium data.

  3. Food waste decomposition in leachbed reactor: role of neutralizing solutions on the leachate quality.

    Science.gov (United States)

    Selvam, Ammaiyappan; Xu, Su Yun; Gu, Xiang Yang; Wong, Jonathan W C

    2010-03-01

    The neutralization effects of 0.1M NaHCO(3), KPO(4)-buffer (pH 7.0) and sodium acetate (NaOAc) solutions (500 ml/kg food waste/day) on controlling the pH and leachate quality in an acidogenic reactor of food waste anaerobic digestion was investigated. pH of leachate from the reactor was low and ranged from 3.24 to 4.15. Although differences in chemical oxygen demand (COD) were observed, the cumulative COD yields were almost similar. Ammonia concentrations gradually decreased from 26 to 3mg/l after 15 days. Acetic acid was the major fraction and the total VFAs decreased gradually for a week and increased thereafter, with a sharp increase in NaOAc treatment. VFAs yield and acetate/propionate ratio were the highest in NaOAc treatment, followed by NaHCO(3) and KPO(4) treatments. Volatile solids reduction was the lowest in NaOAc treatment (47.5%) and highest in NaHCO(3) treatment (67.0%). With lower decomposition and higher yield of VFA and COD, NaOAc could be used as a neutralizing agent in acidogenic reactors to improve the efficiency of the acidogenesis process.

  4. Environmental Solutions, A Summary of Contributions for CY04: Battelle Contributions to the Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Beeman, Gordon H.

    2005-03-08

    In support of the Waste Treatment Plant (WTP), Battelle conducted tests on mixing specific wastes within the plant, removing troublesome materials from the waste before treatment, and determining if the final waste forms met the established criteria. In addition, several Battelle experts filled full-time positions in WTP's Research and Testing and Process and Operations departments.

  5. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    Science.gov (United States)

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture.

  6. Removal of Lead (II Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    Directory of Open Access Journals (Sweden)

    Murat Erdem

    2013-01-01

    Full Text Available The removal of lead (II ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS analysis after adsorption reveals the accumulation of lead (II ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.

  7. Adsorption of cadmium from aqueous solution using algae waste based adsorbent

    Science.gov (United States)

    Kuncoro, Eko Prasetyo; Soedarti, Thin; Putrato, Trisnadi Widyaleksono Catur; Istiqomah, Nurul Alvia

    2017-06-01

    In this work, the cadmium adsorption capacity of abundant algae waste was investigated. The experiments in this work used batch mode adsorption. The parameters process studied were pH, adsorbent dosage and contact time. The values of pH studied were in the range of 2 to 7, the values of adsorbent dosage were in the range of 0.1 to 2 g while the contact time were in the range of 5 to 240 minutes. The results obtained showed that cadmium adsorption capacity was favored by increasing pH, dosage adsorbent and contact time. From the results obtained it can be concluded that algae was a promising adsorbent for cadmium sequestration from aqueous solution.

  8. Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution

    Directory of Open Access Journals (Sweden)

    Azadeh Ebrahimian Pirbazari

    2014-08-01

    Full Text Available The adsorption of methylene blue (MB from aqueous solution by alkali treated Foumanat tea waste (ATFTW from agriculture biomass was investigated. The adsorbent was characterized by Scanning Electron Microscopy (SEM, Fourier Transform-Infrared Spectroscopy (FT-IR and nitrogen physisorption. FTIR results showed complexation and ion exchange appear to be the principle mechanism for MB adsorption. The adsorption isotherm data were fitted to Langmuir, Sips, Redlich-Peterson and Freundlich equations, and the Langmuir adsorption capacity, Qmax was found to be 461 mgg−1. It was found that the adsorption of MB increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The removal of MB by ATFTW followed pseudo-second order reaction kinetics based on Lagergren equations. Mechanism studies indicated that the adsorption of MB on the ATFTW was mainly governed by external mass transport where particle diffusion was the rate limiting step.

  9. Waste Treatment of Acidic Solutions from the Dissolution of Irradiated LEU Targets for 99-Mo Production

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, Allen J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Conner, Cliff [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-01

    One of the missions of the Reduced Enrichment for Research and Test Reactors (RERTR) program (and now the National Nuclear Security Administrations Material Management and Minimization program) is to facilitate the use of low enriched uranium (LEU) targets for 99Mo production. The conversion from highly enriched uranium (HEU) to LEU targets will require five to six times more uranium to produce an equivalent amount of 99Mo. The work discussed here addresses the technical challenges encountered in the treatment of uranyl nitrate hexahydrate (UNH)/nitric acid solutions remaining after the dissolution of LEU targets. Specifically, the focus of this work is the calcination of the uranium waste from 99Mo production using LEU foil targets and the Modified Cintichem Process. Work with our calciner system showed that high furnace temperature, a large vent tube, and a mechanical shield are beneficial for calciner operation. One- and two-step direct calcination processes were evaluated. The high-temperature one-step process led to contamination of the calciner system. The two-step direct calcination process operated stably and resulted in a relatively large amount of material in the calciner cup. Chemically assisted calcination using peroxide was rejected for further work due to the difficulty in handling the products. Chemically assisted calcination using formic acid was rejected due to unstable operation. Chemically assisted calcination using oxalic acid was recommended, although a better understanding of its chemistry is needed. Overall, this work showed that the two-step direct calcination and the in-cup oxalic acid processes are the best approaches for the treatment of the UNH/nitric acid waste solutions remaining from dissolution of LEU targets for 99Mo production.

  10. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.

    Science.gov (United States)

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2016-11-01

    Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling.

  11. Parametric and kinetic study of adsorptive removal of dyes from aqueous solutions using an agriculture waste

    Science.gov (United States)

    Bencheikh, imane; el hajjaji, souad; abourouh, imane; Kitane, Said; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Wastewater treatment is the subject of several studies through decades. Interest is continuously oriented to provide cheaper and efficient methods of treatment. Several methods of treatment exit including coagulation flocculation, filtration, precipitation, ozonation, ion exchange, reverse osmosis, advanced oxidation process. The use of these methods proved limited because of their high investment and operational cost. Adsorption can be an efficient low-cost process to remove pollutants from wastewater. This method of treatment calls for an solid adsorbent which constitutes the purification tool. Agricultural wastes have been widely exploited in this case .As we know the agricultural wastes are an important source of water pollution once discharged into the aquatic environment (river, sea ...). The valorization of such wastes and their use allows the prevention of this problem with an economic and environment benefits. In this context our study aimed testing the wastewater treatment capacity by adsorption onto holocellulose resulting from the valorization of an agriculture waste. In this study, methylene blue (MB) and methyl orange (MO) are selected as models pollutants for evaluating the holocellulose adsorbent capacity. The kinetics of adsorption is performed using UV-visible spectroscopy. In order to study the effect of the main parameters for the adsorption process and their mutual interaction, a full factorial design (type nk) has been used.23 full factorial design analysis was performed to screen the parameters affecting dye removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters and their interactions was obtained. The parametric study showed that efficiency of the adsorption system (Dyes/ Holocellulose) is mainly linked to pH variation. The best yields were observed for MB at pH=10 and for MO at pH=2.The kinetic data was analyzed using different models , namely , the pseudo

  12. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  13. Cementation of the medium-activity AMOR waste solution at VKTA Rossendorf with the MOSS-200 mobile plant

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, F.; Pfefferkorn, G. [Nuclear Process Engineering and Analysis Association Rossendorf e. V. (VKTA), Dresden (Germany); Ekberg, A. [Westinghouse Atom AB, Vaesteras (Sweden); Mika, S. [Westinghouse Reaktor GmbH, Mannheim (Germany)

    2001-07-01

    Molybdenum-99 has been isolated since 1985 at the former Central Institute for Nuclear Research at Rossendorf from aluminium-clad fuel assemblies exposed in the research reactor for production of technetium-99m generators. The Rossendorf molybdenum production plant operated for this (abbreviated to AMOR - a German acronym), consisted of three plant sections. Plant section AMOR I was responsible for the resolution process and molybdenum extraction. Plant AMOR II was used for nuclear fuel recovery from AMOR-I waste solution by liquid-liquid extraction, and plant AMOR III was responsible for reprocessing the AMOR-II extract. The entire AMOR plant was shut down in late 1990. Radiologically, the residue from AMOR production can be classified as medium-activity liquid waste with the most important radioactive constituents being the two isotopes strontium-90 and caesium-137. Chemically, the waste consists of highly acidic (nitric acid) solution containing aluminium nitrate. (orig.)

  14. Selective separation of copper over solder alloy from waste printed circuit boards leach solution.

    Science.gov (United States)

    Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Firozi, Sadegh

    2017-02-01

    The printed circuit boards (PCBs) from electronic waste are important resource, since the PCBs contain precious metals such as gold, copper, tin, silver, platinum and so forth. In addition to the economic point of view, the presence of lead turns this scrap into dangerous to environment. This study was conducted as part of the development of a novel process for selective recovery of copper over tin and lead from printed circuit boards by HBF4 leaching. In previous study, Copper with solder alloy was associated, simultaneously were leached in HBF4 solution using hydrogen peroxide as an oxidant at room temperature. The objective of this study is the separation of copper from tin and lead from Fluoroborate media using CP-150 as an extractant. The influence of organic solvent's concentration, pH, temperature and A/O phase ratio was investigated. The possible extraction mechanism and the composition of the extracted species have been determined. The separation factors for these metals using this agent are reported, while efficient methods for separation of Cu (II) from other metal ions are proposed. The treatment of leach liquor for solvent extraction of copper with CP-150 revealed that 20% CP-150 in kerosene, a 30min period of contact time, and a pH of 3 were sufficient for the extraction of Cu(II) and 99.99% copper was recovered from the leached solution.

  15. Removal of 4-chloro-2-methyl phenoxy acetic acid pesticide using coffee wastes from aqueous solution

    Directory of Open Access Journals (Sweden)

    M.I. Al-Zaben

    2017-05-01

    Full Text Available The objective of this study is to investigate the use of coffee waste (CW to remove the 4-chloro-2-methyl phenoxy acetic acid (MCPA from aqueous solutions. To prepare CW, it was first washed and boiled to remove color and impurities then it was air dried at room temperature for 48 h. Afterward the particle size distribution and zeta potential of the CW ground were determined. The porous texture of coffee was proved by scanning and transition electron microscopy. Batch adsorption tests were performed at 298 K. The effects of contact time, MCPA concentration, and pH were investigated. It was observed that the adsorption of MCPA by using CW is independent of the solution pH level. The Langmuir isotherm provided the best correlation for MCPA adsorption onto CW, showing that the adsorption was favorable. The Langmuir adsorption capacity was found to be 0.34 g/g. The second-order model provided the best description of MCPA adsorption onto CW when compared with the first order model. Infrared spectral studies revealed that acidic groups carboxyl and hydroxyl, are predominant contributors to MPCA adsorption by coffee.

  16. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste.

    Science.gov (United States)

    Liao, Dexiang; Zheng, Wei; Li, Xiaoming; Yang, Qi; Yue, Xiu; Guo, Liang; Zeng, Guangming

    2010-05-15

    Carbonate hydroxyapatite (CHAP) synthesized from eggshell waste was used for removing lead ion from aqueous solutions. The effects of pH, contact time and initial concentration were studied in batch experiments. The maximum uptake of lead ion was obtained at pH 6.0. Adsorption equilibrium was established by 60 min. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were applied to study the kinetics of the sorption processes. The pseudo-second order kinetic model provided the best correlation (R(2)>0.9991) of the used experimental data compared to the pseudo-first order and intraparticle diffusion kinetic models. The adsorption of lead ion by CHAP increased as the initial concentration of lead ion increased in the medium. The maximum lead ion adsorbed was found to be 101 mg g(-1). It was found that the adsorption of Pb(II) on CHAP was correlated well (R(2)=0.9995) with the Langmuir equation as compared to Freundlich isotherm equation under the concentration range studied. This study indicated that CHAP could be used as an efficient adsorbent for removal of lead ion from aqueous solution.

  17. Solution of the capacity increase of the waste dump at the Merkur surface mine in Czechoslovakia

    Energy Technology Data Exchange (ETDEWEB)

    Musil, P.

    1987-06-01

    The methods used in the past for backfilling the large dump at the Merkur surface mine have, due to an ignorance of the factors influencing dump stability, resulted in significant capacity reductions of the dump. This ignorance was the result of insufficient knowledge, research, and poor practice at the operation. Recent re-evaluation of the actual stability conditions has led to a solution which permits an increase in the dump capacity, such that it is compatible with future mining plans. By considering the structure of the soils being used as backfill, specific technological processes are being defined which enable the preservation of the highest possible shear strength of the clayey soils, and thereby maximize the utilization of the internal capacity with at least short term stability. Questions regarding the behaviour and properties of the loose clayey material are also being answered, and new methods of stability calculation for the high dump are being developed. The key to these solutions has been the knowledge gained regarding the shear strength of the loose clayey material under various effective stress conditions, while realizing that three different zones can exist simultaneously within the body of the dump: the slope areas (having the greatest failure-inducing stress), the temporary areas (having a somewhat lower applied stress), and the dump core (where the tendency to fail is nearly zero). Through a sound application of this knowledge, the capacity of the waste dump at the large Merkur surface mine has been adequately expanded for the future.

  18. Removal of heavy metals by waste tea leaves from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, S.S.; Goyal, D. [Thapar Institute of Engineering and Technology, Department of Biotechnology and Environmental Sciences, Patiala 147 004, Punjab (India)

    2005-04-01

    In this paper, tea leaves were shown to be an effective, low-cost biosorbent. Removal of lead, iron, zinc and nickel from 20 mg/L metal solution by dried biomass of waste tea leaves amounted to 96, 91, 72 and 58 %, respectively, at equilibrium, which followed Langmuir and Freundlich adsorption isotherms. Adsorption of metal was in the order of Pb > Fe > Zn > Ni from 5-100 mg/L of metal solution. From a multi-metallic mixture, 92.5, 84 and 73.2 % of lead, iron and zinc, respectively, were removed. Fourier transform infrared (FTIR) studies indicated that the carboxyl group was involved in the binding of lead and iron, whereas the amine group was involved in the binding of nickel and zinc. A flow through sorption column packed with dried biomass demonstrated a sorption capacity of 73 mg Pb/g of biomass, indicating its potential in cleaning metal containing wastewater. The metal laden biomass obtained could be disposed off by incineration. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  19. Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution.

    Science.gov (United States)

    Tsai, Wen-Tien; Hsien, Kuo-Jong; Hsu, Hsin-Chieh; Lin, Chien-Ming; Lin, Keng-Yu; Chiu, Chun-Hsiang

    2008-04-01

    The adsorption of cationic basic blue 9 and anionic acid orange 51 from aqueous solution onto the calcified eggshell (ES) and its ground eggshell powder (ESP) was carried out by varying the process parameters such as agitation speed, initial dye concentration, adsorbent mass and temperature. The adsorption potential for basic blue 9 onto ESP is far lower than that for acid orange 51, mainly due to the ionic interaction between the acid dye with the sulfonate groups and the positively charged sites on the surface of ESP. The adsorption capacity of acid orange 51 onto ES is significantly smaller than that onto ESP, which is in line with their pore properties (i.e., 1 vs. 21 m(2)/g). The experimental results showed that the adsorption process can be well described with a simple model, the pseudo-second-order model. According to the equilibrium adsorption capacity from the fitting of pseudo-second order reaction model, it was further found that the Freundlich model yields a somewhat better fit than the Langmuir model in the adsorption of acid orange 51 onto ESP. In addition, an increase in adsorption temperature from 15 to 45 degrees C significantly enhances the adsorption capacity of acid orange 51 onto ESP, revealing that the adsorption should be an endothermic or chemisorption process. From the results, it is feasible to utilize the ground eggshell waste as an effective adsorbent for removal of anionic dye from aqueous solution.

  20. Degradation of industrial waste waters on Fe/C-fabrics. Optimization of the solution parameters during reactor operation.

    Science.gov (United States)

    Bozzi, A; Yuranova, T; Lais, P; Kiwi, J

    2005-04-01

    This study addresses the pre-treatment of toxic and recalcitrant compounds found in the waste waters arriving at a treating station for industrial effluents containing chlorinated aromatics and non-aromatic compounds, anilines, phenols, methyl-tert-butyl-ether (MTBE). By reducing the total organic carbon (TOC) of these waste waters the hydraulic load for the further bacterial processing in the secondary biological treatment is decreased. The TOC decrease and discoloration of the waste waters was observed only under light irradiation in the reactor by immobilized Fenton processes on Fe/C-fabrics but not in the dark. The energy of activation for the degradation of the waste waters was of 4.2 kcal/mol. The degradation of the waste waters was studied in the reactor as a function of (a) the amount of oxidant used (H2O2), (b) the recirculation rate, (c) the solution pH and (d) the applied temperature. With these parameters taken as input factors, statistical modeling allows one to estimate the most economic use of the oxidant and electrical energy to degrade these waste waters. The concentration of the most abundant organic pollutants during waste waters degradation was followed by gas chromatography/mass spectrometry (GC-MS). The ratio of the biological oxygen demand to the total organic carbon BOD5/TOC increased significantly due to the Fe/C-fabric catalyzed treatment from an initial value of 2.03 to 2.71 (2 h). The reactor results show that the recirculation rate has no influence on the TOC decrease of the treated waters but affects the BOD increase of these solutions.

  1. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  2. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tammy Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  3. EFFECT of blend ratio and compatibilizer on solution casted treated waste natural rubber latex/polystyrene blends

    Directory of Open Access Journals (Sweden)

    Orathai Boondamnoen

    2013-10-01

    Full Text Available Natural rubber latex waste (WL was treated with natural rubber latex (NRL prior to blend with polystyrene. Differentblend compositions of treated waste natural rubber latex (TWL and PS were carried out through solution blending. Tensileand tear properties were investigated. The compatibility improvement of the 70/30 TWL/PS blends was further investigatedusing styrene butadiene rubber (SBR and styrene graft natural rubber (SNR as compatibilizer. The mechanical properties forTWL/PS blends were improved at 15 phr of SNR.

  4. Adsorption of Reactive Blue 171 from Aqueous Solution using Low Cost Activated Carbon Prepared from Agricultural Solid Waste: Albizia amara

    Directory of Open Access Journals (Sweden)

    K. Anitha

    2015-07-01

    Full Text Available The adsorption of Reactive Blue 171 (Reactive Dye from aqueous solution using activated carbon prepared from Albizia amara pod shell waste as an adsorbent have been carried out. The experimental adsorption data fitted reasonably well to Langmuir and Freundlich adsorption isotherms. Kinetic parameters as a function of Initial dye concentration have been calculated and the kinetic data were substituted in Pseudo First Order, Elovich and Pseudo Second order equations. A probable explanation is offered to account for the results of kinetic study. The thermodynamic parameter enthalpy change (∆H suggests the exothermic nature of absorption of Reactive Blue 171 onto activated Albizia amara pod shell waste carbon.

  5. The waste management at research laboratories - problems and solutions; Gestao de rejeitos radioativos em laboratorios de pesquisa - problemas e solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Dellamano, Jose Claudio; Vicente, Roberto, E-mail: jcdellam@ipen.b, E-mail: rvicente@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Rejeitos Radioativos

    2011-10-26

    The radioactive management in radioactive installations must be planned and controlled. However, in the case of research laboratories, that management is compromised due to the common use of materials and installations, the lack of trained personnel and the nonexistence of clear and objective orientations by the regulator organism. Such failures cause an increasing of generated radioactive wastes and the imprecision or nonexistence of record of radioactive substances, occasioning a financial wastage, and the cancelling of licences for use of radioactive substances. This paper discusses and proposes solutions for the problems found at radioactive waste management in research laboratories

  6. A Comparative Study of Cellulose Agricultural Wastes (Almond Shell, Pistachio Shell, Walnut Shell, Tea Waste And Orange Peel for Adsorption of Violet B Dye from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2014-12-01

    Full Text Available Adsorption of violet B azo dye from aqueous solutions was studied by different cellulose agriculturalwaste materials (almond shell (AS, pistachio shell (PS, walnut shell (WS, Tea waste (TW and orange peel (OP. Cellulose agricultural waste sorbents characterized by FTIR and SEM methods. The effects of different parameters such as contact time, pH, adsorbent dosage and initial dye concentration were studied.Maximum removal of dye was obtained at contact time of 90 min and pH 11.The adsorption of violet B was fitted by pseudo-second-order kinetic model.The Langmuir isotherm model was better fitted than Freundlichmodel. The results showed that the adsorption efficiency of violet B by cellulose agricultural waste materials is as followed: Almond shell > Orange peel > Pistachio shell > Tea waste> Walnut shell.The maximum adsorption capacity was obtained 96, 82, 71.4, 55.5 and 48.7 mg g−1 for AS, OP, PS, TW and WS, respectively.

  7. Lignocellulosic-derived modified agricultural waste: development, characterisation and implementation in sequestering pyridine from aqueous solutions.

    Science.gov (United States)

    Ahmed, Md Juned K; Ahmaruzzaman, M; Reza, Ruhul A

    2014-08-15

    The development and characterisation of modified agricultural waste (MAW) by H3PO4 activation is addressed in this study for sequestering pyridine from aqueous solutions. The adsorbent is characterised by carbon, hydrogen and nitrogen content of 55.53%, 3.28% and 0.98% respectively. The adsorbent also shows acidic (carboxylic, lactonic, phenolic groups) and basic carbon surface functionalities, functional groups viz. hydroxyl, carboxylic acid and bounded water molecules, BET surface area of 1254.67 m(2) g(-1), heterogeneous surface morphology and graphite like XRD patterns. Adsorption of pyridine is executed to evaluate the adsorptive uptake in batch (q(e)=107.18 mg g(-1)) as well as in column system (q(e)=140.94 mg g(-1)). The adsorption process followed the pseudo-second-order kinetics with the Langmuir isotherm best representing the equilibrium adsorption data. The thermodynamic parameters (ΔH(o)=9.39 kJ mol(-1), ΔG(o)=-5.99 kJ mol(-1), ΔS(o)=50.76 J K(-1) mol(-1)) confirm the endothermic and spontaneous nature of the adsorption process with increase in randomness at solid/solution interface. The adsorption mechanism is governed by electrostatic and π-π dispersive interactions as well as by a two stage diffusion phenomena. Thermally regenerated spent MAW exhibited better adsorption efficiency for five adsorption-desorption cycles than chemically regenerated. The low-cost of MAW (USD 10.714 per kg) and favourable adsorption parameters justifies its use in the adsorptive removal of pyridine.

  8. Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2012-10-01

    Full Text Available This work aims to study the removal of Cu(II and Cr(VI from aqueous solutions with commercial coffee wastes. Materials with no further treatment such as coffee residues from café may act as adsorbents for the removal of Cu(II and Cr(VI. Equilibrium data were successfully fitted to the Langmuir, Freundlich and Langmuir-Freundlich model (L-F. The maximum adsorption capacity of the coffee residues can reach 70 mg/g for the removal of Cu(II and 45 mg/g for Cr(VI. The kinetic data were fitted to pseudo-first, -second and -third order equations. The equilibrium was achieved in 120 min. Also, the effect of pH on adsorption and desorption was studied, as well as the influence of agitation rate. Ten cycles of adsorption-desorption were carried out revealing the strong reuse potential of these low-cost adsorbents; the latter was confirmed from a brief economic approach.

  9. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution

    Directory of Open Access Journals (Sweden)

    Zhao Youcai

    2013-12-01

    Full Text Available Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 % were obtained.

  10. A Novel Agricultural Waste Adsorbent, Watermelon Shell for the Removal of Copper from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Koel Banerjee

    2012-01-01

    Full Text Available The present study deals with the application of Watermelon Shell, an agricultural waste, for the adsorptive removal of Cu(II from its aqueous solutions. This paper incorporates the effects of time, dose,temperature, concentration, particle size, agitation speed and pH. Analytical techniques have been employed to find pore properties and characteristics of adsorbent materials. Batch kinetic and isotherm studies have also been performed to understand the ability of the adsorbents. The adsorption behavior of the Cu(II has beenstudied using Freundlich, Langmuir and Tempkin adsorption isotherm models. The monolayer adsorption capacity determined from the Langmuir adsorption equation has been found as 111.1 mg/g. Kineticmeasurements suggest the involvement of pseudo-second-order kinetics in adsorptions and is controlled by a particle diffusion process. Adsorption of Cu(II on adsorbents was found to increase on decreasing initial concentration, increasing pH up to 8, increasing temperature, increasing agitation speed and decreasing particlesize. Overall, the present findings suggest that watermelon outer shell is environmentally friendly, efficient and low-cost biosorbent which is useful for the removal of Cu(II from aqueous media.

  11. Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution.

    Science.gov (United States)

    Manoj Kumar Reddy, P; Mahammadunnisa, Sk; Ramaraju, B; Sreedhar, B; Subrahmanyam, Ch

    2013-06-01

    Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ∼585 m(2)/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H(2)O(2)-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics.

  12. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  13. Comparison of international back-end solutions for low and intermediate level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, Bruna L.; Ulhoa, Barbara M.A.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: bla@ctdn.b, E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    In spite of the fact that the use of radioactivity in different applications demands maximum attention due to its potential risks, a unique assessment of the matter is impossible to reach. When compared to other hazardous waste categories or even domestic waste, the amount of radioactive waste generated is not significant. The objective of this work is to analyze the variation associated to the amount of radioactive waste storage in many places. The results showed that this amount is increasing, a fact coherent to the growth in the last years of both the nuclear energy applications and the share of nuclear energy in the global market. (author)

  14. Analysis of Ecodesign Implementation and Solutions for Packaging Waste System by Using System Dynamics Modeling

    Science.gov (United States)

    Berzina, Alise; Dace, Elina; Bazbauers, Gatis

    2010-01-01

    This paper discusses the findings of a research project which explored the packaging waste management system in Latvia. The paper focuses on identifying how the policy mechanisms can promote ecodesign implementation and material efficiency improvement and therefore reduce the rate of packaging waste accumulation in landfill. The method used for analyzing the packaging waste management policies is system dynamics modeling. The main conclusion is that the existing legislative instruments can be used to create an effective policy for ecodesign implementation but substantially higher tax rates on packaging materials and waste disposal than the existing have to be applied.

  15. Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves

    OpenAIRE

    2015-01-01

    The sorption characteristic of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves as a low cost sorbent has been studied. The effect of pH, contact time, sorbent dose, initial metal ion concentration and temperature were investigated in batch experiments. The equilibrium data were fitted into four most common isotherm models; Freundlich, Langmuir, Tempkin and Dubinin–Radushkevich (D–R). The Langmuir model described the sorption isotherm best with maximum monolayer sorpt...

  16. "Control-alt-delete": rebooting solutions for the E-waste problem.

    Science.gov (United States)

    Li, Jinhui; Zeng, Xianlai; Chen, Mengjun; Ogunseitan, Oladele A; Stevels, Ab

    2015-06-16

    A number of efforts have been launched to solve the global electronic waste (e-waste) problem. The efficiency of e-waste recycling is subject to variable national legislation, technical capacity, consumer participation, and even detoxification. E-waste management activities result in procedural irregularities and risk disparities across national boundaries. We review these variables to reveal opportunities for research and policy to reduce the risks from accumulating e-waste and ineffective recycling. Full regulation and consumer participation should be controlled and reinforced to improve local e-waste system. Aiming at standardizing best practice, we alter and identify modular recycling process and infrastructure in eco-industrial parks that will be expectantly effective in countries and regions to handle the similar e-waste stream. Toxicity can be deleted through material substitution and detoxification during the life cycle of electronics. Based on the idea of "Control-Alt-Delete", four patterns of the way forward for global e-waste recycling are proposed to meet a variety of local situations.

  17. Tank Waste Transport Stability: Summary of Slurry and Salt-Solution Studies for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-06-07

    Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  18. Finding urban waste management solutions and policies: Waste-to-energy development and livelihood support system in Payatas, Metro Manila, Philippines.

    Science.gov (United States)

    Serrona, Kevin Roy; Yu, Jeong-Soo

    2009-01-01

    One of the potential solutions in social and environmental sustainability in municipal solid waste management (MSW) in Metro Manila is to combine community-based recycling and sound landfill management strategies. The marriage of the two puts importance on recycling as a source of livelihood while proper landfill management aims to improve the aesthetic and environmental quality of disposal facilities in urban areas. To do this, a social mapping of wastepickers, junkshops and local recycling practices needs to be undertaken and at the same time assess strategies of the national and local governments vis-à-vis existing laws on municipal solid waste. The case of Payatas controlled disposal facility was taken as a pilot study because it represents the general condition of disposal sites in Metro Manila and the social landscape that it currently has. In addition, a waste-to-energy (WTE) project has been established in Payatas to produce electricity from methane gas. Preliminary interviews with wastepickers show that development interventions in disposal sites such as WTE pose no opposition from host communities for as long as alternative livelihood opportunities are provided. Regulating the flow of wastepickers into the landfill has advantages like improved income and security. Felt needs were also articulated like provision of financial support or capital for junkshop operation and skills training. Overall, a smooth relationship between the local government and community associations pays well in a transitioning landfill management scheme such as Payatas.

  19. A Good Solution for Household Based on Fast Waste Water Blockage Detection

    Directory of Open Access Journals (Sweden)

    Mohammad A. Omardin

    2010-01-01

    Full Text Available Problem statement: The waste pipes from the wash basin are always flow in with several waste form kitchen preparation. Due to time consideration the pipe may comes through blockage and need blockage maintenance. Approach: This study presented an invention for early warning blockage detection for a kitchen waste water drain pipe. The waste water pipe some be connected through vertical pipe runs which are usually embedded in the wall. The Fast Waste Water Blockage Detection (FWABET is to create early detection of a blocked waste water level at kitchen appliances means for quick action knowing fluid flow passing through detector and indicates sign and alarm. Results: User society and country will be benefited from FWABET such as restaurants, slaughters house, hotels, hospitals, building developers and plumbing contractors. It is the first invention in Malaysia and can be adapt as a part of building services requirements. Conclusion: It is concluded that by apply the FWABETs, it may reduce the costs and time of blockage waste water blockage drainage maintenance operations.

  20. Highly water soluble nanoparticles as a draw solute in forward osmosis for the treatment of radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Heeman; Choi, Hye Min; Jang, Sungchan; Seo, Bumkyoung; Lee, Kune Woo; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    . In this study, we introduced highly water-soluble hyperbranched caroboxylated polyglycerol-coated magnetic nanoparticles (CPG-MNPs). It is known that the highly branched, globular architecture of PG significantly increase solubility compared to linear polymer and they are eco-friendly. The CPG-MNPs showed no aggregate of particles in water even after placing external magnet, and exhibited a high water flux in FO process. The CPG-MNPs are, therefore, potentially useful as a draw solute in FO processes. The operation of nuclear pressurized water reactors (PWRs) results in numerous radioactive waste streams which vary in radioactivity content. Most PWR stations have experienced leakages of boric acid into liquid radioactive waste systems. These wastes contain about 0.3∼0.8 wt% of boric acid. It is known that reverse osmosis (RO) membrane can eliminate boron at high pH and boron of 40∼90% can be removed by RO membrane in pH condition. RO uses hydraulic pressure to oppose, and exceed, the osmotic pressure of an aqueous feed solution containing boric acid. Forward osmosis (FO), a low energy technique based on membrane technologies, has recently garnered attention for its utility in wastewater treatment and desalination applications. In the FO process, water flows across a semi-permeable membrane from a solution with a low osmotic pressure (the feed solution) to a solution with a high osmotic pressure (the draw solution). The driving force in FO processes is provided by the osmotic gradient between the two solutions. Low energy costs and low degrees of membrane fouling are two of the advantages conveyed by FO processes over other processes, such as reverse osmosis processes that rely on a hydraulic pressure driving force. However, the challenges of FO still lie in the fabrication of eligible FO membranes and the readily separable draw solutes of high osmotic pressures. Superparamagnetic Fe3O4 nanoparticles can be separated from water by an external magnet field

  1. Coal and wood fuel for electricity production: An environmentally sound solution for waste and demolition wood

    Energy Technology Data Exchange (ETDEWEB)

    Penninks, F.W.M. [EPON, Zwolle (Netherlands)

    1997-12-31

    Waste wood from primary wood processing and demolition presents both a problem and a potential. If disposed in landfills, it consumes large volumes and decays, producing CH{sub 4}, CO{sub 2} and other greenhouse gases. As an energy source used in a coal fired power plant it reduces the consumption of fossil fuels reducing the greenhouse effect significantly. Additional advantages are a reduction of the ash volume and the SO{sub 2} and NO{sub x} emissions. The waste wood requires collection, storage, processing and burning. This paper describes a unique project which is carried out in the Netherlands at EPON`s Gelderland Power Plant (635 MW{sub e}) where 60 000 tonnes of waste and demolition wood will be used annually. Special emphasis is given to the processing of the powdered wood fuel. Therefore, most waste and demolition wood can be converted from an environmental liability to an environmental and economic asset. (author)

  2. Removal of Cu, Cr, Ni, Zn, and Cd from electroplating wastes and synthetic solutions by vermicompost of cattle manure.

