WorldWideScience

Sample records for waste sites waste

  1. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  2. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  3. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  4. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  5. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  6. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  7. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  8. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  9. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  10. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  11. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  12. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  13. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  14. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  15. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  16. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  17. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  18. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  19. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  20. Hanford Site annual waste reduction report

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1992-03-01

    The US Department of Energy (DOE), Richland Field Office (RL) has developed and implemented a Hanford Site Waste Minimization and Pollution Prevention Awareness Plan that provides overall guidance and direction on waste minimization and pollution prevention awareness to the four contractors who manage and operate the Hanford Site for the RL. Waste reduction at the RL will be accomplished by following a hierarchy of environmental protection practices. First, waste generation will be eliminated or minimized through source reduction. Second, potential waste materials that cannot be eliminated or minimized will be recycled (i.e., used, reused, or reclaimed). Third, all waste that is nevertheless generated will be treated to reduce volume, toxicity, or mobility before storage or disposal. The scope of this waste reduction program will include nonhazardous, hazardous, radioactive mixed, and radioactive wastes

  1. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  2. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  3. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  4. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  5. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  6. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  7. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  8. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  9. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  10. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  11. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  12. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2010-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  13. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  14. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  15. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  16. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  17. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  18. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  19. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  20. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  1. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  2. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  3. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  4. Strategy for managing mixed waste at a plant site

    International Nuclear Information System (INIS)

    Fentiman, A.

    1991-01-01

    No waste disposal site is currently accepting mixed waste, but facilities across the country continue to generate it. The waste manager at each site is faced with two problems: how to manage the mixed waste already on-site and how to minimize the amount of new waste generated. A strategy has been developed to address each problem. A key element of the strategy is a building-by-building survey of the site. The survey provides information on how and where mixed waste is generated and stored. This paper describes a method for planning and conducting a site-wide mixed-waste survey. It then outlines approaches to managing existing mixed waste and to minimizing mixed-waste generation using information from the survey

  5. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  6. Intruder scenarios for site-specific waste classification

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1988-01-01

    The US Department of Energy (DOE) is currently revising its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities that support defense missions. Specifically, draft DOE 5820.2A, Chapter 3, describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for DOE LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The requirements and guidelines apply to radioactive wastes but are also intended to apply to mixed hazardous and radioactive wastes as defined in draft DOE 5400.5, Hazardous and Radioactive Mixed Waste. The basic approach used by DOE is to establish overall performance objectives in terms of ground-water protection and public radiation dose limits and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site shall develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment shall also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls must be conducted. This paper describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment

  7. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  8. Waste reduction at the Savannah River Site

    International Nuclear Information System (INIS)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities

  9. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  10. Waste site grouping for 200 Areas soil investigations

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models

  11. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.

    1991-11-01

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  12. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    International Nuclear Information System (INIS)

    Feo, Giovanni De; Gisi, Sabino De

    2014-01-01

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method

  13. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  14. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  15. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  16. Final vegetative cover for closed waste sites

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1993-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as an interim vegetative cover for most sites. This coverage allows for required monitoring of the closure cap for settlement and maintenance activities. The purpose of this five year study was to evaluate plant materials for use on wastes sites after the post-closure care period that are quickly and easily established and economically maintained, retard water infiltration, provide maximum year-round evapotranspiration, are ecologically acceptable and do not harm the closure cap. The results of the study suggest that two species of bamboo (Phyllostachys (P.) bissetii and P. rubromarginata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites after surveillance and maintenance requirements have ceased

  17. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  18. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  19. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  20. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping is a serious problem in the urban areas because most solid wastes are not dumped in the suitable areas. Bahir Dar Town has the problem of solid waste dumping site identification. The main objective of this study was to select potential areas for suitable solid waste dumping sites for Bahir Dar Town, ...

  1. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  2. Cleanup around an old waste site

    International Nuclear Information System (INIS)

    Vandergaast, G.; Moffett, D.; Lawrence, B.E.

    1988-01-01

    42,500 m 3 of contaminated soil were removed from off-site areas around an old, low-level radioactive waste site near Port Hope, Ontario. The cleanup was done by means of conventional excavation equipment to criteria developed by Eldorado specific to the land use around the company's waste management facility. These cleanup criteria were based on exposure analyses carried out for critical receptors in two different scenarios. The excavated soils, involving eight different landowners, were placed on the original burial area of the waste management facility. Measures were also undertaken to stabilize the soils brought on-site and to ensure that there would be no subsequent recontamination of the off-site areas

  3. Macroencapsulated and elemental lead mixed waste sites report

    International Nuclear Information System (INIS)

    Kalia, A.; Jacobson, R.

    1996-09-01

    The purpose of this study was to compile a list of the Macroencapsulated (MACRO) and Elemental Lead (EL) Mixed Wastes sites that will be treated and require disposal at the Nevada Test Site within the next five to ten years. The five sites selected were: Hanford Site, Richland, Washington; Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho; Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee; Rocky Flats Environmental Technology (RF), Golden, Colorado; and Savannah River (SRS), Charleston, South Carolina. A summary of total lead mixed waste forms at the five selected DOE sites is described in Table E-1. This table provides a summary of total waste and grand total of the current inventory and five-year projected generation of lead mixed waste for each site. This report provides conclusions and recommendations for further investigations. The major conclusions are: (1) the quantity of lead mixed current inventory waste is 500.1 m 3 located at the INEL, and (2) the five sites contain several other waste types contaminated with mercury, organics, heavy metal solids, and mixed sludges

  4. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  5. Cleanup Verification Package for the 600-259 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste

  6. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  7. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  8. Low-level radioactive waste disposal at a humid site

    International Nuclear Information System (INIS)

    Lee, D.W.

    1987-03-01

    Waste management in humid environments poses a continuing challenge because of the potential contamination of groundwater in the long term. Short-term needs for waste disposal, regulatory uncertainty, and unique site and waste characteristics have led to the development of a site-specific waste classification and management system proposed for the Oak Ridge Reservation. The overlying principle of protection of public health and safety is used to define waste classes compatible with generated waste types, disposal sites and technologies, and treatment technologies. 1 fig., 1 tab

  9. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  10. Hazardous and mixed waste management at UMTRA sites

    International Nuclear Information System (INIS)

    Hampill, H.G.

    1988-01-01

    During the early stages of the Uranium Mill Tailings Remedial Action Project, there were some serious questions regarding the ownership of and consequently the responsibility for disposal of hazardous wastes at UMTRA sites. In addition to State and Indian Tribe waste disposal regulations, UMTRA must also conform to guidelines established by the NRC, OSHA, EPA, and DOT. Because of the differing regulatory thrusts of these agencies, UMTRA has to be vigilant in order to ensure that the disposal of each parcel of waste material is in compliance with all regulations. Mixed-waste disposal presents a particularly difficult problem. No single agency is willing to lay claim to the regulation of mixed-wastes, and no conventional waste disposal facility is willing to accept it. Consequently, the disposal of each lot of mixed-waste at UMTRA sites must be handled on a case by case basis. A recently published position paper which spells out UMTRA policy on waste materials indicates that wastes found at UMTRA sites are either residual radioactive wastes, or mixed-wastes, or for the disposal of hazardous waste is determined by the time the original material arrived. If it arrived prior to the termination of the AEC uranium supply contract, its disposal is the responsibility of UMTRA. If it arrived after the end of the contract, the responsibility for disposal lies with the former operator

  11. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  12. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  13. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  14. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  15. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  16. Site-Specific Waste Management Instruction - 100-DR-1 Group 2 Sites

    International Nuclear Information System (INIS)

    Jackson, R.W.

    1998-01-01

    This site-specific waste management instruction (SSWMI) provides guidance for the management of wastes that may be generated during the excavation and remediation of the 100-DR-1 Group 2 sites. The management of waste generated as a result of these activities will be as directed in this SSWMI. This SSWMI will be revised to incorporate guidance for management of wastes encountered that are not addressed in this SSWMI

  17. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1993-03-01

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates

  18. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  19. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  20. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  1. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  2. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  3. Site suitability analysis and route optimization for solid waste ...

    African Journals Online (AJOL)

    Solid waste management system is a tedious task that is facing both developing and developed countries. Site Suitability analysis and route optimization for solid waste disposal can make waste management cheap and can be used for sustainable development. However, if the disposal site(s) is/are not sited and handle ...

  4. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  5. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  6. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  7. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  8. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    2009-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  9. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  11. Hanford site implementation plan for buried, transuranic-contaminated waste

    International Nuclear Information System (INIS)

    1987-05-01

    The GAO review of DOE's Defense Waste Management Plan (DWMP) identified deficiencies and provided recommendations. This report responds to the GAO recommendations with regard to the Hanford Site. Since the issuance of the DWMP, an extensive planning base has been developed for all high-level and transuranic waste at the Hanford Site. Thirty-three buried sites have been identified as possibly containing waste that can be classified as transuranic waste. Inventory reports and process flowsheets were used to provide an estimate of the radionuclide and hazardous chemical content of these sites and approximately 370 additional sites that can be classified as low-level waste. A program undertaken to characterize select sites suspected of having TRU waste to refine the inventory estimates. Further development and evaluation are ongoing to determine the appropriate remedial actions, with the objectives of balancing long-term risks with costs and complying with regulations. 18 refs., 7 figs., 6 tabs

  12. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  13. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  14. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part.Volume two contains Sections 4.0 through 6.0 and the following appendices: Appendix A -- acronyms and definition of terms; Appendix B -- unplanned releases that are not considered to be units; and Appendix C -- operable unit maps

  15. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  16. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  17. Site and facility waste transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Schmid, S.; Danese, L.

    1991-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and maintenance of Site- and Facility-Specific Transportation Services Planning Documents (SPDs) and Site-Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities, with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations

  18. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  19. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  20. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  1. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  2. 1993 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Kirkendall, J.R.; Engel, J.A.

    1994-01-01

    More important than waste generation numbers, the pollution prevention and waste minimization successes achieved at Hanford in 1993 have reduced waste and improved operations at the Site. Just a few of these projects are: A small research nuclear reactor, unused and destined for disposal as low level radioactive waste, was provided to a Texas University for their nuclear research program, avoiding 25 cubic meters of waste and saving $116,000. By changing the slope on a asphalt lot in front of a waste storage pad, run-off rainwater was prevented from becoming mixed low level waste water, preventing 40 cubic meters of waste and saving $750,000. Through more efficient electrostatic paint spraying equipment and a solvent recovery system, a paint shop reduced hazardous waste by 3,500 kilograms, saving $90,800. During the demolition of a large decommissioned building, more than 90% of the building's material was recycled by crushing the concrete for use on-Site and selling the steel to an off-Site recycler, avoiding a total of 12,600 metric tons of waste and saving $450,000. Additionally, several site-wide programs have avoided large quantities of waste, including the following: Through expansion of the paper and office waste recycling program which includes paper, cardboard, newspaper, and phone books, 516 metric tons of sanitary waste was reduced, saving $68,000. With the continued success of the excess chemicals program, which finds on-Site and off-Site customers for excess chemical materials, hazardous waste was reduced by 765,000 liters of liquid chemicals and 50 metric tons of solid chemicals, saving over $700,000 in disposal costs

  3. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  4. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  5. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  6. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    WINTERHALDER, J.A.

    1999-01-01

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  7. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  8. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  9. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  10. Risky business: Assessing cleanup plans for waste sites

    International Nuclear Information System (INIS)

    Blaylock, B.

    1995-01-01

    ORNL was chosen to perform human health and ecological risk assessments for DOE because of its risk assessment expertise. The U.S. Department of Energy's many production and research sites contain radioactive and hazardous wastes. These waste sites pose potential risks to the health and safety of remediation and waste management workers and the public. The risks, however, vary from site to site. Some sites undoubtedly present larger risks than others and should be cleaned up first. However, before the cleanup begins, DOE is required by law to prepare an environmental impact statement on any actions that may significantly affect the environment-even actions that would clean it up

  11. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    Hunter, P.H.; Card, D.H.; Horton, K.

    1982-09-01

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  12. Pre-1970 transuranic solid waste at the Hanford Site

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1995-01-01

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides

  13. Dechlorane Plus (DP) in air and plants at an electronic waste (e-waste) site in South China

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shejun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tian Mi; Wang Jing; Shi Tian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Luo Yong [Guangdong Forestry Survey and Planning Institute, Guangzhou 510520 (China); Luo Xiaojun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Mai Bixian, E-mail: nancymai@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-05-15

    Air and foliage samples (Eucalyptus spp. and Pinus massoniana Lamb.) were collected from e-waste and reference sites in South China and analyzed for Dechlorane Plus (DP) and two dechlorinated DPs. DP concentrations in the air were 13.1-1794 pg/m{sup 3} for the e-waste site and 0.47-35.7 pg/m{sup 3} for the reference site, suggesting the recycling of e-waste is an important source of DP to the environment. Plant DP, with concentrations of 0.45-51.9 ng/g dry weight at the e-waste site and 0.09-2.46 ng/g at the reference site, exhibited temporal patterns similar to the air DP except for pine needle at the reference site. The air-plant exchange of DP could be described with the two-compartment model. Anti-Cl{sub 11} DP was measured in most air and plant samples from the e-waste site. The ratios of anti-Cl{sub 11} DP to anti-DP in the air and plants may indicate the preferential uptake of dechlorinated DP by plant compared with DP. - Highlights: > Dechlorane Plus was widely present in the air and plants in South China. > Temporal patterns of the plant DP could be described with the two-compartment model. > Plant uptake can efficiently reduce air DP concentration at the reference site. > Anti-Cl{sub 11} DP was measured in most air and plant samples from the e-waste site. - E-waste recycling in South China results in wide occurrence of DP in the air and plant.

  14. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  15. The Savannah River Site Waste Inventory Management Program

    International Nuclear Information System (INIS)

    Griffith, J.M.; Holmes, B.R.

    1995-01-01

    Each hazardous and radioactive waste generator that delivers waste to Savannah River Site (SRS) treatment, storage and disposal (TSD) facilities is required to implement a waste certification plan. The waste certification process ensures that waste has been properly identified, characterized, segregated, packaged, and shipped according to the receiving facilities waste acceptance criteria. In order to comply with the rigid acceptance criteria, the Reactor Division developed and implemented the Waste Inventory Management Program (WIMP) to track the generation and disposal of low level radioactive waste. The WIMP system is a relational database with integrated barcode technology designed to track the inventory radioactive waste. During the development of the WIMP several waste minimization tools were incorporated into the design of the program. The inclusion of waste minimization tools as part of the WIMP has resulted in a 40% increase in the amount of waste designated as compactible and an overall volume reduction of 5,000 cu-ft

  16. Remaining Sites Verification Package for the 600-233 Waste Site, Vertical Pipe Near 100-B Electrical Laydown Area. Attachment to Waste Site Reclassification Form 2005-041

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2005-01-01

    The 600-233 waste site consisted of three small-diameter pipelines within the 600-232 waste site, including previously unknown diesel fuel supply lines discovered during site remediation. The 600-233 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  17. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  18. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  19. Determination of total cyanide in Hanford Site high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  20. Determination of total cyanide in Hanford Site high-level wastes

    International Nuclear Information System (INIS)

    Winters, W.I.; Pool, K.H.

    1994-05-01

    Nickel ferrocyanide compounds (Na 2-x Cs x NiFe (CN) 6 ) were produced in a scavenging process to remove 137 Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described

  1. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  2. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  3. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  4. Waste certification review program at the Savannah River Site

    International Nuclear Information System (INIS)

    Faulk, G.W.; Kinney, J.C.; Knapp, D.C.; Burdette, T.E.

    1996-01-01

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators' waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988)

  5. Fate of nuclear waste site remains unclear

    International Nuclear Information System (INIS)

    Anderson, E.V.

    1980-01-01

    The only commercial nuclear fuel reprocessing plant in the U.S., located in West Valley, N.Y., has been shut down since 1972, and no efforts have yet been made to clean up the site. The site contains a spent-fuel pool, high level liquid waste storage tanks, and two radioactive waste burial grounds. Nuclear Fuel Services, Inc., has been leasing the site from the New York State Energy RandD Authority. Federal litigation may ensue, prompted by NRC and DOE, if the company refuses to decontaminate the area when its lease expires at the end of 1980. DOE has developed a plan to solidify the liquid wastes at the facility but needs additional legislation and funding to implement the scheme

  6. Modular risk analysis for assessing multiple waste sites

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Nazarali, A.

    1994-06-01

    Human-health impacts, especially to the surrounding public, are extremely difficult to assess at installations that contain multiple waste sites and a variety of mixed-waste constituents (e.g., organic, inorganic, and radioactive). These assessments must address different constituents, multiple waste sites, multiple release patterns, different transport pathways (i.e., groundwater, surface water, air, and overland soil), different receptor types and locations, various times of interest, population distributions, land-use patterns, baseline assessments, a variety of exposure scenarios, etc. Although the process is complex, two of the most important difficulties to overcome are associated with (1) establishing an approach that allows for modifying the source term, transport, or exposure component as an individual module without having to re-evaluate the entire installation-wide assessment (i.e., all modules simultaneously), and (2) displaying and communicating the results in an understandable and useable maimer to interested parties. An integrated, physics-based, compartmentalized approach, which is coupled to a Geographical Information System (GIS), captures the regional health impacts associated with multiple waste sites (e.g., hundreds to thousands of waste sites) at locations within and surrounding the installation. Utilizing a modular/GIS-based approach overcomes difficulties in (1) analyzing a wide variety of scenarios for multiple waste sites, and (2) communicating results from a complex human-health-impact analysis by capturing the essence of the assessment in a relatively elegant manner, so the meaning of the results can be quickly conveyed to all who review them

  7. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD, R.A.

    2006-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met

  8. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  9. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  10. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  11. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  12. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  13. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  14. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  15. Implementation of Waste Minimization at a complex R ampersand D site

    International Nuclear Information System (INIS)

    Lang, R.E.; Thuot, J.R.; Devgun, J.S.

    1995-01-01

    Under the 1994 Waste Minimization/Pollution Prevention Crosscut Plan, the Department of Energy (DOE) has set a goal of 50% reduction in waste at its facilities by the end of 1999. Each DOE site is required to set site-specific goals to reduce generation of all types of waste including hazardous, radioactive, and mixed. To meet these goals, Argonne National Laboratory (ANL), Argonne, IL, has developed and implemented a comprehensive Pollution Prevention/Waste Minimization (PP/WMin) Program. The facilities and activities at the site vary from research into basic sciences and research into nuclear fuel cycle to high energy physics and decontamination and decommissioning projects. As a multidisciplinary R ampersand D facility and a multiactivity site, ANL generates waste streams that are varied, in physical form as well as in chemical constituents. This in turn presents a significant challenge to put a cohesive site-wide PP/WMin Program into action. In this paper, we will describe ANL's key activities and waste streams, the regulatory drivers for waste minimization, and the DOE goals in this area, and we will discuss ANL's strategy for waste minimization and it's implementation across the site

  16. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  17. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  18. Successful characterization of radioactive waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hughes, M.B.; Miles, G.M.

