WorldWideScience

Sample records for waste rock heaps

  1. Mathematical simulation of a waste rock heap

    International Nuclear Information System (INIS)

    Scharer, J.M.; Pettit, C.M.; Chambers, D.B.; Kwong, E.C.

    1994-01-01

    A computer model has been developed to simulate the generation of acidic drainage in waste rock piles. The model considers the kinetic rates of biological and chemical oxidation of sulfide minerals (pyrite, pyrrhotite) present as fines and rock particles, as well as chemical processes such as dissolution (kinetic or equilibrium controlled), complexation (from equilibrium and stoichiometry of several complexes), and precipitation (formation of complexes and secondary minerals). Through mass balance equations and solubility constraints (e.g., pH, phase equilibria) the model keeps track of the movement of chemical species through the waste pile and provides estimates of the quality of seepage (pH, sulfate, iron, acidity, etc.) leaving the heap. The model has been expanded to include the dissolution (thermodynamic and sorption equilibrium), adsorption and coprecipitation of uranium and radium. The model was applied to simulate waste rock heaps in British Columbia, Canada and in Thueringia, Germany. To improve the accuracy and confidence of long-term predictions of seepage quality, the entire history of the heaps was simulated. Cumulative acidity loads and water treatment considerations were used as a basis for evaluation of various decommissioning alternatives. Simulation of the technical leaching history of a heap in Germany showed it will generate contaminated leachate requiring treatment for acidity and radioactivity for several hundred years; cover installation was shown to provide a significant reduction of potential burdens, although chemical treatment would still be required beyond 100 years

  2. Remediation of hazardous waste sites by heap leaching

    International Nuclear Information System (INIS)

    Samani, Z.; Hanson, A.; Dwyer, B.

    1994-01-01

    Efforts are being made to devise technologies and treatment systems to remediate contaminated soil-on site without generating significant wastes for off-site disposal. Heap leaching, a technique used extensively in the mining industry, has been investigated as a method for remediation of hazardous chemical contamination of the vadose zone. In the mining industry, metal-bearing ore is excavated and mounded on a pad. The metals are removed by passing a special leaching solution through the ore. In this study, the removal of chromium(VI) from the New Mexico soils (sand, sandy loam, and clay) using heap leaching was evaluated at a column scale. The heap leaching study demonstrated greater than 99% removal of Cr(VI) from all three soils using tap water as the leaching agent. (author) 13 figs., 5 tabs., 21 refs

  3. Radioactivity measurements in the vicinity of the mine waste heap at Crossen and radiation dose assessment

    International Nuclear Information System (INIS)

    Kulzer, R.

    1998-01-01

    The radiation dose to the population living in the vicinity of the mine waste heap is assessed. The measurements carried out were to verify the dose relevance of ambient radioactivity on site, in particular the ingestion and inhalation pathways and the external exposure pathways. The nuclide Pb-210 was used as an indicator because of its large dose factor for assessment of ingestion and its airborne dispersion as an Rn-222 daughter product. The waste heap material releases large quantities of this nuclide. Ingestion of radioactivity from the waste heap may be caused by wind-borne erosion and activity deposition on plants in the area. Therefore, the specific activities of Pb-210 and Ra-226 have been measured in soil and plant specimens sampled at various distances from the waste heap. (orig./CB) [de

  4. DEVELOPMENT OF PASSIVE DETOXIFICATION TECHNOLOGY FOR GOLD HEAP LEACH STOCKPILED WASTES

    OpenAIRE

    M.P. Belykh; A.Yu. Chikin; S.V. Petrov; N.L. Belkova

    2017-01-01

    Purpose. The processes of biopassive detoxication are of special interest for the solution of environmental issues of detoxification of gold heap leach cyanide-bearing wastes whose detoxification period is unlimited. These processes are based on spontaneous degradation of cyanides under the influence of natural factors including the action of autochthonous bacterial community. The purpose of the work is to develop a biopassive detoxification technology of heap leach stockpiled wastes. Methods...

  5. Microbiology of Composting Pig Waste: Comparison of Vermicomposting and Open Heap Techniques

    OpenAIRE

    Ogefere, H. O.; Ogbimi, A. O.; Omoregie, R.

    2010-01-01

    Against the background of an effective waste management, microbiological studies of composting pig waste were investigated. Freshly deposited excreta from confined pigs in a private pig farm in Benin City, Edo State, Nigeria were composted by two aerobic methods – vermicomposting and open heap. Microbial (bacterial and fungal) counts and characterization were carried out periodically within the 40 weeks of composting, using standard techniques. The results showed that only duration of compos...

  6. Cry from the heart of the nuclear waste heap

    International Nuclear Information System (INIS)

    Milne, R.

    1987-01-01

    NIREX, the organisation responsible in the United Kingdom for disposing of radioactive wastes, published a consultation document (Nov 1987) which looks at the options for the disposal of intermediate-level wastes in the UK. The options - under land, under the seabed accessed from the coast, under the seabed accessed at sea - are discussed and their advantages and disadvantages assessed. Possible locations are discussed for geological suitability and public acceptability. The Sellafield site is one possibility being considered. The right combination of site and disposal concept is being sought by NIREX. However, public opinion may not find any option acceptable. (UK)

  7. Microbiology of Composting Pig Waste: Comparison of Vermicomposting and Open Heap Techniques

    Directory of Open Access Journals (Sweden)

    Ogefere, H. O.

    2010-01-01

    Full Text Available Against the background of an effective waste management, microbiological studies of composting pig waste were investigated. Freshly deposited excreta from confined pigs in a private pig farm in Benin City, Edo State, Nigeria were composted by two aerobic methods – vermicomposting and open heap. Microbial (bacterial and fungal counts and characterization were carried out periodically within the 40 weeks of composting, using standard techniques. The results showed that only duration of composting significantly (p<.0.05 affected microbial counts as the counts decreased from the initial value at week zero to much lower value at week 40. A total of 274 bacterial and fungal isolates were recovered from the composting waste and majority (60.58% were isolated from the open heap. Bacillus subtilis, Pseudomonas aeruginosa and Aspergillus flavus were the predominant isolates recovered (9.49% each, and were the only isolates recovered throughout the period of composting irrespective of the composting technique. Staphylococcus aureus and Salmonella typhimurium were the least isolated (1.09% each. Vermicomposting technique was recommended on health and environmental grounds.

  8. Fat heaps

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; Katajainen, Jyrki

    This report is an electronic appendix to our paper \\Fat heaps without regular counters". In that paper we described a new variant of fat heaps that is conceptually simpler and easier to implement than the original version. We also compared the practical performance of this data structure...

  9. Coal Mining Spoil Heap Management as urban solid waste dump; Utilizacion de Escombreras de Carbon como Vertedero Controlado de Residuos Solidos Urbanos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the coordinated project DISPOSAL OF SOLID RESIDUES FROM COAL it is included the project Coal Mining Spoil Heap Management as Urban Solid Waste Dump. The main target of this project consisted of determining the viability of using coal mining spoil heaps, as controlled dubbish dump of urban solid wastes. The working plan to achieve this objective was composed of the following stages: 1. Urban solid wastes characterization. 2. Methodology to be followed for the selection of coal mining spoil heaps as controlled dump of urban solid wastes. 2.1 Classification and preliminary assessment of the possibility of using spoil heaps as urban solid waste dumps (APT/NON APT). 2.2 Realization of geological, geotechnical, hydrogeological and environmental studies applied to the spoil heaps classified as APT. 2.3 Analysis of the compatibility of the mining activity with the urban solid wastes dumped on the spoil heap. 2.4 Analysis of the use of coal mining wastes in the rubbish dump operative life. 3. Extraction of conclusions. The works were focused in the Leon province. As result of the researches we obtained the following results and conclusions: In the areas studied, only two emplacements are optima to dump urban solid wastes; spoil heap n. 13. Roguera Mine (Cinera-Matallana) and the open pit mine n. 4, Las Chaviadas, in Villablino. The active spoil heap use as controlled rubbish dump can cause, if not managed adequately, several coperating and occupational problems to the mine and to the company that manages the urban solid wastes. The abandoned spoil heap utilisation is difficult due to the problems that would arise when conditioning the site to be use as rubbish dump. The use of abandoned open pit mines, as controlled rubbish dump is feasible if geological, geotechnical, hydrogeological and environmental studies support it. It's possible the use of the coal mining wastes in the different operatives phases of the controlled rubbish dump. The evaluation methodology

  10. Coal Mining Spoil Heap Management as urban solid waste dump; Utilizacion de Escombreras de Carbon como Vertedero Controlado de Residuos Solidos Urbanos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the coordinated project DISPOSAL OF SOLID RESIDUES FROM COAL it is included the project Coal Mining Spoil Heap Management as Urban Solid Waste Dump. The main target of this project consisted of determining the viability of using coal mining spoil heaps, as controlled dubbish dump of urban solid wastes. The working plan to achieve this objective was composed of the following stages: 1. Urban solid wastes characterization. 2. Methodology to be followed for the selection of coal mining spoil heaps as controlled dump of urban solid wastes. 2.1 Classification and preliminary assessment of the possibility of using spoil heaps as urban solid waste dumps (APT/NON APT). 2.2 Realization of geological, geotechnical, hydrogeological and environmental studies applied to the spoil heaps classified as APT. 2.3 Analysis of the compatibility of the mining activity with the urban solid wastes dumped on the spoil heap. 2.4 Analysis of the use of coal mining wastes in the rubbish dump operative life. 3. Extraction of conclusions. The works were focused in the Leon province. As result of the researches we obtained the following results and conclusions: In the areas studied, only two emplacements are optima to dump urban solid wastes; spoil heap n. 13. Roguera Mine (Cinera-Matallana) and the open pit mine n. 4, Las Chaviadas, in Villablino. The active spoil heap use as controlled rubbish dump can cause, if not managed adequately, several coperating and occupational problems to the mine and to the company that manages the urban solid wastes. The abandoned spoil heap utilisation is difficult due to the problems that would arise when conditioning the site to be use as rubbish dump. The use of abandoned open pit mines, as controlled rubbish dump is feasible if geological, geotechnical, hydrogeological and environmental studies support it. It's possible the use of the coal mining wastes in the different operatives phases of the controlled rubbish dump. The evaluation methodology developed

  11. Rock & Roll : Waste seperation

    NARCIS (Netherlands)

    Beunder, L.; Rem, P.C.; Van Den Berg, R.

    2000-01-01

    Five hundred tonnes of glass, 1 million tonnes of plastic,14 million tonnes of building and demolition waste, 7 million tonnes of household waste, 3 million tonnes of packaging, 3.5 million tonnes of paper and board, and 300,000 old cars. All part of the annual harvest of waste materials in the

  12. Volume reducing and modifying of neutralized sludge from acid waste water treatment of uranium ore heap leaching

    International Nuclear Information System (INIS)

    Zhong Pingru; Ding Tongsen; Gu Jianghan

    1997-01-01

    A process is worked out on the basis of traditional lime neutralization, viz. acid waste water from uranium ore heap leaching is treated by limestone and lime double neutralizing-sludge recycling. First, the waste water is reacted with cheaper limestone to precipitate some metal ions, such as Fe and Al, which form hydroxides at lower pH, and neutralize strong acid, then neutralized with lime to required pH value. The formed precipitate as sludge is steadily recycled in the process. The principal advantage of the process over lime neutralization process is that reagent cost saved by 1/3 and formed sludge volume decreased by 2/3. Besides, the performances of sludge filtrating and settling are improved. The mechanism of sludge volume reducing and modification is also investigated

  13. A case study of long-term geochemical evolution of coal waste rock drainage and its remediation

    International Nuclear Information System (INIS)

    Jarvis, A.P.; Gandy, C.J.