    Science.gov (United States)

    Jordão, Cláudio Pereira; Pereira, Madson de Godoi; Einloft, Rosilene; Santana, Marlete Bastos; Bellato, Carlos Roberto; de Mello, Jaime Wilson Vargas

    2002-01-01

    This study was undertaken to evaluate the retention of Cu, Cr, Ni, Zn, and Cd under laboratory conditions from synthetic solution and electroplating wastes by vermicompost. A glass column was loaded with vermicompost, and metal solutions were passed through it. Metal concentrations were then measured in the eluate in order to evaluate the amounts retained by the vermicompost. Measurements of pH, metal concentrations, moistness, organic matter and ash contents, and infrared and XRD spectroscopy were used for vermicompost characterisation. Vermicompost residues obtained from this process were used for plant nutrition in eroded soil collected from a talus near a highway. Metal retention (in g of metal/kg of vermicompost) from effluents ranged from 2 for Cr and Zn to 4 in the case of Ni. In synthetic solutions, the values for metal retention were 4 for Cd and Zn, 6 for Cu and Ni, and 9 for Cr. The results also showed that metal concentrations in the purified effluents were below the maximum values established for waste discharges into rivers by the Brazilian Environmental Standards. The relatively high available Cd concentration of the vermicompost residue resulted in plant damage. This effect was attributed to the presence of Cd in the synthetic solution passed through the vermicompost. The data obtained do not give a complete picture of using vermicompost in cultivated lands, but such values as are determined do show that it can be suitable to remove heavy metals from industrial effluents.

  3. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  4. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg(-1) to 16.60 MJ kg(-1) depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm(-3) at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kWe. The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  5. POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.; Stripling, C.; Fisher, D.; Elder, J.

    2010-04-26

    The evaporator recycle streams of nuclear waste tanks may contain waste in a chemistry and temperature regime that exceeds the current corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history found that two of these A537 carbon steel tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved tanks of similar construction. Therefore, it appears that the efficacy of stress relief of welding residual stress is the primary corrosion-limiting mechanism. The objective of this experimental program is to test A537 carbon steel small scale welded U-bend specimens and large welded plates (30.48 x 30.38 x 2.54 cm) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in these nuclear waste tanks. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test was completed after 12 weeks of immersion in a similar solution at 125 C except that the aluminate concentration was reduced to 0.3 M. Visual inspection of the plate revealed that stress corrosion cracking had not initiated from the machined crack tips in the weld or in the heat affected zone. NDE ultrasonic testing also confirmed subsurface cracking did not occur. Based on these results, it can be concluded that the environmental condition of these tests was unable to develop stress corrosion cracking within the test periods for the small welded U-bends and for the large plates, which were welded with an identical procedure as used in the construction of the actual nuclear waste tanks in the 1960s. The

  6. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K.

  7. The waste isolation pilot plant. Permanent isolation of defense transuranic waste in deep geologic salt. A national solution and international model

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose; Van Luik, Abraham [US Department of Energy, Carlsbad, NM (United States). Carlsbad Field Office

    2015-07-01

    The Waste Isolation Pilot Plant is located about 42 kilometers from the city of Carlsbad, New Mexico. It is an operating deep geologic repository in bedded salt 657 meters below the surface of the Chihuahuan desert. Since its opening in March of 1999, it has received about 12,000 shipments totaling about 91,000 cubic meters of defense related transuranic (TRU) wastes. Twenty-two sites have been cleaned up of their defense-legacy TRU waste. The WIPP's shipping program has an untarnished safety record and its trucks and trailers have safely traveled the equivalent of about 60 round-trips to the Moon. WIPP received, and deserved, a variety of safety accolades over its nearly 15 year working life. In February of 2014, however, two incidents resulted in a major operational suspension and reevaluation of its safety systems, processes and equipment. The first incident was an underground mining truck fire, followed nine days later by an airborne radiation release incident. Accident Investigation Board (AIB) reports on both incidents point to failures of plans, procedures and persons. The AIB recommendations for recovery from both these incidents are numerous and are being carefully implemented. One major recommendation is to no longer have different maintenance and safety requirements for nuclear handling equipment and mining equipment. Maintenance and cleanliness of mining equipment was cited as a contributing cause to the underground fire, and the idea that there can be lesser rigor in taking care of mining equipment, when it is being operated in the same underground space as the waste handling equipment, is not tenable. At some point in the future, the changes made in response to these two incidents will be seen as a valuable lesson learned on behalf of future repository programs. WIPP will once again be seen as a ''pilot'' in the nautical sense, in terms of 'showing the way' - the way to a national and international radioactive waste

  8. Removal of Cu(II Ions from Aqueous Solutions by Adsorption Onto Activated Carbon Derived From Olive Waste Cakes

    Directory of Open Access Journals (Sweden)

    Hesham G. Ibrahim

    2016-04-01

    Full Text Available This paper studied the ability of using local activated carbon (LAC derived from olive waste cakes as an adsorbent for the removal of Cu(II ions from aqueous solution by batch operation. Various operating parameters such as solution pH, adsorbent dosage, initial metal ions concentration, and equilibrium contact time have been studied. The results indicated that the adsorption of Cu(II increased with the increasing pH, and the optimum solution pH for the adsorption of Cu(II was found to be 5. The adsorption process increases with increasing dosage of LAC, also the amount of Cu(II removed changes with Cu(II initial concentration and contact time. Adsorption was rapid and occurred within 25 min. for Cu(II concentration range from 60 to 120 mg/l isothermally at 30±1 oC. Maximum adsorption occurs at Cu(II initial concentration lesser than 100 mg/l by using adsorbent dosage (1.2 g/l. The equilibrium adsorption data for Cu(II were fitted well with the Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of LAC was found to be 106.383 mg/g. So, the results indicated the suitability use of the activated carbon derived from olive waste cakes (LAC as low cost and natural material for reliable removal of Cu(II from water and wastewater effluents.

  9. Integrated Treatment and Storage Solutions for Solid Radioactive Waste at the Russian Shipyard Near Polyarny

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, A.; Engoy, T.; Endregard, M.; Busmundrud, O.; Schwab, P.; Nazarian, A.; Krumrine, P.; Backe, S.; Gorin, S.; Evans, B.

    2002-02-27

    Russian Navy Yard No. 10 (Shkval), near the city of Murmansk, has been designated as the recipient for Solid Radioactive Waste (SRW) pretreatment and storage facilities under the Arctic Military Environmental Cooperation (AMEC) Program. This shipyard serves the Northern Fleet by servicing, repairing, and dismantling naval vessels. Specifically, seven nuclear submarines of the first and second generation and Victor class are laid up at this shipyard, awaiting defueling and dismantlement. One first generation nuclear submarine has already been dismantled there, but recently progress on dismantlement has slowed because all the available storage space is full. SRW has been placed in metal storage containers, which have been moved outside of the actual storage site, which increases the environmental risks. AMEC is a cooperative effort between the Russian Federation, Kingdom of Norway and the United States. AMEC Projects 1.3 and 1.4 specifically address waste treatment and storage issues. Various waste treatment options have been assessed, technologies selected, and now integrated facilities are being designed and constructed to address these problems. Treatment technologies that are being designed and constructed include a mobile pretreatment facility comprising waste assay, segregation, size reduction, compaction and repackaging operations. Waste storage technologies include metal and concrete containers, and lightweight modular storage buildings. This paper focuses on the problems and challenges that are and will be faced at the Polyarninsky Shipyard. Specifically, discussion of the waste quantities, types, and conditions and various site considerations versus the various technologies that are to be employed will be provided. A systems approach at the site is being proposed by the Russian partners, therefore integration with other ongoing and planned operations at the site will also be discussed.

  10. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D&D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration{trademark} (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs.

  11. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  12. EVALUATION OF THE REMOVAL OF ARSENIC AND CADMIUM FROM AQUEOUS SOLUTION USING NATURAL RHYOLITIC SEDIMENTS AND METALLURGICAL WASTES

    OpenAIRE

    Luis Gerardo MARTÍNEZ JARDINES; Francisco MARTÍN ROMERO; Margarita Eugenia GUTIÉRREZ RUIZ; Águeda Elena CENICEROS GÓMEZ

    2012-01-01

    The use of natural materials abundant, efficient and inexpensive for use in stabilization of contaminants is in development, so some sorbent materials for removal of Cd (II) on aqueous solutions in the range of 10-100 mg/L and for As (III) and As (V) in the range of 1-500 mg/L have been investigated. The sorbent materials studied are indigenous rhyolitic sediments and metallurgical wastes from San Luis Potosi, Mexico. Mineralogical analysis showed that rhyolitic sediments are characterized by...

  13. Uptake of Pb(II) ion From Aqueous Solution Using Silk Cotton Hull Carbon: An Agricultural Waste Biomass

    OpenAIRE

    Shanmugavalli, R.; P. S. Syed Shabudeen; R. Venckatesh; K. Kadirvelu; S. Madhavakrishnan; S. Pattabhi

    2006-01-01

    Activated carbon prepared from silk cotton hull (SCH) was used for the adsorptive removal of Pb(II) ion from aqueous solution. The raw material used for the preparation of activated carbon is the waste of agricultural product; the production of this carbon is expected to be economically feasible. Parameters such as agitation time, metal ion concentration, adsorbent dose, pH and Particle size were studied. Adsorption equilibrium was reached within 80 min for 10, 20, 30 and 40mg/l of Pb(II) ion...

  14. Waste sizing solution as co-substrate for anaerobic decolourisation of textile dyeing wastewaters

    NARCIS (Netherlands)

    Bisschops, I.; Santos, dos A.B.; Spanjers, H.

    2005-01-01

    Dyeing wastewaters and residual size are textile factory waste streams that can be treated anaerobically. For successful anaerobic treatment of dyeing effluents, a co-substrate has to be added because of their low concentration of easily biodegradable compounds. Starch-based size contains easily bio

  15. PLASMA GASIFICATION – THE WASTE-to-ENERGY SOLUTION FOR THE FUTURE

    Directory of Open Access Journals (Sweden)

    Birsan N.

    2014-12-01

    Full Text Available Plasma WtE is currently subject of extensive research and a number of companies across the globe are trying to develop a suitable, eco-friendly and efficient WtE technology for the future. While all of these companies are still working on concept designs or small-scale prototypes, there is one company already building large industrial scale plasma gasifiers around the globe to treat MSW, Industrial and Toxic waste all together. In 1999 in Japan, Hitachi Metals and Westinghouse Plasma Corp (“WPC” built the World’s First commercial demonstration plasma WtE plant. Hitachi Metals operated the plant for one year on municipal solid waste and obtained a certification from the Japan Waste Research Foundation (JWRF. Subsequently, Hitachi Metals leveraged this success into the two commercial plants at Mihama-Mikata and Utashinai in Japan, both having at the very core the now proven Westinghouse Plasma gasification technology. For more than 20 years, Westinghouse Plasma Corp (WPC has been leading the technology platform for converting the world’s waste into clean energy for a healthier planet. The WPC technology makes landfills obsolete and replaces Incineration as the primary process for WtE. The WPC technology already operates in three reference plants around the world and other three new commercial plants are under construction (two plants of 1000 tons/day in UK and a 650 tons/day in China, all three designed to convert municipal solid waste to electricity and district heat, in the most efficient and environmental-friendly manner.

  16. Nickel recovery from electronic waste II electrodeposition of Ni and Ni-Fe alloys from diluted sulfate solutions.

    Science.gov (United States)

    Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P

    2013-11-01

    This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  17. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat.

    Science.gov (United States)

    Rengaraj, S; Moon, Seung-Hyeon; Sivabalan, R; Arabindoo, Banumathi; Murugesan, V

    2002-01-28

    Activated carbon prepared from rubber seed coat (RSCC), an agricultural waste by-product, has been used for the adsorption of phenol from aqueous solution. In this work, adsorption of phenol on rubber seed coat activated carbon has been studied by using batch and column studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage and contact time. The equilibrium adsorption capacity of rubber seed coat activated carbon for phenol removal was obtained by using linear Freundlich isotherm. The adsorption of phenol on rubber seed coat activated carbon follows first order reversible kinetics. The suitability of RSCC for treating phenol based resin manufacturing industry wastewater was also tested. A comparative study with a commercial activated carbon (CAC) showed that RSCC is 2.25 times more efficient compared to CAC based on column adsorption study for phenolic wastewater treatment.

  18. Mechanisms of strontium and uranium removal from high-level radioactive waste simulant solutions by the sorbent monosodium titanate.

    Science.gov (United States)

    Duff, M C; Hunter, D B; Hobbs, D T; Fink, S D; Dai, Z; Bradley, J P

    2004-10-01

    High-level waste (HLW) is a waste associated with the dissolution of spent nuclear fuel for the recovery of weapons-grade material. It is the priority problem for the U.S. Department of Energy's Environmental Management Program. Current HLW treatment processes at the Savannah River Site (Aiken, SC) include the use of monosodium titanate (MST, with a similar stoichiometry to NaTi2O5 x xH2O) to concentrate strontium (Sr) and actinides. The high affinity of MST for Sr and actinides in HLW solutions rich in Na+ is poorly understood. Mechanistic information about the nature of radionuclide uptake will provide insight about MST treatment reliability. Our study characterized the morphology of MST and the chemistry of sorbed Sr2+ and uranium [U(VI)] as uranyl ion, UO2(2+), on MST, which were added (individually) from stock solutions of Sr and 238U(VI) with spectroscopic and transmission electron microscopic techniques. The local structure of sorbed U varied with loading, but the local structure of Sr did not vary with loading. Sorbed Sr exhibited specific adsorption as partially hydrated species whereas sorbed U exhibited specific adsorption as monomeric and dimeric U(VI)-carbonate complexes. Sorption proved site specific. These differences in site specificity and sorption mechanism may account forthe difficulties associated with predicting Sr and U loading and removal kinetics using MST.

  19. Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II from aqueous solution using formaldehyde treated waste tea leaves

    Directory of Open Access Journals (Sweden)

    Jasmin Shah

    2015-05-01

    Full Text Available The sorption characteristic of Ni (II from aqueous solution using formaldehyde treated waste tea leaves as a low cost sorbent has been studied. The effect of pH, contact time, sorbent dose, initial metal ion concentration and temperature were investigated in batch experiments. The equilibrium data were fitted into four most common isotherm models; Freundlich, Langmuir, Tempkin and Dubinin–Radushkevich (D–R. The Langmuir model described the sorption isotherm best with maximum monolayer sorption capacity of 120.50 mg g−1. Four kinetic models, pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elovich were employed to explain the sorption mechanism. The kinetics of sorption data showed that the pseudo-second-order model is the best with correlation coefficient of 0.9946. The spontaneous and exothermic nature of the sorption process was revealed from thermodynamic investigations. The effect of some common alkali and alkaline earth metal ions were also studied which showed that the presence of these ions have no effect on the sorption of Ni (II. The results showed that waste tea leaves have the potential to be used as a low cost sorbent for the removal of Ni (II from aqueous solutions.

  20. Long-term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt - Leaching experiments and thermodynamic simulations

    Science.gov (United States)

    Bube, C.; Metz, V.; Bohnert, E.; Garbev, K.; Schild, D.; Kienzler, B.

    Low- and intermediate-level radioactive wastes are frequently solidified in a cement matrix. In a potential repository for nuclear wastes, the cementitious matrix is altered upon contact with solution and the resulting secondary phases may provide for significant retention of the radionuclides incorporated in the wastes. In order to assess the secondary phases formed upon corrosion in chloride-rich solutions, which are relevant for nuclear waste disposal in rock salt, leaching experiments were performed. Conventional laboratory batch experiments using powdered hardened cement paste in MgCl2-rich solutions were left to equilibrate for up to three years and full-scale cemented waste products were exposed to NaCl-rich and MgCl2-rich solutions for more than twenty years, respectively. Solid phase analyses revealed that corrosion of hardened cement in MgCl2-rich solutions advanced faster than in NaCl-rich solutions due to the extensive exchange of Mg from solution against Ca from the cementitious solid. Thermodynamic equilibrium simulations compared well to results at the final stages of the respective experiments indicating that close to equilibrium conditions were reached. At high cement product to brine ratios (>0.65 g mL-1), the solution composition in the laboratory-scale experiments was close to that of the full-scale experiments (cement to brine ratio of 2.5 g mL-1) in the MgCl2 systems. The present study demonstrates the applicability of thermodynamic methods used in this approach to adequately describe full-scale long-term experiments with cemented waste simulates.

  1. SOLUBILITY OF URANIUM AND PLUTONIUM IN ALKALINE SAVANNAH RIVER SITE HIGH LEVEL WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hobbs, D.; Wilmarth, B.; Edwards, T.

    2010-03-10

    Five actual Savannah River Site tank waste samples and three chemically-modified samples were tested to determine solubility limits for uranium and plutonium over a one year time period. Observed final uranium concentrations ranged from 7 mg U/L to 4.5 g U/L. Final plutonium concentrations ranged from 4 {micro}g Pu/L to 12 mg Pu/L. Actinide carbonate complexation is believed to result in the dramatic solubility increases observed for one sample over long time periods. Clarkeite, NaUO{sub 2}(O)OH {center_dot} H{sub 2}O, was found to be the dominant uranium solid phase in equilibrium with the waste supernate in most cases.

  2. 脱硫废液对焦化废水的影响%Influence of waste desulfidation solution to coking wastewater

    Institute of Scientific and Technical Information of China (English)

    白永玲

    2013-01-01

    通过分析真空碳酸钾法脱硫废液的主要成分,确定脱硫废液对焦化废水的影响因素,制定可行的控制措施。在保证废水处理系统稳定运行的前提下,计算脱硫废液掺入废水处理系统的最佳比例。%This paper analyzes the main content in the waste desulfidation solution in the method of vacuum potash gas purification process ,fixes the influencing factors to coking wastewater ,and works out feasible control measures accordingly .It also calculates the optimal proportion of waste desulfida-tion solution entering the waste water treatment system ,provided the stable operation of waste water treatment system is ensured .

  3. Method for the recovery of silver from waste photographic fixer solutions

    Science.gov (United States)

    Posey, Franz A.; Palko, Aloysius A.

    1984-01-01

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration or decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  4. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions.

    Science.gov (United States)

    Kadirvelu, K; Kavipriya, M; Karthika, C; Radhika, M; Vennilamani, N; Pattabhi, S

    2003-03-01

    Activated carbons were prepared from the agricultural solid wastes, silk cotton hull, coconut tree sawdust, sago waste, maize cob and banana pith and used to eliminate heavy metals and dyes from aqueous solution. Adsorption of all dyes and metal ions required a very short time and gave quantitative removal. Experimental results show all carbons were effective for the removal of pollutants from water. Since all agricultural solid wastes used in this investigation are freely, abundantly and locally available, the resulting carbons are expected to be economically viable for wastewater treatment.

  5. Bidentate organophosphorus extractants: purification, properties and applications to removal of actinides from acidic waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.; McIsaac, L.D.

    1977-05-01

    At both Hanford and Idaho, DHDECMP (dihexyl-N, N-diethylcarbamylmethylene phosphonate) continuous counter-current solvent extraction processes are being developed for removal of americium, plutonium, and, in some cases, other actinides from acidic wastes generated at these locations. Bench and, eventually, pilot and plant-scale testing and application of these processes have been substantially enhanced by the discovery of suitable chemical and physical methods of removing deleterious impurities from technical-grade DHDECMP. Flowsheet details, as well as various properties of purified DHDECMP extractants, are enumerated.

  6. Solution speciation of plutonium and Americium at an Australian legacy radioactive waste disposal site.

    Science.gov (United States)

    Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E

    2014-09-01

    During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.

  7. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Deyi, E-mail: xixizhang@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Luo, Heming; Zheng, Liwen; Wang, Kunjie; Li, Hongxia; Wang, Yi; Feng, Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer A novel approach on recycle of waste phosphogypsum was exploited. Black-Right-Pointing-Pointer Phosphogypsum was utilized to prepare hydroxyapatite nanoparticles with high purity. Black-Right-Pointing-Pointer nHAp derived from PG exhibits excellent adsoprtion capacity for fluoride. Black-Right-Pointing-Pointer Fluoride adsorbs onto nHAp mainly by electrostatic interaction and hydrogen bond. - Abstract: In the present study, waste phosphogypsum (PG) was utilized firstly to prepare hydroxyapatite nanoparticles (nHAp) via microwave irradiation technology. The nHAp derived from PG exhibited a hexagonal structure with the particle size about 20 nm Multiplication-Sign 60 nm and high purity. Meanwhile, the adsorption behaviour of fluoride onto the nHAp derived from PG was investigated to evaluate the potential application of this material for the treatment of the wastewater polluted with fluoride. The results indicate that the nHAp derived from PG can be used as an efficient adsorbent for the removal of fluoride from aqueous solution. The maximum adsorption capacities calculated from Langmuir-Freundlich model were 19.742, 26.108, 36.914 and 40.818 mg F{sup -}/g nHAp for 298, 308, 318 and 328 K, respectively. The pseudo-second order kinetic model was found to provide the best correlation of the used experimental data compared to the pseudo-first order and the adsorption isotherm could be well defined by Langmuir-Freundlich equation. The adsorption mechanism investigation shows that electrostatic interaction and hydrogen bond are the main driving force for fluoride uptake onto nHAp derived from waste PG.

  8. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides.

    Science.gov (United States)

    Singh, Shraddha; Eapen, Susan; Thorat, Vidya; Kaushik, C P; Raj, Kanwar; D'Souza, S F

    2008-02-01

    Vetiver grass (Vetiveria zizanoides) L. Nash plantlets when tested for their potential to remove (90)Sr and (137)Cs (5 x 10(3) k Bq l(-1)) from solutions spiked with individual radionuclide showed that 94% of (90)Sr and 61% of (137)Cs could be removed from solutions after 168 h. When both (90)Sr and (137)Cs were supplemented together to the solution, 91% of (90)Sr and 59% of (137)Cs were removed at the end of 168 h. In case of (137)Cs, accumulation occurred more in roots than shoots, while (90)Sr accumulated more in shoots than roots. When experiments were performed to study the effect of analogous elements, K(+) ions reduced the uptake of (137)Cs, while (90)Sr accumulation was found to decrease in the presence of Ca(2+) ions. Plants of V. zizanoides could also effectively remove radioactive elements from low-level nuclear waste and the level of radioactivity was reduced below detection limit at the end of 15 days of exposure. The results of the present study indicate that V. zizanoides may be a potential candidate plant for phytoremediation of (90)Sr and (137)Cs.

  9. Alkaline leaching of metal melting industry wastes dseparation of zinc and lead in the leach solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this work, a thorough examinations on the extractability of zinc and lead present in the steelmaking dusts using alkaline leaching process and the effectiveness of the zinc and lead separation in the resultant leaching solutions using sulfide precipitation method were made. It was found that only about 53% of zinc and over 70% of the lead could be leached out of the dusts, while the other 47% of zinc and 306 of lead were left in the leaching residues. The zinc and lead in the resultant leaching solution can be effectively and selectively separated. When the weight ratio of sodium sulfide (M. W. = 222-240) to Pb was kept at 1.8, the lead in the solution could be precipitated out quantitatively while all the zinc was remained in the solution. The zinc left in the solution can be further recovered by the addition of extra sodium sulfide with a weight ratio of sodium sulfide to the zinc over 2.6. The resultant filtrate can be recycled to the leaching of dust in the next leaching process.

  10. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution.

    Science.gov (United States)

    Zhang, Deyi; Luo, Heming; Zheng, Liwen; Wang, Kunjie; Li, Hongxia; Wang, Yi; Feng, Huixia

    2012-11-30

    In the present study, waste phosphogypsum (PG) was utilized firstly to prepare hydroxyapatite nanoparticles (nHAp) via microwave irradiation technology. The nHAp derived from PG exhibited a hexagonal structure with the particle size about 20 nm × 60 nm and high purity. Meanwhile, the adsorption behaviour of fluoride onto the nHAp derived from PG was investigated to evaluate the potential application of this material for the treatment of the wastewater polluted with fluoride. The results indicate that the nHAp derived from PG can be used as an efficient adsorbent for the removal of fluoride from aqueous solution. The maximum adsorption capacities calculated from Langmuir-Freundlich model were 19.742, 26.108, 36.914 and 40.818 mg F(-)/g nHAp for 298, 308, 318 and 328 K, respectively. The pseudo-second order kinetic model was found to provide the best correlation of the used experimental data compared to the pseudo-first order and the adsorption isotherm could be well defined by Langmuir-Freundlich equation. The adsorption mechanism investigation shows that electrostatic interaction and hydrogen bond are the main driving force for fluoride uptake onto nHAp derived from waste PG.

  11. IoT – Internet of Things Architecture for Context Aware Sensors Data Processing in Waste Management Solution

    Directory of Open Access Journals (Sweden)

    Cristian Toma

    2014-12-01

    Full Text Available Internet of Things (IoT refers interconnectivity of different devices and its increasing reasons aim Cloud Computing Services development, interconnectivity among personal smart devices and other devices, and significant development of the applications operate with this kind of connections and data provided by such connections. The biggest role is played by the devices with measuring capabilities helping the understanding of the world around by humans analyzing data generated in new points by these instruments. Data are securely stored and processes to be a viable source for real-time decisions. The paper provides an overview of this new data acquisitions paradigm together with short presentations of the communication protocols can be implemented in IoT infrastructure. Also, a possible solution architecture is provided for waste management.

  12. Simulation of ceramic materials relevant for nuclear waste management: Case of La1-xEuxPO4 solid solution

    Science.gov (United States)

    Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk

    2017-02-01

    Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.

  13. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    STALLINGS, MARY

    2004-07-08

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  14. Solutions to health care waste: life-cycle thinking and "green" purchasing.

    Science.gov (United States)

    Kaiser, B; Eagan, P D; Shaner, H

    2001-03-01

    Health care waste treatment is linked to bioaccumulative toxic substances, such as mercury and dioxins, which suggests the need for a new approach to product selection. To address environmental issues proactively, all stages of the product life cycle should be considered during material selection. The purchasing mechanism is a promising channel for action that can be used to promote the use of environmentally preferable products in the health care industry; health care facilities can improve environmental performance and still decrease costs. Tools that focus on environmentally preferable purchasing are now emerging for the health care industry. These tools can help hospitals select products that create the least amount of environmental pollution. Environmental performance should be incorporated into the evolving definition of quality for health care.

  15. Peat-based organic growbags as a solution to the mineral wool waste problem

    Directory of Open Access Journals (Sweden)

    O. Grunert

    2008-09-01

    Full Text Available The vast amount of solid waste produced each year is one of the greatest problems associated with greenhouse horticulture in some European countries. In particular, the disposal of used growing media arising from the soil-less cultivation of vegetables in mineral wool creates serious difficulties. The non-biodegradability of these mainly inorganic substrates causes environmental concern and has prompted the search for alternative growing media such as cocos derivatives, perlite and resin foam (Fytocell®. Organic substrates in combination with biodegradable material such as plastic, rope and clippings have the advantage that re-use or recycling of the waste is easier, cheaper and more environmentally friendly than for mineral wool. However, the differing physical and chemical characteristics of the alternative substrates may affect yield significantly. Substrates based respectively on peat and peat with cocos derivatives were tested against a mineral wool control for the production of tomato in three consecutive years. Both organic substrates were placed in biodegradable plastic bags. Greenhouse experiments demonstrated that plants grown in the pure peat substrate rooted more easily than plants grown in the peat-cocos substrate or mineral wool, and that they developed less blossom-end rot in both peat substrates than in mineral wool. Due to the buffering capacity of the organic substrates, the electrical conductivity of the draining water appeared to be more stable during cultivation. The total yield of tomato fruits was similar for all substrates, and no differences between substrates could be observed in the quality of the fruits produced. On the other hand, flavour tests demonstrated that plants grown on peat substrate produced more tasty fruits under certain conditions. The results of this study show that organic growbags are promising and competitive alternatives to mineral wool.

  16. Valorization of Agroindustrial Wastes as Biosorbent for the Removal of Textile Dyes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Elsa Contreras

    2012-01-01

    Full Text Available The goal is to determinate the technical feasibility of using agroindustrial wastes for adsorption of dyes. The pHpzc of Brewer’s spent grains and Orange peel is 5.3 and 3.5, respectively. The equilibrium isotherms of Basic Blue 41, Reactiive Black 5, and Acid Black 1 were carried out without pHs control which ranging between 4 and 5.5. The equilibrium concentrations for both adsorbents were fitted by the Freundlich and Langmuir models. The maximum adsorption capacity measured for Basic Blue 41, Reactive Black 5, and Acid Black 1 was 32.4, 22.3, and 19.8 mg g-1 for Brewer’s spent grains; and 157, 62.6, and 45.5 for orange peel, respectively. The kinetic of process was fitted by the model of pseudo-second order. The constant rate for orange peel decreased to extend the initial concentration of dye increased, obtaining 4.08 * 10−3−0.6 * 10−3 (Basic Blue 41, 2.98 * 10−3−0.36 * 10−3 (Acid Black 1, and 3.40 * 10−3−0.46 * 10−3 g mg−1 min−1 (Reactive Black 5. The best removal efficiency was obtained in orange peel with values started from 63% to 20%. Consequently, according the results obtained there are two positive effects, the reuse of agricultural wastes and its use as low-cost adsorbent of the dyes.

  17. Efficiency Study of Nickel (II and Cadmium (II Biosorption by Powder of Waste Activated Sludge from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    A.A Ebrahimi

    2011-01-01

    Full Text Available "n "n "nBackground and Objective: Nickel (II and cadmium (II are important in environmental pollutant. Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions because of the decrease in sludge problems, economical issues, high efficiency and compatibility with the environment."nMaterials and Methods: power of wasted activated sludge have been contact with nickel (II and cadmium (II solutions in 0.25 and 0.75 milli molar invarious pHs and mixing pace, at 24-26 0C temperature on batch reactor system .After two hours (continuously 5-420 min in kinetic study samples were analyzed with atomic absorption spectrophotometer."nResults:The kinetic study results show that equilibrium adsorption time for nickel (II and cadmium"n(II reached within 2 hr, but the profile curve of cadmium (II biosorption was smoother than nickel (II biosorption. Both metals adsorption followed the Langmuir model and the maximum adsorption capacity (qmax for nickel (II and cadmium (II was 0.195 and 0.37 milli mole per gram respectively. The increase in pH resulted in adsorption increase for both metals. For cadmium (II at 0.25 and 0.75 mMinitial concentration there was no adsorption at pH 2 where as nickel (0.25 mM adsorption was observed at the same pH. The optimum mixing rate for both metals was 200 rpm and this effect was more obviously in greater concentration."nConclusion: Like othe biosorbents ,wasted activated sludge showed greater capacity for cadmium(II biosorption than nickel (II. Cadmium (II in modeling and biosorption characteristics study had more conformity than nickel (II.

  18. 78 FR 14773 - U.S. Environmental Solutions Toolkit-Medical Waste

    Science.gov (United States)

    2013-03-07

    .... Environmental Solutions Toolkit should self- identify by March 19, 2013, at 5:00 p.m. Eastern Daylight Time (EDT... United States citizen; (B) a corporation, partnership, or other association created under the laws of the United States or of any State; or (C) a foreign corporation, partnership, or other association, more...