    1995-01-01

    Characterization of the low-level radioactive waste generated by forty five independent operating facilities at The Savannah River Site (SRS) experienced a slow start. However, the site effectively accelerated waste characterization based on findings of an independent assessment that recommended several changes to the existing process. The new approach included the development of a generic waste characterization protocol and methodology and the formulation of a technical board to approve waste characterization. As a result, consistent, detailed characterization of waste streams from SRS facilities was achieved in six months

  19. Waste treatment at the La Hague and Marcoule sites

    International Nuclear Information System (INIS)

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema's plants

  20. Waste treatment at the La Hague and Marcoule sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

  1. Microbial effects on radioactive wastes at SLB sites

    International Nuclear Information System (INIS)

    Colombo, P.

    1982-01-01

    The objectives of this study are to determine the significance of microbial degradation of organic wastes on radionuclide migration on shallow land burial for humid and arid sites, establish which mechanisms predominate and ascertain the conditions under which these mechanisms operate. Factors contolling gaseous eminations from low-level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide and possibly hydrogen from the site stems from the inclusion of tritium and/or 14 C into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste materials, primary emphasis of the study involved on examination of the biochemical pathways producing methane, carbon dioxide and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Although the methane and carbon dioxide production rate indicates the degradation rate of the organic substances in the waste, it does not predict the methane evolution rate from the trench site. Methane fluxes from the soil surface are equivalent to the net synthesis minus the quantity oxidized by the microbial community as the gas passes through the soil profile. Gas studies were performed at three commercial low-level radioactive waste disposal sites (West Valley, New York; Beatty, Nevada; Maxey Flats, Kentucky) during the period 1976 to 1978. The results of these studies are presented. 3 tables

  2. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  3. Detecting hot spots at hazardous-waste sites

    International Nuclear Information System (INIS)

    Zirschky, J.; Gilbert, R.O.

    1984-01-01

    Evaluating the need for remedial cleanup at a waste site involves both finding the average contaminant concentration and identifying highly contaminated areas, or hot spots. A nomographic procedure to determine the sample configuration needed to locate a hot spot is presented. The technique can be used to develop a waste-site sampling plant - to determine either the grid spacing required to detect a hot spot at a given level of confidence, or the probability of finding a hot spot of a certain size, given a particular grid spacing. The method and computer program (ELIPGRID) were developed for locating geologic deposits, but the basic procedure can also be used to detect hot spots at chemical- or nuclear-waste disposal sites. Nomographs based on the original program are presented for three sampling-grid configurations - square, rectangular and triangular

  4. Report on the workshop to review waste inventory, waste characteristics and reference site candidates

    International Nuclear Information System (INIS)

    1997-07-01

    There is a need of co-operation among Regional Co-operative Agreement (RCA) Member States in the field of low and intermediate level waste (LILW) disposal. An integrated approach is essential for successful establishment of LILW disposal facilities in RCA Member States. This would include: a) identification of waste inventory and characteristics; b) guidelines for implementation of LILW disposal; c) regulatory guidelines; d) safety assessment; e) quality assurance; and f) public acceptance. This project will focus on technical issues. The overall objective of the project, established in the project formulation meeting, is to assist RCA Member States in establishing national disposal activities for radioactive waste from nuclear applications by providing expert advice and training on techniques and methodology associated with planning and establishment of disposal facilities and to obtain improved knowledge of key staff members for the implementation of LILW disposal. The purpose of this workshop was to identify waste inventories, waste characteristics, site characteristics (generic or site specific) for disposal of LILW in RCA Member States of the project and identify conceptual reference site conditions and consider reference repository concepts preliminarily. Also the workshop was to establish an action plan of the next step. The workshop was held in Shanghai, China from 7 to 9 July 1997 and attended by 7 countries, i.e. Australia, China, Indonesia, Japan, Republic of Korea, Sri Lanka and Thailand. Refs, figs, tabs

  5. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  6. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  7. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  8. Solid waste management complex site development plan

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-01-01

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  9. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  10. Characteristics of transuranic waste at Department of Energy sites

    International Nuclear Information System (INIS)

    Jensen, R.T.; Wilkinson, F.J. III.

    1983-05-01

    This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981

  11. Critical management practices influencing on-site waste minimization in construction projects.

    Science.gov (United States)

    Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A

    2017-01-01

    As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  13. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    Science.gov (United States)

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  14. Radioactive Solid Waste Management Site (RSMS), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Nuclear operations generate a variety of primary solid waste comprising of tissue materials, glassware, plastics, protective rubber-wears, used components like filters, piping, structural items, unserviceable equipment, etc. This type of solid waste is generally associated with low and intermediate level of beta and gamma radiation and, in some cases, by low levels of alpha contamination. Radioactive Solid Waste Management Site (RSMS), Trombay is operational with an objective of safe and efficient management of low and intermediate level solid waste generated from various nuclear fuel cycle facilities of BARC, Trombay. The RSMS also manages the spent radioactive sources, utilised in healthcare, industries and research institutes, after completion of their useful life. The radioactive solid waste is first segregated, treated for volume reduction and disposed in engineered disposal module to prevent the migration of radionuclides and isolate them from human environment

  15. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  16. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    Science.gov (United States)

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  17. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    Science.gov (United States)

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  18. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  19. Savannah River Site Waste Management Program Plan, FY 1993

    International Nuclear Information System (INIS)

    1993-06-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes

  20. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  1. Review on waste inventory, waste characteristics and candidate site for LLW disposal in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Punnachaiya, M.; Danladkaew, K.

    1997-01-01

    It is a worldwide practice that radioactive waste has to be kept under control to be ensured of low potential impact on man and his environment. In Thailand, the OAEP is responsible for all radioactive waste management activities, both operation and the competent authority. The radioactive waste in Thailand consists of low level wastes from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. A plan for central disposal site has been set up. The near surface disposal method is chosen for this aspect because of its simple, inexpensive and adequate safe and very well know process. 8 refs., 6 tabs

  2. Site Specific Waste Management Instructions for loading and shipment of category 3 investigation derived waste to ERDF

    International Nuclear Information System (INIS)

    Corriveau, C.E.; Wolf, D.M.

    1996-08-01

    This Site Specific Waste Management Instruction (SSWMI) provides guidance for management of containerized investigation-derived waste being loaded and transported to the Environmental Restoration Disposal Facility. The SSWMI outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements. Additional guidance for waste packaging, marking, labeling and shipping is provided (US DOT rules in 49 CFR have precedence)

  3. Storage of intermediate level waste at UKAEA sites

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1985-08-01

    This report describes the storage of wastes at UKAEA sites and accordingly contributes to the investigations conducted by the Department of the Environment into the Best Practicable Environmental Option (BPEO) for radioactive waste storage and/or disposal. This report on the storage of ILW should be read in conjunction with a similar NII funded CTS study for Licensed Sites in the UK. (author)

  4. Chemodynamics of EDTA in a simulated mixed waste: the Hanford Site's complex concentrate waste

    International Nuclear Information System (INIS)

    Toste, A.P.; Ohnuki, Toshihiko

    1999-01-01

    Enormous stockpiles of mixed wastes at the USDOE's Hanford Site, the original US plutonium production facility, await permanent disposal. One mixed waste derived from reprocessing spent fuel was found to contain numerous nuclear related organics including chelating agents like EDTA and complexing agents, which have been used as decontamination agents, etc. Their presence in actual mixed wastes indicates that the organic content of nuclear wastes is dynamic and complicate waste management efforts. The subjects of this report is the chemo-degradation of EDTA degradation in a simulant Hanford's complex concentrate waste. The simulant was prepared by adding EDTA to an inorganic matrix, which was formulated based on past analyses of the actual waste. Aliquots of the EDTA simulant were withdrawn at different time points, derivatized via methylation and analyzed by gas chromatography and Gc/MS to monitor the disappearance of EDTA and the appearance of its' degradation products. This report also compares the results of EDTA's chemo-degradation to the g-radiolysis of EDTA in the simulant, the subject of a recently published article. Finally based on the results of these two studies, an assesment of the potential impact of EDTA degradation on the management of mixed wastes is offered. (J.P.N.)

  5. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  6. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  7. 1994 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    1995-09-01

    Many Waste Minimization/Pollution Prevention successes at the Hanford Site occur every day without formal recognition. A few of the successful projects are: T-Plant helps facilities reuse equipment by offering decontamination services for items such as gas cylinders, trucks, and railcars, thus saving disposal and equipment replacement costs. Custodial Services reviewed its use of 168 hazardous cleaning products, and, through a variety of measures, replaced them with 38 safer substitutes, one for each task. Scrap steel contaminated with low level radioactivity from the interim stabilization of 107-K and 107-C was decontaminated and sold to a vendor for recycling. Site-wide programs include the following: the Pollution Prevention Opportunity Assessment (P2OA) program at the Hanford site was launched during 1994, including a training class, a guidance document, technical assistance, and goals; control over hazardous materials purchased was achieved by reviewing all purchase requisitions of a chemical nature; the Office Supply Reuse Program was established to redeploy unused or unwanted office supply items. In 1994, pollution prevention activities reduced approximately 274,000 kilograms of hazardous waste, 2,100 cubic meters of radioactive and mixed waste, 14,500,000 kilograms of sanitary waste, and 215,000 cubic meters off liquid waste and waste water. Pollution Prevention activities also saved almost $4.2 million in disposal, product, and labor costs. Overall waste generation increased in 1994 due to increased work and activity typical for a site with an environmental restoration mission. However, without any Waste Minimization/Pollution Prevention activities, solid radioactive waste generation at Hanford would have been 25% higher, solid hazardous waste generation would have been 30% higher, and solid sanitary waste generation would have been 60% higher

  8. Waste immobilization demonstration program for the Hanford Site's Mixed Waste Facility

    International Nuclear Information System (INIS)

    Burbank, D.A.; Weingardt, K.M.

    1994-05-01

    This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation

  9. Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit No.2 Waste Site. Attchment to Waste Site Reclassification Form 2005-038

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2005-01-01

    The 128-B-2 waste site was a burn pit historically used for the disposal of combustible and noncombustible wastes, including paint and solvents, office waste, concrete debris, and metallic debris. This site has been remediated by removing approximately 5,627 bank cubic meters of debris, ash, and contaminated soil to the Environmental Restoration Disposal Facility. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River

  10. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  11. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  12. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site's centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million

  13. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  14. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  15. A data base for low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs

  16. Incentives and the siting of radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process.

  17. Incentives and the siting of radioactive waste facilities

    International Nuclear Information System (INIS)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process

  18. Environmental analysis of closure options for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gordon, D.E.; King, C.M.; Looney, B.B.; Stephenson, D.E.; Johnson, W.F.

    1987-01-01

    Previously acceptable waste management practices (e.g., the use of unlined seepage basins) for discarding of wastes from nuclear materials production has resulted in occasional cases of groundwater contamination beneath some disposal sites, mainly in water-table aquifers. Groundwater contaminants include volatile organic compounds, heavy metals, radionuclides, and other chemicals. The closure of active and inactive waste sites that have received hazardous and/or low-level radioactive materials at the Savannah River Plant (SRP) is planned as part of an overall program to protect groundwater quality. DOE developed and submitted to Congress a groundwater protection plan for SRP. This initial plan and subsequent revisions provide the basis for closure of SRP waste sites to comply with applicable groundwater protection requirements. An environmental analysis of the closure options for the criteria waste sites that have received hazardous and/or low-level radioactive wastes was conducted to provide technical support. The several parts of this environmental analysis include description of geohydrologic conditions; determination of waste inventories; definition of closure options; modeling of environmental pathways; assessment of risk; and analysis of project costs. Each of these components of the overall analysis is described in turn in the following paragraphs. Production operations at SRP have generated a variety of solid, hazardous, and low-level radioactive waste materials. Several locations onplant have been used as waste disposal sites for solid and liquid wastes. Seventy-six individual waste sites at 45 distinct geographical locations on SRP have received hazardous, low-level radioactive, or mixed wastes. These waste sites can be categorized into 26 groupings according to the function of the waste disposed. 15 refs., 6 figs., 5 tabs

  19. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  20. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  1. Technical Assessment Of Selection Of A Waste Disposal Site

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book gives overall descriptions of technical assessment of selection of a waste disposal site, which deals with standard of selection on incinerator of city waste, the method over assessment of selection of incinerator in city waste, prerequisite of technical assessment for selection of incinerator, waste incinerator and related equipment such as form, structure, quality of material, ventilation device, plumbing system and electrical installation, and total plan like plan of construction and a measure taken against environmental pollution.

  2. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  3. Modified TCLP test for evaluating the leachability of site-specific wastes

    International Nuclear Information System (INIS)

    Pier, J.

    1996-01-01

    The Weldon Spring Site Remedial Action Project (WSSRAP) has developed a site-specific test to assess the leachability of wastes that will be placed in its on-site disposal cell. This test is modelled after the TCLP, but examines an expanded list of parameters and uses an extraction solution that is representative of conditions that are expected to exist in the disposal facility. Following the same logic that guided development of TCLP protocols, the WSSRAP developed concentration guidelines for non-TCLP parameters that were contaminants of concern in its wastes. Response actions, specific to the WSSRAP cell and wastes, were also developed to address constituents that failed to meet these guides. From 1955 to 1966, the US Atomic Energy Commission operated a uranium feed materials plant on this site. Nitroaromatic, and later, radiological wastes were disposed of in the quarry from 1945 until 1970. This paper describes testing to determine whether contaminant concentrations in leachates derived from the major waste-types that will be placed in its on-site disposal cell conform with the Department of Energy's (DOE) as low as reasonably achievable (ALARA) policy. Although the WSSRAP will continue to use the TCLP test to determine if any waste is classified RCRA-hazardous, the site-specific test described in this paper will be used to further assess whether leachate from any waste-type has the potential to adversely impact groundwater

  4. Characterization of radionuclude behavior in low-level waste sites

    International Nuclear Information System (INIS)

    Toste, A.P.; Kirby, L.J.; Robertson, D.E.; Abel, K.H.; Perkins, R.W.

    1982-10-01

    Our laboratory is investigating the subsurface migration of radionuclides in groundwater at the Maxey Flats, Kentucky, shallow land-burial site and at a low-level aqueous waste disposal facility. At Maxey Flats, radionuclide and tracer data indicate groundwater communication between a waste trench and an adjacent experimental study area. Areal distributions of radionuclides in surface soil confirm that contamination at Maxey Flats has been largely contained on site. Of the radionuclides detected in the surface soil, only 3 H and 60 Co concentrations appear to be derived from waste. Plutonium exists in the anoxic subsurface waters at Maxey Flats as a reduced, anionic complex; some of the plutonium appears to be complexed with EDTA, whereas organic acids seem to be associated with 137 Cs and 90 Sr. At the aqueous waste disposal site, 3 H and mainly anionic species of certain radionuclides, including 60 Co, 106 Ru, 99 Tc, 131 I, and traces of 238 239 240 Pu, appear to migrate from a trench through soil adjacent to the trench. Radionuclides in the particulate and cationic forms appear to be efficiently retained by the soil. In general, observations indicate that the physicochemical form of the radionuclides mediates their subsurface migration in groundwater at both waste disposal sites

  5. Application to transfer radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-01-01

    All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS

  6. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  7. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  8. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  9. Risk assessment for the on-site transportation of radioactive wastes for the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Biwer, B.M.; Monette, F.A.; Chen, S.Y.

    1996-12-01

    This report documents the risk assessment performed for the on-site transportation of radioactive wastes in the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). Risks for the routine shipment of wastes and the impacts from potential accidental releases are analyzed for operations at the Hanford Site (Hanford) near Richland, Washington. Like other large DOE sites, hanford conducts waste management operations for all wastes types; consequently, the impacts calculated for Hanford are expected to be greater than those for smaller sites. The risk assessment conducted for on-site transportation is intended to provide an estimate of the magnitude of the potential risk for comparison with off-site transportation risks assessed for the WM PEIS

  10. Conflict resolution in low-level waste facility siting

    International Nuclear Information System (INIS)

    English, M.R.

    1989-01-01

    Siting a low-level waste facility is only one part of the low-level waste management process. But it is a crucial part, a prism that focuses many of the other issues in low-level waste management. And, as the 1990 and 1992 milestones approach, siting has a urgency that makes the use of alternative dispute resolution (ADR) techniques especially appropriate, to avoid protracted and expensive litigation and to reach creative and durable solutions. Drawing upon literature in the ADR field, this paper discusses ADR techniques as they apply to low-level waste management and the groundwork that must be laid before they can be applied. It also discusses questions that can arise concerning the terms under which negotiations are carried out. The paper then give suggestions for achieving win/win negotiations. Potential objections to negotiated agreements and potential answers to those objections are reviewed, and some requisites for negotiation are given

  11. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  12. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2009-12-01

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  13. Nuclear waste and social peace - Strategies of site selection for radioactive waste disposal. Proceeding

    International Nuclear Information System (INIS)

    Dally, A.

    2003-01-01

    In February 1999, BMU appointed a working party to establish site selection procedures for repositories (AkEnd) which was to develop a transparent procedure of finding and selecting sites for the final storage of all kinds of radioactive waste in Germany. The procedure finally proposed by AkEnd implies considerable uncertainty, inter alia, about its legal implementability, the time required, and funding. The discussion papers of the meeting ''atomic waste and social peace'' show a tightrope walk between society, clerical aspects and scientists taking into account also a right of say for critical citizens. (GL)

  14. Ranking system for mixed radioactive and hazardous waste sites

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1985-01-01

    The Environmental Protection Agency's Hazard Ranking System (HRS) is a simplified management decision tool that provides a common basis for evaluating a multitude of hazardous waste sites. A deficiency in the HRS for application to Department of Energy mixed radioactive and hazardous waste sites is its inability to explicitly handle radioactive material. A modification to the basic HRS to add the capability to consider radioactivity is described. The HRS considers the exposure routes of direct contact, fire/explosion, atmospheric release, surface-water release, and ground-water release. Each exposure route is further divided into release, route, containment, waste, and target characteristics. To maintain the basic HRS structure, only the waste characteristics section of each exposure route was modified. A ranking system was developed, using radiation dose pathway analysis, to group radionuclides by dose factors. For mixed waste sites, the ranking factor derived for radionuclides is compared with the ranking factor obtained for hazardous chemicals and the most restrictive is used in the overall ranking. The modified HRS has the advantages of being compatible with the original HRS, has reasonable information requirements, and provides scientifically defensible conclusions. 17 references, 2 figures, 6 tables

  15. Remaining Sites Verification Package for the 116-C-3, 105-C Chemical Waste Tanks. Attachment to Waste Site Reclassification Form 2008-002

    International Nuclear Information System (INIS)

    Dittmer, L.M.

    2008-01-01

    The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River

  16. The role of geology in the evaluation of waste disposal sites

    International Nuclear Information System (INIS)

    Ogunsanwo, O.; Mands, E.