    2010-01-01

    The geochemical evolution of drainage from an 35 hectare orphan waste rock pile over a 15-year period was described. Spoil material at the site was generated during coal mining at 2 collieries between 1922 and 1970, and was comprised of grey and black shale, ash, coal, and coal dust. The heap was founded on an impermeable clay layer. Located in northern England, drainage from the rock heap was intercepted by a small compost wetland system installed in 1997. The waste rock heap was selectively capped in 1998. Water samples were collected and analyzed. Anion concentrations were determined using an ion chromatograph. The samples were filtered periodically. Acidity concentrations and flow rates were determined. Results of the study showed measurable improvements in water quality as a result of capping the heap. The study demonstrated that a combination of selective spoil capping and wetland treatment can serve as a low-cost solution to acid mine drainage at some abandoned mine sites. 9 refs., 1 tab., 1 fig.

  14. A case study of long-term geochemical evolution of coal waste rock drainage and its remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, A.P.; Gandy, C.J. [Newcastle Univ. (United Kingdom). School of Civil Engineering and Geosciences, Hydrogeochemical Engineering Research and Outreach Group

    2010-07-01

    The geochemical evolution of drainage from an 35 hectare orphan waste rock pile over a 15-year period was described. Spoil material at the site was generated during coal mining at 2 collieries between 1922 and 1970, and was comprised of grey and black shale, ash, coal, and coal dust. The heap was founded on an impermeable clay layer. Located in northern England, drainage from the rock heap was intercepted by a small compost wetland system installed in 1997. The waste rock heap was selectively capped in 1998. Water samples were collected and analyzed. Anion concentrations were determined using an ion chromatograph. The samples were filtered periodically. Acidity concentrations and flow rates were determined. Results of the study showed measurable improvements in water quality as a result of capping the heap. The study demonstrated that a combination of selective spoil capping and wetland treatment can serve as a low-cost solution to acid mine drainage at some abandoned mine sites. 9 refs., 1 tab., 1 fig.

  15. Radioactivity measurements in the vicinity of the mine waste heap at Crossen and radiation dose assessment; Radioaktivitaetsmessungen in der Umgebung der Bergehalde Crossen und Abschaetzung der Strahlenexposition

    Energy Technology Data Exchange (ETDEWEB)

    Kulzer, R.

    1998-09-01

    The radiation dose to the population living in the vicinity of the mine waste heap is assessed. The measurements carried out were to verify the dose relevance of ambient radioactivity on site, in particular the ingestion and inhalation pathways and the external exposure pathways. The nuclide Pb-210 was used as an indicator because of its large dose factor for assessment of ingestion and its airborne dispersion as an Rn-222 daughter product. The waste heap material releases large quantities of this nuclide. Ingestion of radioactivity from the waste heap may be caused by wind-borne erosion and activity deposition on plants in the area. Thererfore, the specific activities of Pb-210 and Ra-226 have been measured in soil and plant specimens sampled at various distances from the waste heap. (orig./CB) [Deutsch] Die Strahlenexposition der in der Naehe einer Bergehalde lebenden Bevoelkerung wird bestimmt. Zu diesem Zweck wurden Messungen realisiert, die den Ingestions- und Inhalationspfad sowie die externe Exposition fuer die vorgefundene Situation auf ihre Dosisrelevanz ueberpruefen sollten. Hierzu diente das Nuklid Pb-210 mit seinem grossen Dosisfaktor fuer die Ingestion und seiner besonderen Verbreitungsmoeglichkeit ueber die Luft als Tochter von Rn-222. Dieses wird aus dem Haldenmaterial in grossen Mengen freigesetzt. Haldenmaterial kann ueber den Ingestionspfad in den menschlichen Koerper aufgenommen werden, wenn es durch Winderosion auf Pflanzenoberflaechen in der Umgebung abgelagert wird.Deshalb wurden die spezifischen Aktivitaeten an Pb-210 und Ra-226 von Boden- und Pflanzenproben in verschiedenen Entfernungen zur Halde bestimmt.

  16. The radiochemical contamination (²¹⁰Po and ²³⁸U) of zone around phosphogypsum waste heap in Wiślinka (northern Poland).

    Science.gov (United States)

    Boryło, Alicja; Skwarzec, Bogdan; Olszewski, Grzegorz

    2012-01-01

    The aim of this work was the determination of the impact of phosphogypsum waste heap in Wiślinka (northern Poland) for radiological protection of zone around waste heap. These studies are very important for the estimation of natural alpha radionuclides contents in the vicinity of phosphogypsum waste heap and for environmental pollution assessment of this area. The process of bioaccumulation of radionuclides in interior plants parts prove to examine their origin sources, too. The activity of (210)Po, (234)U, and (238)U were measured using an alpha spectrometer. The values of uranium and polonium concentration in water with immediate area of waste heap are considerably higher than in the waters of the Martwa Wisła river. The values of activity ratio (234)U/(238)U are approximately about one in the phosphogypsum (0.97 ± 0.05) and in the water of retention reservoir and pumping station (0.92 ± 0.01 and 0.99 ± 0.08), while in the water from the Martwa Wisła river they are slightly higher than one (1.03 ± 0.07 and 1.17 ± 0.06). In the analyzed plants species the highest amounts of polonium and uranium were found in ruderal plants samples (between 51 ± 1 and 89 ± 1 for (210)Po; between 36 ± 3 and 68 ± 3 for (238)U) as well as hygrophilous plant samples (18 ± 1 and 84 ± 3; 42 ± 2 and 130 ± 4, respectively for (210)Po and (238)U). The more amounts of (210)Po and (238)U radionuclides were accumulated mainly in the roots of plant species in comparison to green parts. The general conclusion of realized study is higher influence of phosphogypsum on radioactive contamination of environmental zone around heap waste in Wiślinka (northern Poland).

  17. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  18. Waste package performance in unsaturated rock

    International Nuclear Information System (INIS)

    Pigford, T.H.; Lee, W.W.-L.

    1989-03-01

    The unsaturated rock and near-atmospheric pressure of the potential nuclear waste repository at Yucca Mountain present new problems of predicting waste package performance. In this paper we present some illustrations of predictions of waste package performance and discuss important data needs. 11 refs., 9 figs., 1 tab

  19. Strict fibonacci heaps

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Lagogiannis, George; Tarjan, Robert E.

    2012-01-01

    We present the first pointer-based heap implementation with time bounds matching those of Fibonacci heaps in the worst case. We support make-heap, insert, find-min, meld and decrease-key in worst-case O(1) time, and delete and delete-min in worst-case O(lg n) time, where n is the size of the heap...... of the smaller heap when doing a meld. We use the pigeonhole principle in place of the redundant counter mechanism. We present the first pointer-based heap implementation with time bounds matching those of Fibonacci heaps in the worst case. We support make-heap, insert, find-min, meld and decrease-key in worst...

  20. Bipartite binomial heaps

    DEFF Research Database (Denmark)

    Elmasry, Amr; Jensen, Claus; Katajainen, Jyrki

    2017-01-01

    the (total) number of elements stored in the data structure(s) prior to the operation. As the resulting data structure consists of two components that are different variants of binomial heaps, we call it a bipartite binomial heap. Compared to its counterpart, a multipartite binomial heap, the new structure...

  1. Polonium (210Po) and uranium (234U, 238U) in water, phosphogypsum and their bioaccumulation in plants around phosphogypsum waste heap at Wislinka (nothern Poland)

    International Nuclear Information System (INIS)

    Skwarzec, B.; Borylo, A.; Kosinska, A.; Radzajewska, S.

    2010-01-01

    The principal sources of polonium and uranium radionuclides the Wislinka area waste dump are phosphorites and phosphogypsum produced by the Phosphoric Fertilizers Industry of Gdansk. The values of uranium and polonium concentration in water with immediate surroundings of waste heap are considerably higher than in the waters of the Martwa Wisla river. The activity ratio 234 U/ 238 U is approximately about one in the phosphogypsum (0.97±0.06 and 0.99±0.04) and in the water of a retention reservoir and a pumping station (0.92±0.01 and 0.99±0.04), while in the water from the Martwa Wisla river is slightly higher than one (1.00±0.07 and 1.06±0.02). The leaching process of uranium and polonium from the phosphogypsum waste heap is responsible for the maximum uranium concentration (1097±6 μg·dm -3 and 1177±6 μg·dm -3 ) and the high 210 Po concentration (131.4±0.9 mBq·dm -3 and 165.7±1.4 mBq·dm -3 ) in the retention reservoir. The major source of polonium and uranium in plants are wet and dry atmospheric falls gathering soil and air dust from the phosphogypsum waste dump and root system. The highest uranium and polonium concentrations were found in older part of grasses (yellow oatgrass, meadow foxtail, moneywort), exposed to atmospheric falls for a long time. The maximum concentrations of 210 Po were characterized for samples of plant root collected at the retention reservoir (150.50±4.97 and 108.55±3.95 Bq·kg -1 dry mass). Polonium and uranium concentrations in water samples of the Martwa Wisla river are relatively low in comparison with the value in the retention reservoir and pumping station near the phosphogypsum waste heap. This suggests that the radionuclides could be leached from the dumping site to the surrounding environment. (authors)

  2. Bioaccumulation of polonium ({sup 210}Po) and uranium ({sup 234}U, {sup 238}U) in plants around phosphogypsum waste heap in Wislinka (northern Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Borylo, A.; Skwarzec, B. [Gdansk Univ. (Poland). Faculty of Chemistry

    2011-07-01

    In the study the activities of polonium {sup 210}Po and uranium {sup 234}U, {sup 238}U in plants, collected near phosphogypsum waste heap in Wis'linka (northern Poland), were determined by using the alpha spectrometry. The obtained results revealed that the concentrations of {sup 210}Po, {sup 234}U, and {sup 238}U in the analyzed plants were differentiated. In the analyzed flora organisms the highest amounts of polonium and uranium were found in ruderal plant samples as well as willow samples (Salix viminalis) from protection zone of phosphogypsum waste heap. The concentrations of {sup 210}Po, {sup 234}U and {sup 238}U in the analyzed plants were higher in roots than in green parts of plants. The higher concentrations of {sup 210}Po and {sup 238}U radionuclides were estimated for hydrophyte (common sedge Carex nigra Reichard), the favourite habitat of which is particularly wet meadow and for plants collected in the vicinity of phosphogypsum waste heap. The major source of polonium and uranium in analyzed plants is root system. The values of {sup 234}U/ {sup 238}U activity ratio in all analyzed plants are closed to one, what indicated that source of uranium in analyzed plants is phosphogypsum. The highest uranium and polonium concentrations were characterized for plants, which are covered with tomentose. The comparability polonium and uranium contents were confirmed in edible plants, but higher accumulation was determined in ripe species than immature species of vegetables. The higher polonium and uranium concentrations were noticed in green parts of plant, the lower in roots. Polonium concentration in cultivated plants samples was not species diverse. Therefore, the significant source of polonium and uranium in analyzed plants is wet and dry atmospheric falls gathering the soil and air dust from phosphogypsum waste dump. The maximum {sup 210}Po and {sup 238}U radionuclides concentrations were found in green parts of red beet (Beta vulgaris esculenta), the

  3. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  4. Waste-rock interactions and bedrock reactions

    International Nuclear Information System (INIS)

    White, W.B.