  19. Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution

    Science.gov (United States)

    Jackson, W. Andrew; Thompson, Bret; Sevanthi, Ritesh; Morse, Audra; Meyer, Caitlin; Callahan, Michael

    2017-01-01

    The ability to recover water from urine and flush water is a critical process to allow long term sustainable human habitation in space or bases on the moon or mars. Organic N present as urea or similar compounds can hydrolyze producing free ammonia. This reaction results in an increase in the pH converting ammonium to ammonia which is volatile and not removed by distillation. The increase in pH will also cause precipitation reactions to occur. In order to prevent this, urine on ISS is combined with a pretreat solution. While use of a pretreatment solution has been successful, there are numerous draw backs including: storage and use of highly hazardous solutions, limitations on water recovery (less than 85%), and production of brine with pore dewatering characteristics. We evaluated the use of biologically treated habitation wastewaters (ISS and early planetary base) to replace the current pretreat solution. We evaluated both amended and un-amended bioreactor effluent. For the amended effluent, we evaluated "green" pretreat chemicals including citric acid and citric acid amended with benzoic acid. We used a mock urine/air separator modeled after the urine collection assembly on ISS. The urine/air separator was challenged continually for >6 months. Depending on the test point, the separator was challenged daily with donated urine and flushed with amended or un-amended reactor effluent. We monitored the pH of the urine, flush solution and residual pH in the urine/air separator after each urine event. We also evaluated solids production and biological growth. Our results support the use of both un-amended and amended bioreactor effluent to maintain the operability of the urine /air separator. The ability to use bioreactor effluent could decrease consumable cost, reduce hazards associated with current pre-treat chemicals, allow other membrane based desalination processes to be utilized, and improve brine characteristics.

  20. Estimates of water and solute release from a coal waste rock dump in the Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Villeneuve, S A; Barbour, S L; Hendry, M J; Carey, S K

    2017-12-01

    Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO3(-), Cl(-) and SO4(2-)) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO3(-) and Cl(-)) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO4(2-) concentrations increased proportionally with NO3(-) and Cl(-) to 2007, but then continued to slowly increase as NO3(-) and Cl(-) concentrations decreased. This was attributed to ongoing production of SO4(2-) due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a). Copyright © 2017 Elsevier B.V. All rights reserved.

  1. REMOVAL OF ARSENIC FROM AN AQUEOUS SOLUTION BY PRETREATED WASTE TEA FUNGAL BIOMASS

    Directory of Open Access Journals (Sweden)

    S. Mamisahebei , Gh. R. Jahed Khaniki, A. Torabian, S. Nasseri, K. Naddafi

    2007-04-01

    Full Text Available Arsenic contamination in water poses a serious threat on human health. The tea fungus known as Kombucha is a waste produced during black tea fermentation. The objective of this study was to examine the main aspect of a possible strategy for the removal of arsenates employing tea fungal biomass. The pretreatment of biomass with FeCl3 was found to improve the biosorption efficiency. Arsenics uptake was found to be rapid for all concentrations and reached to 79% of equilibrium capacity of biosorption in 20 min and reached equilibrium in 90 min. The pseudo second-order and first-order models described the biosorption kinetics of As (V with good correlation coefficient (R2>0.93 and better than the other equations. The data obtained from the experiment of biosorption isotherm were analyzed using the Freundlich and Langmuir isotherm models. The equation described the isotherm of As (V biosorption with relatively high correlation coefficient (R2>0.93. According to the Langmuir model, the maximum uptake capacities (qm of tea fungal biomass for As (V were obtained 3.9810-3 mmol/gr. The effect of Na+, K+, Mg+2 and Ca+2 on equilibrium capacities of As was not significant. The variation of sorption efficiency with pH showed that optimum biosorption takes place in the pH ranges of 6 to 8. Promising results were obtained in laboratory experiments and effective As (V removals were observed.

  2. Mechanisms of Strontium and Uranium Removal From Radioactive Waste Simulant Solutions by the Sorbent Monosodium Titanate

    Energy Technology Data Exchange (ETDEWEB)

    DUFF, MARTINE

    2004-12-03

    High-Level Radioactive Waste (HLW) is the priority problem for the U.S. Dept. of Energy's Environmental Management Program. Current HLW treatment processes at the Savannah River Site (Aiken, SC) include the use of monosodium titanate (MST, similar to NaTi{sub 2}O{sub 5}xH{sub 2}O) to concentrate radioactive strontium (Sr) and actinides. Mechanistic information about radionuclide uptake will provide us with insight about the reliability of MST treatments. We characterized the morphology of MST and the chemistry of sorbed Sr{sup 2+} and uranium [U(VI)] on MST with x-ray based spectroscopic and electron microscopic techniques. Sorbed Sr{sup 2+} exhibited specific adsorption as partially-hydrated species, whereas sorbed U exhibited site-specific adsorption as monomeric and dimeric U(VI)-carbonate complexes. These differences in site specificity and mechanism may account for the difficulties associated with predicting MST loading and removal kinetics.

  3. Evaluation of polymer inclusion membranes containing crown ethers for selective cesium separation from nuclear waste solution.

    Science.gov (United States)

    Mohapatra, P K; Lakshmi, D S; Bhattacharyya, A; Manchanda, V K

    2009-09-30

    Transport behaviour of (137)Cs from nitric acid feed was investigated using cellulose triacetate plasticized polymer inclusion membrane (PIM) containing several crown ether carriers viz. di-benzo-18-crown-6 (DB18C6), di-benzo-21-crown-7 (DB21C7) and di-tert-butylbenzo-18-crown-6 (DTBB18C6). The PIM was prepared from cellulose triacetate (CTA) with various crown ethers and plasticizers. DTBB18C6 and tri-n-butyl phosphate (TBP) were found to give higher transport rate for (137)Cs as compared to other carriers and plasticizers. Effect of crown ether concentration, nitric acid concentration, plasticizer and CTA concentration on the transport rate of Cs was also studied. The Cs selectivity with respect to various fission products obtained from an irradiated natural uranium target was found to be heavily dependent on the nature of the plasticizer. The present work shows that by choosing a proper plasticizer, one can get either good transport efficiency or selectivity. Though TBP plasticized membranes showed good transport efficiency, it displayed poor selectivities. On the other hand, an entirely opposite separation behaviour was observed with 2-nitrophenyloctylether (NPOE) plasticized membranes suggesting the possible application of the later membranes for the removal of bulk (137)Cs from the nuclear waste. The stability of the membrane was tested by carrying out transport runs for nearly 25 days.

  4. Uptake of Pb(II ion From Aqueous Solution Using Silk Cotton Hull Carbon: An Agricultural Waste Biomass

    Directory of Open Access Journals (Sweden)

    R. Shanmugavalli

    2006-01-01

    Full Text Available Activated carbon prepared from silk cotton hull (SCH was used for the adsorptive removal of Pb(II ion from aqueous solution. The raw material used for the preparation of activated carbon is the waste of agricultural product; the production of this carbon is expected to be economically feasible. Parameters such as agitation time, metal ion concentration, adsorbent dose, pH and Particle size were studied. Adsorption equilibrium was reached within 80 min for 10, 20, 30 and 40mg/l of Pb(II ion with 50mg of carbon per mL of solution. Adsorption parameters were determined using both Langmuir and Freundlich isotherm models. The adsorption efficiency reached 100% for 20, 30 and 40mg/l of Pb(II ion with 120, 140 and 150mg of carbon. Pb(II ion removal increased as the pH increased from 2 to 5 and remains constant up to pH 10. Desorption studies were also carried out with dilute hydrochloric acid to know the mechanism of adsorption. Quantitative desorption of Pb(II ion from carbon indicates that adsorption of metal ion is by ion-exchange. Efficiency of the adsorption of SCH was also studied with Pb containing industrial wastewater by varying pH and carbon concentration.

  5. The Predisposition of Iraqi Rice Husk to Remove Heavy Metals from Aqueous Solutions and Capitalized from Waste Residue

    Directory of Open Access Journals (Sweden)

    Mohammed Nsaif

    2013-12-01

    Full Text Available This study is deal with study the potential of Iraqi Rice Husk (IRH on the removal of three heavy metals pollutant which were (Mg, Mn and Mo ions from industrial wastewater using different design parameters by adsorption process. Results show that the removal efficiency were (93.95, 97.18 and 95.26 % for heavy metal (Mg, Mn and Mo respectively from aquatic solution decreased with increasing of initial concentration and flow rate while the removal efficiency increased with increasing absorbance material bed height, pH and feeding temperature. Statistical model is achieved to find an expression relates the overall operating parameters with the removal efficiency for each metal ions used in this investigation in a general equation (each one alone. The samples of (IRH remaining after using it in the removal of (Mg, Mn and Mo heavy metal ions above from Simulated Synthetic Aqueous Solutions (SSAS to investigate the capitalized of it in different methods. Different benefits possess which are: remove the three toxic heavy metals ions contaminated the water, get rid of agricultural waste (IRH, in the same time, produce light and more benefit hydrocarbons from n-heptane isomerization using a type Y-zeolite catalyst synthesis from remaining (IRH and prepare a cheap and active rodenticide.

  6. Usefulness of ANN-based model for copper removal from aqueous solutions using agro industrial waste materials

    Directory of Open Access Journals (Sweden)

    Petrović Marija S.

    2015-01-01

    Full Text Available The purpose of this study was to investigate the adsorption properties of locally available lignocelluloses biomaterials as biosorbents for the removal of copper ions from aqueous solution. Materials are generated from juice production (apricot stones and from the corn milling process (corn cob. Such solid wastes have little or no economic value and very often present a disposal problem. Using batch adsorption techniques the effects of initial Cu(II ions concentration (Ci, amount of biomass (m and volume of metal solution (V, on biosorption efficiency and capacity were studied for both materials, without any pre-treatments. The optimal parameters for both biosorbents were selected depending on a highest sorption capability of biosorbent, in removal of Cu(II. Experimental data were compared with second order polynomial regression models (SOPs and artificial neural networks (ANNs. SOPs showed acceptable coefficients of determination (0.842 - 0.997, while ANNs performed high prediction accuracy (0.980-0.986 in comparison to experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR 31003, TR 31055

  7. Analysis of solutes in groundwaters from the Rustler Formation at and near the Waste Isolation Pilot Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, K.L.

    1997-09-01

    Between 1976 and 1986, groundwater samples from more than 60 locations in the vicinity of the Waste Isolation Pilot Plant site were collected and analyzed for a variety of major, minor, and trace solutes. Most of the samples were from the Rustler Formation (the Culebra Dolomite, the Magenta Dolomite, or the zone at the contact between the Rustler and underlying Salado Formations) or the Dewey Lake Red Beds. The analytical data from the laboratories are presented here with accompanying discussions of sample collection methods, supporting field measurements, and laboratory analytical methods. A comparison of four data sets and a preliminary evaluation of the data for the major solutes (Cl{sup {minus}}, SO{sub 4}{sup {minus}2}, Na, K, Ca, and Mg) shows that the data for samples analyzed by UNC/Bendix for SNL seem to be the most reliable, but that at some locations, samples representative of the native, unperturbed groundwater have not been collected. At other locations, the water chemistry has apparently changed between sampling episodes.

  8. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Wei [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Li Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)]. E-mail: xmli@hnu.cn; Yang Qi [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Zeng Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Shen Xiangxin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Zhang Ying [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Liu Jingjin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)

    2007-08-17

    Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1 mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl{sub 2}, NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper.

  9. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution.

    Science.gov (United States)

    Chaudhury, Sanhita; Bhattacharyya, Arunasis; Goswami, Asok

    2014-11-04

    The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.

  10. Mechanism of conversion of cellulosic wastes to liquid fuels in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Demmitt, T.F.; Donovan, J.M.; Miller, R.K.

    1978-01-01

    Conversion of cellulosic wastes into liquid oils is being practiced on a pilot plant scale at Albany, OR, but the fundamental chemistry of the process is poorly understood. We report our findings on the aqueous alkaline digestion of pure cellulose, on a laboratory scale, in a closely related system. Our intent is to elucidate the reaction mechanisms involved in oil and tar formation, and to identify products of potential value. A 30 wt % aqueous slurry of pure cellulose in up to 1.2 N alkali (sodium hydroxide or carbonate), heated to 350/sup 0/C over a 3.5 hour period showed a sharp discontinuity in heating rate at 265 to 270/sup 0/C, indicating the onset of a discrete liquefaction reaction not hitherto observed. A series of 129 autoclave experiments analyzed by statistical methods indicated that carbon monoxide, while it promotes the attainment of high yields as claimed by the Bureau of Mines, is not necessary for the reaction to proceed. Analysis of the products by /sup 13/C-NMR, GC/MS, and gel permeation chromatography indicated that the nonvolatile fraction of the oil consists of 44% aromatic carbon and 7% aromatic hydrogen, corresponding to a benzenoid polyaromatic with a substitution ratio of 5:1. However, oxygen content of the nonvolatile fraction and distillable oil is approximately the same. Since the oil contains a series of polyalkylated furans, this suggests that the char is a poly-furan rather than a conventional asphaltene derivative. Volatile products from the oil fraction consist of furans, cyclic ketones, linear and branched alkenes, and phenolics. The high proportion of phenolics relative to normal crude oil could explain the observed highly corrosive nature of the biomass-derived oils.

  11. Chromate and selenate hydrocalumite solid solutions and their applications in waste treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; Eric J. Reardon

    2005-01-01

    Hydrocalumite, a calcium aluminate hydrate phase, consists of positively-charged structure units, and is therefore an ideal candidate for accommodating anionic contaminants. In this study, a series of batch experiments was carried out to examine the uptake of chromate and selenate by hydrocalumite. To determine the uptake capacity and long-term stability, hydrocalumite solid solutions between chromate/selenate and hydroxyl were synthesized over a reaction time of more than one year. At a ratio of water to initial solids added (CaAl2O4+CaO) of 75: 1, the maximum uptake capacities were over 77 and 114 g/kg for Cr and Se, respectively.These values are very close to the theoretical uptake capacities of chromate and selenate hydrocalumite end-members (81 and 118 g/kg, respectively). The oxyanion removal efficiency from solution was above 95%. Due to the high uptake capacity and anion removal efficiency of hydrocalumites, their application in wastewater treatment is promising. Hydrocalumites are also important hydration products of cementitious materials and the long-term stability of these phases is of significance for application in solidification/stabilization technology.

  12. Thermodynamic study of the adsorption of chromium ions from aqueous solution on waste corn cobs material

    Directory of Open Access Journals (Sweden)

    Rafael A. Fonseca-Correa

    2014-12-01

    Full Text Available The paper shows the results of a study obtaining activated carbon from corn cobs and determining its use as an adsorbent for the removal of Cr3+ from aqueous solutions. The finely ground precursor was subjected to pyrolysis at 600 and 900 °C in a nitrogen atmosphere and chemical activation with H2O2 and HNO3. The effects of pyrolysis conditions and activation method on the physicochemical properties of the materials obtained were tested. The samples were characterised chemically and texturally. Were obtained microporous activated carbons of well-developed surface area varying from 337 to 1213 m2/g and exhibited differences acid-base character of the surface. The results obtained shows that a suitable good option of the activation procedure for corncobs permits the production of economic adsorbents with high sorption capacity for Cr3+ from aqueous solutions. A detailed study of immersion calorimetry was performed with carbons prepared from corn cobs to establish possible relationships with these materials between the enthalpies of immersion and textural and chemical parameters.

  13. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    Science.gov (United States)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2017-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  14. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    Science.gov (United States)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2016-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  15. Rethinking the waste hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, C.; Vigsoe, D. (eds.)

    2005-03-01

    There is an increasing need to couple environmental and economic considerations within waste management. Consumers and companies alike generate ever more waste. The waste-policy challenges of the future lie in decoupling growth in waste generation from growth in consumption, and in setting priorities for the waste management. This report discusses the criteria for deciding priorities for waste management methods, and questions the current principles of EU waste policies. The basis for the discussion is the so-called waste hierarchy which has dominated the waste policy in the EU since the mid-1970s. The waste hierarchy ranks possible methods of waste management. According to the waste hierarchy, the very best solution is to reduce the amount of waste. After that, reuse is preferred to recycling which, in turn, is preferred to incineration. Disposal at a landfill is the least favourable solution. (BA)

  16. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    Science.gov (United States)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  17. E-waste: a problem or an opportunity? Review of issues, challenges and solutions in Asian countries.

    Science.gov (United States)

    Herat, Sunil; Agamuthu, P

    2012-11-01

    Safe management of electronic and electrical waste (e-waste/WEEE) is becoming a major problem for many countries around the world. In particular, developing countries face a number of issues with the generation, transboundary movement and management of e-waste. It is estimated that the world generates around 20-50 million tonnes of e-waste annually, most of it from Asian countries. Improper handling of e-waste can cause harm to the environment and human health because of its toxic components. Several countries around the world are now struggling to deal with this emerging threat. Although the current emphasis is on end-of-life management of e-waste activities, such as reuse, servicing, remanufacturing, recycling and disposal, upstream reduction of e-waste generation through green design and cleaner production is gaining much attention. Environmentally sound management (ESM) of e-waste in developing countries is absent or very limited. Transboundary movement of e-waste is a major issue throughout the region. Dealing with the informal recycling sector is a complex social and environmental issue. There are significant numbers of such challenges faced by these countries in achieving ESM of e-waste. This article aims to present a review of challenges and issues faced by Asian countries in managing their e-waste in a sustainable way.

  18. Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Foo, L.P.Y.; Tee, C.Z.; Raimy, N.R.; Hassell, D.G.; Lee, L.Y. [University of Nottingham Malaysia Campus, Semenyih, Selangor (Malaysia)

    2012-04-15

    Biosorption of cadmium(II) ions (Cd{sup 2+}) onto Ananas comosus (AC) peel, Parkia speciosa (PS) pods and Psidium guajava (PG) peel were investigated in this study. Batch sorption experiments were performed by investigating the effect of initial pH. It was found that Cd{sup 2+} uptake was highly dependent on the initial pH and Cd{sup 2+} removal efficiency was highest for PG peel, followed by AC peel and PS pods. Biosorption experiments were carried out using different initial Cd{sup 2+} concentration and the experimental data obtained was fitted to both Langmuir and Freundlich isotherms. The experimental data was found to best fit the Langmuir isotherm, and adsorption capacities of 18.21 mg/g (AC peel), 25.64 mg/g (PS pods) and 39.68 mg/g (PG peel) were obtained. Comparison with published adsorption capacities for other low-cost biosorbents indicates that PS pods and PG peel have potential as low-cost biosorbent materials for the removal of Cd{sup 2+} from aqueous solution. (orig.)

  19. A Comparative Analysis between Environmental Protection (Waste Management Regulation 2000 and Bidhan Nagar Municipal Solid Waste Management to Propose a Realistic Solutions

    Directory of Open Access Journals (Sweden)

    S. K. Maity

    2012-12-01

    Full Text Available A comparative analysis of municipal solid waste management (MSWM of environmental protection (waste management regulation 2000 and Bidhan Nagar municipal corporation was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two model is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced to the involvement of the government sector, are also presented.

  20. Application of potato (Solanum tuberosum plant wastes for the removal of methylene blue and malachite green dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2016-09-01

    Full Text Available Dye pollutants from the textile, paper, and leather industries are important sources of environmental contamination. In the present study an agricultural waste from potato plant (potato stem powder, PSP and potato leaves powder, PLP was used as an adsorbent for removal of the methylene blue (MB and malachite green (MG dyes from aqueous solution. The adsorbent materials were characterized by scanning electron microscope (SEM and Fourier transform infrared (FTIR spectroscopy. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pHpzc, ionic strength, adsorbent dose, contact time, initial dyes concentration and temperature. The kinetics of adsorption was studied by applying the pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-second order model better represented the adsorption kinetics and the mechanism was controlled by surface adsorption and intraparticle diffusion. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as change in enthalpy (ΔH°, entropy (ΔS° and Gibb’s free energy (ΔG° of adsorption systems were also determined and evaluated.

  1. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization.

    Science.gov (United States)

    Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J

    2013-11-30

    For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. - Behaviour of Cu and Cr

    DEFF Research Database (Denmark)

    Velizarova, E.; Ribeiro, A. B.; Mateus, E.

    2004-01-01

    Removal of Cu and Cr from chromated copper arsenate (CCA)-treated wood waste under batch electrodialytic conditions was studied. The effect of different types of extracting solutions, such as deionised water or aqueous solutions of NaCl, formic acid, oxalic acid, and EDTA, on the magnitude...... and direction of the fluxes of Cu- and Cr-containing species in the electrodialytic cell was investigated. Oxalic acid was found to have the best performance if simultaneous removal of the two elements is required (removal efficiencies of 80.5% for Cu and 87.4% for Cr, respectively). A mixture of oxalic acid....... The latter were not present if EDTA was the extracting solution resulting in directing the Cu and Cr fluxes to the anode compartment. Contrary, these fluxes were exclusively to the cathode compartment if deionised water or an aqueous solution of NaCl were used. These extracting solutions proved suitable...

  3. Environmental Hazards of Nuclear Wastes

    Science.gov (United States)

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  4. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key Topics / Enhanced safety and operation excellence and decommissioning experience and Waste management solutions

    Energy Technology Data Exchange (ETDEWEB)

    Salnikova, Tatiana [AREVA GmbH, Erlangen (Germany); Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-10-15

    Summary report on the Key Topics ''Enhanced Safety and Operation Excellence'' and ''Decommissioning Experience and Waste Management Solutions'' of the 47{sup th} Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 have been and will be covered in further issues of atw.

  5. Chromium (III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modelling

    OpenAIRE

    Alguacil,Francisco José; Alonso Gámez, Manuel; Lozano, Kuis Javier

    2004-01-01

    The use of ion exchange technology was studied to remove chromium (III) from acidic waste solution by Amberlite IR-120 resin. Batch and column experimental tests were conducted to provide data for theoretical models and verify the system performance of the adsorption process. Results of batch equilibrium tests indicated that Langmuir isotherm describes well the adsorption process, whereas experimental data also provide evidence that, under the present experimental conditions, chro...

  6. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hongzi [Department of Chemical Engineering and Biochemical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Xiang Hai; Zhang Guoliang [Department of Enviormental Engieering and Biochemical Engineering, Zhejiang University of Technology, Hanzhou 310014, Zhejiang (China); Cao Xia [Ningbo Dean Group Co, Ninbo 315040, Zhejiang (China); Meng Qing, E-mail: mengq@zju.edu.cn [Department of Chemical Engineering and Biochemical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2009-08-15

    The presence of high-strength oil and grease (O and G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O and G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O and G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O and G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12 h was required for removing approximately 95% of O and G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  7. Adsorption of Reactive Red 198 Azo Dye fromAqueous Solution onto theWaste Coagulation Sludge of theWater Treatment Plants

    Directory of Open Access Journals (Sweden)

    M. Mahmoudi

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives:Much attention has been recently paid on using waste materials as adsorbents for removal of contaminants from water and wastewater. A new low cost waste was examined for its capacity to adsorb RR198, an azo reactive model dye, from an aqueous solution."nMaterials andMethods: The waste was dried, powdered and characterized before being used as an adsorbent. The effects of pH (3-10, adsorbent dose (0.2-3 g, dye concentration and contact time on the adsorption efficiency were investigated. Equilibrium study data were modeled using Langmuir and Freundlich models."nResults: The characterization analysis indicated that itwas composedmainly of ferric hydroxide. The powder had a BET and average pore size of 107 m2/g and 4.5 nm, respectively. The results showed that dye removal was highest at a solution pH of 7 to 8 and a powder dose of 2 g/L. The RR198 removal percentage decreased from 100& to 43& at 140 min contact time when the concentration of dye was increased from 25 mg/L to 100 mg/L, at optimum pH and dosage. The Langmuir equation provided the best fit for the experimental data. The maximum adsorption capacity was calculated to be 34.4 mg/g."nConclusion: According to the obtained results, the water coagulation waste sludge appears to be a suitable low cost and effcient adsorbent for removing reactive azo dyes from waste streams.

  8. Developing a holistic strategy for integrated waste management within municipal planning: challenges, policies, solutions and perspectives for Hellenic municipalities in the zero-waste, low-cost direction.

    Science.gov (United States)

    Zotos, G; Karagiannidis, A; Zampetoglou, S; Malamakis, A; Antonopoulos, I-S; Kontogianni, S; Tchobanoglous, G

    2009-05-01

    The present position paper addresses contemporary waste management options, weaknesses and opportunities faced by Hellenic local authorities. It focuses on state-of-the-art, tested as well as innovative, environmental management tools on a municipal scale and identifies a range of different collaboration schemes between local authorities and related service providers. Currently, a policy implementation gap is still experienced among Hellenic local authorities; it appears that administration at the local level is inadequate to manage and implement many of the general policies proposed; identify, collect, monitor and assess relevant data; and safeguard efficient and effective implementation of MSWM practices in the framework of integrated environmental management as well. This shortfall is partly due to the decentralisation of waste management issues to local authorities without a parallel substantial budgetary and capacity support, thus resulting in local activity remaining often disoriented and isolated from national strategies, therefore yielding significant planning and implementation problems and delays against pressing issues at hand as well as loss or poor use of available funds. This paper develops a systemic approach for MSWM at both the household and the non-household level, summarizes state-of-the-art available tools and compiles a set of guidelines for developing waste management master plans at the municipal level. It aims to provide a framework in the MSWM field for municipalities in Greece as well as other countries facing similar problems under often comparable socioeconomic settings.

  9. Thermal and physical property determination for IONSIV/256 IE-911 crystalline silicotitanate and Savannah River Site waste simulant solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-08

    This document describes physical and thermophysical property determinations that were made in order to resolve questions associated with the decontamination of Savannah River Site waste streams using ion exchange on crystalline silicotitanate.

  10. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  11. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution.

    Science.gov (United States)

    Arumugam, Karthika; Ganesan, Seethadevi; Muthunarayanan, Vasanthy; Vivek, Swabna; Sugumar, Susila; Munusamy, Vivekanadhan

    2015-02-01

    The aim of the present study was to subject the post-consumer waste, namely paper cups for vermicomposting along with cow dung in three different ratios for a period of 90-140 days employing Eisenia fetida. The post-consumer wastes are a menace in many developing countries including India. This waste was provided as feed for earthworms and was converted to vermicompost. Vermicompost prepared with paper cup waste was analyzed for their physicochemical properties. Based on the physicochemical properties, it was evident that the best manure is obtained from type A (paper cup/cow dung in the ratio 1:1) than type B (paper cup/cow dung in the ratio 1.5:0.5) and type C (paper cup/cow dung in the ratio 0.5:1.5). The results showed that earthworms accelerated the rate of mineralization and converted the wastes into compost with needed elements which could support the growth of crop plants. The predominant bacterial strains in the vermicompost were characterized biochemically as well as by 16S ribosomal RNA (rRNA) gene sequencing. The bacterial strains like Bacillus anthracis (KM289159), Bacillus endophyticus (KM289167), Bacillus funiculus (KM289165), Virigibacillius chiquenigi (KM289163), Bacillus thuringiensis (KM289164), Bacillus cereus (KM289160), Bacillus toyonensis (KM289161), Acinetobacter baumanni (KM289162), and Lactobacillus pantheries (KM289166) were isolated and identified from the final compost. The total protein content of E. fetida involved in vermicomposting was extracted, and the banding pattern was analyzed. During final stages of vermicomposting, it was observed that the earthworm did not act on the plastic material coated inside the paper cups and stagnated it around the rim of the tub. Further, the degradation of paper cup waste was confirmed by Fourier transform infrared spectroscopy analysis. Hence, vermicomposting was found to be an effective technology for the conversion of the paper cup waste material into a nutrient-rich manure, a value

  12. Intercomparison of Cement Solid-Solution Models. Issues Affecting the Geochemical Evolution of Repositories for Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Savage, David [Quintessa Ltd., Henley-on-Thames (United Kingdom); Walker, Colin [Dept. of Mineralogy, The Natural History Museum London (United Kingdom)

    2007-05-15

    Many concepts for the geological storage of radioactive waste incorporate cement based materials, which act to provide a chemical barrier, impede groundwater flow or provide structural integrity of the underground structures. Thus, it is important to understand the long-term behaviour of these materials when modelling scenarios for the potential release and migration of radionuclides. In the presence of invasive groundwater, the chemical and physical properties of cement, such as its pH buffering capacity, resistance to flow, and its mechanical properties, are expected to evolve with time. Modelling the degradation of cement is complicated by the fact that the long term pH buffer is controlled by the incongruent dissolution behaviour of calcium-silicate-hydrate (C-S-H) gel. It has been previously shown (SKI Report 2005:64) that it is possible to simulate the long term evolution of both the physical and chemical properties of cement based materials in an invasive groundwater using a fully coupled geochemical transport model. The description of the incongruent dissolution of C-S-H gel was based on a binary solid solution aqueous solution (SSAS) between end-member components portlandite (Ca(OH){sub 2}) and a C-S-H gel composition expressed by its component oxides (CaH{sub 2}SiO{sub 4}). The models considered a range of uncertainties including different groundwater compositions, parameterised couplings between the evolution of porosity with permeability and diffusivity and alternative secondary mineral assemblages. The results of the modelling suggested that alternative evolutions were possible under these different conditions. The focus of this report is to address the uncertainty regarding the choice of model for the C-S-H gel dissolution. We compare two alternative C-S-H SSAS models with the one that was used in the previous report, with an emphasis on a direct comparison of the model predictions. Thus we have chosen one simple simulated experimental model based on

  13. Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column.

    Science.gov (United States)

    Mondal, M K

    2009-08-01

    An inexpensive and effective adsorbent was developed from waste tea leaves for the dynamic uptake of Pb(II). Characterization of the adsorbents showed a clear change between physico-chemical properties of activated tea waste and simply tea waste. The purpose of this work was to evaluate the potential of activated tea waste in continuous flow removal of Pb(II) ions from synthetic aqueous effluents. The performance of the system was evaluated to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. The shape of the breakthrough curves was determined for the adsorption of Pb(II) by varying different operating parameters like hydraulic loading rate (2.3-9.17m(3)/hm(2)), bed height (0.3-0.5m) and feed concentration (2-10mg/l). An attempt has also been made to model the data generated from column studies using the empirical relationship based on the Bohart-Adams model. There was an acceptable degree of agreement between the data for breakthrough time calculated from the Bohart-Adams model and the present experimental study with average absolute deviation of less than 5.0%. The activated tea waste in this study showed very good promise as compared with the other adsorbents available in the literature. The adsorbent could be suitable for repeated use (for more than four cycles) without noticeable loss of capacity.

  14. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  15. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    Science.gov (United States)

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  16. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass.

    Science.gov (United States)

    Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Mat, Hanapi

    2017-03-01

    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process.

  17. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    Science.gov (United States)

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively.

  18. Cauliflower Leave, an Agricultural Waste Biomass Adsorbent, and Its Application for the Removal of MB Dye from Aqueous Solution: Equilibrium, Kinetics, and Thermodynamic Studies

    Science.gov (United States)

    Ansari, Seraj Anwar; Khan, Fauzia

    2016-01-01

    Cauliflower leaf powder (CLP), a biosorbent prepared from seasonal agricultural crop waste material, has been employed as a prospective adsorbent for the removal of a basic dye, methylene blue (MB) from aqueous solution by the batch adsorption method under varying conditions, namely, initial dye concentration, adsorbent dose, solution pH, and temperature. Characterization of the material by FTIR and SEM indicates the presence of functional groups and rough coarse surface suitable for the adsorption of methylene blue over it. Efforts were made to fit the isotherm data using Langmuir, Freundlich, and Temkin equation. The experimental data were best described by Freundlich isotherm model, with an adsorption capacity of 149.22 mg/g at room temperature. To evaluate the rate of methylene blue adsorption onto CLP, pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were employed. The experimental data were best described by the pseudo-second-order kinetic model. Evaluation of thermodynamic parameters such as changes in enthalpy, entropy, and Gibbs' free energy showed the feasible, spontaneous, and exothermic nature of the adsorption process. On the basis of experimental results obtained, it may be concluded that the CLP prepared from agricultural waste has considerable potential as low-cost adsorbent in wastewater treatment for the removal of basic dye, MB. PMID:27974892

  19. Thermal and Physical Property Determinations for Ionsiv IE-911 Crystalline Silicotitanate and Savannah River Site Waste Simulant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; Steele, W.V.