    1999-01-01

    The construction of waste disposal sites demonstrates the awareness of the need to protect the environment against pollution. The site are constructed on foundations of soils and rocks. Photo geological studies, geophysical investigations and geological field mapping are indispensable in the selection of suitable sites. Most of the construction materials (in the case of landfills) are of geologic origin and their suitability can only be ascertained after some geological assessments. Furthermore, the hydrogeological conditions within the adjoining terrains and the flow of leachates from and within the wastes must be monitored so as to prevent pollution (radiation, in the case of radioactive wastes, can be monitored with the aid of geochemistry). Several models/systems are available for the hydrogeological/geochemical evaluation of waste disposal sites. The selection of the site and the construction materials as well as the hydrogeological/ /geochemical studies are very critical as the performance of the disposal site depends solely on these aspects. These aspects are basically within the realms of geology. It is thus obvious that geology plays a leading role in the evaluation of waste disposal sites right from the site selection stage until the site is done with

  17. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  18. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  19. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  20. Safeguards issues of long-term waste management at DOE sites

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1992-06-01

    Waste management at US Department of Energy (DOE) sites is not often regarded as a safeguard-sensitive step in the nuclear fuel cycle because the material concerned is relatively unattractive for diversion or theft. However, the accumulation of large amounts of fissile materials in wastes over a period of time can be a safeguards concern. One estimate shows that high-level and transuranic wastes and some miscellaneous radioactive materials at DOE sites may contain as much as 15 Mt of fissile materials. In the context of present US strategies for the disposal of these radioactive wastes, this study identifies safeguards issues relevant to proposed scenarios for the long-term management and permanent disposal of the above-mentioned waste forms in geologic repositories. This study points out areas of concern and the need to examine the issues before the wastes are processed for geologic disposal. Good waste management practices may offer unique opportunities to address the safeguards issues identified here. A judicious approach to examining the safeguards requirements of waste disposal programs may also contribute to DOE's new effort to establish and maintain public confidence in its environmental restoration programs

  1. Vitrified waste form performance modeling applied to the treatment and disposal of mixed-waste sludge at the Savannah River Site

    International Nuclear Information System (INIS)

    Whited, A.R.; Fjeld, R.A.

    1998-01-01

    Vitrification, the conversion of source components into a solid amorphous glass matrix, has emerged as a viable treatment technology for low-level radioactive waste and mixed waste. To dispose of vitrified low-level waste at US Department of Energy facilities, site-specific radiological performance assessments must be conducted to demonstrate that waste glass satisfies performance objectives for environmental protection. More than 2,500 m 3 of F0006-listed low-level mixed-waste sludge stored in the Reactor Materials Department (M-Area) at the Savannah River Site (SRS) is scheduled for vitrification. This study evaluates the feasibility of on-site disposal of vitrified M-Area waste at SRS. Laboratory leaching tests that accelerate the glass corrosion process are currently the best indicators of vitrified waste form durability. A method to incorporate laboratory leaching data into performance assessments is presented. A screening-level performance assessments code is used to model trench disposal of M-Area waste glass. The allowable leach rate for vitrified M-Area waste is determined based on both a maximum radiological dose equivalent of 4 mrem/yr for the drinking water pathway and a maximum uranium concentration of 20 microg/ell in groundwater. The allowable leach rate is compared with published long-term leaching data for a wide range of waste glass compositions and test conditions. This analysis demonstrates that trench disposal of the waste glass is likely to meet applicable performance objectives if the glass is of above average durability compared with the reference set of glasses

  2. The Hanford Site Tank Waste Remediation System: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-01

    The U.S. Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m 3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have 137 Cs accumulated in 177 tanks. In addition, significant amounts of 90 Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  3. Risk management at hazardous waste sites

    International Nuclear Information System (INIS)

    Travis, C.C.; Doty, C.B.

    1990-01-01

    The Superfund Amendments and Reauthorization Act of 1986 (SARA) provided the Environmental Protection Agency (EPA) with additional resources and direction for the identification, evaluation, and remediation of hazardous waste sites in the United States. SARA established more stringent requirements for the Superfund program, both in terms of the pace of the program and the types of remedial alternatives selected. The central requirement is that remedial alternatives be ''protective of public health and the environment'' and ''significantly and permanently'' reduce the toxicity, mobility, or volume of contaminants. The mandate also requires that potential risk be considered in the decision-making process. This document discusses risk management at hazardous waste sites. Topics include selection of sites for placement on the National Priority List, risk assessment and the decision process, risk reduction and remedial alternative selection, and aquifer restoration. 10 refs., 2 figs

  4. Geographic factors related to site suitability of low-level waste disposal

    Science.gov (United States)

    Zittel, H. E.

    Factors related to the site suitability of low level waste disposal sites are discussed including those which might be considered environmental and those dealing with site criteria. Possible population criteria, alternative site selection, transportation criteria, and community involvement are considered. All these factors are based on the premise that the technology exists to carry out low level waste disposal in a manner such that public health and safety can be insured. It is concluded that problems encountered in siting low level waste facilities are largely societal and political in nature.

  5. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  6. Site characterization data for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic conditions in SWSA-6 for use in further studies related to assessing compliance with 5820.2. Burial operations in SWSA-6 began in 1969 on a limited scale, and full operation was initiated in 1973. Since that time, ca. 29,100 m 3 of low-level waste containing ca. 251,000 Ci of activity has been buried in SWSA-6. No transuranic waste has been disposed of in SWSA-6; rather this waste is retrievably stored in SWSA-5. Estimates of the remaining usable space in SWSA-6 vary; however, in 1982 sufficient useful land was reported for about 10 more years of operation. Analysis of the information available on SWSA-6 indicates that more information is required to evaluate the surface water hydrology, the geology at depths below the burial trenches, and the nature and extent of soils within the site. Also, a monitoring network will be required to allow detection of potential contaminant movement in groundwater. Although these are the most obvious needs, a number of specific measurements must be made to evaluate the spatial heterogeneity of the site and to provide background information for geohydrological modeling. Some indication of the nature of these measurements is included

  7. Hanford Site Composite Analysis Technical Approach Description: Radionuclide Inventory and Waste Site Selection Process.

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Will E.; Mehta, Sunil

    2017-09-13

    The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.

  8. FTIR fiber optic methods for the analysis of Hanford Site waste

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Cash, R.J.; Dodd, D.A.

    1995-06-01

    Sampling and chemical characterization of mixed high-level waste stored in underground tanks at the Hanford Site is currently in progress. Waste tank safety concerns have provided impetus to analyze this waste. A major safety issue is the possibility of significant concentrations of fuel (ferrocyanide and/or organic compounds) in contact with oxidizers (nitrates and nitrites). It is postulated that under dry conditions and elevated temperatures, ferrocyanide- and/or organic-bearing wastes could undergo rapid exothermic reactions. To maintain the tanks in a safe condition, data are needed on the moisture and fuel concentrations in the waste. Because of the highly radioactive nature of the waste, non-radioactive waste simulants mimicking actual waste are used to provide an initial basis for identifying realistic waste tank safety concerns. Emphasis has been placed on the use of new or existing Fourier transform infrared (FTIR)-based systems with potential for field or tank deployment to perform in situ remote waste characterization. Near-infrared diffuse reflectance and mid-infrared attenuated total reflectance fiber optic probes coupled to a Bio-Rad FTS 60A spectrometry system have been evaluated. The near-infrared diffuse reflectance fiber probe system has also been used for preliminary screening of the moisture content and chemical composition of actual Hanford Site waste tank waste core samples. The attributes of this method for analyzing actual radioactive waste are discussed

  9. Application of new technologies for characterization of Hanford Site high-level waste

    International Nuclear Information System (INIS)

    Winters, W.I.

    1998-01-01

    To support remediation of Hanford Site high-level radioactive waste tanks, new chemical and physical measurement technologies must be developed and deployed. This is a major task of the Chemistry Analysis Technology Support (CATS) group of the Hanford Corporation. New measurement methods are required for efficient and economical resolution of tank waste safety, waste retrieval, and disposal issues. These development and deployment activities are performed in cooperation with Waste Management Federal Services of Hanford, Inc. This paper provides an overview of current analytical technologies in progress. The high-level waste at the Hanford Site is chemically complex because of the numerous processes used in past nuclear fuel reprocessing there, and a variety of technologies is required for effective characterization. Programmatic and laboratory operational needs drive the selection of new technologies for characterizing Hanford Site high-level waste, and these technologies are developed for deployment in laboratories, hot cells or in the field. New physical methods, such as the propagating reactive systems screening tool (PRSST) to measure the potential for self-propagating reactions in stored wastes, are being implemented. Technology for sampling and measuring gases trapped within the waste matrix is being used to evaluate flammability hazards associated with gas releases from stored wastes. Application of new inductively coupled plasma and laser ablation mass spectrometry systems at the Hanford Site's 222-S Laboratory will be described. A Raman spectroscopy probe mounted in a cone penetrometer to measure oxyanions in wastes or soils will be described. The Hanford Site has used large volumes of organic complexants and acids in processing waste, and capillary zone electrophoresis (CZE) methods have been developed for determining several of the major organic components in complex waste tank matrices. The principles involved, system installation, and results from

  10. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  11. Risk assessment for the on-site transportation of radioactive wastes for the U.S. Department of Energy Waste Management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Biwer, B.M.; Monette, F.A.; Chen, S.Y.

    1995-04-01

    This report documents the risk assessment performed for the on-site transportation of radioactive wastes in the U.S. Department of Energy (DOE) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Risks for the routine shipment of wastes and the impacts from potential accidental releases are analyzed for operations at the Hanford Site (Hanford) near Richland, Washington. Like other large DOE sites, Hanford conducts waste management operations for all wastes types; consequently, the impacts calculated for Hanford are expected to be greater than those for smaller sites. The risk assessment conducted for on-site transportation is intended to provide an estimate of the magnitude of the potential risk for comparison with off-site transportation risks assessed for the WM PEIS

  12. Stabilization and isolation of low-level liquid waste disposal sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Gilbert, T.W.

    1987-01-01

    Rockwell Hanford Operations is developing and testing equipment for stabilization and isolation of low-level radioactive liquid waste disposal sites. Stabilization and isolation are accomplished by a dynamic consolidation and particulate grout injection system. System equipment components include: a mobile grout plant for transport, mixing, and pumping of particulate grout; a vibratory hammer/extractor for consolidation of waste, backfill, and for emplacement of the injector; dynamic consolidation/injector probe for introducing grout into fill material; and an open-void surface injector that uses surface or subsurface mechanical or pneumatic packers and displacement gas filtration for introducing grout into disposal structure access piping. Treatment of a liquid-waste disposal site yields a physically stable, cementitious monolith. Additional testing and modification of this equipment for other applications to liquid waste disposal sites is in progress

  13. Siting process for disposal site of low level radiactive waste in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.; Sriyotha, K.

    1992-01-01

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The site selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand

  14. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  15. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  16. Study on detecting leachate leakage of municipal solid waste landfill site.

    Science.gov (United States)

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.

  17. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  18. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  19. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

    1991-11-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  20. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  1. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  2. Final Hanford Site Transuranic (TRU) Waste Characterization Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP

  3. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    1994-05-01

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option

  4. Application of neural networks to waste site screening

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Garrett, M.; Kraft, T.; Hilton, J.; VanHammersveld, M.

    1993-02-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach consists primarily of drilling boreholes near contaminated sites and chemically analyzing the extracted physical samples and processing the data. This is expensive and time consuming. The feasibility of using neural network techniques to reduce the cost of waste site screening was investigated. Two neural network techniques, gradient descent back propagation and fully recurrent back propagation were utilized. The networks were trained with data received from Westinghouse Hanford Corporation. The results indicate that the network trained with the fully recurrent technique shows satisfactory generalization capability. The predicted results are close to the results obtained from a mathematical flow prediction model. It is possible to develop a new tool to predict the waste plume, thus substantially reducing the number of the bore sites and samplings. There are a variety of applications for this technique in environmental site screening and remediation. One of the obvious applications would be for optimum well siting. A neural network trained from the existing sampling data could be utilized to decide where would be the best position for the next bore site. Other applications are discussed in the report

  5. Radioactive waste disposal: Recommendations for a repository site selection

    International Nuclear Information System (INIS)

    Cadelli, N.; Orlowski, S.

    1992-01-01

    This report is a guidebook on recommendations for site selection of radioactive waste repository, based on a consensus in european community. This report describes particularly selection criteria and recommendations for radioactive waste disposal in underground or ground repositories. 14 refs

  6. Description of the Northwest hazardous waste site data base and preliminary analysis of site characteristics

    International Nuclear Information System (INIS)

    Woodruff, D.L.; Hartz, K.E.; Triplett, M.B.

    1988-08-01

    The Northwest Hazardous Waste RD and D Center (the Center) conducts research, development, and demonstration (RD and D) activities for hazardous and radioactive mixed-waste technologies applicable to remediating sites in the states of Idaho, Montana, Oregon, and Washington. To properly set priorities for these RD and D activities and to target development efforts it is necessary to understand the nature of the sites requiring remediation. A data base of hazardous waste site characteristics has been constructed to facilitate this analysis. The data base used data from EPA's Region X Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) and from Preliminary Assessment/Site Investigation (PA/SI) forms for sites in Montana. The Center's data base focuses on two sets of sites--those on the National Priorities List (NPL) and other sites that are denoted as ''active'' CERCLIS sites. Active CERCLIS sites are those sites that are undergoing active investigation and analysis. The data base contains information for each site covering site identification and location, type of industry associated with the site, waste categories present (e.g., heavy metals, pesticides, etc.), methods of disposal (e.g., tanks, drums, land, etc.), waste forms (e.g., liquid, solid, etc.), and hazard targets (e.g., surface water, groundwater, etc.). As part of this analysis, the Northwest region was divided into three geographic subregions to identify differences in disposal site characteristics within the Northwest. 2 refs., 18 figs., 5 tabs

  7. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  8. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    Howell, R.E.; Olsen, D.

    1982-12-01

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed

  9. On-site vs off-site management of environmental restoration waste: A cost effectiveness analysis

    International Nuclear Information System (INIS)

    Morse, M.A.; Aamodt, P.L.; Cox, W.B.

    1996-01-01

    The Sandia National Laboratories Environmental Restoration Project is expected to generate relatively large volumes of hazardous waste as a result of cleanup operations. These volumes will exceed the Laboratories existing waste management capacity. This paper presents four options for managing remediation wastes, including three alternatives for on-site waste management utilizing a corrective action management unit (CAMU). Costs are estimated for each of the four options based on current volumetric estimates of hazardous waste. Cost equations are derived for each of the options with the variables being waste volumes, the major unknowns in the analysis. These equations provide a means to update cost estimates as volume estimates change. This approach may be helpful to others facing similar waste management decisions

  10. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  11. A Bayesian sampling strategy for hazardous waste site characterization

    International Nuclear Information System (INIS)

    Skalski, J.R.

    1987-12-01

    Prior knowledge based on historical records or physical evidence often suggests the existence of a hazardous waste site. Initial surveys may provide additional or even conflicting evidence of site contamination. This article presents a Bayes sampling strategy that allocates sampling at a site using this prior knowledge. This sampling strategy minimizes the environmental risks of missing chemical or radionuclide hot spots at a waste site. The environmental risk is shown to be proportional to the size of the undetected hot spot or inversely proportional to the probability of hot spot detection. 12 refs., 2 figs

  12. Final Hanford Site Transuranic (TRU) Waste Characterization Qualit Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP)

  13. In situ vitrification of a mixed radioactive and hazardous waste site

    International Nuclear Information System (INIS)

    Campbell, B.E.; Koegler, S.S.

    1990-11-01

    A large-scale test of the in situ vitrification (ISV) process was performed on a mixed radioactive and hazardous-chemical contaminated waste site on the Hanford Site in southeastern Washington State. A mixed-waste site was selected for this large-scale test to demonstrate the applicability of ISV to mixed wastes common to many US Department of Energy (DOE) sites. In situ vitrification is a thermal process that converts contaminated soil into a durable, leach-resistant product. Electrodes are inserted into the ground. The goals of the test are to demonstrate at least 99% retention of fission products and hazardous metals in the ISV glass during the test; demonstrate the ability of the ISV off-gas treatment system to process a waste site containing significant quantities of combustible material and demonstrate the ability of ISV to vitrify the site to a depth of 20 ft or greater. The test was completed in April 1990. 5 figs

  14. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  15. Evaluation of Absorbents for Compatibility with Site Generated Hazardous and Mixed Liquid Wastes

    International Nuclear Information System (INIS)

    Oji, L.N.

    2002-01-01

    SRS Solid Waste requested SRTC to perform a literature-based evaluation of sorbents, which are compatible with hazardous mixed waste being generated on site. Polypropylene-based materials and ground corn cob (Toxi-dry), because of their compatibility with the Consolidated Incinerator Facility (CIF) process, are the only two spill stabilization agents which are recommended for use on site (IS manual, Waste Acceptance Criteria 3.18). While ensuring minimal potential for undesired reactions between spills and spill control agents, Solid Waste wants to increase the number of site approved absorbents to give waste generators more flexibility in choosing liquid spill immobilization agents

  16. Biological toxicity evaluation of Hanford Site waste grouts

    International Nuclear Information System (INIS)

    Rebagay, T.V. Dodd, D.A.; Voogd, J.A.

    1992-10-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 50 years of operation of the Hanford Site of the US Department of Energy near Richland, Washington. These wastes are currently stored onsite in single- and double-shell carbon steel tanks. To effectively handle and treat these wastes, their degree of toxicity must be determined. The disposal of the low-level radioactive liquid portion of the wastes involves mixing the wastes with pozzolanic blends to form grout. Potential environmental hazards posed by grouts are largely unknown. Biological evaluation of grout toxicity is needed to provide information on the potential risks of animal and plant exposure to the grouts. The fish, rat, and Microtox toxicity tests described herein indicate that the grouts formed from Formulations I and 2 are nonhazardous and nondangerous. Using the Microtox solid-phase protocol, both soluble and insoluble organic and inorganic toxicants in the grouts can be detected. This protocol may be used for rapid screening of environmental pollutants and toxicants

  17. Geographic factors related to site suitability of low-level waste disposal

    International Nuclear Information System (INIS)

    Zittel, H.E.

    1981-01-01

    A number of factors related to the site suitability of low-level waste disposal sites are discussed. The factors are a combination of those which might be considered environmental and those dealing with site criteria. Among the factors covered are: possible population criteria, alternative site selection, transportation criteria and community involvement considerations. All these factors are discussed in a manner based on the premise that the technology exists to carry out low-level waste disposal in a manner such that public health and safety can be insured. The conclusion of the discussion is that problems encountered in siting low-level waste facilities will be largely societal and political in nature

  18. Ground-penetrating radar in characterizing and monitoring waste-burial sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.