    1977-01-01

    The experimental program is designed to discover possible reactions between shale repository rocks and radioactive wastes. The canister can be regarded in three ways: (a) As a source of heat that modifies the mineralogy and therefore the physical properties of the surrounding rock (dry heat). (b) As a source of heat that activates reactions between minerals in the surrounding rock and slowly percolating ground water. (c) As a source of reaction materials of different composition from the surrounding rock and which therefore may react to form completely new ''minerals'' in a contact aureole around the canister. The matrix of interactions contains two composition axes. The waste compositions are defined by the various prototype waste forms usually investigated: glass, calcine, ''spent fuel'' and the ceramic supercalcine. The temperatures and pressures at which these reactions take place must be investigated. Thus each node on the ''wiring diagram'' is itself a matrix of experiments in which the T and to some extent P are varied. Experiments at higher pressure and temperature allow reactions to take place on a laboratory time scale and thus identify what could happen. These reactions are then followed downward in temperature to determine both phase boundaries and kinetic cut-offs below which equilibrium cannot be achieved on a laboratory time scale

  5. PRINCIPLE ROCK TYPES FOR RADIOACTIVE WASTE REPOSITORIES

    Directory of Open Access Journals (Sweden)

    Sibila Borojević Šostarić

    2012-07-01

    Full Text Available Underground geological storage of high- and intermediate/low radioactive waste is aimed to represent a barrier between the surface environment and potentially hazardous radioactive elements. Permeability, behavior against external stresses, chemical reacatibility and absorption are the key geological parameters for the geological storage of radioactive waste. Three principal rock types were discussed and applied to the Dinarides: (1 evaporites in general, (2 shale, and (3 crystalline basement rocks. (1 Within the Dinarides, evaporite formations are located within the central part of a Carbonate platform and are inappropriate for storage. Offshore evaporites are located within diapiric structures of the central and southern part of the Adriatic Sea and are covered by thick Mesozoic to Cenozoic clastic sediment. Under very specific circumstances they can be considered as potential site locations for further investigation for the storage of low/intermediate level radioactive wast e. (2 Thick flysch type formation of shale to phyllite rocks are exposed at the basement units of the Petrova and Trgovska gora regions whereas (3 crystalline magmatic to metamorphic basement is exposed at the Moslavačka Gora and Slavonian Mts. regions. For high-level radioactive waste, basement phyllites and granites may represent the only realistic potential option in the NW Dinarides.

  6. Rock support for nuclear waste repositories

    International Nuclear Information System (INIS)

    Abramson, L.W.; Schmidt, B.

    1984-01-01

    The design of rock support for underground nuclear waste repositories requires consideration of special construction and operation requirements, and of the adverse environmental conditions in which some of the support is placed. While repository layouts resemble mines, design, construction and operation are subject to quality assurance and public scrutiny similar to what is experienced for nuclear power plants. Exploration, design, construction and operation go through phases of review and licensing by government agencies as repositories evolve. This paper discusses (1) the various stages of repository development; (2) the environment that supports must be designed for; (3) the environmental effects on support materials; and (4) alternative types of repository rock support

  7. Symmetric Rock Fall on Waste Package

    International Nuclear Information System (INIS)

    Sreten Mastilovic

    2001-01-01

    The objective of this calculation is to determine the structural response of the Naval SNF (spent nuclear fuel) Waste Package (WP) and the emplacement pallet (EP) subjected to the rock fall DBE (design basis event) dynamic loads. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities and residual stresses in the WP, and stress intensities and maximum permanent downward displacements of the EP-lifting surface. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP and EP considered in this calculation, and all obtained results are valid for those designs only. This calculation is associated with the waste package design and is performed by the Waste Package Design Section in accordance with Reference 24. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document

  8. Uranium ((234)U, (235)U and (238)U) contamination of the environment surrounding phosphogypsum waste heap in Wiślinka (northern Poland).

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    2015-08-01

    The aim of this work was to determine the uranium concentration ((234)U, (235)U and (238)U) and values of the activity ratio (234)U/(238)U in soil samples collected near phosphogypsum waste heap in Wiślinka (northern Poland). On the basis of the studies it was found that the values of the (234)U/(238)U activity ratio in the analyzed soils collected in the vicinity of phosphogypsum dump in Wiślinka are in most cases close to one and indicate the phosphogypsum origin of the analyzed nuclides. The obtained results of uranium concentrations are however much lower than in previous years before closing of the phosphogypsum stockpile. After this process and covering the phosphogypsum stockpile in Wiślinka with sewage sludge, phosphogypsum particles are successfully immobilized. In the light of the results the use of phosphate fertilizers seems to be a major problem. Prolonged and heavy rains can cause leaching accumulated uranium isotopes in the phosphogypsum stockpile, which will be washed into the Martwa Wisła and on the fields in the immediate vicinity of this storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Overview of OWI waste/rock interaction studies

    International Nuclear Information System (INIS)

    Jenks, G.H.

    1977-01-01

    A review is presented of office of waste isolation (OWI) programs which fall within the waste/rock categories. Discussions are included on salt repository design, thermal powers and radiation intensities, maximum temperatures and gamma doses, salt temperatures around high level waste cannisters, projects concerned with radiation and thermal effects, projects concerned with long term interactions, and waste isolation safety assessment tasks

  10. Particulate Matter and Noise Impact Studies of Waste Rock Dump ...

    African Journals Online (AJOL)

    Adansi Gold Company Limited identified an economically viable gold deposit at Nkran in the Amansie West District of Ghana. Mining of this deposit requires the disposal of waste rock materials at a proposed waste rock dump near Nkran and Koninase communities. Since particulates and noise emissions from the ...

  11. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  12. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1979-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in-situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  13. Information base for waste repository design. Volume 3. Waste/rock interactions

    International Nuclear Information System (INIS)

    Koplick, C.M.; Pentz, D.L.; Oston, S.G.; Talbot, R.

    1979-01-01

    This report describes the important effects resulting from interaction between radioactive waste and the rock in a nuclear waste repository. The state of the art in predicting waste/rock interactions is summarized. Where possible, independent numerical calculations have been performed. Recommendations are made pointing out areas which require additional research

  14. Modeling of nuclear waste disposal by rock melting

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-04-01

    Today, the favored option for disposal of high-level nuclear wastes is their burial in mined caverns. As an alternative, the concept of deep disposal by rock melting (DRM) also has received some attention. DRM entails the injection of waste, in a cavity or borehole, 2 to 3 kilometers down in the earth crust. Granitic rocks are the prime candidate medium. The high thermal loading initially will melt the rock surrounding the waste. Following resolidification, a rock/waste matrix is formed, which should provide isolation for many years. The complex thermal, mechanical, and hydraulic aspects of DRM can be studied best by means of numerical models. The models must accommodate the coupling of the physical processes involved, and the temperature dependency of the granite properties, some of which are subject to abrupt discontinuities, during α-β phase transition and melting. This paper outlines a strategy for such complex modeling

  15. Two-tier relaxed heaps

    DEFF Research Database (Denmark)

    Elmasry, Amr; Jensen, Claus; Katajainen, Jyrki

    2008-01-01

    We introduce a data structure which provides efficient heap operations with respect to the number of element comparisons performed. Let n denote the size of the heap being manipulated. Our data structure guarantees the worst-case cost of O(1) for finding the minimum, inserting an element, extract...

  16. Thermal characteristics of rocks for high-level waste repository

    International Nuclear Information System (INIS)

    Shimooka, Kenji; Ishizaki, Kanjiro; Okamoto, Masamichi; Kumata, Masahiro; Araki, Kunio; Amano, Hiroshi

    1980-12-01

    Heat released by the radioactive decay of high-level waste in an underground repository causes a long term thermal disturbance in the surrounding rock mass. Several rocks constituting geological formations in Japan were gathered and specific heat, thermal conductivity, thermal expansion coefficient and compressive strength were measured. Thermal analysis and chemical analysis were also carried out. It was found that volcanic rocks, i.e. Andesite and Basalt had the most favorable thermal characteristics up to around 1000 0 C and plutonic rock, i.e. Granite had also favorable characteristics under 573 0 C, transition temperature of quartz. Other igneous rocks, i.e. Rhyolite and Propylite had a problem of decomposition at around 500 0 C. Sedimentary rocks, i.e. Zeolite, Tuff, Sandstone and Diatomite were less favorable because of their decomposition, low thermal conductivity and large thermal expansion coefficient. (author)

  17. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  18. Disposal of radioactive waste in Swedish crystalline rocks

    International Nuclear Information System (INIS)

    Greis Dahlberg, Christina; Wikberg, Peter

    2015-01-01

    SKB, Swedish Nuclear Fuel and Waste Management Company is tasked with managing Swedish nuclear and radioactive waste. Crystalline rock is the obvious alternative for deep geological disposal in Sweden. SKB is, since 1988, operating a near surface repository for short-lived low and intermediate-level waste, SFR. The waste in SFR comprises operational and decommissioning waste from nuclear plants, industrial waste, research-related waste and medical waste. Spent nuclear fuel is currently stored in an interim facility while waiting for a license to construct a deep geological repository. The Swedish long-lived low and intermediate-level waste consists mainly of BWR control rods, reactor internals and legacy waste from early research in the Swedish nuclear programs. The current plan is to dispose of this waste in a separate deep geological repository, SFL, sometimes after 2045. Understanding of the rock properties is the basis for the design of the repository concepts. Swedish crystalline rock is mechanical stable and suitable for underground constructions. The Spent Fuel Repository is planned at approximately 500 meters depth in the rock at the Forsmark site. The host rock will keep the spent fuel isolated from human and near-surface environment. The rock will also provide the stable chemical and hydraulic conditions that make it possible to select suitable technical barriers to support the containment provided by the rock. A very long lasting canister is necessary to avoid release and transport of radionuclides through water conducting fractures in the rock. A canister designed for the Swedish rock, consists of a tight, 5 cm thick corrosion barrier of copper and a load-bearing insert of cast iron. To restrict the water flow around the canister and by that prevent fast corrosion, a bentonite buffer will surround the canister. Secondary, the bentonite buffer will retard a potential release by its strong sorption of radionuclides. The SFR repository is situated in

  19. Disposal of radioactive waste in Swedish crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Greis Dahlberg, Christina; Wikberg, Peter [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)

    2015-07-01

    SKB, Swedish Nuclear Fuel and Waste Management Company is tasked with managing Swedish nuclear and radioactive waste. Crystalline rock is the obvious alternative for deep geological disposal in Sweden. SKB is, since 1988, operating a near surface repository for short-lived low and intermediate-level waste, SFR. The waste in SFR comprises operational and decommissioning waste from nuclear plants, industrial waste, research-related waste and medical waste. Spent nuclear fuel is currently stored in an interim facility while waiting for a license to construct a deep geological repository. The Swedish long-lived low and intermediate-level waste consists mainly of BWR control rods, reactor internals and legacy waste from early research in the Swedish nuclear programs. The current plan is to dispose of this waste in a separate deep geological repository, SFL, sometimes after 2045. Understanding of the rock properties is the basis for the design of the repository concepts. Swedish crystalline rock is mechanical stable and suitable for underground constructions. The Spent Fuel Repository is planned at approximately 500 meters depth in the rock at the Forsmark site. The host rock will keep the spent fuel isolated from human and near-surface environment. The rock will also provide the stable chemical and hydraulic conditions that make it possible to select suitable technical barriers to support the containment provided by the rock. A very long lasting canister is necessary to avoid release and transport of radionuclides through water conducting fractures in the rock. A canister designed for the Swedish rock, consists of a tight, 5 cm thick corrosion barrier of copper and a load-bearing insert of cast iron. To restrict the water flow around the canister and by that prevent fast corrosion, a bentonite buffer will surround the canister. Secondary, the bentonite buffer will retard a potential release by its strong sorption of radionuclides. The SFR repository is situated in

  20. Heap leaching for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    Denison Mines Ltd. is using two bacterial leaching processes to combat the high cost of extracting uranium from low grade ore in thin reefs. Both processes use thiobacillus ferro-oxidans, a bacterium that employs the oxidation of ferrous iron and sulphur as its source of energy for growth. The first method is flood leaching, in which ore is subjected to successive flood, drain and rest cycles. The second, trickle leaching, uses sprinklers to douse the broken muck continuously with leaching solution. In areas where grades are too low to justify the expense of hauling the ore to the surface, the company is using this biological process underground to recover uranium. In 1987 Denison recovered 840 000 lb of uranium through bacterial heap leaching. It plans to have biological in-place leaching contribute 25% of the total uranium production by 1990. (fig.)

  1. Thermal aspects of radioactive waste disposal in hard rock

    International Nuclear Information System (INIS)

    Beale, H.; Bourke, P.J.; Hodgkinson, D.P.