    1999-08-01

    This document describes physical and thermophysical property determinations that were made in order to resolve questions associated with the decontamination of Savannah River Site (SRS) waste streams using ion exchange on crystalline silicotitanate (CST). The research will aid in the understanding of potential issues associated with cooling of feed streams within SRS waste treatment processes. Toward this end, the thermophysical properties of engineered CST, manufactured under the trade name, Ionsive{reg_sign} IE-911 by UOP, Mobile, AL, were determined. The heating profiles of CST samples from several manufacturers' production runs were observed using differential scanning calorimetric (DSC) measurements. DSC data were obtained over the region of 10 to 215 C to check for the possibility of a phase transition or any other enthalpic event in that temperature region. Finally, the heat capacity, thermal conductivity, density, viscosity, and salting-out point were determined for SRS waste simulants designated as Average, High NO{sub 3}{sup {minus}} and High OH{sup {minus}} simulants.

  20. Technical solutions for individual and non-collective waste water treatment; Soluciones tecnicas al saneamiento individual o no colectivo

    Energy Technology Data Exchange (ETDEWEB)

    Collado Lara, R.

    2008-07-01

    In 1991, the EEC issued a directive on urban waste water treatment (91/271/EEC) regulating and requiring the progressive introduction of sanitary infrastructure. This article describes the different on-site treatment techniques for villages of less than 2,000 inhabitants, with the possibility of soil infiltration or surface disposal where the construction of collectors for collective treatment is not justified due to the wide dispersal of the population. Criteria are set out for choosing among the different systems depending on the type of soil, gradients, phreatic level, etc. and bibliographical references on individual treatments are provided. (Author) 18 refs.

  1. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  2. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  3. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Po-Neng [Experimental Forest, National Taiwan University, Chushan, Nantou County, 55750, Taiwan (China); Tong, Ou-Yang [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Chiou, Chyow-San; Lin, Yu-An [Department of Environmental Engineering, National Ilan University, Ilan 26047, Taiwan (China); Wang, Ming-Kuang [Department of Animal Science, National Ilan University, Ilan 26047, Taiwan (China); Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-01-15

    Highlights: • Nitrogen, phosphorus, and potassium contents in soil are substantially increased after the DOC washing. • The removal of Zn is dominated by proton replacement at pH 2.0, rather than by complexation with DOC. • The removal of Zn is dominated by DOC complexation between pH 3.0 and pH 5.0. - Abstract: A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg{sup −1} in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L{sup −1} DOC solution with a of pH 2.0 at 25 °C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH{sub 4}{sup +}-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively.

  4. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics.

    Science.gov (United States)

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin

    2016-02-01

    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.

  5. A Stochastic Programming Approach with Improved Multi-Criteria Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical and Electronic Equipment (WEEE

    Directory of Open Access Journals (Sweden)

    Hao Yu

    2016-12-01

    Full Text Available Today, the increased public concern about sustainable development and more stringent environmental regulations have become important driving forces for value recovery from end-of-life and end-of use products through reverse logistics. Waste electrical and electronic equipment (WEEE contains both valuable components that need to be recycled and hazardous substances that have to be properly treated or disposed of, so the design of a reverse logistics system for sustainable treatment of WEEE is of paramount importance. This paper presents a stochastic mixed integer programming model for designing and planning a generic multi-source, multi-echelon, capacitated, and sustainable reverse logistics network for WEEE management under uncertainty. The model takes into account both economic efficiency and environmental impacts in decision-making, and the environmental impacts are evaluated in terms of carbon emissions. A multi-criteria two-stage scenario-based solution method is employed and further developed in this study for generating the optimal solution for the stochastic optimization problem. The proposed model and solution method are validated through a numerical experiment and sensitivity analyses presented later in this paper, and an analysis of the results is also given to provide a deep managerial insight into the application of the proposed stochastic optimization model.

  6. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Chen, Guan-Bu [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China)

    2013-01-15

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH){sub 2}, and Mg(OH){sub 2} to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg{sup −1}) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L{sup −1} DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH{sub 4}) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively.

  7. Evaluation of an adsorbent based on agricultural waste (corn cobs) for removal of tyrosine and phenylalanine from aqueous solutions.

    Science.gov (United States)

    Alves, Cibele C O; Franca, Adriana S; Oliveira, Leandro S

    2013-01-01

    Adsorption of phenolic amino acids, such as phenylalanine and tyrosine, is quite relevant for the production of protein hydrolysates used as dietary formulations for patients suffering from congenital disorders of amino acid metabolism, such as phenylketonuria. In this study, an adsorbent prepared from corn cobs was evaluated for the removal of tyrosine (Tyr) from both a single component solution and a binary aqueous solution with phenylalanine (Phe). The adsorption behavior of tyrosine was similar to that of phenylalanine in single component solutions, however, with a much lower adsorption capacity (14 mg g(-1) for Tyr compared to 109 mg g(-1) for Phe). Tyr adsorption kinetics was satisfactorily described by a pseudosecond-order model as it was for Phe. In adsorption equilibrium studies for binary mixtures, the presence of Tyr in Phe solutions favored Phe faster adsorption whereas the opposite behavior was observed for the presence of Phe in Tyr solutions. Such results indicate that, in binary systems, Phe will be adsorbed preferably to Tyr, and this is a welcome feature when employing the prepared adsorbent for the removal of Phe from protein hydrolysates to be used in dietary formulations for phenylketonuria treatment.

  8. Evaluation of an Adsorbent Based on Agricultural Waste (Corn Cobs for Removal of Tyrosine and Phenylalanine from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Cibele C. O. Alves

    2013-01-01

    Full Text Available Adsorption of phenolic amino acids, such as phenylalanine and tyrosine, is quite relevant for the production of protein hydrolysates used as dietary formulations for patients suffering from congenital disorders of amino acid metabolism, such as phenylketonuria. In this study, an adsorbent prepared from corn cobs was evaluated for the removal of tyrosine (Tyr from both a single component solution and a binary aqueous solution with phenylalanine (Phe. The adsorption behavior of tyrosine was similar to that of phenylalanine in single component solutions, however, with a much lower adsorption capacity (14 mg g−1 for Tyr compared to 109 mg g−1 for Phe. Tyr adsorption kinetics was satisfactorily described by a pseudosecond-order model as it was for Phe. In adsorption equilibrium studies for binary mixtures, the presence of Tyr in Phe solutions favored Phe faster adsorption whereas the opposite behavior was observed for the presence of Phe in Tyr solutions. Such results indicate that, in binary systems, Phe will be adsorbed preferably to Tyr, and this is a welcome feature when employing the prepared adsorbent for the removal of Phe from protein hydrolysates to be used in dietary formulations for phenylketonuria treatment.

  9. A Comparative Study of Chromium and Cadmium Removal from Their Common Aqueous Solution by Batch Operation Using Tea Factory Waste as Adsorbent

    Directory of Open Access Journals (Sweden)

    Jibesh Datta

    2014-06-01

    Full Text Available The process of adsorption is a powerful tool for the treatment of industrial wastewater. In the recent years many studies have been conducted to evaluate the effectiveness of various locally available economical adsorbents for the removal of various heavy metals from the waste water. In the present study tea factory waste is used as adsorbent and its capacity to remove toxic heavy metals chromium and cadmium from their combined solution is investigated. Batch adsorption study is conducted to find the adsorption capacity of the adsorbent and the effect of the three important process parameters, i.e. agitation rate, adsorbent dose and initial metal ion concentration is evaluated. The maximum adsorption capacity of 24.88 mg/g and 23.92 mg/g is observed in case of cadmium and chromium respectively. It is also found that the removal efficiency of cadmium is higher than that of chromium in all cases. The experimental results are also found to be well fitted in the Langmuir and Freundlich Isotherm model.

  10. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study.

    Science.gov (United States)

    Gu, Fu; Ma, Buqing; Guo, Jianfeng; Summers, Peter A; Hall, Philip

    2017-10-01

    Management of Waste Electrical and Electronic Equipment (WEEE) is a vital part in solid waste management, there are still some difficult issues require attentionss. This paper investigates the potential of applying Internet of Things (IoT) and Big Data as the solutions to the WEEE management problems. The massive data generated during the production, consumption and disposal of Electrical and Electronic Equipment (EEE) fits the characteristics of Big Data. Through using the state-of-the-art communication technologies, the IoT derives the WEEE "Big Data" from the life cycle of EEE, and the Big Data technologies process the WEEE "Big Data" for supporting decision making in WEEE management. The framework of implementing the IoT and the Big Data technologies is proposed, with its multiple layers are illustrated. Case studies with the potential application scenarios of the framework are presented and discussed. As an unprecedented exploration, the combined application of the IoT and the Big Data technologies in WEEE management brings a series of opportunities as well as new challenges. This study provides insights and visions for stakeholders in solving the WEEE management problems under the context of IoT and Big Data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires.

    Science.gov (United States)

    Tanthapanichakoon, W; Ariyadejwanich, P; Japthong, P; Nakagawa, K; Mukai, S R; Tamon, H

    2005-04-01

    Liquid-phase adsorption-desorption characteristics and ethanol regeneration efficiency of an activated carbon prepared from waste tires and a commercial activated carbon were investigated. Water vapor adsorption experiments reveal that both activated carbons showed hydrophobic surface characteristics. Adsorption experiments reveal that the prepared activated carbon possessed comparable phenol adsorption capacity as the commercial one but clearly larger adsorption capacity of two reactive dyes, Black 5 and Red 31. It was ascertained that the prepared activated carbon exhibited less irreversible adsorption of phenol and the two dyes than its commercial counterpart. Moreover, ethanol regeneration efficiency of the prepared AC saturated with either dye was higher than that of the commercial AC. Because of its superior liquid-phase adsorption-desorption characteristics as well as higher ethanol regeneration efficiency, the prepared activated carbon is more suitable for wastewater treatment, especially for adsorbing similarly bulky adsorbates.

  12. The component slope linear model for calculating intensive partial molar properties /application to waste glasses and aluminate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  13. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses and Aluminate Solutions - 13099

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOHNaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components. (authors)

  14. Gas generation during waste treatment of acidic solutions from the dissolution of irradiated LEU targets for 99Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, Allen J. [Argonne National Lab. (ANL), Argonne, IL (United States); Conner, Cliff [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    The goal of the Reduced Enrichment for Research and Test Reactors Program is to limit the use of high-enriched uranium (HEU) in research and test reactors by substituting low-enriched uranium (LEU) wherever possible. The work reported here documents our work to develop the calcining technologies and processes that will be needed for 99Mo production using LEU foil targets and the Modified Cintichem Process. The primary concern with the conversion to LEU from HEU targets is that it would result in a five- to six-fold increase in the total uranium. This increase results in more liquid waste from the process. We have been working to minimize the increase in liquid waste and to minimize the impact of any change in liquid waste. Direct calcination of uranium-rich nitric acid solutions generates NO2 gas and UO3 solid. We have proposed two processes for treating the liquid waste from a Modified Cintichem Process with a LEU foil. One is an optimized direct calcination process that is similar to the process currently in use. The other is a uranyl oxalate precipitation process. The specific goal of the work reported here was to characterize and compare the chemical reactions that occur during these two processes. In particular, the amounts and compositions of the gaseous and solid products were of interest. A series of experiments was carried out to show the effects of temperature and the redox potential of the reaction atmosphere. The primary products of the direct calcination process were mixtures of U3O8 and UO3 solids and NO2 gas. The primary products of the oxalate precipitation process were mixtures of U3O8 and UO2 solid and CO2 gas. Higher temperature and a reducing atmosphere tended to favor quadrivalent over hexavalent uranium in the solid product. These data will help producers to decide between the two processes. In addition, the data can be used to design

  15. The Predisposition of Iraqi Rice Husk to Remove Heavy Metals from Aqueous Solutions and Capitalized from Waste Residue

    OpenAIRE

    Mohammed Nsaif; Firas Saeed

    2013-01-01

    This study is deal with study the potential of Iraqi Rice Husk (IRH) on the removal of three heavy metals pollutant which were (Mg, Mn and Mo) ions from industrial wastewater using different design parameters by adsorption process. Results show that the removal efficiency were (93.95, 97.18 and 95.26) % for heavy metal (Mg, Mn and Mo) respectively from aquatic solution decreased with increasing of initial concentration and flow rate while the removal efficiency increased with increasing absor...

  16. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems

    Energy Technology Data Exchange (ETDEWEB)

    Lian Fei; Huang Fang; Chen Wei [College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300071 (China); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2011-04-15

    Single- and bi-solute sorption of organic compounds [1,3-dichlorbenzene (DCB), 1,3-dinitrobenzene (DNB) and 2,4-dichlorophenol (DCP)] on ground tire rubber and its chars was studied. The chars were prepared by pyrolyzing tire rubber at different temperatures (200-800 deg. C). Their surface area, aromaticity and hydrophobicity increase greatly with pyrolytic temperature, and the polymeric phase is partly converted into a condensed phase. The sorption of DNB and DCP increases with pyrolytic temperature and is characterized by a transition from a partition dominant to an adsorption dominant process. However, the sorption of DCB linearly decreases with the pyrolytic temperature. The enhanced adsorption of DNB and DCP on carbonized phase is primarily attributed to nonhydrophobic interactions such as {pi}-{pi} electron-donor-acceptor interactions and/or H bonding. The higher partition of DCB to polymeric phase is attributed to its high hydrophobicity. Competitive sorption between DCB and DCP on the tire chars is highly dependent on dissociation of the latter. - Research highlights: > Tire chars consist of dual sorptive domains, i.e., partition and adsorption. > High hydrophobicity of apolar organic contaminant promotes its partition into polymeric phase. > Polar aromatic contaminants show high adsorption on carbonized phase with specific interactions. > Dissociation of ionzable organic chemical heavily influences its sorption on tire chars. - The partition and adsorption of organic contaminants on waste tire chars are highly dependent on the hydrophobicity, polarity and dissociation of solutes.

  17. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Science.gov (United States)

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater.

  18. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    Science.gov (United States)

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents.

  19. Synthesis of Activated Carbon Mesoporous from Coffee Waste and Its Application in Adsorption Zinc and Mercury Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2012-01-01

    Full Text Available We obtain activated carbons with high portion of meso pores using coffee residues as precursor for the application of adsorption of large adsorbates. Because of its natural properties, the coffee residue exhibited a large pore size. In this work, the coffee residue were impregnated with ZnCl2 and KOH, and then carbonized under the nitrogen conditions and activated with CO2 respectively. Obtained activated carbons are used in the adsorption of ions Hg(II and Zn(II. These adsorbents are efficacious to remove these ions from aqueous solution, with monocomponent equilibrium adsorption capacities ranging from from 0.002 to 0.380 mmol∙g-1 for Hg on ACK3 and from 0.002 to 0.330 mmol∙g-1 for ACZ3. For Zn(II on ACK2 from 0.002 to 0.300 mmol∙g-1, and from 0.001 to 0.274 mmol∙g-1 for ACZ2.

  20. Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents.

    Science.gov (United States)

    Djati Utomo, H; Hunter, K A

    2006-01-01

    The adsorption of the divalent cations of Cu, Zn, Cd and Pb by tea leaves and coffee grounds from aqueous solutions is described. Both adsorbents exhibited strong affinity for these ions which could be described by a simple single-site equilibrium model. For coffee, the order of increasing adsorption equilibrium constant K was Cu 10, probably because of anion formation in the case of Zn2+ and also increased leaching of metal-binding soluble materials. The effect of metal ion concentration on the adsorptive equilibria indicated a threshold concentration above which overall adsorption became limited by saturation of the adsorption sites. Competition between two metal ions for the same sites was not observed with Cu(II) and Pb(II), however Zn(II) reacted competitively with Cd(II) binding sites on both tea and coffee. If fresh coffee or tea adsorbents were used, the fraction of metal ion taken up by the adsorbent was diminished by the competitive effects of soluble metal-binding ligands released by the tea or coffee. Experiments with coffee showed that roasting temperature controls the formation of metal ion adsorption sites for this adsorbent.

  1. Response surface optimization for removal of cadmium from aqueous solution by waste agricultural biosorbent psidium guvajava L. Leaf powder

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Karanam Srinivasa; Anand, Sashi; Rout, Kalyani [Institute of Minerals and Materials Technology, Bhubaneswar (India); Venkateswarlu, Paladugu [Department of Chemical Engineering, College of Engineering, Andhra University, Andhra Pradesh (India)

    2012-01-15

    Response surface methodology (RSM) was applied to study the combined effects of the various parameters namely, pH, biosorbent dosage, cadmium concentration and temperature, and to optimize the process conditions for the maximum removal of cadmium using Psidium guvajava L. leaf powder. In order to obtain the mutual interactions between the variables and to optimize these variables, a 2{sup 4} full factorial central composite design using RSM was employed. The analysis of variance (ANOVA) of the quadratic model demonstrates that the model was highly significant. The model was statistically tested and verified by experimentation. A maximum cadmium removal of 93.2% was obtained under the following optimum conditions: aqueous cadmium concentration 40.15 mg/L, adsorbent dosage 0.5 g/50 mL solution, pH 5.0, and temperature (35 C). The value of desirability factor obtained was 1. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Utilization of Sago Waste as an Adsorbent for the Removal of Pb(II from Aqueous Solution: Kinetic and Isotherm Studies

    Directory of Open Access Journals (Sweden)

    C.KARTHIKA

    2010-06-01

    Full Text Available The effectiveness of a carbonaceous sorbent prepared from sago waste for the removal of Pb (II ions from aqueous solution and industrial effluent was studied as a function of agitation time, adsorbent dosage, particle size and pH. Through Scanning Electron Microscopy (SEM, X-ray Photo electron Spectroscopy (XPS and Fourier TransformInfra-red (FTIR spectroscopy analysis, the surface properties of the adsorbent were studied. The experimental isotherm data were analyzed using Langmuir, Freundlich, Redlich Peterson, Temkin and Dubinin-Radushkevich equations. The maximum adsorption capacity (Q0 was found to be 14.35 mg g-1 at an initial pH of 3.5. The Lagergren rate constant for adsorption was found to be constant for various initial concentrations of Pb(II ions which implies that adsorption follows first order kinetics. Since the raw material used in the preparation of activated carbon is available abundantly, the resulting carbon is expected to be economically viable.

  3. pH effects on the removal of Cu{sup 2+}, Cd{sup 2+} and Pb{sup 2+} from aqueous solution by waste brewery biomass

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.A.S.S.; Rosa, M.F. [Departamento de Energias Renovaveis, Inst. Nacional de Engenharia e Tecnologia Industrial, Lisboa (Portugal); Pinheiro, H.M. [Centro de Engenharia Biologica e Quimica, Inst. Superior Tecnico, Lisboa (Portugal)

    2000-08-01

    An industrial strain of Saccharomyces cerevisiae collected from the waste of a brewing industry was used to remove lead, cadmium and copper from aqueous solutions (1 mm).Metal removal efficiency by using either biomass suspension directly diluted into the metal solutions or biomass previously incubated and washed in distilled water was compared. In all experiments with unwashed biomass a shift in the medium pH from 4.5 to a final value in the 7.0-8.0 range occurred. This pH increase was responsible for a metal precipitation effect associated to the metal biosorption. A very different pH profile was observed when washed biomass was used leading to different removal profiles for Cd{sup 2+} and Pb{sup 2+} and a similar one for Cu{sup 2+}. In the absence of biomass, medium components and/or the excreted intracellular products proved to interfere in the metal removal and to be responsible for 80% Pb{sup 2+} precipitation, in the pH 4.5-5.0 range.To initial metal solution pH, leading to the lowest residual ion concentrations, after 96 h of contact with unwashed biomass and in the absence of pH adjustment, was 4.5-5.0. Continuous or stepwise adjustment of medium pH to this range during the process was unfavourable for metal removal, being the continuous adjustment the worst procedure. In this case, Cd{sup 2+} was not biosorbed and Cu{sup 2+} removal decreased from 76 to 33%. However, Pb{sup 2+} was always extensively removed (89%) and only slightly affected by pH control.The global results suggest different removal mechanisms for each cation. Cu{sup 2+} was removed by both metal sorption and precipitation, due to the pH shift that occurred during the process, while Cd{sup 2+} removal showed to be completely dependent of this pH shift. Pb{sup 2+} was totally and quickly removed, by precipitation, in the presence of the biomass suspension and at pH 4.5.Moreover, the biosorbent changes occurring during the process played an important role in the metal removal when non

  4. Synthesis and Characterization of Nano-crystaline CaFe2O4 via Solution Combustion Method from Solid Waste Egg Shells as Source of Calcium

    OpenAIRE

    M.Veerabhadraswamy; H.Bhagya Lakshmi,; B. J. Madhu,

    2017-01-01

    The liable application of solid egg shell waste obtained from food processing industry into biocompatible calcium ferrite nano materials will put in significance to the waste generated.Million tons of egg shell waste are produced every day which has contributed to environmental pollution.In this framework blending of nanotechnology with science, ensuing green chemistry moralities has led to arrival of innovative and improved technologies in the field of material science. Our present work aims...

  5. Vitrification of hazardous and radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  6. 从废钒催化剂酸浸液中萃取钒%Solvent Extraction of Vanadium From Acidic Leaching Solution of Waste Catalyst

    Institute of Scientific and Technical Information of China (English)

    郝喜才; 姬学亮

    2014-01-01

    Solvent extraction of vanadium from acidic leaching solution of waste catalyst containing vanadium using TOA as extractant was researched . The optimum process parameters were determined .The results show that using the 10% TOA + 4% decanol+ 86% sulfonated kerosene as extraction agent ,at the conditions of aqueous phase pH of 2 .5 ,the volume ratio between organic phase and aqueous phase of 1∶3 ,contact time of 2 .5 min ,holding time of 5 min ,single stage extraction of vanadium is up to 95 .2% .Using 0 .6 mol/L Na2 CO3 solution and be two stages back‐extraction ,the 99% of vanadium in organic phase was stripped .The stripping liquid can be directly precipitated vanadium .Calcining the precipitate can acquire V2 O5 product with GB3283 -1987 metallurgical grade 99 standard .The extraction raffinate is centralized processing .The process is simple and has remarkable comprehensive benefit .%研究了用TOA作萃取剂从废钒催化剂酸浸液中萃取钒,考察了各影响因素对钒萃取率的影响,确定了最佳萃取参数。试验结果表明:用10% TOA+4%癸醇+86%磺化煤油作萃取剂,在水相pH=2.5、有机相与水相体积比(V o ∶V a )=1∶3、萃取时间2.5 min、静置时间5 min条件下,钒的单级萃取率高达95.2%;用0.6 mol/L Na2 CO3溶液进行2级反萃取,钒的反萃取率在99%以上;反萃取液可直接沉淀钒,产品V2 O5质量达到GB3283—1987冶金99级标准。萃余液可集中处理。该工艺简单,综合效益显著。

  7. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  8. Denitrification of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bertolami, R.J.; Chao, E.I.; Choi, W.M.; Johnson, B.R.; Varlet, J.L.P.

    1976-04-26

    Growth rates for the denitrifying bacteria Pseudomonas Stutzeri were studied to minimize the time necessary to start up a bacterial denitrification reactor. Batch experiments were performed in nine 250-ml Erlenmeyer flasks, a 7-liter fermentor, and a 67-liter fermentor. All reactors maintained an anaerobic environment. Initial microorganism inoculum concentration was varied over four orders of magnitude. Initial nitrate and substrate carbon concentrations were varied from 200 to 6000 ppm and from 56 to 1596 ppm, respectively, with a carbon-to-nitrogen weight ratio of 1.18. In all experiments, except those with the highest initial substrate-to-bacteria ratio, no growth was observed due to substrate depletion during the lag period. In those experiments which did exhibit an increase in bacterial population, growth also stopped due to substrate depletion. A model simulating microbe growth during the induction period was developed, but insufficient data were available to properly adjust the model constants. Because of this, the model does not accurately predict microbe growth. The metabolism of Pseudomonas Stutzeri was studied in detail. This resulted in a prediction of the denitrification stoichiometry during steady state reactor operation. Iron was found to be an important component for bacterial anabolism.

  9. Solution preparation

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results.

  10. 废电池浸出液对荆芥生理及挥发性成分含量的影响%Effects of waste batteries leaching solution stress on resistance physiological indices of volatile constituents from Schizonepeta tenuifolia

    Institute of Scientific and Technical Information of China (English)

    魏金凤; 王俊霞; 康文艺

    2011-01-01

    Objective:The effect of waste batteries leaching on the seedling growth and volatile constituents in leaves of Schi-zonepeta tenuifolia was assayed. Method; The different concentrations of waste batteries leaching on the seedling growth were discussed. Volatile compounds were analyzed by solid-phase micro-extraction (SPME) coupled with gas chromatography-mass speetrome-try (GC-MS). Result; The results indicated that 5. Tenuifolia showed resistance to heavy metal polluting, but the high rate of waste batteries leaching had the inhibiting effect to seedlings growth. The waste batteries leaching cause the major volatile constituents in leaves of S. tenuifolia was changed greatly under waste batteries leaching solution stress. Conclusion; Heavy metal leached by waste batteries had great effect on growth of S. Tenuifolia, reducing its value for food and medical purposes.%目的:研究废旧电池浸出液对荆芥幼苗生长及叶片挥发性成分的影响.方法:探讨不同浓度废旧电池浸出液对荆芥幼苗生长的影响,并用固相微萃取技术与气相质谱联用对叶片中挥发性成分进行分析.结果:荆芥幼苗对废电池浸出液具有一定的抗性,但高质量分数废电池浸出液对荆芥的生长有一定的抑制作用;不同浓度废电池浸出液对荆芥挥发性成分影响较大.结论:废旧电池在水中渗出的化学物质对荆芥产生很大影响,降低荆芥的食用和药用价值.

  11. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  12. The final disposal of radioactive wastes. Are we nearing a solution to a decade-old conflict?; Die Endlagerung radioaktiver Abfaelle. Stehen wir vor der Loesung eines jahrzehntelangen Konflikts?

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Wolfram [Bundesamt fuer Strahlenschutz (BfS), Salzgitter (Germany)

    2013-04-15

    The present article describes how the recent decision to phase out nuclear energy has created an opportunity to gain public acceptance of a nuclear waste repository in Germany. Now that the phase-out has been finalised the amount of radioactive waste requiring disposal has become quantifiable. This has created clarity as to the magnitude of the environmental problem waiting to be solved. The longer it takes to get the final storage of radioactive wastes underway the greater will be the risk that in the end nobody is prepared to assume responsibility and the cheapest solution - in the literal sense of the word - is adopted, which is to export the wastes abroad. Since more than a year the political leadership has been struggling to work out the details of a law governing the search for a final repository. The recent approval given by the government of the federal state of Lower Saxony has come in time to throw the door wide open ahead of the federal elections for a procedure that can count on broad support among the political leadership. The chances are now good for a lasting resolution to a dispute that has been carried on in the German Federal Republic for decades, sometimes with ferocity, over the risks associated with the use of nuclear energy, and they must be grabbed.

  13. 水葫芦提取植物蛋白废液培养小球藻初步研究%A Preliminary Study on the Culture of Chlorella Vulgaris with Waste Solution of Eichhornia Crassipes

    Institute of Scientific and Technical Information of China (English)

    吕富; 崔刚; 陈洪兴; 封功能; 余晓红

    2012-01-01

    In order to improve the economic benefits of Chlorella vulgaris culture and efficient utilization of Eichhornia crassipes,effect of waste solution of Eichhornia crassipes on the growth,the chlorophyll and the protein content of Chlorella vulgaris were studied preliminarily.The results showed that under light conditions,the growth,the chlorophyll and the protein content of Chlorella vulgaris increased with the increase of waste solution volume from 0% to 6%,and even if there is nothing but waste solution volume from 1% to 6% in the algae solution,the chlorella growth rate and chlorophyll and protein content could achieve or exceed the cultured in basic nutrient solution,which proved that the waste solution can greatly improve the economic benefits of chlorella culture,or even completely replace the nutrients;but without light conditions,it is invalid and can not act as nutrients source of heterotrophic.%为提高小球藻培养的经济效益和高效资源化综合利用水葫芦,初步研究了水葫芦提取植物蛋白废液对小球藻生长、叶绿素和蛋白质含量的影响。研究结果表明,光照条件下,培养藻液中添加不超过6%体积的水葫芦废液,小球藻的生长速度及藻体叶绿素和蛋白质含量均随废液添加量的增加而提高,即使培养藻液中不添加任何营养元素而只添加1%~6%体积的废液,小球藻的生长速度及藻体叶绿素和蛋白质含量即可达到和超过基础营养液培养组的小球藻,说明水葫芦提取植物蛋白的废液可极大地提高小球藻培养的经济效益,甚至可完全替代营养盐的添加;但在无光条件下,添加废液对小球藻生长无效,说明未经处理的水葫芦废液尚不能作为小球藻异养培养的营养源。

  14. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...

  15. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source...

  16. Zero Waste; Energy Recovery From Non-recyclable Mixed Municipal Waste

    OpenAIRE

    Igor Laštůvka; Tomáš Vítěz; Jan Chovanec; Jan Mareček

    2016-01-01

    Zero Waste is a strategy offering waste management solutions for today’s businesses. The Zero Waste strategy has been created with the objective of stimulating sustainable utilisation of resources, production and consumption with the highest possible level of recycling of generated waste. Due to the fact that currently there is very little information and only few relevant data available as a base for the implementation of the Zero Waste strategy, waste management specialists approach and app...

  17. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  18. Mixed Waste Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  19. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  20. Hazardous Waste

    Science.gov (United States)

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  1. The refined of waste oil as sustainable solution: Ecoroil project; El re-refinamiento como solucion sostenible para el aceite usado: proyecto Ecoril

    Energy Technology Data Exchange (ETDEWEB)

    Torras, J. M.

    1999-11-01

    Waste oil must be re-refined at all? Or simply burn it all and forget about it? Today`s waste oil is burnt and dumped, thus causing serious and unnecessary pollution of the environment, contamination of the rivers, seas, water sources, soil and atmosphere. Industry and government, both, have fundamental responsibility to use every option to them to reduce pollution and to re-use and recycle before producing more. One of the most effective recycling possibilities is the re-refining. The lubricating oil business is large, profitable and complex. The new technologies in re-refining produce base oils of highest quality which can equal the performance of virgin oil. The ECOROIL Project carried forward by three companies from different sectors, F. L. Iberia - Infineum -Cator, S. A. - has demonstrated it. The paper also provides some light aspects about waste oil and re-refined oils in the last years in Spain. (Author) 4 refs.

  2. Mixed wasted integrated program: Logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.; Stelle, S. [Science Applications International Corp., Idaho Falls, ID (United States); O`Brien, M. [Univ. of Arizona, Tucson, AZ (United States); Rudin, M. [Univ. of Nevada, Las Vegas, NV (United States); Ferguson, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); McFee, J. [I.T. Corp., Albuquerque, NM (United States)

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  3. HIGH-TEMPERATURE GASIFICATION OF RDF WASTE AND MELTING OF FLY ASH OBTAINED FROM THE INCINERATION OF MUNICIPAL WASTE

    Directory of Open Access Journals (Sweden)

    Marián Lázár

    2015-02-01

    Full Text Available Objective of this paper is to describe innovative solutions of thermal processing of selected components of municipal waste (so-called RDF waste using low-ionized depended plasma arc generated by a progressive and promising technology, which is plasma reactor. Its application can transform hazardous waste into inert waste while significantly reducing the volume of waste. Results given in this paper indicate experimentally achieved outputs with thermal disposal of RDF waste and ash from municipal waste

  4. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    Science.gov (United States)

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  5. Radioactive waste storage issues

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Daniel E. [Colorado Christian Univ., Lakewood, CO (United States)

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  6. Physical-chemical bases of the recovery of surface active materials from aqueous solutions and waste water. Fiziko-Khimicheskie osnovy izvlecheniya poverkhnostno-aktivnykh veshchestv izvodnykh rastvorov i stochnykh vod

    Energy Technology Data Exchange (ETDEWEB)

    Koganovskii, A.M.; Klimenko, N.A.

    1978-01-01

    Contemporary data are given on the adsorption of surfactants on adsorbents of various chemical makeup, on the effect of the structure of their solutions, and the presence of strong electrolytes. An examination is made of the connection between the chemical structure of surfactants, their state in solution, and the structure of the adsorption layers. Data are presented for the first time on the joint adsorption of components from solubilized systems and the products resulting from the interaction between surfactants and dissolved dyes. Physico-chemical substantiation is offered for the absorption technology of removing surfactants and concomitant organic matter from industrial waste. Fundamental technological systems are presented for the sorption purification of sewage polluted by surfactants, and the conditions for their most effective utilization are substantiated. The book is intended for specialists engaged in the physical chemistry of surface phenomena as well as for investigators and planning personnel who are developing the technology of purifying industrial sewage. 81 figures, 53 tables.