    1982-02-01

    Potential environmental hazards are associated with buried chemical and nuclear wastes because of the possibilities of inadvertent excavation or migration of toxic chemicals or radionuclides into groundwater or surface water bodies. Concern is often related to the fact that many existing waste burial sites have been found to be inadequately designed and/or poorly documented. New technology and innovative applications of current technology are needed to locate, characterize, and monitor the wastes contained in such sites. The work described in this paper is focused on the use of ground-penetrating radar (GPR) for those purposes

  19. 1983 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1984-12-01

    The 1983 report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 76,702 m 3 of radioactive waste containing 505,340 Ci of activity was reported disposed at the commercial sites in 1983. The distribution of these waste volumes by disposal site is tabulated. Typical radionuclides in low-level wastes by sector are given. Predominant waste forms associated with low-level waste by sector are tabulated. Sometimes the amount of waste reported by power facilities is equal to or exceeds the state volume reported from commercial disposal site operators. Discrepancies may be a result of waste volumes being credited to the home state of the waste broker instead of the actual state location of the generator. Additionally, waste volumes may have been in transit from the generator to the disposal site at year's end. The Low-Level Waste Management Program felt a responsibility to report information accurately from the various sources, so did not alter the figures to make them balance

  20. Low-level radioactive waste management at the Nevada Test Site - Current status

    International Nuclear Information System (INIS)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-01-01

    The performance objectives of the Department of Energy's Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS's since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  1. Application of neural networks to waste site screening

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.; Kraft, T.; Hilton, J.M. [Science Applications International Corp., San Diego, CA (United States)

    1993-03-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach to site screening consists primarily of drilling, boreholes near contaminated site and chemically analyzing the extracted physical samples and processing the data. In addition, hydraulic and geochemical soil properties are obtained so that numerical simulation models can be used to interpret and extrapolate the field data. The objective of this work is to investigate the feasibility of using neural network techniques to reduce the cost of waste site screening. A successful technique may lead to an ability to reduce the number of boreholes and the number of samples analyzed from each borehole to properly screen the waste site. The analytic tool development described here is inexpensive because it makes use of neural network techniques that can interpolate rapidly and which can learn how to analyze data rather than having to be explicitly programmed. In the following sections, data collection and data analyses will be described, followed by a section on different neural network techniques used. The results will be presented and compared with mathematical model. Finally, the last section will summarize the research work performed and make several recommendations for future work.

  2. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  3. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  4. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  5. Assessment of remote sensing technologies to discover and characterize waste sites

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once sites and problems have been located and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated wastes in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirements for long-term monitoring

  6. Radioactive safety analysis and assessment of waste rock pile site in uranium tailings

    International Nuclear Information System (INIS)

    Liu Changrong; Liu Zehua; Wang Zhiyong; Zhou Xinghuo

    2007-01-01

    Based on theoretical calculation and in-situ test results, distribution and emissions of radioactive nuclides of uranium tailings impoundment and waste rock pile sites are analyzed in this paper. It is pointed out that 222 Rn is the main nuclide of uranium tailings impoundment and waste rock pile site. Also 222 Rn is the main source term of public dose. 222 Rn concentrations in the atmospheric environment around and individual dose to Rn gradually decrease with increasing distances to uranium tailings impoundment and waste rock pile site. Based on in-situ tests on five uranium tailings impoundment and waste rock pile sites, a decisive method and safety protection distance are presented, which can be used to guide the validation and design of radioactive safety protection in uranium tailings impoundment and waste rock pile sites. (authors)

  7. Basic principles and criteria on radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Kropikova, S.

    1980-01-01

    The basic principles are stated of radiation protection of the workers at radioactive waste disposal facilities, which must be observed in the choice of radioactive waste disposal sites. The emergency programme, the operating regulations and the safety report are specified. Workplace safety regulations are cited. (author)

  8. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Pyles, G.; Ciucci, J.; Arnold, P.

    2009-01-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site's (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M and O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum

  9. Mixed waste and waste minimization: The effect of regulations and waste minimization on the laboratory

    International Nuclear Information System (INIS)

    Dagan, E.B.; Selby, K.B.

    1993-08-01

    The Hanford Site is located in the State of Washington and is subject to state and federal environmental regulations that hamper waste minimization efforts. This paper addresses the negative effect of these regulations on waste minimization and mixed waste issues related to the Hanford Site. Also, issues are addressed concerning the regulations becoming more lenient. In addition to field operations, the Hanford Site is home to the Pacific Northwest Laboratory which has many ongoing waste minimization activities of particular interest to laboratories

  10. A history of solid waste packaging at the Hanford Site

    International Nuclear Information System (INIS)

    Duncan, D.R.; Weyns-Rollosson, D.I.; Pottmeyer, J.A.; Stratton, T.J.

    1995-02-01

    Since the initiation of the defense materials product mission, a total of more than 600,000 m 3 of radioactive solid waste has been stored or disposed at the US Department of Energy's (DOE) Hanford Site, located in southeastern Washington State. As the DOE complex prepares for its increasing role in environmental restoration and waste remediation, the characterization of buried and retrievably stored waste will become increasingly important. Key to this characterization is an understanding of the standards and specifications to which waste was packaged; the regulations that mandated these standards and specifications; the practices used for handling and packaging different waste types; and the changes in these practices with time

  11. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  12. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  13. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  14. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  15. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    Energy Technology Data Exchange (ETDEWEB)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  16. Assessment of remote sensing technologies to discover and characterize waste sites

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring

  17. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-11-01

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  18. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2016-10-01

    Full Text Available Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative.

  19. Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status

    International Nuclear Information System (INIS)

    Becker, B.D.; Clayton, W.A.; Crowe, B.M.

    2002-01-01

    The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  20. Site-specific waste management instruction for the field sampling organization

    International Nuclear Information System (INIS)

    Bryant, D.L.

    1997-01-01

    The Site-Specific Waste Management Instruction (SSWMI) provides guidance for the management of waste generated from field-sampling activities performed by the Environment Restoration Contractor (ERC) Sampling Organization that are not managed as part of a project SSWMI. Generally, the waste is unused preserved groundwater trip blanks, used and expired calibration solutions, and other similar waste that cannot be returned to an ERC project for disposal. The specific waste streams addressed by this SSWMI are identified in Section 2.0. This SSWMI was prepared in accordance with BHI-EE-02, Environmental Requirements. Waste generated from field sample collection activities should be returned to the project and managed in accordance with the applicable project-specific SSWMI whenever possible. However, returning all field sample collection and associated waste to a project for disposal may not always be practical or cost effective. Therefore, the ERC field sampling organization must manage and arrange to dispose of the waste using the (Bechtel Hanford, Inc. [BHI]) Field Support Waste Management (FSWM) services. This SSWMI addresses those waste streams that are the responsibility of the field sampling organization to manage and make arrangements for disposal

  1. Site study plan for utilities and solid waste, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    International Nuclear Information System (INIS)

    1987-06-01

    This site plan describes utilities and solid waste studies to be conducted during the characterization of the Deaf Smith County, Texas, site for the US Department of Energy's Salt Repository Project. After utilities and solid waste information needs derived from Federal, State, and local statutes and regulations and the project specifications are briefly described, the site study plan describes the study design and rationale, the field data collection procedures and equipment, and data analysis methods and application of results, the data management strategy, the schedule of field activities, the management of the study, and the study's quality assurance program. The field data collection activities are organized into programs to characterize electrical power, natural gas, communication, water, wastewater sludge, nonradiological solid waste, nonradiological hazardous waste, and low-level radiological waste. These programs include details for the collection of project needs, identification of utilities and solid waste disposal contractor capabilities, and verification of the obtained data. Utilities and solid waste field activities will begin approximately at the time of site access. Utilities and solid waste characterization will be completed within the first year of activity. 29 refs., 6 figs., 2 tabs

  2. Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522

    International Nuclear Information System (INIS)

    Mctaggart, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has

  3. Waste generation and pollution prevention progress fact sheet: Nevada Test Site

    International Nuclear Information System (INIS)

    1994-01-01

    The Nevada Test Site is responsible for maintaining nuclear testing capability, supporting science-based Stockpile Stewardship experiments, maintaining nuclear agency response capability, applying environmental restoration techniques to areas affected by nuclear testing, managing low-level and mixed radioactive waste, investigating demilitarization technologies, investigating counter- proliferation technologies, supporting work-for-others programs and special Department of Defense activities, operating a hazardous materials spill test center, and providing for the commercial development of the site. This fact sheet provides information on routine waste generation and projected reduction by waste type. Also, materials recycled by the Nevada Test Site in 1994 are listed

  4. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  5. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    None

    1997-01-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  6. IMPACT OF THE JAKUŠEVEC-PRUDINEC WASTE DISPOSAL SITE ON GROUNDWATER QUALITY

    Directory of Open Access Journals (Sweden)

    Zoran Nakić

    2007-12-01

    Full Text Available The main goal of the research shown in this paper is to investigate the cause and effect relation of the Jakuševec-Prudinec waste disposal site and the groundwater pollution. The recovery of the Jakuševec-Prudinec waste disposal site by the end of 2003 did not have any significant impact on the pollution reduction in groundwater. Very high values of the pollution index defined in the area southeastern from the waste disposal site show spreading of the pollution toward Mičevec village. The analysis of the hydrogeochemical characteristics showed that in the waste disposal site area the local geochemical anomalies of the partial CO2 pressure exist, indicating that the intensive carbonate dissolution processes and HCO3- enrichment dominate in this area. Near the border of the waste disposal site groundwater with high ammonium ion (NH4+ and chloride ion (Cl- dominates. The high concentrations of the heavy metals and very strong geochemical bonds determined from the correlation coefficients show that in the reductive aquifer conditions heavy metals strongly release (the paper is published in Croatian.

  7. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  8. Waste Information Management System with 2012-13 Waste Streams - 13095

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D.

    2013-01-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  9. Waste Information Management System with 2012-13 Waste Streams - 13095

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  10. Economics model for new low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report describes LLWECON, an interactive computer mode for evaluating financial factors involved in low-level radioactive waste disposal. The logic by which LLWECON calculates the final generator price (price per cubic foot the disposal site operator charges waste generators) is detailed. Required user input and hypothetical examples, covering sites with different capacities, and both public and private-sector development, are included

  11. Assessment of national systems for obtaining local siting acceptance of nuclear waste management facilities (October 1, 1985). Volume I. Political structure and formal system for obtaining approvals for siting waste management facilities

    International Nuclear Information System (INIS)

    Paige, H.W.; Numark, N.J.

    1985-01-01

    This report is the fourth in a series of periodic surveys of approaches and progress in other countries in dealing with the problems of obtaining local acceptance for siting of waste management facilities. This volume contains the following sections: Nation's political/industrial structure for obtaining waste management siting decisions; and Nation's formal legal procedure for obtaining necessary approvals for siting nuclear waste management facilities. Two of the countries visited, Finland and Sweden, have had major changes in the past two years in their formal/legal procedures for obtaining waste management siting decisions. (LM)

  12. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  13. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  14. Enhanced On-Site Waste Management of Plasterboard in Construction Works: A Case Study in Spain

    Directory of Open Access Journals (Sweden)

    Ana Jiménez-Rivero

    2017-03-01

    Full Text Available On-site management of construction waste commonly determines its destination. In the case of plasterboard (PB, on-site segregation becomes crucial for closed-loop recycling. However, PB is commonly mixed with other wastes in Spain. In this context, the involvement of stakeholders that can contribute to reversing this current situation is needed. This paper analyzes on-site waste management of PB in Spain through a pilot study of a construction site, with the main objective of identifying best practices to increase waste prevention, waste minimization, and the recyclability of the waste. On-site visits and structured interviews were conducted. The results show five management stages: PB distribution (I; PB installation (II; Construction waste storage at the installation area (III; PB waste segregation at the installation area (IV and PB waste transfer to the PB container and storage (V. The proposed practices refer to each stage and include the merging of Stages III and IV. This measure would avoid the mixing of waste fractions in Stage III, maximizing the recyclability of PB. In addition, two requisites for achieving enhanced management are analyzed: ‘Training and commitment’ and ‘fulfilling the requirements established by the current regulation’. The results show that foremen adopted a more pessimistic attitude than installers towards a joint commitment for waste management. Moreover, not all supervisors valued the importance of a site waste management plan, regulated by the Royal Decree 105/2008 in Spain.

  15. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  16. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  17. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  18. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    International Nuclear Information System (INIS)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991

  19. A survey of citizen's attitude to disposal sites of industrial waste and radioactive waste

    International Nuclear Information System (INIS)

    Ishizaka, Kaoru; Tanaka, Masaru; Tokizawa, Takayuki; Sato, Kazuhiko; Koga, Osamu

    2008-01-01

    This study aimed to investigate a risk perception about landfill sits for industrial waste or radioactive waste through the questionnaire survey. As a result, it was shown that most of people worried about health and environmental impact of radioactive waste; and moreover, high ratios of the peoples felt dangerous and scary sensuously. Public trust to the central government was very low. Over 60 percent of people do not trust that countermeasures will be taken at the times of accident' and nearly 70 percent of people do not trust that 'the information about the accident is disclosed'. Answers to questions concerning about public trust regarding countermeasures at the accident, information disclosure at the accident, environmental standard, and environmental technology show significant correlation with risk perception of landfill sites. (author)

  20. Selection and cultivation of final vegetative cover for closed waste sites at the Savannah River Site, SC

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1992-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as a vegetative cover for most sites. Consequently, the sites require periodic mowing and other expensive annual maintenance practices. The purpose of this five year study was to evaluate alternative plant material for use on wastes sites that is quickly and easily established and economically maintained, retards water infiltration, provides maximum year-round evapotranspiration, is ecologically acceptable and does not harm the closure cap. The results of the study are described in this report and suggest that two species of bamboo (Phyllostachys bissetii and P. rubromarainata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites. These large species of bamboo will also reduce the probability of intrusion by humans, animals and deeply rooted plant species

  1. HANFORD SITE SOLID WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT TECHNICAL INFORMATION DOCUMENT [SEC 1 THRU 4

    International Nuclear Information System (INIS)

    FRITZ, L.L.

    2004-01-01

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement''. Assumptions and waste volumes used to calculate engineering data are also provided in this document. This chapter provides a brief description of: the Solid Waste Management Program (including a description of waste types and known characteristics of waste covered under the program), the Hanford Site (including a general discussion of the operating areas), and the alternatives analyzed. The Hanford Site Solid Waste Management Program and DOE/EIS-0286 address solid radioactive waste types generated by various activities from both onsite and offsite generators. The Environmental Restoration (ER) waste management activities are not within the scope of DOE/EIS-0286 or this TID. Activities for processing and disposal of immobilized low-activity waste (ILAW) are not within the scope of the Solid Waste Management Program and this TID

  2. Mathematical model of the Savannah River Site waste tank farm

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1991-01-01

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers

  3. Physical sampling for site and waste characterization

    International Nuclear Information System (INIS)

    Bonnough, T.L.

    1994-01-01

    Physical sampling plays a basic role in site and waste characterization program effort. The term ''physical sampling'' used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ''physical sampling'' broadly to include measurements of physical conditions such as temperature, wind conditions, and pH which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measuring of physical conditions taken in association with sample collecting

  4. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  5. Radioactive Waste Evaporation: Current Methodologies Employed for the Development, Design, and Operation of Waste Evaporators at the Savannah River Site and Hanford Waste Treatment Plant

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2003-01-01

    Evaporation of High level and Low Activity (HLW and LAW) radioactive wastes for the purposes of radionuclide separation and volume reduction has been conducted at the Savannah River and Hanford Sites for more than forty years. Additionally, the Savannah River Site (SRS) has used evaporators in preparing HLW for immobilization into a borosilicate glass matrix. This paper will discuss the methodologies, results, and achievements of the SRTC evaporator development program that was conducted in support of the SRS and Hanford WTP evaporator processes. The cross pollination and application of waste treatment technologies and methods between the Savannah River and Hanford Sites will be highlighted. The cross pollination of technologies and methods is expected to benefit the Department of Energy's Mission Acceleration efforts by reducing the overall cost and time for the development of the baseline waste treatment processes

  6. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  7. Management and disposition of off-site laboratory-generated mixed/low level waste

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1993-10-01

    The Fernald Environmental Management Project (FEMP) is the first Department of Energy (DOE) site to take back mixed and low level waste generated at commercial laboratories from chemical analyses and treatability studies on samples taken from the site. This paper discusses the steps addressed and the issues resolved in order to initiate the task of taking back mixed/low level waste. Such issues included regulatory, waste management and contractual issues

  8. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  9. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  10. Summary of tank waste physical properties at the Hanford Site

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed

  11. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  12. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  13. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  14. Immobilized low-activity waste site borehole 299-E17-21

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area

  15. Problems in siting low level radioactive wastes: A focus on public participation

    International Nuclear Information System (INIS)

    Bord, R.J.

    1985-01-01

    Public participation programs must develop a means to enlist meaningful public feedback. Besides the traditional public meetings, which generally mobilize the opposition, careful surveys can be done of a representative spectrum of the public getting their judgments about specific criteria. These judgments can be used to shape siting policy. Such an approach would help avoid the criticism that public input is not taken into account. While the suggestions included in this paper go far in dealing with public fear and distrust they cannot guarantee siting success. There are a number of uncontrollable contingencies that can affect any siting program. Another energy crises, for example, may increase the prestige of the nuclear industry and make LLRW siting less onerous. Or, new broadcasts of waste site failures or of nuclear accidents could make LLRW siting more problematic. The problems of waste siting will not disappear nor are the solutions easy ones. They demand serious consideration by talented scientists of all kinds. Waste siting difficulties certainly rank near the top of challenges facing advanced industrial societies. Attempts to site wastes of all kinds have foundered because of strong public opposition. LLRW siting attempts are certain to meet similar problems. Local communities tend to see little or no benefits but high costs in hosting waste sites. Fear of pollution, the unknown aspects of radiation risks, a lack of confidence in governmental agencies, are all factors promoting public resistance. Compounding these problems has been the failure of citizen participation programs to fulfill the functions for which they were designed. Instead of fostering more open communication, regulating conflict, and generating better ideas, participation programs dealing with waste siting tend to generate more conflict and mobilize determined opposition

  16. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    International Nuclear Information System (INIS)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-01-01

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site's preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised

  17. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site - 8422

    International Nuclear Information System (INIS)

    D Wieland; V Yucel; L Desotell; G Shott; J Wrapp

    2008-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators

  18. Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area,. Attachment to Waste Site Reclassification Form 2006-003

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2006-01-01

    The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  19. Siting a low-level waste facility in California: A success story

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1988-01-01

    US Ecology is the state of California's designee to site, develop, and operate a low-level radioactive waste disposal facility. The facility will meet the state's responsibilities under the Low-Level Radioactive Waste Policy Act as amended. By January 1988, US Ecology narrowed its efforts to two candidate sites. Strong local community support has been expressed for both sites. US Ecology will select a single proposed site for licensing in 1988 and anticipates receiving waste in late 1900 or early 1991. This schedule places California well ahead of the milestones identified in federal law. The success to date in California can be attributed in large part to the open process used to involve citizens' advisory committees (CACs) and the general public at critical stages of the projects

  20. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities

  1. Principles of geological substantiation for toxic waste disposal facilities sites selection

    International Nuclear Information System (INIS)

    Khrushchov, D. P.; Matorin, Eu. M.; Shekhunova, S. B.

    2002-01-01

    Industrial, domestic and military activities result in accumulation of toxic and hazardous waste. Disposal of these waste comprises two main approaches: technological processing (utilization and destruction) and landfill. According to concepts and programs of advanced countries technological solutions are preferable, but in fact over 70 % of waste are buried in storages, prevailingly of near surface type. The target of this paper is to present principles of geological substantiation of sites selection for toxic and hazardous waste isolation facilities location. (author)

  2. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Segall, P.