    1980-01-01

    Buried heat emitting radioactive waste will appreciably raise the temperature of the surrounding rock over distances of several hundred metres for many centuries. This paper describes continuing research at Harwell aimed at understanding how this heating affects the design of hard rock depositories for the waste. It also considers how water-borne leakage of radionuclides from a depository to the surface might be increased by thermal convection currents through the rock mass and by thermally induced changes in its permeability and porosity. A conceptual design for a three-dimensional depository with an array of vitrified waste blocks placed in vertical boreholes is described. The maximum permissible power outputs of individual blocks and the minimum permissible separations between blocks to limit the local and bulk average rock temperatures will be determined by heat transfer through the rock and are reviewed. Interim results of a field heating experiment to study transient heat transfer through granite are discussed subsequently. Field experiments are now being started to measure the fracture permeability and porosity over large distances in virgin granite and to investigate their variation on heating and cooling the rock. Theoretical estimates of the temperatures, thermal stresses and thermal convection currents around a depository are next presented. The implications for water-borne leakage are that the induced stresses could change the fracture permeability and porosity, and thermal convection could cause substantial water movement vertically towards the surface. Finally some conclusions from the work are presented. (author)

  2. Surrounding rock stress analysis of underground high level waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Wang Guangdi

    2006-01-01

    During decay of nuclear waste, enormous energy was released, which results in temperature change of surrounding rock of depository. Thermal stress was produced because thermal expansion of rock was controlled. Internal structure of surrounding rock was damaged and strength of rock was weakened. So, variation of stress was a dynamic process with the variation of temperature. BeiShan region of Gansu province was determined to be the depository field in the future, it is essential to make research on granite in this region. In the process of experiment, basic physical parameters of granite were analyzed preliminary with MTS. Long range temperature and stress filed was simulated considering the damage effect of surrounding rock, and rules of temperature and stress was achieved. (authors)

  3. Discussion on the impact of uranium ore heap leaching to environment

    International Nuclear Information System (INIS)

    Qin Guoxiu; Liu Qingcheng; Chen Xin; Deng Shengshui; Yang Qinghua

    2012-01-01

    In this paper, the impact of uranium ore heap leaching on the environment were studied with the case of two long production uranium mines. According to the basic requirements of the radiation environment assessment of the nuclear industry, the surface radon exhalation rate of the mine waste, the concentration of radionuclide of the waste water and the γ radiation level and concentration of radionuclide of the waste were investigated and compared to that of the early conventional hydrometallurgical production of the two uranium mines. The merits and disadvantage of the heap leaching was evaluated, and measures and suggestions were proposed for the improvement of heap leaching techniques. (authors)

  4. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  5. Nomograms to calculate stability in slate and granite spoil heaps; Abacos para el calculo de estabilidad en escombreras de pizarra y granito

    Energy Technology Data Exchange (ETDEWEB)

    Paz Freire, M.; Taboada Castro, J.; Rivas Brea, T.; Giraldez Perez, E.; Araujo Fernandez, M.

    2011-07-01

    One of the main problems involved in the mining of slate and ornamental granite is the unavoidable generation of waste rock, which must be stored in spoil heaps under suitably integrated, secure and stable conditions. Our work here focuses on this last point. To study the risk of instability within spoil heaps we have analysed the performance of a wide number of models with regard to circular slope failure, taking into account the different degrees of compactness of the material, the characteristics of the material itself, the effect of water pressure and the geometry of the heap. From this analysis we obtained more than 300 safety criteria, which were then used to draw up a series of nomograms to allow us to determine the risk of sliding in any granite or slate spoil heap. Thus, nomograms prove themselves to be suitable, quick, easy-to-use tools for preliminary studies of new structures, for periodic analyses of existing structures and to investigate structures that are due to be modified. (Author) 24 refs.

  6. Lined rock caverns for the storage of hazardous waste

    International Nuclear Information System (INIS)

    Semprich, S.; Speidel, S.R.; Schneider, H.J.

    1987-01-01

    For reasons of environmental protection the storage of hazardous waste in unlined rock caverns is possible to a very limited extent only. Therefore, the authors have recently developed technologies for the lining and sealing of rock caverns. In the process, sealing systems of synthetic materials or metals have proved suitable. Synthetic materials can be used in the form of either sheets or coatings with various materials such as epoxy resins, polyethylenes etc. being used. Metal sealings consist of thin sheets or foils which are either welded or bonded. In either case, the structural design must provide for a leakage control possibility. The article describes the design principles, the structural and operational aspects as well as the control measures with regard to the planning and execution of lined rock caverns for the storage of hazardous waste

  7. Waste-rock interactions in the immediate repository

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1977-01-01

    The high level wastes (HLW's) to be placed underground in rock formations will contain significant amounts of radioactive decay heat for the first hundred-or-so years of isolation. Several physical-chemical changes analogous to natural geochemical processes can occur during this ''thermal period.'' The waste canister can act as a heat source and cause changes in the mineralogy and properties of the surrounding rocks. Geochemically, this is ''contact metamorphism.'' In the event that the canister is corroded and breached, chemical reactions can occur between the HLW, the surrounding rock and possibly the remains of the canister. In a dry repository which has not been backfilled (and thus pressurized) these interactions could be slow at best and with rates decreasing rapidly as the HLW cools. However, significant interactions can occur in years, months or even days under hydrothermal conditions. These conditions could be created by the combination of HLW heat, overburden pressure and water mobilized from the rocks or derived from groundwater intrusion. At the end of the thermal period these interaction products would constitute the actual HLW form (or ''source term'') subject to the low temperature leaching and migration processes under investigation in other laboratories. It is quite possible that these interaction product waste forms will have superior properties compared to the original HLW. Experimental programs initiated at Penn State during the last year aim at determining the nature of any chemical or mineralogical changes in, or interactions between, HLW solids and host rocks under various repository ambients. The accompanying figures describe the simulated HLW forms and the experimental approach and techniques. Studies with basalts as the repository rock are supported by Rockwell Hanford Operations and with shales by the Office of Waste Isolation

  8. Rock mechanics in the National Waste Terminal Storage Program

    International Nuclear Information System (INIS)

    Monsees, J.E.; Wigley, M.R.

    1982-01-01

    The overall objective of the rock mechanics program of the Office of Nuclear Waste Isolation is to predict the response of a rock mass hosting a waste repository during its construction, operation, and postoperational phases. The operational phase is expected to be 50 to 100 yr; the postoperational phase will last until the repository no longer poses any potential hazard to the biosphere, a period that may last several thousand years. The rock mechanics program is concerned with near-field effects on mine stability, as well as far-field effects relative to the overall integrity of the geologic waste isolation system. To accomplish these objectives, the rock mechanics program has established interactive studies in numerical simulation, laboratory testing, and field testing. The laboratory and field investigations provide input to the numerical simulations and give an opportunity for verification and validation of the predictive capabilities of the computer codes. Ultimately the computer codes will be used to predict the response of the geologic system to the development of a repository. 3 references, 5 figures

  9. Modeling acid mine drainage in waste rock dumps

    Energy Technology Data Exchange (ETDEWEB)

    Lefebvre, R. [INRS, Quebec (Canada)

    1995-03-01

    Acid mine drainage (AMD) results from the oxidation of sulfides present in mine wastes. The acidity generated by these reactions creates conditions under which metals can be leached and represent a threat for surface and ground waters. Even though leachate collection and neutralization are used to treat the problem, the industry is looking for methods to predict and prevent the generation of AMD at new sites and control methods for sites already producing AMD. Waste rock dumps are generally very large accumulations of barren rocks extracted from open pits to access ore bodies. These rocks contain sulfides, most commonly pyrite, and often generate AMD at rates much higher than in mine tailings which are fine grained by-products of milling operations. Numerous coupled physical processes are involved in AMD production in waste rocks. Sulfide oxidation reactions are strongly exothermic and temperatures beyond 70{degrees}C have been measured in some dumps. That heat is transfered by conduction and fluid advection. Dumps have thick partly saturated zones through which gases flow under thermal gradients and water infiltrates. Oxygen is required by the oxidation reactions and is supplied by diffusion and advection. The reaction products are carried in solution in very concentrated leachates. Numerical modeling of AMD aims to (1) provide a better understanding of the physical processes involved in AMD, (2) allow the integration of available waste rock characterization data, (3) indicate new data or studies which are required to fill the gaps in our quantitative understanding of AMD processes, and (4) supply a tool for the prediction of AMD production, taking into account the impact of control methods. These objectives can only be met through sustained research efforts. This study is part of a wider research effort which as been on-going at La Mine Doyon since 1991.

  10. Analysis on one underground nuclear waste repository rock mass in USA

    International Nuclear Information System (INIS)

    Ha Qiuling; Zhang Tiantian

    2012-01-01

    When analyzing the rock mass of a underground nuclear waste repository, the current studies are all based on the loading mechanical condition, and the unloading damage of rock mass is unconsidered. According to the different mechanical condition of actual engineering rock mass of loading and unloading, this paper implements a comprehensive analysis on the rock mass deformation of underground nuclear waste repository through the combination of present loading and unloading rock mass mechanics. It is found that the results of comprehensive analysis and actual measured data on the rock mass deformation of underground nuclear waste repository are basically the same, which provide supporting data for the underground nuclear waste repository. (authors)

  11. Rock-welding materials for deep borehole nuclear waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficient adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.

  12. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  13. Selection of the host rock for high level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Jin Yuanxin; Wang Wenguang; Chen Zhangru

    2001-01-01

    The authors has briefly introduced the experiences of the host rock selection and the host rock types in other countries for high level radioactive waste repository. The potential host rocks in China are investigated. They include granite, tuff, clay, basalt, salt, and loess. The report has expounded the distributions, scale, thickness, mineral and chemical composition, construction, petrogenesis and the ages of the rock. The possibility of these rocks as the host rock has been studied. The six pieces of distribution map of potential rocks have been made up. Through the synthetical study, it is considered that granite as the host rock of high level radioactive waste repository is possible

  14. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    Science.gov (United States)

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.

  15. Summary review of rock mechanics workshop on radioactive waste disposal

    International Nuclear Information System (INIS)

    Carter, N.L.; Goodman, R.E.; Merrill, R.H.

    1977-01-01

    Presentations, critiques and recommendations for the disposal of commercial radioactive waste based upon an analysis of the information presented at the Rock Mechanics Review/Workshop, Denver, Colorado, December 16-17, 1976 are summarized. The workshop, comprised of both formal and informal sessions, with about 50 participants, was hosted by RE/SPEC Inc. and Dr. Paul F. Gnirk, President and was sponsored by the Office of Waste Isolation (OWI), led by Dr. William C. McClain. The panel of reviewers, responsible for this report, consisted of Neville L. Carter, Richard E. Goodman, and Robert H. Merrill. These panel members were selected not only on the basis of their experience in various aspects of Rock Mechanics and Mining Engineering but also because they have had no previous active participation in problems concerning disposal of radioactive waste. By way of a general comment, the review panel was very favorably impressed with the Rock Mechanics research efforts, supported by OWI, on this problem and with the level of technical competence of those carrying out the research. Despite the rather preliminary nature of the results presented and the youth of the program itself, it is clear that the essential ingredients for a successful program are at hand, especially as regards disposal in natural salt formations. These include laboratory studies of appropriate rock deformation, numerical analyses of thermal and mechanical stresses around openings, and in situ field tests. We shall comment on each of these three major areas in turn. We shall then offer recommendations for their improvement, and, finally, we shall make more general recommendations for future considerations of the OWI radioactive waste disposal program

  16. Transient diffusion from a waste solid into fractured porous rock

    International Nuclear Information System (INIS)

    Ahn, J.; Chambre, P.L.; Pigford, T.H.