  7. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  8. ZERO WASTE

    OpenAIRE

    Upadhyaya, Luv

    2013-01-01

    The aim of the thesis was to develop a clear vision on better waste management system. The thesis introduced the sustainable waste management along with innovation. The aim of the research was to find out the types of waste being introduced to environment, their consequence on human beings and surroundings, best policies, principles and practices to minimize the effect of the waste to lowest. The study was based on literature. The thesis includes the introduction of types of waste, clarifi...

  9. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials--Bottom Ash and De-Oiled Soya, as adsorbents.

    Science.gov (United States)

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha

    2006-08-25

    Adsorbents, Bottom Ash (a power plant waste) and De-Oiled Soya (an agricultural waste) exhibit good efficacy to adsorb a highly toxic dye, Tartrazine. Through the batch technique equilibrium uptake of the dye is observed at different concentrations, pH of the solution, dosage of adsorbents and sieve size of adsorbents. Langmuir and Freundlich adsorption isotherms are successfully employed on both the adsorbents and on the basis of these models the thermodynamic parameters are evaluated. Kinetic investigations reveal that more than 50% adsorption of dye is achieved in about 1h in both the cases, whereas, equilibrium establishment takes about 3-4h. The linear plots obtained in rate constant and mass transfer studies further confirm the applicability of first order rate expression and mass transfer model, respectively. The kinetic data treated to identify rate controlling step of the ongoing adsorption processes indicate that for both the systems, particle diffusion process is predominant at higher concentrations, while film diffusion takes place at lower concentrations. The column studies reveal that about 96% saturation of both the columns is attained during their exhaustion, while about 88 and 84% of the dye material is recovered by eluting dilute NaOH solution through exhausted Bottom Ash and De-Oiled Soya columns, respectively.

  10. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials-Bottom Ash and De-Oiled Soya, as adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462 007 (India)

    2006-08-25

    Adsorbents, Bottom Ash (a power plant waste) and De-Oiled Soya (an agricultural waste) exhibit good efficacy to adsorb a highly toxic dye, Tartrazine. Through the batch technique equilibrium uptake of the dye is observed at different concentrations, pH of the solution, dosage of adsorbents and sieve size of adsorbents. Langmuir and Freundlich adsorption isotherms are successfully employed on both the adsorbents and on the basis of these models the thermodynamic parameters are evaluated. Kinetic investigations reveal that more than 50% adsorption of dye is achieved in about 1 h in both the cases, whereas, equilibrium establishment takes about 3-4 h. The linear plots obtained in rate constant and mass transfer studies further confirm the applicability of first order rate expression and mass transfer model, respectively. The kinetic data treated to identify rate controlling step of the ongoing adsorption processes indicate that for both the systems, particle diffusion process is predominant at higher concentrations, while film diffusion takes place at lower concentrations. The column studies reveal that about 96% saturation of both the columns is attained during their exhaustion, while about 88 and 84% of the dye material is recovered by eluting dilute NaOH solution through exhausted Bottom Ash and De-Oiled Soya columns, respectively.

  11. Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism.

    Science.gov (United States)

    Arshadi, M; Soleymanzadeh, M; Salvacion, J W L; SalimiVahid, F

    2014-07-15

    In this study, the synthesis and characterization of a new adsorbent containing nanoscale zerovalent iron particles (NZVI) decorated sineguelas waste (S-NaOH-NZVI) from agriculture biomass was investigated for the adsorption/reduction of inorganic pollution such as Pb(II) ions. The combination of ZVI particles on the surface of sineguelas waste can help to overcome the disadvantage of ultra-fine powders which may have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. The synthesized materials were characterized with different methods such as FT-IR, BET, XRD, TEM and pHPZC. Good dispersion of NZVI particles (ca. 10-70nm) on the sineguelas waste was observed. The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The adsorption of Pb(II) ions has been studied in terms of pseudo-first- and second-order kinetics, and the Freundlich, Langmuir and Langmuir-Freundlich isotherms models have also been used to the equilibrium adsorption data. The adsorption kinetics followed the mechanism of the pseudo-second-order equation. The thermodynamic parameters (ΔG, ΔH and ΔS) indicated that the adsorption of Pb(II) ions were feasible, spontaneous and endothermic at 25-80°C. XRD analysis indicated the presence of Pb(0) on the S-NaOH-NZVI surface. This study suggests that the modified sineguelas waste by NZVI particles can be prepared at low cost and the materials are environmentally benign for the removal of Pb(II) ions, and likely many other heavy metal ions, from water.

  12. Exploring the Problems and Solutions of Kitchen Wastes of Chinese Catering Enterprises%中式餐饮企业厨余问题及对策探析

    Institute of Scientific and Technical Information of China (English)

    陈永清

    2012-01-01

    As China's catering industry has maintained a great momentum for rapid development for dozens of years, more and more kitchen wastes come into being and gradually become eyesores of city appearance and environmental sanitation. Besides, kitchen wastes have a lot to do with treatments of urban aquaculture. It is said that learning how to control and even reduce kitchen wastes not only helps China to cut down on its stress of cost as well as environment, but also helps the catering enterprises to lower their production costs and diminish the amount of waste food, which will in turn help citizens to formalize scientific ideas of diet, that is, low-carbon, environmental friendly and thrifty diet.%随着我国餐饮业连续十几年的快速发展,厨余排放量越来越大,厨余已经成为影响市容环境卫生、生活垃圾处理、养殖业安全的社会重大因素。餐饮企业如何在源头上控制、减少厨余,不仅可以减轻国家对餐厨垃圾处理的环境、成本压力,而且有利于餐饮企业降低生产成本、减少食物浪费,有利于促进国民养成低碳环保节俭的饮食理念。

  13. Use of waste materials--Bottom Ash and De-Oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous solutions.

    Science.gov (United States)

    Mittal, Alok; Kurup Krishnan, Lisha; Gupta, Vinod K

    2005-01-31

    Bottom Ash, a power plan t waste material and De-Oiled Soya, an agriculture waste product were successfully utilized in removing trisodium 2-hydroxy-1-(4-sulphonato-1-naphthylazo)naphthalene-3,6-disulphonate--a water-soluble hazardous azo dye (Amaranth). The paper incorporates thermodynamic and kinetic studies for the adsorption of the dye on these two waste materials as adsorbents. Characterization of each adsorbent was carried out by I.R. and D.T.A. curves. Batch adsorption studies were made by measuring effects of pH, adsorbate concentration, sieve size, adsorbent dosage, contact time, temperature etc. Specific rate constants for the processes were calculated by kinetic measurements and a first order adsorption kinetics was observed in each case. Langmuir and Freundlich adsorption isotherms were applied to calculate thermodynamic parameters. The adsorption on Bottom Ash takes place via film diffusion process at lower concentrations and via particle diffusion process at higher concentrations, while in the case of De-Oiled Soya process only particle diffusion takes place in the entire concentration range.

  14. Valorization of the eastern waste biogas. Biogas converted in electricity: clean industrial proceeding and energy solution of the city of oujda from a pilot experience of controlled discharge.

    Science.gov (United States)

    Belhaj, Siham; Bahi, Lahcen; Akhssas, Ahmed

    2017-04-01

    The city of Oujda is located in the eastern region of Morocco. As a result of population and industrial growth, the town of Oujda produces annually 140,000 tons of very humid waste, rich in organic matter, about 73%. These wastes were stored in the uncontrolled Sidi Yahya landfill and contaminated by the leachate Surface and subterranean waters of the city, this leachate formed into son-in-law 12 million Nm3 of biogas annually. This large volume of biogas is transformed into an energy source that is part of the sustainable development agenda while transferring the landfill from Sidi Yahya to a controlled landfill in international standards, the latter is located to the south of the city. This landfill is the first in Morocco to treat and recycle all waste and is used to produce electricity, it is the second in Africa. Thus, electricity production in the eastern region will increase from 700 KWh to 3 Mwh. In this work we will show the problems that the city of Oujda was experiencing in the presence of the uncontrolled dump of Sidi Yahya and then we will show the process of harvesting biogas and its transformation into electricity. Keywords: Biogas, Landfill, Oujda, Sustainable Development, Energy

  15. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  16. Vitrification of galvanic solid wastes: solutions for the east area of Sao Paulo, Brazil; Vitrificacao de residuos solidos galvanicos: solucao para a zona leste de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Cleiton dos Santos; Castanho, Sonia Regina Homem de Mello [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Galvanic solid waste have elevated levels of heavy metals and usually are stocked in the industry, creating a worrisome environmental liabilities. This disturbing fact is aggravated in areas densely populated as the area east of Sao Paulo, which has a pole of industrial electroplating of chrome. The present paper, we describe and provide a technological option for the disposal of waste generated by this activity using techniques that allow the incorporation of these in a glass matrix. The wastes were characterized by XRF, EDS, ICP-AES, AAS, DTA/TGA, XRD and SEM-FEG and embedded in glass and frits made from the system SiO{sub -}CaO-Na{sub O}, with additions of up to 30% by weight. The results of the analysis of residues showed the majority presence of Ni, Cr, B, Cu, Ca and S. The resulting glasses showed that heavy metals were incorporated into its structure and probably replacing the Ca and Na. In addition, the products showed specific colors indicating the possibility of use in some segments of manufacturing in ceramics with glazes, loading and pigments. (author)

  17. The Removal of NH3-N from the Waste Water of Producing Tribasic Copper Chloride from Waste Etching Solution Containing Copper%含铜蚀刻废液生产碱式氯化铜废水的脱氨氮处理

    Institute of Scientific and Technical Information of China (English)

    邹鸿图

    2012-01-01

    本论文针对利用含铜蚀刻废液生产碱式氯化铜(TBCC)豹过程中产生高氨氮废水的问题,提出了废水的脱氨氮处理工艺——蒸氨,并针对蒸氨设备进行了具体参数的调试,提出了找出了最佳的生产条件:蒸氨进料的pH不能低于11.3(25℃),处理量为3.5m3/h,蒸汽开度为88%。%The paper presented a method to treat the waste water from producing tribasical copper chloride from waste etching solution containing copper, which contains high NH3-N. The method was ammonia steaming, and experiments were done to test the removal rate at different operating parameters. The best operating parameter was thought to be: pH ≥ 11.3 (25 ℃), inlet amount of waste water 3.5 m3/h, opening of steaming valve 88 %.

  18. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    Science.gov (United States)

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  19. Abandoned Mine Waste Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-10

    The Mine Waste Working Group discussed the nature and possible contributions to the solution of this class of waste problem at length. There was a consensus that the mine waste problem presented some fundamental differences from the other classes of waste addresses by the Develop On-Site Innovative Technologies (DOIT) working groups. Contents of this report are: executive summary; stakeholders address the problems; the mine waste program; current technology development programs; problems and issues that need to be addressed; demonstration projects to test solutions; conclusion-next steps; and appendices.

  20. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  1. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  2. Prediction of dissolved actinide concentrations in concentrated electrolyte solutions: a conceptual model and model results for the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Novak, C.F.; Moore, R.C. [Sandia National Labs., Albuquerque, NM (United States); Bynum, R.V. [Science Applications International Corp., Albuquerque, NM (United States)

    1996-10-25

    The conceptual model for WIPP dissolved concentrations is a description of the complex natural and artificial chemical conditions expected to influence dissolved actinide concentrations in the repository. By a set of physical and chemical assumptions regarding chemical kinetics, sorption substrates, and waste-brine interactions, the system was simplified to be amenable to mathematical description. The analysis indicated that an equilibrium thermodynamic model for describing actinide solubilities in brines would be tractable and scientifically supportable. This paper summarizes the conceptualization and modeling approach and the computational results as used in the WIPP application for certification of compliance with relevant regulations for nuclear waste repositories. The WIPP site contains complex natural brines ranging from sea water to 10x more concentrated than sea water. Data bases for predicting solubility of Am(III) (as well as Pu(III) and Nd(III)), Th(IV), and Np(V) in these brines under potential repository conditions have been developed, focusing on chemical interactions with Na, K, Mg, Cl, SO{sub 4}, and CO{sub 3} ions, and the organic acid anions acetate, citrate, EDTA, and oxalate. The laboratory and modeling effort augmented the Harvie et al. parameterization of the Pitzer activity coefficient model so that it could be applied to the actinides and oxidation states important to the WIPP system.

  3. An effective adsorbent developed from municipal solid waste and coal co-combustion ash for As(V) removal from aqueous solution.

    Science.gov (United States)

    Fan, Yun; Zhang, Fu-Shen; Feng, Yinan

    2008-11-30

    A new adsorbent was developed from waste ash resulting from municipal solid waste and coal co-combustion power plant. The ash was firstly subjected to hydrothermal treatment for zeolite synthesis, and then modified with iron(II) ions by agitation (ISZ) or ultrasonic (UISZ) treatment. The effect of operating factors such as pH, contact time, initial As(V) concentration and adsorbent dosage was investigated and the optimum operating conditions were established. The adsorption capacity for As(V) onto UISZ and ISZ were 13.04 and 5.37 mg g(-1), respectively. The adsorption isotherm data could be well described by Langmuir isotherm model. The optimum initial pH values for As(V) removal were 2.5 and 2.5-10.0 by ISZ and UISZ, respectively. The results indicated that ultrasound treatment scattered the particles of the adsorbent uniformly, which was in favor of impregnating iron ions into pores. Leaching of hazardous elements from the used adsorbents was very low. Accordingly, it is believed that the adsorbents developed in this study are environmentally acceptable and industrially applicable for utilization in arsenic-containing wastewater treatment.

  4. Cascading of Biomass. 13 Solutions for a Sustainable Bio-based Economy. Making Better Choices for Use of Biomass Residues, By-products and Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, I.; Croezen, H.; Bergsma, G.

    2012-08-15

    Smarter and more efficient use of biomass, referred to as cascading, can lead to an almost 30% reduction in European greenhouse gas emissions by 2030 compared with 2010. As the title study makes clear, cascading of woody biomass, agricultural and industrial residues and other waste can make a significant contribution to a greening of the economy. With the thirteen options quantitatively examined annual emissions of between 330 and 400 Mt CO2 can be avoided by making more efficient use of the same volume of biomass as well as by other means. 75% of the potential CO2 gains can be achieved with just four options: (1) bio-ethanol from straw, for use as a chemical feedstock; (2) biogas from manure; (3) biorefining of grass; and (4) optimisation of paper recycling. Some of the options make multiple use of residues, with biomass being used to produce bioplastics that, after several rounds of recycling, are converted to heat and power at the end of their life, for example. In other cases higher-grade applications are envisaged: more efficient use of recyclable paper and wood waste, in both economic and ecological terms, using them as raw materials for new paper and chipboard rather than as an energy source. Finally, by using smart technologies biomass can be converted to multiple products.

  5. The value of waste

    NARCIS (Netherlands)

    Dr. Michel van Dartel; dr. Anne Nigten

    2015-01-01

    This paper argues that a first step in finding a sustainable solution for the pressing global issue of ‘waste’, is to consider waste a value attribution rather than a material condition. Doing so means a shift in focus from finding more efficient ways to ‘clean up the mess’ to changing the way in

  6. EDTA complexometric titration for determination of aluminum in copper sulfate waste solution%EDTA 络合滴定法测定硫酸铜废液中的铝

    Institute of Scientific and Technical Information of China (English)

    白小叶; 迟爱玲

    2014-01-01

    Copper sulfate waste solution generated in metallurgical process is studied in determining aluminum . Ammonia (1+1) is used to separate aluminum in the form of aluminum hydroxide precipitation from the principal part of the solution ,and then the aluminum mass concentration is determined by EDTA complexometry .A series of ex-periments are conducted on the parameters such as copper and iron ionic interference ,solution acidity and the temper-ature of the EDTA complexation reaction ,solving the problems of the determination of the aluminum in this copper sul-fate waste solution .This method compared with spectrophotometry is simple , rapid and has lower analysis cost .The method through the determination in copper sulfate solution with different mass fraction ,obtains a relative standard de-viation of 0.071 %-0.930 %(n=6),and sample measurements are consistent with the azure S value determined by spectrophotometry .%实验研究了冶金工艺过程产生的硫酸铜废液中铝的测定方法。采用氨水(1+1)使铝以氢氧化铝沉淀的形式与主体溶液分离,然后用EDTA络合法测定铝的质量浓度;对该硫酸铜废液中铜、铁干扰离子、溶液的酸度、EDTA络合反应温度等条件进行了一系列的实验,解决了硫酸铜废液中铝的测定难题。该方法与分光光度法比较,简单快速,分析成本低廉;通过对不同硫酸铜废液中铝的质量浓度测定,相对标准偏差为0.071%~0.930%(n=6),样品测定值与络天青S分光光度法测定值相符合。

  7. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  8. Phase IV testing of monosodium titanate adsorption with radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1999-12-08

    Testing examined the extent and rate of strontium, plutonium, uranium, and neptunium removal from radioactive waste solutions at 4.5M and 7.5M in Na concentration by adsorption onto monosodium titanate (MST) at 0.2 g/L. Results indicate that the extents and rates of strontium, plutonium, and neptunium removal in radioactive waste solutions agree well with those previously measured using simulated waste solutions. Uranium removal in the 7.5M Na radioactive waste solution proved similar to that observed with simulated waste solutions. Uranium removal in the 4.5M Na radioactive waste solution proved lower than expected from previous simulant tests. The authors conclude that MST adsorption data obtained from simulated waste solutions provide reliable predictions for use in facility design and flowsheet modeling studies in the Salt Disposition Alternatives program.

  9. The Eddith Thermolysis Process: a Ground-Breaking Solution for Clean Treatment of Wastes Le procédé de thermolyse EDDITh : une solution innovante pour un traitement propre des déchets

    Directory of Open Access Journals (Sweden)

    Martin G. H.

    2006-12-01

    Full Text Available The current regulations concerning atmospheric pollutant discharge by incinerators, and the determination of public authorities to do away with waste dumps as of the beginning of the next decade are leading to a heavy demand for new installations. Areas which still use the dump method will have to equip themselves with purpose-built plants, and incinerators built more than twenty years ago will in many cases have to make way for more efficient units which meet the requirements of the legislators. In all, more than 200 new installations should be erected within the next ten years in France alone. The market prospects are even greater in Europe as a whole, since the problem of waste disposal exists under very much the same conditions in neighbouring countries. Les réglementations en vigueur relatives aux rejets atmosphériques des incinérateurs et la volonté des pouvoirs publics de supprimer les décharges dès le début de la prochaine décennie conduisent à une forte demande en installations neuves. Les régions qui pratiquent encore la mise en décharge devront s'équiper d'usines de traitement ad hoc et les incinérateurs construits il y a plus d'une vingtaine d'années devront souvent céder la place à des unités plus performantes répondant aux exigences du législateur. Au total, plus de 200 installations nouvelles devraient voir le jour d'ici dix ans rien qu'en France. Les perspectives de marché sont encore plus grandes en Europe, puisque le problème de l'élimination des déchets se pose sensiblement dans les mêmes termes dans les pays voisins.

  10. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information......Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...

  11. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J., E-mail: brian.riley@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pierce, David A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Frank, Steven M. [Idaho National Laboratory, Idaho Falls, ID 83402 (United States); Matyáš, Josef; Burns, Carolyne A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2015-04-15

    This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl–Li{sub 2}O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol–gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2} glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na{sup +} and Cl{sup −} to form halite in solution and Li{sub 2}O and SiO{sub 2} to form lithium silicates (e.g., Li{sub 2}SiO{sub 3} or Li{sub 2}Si{sub 2}O{sub 5}) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (∼92 mass%) and low porosities using a solution-based approach and this LiCl–Li{sub 2}O salt but that the incorporation of Li into the sodalite is low.

  12. Study on Recycling Waste Water from V2O5 Extraction from the Stone Coal Leaching Solution%石煤浸出液萃取提钒废水的循环利用研究

    Institute of Scientific and Technical Information of China (English)

    黄瀚; 曾伦生; 梁焕龙; 罗思强; 雷伟明

    2012-01-01

    以广西某地区的石煤为原料,采用直接酸浸-溶剂萃取的提钒工艺,对石煤浸出液萃取提钒废水进行循环利用试验.考察废水循环使用过程浸出液杂质Si、Fe、Al等的富集情况以及对工艺指标、产品质量的影响.研究结果表明,萃余液的循环使用对钒浸出率不产生明显影响;杂质Si不会在循环过程累积,杂质Fe、Al在循环过程中会累积到一定程度然后趋于稳定,不影响继续循环使用;萃余液的循环使用对五氧化二钒产品的质量也无太大影响,均能稳定产出符合GB3238 - 1987(V2O5 -98)的产品.%Experiments for recycling waste water from the process of V3O5 extraction from stone coal leaching solution are carried out in which a V2O5 extraction process of direct acid leaching and solvent extraction is employed using stone coal obtained from a certain area of Guangxi Province as raw materials. Impurities (Si, Fe and Al etc.) formed in leaching solution and their influence on process index and product quality during wastewater recycling process are investigated. Results show that the leaching rate of vanadium is not remarkably affected by utilization of the recycled residual solution from extraction. Si does not accumulate while Fe and Al accumulate to a certain extent and then stabilize during recycling process, which exerts no influence on recycling of the waste water. The vanadium pentoxide produced steadily can meet the requirements of GB3238 - 1987 ( V2O5 -98) , which shows the product quality is not remarkably impacted by the recycling of residual solution.

  13. The weak link in waste management in tropical Asia? Solid waste collection in Bali

    NARCIS (Netherlands)

    MacRae, Graeme; Rodic-Wiersma, Ljiljana

    2015-01-01

    This article builds on earlier work that examined waste processing options on the island of Bali, which can be seen as a useful "laboratory" for the study of solid waste management (SWM) problems and solutions in tropical Asia. The research reported here examines the challenges of waste

  14. The weak link in waste management in tropical Asia? Solid waste collection in Bali

    NARCIS (Netherlands)

    MacRae, Graeme; Rodic-Wiersma, Ljiljana

    2015-01-01

    This article builds on earlier work that examined waste processing options on the island of Bali, which can be seen as a useful "laboratory" for the study of solid waste management (SWM) problems and solutions in tropical Asia. The research reported here examines the challenges of waste collectio

  15. Efficacy of a Solution-Based Approach for Making Sodalite Waste Forms for an Oxide Reduction Salt Utilized in the Reprocessing of Used Uranium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyas, Josef; Burns, Carolyn A.

    2015-04-01

    This paper describes various approaches for making sodalite with a LiCl-Li2O oxide reduction salt used to recover uranium from used oxide fuel. The approaches include sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt.

  16. Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: equilibrium, kinetics, and regeneration studies.

    Science.gov (United States)

    Gupta, Suresh; Babu, B V

    2009-07-01

    In the present study, an adsorbent was prepared from tamarind seeds and used after activation for the removal of Cr(VI) from aqueous solutions. The tamarind seeds were activated by treating them with concentrated sulfuric acid (98% w/w) at a temperature of 150 degrees C. The adsorption of Cr(VI) was found to be maximum at low values of initial pH in the range of 1-3. The adsorption process of Cr(VI) was tested with Langmuir, Freundlich, Redlich-Peterson, Koble-Corrigan, Tempkin, Dubinin-Radushkevich and Generalized isotherm models. Application of the Langmuir isotherm to the system yielded a maximum adsorption capacity of 29.7 mg/g at an equilibrium pH value ranging from 1.12 to 1.46. The adsorption process followed second-order kinetics and the corresponding rate constants obtained were 2.605 x 10(-3), 0.818 x 10(-3), 0.557 x 10(-3) and 0.811 x 10(-3) g/mg min(-1) for 50, 200, 300 and 400 mg/L of initial Cr(VI) concentration, respectively. The regenerated activated tamarind seeds showed more than 95% Cr(VI) removal of that obtained using the fresh activated tamarind seeds. A feasible solution is proposed for the disposal of the contaminants (acid and base solutions) containing high concentrations of Cr(VI) obtained during the regeneration (desorption) process.

  17. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...

  18. Waste indicators

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Lassen, C.; Hansen, E. [Cowi A/S, Lyngby (Denmark)

    2003-07-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  19. LOGISTICS OF WASTE MANAGEMENT IN HEALTHCARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2016-07-01

    Full Text Available The waste management system in health care is a tool that allows to conduct reasonable steps to reduce their amount, collection, storage and transport, and provide a high level of utilization or disposal. Logistics solutions in waste management are intended to make full use of the infrastructure and technical resources, optimize costs, ensure the safety and health at work and meet legal requirements. The article discusses the elements of the logistics system of waste management in hospital, necessary to ensure the smooth flow of waste from its origin to landfilling. The following criteria were characterized: technical and technological, ecological and economic that can be used in the analysis and evaluation of solutions in waste management in the hospital. Finally, solutions to improve waste management system in the hospital on the example of the real object have been presented.

  20. An Overview of Organic Waste in Composting

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organic wastes like fruits, vegetables, plants, yard wastes and others. The composition from organic waste that could be used as nutrients for crops, soil additive and for environmental management. However, many factors can contribute to the quality of the compost products as different types of organic wastes have different concentrations of nutrients, nitrogen, phosphorous and potassium (N, P, K which are the common macro nutrients present in fertilizers. The presences of heavy metals show how composts can be applied to soils without contributing any ill effect. In term of the factor affecting the composting process, temperature, pH, moisture contents and carbon nitrogen ratio (C:N are the main parameters that contribute to the efficiency of the composting process.

  1. Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent: Kinetic, equilibrium and thermodynamic studies.

    Science.gov (United States)

    El-Bindary, Ashraf A; El-Sonbati, Adel Z; Al-Sarawy, Ahmad A; Mohamed, Khaled S; Farid, Mansour A

    2015-02-05

    In this research, activated carbonmade from rice straw (ACRS) was synthesized simply by a low cost and nontoxic procedure and used for the adsorption of hazardous azopyrazole dye. The effect of different variables in the batch method as a function of solution pH, contact time, concentration of adsorbate, adsorbent dosage and temperature were investigated and optimal experimental conditions were ascertaine. Surface modification of ACRS using scanning electron microscopy (SEM) was obtained. More than 75% removal efficiency was obtained within 75min at adsorbent dose of 0.5g for initial dye concentration of 30-100mgL(-1) at pH 3. The experimental equilibrium data were tested by the isotherm models namely, Langmuir and Freundlich adsorption and the isotherm constants were determined. The kinetic data obtained with different initial concentration and temperature were analyzed using a pseudo-first-order and pseudo-second-order equations. The activation energy of adsorption was also evaluated and found to be +13.25kJmol(-1) indicating that the adsorption is physisorption. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that ACRS could be employed as low-cost material for the removal of acid dyes from aqueous solution.

  2. Distributions of 14 elements into 10 liquid extractants from simulated acid-dissolved sludge and acidified supernate solutions of Hanford high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States); Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States)

    1994-02-01

    The distributions of 14 elements into ten extractants were measured from simulant solutions that represent acidic dissolved sludge and acidified supernate from Hanford HLW Tank 102-SY. The extractants: LIX{sup TM}-26, LIX{sup TM}-54, LIX{sup TM}-84, LIX{sup TM}-1010, Cyanex{sup TM} 272, Cyanex{sup TM} 923, Aliquat{sup TM} 336, DHDECMP, DHDECMP-DIPB, and CMPO-DIPB, were sorbed on porous carbon beads to provide dry-appearing beads that would be suitable for column operations. The selected elements, which represent fission products: Ce, Cs, Sr, Tc, and Y; actinides: U, Pu, and Am; and matrix elements: Cr, Co, Fe, Mn, Zn, and Zr; were traced by radionuclides and measured by gamma spectrometry. Distribution coefficients for each of 280 element/absorber/solution combinations were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to provide sorption kinetics information for the selected elements from these complex media. The resulting 840 measured distribution coefficients are presented.

  3. PHOTOCATALYTIC DEGRADATION OF WASTE WATER FROM EOSIN Y SOLUTION USING SULFUR-DOPED TiO2 CATALYST%硫掺杂二氧化钛光催化降解曙红Y溶液的研究

    Institute of Scientific and Technical Information of China (English)

    王磊; 夏璐; 金帅; 鲁栋梁; 胡伊旭

    2013-01-01

    Titanium dioxide (TiO2) codoped with sulfur (S) elements was prepared by a simple sol-gel method using tetrabutyl titanate and potassium persulfate as precursors. FTIR, SEM, XRD and particles size analysis were used to characterize the samples. Photocatalytic degradation of waste water from eosin solution was studied by using sulfur-doped TiO2 as catalyst and visible light as light source. The influences of the dosage of catalyst, concentration of eosin Y, photocatalytic reaction time and pH were investigated. The optimum conditions were found, that is, the proper dosage of sulfur-doped TiO2 catalyst is 0. 8g/L, concentration of eosin Y solution is 10mg/L, the photocatalytic reaction time is 40min, pH=5, decolorization rate of eosin Y solution is 97.16%.%在sol-gel法制备TiO2的过程中引入过硫酸钾,制备具有可见光活性的硫掺杂二氧化钛,采用FTIR、SEN、XRD、粒度分析等手段进行表征,并以曙红Y溶液作为模型物在可见光作用下考察其光催化降解活性.结果表明:以可见光作光源,制备的硫掺杂二氧化钛能很好地降解曙红Y废水,在催化剂的投入量为0.8g/L,曙红Y溶液的初始浓度为10mg/L,光照时间为40rain,pH =5条件下,曙红Y溶液的脱色率达97.16%.

  4. 尿碘检测废液中砷的处理方法研究%Study on the removal of arsenic from the waste solution of iodine determination in urine

    Institute of Scientific and Technical Information of China (English)

    杨晓栋; 华基礼; 郑来义

    2009-01-01

    目的 研究简单高效的处理方法去除尿碘检测废液中的高砷,以达到国家砷排放标准,保护环境.方法 采用氢氧化钙-硫酸亚铁混凝二次沉降法处理检测废液,二乙基二硫代氨基甲酸银分光光度法检测含砷量.结果 一级处理加氢氧化钙72.0g/L,硫酸亚铁51.6 g/L;二级处理加氢氧化钙1.0 g/L,硫酸亚铁4.5g/L.经二级处理后检测废液pH值为6.67,含砷量低于0.33 mg/L,砷去除率高达99.99%以上,可安全排放.结论 本方法可作为(WS/T 107-2006)方法的补充,去除尿碘检测废液中的高砷,达到国家砷排放标准,建议在尿碘测定实验室推广,减少砷污染的危害.%Objective To explore a simple and high efficient way of removing high-density arsenic from experimental waste of iodine determination in urine in order to meet the waste water discharge standards and to protect the environment. Methods The detection waste solution was dealt with by using the method of calcium hydroxide-ferrous sulfate, and the arsenic contents were detected by silver diethyldithiocarbamate spectrophotometric method. Results The first treatment was conducted by adding the calcium hydroxide 72.0 g/L and the ferrous sulfate 51.6 g/L, and the second by adding 1.0 g/L calcium hydroxide and 51.6 g/L ferrous sulfate. The arsenic content was less than 0.33 mg/L and the pH was 6.67 after being treated. The removal rate was more than 99.99%, and the sludge was stable without secondary pollution. Conclusions The approach can be used as the necessary supplement of WS/T 107-2006, removing high-density arsenic from experimental waste of iodine determination in urine in order to meet the waste water discharge standards and to protect the environment, and should be popularized in the determination of iodine in urine.

  5. Food waste or wasted food

    OpenAIRE

    van Graas, Maaike Helene

    2014-01-01

    In the industrialized world large amounts of food are daily disposed of. A significant share of this waste could be avoided if different choices were made by individual households. Each day, every household makes decisions to maximize their happiness while balancing restricted amounts of time and money. Thinking of the food waste issue in terms of the consumer choice problem where households can control the amount of wasted food, we can model how households can make the best decisions. I...