    1998-01-01

    Hanford's missions are to safely clean up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  3. 1993 report on Hanford Site land disposal restrictions for mixed wastes

    International Nuclear Information System (INIS)

    Black, D.

    1993-04-01

    Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 2 (RCRA) and Atomic Energy Act 3 . This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order 1 (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress

  4. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  5. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  6. Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California

    Science.gov (United States)

    Leenheer, J.A.; Hsu, J.; Barber, L.B.

    2001-01-01

    In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .

  7. Hazardous Waste Landfill Siting using GIS Technique and Analytical Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Ozeair Abessi

    2010-07-01

    Full Text Available Disposal of large amount of generated hazardous waste in power plants, has always received communities' and authori¬ties attentions. In this paper using site screening method and Analytical Hierarchy Process (AHP a sophisticated approach for siting hazardous waste landfill in large areas is presented. This approach demonstrates how the evaluation criteria such as physical, socio-economical, technical, environmental and their regulatory sub criteria can be introduced into an over layer technique to screen some limited appropriate zones in the area. Then, in order to find the optimal site amongst the primary screened site utilizing a Multiple Criteria Decision Making (MCDM method for hierarchy computations of the process is recommended. Using the introduced method an accurate siting procedure for environmental planning of the landfills in an area would be enabled. In the study this approach was utilized for disposal of hazardous wastes of Shahid Rajaee thermal power plant located in Qazvin province west central part of Iran. As a result of this study 10 suitable zones were screened in the area at first, then using analytical hierarchy process a site near the power plant were chosen as the optimal site for landfilling of the hazardous wastes in Qazvin province.

  8. Waste repository planned for Bruce Site

    International Nuclear Information System (INIS)

    King, F.

    2004-01-01

    Ontario Power Generation (OPG) and Kincardine, the municipality nearest the Bruce site, have agreed in principal to the construction of a deep geologic repository for low and medium level radioactive waste on the site. The two parties signed the 'Kincardine Hosting Agreement' on October 13, 2004 to proceed with planning, seek regulatory approval and further public consultation of the proposed project. A construction Licence is not expected before 2013. (author)

  9. Review of selected 100-N waste sites related to N-Springs remediation projects

    International Nuclear Information System (INIS)

    DeFord, D.H.; Carpenter, R.W.

    1996-01-01

    This document has been prepared in support of the environmental restoration program at the US Department of Energy's Hanford Site near Richland, Washington, by the Bechtel Hanford, Inc. Facility and Waste Site Research Office. It provides historical information that documents and characterizes selected waste sites that are related to the N-Springs remediation projects. The N-Springs are a series of small, inconspicuous groundwater seepage springs located along the Columbia River shoreline near the 100-N Reactor. The spring site is hydrologically down-gradient from several 100-N Area liquid waste sites that are believed to have been the source(s) of the effluents being discharged by the springs. This report documents and characterizes these waste sites, including the 116-N-1 Crib and Trench, 116-N-3 Crib and Trench, unplanned releases, septic tariks, and a backwash pond

  10. Nevada test site low-level and mixed waste repository design in the unsaturated zone

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Warren, D.M.

    1989-01-01

    The Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) is used for shallow land disposal of Low-Level Radioactive (LLW) and for retrievable disposal of Mixed Wastes (MW) from various Department of Energy (DOE) facilities. The site is situated in southern Nevada, one of the most arid regions of the United States. Design considerations include vadose zone monitoring in lieu of groundwater monitoring, stringent waste acceptance and packaging criteria, a waste examination and real-time radiography facility, and trench design. 4 refs

  11. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-01-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  12. Radioactive waste will be stored at desolate Cape site

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    High, intermediate and low-level radioactive waste will be stored at the Vaalputs nuclear waste dump site near Springbok. This area is sparsely populated, there are no mineral deposits of any value, the agricultural potential is minimal. It is a typical semi-desert area. Geologically it lends itself towards the ground-storage of used nuclear fuel, because of the remote possibility of earthquakes

  13. 1995 Report on Hanford site land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report

  14. 1995 Report on Hanford site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  15. Testing contamination risk assessment methods for toxic elements from mine waste sites

    Science.gov (United States)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance 66 (class VI

  16. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  17. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  18. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  19. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  20. Identification of potential transuranic waste tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Colburn, R.P.

    1995-05-05

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

  1. Identification of potential transuranic waste tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1995-01-01

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document

  2. Siting Criteria for Low and Intermediate Level Radioactive Waste Disposal in Egypt (Proposal approach)

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media so that it does not result in undue radiation exposure to humans and the environment. The required degree of isolation can be obtained by implementing various disposal methods and suitable criteria. Near surface disposal method has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. Establishing site criteria is the first step in the sitting process to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  3. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    International Nuclear Information System (INIS)

    Greg Shott; Vefa Yucel; Lloyd Desotell

    2008-01-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  4. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  5. WASTE-ACC: A computer model for analysis of waste management accidents

    International Nuclear Information System (INIS)

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  6. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    International Nuclear Information System (INIS)

    Al Yaqout, Anwar F.

    2003-01-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14±1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85±0.19 million t representing 37.22±6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait

  7. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites

    Science.gov (United States)

    Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen

    2017-10-01

    In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.

  8. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Science.gov (United States)

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  9. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  10. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  11. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  12. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  13. The Cigeo project: an industrial storage site for radioactive wastes in deep underground

    International Nuclear Information System (INIS)

    Krieguer, Jean-Marie

    2017-01-01

    In 2006, France has decided to store its high-level and long-lived radioactive wastes, mostly issued from the nuclear industry, in a deep geological underground disposal site. This document presents the Cigeo project, a deep underground disposal site (located in the East of France) for such radioactive wastes, which construction is to be started in 2021 (subject to authorization in 2018). After a brief historical review of the project, started 20 years ago, the document presents the radioactive waste disposal context, the ethical choice of underground storage (in France and elsewhere) for these types of radioactive wastes, the disposal site safety and financing aspects, the progressive development of the underground facilities and, of most importance, its reversibility. In a second part, the various works around the site are presented (transport, buildings, water and power supply, etc.) together with a description of the various radioactive wastes (high and intermediate level and long-lived wastes and their packaging) that will be disposed in the site. The different steps of the project are then reviewed (the initial design and initial construction phases, the pilot industrial phase (expected in 2030), the operating phase, and the ultimate phases that will consist in the definitive closure of the site and its monitoring), followed by an extensive description of the various installations of surface and underground facilities, their architecture and their equipment

  14. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  15. Nuclear Waste Policy Act of 1982; proposed general guidelines for recommendation of sites for nuclear waste repositories

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In accordance with the requirements of the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425), hereinafter referred to as the Act, the Department of Energy is proposing general guidelines for the recommendation of sites for repositories for disposal of high-level radioactive waste and spent nuclear fuel in geologic formations. These guidelines are based on the criteria that the Department has used in its National Waste Terminal Storage program, the criteria proposed by the Nuclear Regulatory Commission (NRC), and the environmental standards proposed by the Environmental Protection Agency. These guidelines establish the performance requirements for a geologic repository system, specify how the Department will implement its site-selection program, and define the technical qualifications that candidate sites must meet in the various steps of the site-selection process mandated by the Act. After considering comments from the public; consulting with the Council on Environmental Quality, the Administrator of the Environmental Protection Agency, the Director of the Geological Survey, and interested Governors; and obtaining NRC concurrence, the Department will issue these guidelines in final form as a new Part 960 to Title 10 of the Code of Federal Regulations (10 CFR Part 960)

  16. Regulatory requirements for groundwater monitoring networks at hazardous waste sites

    International Nuclear Information System (INIS)

    Keller, J.F.

    1989-10-01

    In the absence of an explicit national mandate to protect groundwater quality, operators of active and inactive hazardous waste sites must use a number of statutes and regulations as guidance for detecting, correcting, and preventing groundwater contamination. The objective of this paper is to provide a framework of the technical and regulatory considerations that are important to the development of groundwater monitoring programs at hazardous waste sites. The technical site-specific needs and regulatory considerations, including existing groundwater standards and classifications, will be presented. 14 refs., 2 tabs

  17. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  18. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  19. Characterization of the atmospheric pathway at hazardous waste sites

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.

    1988-10-01

    Evaluation of potential health effects for populations surrounding hazardous waste sites requires consideration of all potential contaminant transport pathways through groundwater, surface water, and the atmosphere. A comprehensive pathway model that includes emission, dispersion, and deposition computations has been developed as a component of the Remedial Action Priority System (RAPS). RAPS is designed to assess the relative potential risks associated with hazardous and radioactive mixed-waste disposal sites. The atmospheric component includes optional volatilization and suspension emission routines. Atmospheric transport, dispersion, and deposition are computed using relatively standard modeling techniques expanded to incorporate topographical influences. This sector-averaged Gaussian model accounts for local channeling, terrain heights, and terrain roughness effects. Long-term total deposition is computed for the terrain surrounding the hazardous waste site. An example is given of applications at a US Department of Energy site, where atmospheric emissions are potentially important. The multiple applications of RAPS have provided information on the relative importance of different constitutent transport pathways from a potential population risk basis. Our results show that the atmospheric pathway is often equally as important as other pathways such as groundwater and direct soil ingestion. 6 refs., 3 figs., 4 tabs

  20. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    Science.gov (United States)

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  1. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented

  2. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  3. Cleanup Verification Package for the 300-18 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2005-01-01

    This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete

  4. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Arnold, P.

    2012-01-01

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams

  5. Cost effectiveness of below-threshold waste disposal at DOE sites

    International Nuclear Information System (INIS)

    Wickham, L.E.; Smith, C.F.; Cohen, J.J.

    1986-01-01

    Previous study has indicated the feasibility of establishing a threshold of concentration below which certain low-level (radioactive wastes) (LLW) could be safely handled and disposed of by conventional means such as landfills. Such below-threshold wastes have been synonymously termed de minimis or below regulatory concern (BRC) and can be deemed appropriate for management according to their nonradiological characteristics. The objective of this study was to determine the cost effectiveness for management and disposal of below-threshold waste at certain US Department of Energy sites. The sites selected for this study were the Idaho National Engineering Laboratory and Savannah River Laboratory. Cost-benefit analysis was used to determine the impacts, benefits, and potential cost advantages of establishing and implementing a threshold limit

  6. Nuclear waste

    International Nuclear Information System (INIS)

    Pligt, J. van der

    1989-01-01

    This chapter present a brief overview of the current situation of siting radioactive wastes. This is followed by an overview of various psychological approaches attempting to analyse public reactions to nuclear facilities. It will be argued that public reactions to nuclear waste factilities must be seen in the context of more general attitudes toward nuclear energy. The latter are not only based upon perceptions of the health and environmental risks but are built on values, and sets of attributes which need not be similar to the representations o the experts and policy-makers. The issue of siting nuclear waste facilities is also embedded in a wider moral and political domain. This is illustrated by the importance of equity issues in siting radioactive wastes. In the last section, the implications of the present line of argument for risk communication and public participation in decisions about siting radioactive wastes will be briefly discussed. (author). 49 refs

  7. Mobile loading transuranic waste at small quantity sites in the Department of Energy complex-10523

    International Nuclear Information System (INIS)

    Carter, Mitch; Howard, Bryan; Weyerman, Wade; Mctaggart, Jerri

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), operates mobile loading operations for all of the large and small quantity transuranic (TRU) waste sites in the Department of Energy (DOE) complex. The mobile loading team performs loading and unloading evolutions for both contact handled (CH) and remote handled (RH) waste. For small quantity sites, many of which have yet to remove their TRU waste, the mobile loading team will load shipments that will ship to Idaho National Laboratory, a centralization site, or ship directly to the Waste Isolation Pilot Plant (WIPP). For example, Argonne National Laboratory and General Electric Vallecitos Nuclear Center have certified programs for RH waste so they will ship their RH waste directly to WIPP. Many of the other sites will ship their waste to Idaho for characterization and certification. The Mobile Loading Units (MLU) contain all of the necessary equipment needed to load CH and RH waste into the appropriate shipping vessels. Sites are required to provide additional equipment, such as cranes, fork trucks, and office space. The sites are also required to provide personnel to assist in the shipping operations. Each site requires a site visit from the mobile loading team to ensure that all of the necessary site equipment, site requirements and space for shipping can be provided. The mobile loading team works diligently with site representatives to ensure that all safety and regulatory requirements are met. Once the waste is ready and shipping needs are met, the mobile loading team can be scheduled to ship the waste. The CH MLU is designed to support TRUPACT-II and HalfPACT loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for TRUPACT-II and HalfPACT loading and shipment certification. The RH MLU is designed to support removable lid canister (RLC) and RH-72B cask loading activities wherever needed within the DOE

  8. Compensation: Will it provide a waste site?

    International Nuclear Information System (INIS)

    Pulsipher, A.G.

    1993-01-01

    Offering an attractive compensation package to persuade a community to voluntarily accept an otherwise undesirable facility may work in some cases, but it's not likely to work for high-level nuclear-waste disposal. The public perception of the risks involved and the public distrust of the institutions responsible for managing those risks are just too great. Much of the controversy stems from public perceptions that the site-selection process itself is unfair. Resentment builds when this occurs, and offers of compensation come to be labeled bribes or blood money. The driving force behind current nuclear-waste policy is intergenerational equity - the moral concept that the generation that produced the waste should dispose of it, permanently. Regardless of the moral appeal, doubts have been raised about the technical feasibility of this approach. Alternatives featuring intergenerational monetary compensation may better honor the commitment hor-ellipsis and reduce pressure to try to do what may be impossible

  9. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Farnsworth, R.K.

    1997-01-01

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m 3 of transuranic (TRU) waste is co-mingled with over 170,000 m 3 of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste

  10. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  11. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  12. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  13. Some interactive factors affecting trench-cover integrity on low-level waste sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Lane, L.J.; Steger, J.G.; DePoorter, G.L.

    1982-01-01

    This paper describes important mechanisms by which radionuclide can be transported from low-level waste disposal sites into biological pathways, discuss interactions of abiotic and biotic processes, and recommends environmental characteristics that should be measured to design sites that minimize this transport. Past experience at shallow land burial sites for low-level radioactive wastes suggest that occurrences of waste exposure and radionuclide transport are often related to inadequate trench cover designs. Meeting performance standards at low-level waste sites can only be achieved by recognizing that physical, chemical, and biological processes operating on and in a trench cover profile are highly interactive. Failure to do so can lead to improper design criteria and subsequent remedial action procedures that can adversely affect site stability. Based upon field experiments and computer modeling, recommendations are made on site characteristics that require measurement in order to design systems that reduce surface runoff and erosion, manage soil moisture and biota in the cover profile to maximize evapotranspiration and minimize percolation, and place bounds on the intrusion potential of plants and animals into the waste material. Major unresolved problems include developing probabilistic approaches that include climatic variability, improved knowledge of soil-water-plant-erosion relationships, development of practical vegetation establishment and maintenance procedures, prediction and quantification of site potential and plant succession, and understanding the interaction of processes occurring on and in the cover profile with deeper subsurface processes

  14. Status of siting studies for a near surface repository site for radioactive wastes in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Palattao, M.V.B.; Marcelo, E.A.; Caseria, E.S.; Venida, L.L.; Cruz, J.M. dela

    2002-01-01

    The Philippines, through the Philippine Nuclear Research Institute (PNRI), decided to conduct a study on siting a low level radioactive waste disposal facility. The infrastructure set up for this purpose, the radioactive waste disposal concept, the overall siting process, the methodology applied and preliminary results obtained are described in this paper. (author)

  15. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; McGarvey, R.S.; Lemmon, R.A.

    1982-01-01

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  16. Waste Isolation Pilot Plant 2001 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  17. Waste Isolation Pilot Plant 2001 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, Inc.

    2002-01-01

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment

  18. WASTES: a waste management logistics/economics model

    International Nuclear Information System (INIS)

    McNair, G.W.; Shay, M.R.; Fletcher, J.F.; Cashwell, J.W.

    1985-01-01

    The WASTES logistics model is a simulation language based model for analyzing the logistic flow of spent fuel/nuclear waste throughout the waste management system. The model tracks the movement of spent fuel/nuclear waste from point of generation to final destination. The model maintains inventories of spent fuel/nuclear waste at individual reactor sites as well as at various facilities within the waste management system. A maximum of 14 facilities may be utilized within a single run. These 14 facilities may include any combination of the following facilities: (1) federal interim storage (FIS), (2) reprocessing (REP), (3) monitored retrievable storage (MRS), (4) geological disposal facilities (GDF). The movement of spent fuel/nuclear waste between these facilities is controlled by the user specification of loading and unloading rates, annual and maximum capacities and commodity characteristics (minimum age or heat constraints) for each individual facility. In addition, the user may specify varying levels of priority on the spent fuel/nuclear waste that will be eligible for movement within a given year. These levels of priority allow the user to preferentially move spent fuel from reactor sites that are experiencing a loss of full-core-reserve (FCR) margin in a given year or from reactors that may be in the final stages of decommissioning. The WASTES model utilizes the reactor specific data available from the PNL spent fuel database. This database provides reactor specific information on items such as spent fuel basin size, reactor location, and transportation cask preference (i.e., rail or truck cask). In addition, detailed discharge data is maintained that provides the number of assemblies, metric tons, and exposure for both historic and projected discharges at each reactor site

  19. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  20. Field-scale permeation testing of jet-grouted buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Zdinak, A.P.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL) conducted field-scale hydraulic conductivity testing of simulated buried waste sites with improved confinement. The improved confinement was achieved by jet grouting the buried waste, thus creating solid monoliths. The hydraulic conductivity of the monoliths was determined using both the packer technique and the falling head method. The testing was performed on simulated buried waste sites utilizing a variety of encapsulating grouts, including high-sulfate-resistant Portland cement, TECT, (a proprietary iron oxide cement) and molten paraffin. By creating monoliths using in-situ jet grouting of encapsulating materials, the waste is simultaneously protected from subsidence and contained against further migration of contaminants. At the INEL alone there is 56,000 m 3 of buried transuranic waste commingled with 170,000--224,000 m 3 of soil in shallow land burial. One of the options for this buried waste is to improve the confinement and leave it in place for final disposal. Knowledge of the hydraulic conductivity for these monoliths is important for decision-makers. The packer tests involved coring the monolith, sealing off positions within the core with inflatable packers, applying pressurized water to the matrix behind the seal, and observing the water flow rate. The falling head tests were performed in full-scale 3-m-diameter, 3-m-high field-scale permeameters. In these permeameters, both water inflow and outflow were measured and equated to a hydraulic conductivity

  1. Savannah River Site`s Site Specific Plan. Environmental restoration and waste management, fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  2. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... Insecticide, Fungicide and Rodenticide Act (7 U.S.C. 136 et seq.); (vi) Sludge from a waste treatment plant... leased by the operator; and (iii) the solid waste disposal site lacks road, rail, or adequate water... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in...