    1988-01-01

    Previous analytical studies of the advective transport of dissolved contaminants through fractured rock have emphasized the effect of molecular diffusion in the rock matrix in affecting the space-time-dependent concentration of the contaminant as it moves along the fracture. Matrix diffusion only in the direction normal to the fracture surface was assumed. Contaminant sources were constant-concentration surfaces of width equal to the fracture aperture and of finite or infinite extent in the transverse direction. Such studies illustrate the far-field transport features of fractured media. To predict the time-dependent mass transfer from a long waste cylinder surrounded by porous rock and intersected by a fracture, the present study includes diffusion from the waste surface directly into porous rock, as well as the more realistic geometry. Here the authors present numerical results from Chambre's analytical solution for the time-dependent mass transfer from the cylinder for the low-flow conditions wherein near-field mass transfer is expected to be controlled by molecular diffusion

  17. Rock stresses associated with burial of nuclear waste

    International Nuclear Information System (INIS)

    Voight, B.

    1977-01-01

    Rock stress changes related to long-term deep storage of nuclear waste involve thermoelastic and pore fluid pressure changes associated with excavation and heating. Computer models are being examined to assess the question of thermally-induced fracturing in storage rock surrounding radioactive waste containers. Stresses are evaluated in three dimensions, employing elastic-plastic finite element codes. Potential failure conditions are expressed in terms of ''effective stresses,'' and force and thermal fields are incremented to produce an appropriate load path. In general, heating in vicinity of waste containers produces a zone of high compression bonded by a zone of circumferential and axial tension. (At this conference an analogous case of thermal stresses was documented and illustrated for larger-scale temperature domains associated with geothermal areas in Iceland.) Fractures are possible in radial directions as well as perpendicular to the axis of the cylindrical heat source. In addition, the mechanical effect of a vapor pulse will be explored by a two-phase numerical fluid transport model used in conjunction with mechanical finite element models. This portion of the work, being conducted jointly with C. R. Faust and J. W. Mercer of the US Geological Survey, should provide a preliminary appreciation of the possible effect of phase changes on fracturing of burial sites. Preliminary work suggests the possibility of establishing design criteria (e.g., design burial depth, depth of canister below storage vault) in order to minimize problems of potential rock fracture

  18. Solute transport in fractured rock - applications to radionuclide waste repositories

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1990-12-01

    Flow and solute transport in fractured rocks has been intensively studied in the last decade. The increased interest is mainly due to the plans in many countries to site repositories for high level nuclear waste in deep geologic formations. All investigated crystalline rocks have been found to be fractured and most of the water flows in the fractures and fracture zones. The water transports dissolved species and radionuclides. It is thus of interest to be able to understand and to do predictive modelling of the flowrate of water, the flowpaths and the residence times of the water and of the nuclides. The dissolved species including the nuclides will interact with the surrounding rock in different ways and will in many cases be strongly retarded relative to the water velocity. Ionic species may be ion exchanged or sorbed in the mineral surfaces. Charges and neutral species may diffuse into the stagnant waters in the rock matrix and thus be withdrawn from the mobile water. These effects will be strongly dependent on how much rock surface is in contact with the flowing water. It has been found in a set of field experiments and by other observations that not all fractures conduct water. Furthermore it is found that conductive fractures only conduct the water in a small part of the fracture in what is called channels or preferential flowpaths. This report summarizes the present concepts of water flow and solute transport in fractured rocks. The data needs for predictive modelling are discussed and both field and laboratory measurement which have been used to obtain data are described. Several large scale field experiments which have been specially designed to study flow and tracer transport in crystalline rocks are described. In many of the field experients new techniques have been developed and used. (81 refs.) (author)

  19. Pirm wastes: permanent isolation in rock-forming minerals

    International Nuclear Information System (INIS)

    Smyth, J.R.; Vidale, R.J.; Charles, R.W.

    1977-01-01

    The most practical system for permanent isolation of radioactive wastes in granitic and pelitic environments may be one which specifically tailors the waste form to the environment. This is true because if recrystallization of the waste form takes place within the half-lives of the hazardous radionuclides, it is likely to be the rate-controlling step for release of these nuclides to the ground-water system. The object of the proposed waste-form research at Los Alamos Scintific Laboratory (LASL) is to define a phase assemblage which will minimize chemical reaction with natural fluids in a granitic or pelitic environment. All natural granites contain trace amounts of all fission product elements (except Tc) and many contain minor amounts of these elements as major components of certain accessory phases. Observation of the geochemistry of fission-product elements has led to the identification of the natural minerals as target phases for research. A proposal is made to experimentally determine the amounts of fission product elements which can stably be incorporated into the phases listed below and to determine the leachability of the assemblage this produced using fluids typical of the proposed environments at the Nevada Test Site. This approach to waste isolation satisfies the following requirements: (1) It minimizes chemical reaction with the environment (i.e., recrystallization) which is likely to be the rate-controlling step for release of radionuclides to groundwater; (2) Waste loading (hence temperature) can be easily varied by dilution with material mined from the disposal site; (3) No physical container is required; (4) No maintenance is required (permanent); (5) The environment acts as a containment buffer. It is proposed that such wastes be termed PIRM wastes, for Permanent Isolation in Rock-forming Minerals

  20. Waste disposal in granitic rocks: analysis of thermal microcracks

    International Nuclear Information System (INIS)

    Montoto, M.; Roeshoff, K.; Leojon, B.; Bel-Lan, A.

    1981-04-01

    The possible development of microcracks from a thermal origin has been researched in the granitic rocks of Shipa (Sweden), within which in a real scale have been originated some thermal gradients similar to the ones which could take place in the waste disposal. To achieve an optimal fratographic information, with some petrographic meaning, different microscopic techniques, optical and electronic, have been combined and an automatized quantification methodology has also been developed by means of digitals. Between warmed and unwarmed granitis no microfractographic differences have been detected. The observed variations are only apparent and may be explained as a function of the inherent petrographic heterogeneity of rocky blocks. In any case in the internal temperatures generated within these rocks have not attained its own threshold of thermal microcracking. (author)

  1. A Rock Mechanics and Coupled Hydro mechanical Analysis of Geological Repository of High Level Nuclear Waste in Fractured Rocks

    International Nuclear Information System (INIS)

    Min, Kibok

    2011-01-01

    This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow

  2. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    Science.gov (United States)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  3. Remediation of contaminated soil using heap leach mining technology

    International Nuclear Information System (INIS)

    York, D.A.; Aamodt, P.L.

    1990-01-01

    Los Alamos National Laboratory is evaluating the systems technology for heap treatment of excavated soils to remove and treat hazardous chemical and radioactive wastes. This new technology would be an extrapolation of current heap leach mining technology. The candidate wastes for treatment are those organic or inorganic (including radioactive) compounds that will chemically, physically, or biologically react with selected reagents. The project would start with bench-scale testing, followed by pilot-scale testing, and eventually by field-scale testing. Various reagents would be tried in various combinations and sequences to obtain and optimize the desired treatment results. The field-scale testing would be preceded by site characterization, process design, and equipment selection. The final step in this project is to transfer the systems technology to the private sector, probably to the mining industry. 6 refs., 1 fig

  4. Gabbro as a host rock for a nuclear waste repository

    International Nuclear Information System (INIS)

    Ahlbom, K.; Leijon, B.; Smellie, J.; Liedholm, M.

    1992-09-01

    As an alternative to granitic rocks, gabbro and other basic rock types have been investigated with respect to their suitability to host a nuclear waste repository. The present report summarizes and examines existing geoscientific knowledge of relevance in assessing the potential merits of gabbro as a repository host rock. Implications in terms of site selection, repository construction and post-closure repository performance are also discussed. The objective of the study is to provide a basis for decisions as regards future consideration of the gabbro alternative. It is found that there are rather few gabbro bodies in Sweden, that are potentially of sufficient size to host a repository. Thus, gabbro offers little latitude as regards site selection. In comparison to siting a repository in granitic rocks, this is a major disadvantage, and it may in fact remove gabbro from further consideration. The potential advantages of gabbro refer to repository performance, and include low hydraulic conductivity and a chemical environment promoting efficient radionuclide retardation. However, results from field investigations show that groundwater flow in gabbro bodies is largely controlled by intersecting heterogeneities, in particular granitic dykes, that are significantly more conductive to water than the gabbro. In the far-field scale significant to repository performance, this may reduce or eliminate the potential effects of favourable hydraulic and chemical characteristics of the gabbro itself. In conclusion, there are apparent difficulties associated with siting a repository in gabbro, due to lack of sufficiently large gabbro bodies. On the basis of the present state of knowledge, no decisive differences can be demonstrated when comparing gabbro with granitic rocks, neither with respects to repository construction, nor as regards repository performance. (au)

  5. Overview of the waste/barrier/rock interactions program of the basalt waste isolation project

    International Nuclear Information System (INIS)

    Salter, P.F.; Burnell, J.R.; Lane, D.L.

    1986-01-01

    The waste package waste/barrier/rock interactions testing program of the Basalt Waste Isolation Project is designed to assess the interactions between nuclear waste forms, other waste package components, and the environment in order to evaluate long-term waste package isolation (radionuclide release) behavior. The program involves reacting fully radioactive waste forms with combinations of steel or copper container material and basalt/bentonite packing material in site-specific ground water under anticipated repository conditions to obtain the steady state radionuclide concentrations required to predictively model waste package radionuclide concentrations required to predictively model waste package radionuclide releases. Both static and flow-through autoclaves are being used in the test program to determine radionuclide concentrations as a function of time and groundwater flow rate, and to evaluate the solid phase and water chemistry changes that control those concentrations. This test program, when combined with project hydrologic and geochemical testing and modeling efforts, and natural analog studies, provides the information required to evaluate long-term radionuclide mobility within a waste package emplaced in a basalt repository

  6. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  7. Geotechnical assessment and instrumentation needs for nuclear waste isolation in crystalline and argillaceous rocks

    International Nuclear Information System (INIS)

    1979-01-01

    To evaluate the state-of-the-art, research needs, and research priorities related to waste disposal in largely impermeable rocks, scientists and engineers working on geologic aspects of nuclear waste disposal were brought together. This report and recommendations are the proceedings from that symposium. Three panels were organized on rock properties, fracture hydrology, and geochemistry. Panel discussions and recommendations are presented

  8. Hydrological evaluation of five sedimentary rocks for high-level waste disposal

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Kanehiro, B.Y.

    1986-01-01

    Utilizing performance criteria that are based upon siting guidelines issued by DOE for postclosure as well as preclosure conditions, a preliminary hydrologic evaluation and ranking is being conducted to determine the suitability of five sedimentary rocks as potential host rocks for a high-level radioactive waste repository. Based upon both quantitative and qualitative considerations, the hydrological ranking of the rocks in order of their potential as a host rock for the disposal of radioactive wastes would be shale, anhydrock, sandstone, chalk, and carbonates, with the first three rocks being significantly better than the remaining two types

  9. ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2014-01-01

    and its child nodes must be executed sequentially, and (2) heaps, even d-heaps (d-ary heaps or d-way heaps), cannot supply enough wide data parallelism to these processors. Recent research proposed more versatile asymmetric multicore processors (AMPs) that consist of two types of cores (latency......-oriented cores with high single-thread performance and throughput-oriented cores with wide vector processing capability), unified memory address space and faster synchronization mechanism among cores with different ISAs. To leverage the AMPs for the heap data structure, in this paper we propose ad......-heap, an efficient heap data structure that introduces an implicit bridge structure and properly apportions workloads to the two types of cores. We implement a batch k-selection algorithm and conduct experiments on simulated AMP environments composed of real CPUs and GPUs. In our experiments on two representative...

  10. Geophysical study in waste landfill localized above fractured rocks

    Directory of Open Access Journals (Sweden)

    Ariveltom Cosme da Silva

    2011-08-01

    Full Text Available Geophysical survey is an important method for investigation of contaminated areas used in the characterization of contrasting physical properties in the presence of pollutants. This work applied the geophysical methods of Electrical Resistivity and Self Potential in waste landfill, located in Caçapava do Sul city, RS. The landfill is located over fractured metamorphic rocks. Eight lines of electrical profiling with 288 measures of self potential were done. In addition, 83 measurements of direction and dip of fractures were taken. The application of spontaneous potential method permitted to detect the direction of groundwater flow. The electrical resistivity measurements allowed the identification of low-intensity anomalies associated with the presence of leachate. There is a relationship between anomalous zones and the directions of fractures.