  6. Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-08-01

    Full Text Available Dyes are an important class of pollutants and disposal of them in precious water resources must be avoided. Among various methods adsorption occupies a prominent place in dye removal. The aim of this study is to evaluate adsorption of dye Reactive Red 198 and Blue 19 (RR-198 & RB-19 (on to Aloe Vera plant ash from aqueous solutions. In this research Aloe Vera ash was prepared at laboratory conditions and then after shredding, screened by ASTM standard sieve with 60 -200 mesh sizes and the effects of pH (3-12, adsorbent dose (0.1-1 g/L, contact time (10-60 min, initial dye concentration (10-160 mg/L and temperature were investigated in the experiment. In different samples Dye concentration was measured by spectrophotometer at 592 nm and 520 nm wavelength for RR198 and RB19 respectively. Also the Langmuir and Freundlich adsorption isotherms were determined in order to describe the relations between the colored solutions and the adsorbent. The results of this study showed that acidic conditions were more conducive to enhance the hydrolysis rate than basic ones as the decomposition was optimum at pH 3. The adsorption rate of RR-198 and RB-19 dyes was increased by increasing of initial dye concentration, increasing of adsorbent dose in 0.1 to 0.4 mg/L. Dye solution was decolorized in a relatively short time (20 min. The efficiencies for RR-198 and RB- 19 reactive dyes were 82.68% and 90.42% respectively. The maximum adsorption capacity (qmax has been found to be 80.152 mg/g for RR-198 reactive dye and 88.452 mg/g for Blue 19 reactive dye. Adsorption isotherms were examined by Freundlich and Langmuir isotherm that finally showed the Freundlich multilayer isotherm has better accordance with dates. The results indicate that Aloe Vera ash plant as a natural and inexpensive adsorbent is a suitable adsorbent for the adsorption of textile dyes.

  7. Mixed ZnO-TiO2 Suspended Solution as an Efficient Photocatalyst for Decolonization of a Textile Dye from Waste Water

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Mooji

    2015-03-01

    Full Text Available Introduction: Textile industries produce large volume of colored dye effluents which are toxic and removal of dyes from wastewater is a significant environmental issue. Advanced oxidation process (AOPs is alternative method for the complete degradation many organic pollutants. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Material and Methods: Mixed ZnO/TiO2 was prepared with mixing of ZnO and TiO2 (20, 40, 60, 80 % (w/w. 20 mL of dye solution (80 mgL-1 for DB71 containing the appropriate quantity of photocatalyst was magnetically stirred under UV irradiation. Photocatalytic study was carried out to evaluate the effect of UV (400 W, ZnO/TiO2 weight percent (20, 40, 60, 80 % (w/w, pH (2.3 – 9.2, irradiation time of (10 – 70 min, initial dye concentration of (10, 40, 80 mg/L and ZnO/TiO2 dosage of (0.2 – 1.6 g/L on removal of dye. Dye concentration was monitored spectrophotometrically by measuring the dye absorbance at 285 nm. Results: In comparison with TiO2 or ZnO as photocatalyst, mixed photocatalyst (ZnO/TiO2 is more efficient catalyst for degradation of dye under UV irradiation Results show that approximately 90 % of Direct Blue 71 has been eliminated after 70 minutes and optimized condition ((pH = 6.4, ZnO/TiO2 (50% w/w, 1.25 g/L. Experiments showed, the noticeable decolorization of dye solution can be done without any oxidation agent with mixed ZnO/TiO2 photocatalyst.

  8. TECHNOLOGICAL WASTE DISPOSAL BY SUBSURFACE INJECTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Janković Branimir

    2002-12-01

    Full Text Available The application of oilfield and solution mining technology to subsurface disposal of technological wastes has proven to be an environmentally, technically and economically suitable method for the disposal of the waste generated in petroleum industry as well as other industrial branches. This paper describes the subsurface injection technology, the disposal formation characteristics, the waste disposal well design, evaluates the environmental impact of above mentioned technology and proposes a solutions for disposing of technological wastes in Croatia or nerby region by implementing underground injection technology according to the world experience (the paper is published in Croatian.

  9. Waste characterisation, determining the energy potential of waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2015-11-01

    Full Text Available stream_source_info Oelofse2_2015.pdf.txt stream_content_type text/plain stream_size 4108 Content-Encoding UTF-8 stream_name Oelofse2_2015.pdf.txt Content-Type text/plain; charset=UTF-8 1 Waste characterisation..., determining the energy potential of waste 25 November 2015 by Prof Suzan Oelofse Research Group Leader: Waste for Development Competency Area: Solutions for a Green Economy 2 WtE should consider Fitness for purpose • Feedstock...

  10. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    OpenAIRE

    Johnny Bolden; Taher Abu-Lebdeh; Ellie Fini

    2013-01-01

    More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nationâs landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take a...

  11. Waste to Energy: A Green Paradigm in Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Mohamad Danish Anis

    2015-12-01

    Full Text Available The current annual generation of municipal solid waste in India is estimated to be around 42 million tones which will rise rapidly with population growth, urbanization and improving living standards of people. The municipal solid waste (MSW generation ranges from 0.25 to 0.66 kg/person/day with an average of 0.45 kg/person/day. In addition, large quantities of solid and liquid wastes are generated by industries. Most of the wastes generated find their way into land and water bodies. Without proper treatment, these wastes emit gases like Methane (CH4, Carbon Dioxide (CO2 etc, resulting in bad odor, emission of green house gases and increase in air and water pollution. This problem can be significantly mitigated through adoption of environment-friendly waste-to-energy technologies for the treatment and processing of wastes before disposal. It will not only reduce the quantity of wastes but also generate substantial quantity of energy. India at present is the world’s fifth biggest energy consumer and is predicted to surpass Japan and Russia to take the third place by 2030. Indian economy has shown a robust growth of around 8% in recent years and is trying to sustain this growth in order to reach goals of poverty alleviation. To achieve the required level of growth, India will need to at least triple its primary energy supply and quintuple its electrical capacity. This will force India, which already imports a majority of its oil, to look beyond its borders for energy resources. In India waste-to-energy has a potential of generating 1700 MW per person and this is scheduled to increase when more types of waste would be encompassed. At present hardly 50 MW power is being generated through waste-to-energy options. Waste combustion provides integrated solutions to the problems of the modern era by: recovering otherwise lost energy and thereby reducing our use of precious natural resources; by cutting down our emissions of greenhouse gases; and by both

  12. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  13. Enhanced adsorptive removal of Safranine T from aqueous solutions by waste sea buckthorn branch powder modified with dopamine: Kinetics, equilibrium, and thermodynamics

    Science.gov (United States)

    Xu, Xiaohui; Bai, Bo; Wang, Honglun; Suo, Yourui

    2015-12-01

    Polydopamine coated sea buckthorn branch powder (PDA@SBP) was facilely synthesized via a one-pot bio-inspired dip-coating approach. The as-synthesized PDA@SBP was characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The adsorption progresses of Safranine T on the surface of PDA@SBP adsorbent were systematically investigated. More specifically, the effects of solution pH, contact time, initial concentration and temperature were evaluated, respectively. The experimental results showed the adsorption capacity of PDA@SBP at 293.15 K could reach up to 54.0 mg/g; the adsorption increased by 201.7% compared to that of native SBP (17.9 mg/g). Besides, kinetics studies showed that pseudo-second-order kinetic model adequately described the adsorption behavior. The adsorption experimental data could be fitted well a Freundlich isotherm model. Thermodynamic analyses showed that the ST adsorption was a physisorption endothermic process. Regeneration of the spent PDA@SBP adsorbent was conducted with 0.1 M HCl without significant reduction in adsorption capacity. On the basis of these investigations, it is believed that the PDA@SBP adsorbent could have potential applications in sewage disposal areas because of their considerable adsorption capacities, brilliant regeneration capability, and cost-effective and eco-friendly preparation and use.

  14. Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste.

    Science.gov (United States)

    Yuvaraja, Gutha; Krishnaiah, Nettem; Subbaiah, Munagapati Venkata; Krishnaiah, Abburi

    2014-02-01

    Solanum melongena leaves are relatively galore and used as inexpensive material. This paper presents the characterization and evaluation of potential of S. melongena leaf powder (SMLP) for removal of Pb(II) from aqueous solution as a function of pH, biomass dosage, initial metal ion concentration, contact time and temperature. Experimental data were analyzed in terms of three kinetic models such as the pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the biosorption processes of Pb(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich isotherm models were applied to describe the biosorption process. Langmuir isotherm described the equilibrium data very well, with a maximum monolayer sorption capacity of 71.42 mg/g for Pb(II) ions at 323 K. The biosorption process was spontaneous and endothermic in nature with negative ΔG° (-8.746, -8.509 and -7.983 kJ/mol) and positive value for ΔH° (3.698 kJ/mol).

  15. Food waste from Danish households: Generation and composition

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2016-01-01

    Sustainable solutions for reducing food waste require a good understanding of food waste generation and composition, including avoidable and unavoidable food waste. We analysed 12 tonnes of residual household waste collected from 1474 households, without source segregation of organic waste. Food...... waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434 ± 18 kg per household per year, of which 183...... ± 10 kg per year was food waste. Unavoidable food waste amounted to 80 ± 6 kg per household per year, and avoidable food waste was 103 ± 9 kg per household per year. Food waste mass was influenced significantly by the number of occupants per household (household size) and the housing type. The results...

  16. Reductive leaching of manganese oxide ores using waste tea as reductant in sulfuric acid solution%以废茶叶为还原剂在硫酸溶液中还原浸出氧化锰矿

    Institute of Scientific and Technical Information of China (English)

    唐清; 钟宏; 王帅; 李进中; 刘广义

    2014-01-01

    Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching temperature and reaction time on leaching process were explored. The leaching efficiency of Gabonese manganese oxide ore reached almost 100%under the optimal condition which was determined as follows:manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 2.5 mol/L, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching efficiency of Xiangxi manganese oxide ore reached 99.8%under the optimal condition which was determined as follows:manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 1.7 mol/L, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching process followed the internal diffusion controlled kinetic model, and the apparent activation energies of Gabonese manganese oxide ore and Xiangxi manganese oxide ore were calculated to be 38.2 kJ/mol and 20.4 kJ/mol, respectively. The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of XRD analysis and SEM analysis.%采用废茶叶在硫酸溶液中还原浸出加蓬和湘西氧化锰矿石,探索废茶叶用量、硫酸浓度、固液比、浸出温度和反应时间对浸出过程的影响。对加蓬氧化锰矿,优化的浸出条件为:氧化锰矿与废茶叶的质量比10:4、硫酸浓度2.5 mol/L、固液比7.5:1、浸出温度368 K、浸出时间8 h;在此条件下,加蓬氧化锰矿的浸出率几乎达100%。对于湘西氧化锰矿,优化浸出条件为:氧化锰矿与废茶叶的质量比10:1、硫酸浓度1.7 mol/L、液固比7.5:1、温度368 K、浸出时间8 h;在此条件下,锰的浸出率达到99.8%。氧化锰矿的还原浸出过程符合内扩散控制模

  17. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis.

    Science.gov (United States)

    Elhafez, S E Abd; Hamad, H A; Zaatout, A A; Malash, G F

    2017-01-01

    In the last decades, Egypt has been suffering from the phenomenon of black cloud resulting from burning rice husk and increasing the demand for water leading to the water crisis. An alternative, low-value and surplus agricultural byproduct (rice husk, RH) has an enormous potential for the removal of Cu(II) ions from water. The present study focuses on the chance of the use of rice husk as a bio-adsorbent without any chemical treatment instead of burning it and soiling the environment. The elemental, structural, morphological, surface functional, thermal, and textural characteristics of RH are determined by XRF, XRD, SEM, FT-IR, TGA, and BET surface area, respectively, and contributed to the understanding of the adsorption mechanism of Cu(II) ions in aqueous solution. Also, the performance analysis, adsorption mechanism, influencing factors, favorable conditions, etc. are discussed in this article. The results obtained from optimization by batch mode are achieved under the following conditions: initial concentration, 150 ppm; amount of rice husk, 1 g; average particle size, 0.25 mm; temperature, 25 °C; pH, 4; agitation rate, 180 rpm; and contact time, 60 min. RH exhibits a high degree of selectivity for Cu(II) adsorption. The adsorption isotherm is fitted well with Langmuir and Freundlich models with R (2) 0.998 and 0.997, respectively. The adsorption is well governed by the pseudo-second-order kinetics. It is observed that the rate of adsorption improves with decreasing temperature, and the process is exothermic and non-spontaneous. Particular attention has being paid to factors as production processes, fixed/operational cost, production cost, and profit. The techno-economical analysis is presented in this study that provides precise demands on capital for a fixed investment, provisions for operational capital, and finally provisions for revenue. The social, economical, and environmental benefits by industrial point of view using low-cost adsorbent are also

  18. Zero Waste; Energy Recovery From Non-recyclable Mixed Municipal Waste

    Directory of Open Access Journals (Sweden)

    Igor Laštůvka

    2016-01-01

    Full Text Available Zero Waste is a strategy offering waste management solutions for today’s businesses. The Zero Waste strategy has been created with the objective of stimulating sustainable utilisation of resources, production and consumption with the highest possible level of recycling of generated waste. Due to the fact that currently there is very little information and only few relevant data available as a base for the implementation of the Zero Waste strategy, waste management specialists approach and apply such a strategy in different manners. On the other hand, there are areas of waste management where such a strategy has already been applied on a long-term basis in spite of non-existing relevant legislative tools. Indicators determined in the Zero Waste strategy may be achieved only if the individual countries clearly define legislative environment and adopt a national Zero Waste strategy with achievable objectives unambiguously determined. The area of waste separation, or handling of fractions of waste non-utilisable as secondary materials after separation, is one of the areas directly connected to the Zero Waste strategy. The objective of this paper is the evaluation of the usage of fractions of waste non-utilisable as secondary materials for energy recovery, providing thus valuable knowledge and information for the implementation of the Zero Waste strategy.

  19. Urban Mining and Electrochemistry: Cyclic  Voltammetry Study of Acidic Solutions from  Electronic Wastes (Printed Circuit Boards for  Recovery of Cu, Zn, and Ni

    Directory of Open Access Journals (Sweden)

    Ma. Isabel Reyes‐Valderrama

    2017-02-01

    Full Text Available We report potentiodynamic studies to characterize copper, nickel and zinc leaching solutions from electronic waste. The metals were leached using oxygen and sulfuric acid (pH = 1.5. As is known, reduction potentials are determined using thermodynamics laws, and metal recovery strategies from electronic waste are usually considered according these thermodynamic values. Pourbaix‐type diagrams are not appropriate to plan strategies in electrochemical processing. Therefore, knowledge of electrode potentials for the metal deposit/dissolution process is the basis for the selective recovery planning. For this reason, potentiodynamic studies, specifically cyclic voltammetry, are revealed as a good way to decide the best conditions for the process of electrochemical recovery of metals from electronic waste, which is also cost‐efficient and has no interference from strange ions, such as lead, in this case.

  20. Sorption of Cd2+ Ions From Aqueous Solutions on Organic Wastes / Sorpcja Jonów Cd2+ Z Roztworów Wodnych Na Odpadach Organicznych

    Science.gov (United States)

    Bożęcka, Agnieszka; Sanak-Rydlewska, Stanisława

    2015-09-01

    This article presents the results of research on the Cd2+ ions sorption from model aqueous solutions on sunflower hulls, walnut shells and plum stones. The effect of various factors, such as mass of the natural sorbent, the pH, the time and the temperature was studied. The process of Cd2+ ions sorption on studied sorbents was described by the Langmuir model. The best sorption capacity has been achieved for sunflower hulls. The maximum sorption capacity for this material was 19.93 mg/g. W artykule przedstawiono wyniki badań, które dotyczyły usuwania jonów Cd2+ z modelowych roztworów wodnych za pomocą odpadów organicznych, takich jak: łuski słonecznika, łupiny orzecha włoskiego i pestki śliwek. Wykazano, iż badane materiały mogą być skutecznie wykorzystywane do usuwania jonów Cd2+ z modelowych roztworów wodnych w układach jednoskładnikowych. Dla badanego zakresu stężeń i przyjętych warunków procesu sorpcji w układach jednoskładnikowych, największą wydajność sorpcji jonów Cd2+, osiągnięto dla łuszczyn słonecznika. Wyniosła ona 81,75-93,02%. Dla pozostałych materiałów sorpcja jest nieco niższa, ale również zadowalająca. W pracy podano interpretację otrzymanych wyników w oparciu o jeden z najpopularniejszych modeli izoterm adsorpcji - Langmuira, który potwierdził, iż najlepszym sorbentem jonów Cd2+, spośród badanych, są łuszczyny słonecznika. Materiał ten cechuje się największą wartością parametrów qmax i b izotermy Langmuira. W tym przypadku stała qmax, wyrażająca pojemność monowarstwy, przyjęła wartość 19,93 mg/g, a parametr b, określający powinowactwo do usuwanych jonów wynosi 0,2264 dm3/mg (Rys. 5, Tab. 1). Udowodniono również, że proces sorpcji jonów Cd2+ na badanych sorbentach organicznych zależy od masy sorbentu. Dla wszystkich materiałów stopień usunięcia jonów Cd2+ z roztworów wodnych rośnie ze wzrostem masy sorbentu, aż do uzyskania maksimum przy naważce 0,5 g (Rys. 1

  1. Utilizing waste heat from metal industry for drying of organic waste

    OpenAIRE

    Dobric, Sasa

    2014-01-01

    Growing generation of organic waste is a real problem all over the world. This is specifically expressed in the developed countries because the amounts of the waste are larger. Therefore, it implies problem connected with organic waste disposal. In the modern society it is prohibited to dump the waste on landfills. It was necessary to find the solution how to deal with this situation.One of the options is delivering of the organic waste to the burning facilities. In this way it is possible to...

  2. Utilizing waste heat from metal industry for drying of organic waste

    OpenAIRE

    Dobric, Sasa

    2014-01-01

    Growing generation of organic waste is a real problem all over the world. This is specifically expressed in the developed countries because the amounts of the waste are larger. Therefore, it implies problem connected with organic waste disposal. In the modern society it is prohibited to dump the waste on landfills. It was necessary to find the solution how to deal with this situation.One of the options is delivering of the organic waste to the burning facilities. In this way it is possible to...

  3. The Waste Management in Romania. A Case Study: WMS Implementation

    Directory of Open Access Journals (Sweden)

    OROIAN I.

    2009-12-01

    Full Text Available The present study aims to discuss issues related to the degree of implementation of national waste managementstrategy by emphasizing progress in waste management at national level in three years after its development. In 2004,Romania has developed national policy documents as Waste Management Strategy and National Waste ManagementPlan (WMS, WMSP based on the ”waste hierarchy”. In the four years after the initiation of this process resultsdemonstrate the advantages of using this system in ensuring a sustainable solution to eliminate pollution from waste.Also, the amount of waste recovered at the start of the period - 2004, occupies a proportion of 5.08% of total while inthe end of 2007, the degree of recovery reached 7%. Concerning waste disposal, this was achieved by storage. Thereason is the lack of incinerators for thermal treatment of waste. Traditional collection of household and similar waste inthe mixture, is the most common, accounting for a share of about 97%.

  4. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  5. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational...... and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  6. Diagnostic and solutions for the odors problems in the waste water treatment plants in Monte Orgegia (Alicante) with olphactometry techniques; Diagnostico y soluciones a los problemas de olores en la E.D.A.R. de Monte Orgegia (Alicante) mediante tecnicas de olfatometria

    Energy Technology Data Exchange (ETDEWEB)

    Valor Herencia, I.; Cortada, C. [Labaqua, S.A., Alicante (Spain); Uribarri, E.; Suarez, C. [Haskoning, S.a., Madrid (Spain)

    1996-10-01

    The problem of odor nuisances affects our society more and more each day. There are many activities that generate bad odors, such as wastewater treatment plants, municipal waste treatment plants, industries, etc. These problems are difficult to solve as the solutions must be based on the knowledge of odor origin and intensity. Olfactometry techniques establish a relation between the origin of odors (generation and emission) and the nuisance caused in the surroundings (inmision). In this paper, a recent study for the identification of odor problems and the proposed of the solutions in a wastewater treatment plant in Alicante (Spain) using the olfactometry techniques is shown.

  7. Fenton工艺深度处理制浆造纸废水的常见问题及其解决措施%The problems and its solutions in advanced treatment of paper mill waste water by Fenton process

    Institute of Scientific and Technical Information of China (English)

    赵全伟

    2014-01-01

    通过调节Fenton试剂的投加量及反应pH探讨不同加药量及反应条件对二沉池出水CODCr去除效率的影响。结果表明:当硫酸亚铁和双氧水的投加量分别为0.9g/L和0.11g/L,反应pH为3.0,反应时间为15min时,CODCr的去除效率最高可达85%。并对在实际运行过程中存在的问题进行讨论,提出解决措施,以期为高级氧化技术在废水的深度处理提供相关经验。%The effect of different conditions and different chemicals dosage on CODCr removal rate in eflfuent of the secondary sedimentation pool was studied by adjustment of Fenton agent dosage and pH value. The results show that when the mass concentrations of ferrous sulfate and hydrogen peroxide are 0.9g/l and 0.11g/l, respectively, the reaction pH is 3.0 and reaction time is 15min, the removal rate of CODCr can be up to 85%. In this article were also discussed the problems in the actual operation with the Fenton reaction process and put forward the solving solutions to provide relevant references for the practical application with advanced oxidation technology in waste water advance treatment.

  8. Landfills - Municipal Waste Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  9. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-23

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form 2.conducting the U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW) 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW) 4.estimating the 99Tc desorption Kd (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA) 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.

  10. Electrochemical processing of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  11. Biodegradation of Leather Waste by Enzymatic Treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The treatment of shavings, trimmings and splits of leather waste from tanneries has a potential to generate value-added products. In this study enzymatic treatment of leather waste was performed. This method utilizes alkaline protease produced by Bacillus subtilis in our laboratory by submerged fermentation. Optimum conditions of pH, time duration,temperature and concentration of enzyme were determined for maximum degradation of leather waste. The amount of degradation was measured by the release of amino acid hydroxyproline. Amino acid composition in the hydrolysate obtained by the enzyme hydrolysis was determined. This relative simple biotreatment of leather waste may provide a practical and economical solution.

  12. A NEW WASTE CLASSIFYING MODEL: HOW WASTE CLASSIFICATION CAN BECOME MORE OBJECTIVE?

    Directory of Open Access Journals (Sweden)

    Burcea Stefan Gabriel

    2015-07-01

    Full Text Available The waste management specialist must be able to identify and analyze waste generation sources and to propose proper solutions to prevent the waste generation and encurage the waste minimisation. In certain situations like implementing an integrated waste management sustem and configure the waste collection methods and capacities, practitioners can face the challenge to classify the generated waste. This will tend to be the more demanding as the literature does not provide a coherent system of criteria required for an objective waste classification process. The waste incineration will determine no doubt a different waste classification than waste composting or mechanical and biological treatment. In this case the main question is what are the proper classification criteria witch can be used to realise an objective waste classification? The article provide a short critical literature review of the existing waste classification criteria and suggests the conclusion that the literature can not provide unitary waste classification system which is unanimously accepted and assumed by ideologists and practitioners. There are various classification criteria and more interesting perspectives in the literature regarding the waste classification, but the most common criteria based on which specialists classify waste into several classes, categories and types are the generation source, physical and chemical features, aggregation state, origin or derivation, hazardous degree etc. The traditional classification criteria divided waste into various categories, subcategories and types; such an approach is a conjectural one because is inevitable that according to the context in which the waste classification is required the used criteria to differ significantly; hence the need to uniformizating the waste classification systems. For the first part of the article it has been used indirect observation research method by analyzing the literature and the various

  13. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    Science.gov (United States)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  14. Leaching of Electronic Waste Using Biometabolised Acids

    Institute of Scientific and Technical Information of China (English)

    M. Saidan; B. Brown; M. Valix

    2012-01-01

    The revolution in information and communication technology has brought huge technical benefits and wealth, but has created a major global problem: the generation of vast amounts of electronic waste, or e-waste through product obsolesce. The challenge in managing e-waste will be in developing sustainable recycling tech- nologies that are able to address the volume and complexity of this waste using cost effective and ecologically sen-sitive methods. In this study, the capability or microorganism metabolic acids in dissolving the metallic tractions from waste printed circuit boards was examined. Several factors were considered in the examination of the activityof the acids-including secondary reactions, solution pH, temperature and the nature of ligands in solutions (or bioacid constituents). The leaching tests were cgnducted ex-situ, using synthetic organic acids. Leaching was performed for periods of up to 6 hat 70-90 ℃ and 1000 r-min-1.

  15. Alternatives for Future Waste Management in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Cimpan, Ciprian; Dall, Ole

    The TOPWASTE project has addressed the challenges of planning robust solutions for future waste management. The purpose was to identify economic and environmentally optimal solutions ‐ taking into account different scenarios for the development of the surrounding systems, such as the energy system....... During the project, four decision support tools were developed:1. Frida ‐ The EPA's tool for forecasting future waste generation 2. OptiWaste ‐ a new tool for economic optimisation of investments and operation of the combined waste and energy system3. KISS ‐ a new lifecycle based model with focus...... on comparison of greenhouse gas emissions associated with different waste management alternatives 4. A new tool for techno‐economic modelling of central sorting plants. The project has furthermore contributed with method development on evaluation of critical resources as well as analyses of economic...

  16. Human waste

    NARCIS (Netherlands)

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-01-01

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in

  17. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  18. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  19. An effective approach for the management of waste coffee grounds

    OpenAIRE

    Fletcher, IA

    2016-01-01

    In recent years the disposal of organic wastes from domestic, commercial, agricultural and industrial sources have caused concerns due to the environmental and economic problems associated with waste. The waste produced particularly in urban areas represents a huge cost for cities and a burden to the environment but, at the same time, represents an opportunity to take stock of valuable resources, which can be exploited. By boosting solutions to reduce waste and promoting its use as a resource...

  20. Discussion on the methodology for determining food waste in household waste composition studies.

    Science.gov (United States)

    Lebersorger, S; Schneider, F

    2011-01-01

    Food waste has become an increasingly discussed topic in recent years. However, there is little authoritative data on food waste quantities and composition and systematic and comparable data are missing. Household waste composition analyses, which are often carried out routinely at regular or irregular intervals, provide an opportunity for obtaining data about food waste at both local and regional levels. The results of prior waste composition studies are not really comparable due to the different classifications, definitions and methods used; in addition, these are mostly insufficiently described and not reproducible by a third party. The aim of this paper is to discuss a methodology for determining the proportion of food waste in household waste composition studies, by analysing specific problems and possible solutions. For that purpose, findings from the literature are analysed and the approach and results of a composition analysis of residual waste of a stratified sample (urban, rural area) are presented. The study suggests that in order to avoid a significant loss of information, waste should not be sieved before sorting and packed food waste should be classified into the relevant food waste category together with its packaging. The case study showed that the overall influence of the proportion of food packaging included in the food waste category, which amounted to only 8%, did not significantly influence the results and can therefore be disregarded. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Mitigation of Metal Ion Pollution from Industrial Waste Water Using Waste Wool

    Science.gov (United States)

    Prajapat, Garima; Purohit, Praveen

    A study on the adsorption of copper (II) ions from the aqueous solution on waste wool had been carried out to analyze the adsorption capacity of waste wool, thereby aiming towards mitigation of metal ion pollution in industrial waste water. The effect of varying concentration of copper ions and varying time period, was studied on fixed weight of waste wool. The initial and final concentration of copper ions was measured by conductometric and spectrophotometric methods. Adsorption data were modeled with the langmuir and freundlich adsorption isotherms. The isotherm and first order equation were found to be applicable. Removal of metal ions using industrial waste wool is found to be favourable. Thus the work can be extended to study various physico-chemical parameters for removal of copper (II) ions from industrial effluents using waste wool. A later work can be involved where the waste wool adsorption parameter can be further utilized for composite ceramic products.

  2. Economic and environmental optimization of waste treatment

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten;

    2015-01-01

    waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system - illustrated......This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management...... with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model. © 2014 Elsevier Ltd. All rights reserved....

  3. Economic and environmental optimization of waste treatment

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2015-01-01

    with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model. © 2014 Elsevier Ltd. All rights reserved.......This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management...... waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system - illustrated...

  4. Clay Improvement with Burned Olive Waste Ash

    Directory of Open Access Journals (Sweden)

    Utkan Mutman

    2013-01-01

    Full Text Available Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation.

  5. Very low level waste disposal in France. A key tool for the management for decommissioning wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Duetzer, Michel [Andra - Agence Nationale pour la Gestion des Dechets Radioactives, Chatenay-Malabry (France). Direction Industrielle

    2015-07-01

    At the end of the 90{sup th}, France had to deal with the emerging issue of the management of wastes resulting from decommissioning operations of nuclear facilities. A specific regulation was issued and Andra, the French National Radioactive Waste Management Agency, developed a dedicated near surface disposal facility to accommodate very low level radioactive wastes. After more than 10 years of operation, this facility demonstrated it can provide efficient and flexible solutions for the management of decomissioning wastes.

  6. 77 FR 41720 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2012-07-16

    ... wastewater treated). The biological waste streams include sanitary wastewaters, dilute organic waste (DOW... copper sulfate plating bath solutions (totaling less than 0.1 percent of the wastewater treated through... exclude (or ``delist'') up to 3,150 cubic yards per calendar year of F006 wastewater treatment...

  7. Focus on CSIR research in pollution waste: Technologies for waste and wastewater treatment

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2007-08-01

    Full Text Available The Pollution and Waste Group of the CSIR specialises in the development of practicable treatment solutions for waste and wastewater arising from numerous industrial sectors. The group’s objective is to resolve potential pollution problems at mines...

  8. Hazardous waste status of discarded electronic cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  9. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  10. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste.......In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...

  11. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...... separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste....

  12. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  13. Questions concerning the nuclear wastes; Les dechets nucleaires en questions

    Energy Technology Data Exchange (ETDEWEB)

    Daures, Pierre [ed.] [Electricite de France (EDF), 75 - Paris (France)

    1998-07-01

    At present, 75% of the electricity in France is of nuclear origin. Most of French people approve this mode of energy production and agree upon the continuation of the electronuclear sector exploitation. However, as any industry, the nuclear industry produces wastes which constitute a keen preoccupation of the public opinion. The nuclear program, even at its very inception, has provided the appropriate mastering of radioactive wastes by reducing their volume, by conditioning, reprocessing and storing, expressing continually its carefulness for population protection as well as for environment defence against the radiological effects. Pursuing its policy of transparency the EDF demonstrated openness and understanding towards questions raised by anyone. This brochure gives answers to the following 17 questions: -what the nuclear wastes are, which is their origin? - what is their amount? - are the nuclear waste dangerous? - how to treat the nuclear wastes? - are the radioactive waste storage sure? - is the nuclear waste transportation sure? - are these solutions sure? - why searches for long-lived radioactive wastes? - what is transmutation? - shall we bequeath to the next generations our nuclear wastes? - are there particular problems in nuclear power plant decommissioning? - what the wastes issued from decommissioning become? - are the costs of reprocessing and decommissioning taken into account in the price of the kWh? - were the nuclear wastes taken into account since the nuclear program inception? - who manages the nuclear wastes? - why France accepted the reprocessing of nuclear wastes produced in foreign countries? - is there an international policy for nuclear wastes?.

  14. Chemical species of plutonium in Hanford radioactive tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  15. Central Waste Complex (CWC) Waste Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    ELLEFSON, M.D.

    1999-12-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  16. Problem and solution in recycling of electronic waste in China%我国电子垃圾回收存在的问题与解决途径

    Institute of Scientific and Technical Information of China (English)

    李湘洲

    2012-01-01

    Current situation and problems of electronic reference, as well as sorting methods were introduced. The waste recycling in China, the foreign experience for ndustrialization orientation of recycling and utilization of electronic waste was also put forward.%介绍了我国电子垃圾回收利用存在的问题与现状、国外可供借鉴的经验,以及电子垃圾分类情况,最后提出我国电子垃圾再生利用的产业化发展方向。

  17. Hazardous waste status of discarded electronic cigarettes.

    Science.gov (United States)

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  18. Waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-01-17

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  19. Hazardous Waste Generators

    Data.gov (United States)

    Vermont Center for Geographic Information — The HazWaste database contains generator (companies and/or individuals) site and mailing address information, waste generation, the amount of waste generated etc. of...