  3. System for the hydrogeologic analysis of uranium mill waste disposal sites

    International Nuclear Information System (INIS)

    Osiensky, J.L.

    1983-01-01

    Most of the uranium mill wastes generated before 1977 are stored in unlined tailings ponds. Seepage from some of these ponds has been of sufficient severity that the US Nuclear Regulatory Commission (NRC) has required the installation of withdrawal wells to remove the contaminated groundwater. Uranium mill waste disposal facilities typically are located in complex hydrogeologic environments. This research was initiated in 1980 to analyze hydrogeologic data collected at seven disposal sites in the US that have experienced problems with groundwater contamination. The characteristics of seepage migration are site specific and are controlled by the hydrogeologic environment in the vicinity of each tailings pond. Careful monitoring of most seepage plumes was not initiated until approximately 1977. These efforts were accelerated as a consequence of the uranium Mill Tailings Act of 1979. Some of the data collected at uranium mill waste disposal sites in the past are incomplete and some were collected by methods that are outdated. Data frequently were collected in sequences which disrupted the continuity of the hydrogeologic analysis and decreased the effectiveness of the data collection programs. Evaluation of data collection programs for seven uranium mill waste disposal sites in the US has led to the development and presentation herein of a system for the hydrogeologic analysis of disposal sites

  4. Remaining Sites Verification Package for the 128-B-3 Burn Pit Site, Waste Site Reclassification Form 2006-058

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2006-11-17

    The 128-B-3 waste site is a former burn and disposal site for the 100-B/C Area, located adjacent to the Columbia River. The 128-B-3 waste site has been remediated to meet the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results of sampling at upland areas of the site also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  5. Conceptual design report for regional low-level waste interim storage site

    International Nuclear Information System (INIS)

    Bird, M.V.; Thompson, J.D.

    1981-08-01

    An interim storage site design concept was developed for receiving 100,000 ft 3 low-level waste per year, in the form of solidified wastes in 55-gallon drums with a dose rate of < 200 mrem per hour at contact

  6. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  7. How it is possible to build a national system for decommissioning waste management without site nor waste liberation: the case of France

    International Nuclear Information System (INIS)

    Averous, Jeremie; Chapalain, Estelle

    2003-01-01

    Past experience in decommissioning in France has shown that a national system has to be put in place to deal with decommissioning, waste elimination and site cleaning up activities in order to allow a consistent, safe, transparent and industrially applicable management of these matters. A system founded on successive lines of defence has been put into enforcement, which does not involve any site nor waste liberation, as it is considered that the criteria associated are always prone to discussion and contradiction. This system is based on the following concepts: - 'nuclear waste', waste prone to have been contaminated or activated, is segregated from 'conventional waste' using a system involving successive lines of defence, and hence, building a very high level of confidence that no 'nuclear waste' will be eliminated without control in conventional waste eliminators or recycling facilities; - 'nuclear waste' is eliminated in dedicated facilities or repositories, or in conventional facilities under the condition of a special authorization based on a radiological impact study and a public inquiry; - a global safety evaluation of the nuclear site is conducted after decommissioning in order to define possible use restrictions. In all cases, minimum restrictions will be put into enforcement in urbanization plans to ensure sufficient precaution when planning future uses of the ground or the building. This paper describes this global system in detail and shows that its inherent consistency allows it to be easily applicable by operators while achieving a high level of safety and confidence. It is now widely accepted by stakeholders. The French Nuclear Safety Authority is now working to apply this methodology more widely to other nuclear practices like the waste management from medical, research and industrial activities, or from past or remediation activities. (authors)

  8. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  9. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  10. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  11. 1984 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1985-12-01

    The 1984 report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 75,429 m 3 of radioactive waste containing 600,909 Ci of activity was reported disposed at the commercial sites in 1984. The distribution of these waste volumes by disposal site is presented in Table 1. Table 2 displays typical radionuclides in low-level wastes by sector. Table 3 presents predominant waste forms associated with low-level waste by sector. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity reported by Chem Nuclear and US Ecology for each state. Figure 1 displays the disposal capacity remaining at Barnwell, Richland, and Beatty commercial disposal sites as of December 31, 1984. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste and effluent reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Where reported data were not available, data were obtained by communication with the utility. Non-reactor waste volumes are actual amounts recorded as received at the commercial waste repositories in 1984. Waste categories are defined as academic, medical, government, and industrial. Academic includes university hospitals and medical and nonmedical research facilities. The medical category includes hospitals and clinics, research facilities, and private medical offices. The industrial category includes private entities such as research and development companies, manufacturers, nondestructive testing, mining, and radiopharmaceutical manufacturers. Government includes state and federal agencies. Data from previous publications were also used as a comparison. 11 refs., 1 fig., 3 tabs

  12. Management of radioactive wastes at power reactor sites in India

    International Nuclear Information System (INIS)

    Amalraj, R.V.; Balu, K.

    Indian nuclear power programme, at the present stage, is based on natural uranium fuelled heavy water moderated CANDU type reactors except for the first nuclear power station consisting of two units of enriched uranium fuelled, light water moderated, BWR type of reactors. Some of the salient aspects of radioactive waste management at power reactor sites in India are discussed. Brief reviews are presented on treatment of wastes, their disposal and environmental aspects. Indian experience in power reactor waste management is also summarised identifying some of the areas needing further work. (auth.)

  13. Savannah River Site Waste Management Final Environmental Impact Statement Addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economic, and the health and safety of onsite workers and the public are included in the assessment

  14. Savannah River Site waste management. Final environmental impact statement - addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economics, and the health and safety of onsite workers and the public are included in the assessment

  15. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste. The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B permit application, pertinent DOE guidelines governing waste acceptance criteria and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with ALARA precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  16. Pyramiding tumuli waste disposal site and method of construction thereof

    Science.gov (United States)

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  17. Generation, on-site storage; handling and processing of industrial waste of Tehran

    International Nuclear Information System (INIS)

    Abduli, M.A.

    1997-01-01

    This paper describes out the present status of generation, on-site handling, processing and storage of industrial waste in Tehran. In this investigation, 67 large scale factories of different industrial groups were randomly selected. Above cited functional elements of these factories were surveyed. In this investigation a close contact with each factory was required, thus a questionnaire was prepared and distributed among these factories. The relationship between daily weight of the industrial waste (Y) and number of employer of each factory (x) is found to be Y=547.4 + 0.58 x. The relationship between daily volume of industrial waste (V), and daily weight of waste generated in each factory (Y) can be described by V=1.56 + 0.00078 Y. About 68% of the factories have their own interim storage site and the rest of the factories do not possess any on-site storage facility

  18. Site investigations for repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository

  19. Site investigations for repositories for solid radioactive wastes in shallow ground

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository.

  20. Cleanup Verification Package for the 300 VTS Waste Site

    International Nuclear Information System (INIS)

    Clark, S.W.; Mitchell, T.H.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste

  1. Cleanup Verification Package for the 300 VTS Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Clark and T. H. Mitchell

    2006-03-13

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

  2. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  3. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  4. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  5. DOE Waste Treatability Group Guidance

    International Nuclear Information System (INIS)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level

  6. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  7. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  8. On-site storage of high level nuclear waste: Attitudes and perceptions of local residents

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.; Jenkins-Smith, H.C.; Silva, C.

    1996-01-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and - more generally - the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three countries where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste. 24 refs., 7 figs., 5 tabs

  9. On-site storage of high level nuclear waste: attitudes and perceptions of local residents.

    Science.gov (United States)

    Bassett, G W; Jenkins-Smith, H C; Silva, C

    1996-06-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and-more generally-the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three counties where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste.

  10. Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site

    International Nuclear Information System (INIS)

    Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

    2007-01-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste

  11. Radioactive waste management and environmental contamination issues at the Chernobyl site.

    Science.gov (United States)

    Napier, B A; Schmieman, E A; Voitsekovitch, O

    2007-11-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near-surface waste storage and disposal facilities. Trench and landfill type facilities were created from 1986-1987 in the Chernobyl Exclusion Zone at distances 0.5-15 km from the nuclear power plant site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100 y service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel-containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel-containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste

  12. The 1985 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1986-12-01

    The 1985 report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 75,909 m 3 of radioactive waste containing 748,903 Ci of activity was reported disposed at the commercial sites in 1985. The distribution of these waste volumes by disposal site is presented in Table 1. Table 2 displays typical radionuclides in low-level wastes by sector. Table 3 presents predominant waste forms associated with low-level waste by sector. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity reported by Chem Nuclear and US Ecology for each state. Figure 1 displays the disposal capacity remaining at Barnwell, Richland, and Beatty commercial disposal sites as of December 31, 1985. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste and effluent reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Where reported data were not available, data were obtained by communication with the utility. Nonreactor waste volumes are actual amounts recorded as received at the commercial waste repositories in 1985. Waste categories are defined as academic, medical, government, and industrial. New to the 1985 report is Appendix B, 1985 Assessments Listed By Ratified Compacts, as well as the proposed Western and Appalachian compacts. Inclusion of the most accurate information available from all sources has resulted in an improved national waste distribution profile of generator sectors. 11 refs

  13. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  14. Negotiating the voluntary siting of nuclear waste facilities

    International Nuclear Information System (INIS)

    Mussler, R.M.

    1992-01-01

    This paper discusses the Office of the Nuclear Waste Negotiator which was created by Congress with the purpose of seeking a voluntary host State or Indian tribe for a high level nuclear waste repository or monitored retrievable storage facility. Given the history of the Federal government's efforts at siting such facilities, this would appear to be an impossible mission. Since commencing operations in August 1990, the Office has accomplished perhaps more than had been expected. Some of the approaches it has taken to implementing this mission may be applicable to other endeavors

  15. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  16. Regulatory Support of Treatment of Savannah River Site Purex Waste

    International Nuclear Information System (INIS)

    Reid, L.T.

    2009-01-01

    This paper describes the support given by federal and state regulatory agencies to Savannah River Site (SRS) during the treatment of an organic liquid mixed waste from the Plutonium Extraction (Purex) process. The support from these agencies allowed (SRS) to overcome several technical and regulatory barriers and treat the Purex waste such that it met LDR treatment standards. (authors)

  17. Studies on site characterization methodologies for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Ju; Guo Yonghai; Chen Weiming

    2008-01-01

    This paper presents the final achievement of the project 'Studies of Site-specific Geological Environment for High Level Waste Disposal and Performance Assessment Methodology, Part Ⅰ: Studies on Site Characterization Methodologies for High Level Radioactive Waste Disposal', which is a 'Key Scientific and Technological Pre-Research Project for National Defense' during 2001-2005. The study area is Beishan area, Gansu Province, NW China--the most potential site for China's underground research laboratory and high level radioactive waste repository. The boreholes BS01, BS2, BS03 and BS04 drilled in fractured granite media in Beishan are used to conduct comprehensive studies on site characterization methodologies, including: bore hole drilling method, in situ measurement methods of hydrogeological parameters, underground water sampling technology, hydrogeochemical logging method, geo-stress measurement method, acoustic borehole televiewer measurement method, borehole radar measurement method, fault stability evaluation methods and rock joint evaluation method. The execution of the project has resulted in the establishment of an 'Integrated Methodological System for Site Characterization in Granite Site for High Level Radioactive Waste Repository' and the 8 key methodologies for site characterization: bore hole drilling method with minimum disturbance to rock mass, measurement method for hydrogeological parameters of fracture granite mass, in situ groundwater sampling methods from bore holes in fractured granite mass, fracture measurement methods by borehole televiewer and bore radar system, hydrogeochemical logging, low permeability measurement methods, geophysical methods for rock mass evaluation, modeling methods for rock joints. Those methods are comprehensive, advanced, innovative, practical, reliable and of high accuracy. The comprehensive utilization of those methods in granite mass will help to obtain systematic parameters of

  18. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  19. Waste acceptance criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies

  20. Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996

    Data.gov (United States)

    National Aeronautics and Space Administration — The Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996 consists of 2042 polygons for selected hazardous waste sites...

  1. Site selection criteria for shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Falconer, K.L.; Hull, L.C.; Mizell, S.A.

    1982-01-01

    Twelve site selection criteria are presented. These are: (1) site shall be of sufficient area and depth to accommodate the projected volume of waste and a three dimensional buffer zone; (2) site should allow waste to be buried either completely above or below the transition zone between the unsaturated and saturated zones; (3) site should be located where flooding will not jeopardize performance; (4) site should be located where erosion will not jeopardize performance; (5) site should be located in areas where hydrogeologic conditions allow reliable performance prediction; (6) site should be located where geologic hazards will not jeopardize performance; (7) site should be selected with considerations given to those characteristics of earth materials and water chemistry that favor increased residence times and/or attenuation of radionuclide concentrations within site boundaries; (8) site should be selected with consideration given to current and projected population distributions; (9) site should be selected with consideration given to current and projected land use and resource development; (10) site should be selected with consideration given to location of waste generation, access to all-weather highway and rail routes, and access utilities; (11) site should be selected consistent with federal laws and regulations; (12) site should not be located within areas that are protected from such use by federal laws and regulations. These criteria are considered preliminary and do not necessarily represent the position of the Department of Energy's Low-Level Waste Management Program

  2. User's manual for applicants proposing on-site burial of self-generated radioactive waste

    International Nuclear Information System (INIS)

    Tolbert, M.E.M.; Loretan, P.A.

    1987-01-01

    This document describes, for medical and research institutions as well as industrial generators of low-level radioactive waste, the NRC or state submittal requirements for authorizing the on-site burial of self-generated radioactive waste. An important part of completing the license application for operation justifying this alternative for waste disposal over other alternatives. Reasons that might be considered acceptable might include the need to dispose of large volumes of low activity waste that would otherwise take up valuable space in commercial sites; the ability to demonstrate that this method of disposal will result in reduced exposures to the public; the ability to show that the prohibitive costs of other methods of disposal would be detrimental to the progress of significant research which generates radioactive waste. 19 refs., 3 figs., 4 tabs

  3. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  4. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    International Nuclear Information System (INIS)

    Collins, M.S.; Borgstrom, C.M.

    2004-01-01

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and

  5. The disposal of solid radioactive wastes to land sites in the UK

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Phillipson, D.L.

    1984-01-01

    Solid radioactive waste management by land disposal, using a strategy laid down by the government, is discussed. Waste disposal at Drigg, and the proposals for the two preferred sites at Elstow (shallow burial) and Billingham (deep burial) are outlined. Nuclear Industry Radioactive Waste Executive (NIREX); safety; public acceptance; and the role of the private sector; are also described. (U.K.)

  6. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  7. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Habashi, F.

    2000-01-01

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  8. A novel methodology to estimate the evolution of construction waste in construction sites.

    Science.gov (United States)

    Katz, Amnon; Baum, Hadassa

    2011-02-01

    This paper focuses on the accumulation of construction waste generated throughout the erection of new residential buildings. A special methodology was developed in order to provide a model that will predict the flow of construction waste. The amount of waste and its constituents, produced on 10 relatively large construction sites (7000-32,000 m(2) of built area) was monitored periodically for a limited time. A model that predicts the accumulation of construction waste was developed based on these field observations. According to the model, waste accumulates in an exponential manner, i.e. smaller amounts are generated during the early stages of construction and increasing amounts are generated towards the end of the project. The total amount of waste from these sites was estimated at 0.2m(3) per 1m(2) floor area. A good correlation was found between the model predictions and actual data from the field survey. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Fires at storage sites of organic materials, waste fuels and recyclables.

    Science.gov (United States)

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  10. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  11. Site characterization report for the basalt waste isolation project. Volume II

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment

  12. Waste management practices to control biological transport of radioactivity at the Hanford Site

    International Nuclear Information System (INIS)

    Conklin, A.W.

    1985-01-01

    One of the goals of waste management in the Hanford Site 200 Areas is to prevent biological intrusion into, and transport from, waste storage and disposal sites. Practices established to achieve these goals include the elimination of deep-rooted vegetation on waste sites to prevent plant root intrusion into radioactivity, selective herbicide application to prevent regrowth of these plants, planting of shallow-rooted plants to successfully compete with deep-rooted plants for moisture, surface stabilization, and environmental surveillance. Past biological transport incidents have included transport by Russian thistle by way of physiological plant processes, bird access into exposed contamination, and animals burrowing into radioactive waste disposal sites. Rockwell Hanford Operations, through mitigative actions and continued surveillance, has made significant progress in eliminating, or better isolating source terms, thus preventing or inhibiting problems from recurring. Approximately 60% of source term acreage requiring stabilization or decontamination has been completed

  13. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project (RWMP) at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste (MW). The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B Permit application, pertinent DOE guidelines governing waste acceptance criteria (WAC) and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with as low as reasonably achievable (ALARA) precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  14. A review of the Hanford Site soil corrosion applicable to solid waste containers

    International Nuclear Information System (INIS)

    Divine, J.R.

    1991-05-01

    The first phase of the assessment of the soil corrosion in the solid waste burial grounds of the 200 Areas at the Hanford Site is completed with this review of both existing information developed at the site and relevant offsite information. Detailed soil corrosion data are needed for several reasons: (1) the possibility of predicting the damage to the containers of the retrievable stored transuranic waste that are under soil cover, (2) the feasibility of forecasting the state of waste containers being retrieved in remedial investigation/feasibility studies, (3) the capability of predicting subsidence of the soil over the waste containers, and (4) the capability of forecasting when stored lead shielding or hazardous chemicals might be exposed to the environment. Because corrosion in soils is dependent on the soil type, site-specific data are required even though offsite data can provide guidance on the type and the approximate extent of corrosion to expect. These data permit rough estimations of the corrosion rates of a variety of materials -- including carbon steels, cast irons, stainless steels, and lead -- in the Hanford Site soils. This report attempts to compile these data to facilitate current estimates of waste container longevity. However, because of the lack of well-documented, site-specific data, it is difficult to provide a definite life expectancy for waste containers and other structures. Consequently, additional data are essential for reliable container life estimates. 36 refs., 10 figs., 7 tabs

  15. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    International Nuclear Information System (INIS)

    Walker, D.D.

    2001-01-01

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively

  16. High-level radioactive waste disposal: Key geochemical issues and information needs for site characterization

    International Nuclear Information System (INIS)

    Brooks, D.J.; Bembia, P.J.; Bradbury, J.W.; Jackson, K.C.; Kelly, W.R.; Kovach, L.A.; Mo, T.; Tesoriero, J.A.