  11. Radioactive safety analysis and assessment of waste rock pile site in uranium tailings

    International Nuclear Information System (INIS)

    Liu Changrong; Liu Zehua; Wang Zhiyong; Zhou Xinghuo

    2007-01-01

    Based on theoretical calculation and in-situ test results, distribution and emissions of radioactive nuclides of uranium tailings impoundment and waste rock pile sites are analyzed in this paper. It is pointed out that 222 Rn is the main nuclide of uranium tailings impoundment and waste rock pile site. Also 222 Rn is the main source term of public dose. 222 Rn concentrations in the atmospheric environment around and individual dose to Rn gradually decrease with increasing distances to uranium tailings impoundment and waste rock pile site. Based on in-situ tests on five uranium tailings impoundment and waste rock pile sites, a decisive method and safety protection distance are presented, which can be used to guide the validation and design of radioactive safety protection in uranium tailings impoundment and waste rock pile sites. (authors)

  12. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru

    International Nuclear Information System (INIS)

    Skierszkan, E.K.; Mayer, K.U.; Weis, D.; Beckie, R.D.

    2016-01-01

    The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper–Zn–Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS_2) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ"9"8Mo among molybdenites ranged from − 0.6 to + 0.6‰ (n = 9) while sphalerites showed no δ"6"6Zn variations (0.11 ± 0.01‰, 2 SD, n = 5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ"9"8Mo (− 0.1 to + 2.1‰) and 0.7‰ in δ"6"6Zn (− 0.4 to + 0.3‰) in mine drainage over a wide pH range (pH 2.2–8.6). Lighter δ"6"6Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn_5(OH)_6(CO_3)_2) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89 ± 1.25‰, 2 SD, n = 16), with some overlap, in comparison to molybdenites and waste rock (0.13 ± 0.82‰, 2 SD, n = 9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power of Mo and Zn isotope ratios to track the fate

  13. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Skierszkan, E.K., E-mail: eskiersz@eos.ubc.ca [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4 (Canada); Mayer, K.U. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4 (Canada); Weis, D. [Pacific Centre for Isotopic and Geochemical Research (PCIGR), Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4 (Canada); Beckie, R.D. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4 (Canada)

    2016-04-15

    The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper–Zn–Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS{sub 2}) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ{sup 98}Mo among molybdenites ranged from − 0.6 to + 0.6‰ (n = 9) while sphalerites showed no δ{sup 66}Zn variations (0.11 ± 0.01‰, 2 SD, n = 5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ{sup 98}Mo (− 0.1 to + 2.1‰) and 0.7‰ in δ{sup 66}Zn (− 0.4 to + 0.3‰) in mine drainage over a wide pH range (pH 2.2–8.6). Lighter δ{sup 66}Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn{sub 5}(OH){sub 6}(CO{sub 3}){sub 2}) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89 ± 1.25‰, 2 SD, n = 16), with some overlap, in comparison to molybdenites and waste rock (0.13 ± 0.82‰, 2 SD, n = 9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power

  14. Microstructural variation of vitrified floor tile incorporated with granitic rock waste

    International Nuclear Information System (INIS)

    Souza, A.J.; Holanda, J.N.F.

    2009-01-01

    The ornamental rock industry from Northwest Fluminense generates huge amounts of wastes in the form of a fine powder. These wastes are deposited in nature without any care about environmental degradation, which can cause damage to public health, pollution of the natural water sources, and silted banks of rivers. In addition, they also can to affect the landscape aesthetically. In this work was used a granitic rock waste from Santo Antonio de Padua-RJ. This waste is rich in alkaline oxides, which promote the formation of liquid phase and assist the densification of traditional ceramics. The ceramic bodies with up to 47.5% granitic rock waste were pressed at 50 MPa. The ceramic pieces were fired at 1250 deg C. The evolution of sintered microstructure was evaluated by scanning electron microscopy and X-ray diffraction. The results showed that the granitic rock waste influences significantly the microstructure of the sintered ceramic bodies. (author)

  15. Radioactive waste repositories in hard rock aquifers--hydrodynamic aspects

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1984-01-01

    A mathematical model for mass and heat flow and a computer program have been developed to demonstrate the effect of heat released from a hypothetical radioactive waste repository on the groundwater flow regime. The model, based on the continuum approach, conceptualizes the fracture pattern and the solid blocks as two overlapping continua and consists of a set of coupled nonlinear partial differential equations. The general form of the model is three-dimensional and can treat the fluid and rock either as two separate media with a quasi-steady exchange of heat between them or as a single equivalent medium with instantaneous thermal equilibrium. Numerical solutions have been obtained by the Galerkin finite element method. Examples have been presented for topographically different locations of the repository: below a horizontal ground surface, below a hill crest, below a hillside, and close to major fractures. The effects of constant permeability and porosity or downward decreasing with depth as well as the effect of anisotropic permeability have been investigated. Solutions include the velocity field, path lines, and traveling times of water particles passing the repository and the temperature distribution. The examples have been worked out for a two-dimensional flow domain, assuming that instantaneous thermal equilibrium takes place. This assumption was found to be justified by the relatively low flow velocities that occurred in the examples. Except for the location close to a major draining fracture, heat released from the radioactive waste repository may have a significant influence on the flow regime around the repository

  16. Heavy metals in soil on spoil heap of an abandoned lead ore ...

    African Journals Online (AJOL)

    EJIRO

    (Ti, Fe and Al) of a soil profile on spoil heap were examined. 54 soil samples were .... move gravel and rocks, put in plastic bags then sent to the Service. Central du ..... micro- organisms and microbial processes in agricultural soils. A review.

  17. Review of potential host rocks for radioactive waste disposal in the Piedmont Province of South Carolina

    International Nuclear Information System (INIS)

    Secor, D.T. Jr.

    1980-10-01

    This report reviews the geology of the Piedmont Province of South Carolina with the aim of designating rock units favorable for field exploration for a potential underground repository for the storage of radioactive waste. Most of the rocks in the South Carolina Piedmont are metamorphosed sedimentary volcanic or igneous rocks that have experienced at least one episode of strong deformation. As a consequence of this deformation, they have irregular shapes, making it difficult to predict their subsurface extent. In evaluating the suitability of the rock units for radioactive waste storage, certain criteria were found to be particularly useful. The requirements that the storage site be located in a large volume of homogeneous, impermeable, relatively unfractured rock was the most important criteria in eliminating most of the Piedmont rock units for consideration as field study areas. Six large late- to post-tectonic igneous plutons (Winnsboro, Liberty Hill, Ogden, Newberry, Lowrys, and Bald Rock) are recommended as field study areas

  18. Wagner’s theory of generalised heaps

    CERN Document Server

    Hollings, Christopher D

    2017-01-01

    The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner’s papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner’s main work in this area, his 1953 paper ‘Theory of generalised heaps and generalised groups,’ the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas r...

  19. The design on high slope stabilization in waste rock sites of uranium mines

    International Nuclear Information System (INIS)

    Liu Taoan; Zhou Xinghuo; Liu Jia

    2005-01-01

    Design methods, reinforcement measures, and flood control measures concerning high slope stabilization in harnessing waste rock site are described in brief according to some examples of two uranium mines in Hunan province. (authors)

  20. Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Mahmood, Fazilatun N; Barbour, S Lee; Kennedy, C; Hendry, M Jim

    2017-12-15

    The origin, distribution and leaching of nitrate (NO 3 - ) from coal waste rock dumps in the Elk Valley, British Columbia, Canada were defined using chemical and NO 3 - isotope analyses (δ 15 N- and δ 18 O-NO 3 - ) of solids samples of pre- and post-blast waste rock and from thick (up to 180m) unsaturated waste rock dump profiles constructed between 1982 and 2012 as well as water samples collected from a rock drain located at the base of one dump and effluent from humidity cell (HC) and leach pad (LP) tests on waste rock. δ 15 N- and δ 18 O-NO 3 - values and NO 3 - concentrations of waste rock and rock drain waters confirmed the source of NO 3 - in the waste rock to be explosives and that limited to no denitrification occurs in the dump. The average mass of N released during blasting was estimated to be about 3-6% of the N in the explosives. NO 3 - concentrations in the fresh-blast waste rock and recently placed waste rock used for the HC and LP experiments were highly variable, ranging from below detection to 241mg/kg. The mean and median concentrations of these samples ranged from 10-30mg/kg. In this range of concentrations, the initial aqueous concentration of fresh-blasted waste rock could range from approximately 200-600mg NO 3 - -N/L. Flushing of NO 3 - from the HCs, LPs and a deep field profile was simulated using a scale dependent leaching efficiency (f) where f ranged from 5-15% for HCs, to 35-80% for the LPs, to 80-90% for the field profile. Our findings show aqueous phase NO 3 - from blasting residuals is present at highly variable initial concentrations in waste rock and the majority of this NO 3 - (>75%) should be flushed by recharging water during displacement of the first stored water volume. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A numerical study on the structural behavior of underground rock caverns for radioactive waste disposal

    International Nuclear Information System (INIS)

    Kim, Sun Hoon; Choi, Kyu Sup; Lee, Kyung Jin; Kim, Dae Hong

    1991-01-01

    In order to design safe and economical underground disposal structures for radioactive wastes, understanding the behavior of discontinuous rock masses is essential. This study includes discussions about the computational model for discontinuous rock masses and the structural analysis method for underground storage structures. Then, based on an engineering judgement a suitable selection and slight modifications on computational models and analysis methods have been made in order to analyze and understand the structural behavior of the rock cavern with discontinuities

  2. Uranium migration and retention during weathering of a granitic waste rock pile

    International Nuclear Information System (INIS)

    Boekhout, F.; Gérard, M.; Kanzari, A.; Michel, A.; Déjeant, A.; Galoisy, L.; Calas, G.; Descostes, M.

    2015-01-01

    Highlights: • We investigate the environmental impact of the granitic waste rock piles. • The majority of the waste rocks in the pile is barren- or overburden rock. • The main neo-formed U-bearing phases are (Ca) and (Cu) uranyl phosphates. • Under circum-neutral pH conditions they do not pose an environment threat. - Abstract: This study investigates the post-mining evolution of S-type granitic waste rocks around a former uranium mine, Vieilles Sagnes (Haute Vienne, NW Massif Central, France). This mine was operated between 1957 and 1965 in the La Crouzille former world-class uranium mining district and is representative of intra-granitic vein-type deposits. 50 years after mine closure and the construction and subsequent re-vegetation of the granitic waste rock pile, we evaluate the environmental evolution of the rock pile, including rock alteration, neo-formation of U-bearing phases during weathering, and U migration. Vertical trenches have been excavated through the rock pile down to an underlying paleo-soil, allowing the investigation of the vertical differentiation of the rock pile and its influence on water pathways, weathering processes and U migration and retention. Arenization dominantly drives liberation of U, by dissolution of uraninite inclusions in the most alterable granitic minerals (i.e. K-feldspar and biotite). Retention of U in the matrix at the base of the waste rock pile, and in the underlying paleo-soil most likely occurs by precipitation of (nano-) uranyl phosphates or a combination of co-precipitation and adsorption reactions of U onto Fe (oxy)hydroxides and/or clay minerals. Even though U-migration was observed, U is retained in stable secondary mineral phases, provided the current conditions will not be modified

  3. Mixing-controlled uncertainty in long-term predictions of acid rock drainage from heterogeneous waste-rock piles

    Science.gov (United States)

    Pedretti, D.; Beckie, R. D.; Mayer, K. U.

    2015-12-01

    The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.

  4. Rock mass modification around a nuclear waste repository in welded tuff

    International Nuclear Information System (INIS)

    Mack, M.G.; Brandshaug, T.; Brady, B.H.