  20. Household hazardous waste

    DEFF Research Database (Denmark)

    Fjelsted, Lotte; Christensen, Thomas Højlund

    2007-01-01

    'Paint waste', a part of the 'household hazardous waste', amounting to approximately 5 tonnes was collected from recycling stations in two Danish cities. Sorting and analyses of the waste showed paint waste comprised approximately 65% of the mass, paint-like waste (cleaners, fillers, etc.......) comprised 15-25% and foreign items comprised 10-20%. Water-based paint was the dominant part of the paint waste. The chemical composition of the paint waste and the paint-like waste was characterized by an analysis of 27 substances in seven waste fractions. The content of critical substances was tow...... and the paint waste was less contaminated with heavy metals than was the ordinary household waste. This may suggest that households no longer need to source-segregate their paint if the household waste is incinerated, since the presence of a small quantity of solvent-based paint will not be harmful when...

  1. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  2. Deployed Force Waste Management

    Science.gov (United States)

    2004-11-01

    Granath J., Baky A., Thhyselius L., (2004). Municipal Solid Waste Management from a Systems Perspective. Journal of Cleaner Production , forthcoming...Municipal Solid Waste Management from a Systems Perspective. Journal of Cleaner Production , forthcoming article In this paper different waste

  3. Mathematical description of adsorption and transport of reactive solutes in soil: a review of selected literature. [Theory is applicable in such diverse areas as agriculture, nuclear waste management, sanitary engineering, and groundwater hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Travis, C.C.

    1978-10-01

    This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil.

  4. The use of urban wood waste as an energy resource

    Science.gov (United States)

    Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.

    2017-06-01

    The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.

  5. Status report on the disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Culler, F.L. Jr.; McLain, S. (comps.)

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontamination are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.

  6. Wastes and by-products - alternatives for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  7. Waste Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-02

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.

  8. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  9. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Directory of Open Access Journals (Sweden)

    Kunwar Paritosh

    2017-01-01

    Full Text Available Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world’s ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  10. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  11. Determination of physico-chemical properties of fine-grained waste from the cleaning of iron casting

    Directory of Open Access Journals (Sweden)

    T. Lis

    2017-01-01

    Full Text Available In the European Union one of the most important activities is the recovery and recycling of waste including foundry waste. In the article waste arising from production of iron casting was presented. Selected physic-chemical properties of iron-bearing waste were defined. Opportunities of waste management are related to their chemical construction as well as some physical properties. On the basic the results of research the solutions of foundry waste management were proposed.

  12. Determination of physico-chemical properties of fine-grained waste from the cleaning of iron casting

    OpenAIRE

    2017-01-01

    In the European Union one of the most important activities is the recovery and recycling of waste including foundry waste. In the article waste arising from production of iron casting was presented. Selected physic-chemical properties of iron-bearing waste were defined. Opportunities of waste management are related to their chemical construction as well as some physical properties. On the basic the results of research the solutions of foundry waste management were proposed.

  13. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  14. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  15. Systems engineering programs for geologic nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

    1980-06-01

    The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

  16. Nuclear waste: too much too soon

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, T B; Tamplin, A R

    1978-01-01

    While it is agreed that now is the time to find a solution to the disposal of radioactive wastes which are stored in tanks and are, at the same time, accumulating at an increasing rate at nuclear power reactor, it is not the time for hurried and inappropriate action. To illustrate the magnitude of the problem, this report begins with a discussion of the looming logistical problem involving the management of nuclear waste materials. This is followed by the historical background of the nuclear bureaucracy and industry that will be charged with the responsibility of disposition of the waste. The report concludes with a discussion of the evolving criteria for waste disposal and the depressing implication of this evolution. This report is intended as an environment alert to call this problem to the attention of the citizenry and Congress and to indicate that their close involvement in its solution is absolutely essential. 23 references, 2 figures.

  17. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  18. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  19. Multiple objectives application approach to waste minimization

    Institute of Scientific and Technical Information of China (English)

    张清宇

    2002-01-01

    Besides economics and controllability, waste minimization has now become an obje ctive in designing chemical processes, and usually leads to high costs of invest ment and operation. An attempt was made to minimize waste discharged from chemic al reaction processes during the design and modification process while the opera tion conditions were also optimized to meet the requirements of technology and e conomics. Multiobjectives decision nonlinear programming (NLP) was employed to o ptimize the operation conditions of a chemical reaction process and reduce waste . A modeling language package-SPEEDUP was used to simulate the process. This p aper presents a case study of the benzene production process. The flowsheet factors affecting the economics and waste generation were examined. Constraints were imposed to reduce the number of objectives and carry out optimal calculations e asily. After comparisons of all possible solutions, best-compromise approach wa s applied to meet technological requirements and minimize waste.

  20. Multiple objectives application approach to waste minimization

    Institute of Scientific and Technical Information of China (English)

    张清宇

    2002-01-01

    Besides econormics and controllability, waste minimization has now become an objective in designing chemical processes,and usually leads to high costs of investment and operation.An attempt was mede to minimize waste discharged from chemical reaction processes during the design and modification process while the operation conditions were also optimized to meet the requirements of technology and economics.Multiob-jectives decision nonlinear programming(NLP) was emplyed optimize the operation conditions of a chemical reaction process and reduce waste. A modeling package-SPEEDUP was used to simulate the process.This paper presents a case study of the benzenc production process.The flowsheer factors affecting the economics and waste generation were examined.Constraints were imposed to reduce the number of objectives and carry out optimal calculations easily.After comparisons of all possiblle solutions,best-compromise approach was applied to meet technological requirements and minimize waste.

  1. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    . Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made...... comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location......A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type...

  2. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  3. The Problem of Urban Solid Waste in the City of Prishtina (Kosovo) and its Management

    OpenAIRE

    , Ramadani I.; , Bulliqi S.; , Gashi G.; , Isufi F.; , Ejupi A.; , Bytyqi V.

    2010-01-01

    In this paper is treated the problem of solid wastes in Prishtina, their origin, treatment and solutions for better management. The problem of wastes is one of the most serious issues facing people in Prishtina and Kosova, especially in last decade. There is a bad management of solid waste in Prishtina city because of the lack of investments in waste treatment, insufficient capacities of existing landfills and poor legal framework. The problem of waste in Prishtina should be approached in man...

  4. Radioactive wastes conditioning; Le conditionnement des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Moisy, P.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Advocat, T.; Andrieux, C.; Bardez, I.; Bart, F.; Boen, R.; Bourniol, P.; Brunel, G.; Chartier, D.; Cau dit Coumes, C.; Delaye, J.M.; Deschanels, X.; Faure, S.; Ferry, C.; Fillet, C.; Fournel, B.; Frizon, F.; Galle, C.; Gin, S.; Girold, C.; Grandjean, A.; Hudry, D.; Joussot-Dubien, C.; Lambertin, D.; Ledieu, A.; Lemont, F.; Moulin, N.; Peuget, S.; Pinet, O.; Piron, J.P.; Ranc, G.; Ribet, I.; Sarrade, S.; Tribet, M.; Pradel, P.; Bonnin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Bazile, F.; Parisot, J.F.; Finot, P

    2008-07-01

    Very early in its history, nuclear industry has taken care of the future of its wastes. Cementation processes for medium-level activity wastes, vitrification processes for minor actinide solutions and fission products are now proven technologies. The conditioning of wastes is just one ink in the full chain of the waste management process. However, this link is of prime importance because the future of the waste depends on the way it is conditioned. Reciprocally, the storage and disposal largely rely on the confidence given to the behaviour of waste packages with time. The leading role of France in the domain of radioactive wastes conditioning is a strong and valorisable asset at the international industrial plan, but also in terms of social acceptance by showing to the public that technical solutions exist. This monograph takes stock of the conditioning of nuclear wastes and describes the researches in progress, the stakes and the recent results obtained by the CEA (French atomic energy commission). Content: 1 - introduction: waste volumes and fluxes, management strategy, conditioning; 2 - decontamination processes and treatment processes for effluents and technological wastes; 3 - glasses, a long-lasting conditioning of wastes: glass package making, vitrification, glass formulation, structure and properties, long-term behaviour of glasses, cold crucible vitrification; 4 - present day conditioning of low- and medium-activity wastes: cements, bitumens, conditioning of metal structure wastes; 5 - search for alternate matrices and processes for the processing-conditioning of wastes: plasma-based processes for the incineration/vitrification of wastes, the Shiva process, alternate confinement materials, confinement of wastes from pyro-chemical processes; 6 - can the spent fuel be considered as a confinement matrix?: initial characteristics of spent fuels, evolution in dry storage environment, modeling of the spent fuel long-term behaviour, spent fuel containers in long

  5. Treatability study of absorbent polymer waste form for mixed waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-02-10

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment.

  6. Frequent Questions About Universal Waste

    Science.gov (United States)

    Frequent questions such as Who is affected by the universal waste regulations? What is “mercury-containing equipment”? How are waste batteries managed under universal waste? How are waste pesticides managed under universal waste?

  7. Setting priorities for waste management strategies in developing countries.

    Science.gov (United States)

    Brunner, Paul H; Fellner, Johann

    2007-06-01

    This study aimed to determine whether the waste management systems, that are presently applied in affluent countries are appropriate solutions for waste management in less developed regions. For this purpose, three cities (Vienna, Damascus and Dhaka) which differ greatly in their gross domestic product and waste management were compared. The criteria for evaluation were economic parameters, and indicators as to whether the goals of waste management (protection of human health and the environment, the conservation of resources) were reached. Based on case studies, it was found that for regions spending 1-10 Euro capita(-1) year(-1) for waste management, the 'waste hierarchy' of prevention, recycling and disposal is not an appropriate strategy. In such regions, the improvement of disposal systems (complete collection, upgrading to sanitary landfilling) is the most cost-effective method to reach the objectives of solid waste management. Concepts that are widely applied in developed countries such as incineration and mechanical waste treatment are not suitable methods to reach waste management goals in countries where people cannot spend more than 10 Euro per person for the collection, treatment and disposal of their waste. It is recommended that each region first determines its economic capacity for waste management and then designs its waste management system according to this capacity and the goals of waste management.

  8. Assessment of anaerobic biodegradability of five different solid organic wastes

    Science.gov (United States)

    Kristanto, Gabriel Andari; Asaloei, Huinny

    2017-03-01

    The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

  9. Food waste from Danish households: Generation and composition.

    Science.gov (United States)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2016-06-01

    Sustainable solutions for reducing food waste require a good understanding of food waste generation and composition, including avoidable and unavoidable food waste. We analysed 12tonnes of residual household waste collected from 1474 households, without source segregation of organic waste. Food waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434±18kg per household per year, of which 183±10kg per year was food waste. Unavoidable food waste amounted to 80±6kg per household per year, and avoidable food waste was 103±9kg per household per year. Food waste mass was influenced significantly by the number of occupants per household (household size) and the housing type. The results also indicated that avoidable food waste occurred in 97% of the households, suggesting that most Danish households could avoid or at least reduce how much they generate. Moreover, avoidable and unavoidable food waste was more likely to be found in houses containing more than one person than in households with only one occupant.

  10. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  11. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  12. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  13. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-07-01

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondary waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.

  14. Construction and Demolition Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Andersen, L.

    2011-01-01

    Construction and demolition waste (C&D waste) is the waste generated during the building, repair, remodeling or removal of constructions. The constructions can be roads, residential housing and nonresidential buildings. C&D waste has traditionally been considered without any environmental problems...

  15. Central Waste Complex (CWC) Waste Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    ELLEFSON, M.D.

    2000-01-06

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  16. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  17. An overview of the sustainability of solid waste management at military installations

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, S.; Shore, J.; Worden, H.; Jain, R.

    2009-08-15

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presented indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.

  18. Implementation of spatial smart waste management system in malaysia

    Science.gov (United States)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  19. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  20. Biomedical Waste Management

    OpenAIRE

    Sikovska, Biljana; Dimova, Cena; Sumanov, Gorgi; Vankovski, Vlado

    2016-01-01

    Medical waste is all waste material generated at health care facilities, such as hospitals, clinics, physician’s offices, dental practices, blood banks, and veterinary hospitals/clinics, as well as medical research facilities and laboratories. Poor management of health care waste potentially exposes health care workers, waste handlers, patients and the community at large to infection, toxic effects and injuries, and risks polluting the environment. It is essential that all medical waste ma...

  1. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  2. Effects of soluble organic complexants and their degradation products on the removal of selected radionuclides from high-level waste. Part II: Distributions of Sr, Cs, Tc, and Am onto 32 absorbers from four variations of Hanford tank 101-SY simulant solution

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States); Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States)

    1995-04-01

    Many of the radioactive waste storage tanks at U.S. Department of Energy facilities contain organic compounds that have been degraded by radiolysis and chemical reactions during decades of storage. In this second part of our three-part investigation of the effects of soluble organic complexants and their degradation products, we measured the sorption of strontium, cesium, technetium, and americium onto 32 absorbers that offer high sorption of these elements in the absence of organic complexants. The four solutions tested were (1) a simulant for a 3:1 dilution of Hanford Tank 101-SY contents that initially contained ethylenediaminetetraacetic acid (EDTA), (2) this simulant after gamma-irradiation to 34 Mrads, (3) the unirradiated simulant after treatment with a hydrothermal organic-destruction process, and (4) the irradiated simulant after hydrothermal processing. For each of 512 element/absorber/solution combinations, we measured distribution coefficients (Kds) twice for each period for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of our 3,072 measured Kd values, the sorption of strontium and americium is significantly decreased by the organic components of the simulant solutions, whereas the sorption of cesium and technetium appears unaffected by the organic components of the simulant solutions.

  3. Environment-friendly management of iron-bearing metallurgical waste

    OpenAIRE

    K. Nowacki; T. Lis; Kania, H.

    2017-01-01

    The main purpose of waste management should be reclamation of valuable raw materials and, consequently, protection of natural environment by reducing consumption of deposits and energy. The metallurgical industry generates considerable quantities of waste containing iron. This article addresses environment-friendly solutions for utilisation of such waste in the form of slime, sludge and dust. What has been discussed is the impact of the technologies proposed on natural environment.

  4. Rural waste management:challenges and issues in Romania

    OpenAIRE

    Apostol, Liviu; Mihai, Florin-Constantin

    2012-01-01

      Rural areas of the new EU Member States face serious problems in compliance of EU regulation on waste management. Firstly, the share of rural population is higher and it has lower living standards and secondly, the waste collection services are poorly-developed covering some rural regions. In this context, open dumping is used as an appropriate waste disposal solution generating complex pollution. This paper analyzes the disparities between Romanian counties regarding the rural pop...

  5. ALKALINE TREATMENT AND IMMOBILIZATION OF SECONDARY WASTE FROM WASTE INCINERATION

    Directory of Open Access Journals (Sweden)

    Dariusz Mierzwiński

    2017-04-01

    Full Text Available This paper regards the possibility of using geopolymer matrix to immobilize heavy metals present in ash and slag from combustion of waste. In the related research one used the fly ash from coal combustion in one Polish CHP plant and the waste from Polish incineration plants. It was studied if the above-named waste materials are useful in the process of alkali-activation. Therefore, three sets of geopolymer mixtures were prepared containing 60, 50 and 30% of ash and slag from the combustion of waste and fly ash combustion of sewage skudge. The remaining content was fly ash from coal combustion. The alkali-activation was conducted by means of 14M solution of NaOH and sodium water glass. The samples, whose dimensions were in accordance with the PN-EN 206-1 norm, were subjected to 75°C for 24h. According to the results, the geopolymer matrix is able to immobilize heavy metals and retain compressive strength resembling that of concrete.

  6. Report: integrated industrial waste management systems in China.

    Science.gov (United States)

    Zhang, Wenxin; Roberts, Peter

    2007-06-01

    Various models of urban sustainable development have been introduced in recent years and some of these such as integrated waste management have been proved to be of particular value. Integrated industrial waste management systems include all the administrative, financial, legal, planning and engineering functions involved in solutions to the problems of industrial waste. Even though the pace of the improvement made to China's industrial waste management capacity is impressive, China has been unable to keep up with the increasing demand for waste management. This paper will evaluate the application of integrated industrial waste management systems in promoting urban sustainable development in the context of three case study cities in China (positive case, average case and negative case) by identifying and accessing the factors that affect the success or failure of integrated industrial waste management systems.

  7. Wasted waters.

    Science.gov (United States)

    Niemczynowicz, J

    1996-11-01

    This article presents the increasing mismanagement of water as a result of increasing delivery of water volume, water pollution, and water wasting. One example of water mismanagement is irrigation, through which 67% of water is withdrawn from the hydrological cycle. In addition, reports from European communities reveal that pesticides from agriculture worsen the existing underground pollution. Furthermore, a 25% drop in land productivity was observed in Africa due to erosion, salinization, water logging, and desertification. Also, 23% of withdrawn water goes to industries, which are the major polluters. Since 1900 about 250,000 tons of cadmium have been produced worldwide, which eventually enter and harm the aquatic and terrestrial ecosystems. Moreover, high mercury levels were observed in Malaysia's Kelang River in the late 1980s, and river pollution in Thailand and Malaysia is recorded to be 30-100 times higher than accepted levels. Aside from that, the human race must also understand that there is a connection between water scarcity and water quality. When there is water pollution, it is expected that many people will suffer diarrheal diseases and intestinal parasite infections, which will further increase the mortality rate to 3.3 million per year. Realizing the severity of the problem, it is suggested that the human race must learn to recycle water like stormwater to prevent scarcity with drinking water.

  8. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that

  9. Method of treating ammonia-comprising waste water

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.M.; Jetten, M.S.M.

    1998-01-01

    The invention relates to a method of treating ammonia-comprising waste water in which the bicarbonate ion is the counter ion of the ammonium ion present in the waste water. According to the invention half the ammonium is converted into nitrite, yielding an ammonia- and nitrite-containing solution, a

  10. Reduction of radioactive waste from remediation of uranium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Gook; Kim, Seung Soo; Kim, Gye Nam; Han, Gyu Seong; Choi, Jong Won [Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0.

  11. Commercial and Institutional Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    is handled in the municipal waste system, where information is easily accessible. An important part of commercial and institutional waste is packaging waste, and enterprises with large quantities of clean paper, cardboard and plastic waste may have their own facilities for baling and storing their waste......Commercial and institutional waste is primarily from retail (stores), hotels, restaurants, health care (except health risk waste), banks, insurance companies, education, retirement homes, public services and transport. Within some of these sectors, e.g. retail and restaurants, large variations...... are found in terms of which products and services are offered. Available data on unit generation rates and material composition as well as determining factors are discussed in this chapter. The characterizing of commercial and institutional waste is faced with the problem that often only a part of the waste...

  12. Hanford Waste Physical and Rheological Properties: Data and Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.; Onishi, Yasuo; Huckaby, James L.; Cooley, Scott K.; Burns, Carolyn A.; Buck, Edgar C.; Tingey, Joel M.; Daniel, Richard C.; Anderson, K. K.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shell tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.

  13. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  14. Introduction to Waste Engineering

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management as introduced in Chapter 1.1 builds in many ways on engineering. Waste engineering here means the skills and ability to understand quantitatively how a waste management system works in such a detail that waste management can be planned, facilities can be designed and sited......) regional plans for waste management, including (3) the selection of main management technologies and siting of facilities, (4) the design of individual technological units and, for example, (5) the operation of recycling schemes within a municipality. This chapter gives an introduction to waste engineering...

  15. Construction and Demolition Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Andersen, L.

    2011-01-01

    Construction and demolition waste (C&D waste) is the waste generated during the building, repair, remodeling or removal of constructions. The constructions can be roads, residential housing and nonresidential buildings. C&D waste has traditionally been considered without any environmental problems...... and has just been landfilled. However, in recent years more focus has been put on C&D waste and data are starting to appear. One reason is that it has been recognized that C&D waste may include many materials that are contaminated either as part of their original design or through their use and therefore...

  16. Supercritical water oxidation: application to reduce industrial wastes. Oxidacion en agua supercritica (OASC): aplicacion a la eliminacion de residuos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Cocero, M.J.; Gonzalez, R.; Fernandez-Polanco, F.

    1994-01-01

    The incineration of wastes presents many problems with environmental laws. A solution could be the Supercritic oxidation water. (SOW). This method is clean, without air pollution. The article analyzes process, depressurization, energetical approvement, and applications for wastes. (Author) 18 refs.

  17. Radioactive tank waste remediation focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  18. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type....... Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made......, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including...

  19. Economic and environmental optimization of waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Münster, M. [System Analysis Department, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ravn, H. [RAM-løse edb, Æblevangen 55, 2765 Smørum (Denmark); Hedegaard, K.; Juul, N. [System Analysis Department, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ljunggren Söderman, M. [IVL Swedish Environmental Research Institute, Box 53021, SE-40014 Gothenburg (Sweden); Chalmers University of Technology, SE-412 96 Gothenburg (Sweden)

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectives given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.

  20. The Use of Amine Reclaimer Wastes as a NOx Reduction Agent

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2013-01-01

    Amine reclaimer wastes (ARW) generated in carbon capture and sequestration (CCS) is categorized as a hazardous waste which needs proper disposal. The proposal described in this paper can bring about a multi-effective solution to the problem of CCS waste handling. Both the pilot scale and the full...

  1. High Solids Consolidated Incinerator Facility (CIF) Wastes Stabilization with Ceramicrete and Super Cement

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B.W.

    1999-09-14

    High Solids ash and scrubber solution waste streams were generated at the incinerator facility at SRS by burning radioactive diatomaceous filter rolls which contained small amounts of uranium, and listed solvents (F and U). This report details solidification activities using selected Mixed Waste Focus Area (MWFA) technologies with the High Solids waste streams.

  2. Integrated management of Urban Solid Wastes; Gestion integral de los RSU

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ramos, M.

    1998-07-01

    Highlights the Integrated Management Strategic Plan for Municipal Solid Waste based on technical directives from European Union; packaging and rest full of solid waste. The hierarchy of environmental solutions: avoidance of waste generation, the option more desirable, followed by re-use, recycling and energy recovery and the last option, the final and controlled disposal. (Author)

  3. Processing method for molten salt waste

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Shuichi; Sawa, Toshio; Hoshikawa, Tadahiro; Suzuoki, Akira

    1999-01-06

    The present invention concerns a processing method for selectively adsorbing and removing radioactive metal ingredients contained in high temperature molten salts by an inorganic ion exchanger and separating radioactive metal ingredients from the molten salts as high level radioactive wastes upon reprocessing of spent nuclear fuels by using molten salts. The molten salts occluded in the inorganic ion exchanger are desorbed with highly purified water. Successively, saturation adsorbed radioactive metal ingredients are desorbed by an aqueous solution of alkali metal salt or an aqueous solution of alkaline earth metal salt. The desorbed molten salts and radioactive metal ingredients are formed into at least two kinds of radioactive waste solidification materials depending on each of radioactivity level. As the inorganic ion exchanger, at least one of aluminosilicate and hydroxides is used. Then, molten salt wastes generated upon a dry-type reprocessing can be processed as a stable borosilicate glass solidification material or as a similar homogeneous solid material. (T.M.)

  4. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    Science.gov (United States)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  5. Landfills: Engineering Design for Waste Control

    Science.gov (United States)

    Deck, Anita; Grubbs, Michael E.

    2016-01-01

    It is becoming increasingly important to consider the waste humans produce and options for reducing the impact it has on the environment. Allowing students the opportunities to research potential solutions and present their ideas results in an educated citizenry that considers consequences of technological advances. Throughout the course of a…

  6. Route planning of separate waste collection on a small settlement

    Directory of Open Access Journals (Sweden)

    Bogna MRÓWCZYŃSKA

    2014-03-01

    Full Text Available Waste collection problems are one of the most important logistic tasks to solve. The paper deals with the optimization of vehicle routes, which is one of the ways of reducing costs of waste collection. In this paper it was formulated the problem of optimization for a single vehicle. This task can be reduced to the Euler’s problem in the mathematical sense. The task was resolved using artificial immune systems. The methods have been adapted to solve real problems of selective waste collection on a small settlement. The solutions were discussed. It was described further plans for the development of methods for waste collection needs.

  7. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  8. Business unusual - Waste Act implementation: solid waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2013-08-01

    Full Text Available The preamble to the Waste Act (2008) is very clear that, as a result of this legislation, waste management in South Africa will never be the same again. This should send a clear message that ‘business as usual’ will no longer be sufficient....

  9. Solid waste handling

    Energy Technology Data Exchange (ETDEWEB)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  10. Biohazardous waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.

    2004-01-01

    This plan describes the process for managing non-medical biohazardous waste at Sandia National Laboratories California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of biohazardous waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to non-medical biohazardous waste.

  11. Medical waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  12. Household food waste

    NARCIS (Netherlands)

    Wahlen, S.; Winkel, Thomas

    2017-01-01

    Food waste is debated not only in the light of sustainable consumption in research and policy, but also in the broader public. This article focuses on food waste in household contexts, what is widely believed the end of the food chain. However, household food waste is far more complex and intricate

  13. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  14. Look into Waste.

    Science.gov (United States)

    Undy, Harry, Ed.

    This booklet is designed to help British teachers introduce concepts of waste to secondary school students. The document focuses on various types of waste and pollution--air, land, water, and industrial--and suggests activities to help students understand and combat waste of natural and human resources. It is presented in 11 chapters. Six chapters…

  15. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  16. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of acti

  17. Nuclear wastes; Dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  18. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  19. Food waste generation and industrial uses: A review.

    Science.gov (United States)

    Girotto, Francesca; Alibardi, Luca; Cossu, Raffaello

    2015-11-01

    Food waste is made up of materials intended for human consumption that are subsequently discharged, lost, degraded or contaminated. The problem of food waste is currently on an increase, involving all sectors of waste management from collection to disposal; the identifying of sustainable solutions extends to all contributors to the food supply chains, agricultural and industrial sectors, as well as retailers and final consumers. A series of solutions may be implemented in the appropriate management of food waste, and prioritised in a similar way to waste management hierarchy. The most sought-after solutions are represented by avoidance and donation of edible fractions to social services. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Further steps foresee the recovery of nutrients and fixation of carbon by composting. Final and less desirable options are incineration and landfilling. A considerable amount of research has been carried out on food waste with a view to the recovery of energy or related products. The present review aims to provide an overview of current debate on food waste definitions, generation and reduction strategies, and conversion technologies emerging from the biorefinery concept.

  20. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  1. Electronics waste management: Indian practices and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Amitava [Department of Chemical Engineering. University of Calcutta, 92, A.P.C.Road. Kolkata 700 009 (India)

    2010-07-01

    Electronic waste or e-waste or waste electrical and electronic equipment (WEEE) is a popular, informal name for discarded electrical and electronic equipment (EEE) with all of their peripherals at their end-of-life. WEEE constitutes 8% of municipal waste and is one of the fastest growing waste streams. The fraction of precious and other metals in e-waste is over 60%, while pollutants comprise a meager 2.70%. Given the volume of WEEE generated containing toxic materials, it emerges as a risk to the society. Considering the high toxicity of these pollutants especially when burned or recycled in uncontrolled environments, the Basel Convention has identified e-waste as hazardous, and developed a framework for controls on transboundary movement of such waste. In contrast, WEEE can offer a tremendous business opportunity if it would treat in proper manner. The management of the WEEE has thus become a global challenge in today's world. Several nations across the globe have implemented or are about to implement WEEE regulations based on the principle of Extended Producer Responsibility (EPR). Both existing and proposed solutions are implemented with various degrees of centralization. Practical implementations however, can give rise to absurd organizational outcomes. In the light of these findings, the present paper deals with the Indian initiatives on the WEEE management keeping pace with the international scenario. Initially, this paper aims to draw an overview on the basics of WEEE. Next, the international legislative practices followed by Indian initiatives intended to help manage these growing quantities of this waste stream are discussed.

  2. Electronics waste management: Indian practices and guidelines

    Directory of Open Access Journals (Sweden)

    Amitava Bandyopadhyay

    2010-09-01

    Full Text Available Electronic waste or e-waste or waste electrical and electronic equipment (WEEE is a popular, informal name for discarded electrical and electronic equipment (EEE with all of their peripherals at their end-of-life. WEEE constitutes 8% of municipal waste and is one of the fastest growing waste streams. The fraction of precious and other metals in e-waste is over 60%, while pollutants comprise a meager 2.70%. Given the volume of WEEE generated containing toxic materials, it emerges as a risk to the society. Considering the high toxicity of these pollutants especially when burned or recycled in uncontrolled environments, the Basel Convention has identified e-waste as hazardous, and developed a framework for controls on transboundary movement of such waste. In contrast, WEEE can offer a tremendous business opportunity if it would treat in proper manner. The management of the WEEE has thus become a global challenge in today’s world. Several nations across the globe have implemented or are about to implement WEEE regulations based on the principle of Extended Producer Responsibility (EPR. Both existing and proposed solutions are implemented with various degrees of centralization. Practical implementations however, can give rise to absurd organizational outcomes. In the light of these findings, the present paper deals with the Indian initiatives on the WEEE management keeping pace with the international scenario. Initially, this paper aims to draw an overview on the basics of WEEE. Next, the international legislative practices followed by Indian initiatives intended to help manage these growing quantities of this waste stream are discussed.

  3. Multipolar Solutions

    CERN Document Server

    Quevedo, Hernando

    2012-01-01

    A class of exact solutions of the Einstein-Maxwell equations is presented which contains infinite sets of gravitoelectric, gravitomagnetic and electromagnetic multipole moments. The multipolar structure of the solutions indicates that they can be used to describe the exterior gravitational field of an arbitrarily rotating mass distribution endowed with an electromagnetic field. The presence of gravitational multipoles completely changes the structure of the spacetime because of the appearance of naked singularities in a confined spatial region. The possibility of covering this region with interior solutions is analyzed in the case of a particular solution with quadrupole moment.

  4. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  5. E-waste: the growing global problem and next steps.

    Science.gov (United States)

    Heacock, Michelle; Kelly, Carol Bain; Suk, William A

    2016-03-01

    In many low- and middle-income countries, handling and disposal of discarded electrical or electronic equipment (EEE) is frequently unregulated. e-Waste contains hazardous constituents such as lead, mercury, and chromium, certain chemicals in plastics, and flame retardants. There is increasing concern about health effects related to contamination in air, soil, and water for people working and living at or near informal e-waste processing sites, especially to the most vulnerable populations, pregnant women and children. The observed adverse health effects and increasing number of e-waste sites make protecting human health and the environment from e-waste contamination an expanding challenge. Through international cooperation, awareness can be elevated about the harm that e-waste processing poses to human health. Here we discuss how international researchers, public health practitioners, and policymakers can employ solutions to reduce e-waste exposures.

  6. Solid waste management. Public power and monopoly or private market?

    Energy Technology Data Exchange (ETDEWEB)

    Basse, E.M. [Aarhus Univ., The Dept. Law, Aarhus (Denmark)

    1994-11-01

    In the article it is described that there is a growing recognition all over the World that environmental policies and regulation - especially regarding waste-should place far more emphasis on pollution prevention as a cross cutting strategy for reducing environmental risks and that long-term solutions in the waste management area are necessary. It is stated that the waste treatment policy on its way to establishing `sustainable development` must employ a rich mix of regulatory strategies involving use of new principles and new means. It is underlined in the article that many companies (also the publicly owned ones) have realized that it makes economic sense to avoid waste and that waste treatment services could be - and in some cases already are - good profitable business. In the future it is possible that there will be more of a bottom-up approach to the over-riding environmental policy goal of ensuring sustainable development by a more reasonable waste management strategy. (EG)

  7. Solubilities of gases in simulated Tank 241-SY-101 wastes

    Energy Technology Data Exchange (ETDEWEB)

    Norton, J.D.; Pederson, L.R.

    1995-09-01

    Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks.

  8. Optimization of use of waste in the future energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2011-01-01

    Alternative uses of waste for energy production become increasingly interesting when considered from two perspectives, that of waste management and the energy system perspective. This paper presents the results of an enquiry into the use of waste in a future energy system. The analysis...... was performed using the energy system analysis model, Balmorel. The study is focused on Germany and the Nordic countries and demonstrates the optimization of both investments and production within the energy systems. The results present cost optimization excluding taxation concerning the use of waste for energy...... production in Denmark in a 2025 scenario with 48% renewable energy. Investments in a range of waste conversion technologies are facilitated, including waste incineration, co-combustion with coal, anaerobic digestion, and gasification. The most economically feasible solutions are found to be incineration...

  9. Revolutionary advances in medical waste management. The Sanitec system.

    Science.gov (United States)

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the

  10. Mixed waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.B.; Kirner, N.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  11. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  12. Organized and optimized composting of agro-waste some important considerations and approaches.