    1986-01-01

    Geochemistry plays a key role in determining the potential of a high-level radioactive waste disposal site for long-term radionuclide containment and isolation. The Nuclear Regulatory Commission (NRC) has developed a set of issues and information needs important for characterizing geochemistry at the potential sites being investigated by the Department of Energy Basalt Waste Isolation Project, Nevada Nuclear Waste Storage Investigations project, and Salt Repository Project. The NRC site issues and information needs consider (1) the geochemical environment of the repository, (2) changes to the initial geochemical environment caused by construction and waste emplacement, and (3) interactions that affect the transport of waste radionuclides to the accessible environment. The development of these issues and information needs supports the ongoing effort of the NRC to identify and address areas of geochemical data uncertainty during prelicensing interactions

  17. Radioactive waste on-site storage alternative

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1983-01-01

    The first, most frequently evaluated approach for the large producer is the construction of a relatively expensive storage building. However, with the likely possibility that at least one disposal site will remain available and the building never used, such expenditures are difficult to justify. A low cost, but effective alternative, is the use of ''On-Site Storage Containers'' (OSSC) when and if required. Radwaste is only stored in the OSSC if a disposal site is not available. A small number of OSSC's would be purchased initially just to assure immediate access to storage. Only in the unlikely event of total disposal sites closure would additional OSSC's have to be obtained and even this is cost effective. With two or three months of storage available on site, production lead time is sufficient for the delivery of additional units at a rate faster than the waste can be produced. The recommended OSSC design would be sized and shielding optimized to meet the needs of the waste generator. Normally, this would duplicate the shipping containers (casks or vans) currently in use. The reinforced concrete design presented is suitable for outside storage, contains a leakproof polyethylene liner and has remote sampling capability. Licensing would be under 10CFR50.59 for interim storage with long-term storage under 10CFR30 not an impossibility. Cost comparisons of this approach vs. building construction show that for a typical reactor plant installation, the OSSC offers direct savings even under the worst case assumption that no disposal sites are available and the time value of money is zero

  18. Analysis of the reduction in waste volumes received for disposal at the low-level radioactive waste site in the State of Washington

    International Nuclear Information System (INIS)

    Ko, S.

    1988-01-01

    The commercial low-level radioactive waste (LLRW) disposal site at Richland, Washington has been receiving waste from generators nationwide since 1965 and is one of the three sites in the nation currently receiving commercial LLRW for disposal. In the past, volumes of LLRW have been increasing steadily, however, this trend has reversed since 1986. This paper addresses waste volume and activity of the waste disposed, factors which have caused this dramatic reduction in LLRW volume, and regulatory concerns regarding environmental protection, and public and occupational health and safety. Future volumes of LLRW that are disposed at the Richland site depend on economic, technological, political and regulatory variables. Provided there is a continual increase in industrial growth, and a demand for medical research and diagnosis, the volume of LLRW increases. However, this volume also offsets by an increase in demand for volume reduction due to economic and institutional pressures. Yet, if all generators continue to volume reduce their LLRW, some time in future, a limit will be reached when the facility site operator needs to increase the unit disposal cost to cover the fixed cost and maintain a profit margin in order to operate the site

  19. Site characterization report for the basalt waste isolation project. Volume III

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 3 contains chapters 13 through 19: site issues and plans; geoengineering and repository design issues and plans; waste package and site geochemistry issues and plans; performance-assessment issues and plans; site characterization program; quality assurance; and identification of alternate sites

  20. Data quality objectives for the 100-D Group 2 waste sites

    International Nuclear Information System (INIS)

    1996-08-01

    The 100-D Area contains 10 past-practice, liquid waste disposal sites associated with two plutonium-production nuclear reactors that operated from 1944 to 1965. It is estimated that 134,000 loose cubic meters of soil and structural debris are contaminated with various radionuclides and metals. The 100-Area interim record of decision specified that the waste sites were to be remediated to the extent practicable to protect human health and the environment, and to allow unrestricted future use of the area. The Data Quality Objective process for the 100-D Area waste sites is a US Environmental Protection Agency-required approach to planning and coordinating data acquisition. This process is also used as a decision-making tool to assess the use of historical or previously acquired data and establishes interfaces and promotes communication with key decision makers and other stakeholders

  1. Siting a low-level waste facility

    International Nuclear Information System (INIS)

    English, M.R.

    1988-01-01

    In processes to site disposal facilities for low-level radioactive waste, volunteerism and incentives packages hold more promise for attracting host communities than they have for attracting host states. But volunteerism and incentives packages can have disadvantages as well as advantages. This paper discusses their pros and cons and summarizes the different approaches that states are using in their relationships with local governments

  2. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  3. Polybrominated diphenyl ethers in e-waste: Level and transfer in a typical e-waste recycling site in Shanghai, Eastern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling

    2014-06-01

    Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.

  4. Waste acceptance and waste loading for vitrified Oak Ridge tank waste

    International Nuclear Information System (INIS)

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC''s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC

  5. The role of economic incentives in nuclear waste facility siting

    International Nuclear Information System (INIS)

    Davis, E.M.

    1986-01-01

    There is a need to provide some public benefit and/or reward for accepting a ''locally unwanted land use'' (LULU) facility such as a nuclear waste storage or disposal facility. This paper concludes that DOE, Congress and the states should immediately quantify an economic incentive for consideration ''up front'' by society on siting decisions for nuclear waste storage and disposal facilities

  6. Nuclear waste repository siting and locational conflict analysis: A contextual approach

    International Nuclear Information System (INIS)

    Murauskas, G.T.

    1989-01-01

    This study develops and evaluates an alternative framework that is based on contextual variables. The premise is that differences in attitudes and perceptions regarding the local siting of nuclear wastes and differences in attitudes regarding siting decision-making procedures are influenced by local political, economic, and cultural variables. This framework articulates the nature of conflict in terms of the incongruence between the use-value individuals ascribe to their present situation and the anticipated exchange-value individuals associate with the local siting of a nuclear waste repository. In order to evaluate this conceptual framework a survey was conducted of residents in four communities representing distinct societal contexts: Richton, Mississippi; Peterborough, New Hampshire; Richland, Washington; and Antigo/Waupaca, Wisconsin. Data analyses indicate substantial differences in economic expectations associated with the local siting of a high-level nuclear waste repository and in perception regarding the impacts such a repository might have on the environment, local agriculture, personal health and safety, and the quality of life

  7. Development and assessment of closure technology for liquid-waste disposal sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Relyea, J.F.; Seitz, R.R.; Cammann, J.W.

    1990-01-01

    Discharge of low-level liquid wastes into soils was practiced previously at the Hanford Site. Technologies for long-term confinement of subsurface contaminants are needed. Additionally, methods are needed to assess the effectiveness of confinement technologies in remediating potentially diverse environmental conditions. Recently developed site remediation systems and assessment methods for in situ stabilization and isolation of radioactive and other contaminants within and below low-level liquid-waste disposal structures are summarized

  8. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta's K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports

  9. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    International Nuclear Information System (INIS)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2

  10. Environmental Assessment for the Independent Waste Handling Facility, 211-F at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Currently, liquid Low Activity Waste (LAW) and liquid High Activity Waste (HAW) are generated from various process operational facilities/processes throughout the Savannah River Site (SRS) as depicted on Figure 2-1. Prior to storage in the F-Area tank farm, these wastes are neutralized and concentrated to minimize their volume. The Waste Handling Facility (211-3F) at Building 211-F Complex (see Figure 2-2) is the only existing facility onsite equipped to receive acidic HAW for neutralization and volume reduction processing. Currently, Building 221-F Canyon (see Figure 2-2) houses the neutralization and evaporation facilities for HAW volume reduction and provides support services such as electric power and plant, process, and instrument air, waste transfer capabilities, etc., for 21 1-F operations. The future plan is to deactivate the 221-F building. DOE`s purpose is to be able to process the LAW/HAW that will continue to be generated on site. DOE needs to establish an alternative liquid waste receipt and treatment capability to support site facilities with a continuing mission. The desire is for Building 211-F to provide the receipt and neutralization functions for LAW and HAW independent of 221-F Canyon. The neutralization capability is required to be part of the Nuclear Materials Stabilization Programs (NMSP) facilities since the liquid waste generated by the various site facilities is acidic. Tn order for Waste Management to receive the waste streams, the solutions must be neutralized to meet Waste Management`s acceptance criteria. The Waste Management system is caustic in nature to prevent corrosion and the subsequent potential failure of tanks and associated piping and hardware.

  11. TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE

    International Nuclear Information System (INIS)

    HAMILTON, D.W.

    2006-01-01

    Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble 137 Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in 137 Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005

  12. TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    HAMILTON, D.W.

    2006-01-03

    Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble {sup 137}Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in {sup 137}Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005.

  13. Environmental-pathways analysis for evaluation of a low-level waste disposal site

    International Nuclear Information System (INIS)

    Lee, D.W.; Ketelle, R.H.; Pin, F.G.; Hill, G.S.

    1983-01-01

    The suitability of a site for the shallow land burial of low-level waste is evaluated by an environmental-pathways analysis. The environmental-pathways analysis considers the probable paths for the transport of contamination to man and models the long-term transport of contamination to determine the resulting dose-to-man. The model of the long-term transport of contamination is developed for a proposed site using data obtained from a comprehensive laboratory and field investigation. The proposed site is located at the US Department of Energy Portsmouth Reservation, Piketon, Ohio and is planned to accept low-level radioactive waste generated by the enrichment of uranium. Laboratory studies were performed to characterize the waste and determine the wastes' leaching and retardation characteristics with site soils and groundwater. Comprehensive drilling, sampling and laboratory investigations were performed to provide the necessary information for interpreting the site's geology and hydrology. Field tests were performed to further quantify the site's hydrology. The pathway of greatest concern is the migration of contaminated groundwater and subsequent consumption by man. This pathway was modeled using a numerical simulation of the long-term transport of contamination. Conservative scenarios were developed for leachate generation and migration through the geohydrologic system. The dose-to-man determined from the pathways analysis formed the basis for evaluating site acceptability and providing recommendations for site design and development

  14. Environmental pathways analysis for evaluation of a low-level waste disposal site

    International Nuclear Information System (INIS)

    Lee, D.W.; Ketelle, R.H.; Pin, F.G.; Hill, G.S.

    1984-01-01

    The suitability of a site for the shallow land burial of low-level waste is evaluated by an environmental pathways analysis. The environmental pathways analysis considers the probable paths for the transport of contamination to man and models the long-term transport of contamination to determine the resulting dose to man. The model of the long-term transport of contamination is developed for a proposed site using data obtained from a comprehensive laboratory and field investigation. The proposed site is located at the US Department of Energy Portsmouth Reservation, Piketon, Ohio, and is planned to accept low-level radioactive waste generated by the enrichment of uranium. Laboratory studies were performed to characterize the waste and determine the wastes' leaching and retardation characteristics with site soils and groundwater. Comprehensive drilling, sampling and laboratory investigations were performed to provide the necessary information for interpreting the site's geology and hydrology. Field tests were performed to further quantify the site's hydrology. The pathway of greatest concern is the migration of contaminated groundwater and subsequent consumption by man. This pathway was modelled using a numerical simulation of the long-term transport of contamination. Conservative scenarios were developed for leachate generation and migration through the geohydrologic system. The dose to man determined from the pathways analysis formed the basis for evaluating site acceptability and providing recommendations for site design and development. (author)

  15. Ozone destruction of Hanford Site tank waste organics

    International Nuclear Information System (INIS)

    Colby, S.A.

    1993-04-01

    Ozone processing is one of several technologies being developed to meet the intent of the Secretary of the US Department of Energy, Decision on the Programmatic Approach and Near-Term Actions for Management and Disposal of Hanford Tank Waste Decision Statement, dated December 20, 1991, which emphasizes the need to resolve tank safety issues by destroying or modifying the constituents (e.g., organics) that cause safety concerns. As a result, the major tank treatment objectives on the Hanford Site are to resolve the tank safety issues regarding organic compounds (and accompanying flammable gas generation), which all potentially can react to evolve heat and gases. This report contains scoping test results of an alkaline ozone oxidation process to destroy organic compounds found in the Hanford Site's radioactive waste storage tanks

  16. Incentives and nuclear waste siting: Prospects and constraints

    International Nuclear Information System (INIS)

    Carnes, S.A.; Copenhaver, E.D.; Sorensen, J.H.; Soderstrom, E.J.; Reed, J.H.; Bjornstad, D.J.; Peelle, E.

    1983-01-01

    Limited anecdotal evidence from existing incentive-based facility sitings, and from a survey of rural Wisconsin residents in 1980 regarding the acceptability of a nuclear waste repository, indicates that incentives may help ahcieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward), and prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. 54 references, 1 figure, 4 tables

  17. Ecologic assessment of closure options for Savannah River Plant waste sites: Task 38, AX-681812

    International Nuclear Information System (INIS)

    1987-01-01

    Ecologic assessment of closure options is one of several analyses being documented in the EIDs (along with analysis of relative potential health risks, accident risks, and costs). This information will serve as a basis for choosing the best option for closing a particular waste facility. This report presents the methodology adopted for SRP waste site ecological assessment, and the results of its application. The results of the ecologic assessment indicated that no impacts are expected for any of the closure options at eleven sites. Significant ecologic impacts are possible at the eight waste sites or groups of waste sites including the Radioactive Waste Burial Grounds, Old TNX Seepage Basin, CMP Pits, F-Area Seepage Basins, H-Area Seepage Basins, SRL Seepage Basins, R-Reactor Seepage Basins, and L-Area Oil and Chemical Basin. 104 refs., 22 figs., 241 tabs

  18. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  19. 1981 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1982-12-01

    This state-by-state report again uses the volume of low-level waste reported as received at each commercial disposal site as the nation baseline figure. A volume of 87,789 m 3 of radioactive waste containing 279,863 Ci of activity was reported disposed at the commercial sites in 1981. The distribution of these waste volumes by disposal site is presented in Table 1 and a summary of estimated volumes by generator categories is contained in Table 2. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Data reported for the calendar year 1981 were used for this report where available. When report data were not available reactor information was obtained directly from the utility. The reported quantities of solid radioactive wastes generated by government installations shipped to commercial disposal sites are annually summarized in the SWIMS report. Records of radioactive wastes shippped to commercial disposal sites from the US Navy nuclear-powered ships and support facilities are maintained by the Nuclear Power Directorate, Naval Sea Systems Command, Department of the Navy, and are reported on an annual basis. Available information from other military departments such as the Army and the Air Force were included in this study. Wastes from these other military commands do not constitute a significant volume of radioactive source

  20. Critical (public) masses: a case study of a radioactive waste site

    International Nuclear Information System (INIS)

    Williams, R.G.; Payne, B.A.

    1985-01-01

    Increasing public sensitivity to radioactive and other hazardous waste issues often results in opposition that ranges from presentations by individuals at various public meetings to organizations initiating legal action in the courts. Organized opposition to proposed plans by the US Department of Energy (DOE) for a Surplus Facilities Management Program site near Weldon Spring, Missouri, has emerged during the two years that DOE has been involved in developing plans for this waste management site. An important aspect in the development of the major interest group in this case was the reliance on extra-local expertise at both the state and national levels. The group received organizational strategies, information on radioactive waste, legal advice, and direction from state and local environmental interest groups and various state agencies. In this paper, the authors present the historical development of organized public response and agency response to DOE's plans for the Weldon Spring site. The role of the interest group has emerged as one of a watchdog, scrutinizing and evaluating data publications, and plans. Other organizations now rely on the group as a clearinghouse for information. This case is of particular importance to other waste management projects because it demonstrates the effective use of networking between various interest groups and agencies from the local to the national level. The authors believe that the emergence of such groups and their ties with a variety of extra-local organizations will be the rule rather than the exception in future waste projects. Agency personnel and project sponsors will find that an interactive, cooperative approach with such groups is an effective way to resolve waste issues. 9 references

  1. Critical (public) masses: a case study of a radioactive waste site

    International Nuclear Information System (INIS)

    Williams, R.G.; Payne, B.A.

    1985-01-01

    Increasing public sensitivity to radioactive and other hazardous waste issues often results in opposition that ranges from presentations by individuals at various public meetings to organizations initiating legal action in the courts. Organized opposition to proposed plans by the US Department of Energy (DOE) for a Surplus Facilities Management Program site near Weldon Spring, Missouri, has emerged during the two years that DOE has been involved in developing plans for this waste management site. An important aspect in the development of the major interest group in this case was the reliance on extra-local expertise at both the state and national levels. The group received organizational strategies, information on radioactive waste, legal advice, and direction from state and local environmental interest groups and various state agencies. In this paper, we present the historical development of organized public response and agency response to DOE's plans for the Weldon Spring site. The role of the interest group has emerged as one of a watchdog, scrutinizing and evaluating data, publications, and plans. Other organizations now rely on the group as a clearinghouse for information. This case is of particular importance to other waste management projects because it demonstrates the effective use of networking between various interest groups and agencies from the local to the national level. We believe that the emergence of such groups and their ties with a variety of extra-local organizations will be the rule rather than the exception in future waste projects. Agency personnel and project sponsors will find that an interactive, cooperative approach with such groups is an effective way to resolve waste issues

  2. Introduction to Waste Engineering

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management as introduced in Chapter 1.1 builds in many ways on engineering. Waste engineering here means the skills and ability to understand quantitatively how a waste management system works in such a detail that waste management can be planned, facilities can be designed and sited......) regional plans for waste management, including (3) the selection of main management technologies and siting of facilities, (4) the design of individual technological units and, for example, (5) the operation of recycling schemes within a municipality. This chapter gives an introduction to waste engineering...

  3. Effect of phosphogypsum on workers and population's radiation exposure in vicinity of phosphogypsum waste burial site

    International Nuclear Information System (INIS)

    Othman, I.; Hushari, M.; Raja, G.; Sawaf, A.

    1998-01-01

    The phosphogypsum waste burial site was studied in more details of radiation viewpoint. This waste results from phosphate industry. The study covered ground water, nearby houses, air and emission rates of radon from this waste burial site. Results showed increasing of radiation exposure in the studied site and nearby area for both workers and population. Fortunately, this area was studied before instruction of the waste burial site. So it was easy to compare the new results with the previous ones and see the difference. Indoor radon concentration increased about 70%. Results also showed high emission rates which result in significant dose. The site needs continuous monitoring because the amount of phosphogypsum is increasing. Also groundwater should be monitored continuously to see the effect of the waste in the future if it happened. (author)

  4. Assessment of residual DDE at four remediated Hanford waste sites, Richland, Washington

    International Nuclear Information System (INIS)

    Linville, J.K.

    1999-01-01

    The objectives of this study were to determine the extent and distribution of residual DDE, a metabolite of dichlorodiphenyltrichloroethane (DDT), across the four waste sites by sampling ground-dwelling insects and bird eggs, evaluating the use of insects for monitoring contamination pathways, and determining the species of passerine birds present and the number of nesting pairs utilizing the waste sites

  5. 1982 State-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 75,891 cubic meters of radioactive waste containing 413,898 curies of activity was reported disposed at the commercial sites in 1982. The distribution of these waste volumes by disposal site is presented in Table 1. Table 2 summarizes estimated volumes by generator categories. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity by disposal site for each state. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Data reported for the calendar year 1982 were used for this report where available. When report data were not available, reactor information was obtained directly from the utility

  6. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    International Nuclear Information System (INIS)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems

  7. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  8. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  9. Design report for the interim waste containment facility at the Niagara Falls Storage Site

    International Nuclear Information System (INIS)

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection

  10. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  11. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-01-01

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  12. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no

  13. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  14. Environmental Restoration and Waste Management Site-Specific Plan (SSP) for fiscal year 1992 (FY92)

    International Nuclear Information System (INIS)

    1991-09-01

    The FY-92 Site-Specific Plan (FY-92 SSP) for environmental restoration and waste management at the Idaho National Engineering Laboratory (INEL) is designed to provide the reader with easy access to the status of environmental restoration and waste management activities at INEL. The first chapter provides background on INIEL's physical environment, site history and mission, and general information about the site and its facilities. In addition, this chapter discusses the inter-relationships between the Site Specific Plan, the Environmental Restoration and Waste Management Five-Year Plan, the environmental restoration and waste management prioritization systems, and the Activity Data Sheets (ADSs) for environmental restoration and waste management. This discussion should help readers understand what the SSP is and how it fits into the environmental restoration and waste management process at INEL. This understanding should provide the reader with a better context for understanding the discussions in the SSP as well as a better feel for how and what to comment on during the public comment period that will be held from the first of September through the end of October 1991

  15. Laboratory testing of ozone oxidation of Hanford site waste

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.; Colby, S.A.