    1989-08-01

    This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab

  5. The geochemistry of high-level waste disposal in granitic rocks

    International Nuclear Information System (INIS)

    Chapman, N.A.; Sargent, F.P.

    1984-01-01

    Under the auspices of the cooperative agreement between Euratom and Atomic Energy of Canada Ltd about radioactive waste management and disposal, a joint workshop was held on the topic of the geochemistry of high-level waste disposal in granitic rocks. The report covers (1) waste form leaching, (2) thermodynamics, (3) geochemical models, (4) the role of colloids, (5) sorption phenomena, (6) the linking of flow and geochemical models, (7) microbial activity

  6. Heap leaching procedure for the Uranium extraction

    International Nuclear Information System (INIS)

    Shishahbore, M. R.

    2002-01-01

    Heap leaching of Uranium ores is currently in use in several countries. Before taking any decision for construction of heap in industrial scale, it is necessary to obtain the main factors that influence the heap leaching process, such as acid construction, acid solution flowrate, temperature of reaction, or size, ration of liquid to solid, permeability and suitable oxidant. To achieve the above parameters, small scale column leaching is usually recommended. In this project column leaching were carried out in 6 plexiglass column with 43.5 cm an height and 7.4 cm inner diameter. In each column closely 2.00 kg Uranium ore were leached by sulfuric acid. Leaching operation on Iranian ores from two different anomalies from the same area were investigated. In this project, six column were leached at different flowrate of eluent and effect of oxidant were investigated. Acid consumption were in the range of 60 - 144 kg per ton ore and recovery between 73.07% - 99.97%. Finally according to the results obtained, investigated that over are suitable to heap leaching technique. Al tough, to enforce of heap leaching project need to more experiments

  7. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    Science.gov (United States)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael

    2014-05-01

    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and

  8. Worst-case analysis of heap allocations

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Huber, Benedikt; Schoeberl, Martin

    2010-01-01

    the worst-case heap allocations of tasks. The analysis builds upon techniques that are well established for worst-case execution time analysis. The difference is that the cost function is not the execution time of instructions in clock cycles, but the allocation in bytes. In contrast to worst-case execution...... time analysis, worst-case heap allocation analysis is not processor dependent. However, the cost function depends on the object layout of the runtime system. The analysis is evaluated with several real-time benchmarks to establish the usefulness of the analysis, and to compare the memory consumption...

  9. The rehabilitation of Whites overburden heap

    International Nuclear Information System (INIS)

    Allen, C.G.

    1984-01-01

    The Rum Jungle uranium mine was closed in 1971. Environmental studies have identified sources of heavy metal and acid pollution and a rehabilitation strategy for the mine site has been proposed. The objectives of the program are the significant reduction of heavy metal pollution being released by the various overburden heaps, open cuts and the tailings dam to the East Finniss River; the significant improvement of the aesthetic environment of the site; and the reduction in public health hazards at the mine. The rehabilitation strategy includes recontouring, covering, draining and revegetating the overburden heap

  10. Policy-based benchmarking of weak heaps and their relatives

    DEFF Research Database (Denmark)

    Bruun, Asger; Edelkamp, Stefan; Katajainen, Jyrki

    2010-01-01

    In this paper we describe an experimental study where we evaluated the practical efficiency of three worst-case efficient priority queues: 1) a weak heap that is a binary tree fulfilling half-heap ordering, 2) a weak queue that is a forest of perfect weak heaps, and 3) a runrelaxed weak queue tha...

  11. A review of acid drainage from waste rock dumps and mine sites (Australian and Scandinavia)

    International Nuclear Information System (INIS)

    Harries, J.R.

    1990-05-01

    This report reviews the literature from Australia and Scandinavia on acid drainage from pyritic waste rock dumps with an emphasis on measurements and theory of processes that control the rage of oxidation and the release of pollutants. Conditions within waste rock dumps have been measured at several mine sites and a range of rehabilitation treatments have been tried to reduce the release of pollutants. A number of models have been proposed to calculate air flow, water transport and geochemistry. The data and experience at the mine sites are compared with predictions of the models. Details of Australian and Swedish mine sites where waste rock is a source of acid drainage are described in the Appendices. 92 refs., 2 tabs., 10 figs

  12. Characterization of the material produced using marble waste and reagents aiminig production of rock wool

    International Nuclear Information System (INIS)

    Rodrigues, Girley Ferreira; Espinosa, Denise Crocce Romano; Tenorio, Jorge Alberto Soares; Alves, Joner Oliveira

    2010-01-01

    The aim of this work was to characterize materials produced from the mixture of marble waste and chemical reagents. The materials were homogenized, melted and cooled in order to obtain materials with similar characteristics of rock wools. The batch was poured in a water-filled recipient and also in a Herty viscometer at three temperatures. Samples of produced materials were characterized by X-ray diffraction, scanning electron microscopy and differential thermal analysis. Results of this study indicate that it is possible the incorporation of marble waste in the production process of rock wool, replacing approximately 15% of the raw material used to fabricate this material. This process represents a technological breakthrough since it allows the reuse of marble waste, and also represents a possible decrease in rock wool production cost, which is a material with a growing market as thermo acoustic insulator. (author)

  13. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... such as heat production from coal oxidation may be equally important....... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  14. Handling and final disposal of nuclear waste. Hard Rock Laboratory

    International Nuclear Information System (INIS)

    1989-09-01

    The purpose of the Hard Rock Laboratory is to provide an opportunity for research and development in a realistic and undisturbed underground rock environment down to the depth planned for the future repository. The R and D work in the underground laboratory has the following main goals: To test the quality and appropriateness of different methods for characterizing the bedrock with respect to conditions of importance for a final repository. To refine and demonstrate methods for how to adapt a repository to the local properties of the rock in connection with planning and construction. And, finally, to collect material and data of importance for the safety of the future repository and for confidence in the quality of the safety assessments 13 figs, 3 tabs

  15. Underground laboratories for rock mechanics before radioactive waste

    International Nuclear Information System (INIS)

    Duffaut, P.

    1985-01-01

    Many rock mechanics tests are performed in situ, most of them underground since 1936 at the Beni Bahdel dam. The chief tests for understanding the rock mass behaviour are deformability tests (plate test and pressure cavern test, including creep experiments) and strength tests (compression of a mine pillar, shear test on rock mass or joint). Influence of moisture, heat, cold and freeze are other fields of investigation which deserve underground laboratories. Behaviour of test galleries, either unsupported or with various kinds of support, often is studied along time, and along the work progression, tunnel face advance, enlargement or deepening of the cross section. The examples given here help to clarify the concept of underground laboratory in spite of its many different objectives. 38 refs.; 1 figure; 1 table

  16. Thermal effects in disposal of radioactive waste in hard rock

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.; Batchelor, A.S.

    1978-01-01

    The first objective of the UKAEA programme of field heating experiments is to study any variations in thermal conductivity of granite over long (10 - 100m) distances heated to high (100's 0 C) temperatures for about a year. A description is given of the first tests with an 18 kW heater at 50 m depth and 72 thermocouples in the surrounding 25m radius sphere of rock. The reasons for choice of this scale of experiment are presented and the problems encountered and initial results are described. The further objectives of these experiments are to investigate thermal stresses and any cracking of the granite so that thermally induced movement of water through rock with both its natural and any increased permeability can be quantified. Measurements to be made of the mechanical and permeable properties as the rock heats are described

  17. Rock mechanics issues and research needs in the disposal of wastes in hydraulic fractures

    International Nuclear Information System (INIS)

    Doe, T.W.; McClain, W.C.

    1984-07-01

    The proposed rock mechanics studies outlined in this document are designed to answer the basic questions concerning hydraulic fracturing for waste disposal. These questions are: (1) how can containment be assured for Oak Ridge or other sites; and (2) what is the capacity of a site. The suggested rock mechanics program consists of four major tasks: (1) numerical modeling, (2) laboratory testing, (3) field testing, and (4) monitoring. These tasks are described

  18. Initial assessment of the thermal stresses around a radioactive waste depository in hard rock

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Bourke, P.J.

    1980-01-01

    The disposal of heat emitting radioactive waste into hard rock should result in temperature rises and thermal gradients over distances of several hundred metres for several centuries. The consequent constrained thermal expansion of the rock would induce stresses which have important implications for possible water-borne leakage of radionuclides and for depository design. These problems are assessed by considering a simplified mathematical model for which analytic solutions to the temperature and stress fields are derived. (author)

  19. Review of potential host rocks for radioactive waste disposal in the Piedmont province of North Carolina

    International Nuclear Information System (INIS)

    Butler, J.R.

    1980-10-01

    This report reviews the geology of the Piedmont province in North Carolina, emphasizing those features most pertinent to selection of potential host rocks for radioactive waste disposal. Discussion of criteria for selection indicates that the outcrop area of the rock body, probable homogeneity, low incidence of fractures, and low permeability are among the prime considerations. Application of the criteria leads to the selection of three large granite batholiths (Castalia, Churchland, and Rolesville) as potential field study areas. The report has an extensive bibliography

  20. Acceptance criteria for disposal of radioactive wastes in shallow ground and rock cavities

    International Nuclear Information System (INIS)

    1985-01-01

    This document provides an overview of basic information related to waste acceptance criteria for disposal in shallow ground and rock cavity repositories, consisting of a discussion of acceptable waste types. The last item includes identification of those waste characteristics which may influence the performance of the disposal system and as such are areas of consideration for criteria development. The material is presented in a manner similar to a safety assessment. Waste acceptance criteria aimed at limiting the radiation exposure to acceptable levels are presented for each pathway. Radioactive wastes considered here are low-level radioactive wastes and intermediate-level radioactive wastes from nuclear fuel cycle operations and applications of radionuclides in research, medicine and industry

  1. Development of soda-lime glasses from ornamental rock wastes

    International Nuclear Information System (INIS)

    Babisk, Michelle Pereira

    2009-01-01

    During the ornamental rocks production, among other steps, one saw the rock blocks in order to transform them into semi-finished plates. In this step, expressive amounts of residues are generated, which are not properly discharged in nature, without any programmed utilization. The residues of silicide rocks present, in their compositions, oxides which are raw materials employed to fabricate soda-lime type glasses (containing SiO_2, Al_2O_3, CaO, Na_2O and K_2O). On the other hand the residues of carbonatic rocks are constituted of glass net modifier oxides, like CaO and MgO. In this work it was developed four types of soda-lime glasses using ornamental rock residues, where the glasses compositions were adjusted by adding sand, as silica source, as well as sodium and calcium carbonates as sources of Na_2O and CaO, respectively. The obtained glasses were characterized by means of Archimed's method for densities measurements, microstructure by using optical and electronic microscopy, phases by means of X-ray diffraction (XRD), hardness by Vickers indentation, spectroscopy (UV/VIS), and hydrolytic resistance according to ISO 719. The XRD analyses confirmed the compositions total vitrification, where the greened aspect of the samples was due to the presence of the iron oxides. The produced glasses properties were compared with those of commercial glasses aiming their industrial employment. The main difference between the produced glasses and those commercials varied primarily regarding the amount of carbonates incorporated. The results showed that the ornamental rocks residues may be used as raw materials for glasses fabrication, and they found a useful economic destination rather than discharge which promotes undesirable environmental impact. (author)

  2. Appraisal of hard rock for potential underground repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1977-10-01

    The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  3. Proceedings of the symposium on the management and rehabilitation of waste rock dumps

    International Nuclear Information System (INIS)

    Riley, S.R.; Waggitt, P.W.; McQuade, C.

    1993-01-01

    Waste rock management and rehabilitation are issues with economic, legal and scientific ramifications which may have significant effects on the viability and profitability of mining operations. Through this symposium the Office of the Supervising Scientist and the Australasian Institute of Mining and Metallurgy (Darwin branch) brought together five key disciplines essential for the efficient design and long term management of waste rock dump, planning and economics, hydrology, geochemistry, biology and geotechnics. The symposium was targeted at industry personnel who make the decisions in design planning and day-to-day management. Two out of the 13 papers have been separately indexed

  4. Norman Stuart heaps 1928”1986

    Science.gov (United States)

    Cartwright, David E.