    Science.gov (United States)

    Tripathi, Shilpa

    2013-01-01

    In the modern industrialized society, generation of solid waste, such as agricultural waste, yard waste, waste paper and food waste is increasing at an alarming rate. In countries, like India, a common method of their disposal adopted by farmers, agro- industries, municipal workers and contracting agencies is to burn such waste on site or in incinerators leading to emission of green house gases and release of pollutants directly into atmosphere. In developed countries, these solid wastes are disposed of through landfilling, which are clogging under ever-increasing load. Emission of gases from land- fills poses yet another environmental challenge. Today, composting offers a promising solution to disposal of agro-waste with minimum harmful impact on environment. Need of the hour is to carry out composting in an organized and controlled manner to derive maximum benefits with minimum undesirable effects and researchers are attempting to compost agro-wastes with these objectives in mind.

  13. End-of-waste criteria for waste paper: Technical proposals

    OpenAIRE

    VILLANUEVA KRZYZANIAK Alejandro; Eder, Peter

    2011-01-01

    This report presents proposals of end-of-waste (EoW) criteria for waste paper, defining the technical requirements that waste paper has to fulfil in order to cease to be waste in the EU. The report includes the background data and assessments used to support the proposals, including a comprehensive techno-economic analysis of waste paper recycling, and analyses of the potential economic, environmental and legal impacts when waste paper ceases to be waste. This report is a contribution to ...

  14. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research...... into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency.......Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste...

  15. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research......Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste...... into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency....

  16. Mixed waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  17. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... satellite collection vehicles to large compacting vehicles that cannot effectively travel small streets and alleys within the inner city or in residential communities with narrow roads. However, mobile transfer is not dealt with in this chapter, which focuses on stationary transfer stations. This chapter...

  18. Introduction to Waste Engineering

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    and systems can be operated in a way that is environmentally sound, technical feasible, economically efficient and socially acceptable. This applies to all scales of relevance: (1) national surveys of energy use and material flows determining the frame for politically setting goals in waste management, (2......Solid waste management as introduced in Chapter 1.1 builds in many ways on engineering. Waste engineering here means the skills and ability to understand quantitatively how a waste management system works in such a detail that waste management can be planned, facilities can be designed and sited......) regional plans for waste management, including (3) the selection of main management technologies and siting of facilities, (4) the design of individual technological units and, for example, (5) the operation of recycling schemes within a municipality. This chapter gives an introduction to waste engineering...

  19. Radioactive Waste Streams: Waste Classification for Disposal

    Science.gov (United States)

    2006-12-13

    acidity with caustic soda or sodium nitrate to condition it for storage in the carbon-steel tanks. (The neutralization reaction formed a...waste ranges between from 47 to 147 curies/cubic-meter based on the Waste Isolation Pilot Plant inventory. The vitrified high-level waste processed by...Facility St T Assembly MTHM 1. Arkansas Nuclear One AK P 1,517 666.7 46. Shearon Harris Nuclear Power Plant NC P 3,814 964.5 I 552 241.4 47. Cooper

  20. Reducing the tritium inventory in waste produced by fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  1. DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui; Gong, Weiliang, E-mail: gongw@vsl.cua.edu; Syltebo, Larry; Lutze, Werner; Pegg, Ian L.

    2014-08-15

    Highlights: • Quantitative correlations firstly established for cementitious waste forms. • Quantitative correlations firstly established for geopolymeric materials. • Ternary DuraLith geopolymer waste forms for Hanford radioactive wastes. • Extended setting times which improve workability for geopolymer waste forms. • Reduced hydration heat release from DuraLith geopolymer waste forms. - Abstract: The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results.

  2. Development of hydroponic system using agricultural waste. 2. Utilization of ozone for sterilization of nutrient solution; Suiko saibai ni okeru haikibutsu riyo gijutsu no kaihatsu. 2. Ozone ni yoru baiyoeki sakkin ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Terazoe, H.; Yoshihara, T.; Nakaya, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1995-08-01

    Discussions were given on a sterilizing effect of ozone on Fusarium bacteria in hydroponic culture, and its effect on components in the culture solution. In an experiment, dry air with O3 concentration of 3.5 ppm was sent into aqueous solution inoculated with Fusarium bacteria at a flow rate of 5 liters per minute. The Fusarium bacteria was sterilized nearly completely in about five minutes. No change was observed in pH, EC and dissolved oxygen concentration of the O3-treated culture solution. However, iron and manganese among the soluble components have been oxidized by O3 and precipitated, hence these components must be added after the O3 treatment. In spinach culture performed on a culture medium inoculated with Fusarium bacteria, ozone water containing dissolved O3 at 0.8 ppm was flown into a urethane foam medium and vegetable roots. This treatment has resulted in reduction of the number of strains occurred with a wilt symptom below that in the section flown with distilled water. The spinach has grown normally without showing an effect of the ozone water. 15 refs., 10 figs., 3 tabs.

  3. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, David J. [Washington River Protection Solutions, Richland, WA (United States); Mahoney, J. [Washington River Protection Solutions, Richland, WA (United States)

    2015-04-01

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integrated Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.

  4. Thermocatalytic conversion of food processing wastes: Topical report, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Butner, R.S.; Sealock, L.J. Jr.; Elliott, D.C.; Neuenschwander, G.G.

    1989-01-01

    The efficient utilization of waste produced during food processing operations is a topic of growing importance to the industry. While incineration is an attractive option for wastes with relatively low ash and moisture contents (i.e., under about 50 wt % moisture), it is not suitable for wastes with high moisture contents. Cheese whey, brewer's spent grain, and fruit pomace are examples of food processing wastes that are generally too wet to burn efficiently and cleanly. Pacific Northwest Laboratory (PNL) is developing a thermocatalytic conversion process that can convert high-moisture wastes (up to 98 wt % moisture) to a medium-Btu fuel gas consisting primarily of methane and carbon dioxide. At the same time, the COD of these waste streams is reduced by 90% to 99%, Organic wastes are converted by thermocatalytic treatment at 350/degree/C to 400/degree/C and 3000 to 4000 psig. The process offers a relatively simple solution to waste treatment while providing net energy production from wastes containing as little as 2 wt % organic solids (this is equivalent to a COD of approximately 25,000 mg/L). This report describes continuous reactor system (CRS) experiments that have been conducted with food processing wastes. The purpose of the CRS experiments was to provide kinetic and catalyst lifetime data, which could not be obtained with the batch reactor tests. These data are needed for commercial scaleup of the process.

  5. Consumer-Related Food Waste: Causes and Potential for Action

    Directory of Open Access Journals (Sweden)

    Jessica Aschemann-Witzel

    2015-05-01

    Full Text Available In the past decade, food waste has received increased attention on both academic and societal levels. As a cause of negative economic, environmental and social effects, food waste is considered to be one of the sustainability issues that needs to be addressed. In developed countries, consumers are one of the biggest sources of food waste. To successfully reduce consumer-related food waste, it is necessary to have a clear understanding of the factors influencing food waste-related consumer perceptions and behaviors. The present paper presents the results of a literature review and expert interviews on factors causing consumer-related food waste in households and supply chains. Results show that consumers’ motivation to avoid food waste, their management skills of food provisioning and food handling and their trade-offs between priorities have an extensive influence on their food waste behaviors. We identify actions that governments, societal stakeholders and retailers can undertake to reduce consumer-related food waste, highlighting that synergistic actions between all parties are most promising. Further research should focus on exploring specific food waste contexts and interactions more in-depth. Experiments and interventions in particular can contribute to a shift from analysis to solutions.

  6. Process for the extraction of strontium from acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  7. Development of Alternative Technetium Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, Kenneth

    2013-09-13

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior of a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.

  8. Medical waste to energy: experimental study.

    Science.gov (United States)

    Arcuri, C; Luciani, F; Piva, P; Bartuli, F N; Ottria, L; Mecheri, B; Licoccia, S

    2013-04-01

    Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room.

  9. Mechanochemical treatment of polymeric materials. A low environmental impact solution for mixed plastic waste recycling; Il trattamento meccanochimico di materiali polimerici: una soluzione a basso impatto ambientale per il riciclaggio di plastiche eterogenee

    Energy Technology Data Exchange (ETDEWEB)

    Padella, F.; Magini, M.; Masci, A. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1999-07-01

    Standard polymeric materials as well as mixtures of them coming from urban wastes, were milled at near room temperature in suitable milling conditions. All the experiments carried out gave a material having a homogeneous fibrous aspect. Structural and thermal analysis of the resulting material clearly shows that the mechanochemical action is able to promote a deep destructuring of the starting networks with a very high energy storage in the milled materials. Further, the fibrous material can be easily consolidated whatever the starting composition of the mixture. preliminary results, coming from mechanical tests on compacted materials, lead to an optimistic conclusion as far as plastic recycling by ball milling is concerned. [Italian] Materiali polimerici standard, cosi' come miscele di materiali plastici provenienti da rifiuti solidi urbani, sono stati macinati a temperatura pressoche' ambiente in opportune condizioni operative. Tutti gli esperimenti hanno prodotto un materiale morfologicamente omogeneo di aspetto fibroso. Le analisi termiche e strutturali condotte sui prodotti mostrano chiaramente come l'azione meccanochimica sia in grado di promuovere una forte destrutturazione del materiale di partenza, accompagnata da un evidente accumulo di energia nel prodotto macinato. In aggiunta, il materiale fibroso puo' essere facilmente consolidato in forme finite, indipendemente dalla composizione di partenza. I risultati preliminari delle prove meccaniche eseguite sui materiali consolidati inducono a conclusioni ottimistiche relativamente all'utilizzo di tecniche di macinazione ad alta energia per il riciclaggio di materiali plastici.

  10. Backcasting to identify food waste prevention and mitigation opportunities for infant feeding in maternity services.

    Science.gov (United States)

    Ryan-Fogarty, Yvonne; Becker, Genevieve; Moles, Richard; O'Regan, Bernadette

    2017-03-01

    Food waste in hospitals is of major concern for two reasons: one, healthcare needs to move toward preventative and demand led models for sustainability and two, food system sustainability needs to seek preventative measures such as diet adaptation and waste prevention. The impact of breast-milk substitute use on health services are well established in literature in terms of healthcare implications, cost and resourcing, however as a food demand and waste management issue little has been published to date. This paper presents the use of a desk based backcasting method to analyse food waste prevention, mitigation and management options within the Irish Maternity Service. Best practice in healthcare provision and waste management regulations are used to frame solutions. Strategic problem orientation revealed that 61% of the volume of ready to use breast-milk substitutes purchased by maternity services remains unconsumed and ends up as waste. Thirteen viable strategies to prevent and manage this waste were identified. Significant opportunities exist to prevent waste and also decrease food demand leading to both positive health and environmental outcomes. Backcasting methods display great promise in delivering food waste management strategies in healthcare settings, especially where evidenced best practice policies exist to inform solution forming processes. In terms of food waste prevention and management, difficulties arise in distinguishing between demand reduction, waste prevention and waste reduction measures under the current Waste Management Hierarchy definitions. Ultimately demand reduction at source requires prioritisation, a strategy which is complimentary to health policy on infant feeding.

  11. New Waste Calcining Facility (NWCF) Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    K. E. Archibald

    1999-08-01

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  12. 1QCY17 Saltstone waste characterization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-25

    In the first quarter of calendar year 2017, a salt solution sample was collected from Tank 50 on January 16, 2017 in order to meet South Carolina (SC) Regulation 61-107.19 Part I C, “Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements” and the Saltstone Disposal Facility Class 3 Landfill Permit. The Savannah River National Laboratory (SRNL) was requested to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and subsequent characterization.

  13. Solid Waste Management Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  14. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    Science.gov (United States)

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  15. The WIPP journey to waste receipt

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, G.J.; Whatley, M.E.

    1997-04-01

    In the early 1970s the federal government selected an area in southeastern New Mexico containing large underground salt beds as potentially suitable for radioactive waste disposal. An extensive site characterization program was initiated by the federal government. This site became the Waste Isolation Pilot Plant, better known as WIPP. It is now 1997, over two decades after the initial selection of the New Mexico site as a potential radioactive waste repository. Numerous scientific studies, construction activities, and environmental compliance documents have been completed. The US Department of Energy (DOE) has addressed all relevant issues regarding the safety of WIPP and its ability to isolate radioactive waste from the accessible environment. Throughout the last two decades up to the present time, DOE has negotiated through a political, regulatory, and legal maze with regard to WIPP. New regulations have been issued, litigation initiated, and public involvement brought to the forefront of the DOE decision-making process. All of these factors combined to bring WIPP to its present status--at the final stages of working through the licensing requirements for receipt of transuranic (TRU) waste for disposal. Throughout its history, the DOE has stayed true to Congress` mandates regarding WIPP. Steps taken have been necessary to demonstrate to Congress, the State of New Mexico, and the public in general, that the nation`s first radioactive waste repository will be safe and environmentally sound. DOE`s compliance demonstrations are presently under consideration by the cognizant regulatory agencies and DOE is closer than ever to waste receipt. This paper explores the DOE`s journey towards implementing a permanent disposal solution for defense-related TRU waste, including major Congressional mandates and other factors that contributed to program changes regarding the WIPP project.

  16. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  17. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  18. Generation and management of medical waste in Serbia: A review

    Directory of Open Access Journals (Sweden)

    Šerović Radmila M.

    2016-01-01

    Full Text Available This study presents generation, quantities and medical waste (MW management in Serbia. It represents assessment methods and total annual MW generation by categories. It was concluded that pharmaceutical (64% and infectious (32% MW production is the largest. According to available data, MW management in Serbia is currently at low level, except when it comes to infectious waste. Research proposed simpler treatment methods in existing autoclaves and complex methods (incineration and plasma-pyrolysis, as well as short-term and long-term solutions. Predicted MW growing amount requires existing capacity increase for processing and new solutions application. Installed autoclaves capacity could be increased by increasing working time, in order to avoid additional investment. However, treatment in autoclave is only suitable for infectious MW. For other medical waste, which main fractions are pharmaceutical and chemical waste, there is no infrastructure. As temporary solution, pharmaceutical waste is treated abroad which in longer period is not financially feasible. Considering that MW treatment in Serbia currently is based on health facilities network equipped with autoclaves, as central (CTF and local (LTF treatments facilities for infectious waste treatment, it is recommended additional capacity implementation for treatment of non-infectious waste to this network, with simultaneous management level optimization of whole MW.

  19. Waste statistics 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-07

    The 2004 reporting to the ISAG comprises 394 plants owned by 256 enterprises. In 2003, reports covered 403 plants owned by 273 enterprises. Waste generation in 2004 is compared to targets for 2008 in the government's Waste Strategy 2005-2008. The following summarises waste generation in 2004: 1) In 2004, total reported waste arisings amounted to 13,359,000 tonnes, which is 745,000 tonnes, or 6 per cent, more than in 2003. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2004 were 12,179,000 tonnes, which is a 9 per cent increase from 2003. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2004 amounted to 7,684,000 tonnes, which is 328,000 tonnes, or 4 per cent, more than in 2002. In other words, there has been an increase in total waste arisings, if residues and waste from building and construction are excluded. Waste from the building and construction sector is more sensitive to economic change than most other waste. 4) The total rate of recycling was 65 per cent. The 2008 target for recycling is 65 per cent. The rate of recycling in 2003 was also 65 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2003. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point better than the overall landfill target of a maximum of 9 per cent landfilling in 2008. Also in 2003, 8 per cent of the waste was landfilled. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being

  20. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  1. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  2. 茶废料中提取茶单宁并用于水中Cu^(2+)的吸附去除%Preparation of Tannin from Tea Waste and Its Application in Adsorptive Removing of Cu2+ in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    高仁金

    2012-01-01

    Tannin was prepared from tea waste by using a microwave method, and characterized by infrared spectra. The as-obtained tannin was proposed to be an adsorbent to remove Cu2+ in aqueous solutions. The effects of the pH value of the solution, the adsorption time and the adsorption temperature on the adsorption efficiency were studied. According to the investigation, the optimal pH value was determined to be 6, and the optimal adsorption time and temperature were of 25 min at 40℃, Under this condition, adding 0.0250g tannin into 20 mL Cu2+-contained solution (100 mg/L), its adsorption capacity to Cu2+ was 47.73mg/g.%采用微波法从茶叶废料中提取茶单宁,并进行红外光谱表征。探讨了溶液pH值、吸附时间、吸附温度等条件对茶单宁吸附去除水体中Cu2+的影响。结果表明,pH为6,温度40℃,时间25min,20mLCu2+初始浓度为100mg/L溶液中加入茶单宁0.0250g,此时茶单宁对Cu2+吸附去除较为有利,吸附容量可达47.73mg/g。

  3. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  4. Guidelines for mixed waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  5. Waste/By-Product Hydrogen

    Science.gov (United States)

    2011-01-13

    By‐ product Hydrogen Fuel Flexibility Biogas : generated from organic waste �Wastewater treatment plants can provide multiple MW of renewable... Waste /By product Hydrogen Waste H2 sources include: � Waste bio‐mass: biogas to high temp fuel cells to produce H2 – there are over two dozen sites...13 Waste /By product Hydrogen ‐ Biogas

  6. Estimation of waste package performance requirements for a nuclear waste repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B J

    1980-07-01

    A method of developing waste package performance requirements for specific nuclides is described, and based on federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment, a simple and conservative transport model, and baseline and potential worst-case release scenarios.

  7. Operational waste volume projection

    Energy Technology Data Exchange (ETDEWEB)

    Koreski, G.M.

    1996-09-20

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  8. Waste not, want not

    Science.gov (United States)

    Thompson, Frank

    2015-03-01

    Sadly, modern society has developed very wasteful habits over the last few decades: consumer products, food and energy are perphaps waste items that are most obvious. Attempting to show how we can counteract wasteful habits, this article (a) makes reference to Helen Czerski in her efforts to stop her cycle from rusting away; and (b) shows how a relatively simple task can give new life to a domestic toaster.

  9. Advancement of Double Effect Absorption Cycle by Input of Low Temperture Waste Heat

    Science.gov (United States)

    Kojima, Hiroshi; Akisawa, Atsushi; Kashiwagi, Takao

    Energy conservation is becoming important for global environmental protection. New simple techniques of more efficiently using the waste heat of gas co-generation systems for refrigeration are required. This paper proposes a new method of using low temperature waste heat below 100°C for refrigeration. In the new method, the low temperature waste heat is fed into the weak solution line of the double effect absorption cycle directly via an auxiliary heat exchanger. In this paper, first, the location of the auxiliary waste heat recovery heat exchanger on the solution line was studied for each solution flow type of double effect absorption cycle. Then six promising methods of recovering waste heat were selected, and moreover, the basic model was constructed and the effect of input of the low temperature waste heat was investigated for each selected method.

  10. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  11. Waste inspection tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  12. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  13. CLAB Transuranic Waste Spreadsheets

    Energy Technology Data Exchange (ETDEWEB)

    Leyba, J.D.

    2000-08-11

    The Building 772-F Far-Field Transuranic (TRU) Waste Counting System is used to measure the radionuclide content of waste packages produced at the Central Laboratory Facilities (CLAB). Data from the instrument are entered into one of two Excel spreadsheets. The waste stream associated with the waste package determines which spreadsheet is actually used. The spreadsheets calculate the necessary information required for completion of the Transuranic Waste Characterization Form (OSR 29-90) and the Radioactive Solid Waste Burial Ground Record (OSR 7-375 or OSR 7-375A). In addition, the spreadsheets calculate the associated Low Level Waste (LLW) stream information that potentially could be useful if the waste container is ever downgraded from TRU to LLW. The spreadsheets also have the capability to sum activities from source material added to a waste container after assay. A validation data set for each spreadsheet along with the appropriate results are also presented in this report for spreadsheet verification prior to each use.

  14. Disposal of radioactive waste

    Science.gov (United States)

    Van Dorp, Frits; Grogan, Helen; McCombie, Charles

    The aim of radioactive and non-radioactive waste management is to protect man and the environment from unacceptable risks. Protection criteria for both should therefore be based on similar considerations. From overall protection criteria, performance criteria for subsystems in waste management can be derived, for example for waste disposal. International developments in this field are summarized. A brief overview of radioactive waste sorts and disposal concepts is given. Currently being implemented are trench disposal and engineered near-surface facilities for low-level wastes. For low-and intermediate-level waste underground facilities are under construction. For high-level waste site selection and investigation is being carried out in several countries. In all countries with nuclear programmes, the predicted performance of waste disposal systems is being assessed in scenario and consequence analyses. The influences of variability and uncertainty of parameter values are increasingly being treated by probabilistic methods. Results of selected performance assessments show that radioactive waste disposal sites can be found and suitable repositories can be designed so that defined radioprotection limits are not exceeded.

  15. Commercial and Institutional Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Commercial and institutional waste is primarily from retail (stores), hotels, restaurants, health care (except health risk waste), banks, insurance companies, education, retirement homes, public services and transport. Within some of these sectors, e.g. retail and restaurants, large variations...... are found in terms of which products and services are offered. Available data on unit generation rates and material composition as well as determining factors are discussed in this chapter. The characterizing of commercial and institutional waste is faced with the problem that often only a part of the waste...

  16. Politics of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Colglazier, E.W. Jr. (eds.)

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  17. E-waste management

    CERN Document Server

    Hieronymi, Klaus; Williams, Eric

    2012-01-01

    The landscape of electronic waste, e-waste, management is changing dramatically. Besides a rapidly increasing world population, globalization is driving the demand for products, resulting in rising prices for many materials. Absolute scarcity looms for some special resources such as indium. Used electronic products and recyclable materials are increasingly crisscrossing the globe. This is creating both - opportunities and challenges for e-waste management. This focuses on the current and future trends, technologies and regulations for reusable and recyclable e-waste worldwide.

  18. Composting: a solution for reduction of environmental impacts caused by waste disposal pruning of AES Eletropaulo concession area; Compostagem: a solucao para diminuicao dos impactos ambientais causados pela destinacao dos residuos de poda da area de concessao da AES Eletropaulo

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, C.L.; Coelho, S.T.; Grisoli, R.P.S.; Gavioli, F.; Gobatto, D. [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil); Carmelo, S. [AES Eletropaulo, Sao Paulo, SP (Brazil)

    2008-07-01

    Considering environmental issues, the increasing production of solid residues is important due to scarcity of methods and solution for their management. This article presents a project that aims to research the impacts caused by residues of urban pruning generated by the AES Eletropaulo Energy Distribution Company, and also to develop the standardization of this residues composting, finalizing the management of this operation. The obtained results refer to the research done in the areas under AES concession, regarding the collection and the destination of these residues. It has been observed that 50% of the municipalities dispose their residues in dumps or sanitary landfills, while only 8% compost them. Based on environmental and social responsibility concepts, it is expected that the conclusion of this work can assist the civil, public and private sectors to contribute to the sustainable development. (author)

  19. Polyelectrolytes from NS-novolak production waste

    Energy Technology Data Exchange (ETDEWEB)

    Bajdur, W.M.; Sulkowski, W.W. [Czestochowa Technical University, Dept. of Ergonomics and Work Protection, Czestochowa (Poland)

    2003-09-12

    The chemical modification of polymer plastic wastes into useful products, such as polyelectrolytes, could be a step toward their management. For these products to be obtained, the synthesis of amino derivatives of phenol-formaldehyde resin (NS-novolak) production waste by means of known methods was performed. Products that contained different contents of amino groups in the polymer chains and that were soluble in dilute KOH and NaOH solutions were obtained. The flocculation properties of these products were tested. Studies were conducted of mine water from the Kleofas coal mine and for water from the Czestochowa metallurgical plant blast-furnace circulation system. The amino derivatives of the phenol-formaldehyde resin waste were found to have good flocculation properties. The application of these products caused a decrease in the turbidity and concentration of the dissolved contamination and improved the quality parameters of the purified sewage. These polyelectrolytes could also be used in industrial water treatment.

  20. Benchmarking in municipal solid waste recycling.

    Science.gov (United States)

    Lavee, Doron; Khatib, Mahmood

    2010-11-01

    The paper presents an analysis of the factors influencing the recycling potential of municipalities in Israel, including population size and density, geographic location, current waste levels, and current waste management system. We employ a standard regression analysis in order to develop an econometric model to predict where potential for economically efficient recycling is highest. By applying this model to readily available data, it is possible to predict with close to 90% accuracy whether or not recycling will be economically efficient in any given municipality. Government agencies working to promote advanced waste management solutions have at their disposal only limited resources and budget, and so must concentrate their efforts where they will be most effective. The paper thus provides policy-makers with a powerful tool to help direct their efforts to promote recycling at those municipalities where it is indeed optimal.

  1. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  2. Research on the copper recycling process for the stripping solution of waste ABS plastic electro-plating%废ABS电镀件退镀液中铜的回收工艺研究

    Institute of Scientific and Technical Information of China (English)

    饶荣; 宋明; 成昊; 邱祖民

    2015-01-01

    ×aste ABS plastics were stripped with the solution mixed of hydrochloric acid and hydrogen perox-ide,and electrolytic process was employed to recycle copper aften stripping. Effects of process conditions on current efficiency and copper recovery rate,such as ampere density,electrolyte circulation flow,electrode spacing and elec-trolytic duration,were further studied through single factor and orthogonal test methods to determine the optimum pa-rameters of copper recovery processing. Finally,the optimal process conditions were carried out:Current density, 416. 0 A/m2;Electrode spacing,1. 4 cm;Solution circulation flow,3. 0 L/h;Electrolytic duration,40 min.%采用盐酸和双氧水构建的溶液对废ABS塑料电镀件进行退镀,退镀液中含铜、镍等金属,采用电解法回收退镀液中的铜。通过单因素及正交试验法,考察了电流密度、电解液循环流量、电极距、电解时间等工艺条件对电流效率及铜回收率的影响,确定了铜回收过程的最佳工艺参数:电流密度416.0 A/m2、电极距1.4 cm、溶液循环流量3.0 L/h、电解时间40 min。

  3. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  4. Waste Generation Overview, Course 23263

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  5. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico.

    Science.gov (United States)

    Gómez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-07-01

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita(-1) day(-1). Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

  6. Municipal waste management in Sicily: practices and challenges.

    Science.gov (United States)

    Messineo, Antonio; Panno, Domenico

    2008-01-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  7. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Johnny Bolden

    2013-01-01

    Full Text Available More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nation’s landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take advantage of the benefits of using waste and recycled materials. Studies have investigated the use of acceptable waste, recycled and reusable materials and methods. The use of swine manure, animal fat, silica fume, roofing shingles, empty palm fruit bunch, citrus peels, cement kiln dust, fly ash, foundry sand, slag, glass, plastic, carpet, tire scraps, asphalt pavement and concrete aggregate in construction is becoming increasingly popular due to the shortage and increasing cost of raw materials. In this study a questionnaire survey targeting experts from construction industry was conducted in order to investigate the current practices of the uses of waste and recycled materials in the construction industry. This study presents an initial understanding of the current strengths and weaknesses of the practice intended to support construction industry in developing effective policies regarding uses of waste and recycled materials as construction materials.

  8. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  9. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-07-18

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loading is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that

  10. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven...

  11. Let’s limit our waste production and let’s’ sort it!

    CERN Multimedia

    HSE Unit

    2013-01-01

    Let’s limit our waste production! – Why ? Preventing the production of waste is the best solution to avoid environmental issues, economic impacts and technical constraints. So, whenever you are involved in the design, manufacturing, distribution, use or dismantling of a product or an activity in general, always remember that the best waste is that which is not produced. The limitation of waste production being an HSE objective declared in 2013 by the CERN Director-General, we encourage everyone to help limit the amount of waste produced through CERN activities. Let’s sort it! – Why ? Since the 90s, CERN has implemented a policy to promote recovery of the waste* generated by its activities. Nowadays, CERN is committed to continuously improving its sorting and recovery and therefore various initiatives have been started by GS-IS to improve the recovery of waste (e.g. recovery of organic waste from restaurants; implementation of solar trash compactors - see Bulletin 27-...

  12. Performance Analysis of Solution Transportation Absorption Chiller

    Science.gov (United States)

    Kiani, Behdad; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Thermally activated advanced absorption cycles are considered promising candidates to replace CFCs, HCFCs and HFCs for residential and commercial applications. In such absorption systems, it is desirable to utilize the waste heat from industries for heating and cooling applications in commercial and residential sectors. For this purpose, it is necessary to transport energy over some distance because the waste heat source and demand are generally located apart from each other. Transportation of steam, hot water or chilled water requires high construction costs for insulation. There is an efficient method of energy transportation using absorption system called “ Solution Transportation Absorption System (STA)”. The solution is transported at an ambient temperature so that tube-insulations not required. This paper shows the simulation of the abovementioned system and the optimal result, using mathematical optimization. The optimum system with industry‧s waste heat utilization is obtained. At the end, the effect on the pollution emission and energy conservation is obtained.

  13. Final disposal of radioactive waste

    OpenAIRE

    Freiesleben H.

    2013-01-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of c...

  14. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  15. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    Science.gov (United States)

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  16. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.

    Science.gov (United States)

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L

    2014-08-15

    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results.

  17. Environmental and economic analysis of management systems for biodegradable waste

    Energy Technology Data Exchange (ETDEWEB)

    Sonesson, U. [Department of Agricultural Engineering, Swedish University of Agricultural Sciences, P.O. Box 7033, S-750 07 Uppsala (Sweden); Bjoerklund, A. [Department of Chemical Engineering and Technology/Industrial Ecology, Royal Institute of Technology, S-100 44 Stockholm (Sweden); Carlsson, M. [Department of Economics, Swedish University of Agricultural Sciences, P.O. Box 7013, S-750 07 Uppsala (Sweden); Dalemo, M. [Swedish Institute of Agricultural Engineering, P.O. Box 7033, S-750 07 Uppsala (Sweden)

    2000-01-01

    The management system for solid and liquid organic waste affects the environment and surrounding technical systems in several ways. In order to decrease the environmental impact and resource use, biological waste treatment and alternative solutions for sewage treatment are often advocated. These alternatives include increased agricultural use of waste residuals. To analyse whether such proposed systems indicate improvements for the environment and its sustainability, systems analysis is a useful method. The changes in environmental impact and resource use is not only a result of changes in waste treatment methods, but also largely a result of changes in surrounding systems (energy and agriculture) caused by changes in waste management practices. In order to perform a systems analysis, a substance-flow simulation model, the organic waste research model (ORWARE), has been used. The results are evaluated by using methodology from life cycle assessment (LCA). An economic analysis was also performed on three of the studied scenarios. The management system for solid organic waste and sewage in the municipality of Uppsala, Sweden, was studied. Three scenarios for different treatments of solid waste were analysed: incineration with heat recovery, composting, and anaerobic digestion. These three scenarios included conventional sewage treatment. A fourth scenario reviewed was anaerobic digestion of solid waste, using urine-separating toilets and separate handling of the urine fraction. The results are only valid for the case study and under the assumptions made. In this case study anaerobic digestion result in the lowest environmental impact of all the solid waste management systems, but is costly. Economically, incineration with heat recovery is the cheapest way to treat solid waste. Composting gives environmental advantages compared to incineration methods, without significantly increased costs. Urine separation, which may be implemented together with any solid waste

  18. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  19. Lyophilization -Solid Waste Treatment

    Science.gov (United States)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  20. Waste statistics 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Reports to the ISAG (Information System for Waste and Recycling) for 2001 cover 402 Danish waste treatment plants owned by 295 enterprises. The total waste generation in 2001 amounted to 12,768,000 tonnes, which is 2% less than in 2000. Reductions are primarily due to the fact that sludge for mineralization is included with a dry matter content of 20% compared to 1,5% in previous statistics. This means that sludge amounts have been reduced by 808,886 tonnes. The overall rate of recycling amounted to 63%, which is 1% less than the overall recycling target of 64% for 2004. Since sludge has a high recycling rate, the reduction in sludge amounts of 808,886 tonnes has also caused the total recycling rate to fall. Waste amounts incinerated accounted for 25%, which is 1% more than the overall target of 24% for incineration in 2004. Waste going to landfill amounted to 10%, which is better than the overall landfill target for 2004 of a maximum of 12% for landfilling. Targets for treatment of waste from the different sectors, however, are still not complied with, since too little waste from households and the service sector is recycled, and too much waste from industry is led to landfill. (BA)