    1994-01-01

    Organic constituents in radioactive waste stored in underground tanks at the U.S. Department of Energy's Hanford Site provoke safety concerns arising from their low-temperature reactions with nitrate and nitrite oxidants. Destruction of the organics would eliminate both safety problems. Oxone oxidation was investigated to destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101. Bench-scale tests showed high-shear mixing apparatus achieved efficient gas-to-solution mass transfer and utilization of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics formed carbonate and oxalate as well as nitrate and nitrogen gas from organic nitrogen. Formate, acetate and oxalate were present both in source waste and as reaction intermediates. Metal species oxidations also were observed directly or inferred by solubilities. Chemical precipitations of metal ions such as strontium and americium occurred as the organic species were destroyed by ozone. Reaction stoichiometries were consistent with the reduction of one oxygen atom per ozone molecule

  16. Delegated democracy. Siting selection for the Swedish nuclear waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2008-11-01

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case studies can be described as delegated democracy. This means that a large

  17. Site selection criteria for the shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Falconer, K.L.; Hull, L.C.; Mizell, S.A.

    The shallow land burial of low-level waste must be accomplished in a manner that ensures the public and biosphere are protected from harmful amounts of radiation. This can be attained by selecting, designing, operating and closing sites such that contaminants never leave the site boundary in levels above regulatory limits. Site design, operation and closure are all functions of the characteristics of the site selected. As a result, the site selection process offers the most effective means for optimizing safe, efficient and economical low-level waste burial practices. The purpose of this document is to set forth criteria for the selection of shallow land burial sites. Criteria are standard rules, by which the ability of a site to meet waste management goals can be judged. They are comprehensive, universal, and qualitative and are applicable in any geologic environment. Site selection criteria provide the framework for the siting process

  18. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  19. Solidification Tests Conducted on Transuranic Mixed Oil Waste (TRUM) at the Rocky Flats Environmental Technology Site (RFETS)

    International Nuclear Information System (INIS)

    Brunkow, W. G.; Campbell, D.; Geimer, R.; Gilbreath, C.; Rivera, M.

    2002-01-01

    Rocky Flats Environmental Technology Site (RFETS) near Golden, Colorado is the first major nuclear weapons site within the DOE complex that has been declared a full closure site. RFETS has been given the challenge of closing the site by 2006. Key to meeting this challenge is the removal of all waste from the site followed by site restoration. Crucial to meeting this challenge is Kaiser-Hill's (RFETS Operating Contractor) ability to dispose of significant quantities of ''orphan'' wastes. Orphan wastes are those with no current disposition for treatment or disposal. Once such waste stream, generically referred to as Transuranic oils, poses a significant threat to meeting the closure schedule. Historically, this waste stream, which consist of a variety of oil contaminated with a range of organic solvents were treated by simply mixing with Environstone. This treatment method rendered a solidified waste form, but unfortunately not a TRUPACT-II transportable waste. So for the last ten years, RFETS has been accumulating these TRU oils while searching for a non-controversial treatment option

  20. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs

  1. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    David B. Hudson, Cathy A. Wills

    2006-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  2. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  3. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  4. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    International Nuclear Information System (INIS)

    Cafferty, Kara Grace

    2017-01-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  5. Hydrogeologic data for existing excavations and the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1993-12-01

    The Special Projects Section of Reynolds Electrical ampersand Engineering Co., Inc. is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Office of Environmental Restoration and Waste Management Waste Management Division. Geologic description, in situ testing, and laboratory analyses of alluvium exposed in existing excavations are important subparts to the Area 5 Site Characterization Program designed to determine the suitability of the RWMS for disposal of low level waste mixed waste and transuranic waste. The primary purpose of the Existing Excavation Project is two-fold: first, to characterize important hydrologic properties of the near surface alluvium, thought to play an important role in the infiltration and redistribution of water and solutes through the upper unsaturated zone at the Area 5 RWMS; and second, to provide guidance for the design of future sampling and testing programs. The justification for this work comes from the state of Nevada review of the original DOE/NV Part B Permit application submitted in 1988 for disposal of mixed wastes at the RWMS. The state of Nevada determined that the permit was deficient in characterization data concerning the hydrogeology of the unsaturated zone. DOE/NV agreed with the state and proposed the study of alluvium exposed in existing excavations as one step toward satisfying these important site characterization data requirements. Other components of the site characterization process include the Science Trench Borehole and Pilot Well Projects

  6. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  7. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  8. Use of risk to resolve conflicts in assessing hazards at mixed-waste sites

    International Nuclear Information System (INIS)

    Rechard, R.P.; Chu, M.S.Y.

    1991-01-01

    Two main issues contribute to the assessment of health hazard from mixed waste: the scientific methods to assess these materials and the legislative and regulatory control of these materials. This paper is primarily concerned with the scientific method of assessing hazards from mixed waste (i.e., carcinogenic chemicals, noncarcinogenic chemicals, and radioactive material). This paper discusses SRS, a Site Ranking System, and its use of risk concepts to avoid introducing new inconsistencies when ranking mixed-waste sites. SRS ranks each site by scoring factors that influence the human health risk. The factors are (1) the potentially exposed population, (2) the average amount of exposure to the waste, and (3) the toxicity of the waste. The relative risk of a release is measured as the product of these three factors. The third factor, toxicity, is indexed with a single score, but because methods of measuring toxicity differ for carcinogenic chemicals, noncarcinogenic chemicals, and radionuclides, comparison can be difficult; hence, this paper also summarizes the logic and assumptions used to make toxicity comparisons in SRS. As may be expected, results from a ranking scheme based on risk are different from results generated by the original Hazard Ranking System (HRS), used by the Environmental Protection Agency. This paper briefly discusses these differences for five Superfund sites (no mixed waste). The legislative and regulatory control of these materials to protect human health is also discussed. 37 refs., 1 tab

  9. Archaeological reconnaissance of a proposed site for the Waste Isolation Plant (WIPP)

    International Nuclear Information System (INIS)

    Nielsen, J.

    1976-01-01

    An archaeological reconnaissance was carried out on Sections 20, 21, 28, and 29 of T 22 S, R 31 E, Eddy County, NM, the core area of a site proposed for disposal of radioactive waste in bedded salt (the Waste Isolation Pilot Plant). This site is located in the Los Medanos area east of Carlsbad, NM. Results of the survey are presented in sections on survey techniques, geology, terrain, floristics, cultural resources, theoretical considerations, site description, and recommendations

  10. The transport implications of siting policies for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    James, I.A.

    1986-01-01

    This report has been produced to be complementary to the previously issued report ''The Transport Implications of Regional Policies for The Disposal of Intermediate Level Radioactive Wastes''. The same combinations of disposal facilities have been used so that direct comparison with intermediate waste results can be made. Low level wastes and short-lived intermediate level wastes for near-surface disposal are assumed to share a common infrastructure on the rail system and hence a methodology of separating total costs between these two waste types has been derived. Two transport modes, road and rail have been analysed. Hybrid transport, a combination of road and rail systems, has not been examined since no site is considered to produce sufficient waste to justify a dedicated rail service. Sellafield, has not been included in this examination since it is assumed to be served by its own disposal site at Drigg. (author)

  11. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    International Nuclear Information System (INIS)

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches

  12. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL's ER and WM programs as managed by DOE's Idaho Field Office (DOE-ID)

  13. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL`s ER and WM programs as managed by DOE`s Idaho Field Office (DOE-ID).

  14. Cost effectiveness of below-threshold waste disposal at DOE sites

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1987-01-01

    A minimal health and environmental risk, limitations on disposal capacity, and the relatively high costs of low level waste (LLW) disposal are basic driving forces that lead to consideration of less restrictive disposal of wastes with very low levels of radiological contamination. The term threshold limit describes radioactive wastes that have sufficiently low-levels of radiological content to be managed according to their nonradiological properties. Given the efforts described elsewhere to provide guidance on the definition of below threshold (BT) doses and concentration levels, the purpose of this study was to quantify the resultant quantities, costs and cost effectiveness of BT disposal. For purposes of consistency with the previous demonstrations of the application of the threshold concept, available data for waste streams at the Idaho National Engineering Laboratory (INEL) and the Savannah River Plant (SRP) sites were collected and analyzed with regard to volumes, radionuclide concentrations, and disposal costs. From this information, quantities of BT waste, potential cost savings and cost effectiveness values were estimated. 1 reference, 5 tables

  15. Mass spectrometry analysis of tank wastes at the Hanford Site

    International Nuclear Information System (INIS)

    Campbell, J.A.; Mong, G.M.; Clauss, S.A.

    1995-01-01

    Twenty-five of the 177 high-level waste storage tanks at the Hanford Site in southeastern Washington are being watched closely because of the possibility that flammable gas mixtures may be produced from the mixed wastes contained in the storage tanks. One tank in particular, Tank 241-SY-101 (Tank 101-SY), has exhibited episodic releases of flammable gas mixtures since its final filling in the early 1980s. It has been postulated that the organic compounds present in the waste may be precursors to the production of hydrogen. Mass spectrometry has proven to be an invaluable tool for the identification of organic components in wastes from Tank 101-SY and C-103. A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unresolved Safety Question concerning the potential for a floating organic layer in Hanford Waste Tank 241-C-103 to sustain a pool fire. The aqueous layer underlying the floating organic material was also analyzed for organic components

  16. Effect of phosphogypsum on workers and population's radiation exposure in vicinity of phosphogypsum waste burial site

    International Nuclear Information System (INIS)

    Othman, I.; Hushari, M.; Raja, G.; Sawaf, A.M.

    1997-05-01

    The phosphogypsum waste burial site was studied in more details of radiation viewpoint. This waste results from phosphate industry. The study covered ground water, nearby houses, air and emission rates of radon from this waste burial site. Results showed increasing of radiation exposure in the studied site and nearby area for both workers and population. Fortunately, this area was studied before instruction of the waste burial site. So it was easy to compare the new results with the previous ones and see the difference. Indoor radon concentration increased about 70%. Results also showed high emission rates which result in significant dose. The site needs continuous monitoring because the amount of phosphogypsum is increasing. Also groundwater should be monitored continuously to see the effect of the waste in the future if it happened. (author). 5 refs., 7 figs., 5 tabs

  17. Dimensionality of heavy metal distribution in waste disposal sites using nonlinear dynamics

    International Nuclear Information System (INIS)

    Modis, Kostas; Komnitsas, Kostas

    2008-01-01

    Mapping of heavy metal contamination in mining and waste disposal sites usually relies on geostatistical approaches and linear stochastic dynamics. The present paper aims to identify, using the Grassberger-Procaccia correlation dimension (CD) algorithm, the existence of a nonlinear deterministic and chaotic dynamic behaviour in the spatial pattern of arsenic, manganese and zinc concentration in a Russian coal waste disposal site. The analysis carried out yielded embedding dimension values ranging between 7 and 8 suggesting thus from a chaotic dynamic perspective that arsenic, manganese and zinc concentration in space is a medium dimensional problem for the regionalized scale considered in this study. This alternative nonlinear dynamics approach may complement conventional geostatistical studies and may be also used for the estimation of risk and the subsequent screening and selection of a feasible remediation scheme in wider mining and waste disposal sites. Finally, the synergistic effect of this study may be further elaborated if additional factors including among others presence of hot spots, density and depth of sampling, mineralogy of wastes and sensitivity of analytical techniques are taken into account

  18. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  19. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requiremenrs of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs

  20. Power from waste. [Power plant at landfill site

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1991-01-01

    Base Load Systems Ltd, a company in the United Kingdom, has just commissioned a power plant in Leicestershire which uses waste gases from a landfill site. The gases power two specially modified turbo charged engine and generator packages. The plant will use approximately 100 cu meters of landfill gas per hour and is expected to feed 1.5MW of electrical power into the supply network of East Midlands Electricity. Once the landfill site has been completely filled and capped with clay, it is estimated that the electrical power output will be 4 MW. At present, since their are no customers for heat in the vicinity, 100 KW of the electricity produced are used to run fans to dissipate the 2.5 MW of waste heat. Base load is also involved elsewhere in combined heat and power projects. (UK).

  1. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  2. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  3. Environmental restoration and waste management site-specific plan for Richland Operations Office

    International Nuclear Information System (INIS)

    1991-09-01

    This document was prepared to implement and support the US Department of Energy-Headquarters (DOE-HQ) national plan. The national plan, entitled Environmental Restoration and Waste Management Five-Year Plan (DOE 1990b) (hereinafter referred to as the DOE-HQ Five-Year Plan) is the cornerstone of the US Department of Energy's (DOE) long-term strategy in environmental restoration and waste management. The DOE-HQ Five-Year Plan addresses overall philosophy and environmental and waste-related activities under the responsibilities of the DOE Office of Environmental Restoration and Waste Management. The plan also reaffirms DOE-HQ goals to bring its nuclear sites into environmental compliance in cooperation with its regulators and the public, and to clean up and restore the environment by 2019 (the commitment for the Hanford Site is for one year sooner, or 2018). This document is part of the site-specific plan for the US Department of Energy-Richland Operations Office (DOE-RL). It is the first revision of the original plan, which was dated December 1989 (DOE-RL 1989a). This document is a companion document to the Overview of the Hanford Cleanup Five-Year Plan (DOE-RL 1989d) and The Hanford Site Environmental Restoration and Waste Management Five-Year Plan Activity Data Sheets (DOE-RL 1991). Although there are three documents that make up the complete DOE-RL plan, this detailed information volume was prepared so it could be used as a standalone document. 71 refs., 40 figs., 28 tabs

  4. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but

  5. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  6. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  7. Site selection handbook: Workshop on site selection for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires the Department of Energy (DOE) to provide technical assistance to ''...those compact regions, host States and nonmember States determined by the Secretary to require assistance.'' Technical assistance has been defined to include, but not be limited to, ''technical guidelines for site selection.'' This site selection workshop was developed to assist States and Compacts in developing new low-level radioactive waste (LLW) disposal sites in accordance with the requirements of the LLRWPAA. The workshop comprises a series of lectures, discussion topics, and exercises, supported by this Site Selection Workshop Handbook, designed to examine various aspects of a comprehensive site selection program. It is not an exhaustive treatment of all aspects of site selection, nor is it prescriptive. The workshop focuses on the major elements of site selection and the tools that can be used to implement the site selection program

  8. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  9. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  10. Projecting future solid waste management requirements on the Hanford Site

    International Nuclear Information System (INIS)

    Shaver, S.R.; Stiles, D.L.; Holter, G.M.; Anderson, B.C.

    1990-09-01

    The problem of treating and disposing of hazardous transuranic (TRU), low-level radioactive, and mixed waste has become a major concern of the public and the government. At the US Department of Energy's Hanford Site in Washington state, the problem is compounded by the need to characterize, retrieve, and treat the solid waste that was generated and stored for retrieval during the past 20 years. This paper discusses the development and application of a Solid Waste Projection Model that uses forecast volumes and characteristics of existing and future solid waste to address the treatment, storage, and disposal requirements at Hanford. The model uses a data-driven, object-oriented approach to assess the storage and treatment throughout requirements for each operation for each of the distinct waste classes and the accompanying cost of the storage and treatment operations. By defining the elements of each alternative for the total waste management system, the same database can be used for numerous analyses performed at different levels of detail. This approach also helps a variety of users with widely varying information requirements to use the model and helps achieve the high degree of flexibility needed to cope with changing regulations and evolving treatment and disposal technologies. 2 figs

  11. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area

  12. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  13. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  14. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 3, Site specific---Illinois through New York

    International Nuclear Information System (INIS)

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: Argonne National Laboratory-East; Site A/plot M in Palos Forest Preserve, Illinois; Ames Laboratory; Paducah Gaseous Diffusion Plant; Portsmouth Naval Shipyard; Kansas City Plant; University of Missouri; Weldon Springs Site, St. Charles, Missouri; Nevada Test Site; Middlesex Sampling Plant, Middlesex, New Jersey; Princeton Plasma Physics Laboratory; LANL; Sandia national laboratory; Brookhaven National Laboratory; Colonie Interim Storage Site, Colonie, New York; Knolls Atomic Power Laboratory; Knolls Atomic Power Laboratory-Kesselring Site; and West Valley Demonstration Project

  15. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  16. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  17. Preliminary Hanford Waste Vitrification Plan Waste Form Qualification Plan

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1987-09-01

    This Waste Form Qualification Plan describes the waste form qualification activities that will be followed during the design and operation of the Hanford Waste Vitrification Plant to ensure that the vitrified Hanford defense high-level wastes will meet the acceptance requirements of the candidate geologic repositories for nuclear waste. This plan is based on the defense waste processing facility requirements. The content of this plan is based on the assumption that the Hanford Waste Vitrification Plant high-level waste form will be disposed of in one of the geologic repository projects. Proposed legislation currently under consideration by Congress may change or delay the repository site selection process. The impacts of this change will be assessed as details of the new legislation become available. The Plan describes activities, schedules, and programmatic interfaces. The Waste Form Qualification Plan is updated regularly to incorporate Hanford Waste Vitrification Plant-specific waste acceptance requirements and to serve as a controlled baseline plan from which changes in related programs can be incorporated. 10 refs., 5 figs., 5 tabs

  18. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    International Nuclear Information System (INIS)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks

  19. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks.

  20. Research in the selection of very low level radioactive waste disposal site in southwest China

    International Nuclear Information System (INIS)

    Tuo, Xianguo; Long, Qiong; Zhong, Hongmei; Xu, Zhengqi; Mu, Keliang; Gao, Lan

    2008-01-01

    The ultimate goal of Chinese Radioactive Nuclear Waste Management and Disposal Security is that must use proper and optimized ways to manage radioactive waste and make sure human beings and the environment either at the present or in the future can be free from any unacceptable risks. According to the goal, this paper presents an overview of comprehensive site characterization work that comprises investigations of physical geography, climatology, geology and hydrogeology, as well as geological hazard on two candidate Very Low Level Radioactive Waste (VLLW) disposal sites (Site 1 and Site 2) which are both located in the south west of China. The results showed that there are many similarities in the regional extent of the two sites, but many distinct differences are found in terrain and topographic features, granule stratum, hydraulic gradient, and so on. On the whole, the two alternative sites are in line with the requirements for very low level radioactive waste disposal, and Site 1 is superior to Site 2. (author)