    Dr. Norman Heaps died on June 26, 1986, in a hospital near his native town of Prescot, U.K., a suburb of Liverpool, after a long illness punctuated by bouts of painful medical treatment for lung cancer. He was the pioneer in Britain of the numerical modeling of tides and storm surges in shelf seas.He graduated at the University of Liverpool in 1949 with honors in mathematics with subsidiary physics and oceanography. Many years later the same university awarded him a doctorate on the basis of his published work. Norman's first 10 postgraduate years were spent as mathematician in the aircraft industry, but he never felt at home in the industrial world and sought a more academic career. While lecturing at the Royal College of Advanced Technology at Salford, Manchester (now the University of Salford), he struck a lasting friendship with Clifford Mortimer, FRS, then director of the Freshwater Biological Association laboratory at Lake Windermere, who first interested Heaps in the problem of computing the natural seiche oscillations of that lake. The use of electronic computers was still in its infancy, but Heaps saw that the equations of internal oscillations in such a lake could be solved numerically by methods that he had developed in the theory of wing structures. Heaps worked up a Master's thesis on this problem during his summer vacations, and he later worked with Mortimer at the University of Wisconsin on a more advanced scheme involving the coupled oscillations of Green Bay and Lake Michigan.

  5. A study on nuclide migration in buffer materials and rocks for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sato, Haruo

    1998-01-01

    This thesis summarizes the results investigated in order to establish a basic theory on the predictive method of diffusion coefficients of nuclides in compacted sodium bentonite which is a candidate buffer material and in representative rocks for the geological disposal of radioactive waste by measuring the pore structural factors of the compacted bentonite and rocks such as porosity and tortuosity, measuring diffusion coefficients of nuclides in the bentonite and rocks, acquiring basic data on diffusion and developing diffusion models which can quantitatively predict nuclide migration in long-term. (J.P.N.). 117 refs

  6. Geotechnical assessment and instrumentation needs for isolation of nuclear waste in crystalline rocks: symposium proceedings

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Duguid, J.O.

    1985-09-01

    On October 15-19, 1984, the Geotechnical Assessment and Instrumentation Needs (GAIN) Symposium was convened to examine the status of technology for the isolation of nuclear waste in crystalline rock. The objective of the 1984 GAIN Symposium was to provide technical input to the Crystalline Repository Project concerning: critical issues and information needs associated with development and assessment of a repository in crystalline rock; appropriate techniques and instrumentation for determining the information needed; and technology required to provide the measurement techniques and instrumentation for application in an exploratory shaft in crystalline rock. The findings and recommendations of the symposium are presented in these proceedings

  7. Creep in crystalline rock with application to high level nuclear waste repository

    International Nuclear Information System (INIS)

    Eloranta, P.; Simonen, A.

    1992-06-01

    The time-dependent strength and deformation properties of hard crystalline rock are studied. Theoretical models defining the phenomena which can effect these properties are reviewed. The time- dependent deformation of the openings in the proposed nuclear waste repository is analysed. The most important factors affecting the subcritical crack growth in crystalline rock are the stress state, the chemical environment, temperature and microstructure of the rock. There are several theoretical models for the analysis of creep and cyclic fatigue: deformation diagrams, rheological models thermodynamic models, reaction rate models, stochastic models, damage models and time-dependent safety factor model. They are defective in describing the three-axial stress condition and strength criteria. In addition, the required parameters are often too difficult to determine with adequate accuracy. Therefore these models are seldom applied in practice. The effect of microcrack- driven creep on the stability of the work shaft, the emplacement tunnel and the capsulation hole of a proposed nuclear waste repository was studied using a numerical model developed by Atomic Energy of Canada Ltd. According to the model, the microcrack driven creep progresses very slowly in good quality rock. Poor rock quality may accelerate the creep rate. The model is very sensitive to the properties of the rock and secondary stress state. The results show that creep causes no stability problems on excavations in good rock. The results overestimate the effect of the creep, because the analysis omitted the effect of support structures and backfilling

  8. Research on base rock mechanic characteristics of caverns for radioactive waste disposal

    International Nuclear Information System (INIS)

    Isei, Takehiro; Katsuyama, Kunihisa; Seto, Masahiro; Ogata, Yuji; Utagawa, Manabu

    1997-01-01

    It has been considered that underground space is mechanically stable as compared with on the ground, and superior for storing radioactive waste for long period. However, in order to utilize underground space for the place of radioactive waste disposal, its long term stability such as the aseismatic ability of base rocks must be ensured, and for this purpose, it is necessary to grasp the mechanical characteristics of the base rocks around caverns, and to advance the technology for measuring and evaluating minute deformation and earth pressure change. In this research, the study on the fracture mechanics characteristics of base rocks and the development of the technology for measuring long terms stress change of base rocks were carried out. In this research, what degree the memory of past stress is maintained by rocks was presumed by measuring AE and strain when stress was applied to rock test pieces. The rocks tested were tuff, sandstone and granite. The experimental method and the experimental results of the prestress by AE method and DRA are reported. (K.I.)

  9. Appraisal of hard rock for potential underground repositories of radioactive wastes. LBL-7004

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1978-01-01

    Underground burial of radioactive wastes in hard rock may be an effective and safe means of isolating them from the environment and from man. The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 km to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  10. Support to other nuclear waste disposal programmes considering clay as a potential host rock

    International Nuclear Information System (INIS)

    Volckaert, G.

    2009-01-01

    SCK-CEN started to study the Boom Clay as potential host rock for nuclear waste disposal in 1974. Since then, SCK-CEN has been involved in other international projects studying clay as potential host rock in order to get a broader support for disposal in clay and to acquire broader insight in clay behaviour. Besides Belgium, France and Switzerland are currently investigating clay formations as potential host rock for the disposal of radioactive waste. In the Netherlands, clay formations have always been considered as an alternative to disposal in salt. The general interest in clays is increasing: in Germany and The United Kingdom, it was decided a few years ago that besides respectively salt and crystalline rock also clays need to be evaluated. In Eastern and Central Europe, the Slovak republic and Lithuania consider both clay and granite as possible host rocks for spent fuel while in Russia recently a project was started to study the possible disposal of low and medium level waste in a clay formation in the Leningrad area. Within the EC research and development framework programs and the OECD/NEA Clay Club, collaborations were developed between countries studying clay and with a strong involvement of SCK-CEN. The collaboration with the Eastern and Central European countries is supported through the support programme of the Belgian Ministry of Economic affairs. The objectives of these co-operations are to deliver expert services to other nuclear waste disposal programs considering clay as host rock; to to acquire broader international recognition of our expertise and support for the development of nuclear waste disposal in clay; to get a broader insight in the properties and behaviour of clays

  11. RELIABILITY OF TRANSPORTATION SYSTEMS OF ROCK HAPS

    Directory of Open Access Journals (Sweden)

    A. Stepanov

    2009-01-01

    Full Text Available The ways of increasing of exploitation reliability of dump trucks with the aim of increasing of effectiveness of exploitation of transportation systems of rock heaps at coal mines.

  12. Rock mass characterization for storage of nuclear waste in granite

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Nelson, P.; Doe, T.; Thorpe, R.; Paulsson, B.; Gale, J.; Forster, C.

    1979-02-01

    The rock mass characterization in granite adjacent to an iron mine at Stripa, Sweden is being carried out by four different methods. The mechanical characterization includes monitoring the responses to thermal loading of jointed rock in situ, and mechanical tests on cores from 25 mm to 1 m in diameter. Geological characterization includes detailed surface mapping, subsurface mapping, and core mapping. Geophysical characterization uses a variety of borehole techniques, with emphasis on sonic methods. The hydrologic characterization is done through injection tests, pump tests, water pressure measurements, and controlled inflow tests to tunnels. Since the data are not yet complete, only tentative conclusions can be drawn regarding the best combinations of techniques for rock-mass characterization. Mapping studies are useful in defining continuity and fracture-system geometry. They do not give aperture, a factor significant in terms of both water flow and the displacements due to heating. Of the geophysical techniques, sonic methods appear most effective in fracture definition; other methods, gamma and neutron particularly, give data on radionuclide and water content and need further analysis with geologic and hydrologic data to determine their significance. Hydrologic work yields primarily aperture data, which with fracture geometry can be used to calculate directional permeabilities. Pressure measurements may provide one means of assessing fracture continuity. Finally, laboratory tests on large cores suggest considerable refinement in testing techniques may be needed before stress-aperture data can be extrapolated from laboratory to field

  13. A theoretical and numerical consideration of rock mass behaviour under thermal loading of radioactive waste repository

    International Nuclear Information System (INIS)

    Reivinen, M.; Freund, J.; Eloranta, E.

    1996-08-01

    The aim of the study is to model the geodynamic response of a ground rock block under horizontal stresses and also consider the thermal fields and deformations, especially on the ground surface, caused by the heat produced by nuclear waste. (12 refs.)

  14. A study of radon emanation from waste rock at Northern Territory uranium mines

    International Nuclear Information System (INIS)

    Mason, G.C.; Gan, T.H.; Elliott, G.

    1983-01-01

    Field measurements were made of radon emanation rates from waste rock sources at Ranger, Nabarlek and Rum Jungle, three Northern Territory uranium mine sites. The preliminary mean emanation rate was approximately 50 Bq m - 2 s - 2 per percent ore grade

  15. Modeling of a sedimentary rock alternative for the siting of the radioactive waste disposal system

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2007-01-01

    Here are described the main concepts, the approximations, and all those simulation aspects that characterize the modeling performed using the unsaturated saturated approach for porous media. The objective of this work is to obtain a generic description of a sedimentary rock soil as an alternative site for the low and intermediate level radioactive waste disposal system. (author) [es

  16. Qualitative evaluation of various models for mechanical analysis of nuclear wastes storage in brittle rocks

    International Nuclear Information System (INIS)

    Millard, A.

    1994-01-01

    In order to appraise the large scale behaviour of high level nuclear wastes underground repositories in brittle rocks, basic models are presented and evaluated in the case of generic repository configurations. Predictive Capabilities of the models are briefly discussed. 7 figs

  17. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J

    2007-01-15

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project.

  18. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2007-01-01

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project

  19. Temperature loading and rocks mechanics at final storage of radioactive waste

    International Nuclear Information System (INIS)

    Leijon, B.; Stephansson, O.

    1979-01-01

    This report describes the rock mechanical effects - in the far field - from the thermal loading at a final storage of radioactive waste in crystalline rocks. The stress distribution of a two-storey storage is described in more details. The temperature rise in a final storage of radiactive waste will create thermal stresses which may cause a failure of the rock mass, and thereby an increase of its permeability. However, the state of stress in the Earth's crust is able to neutralize the thermal stresses. By this analysis we have been able to demonstrate that the thermal stresses due to heat conduction from the final storage are compensated by the state of stress in the upper part of the crust. The absolute stress, which is the superposition of thermal stress and virgin rock stress, is in all cases found to be below the limit of failure due to frictional resistance between surfaces of constituent blocks in the rock mass. Failure by sliding friction is the most conservative failure criterion for a rock mass. (author)

  20. Geotechnical modeling of high-level nuclear waste disposal by rock melting

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-12-01

    A new strategy has been developed for the geotechnical modeling of nuclear waste disposal by rock melting (DRM). Three seeparate tasks were performed to reach this objective: a review of the four scenarios which have been proposed for DRM, to date; an evaluation of computer-based numerical models which could be used to analyze the mechanical, thermal, and hydraulic processes involved in DRM; and a critical review of rock mass properties which are relevant to the design and safety of waste disposal by rock melting. It is concluded that several geotechnical aspects of DRM can be studied realistically with current state-of-the-art model capabilities and knowledge of material properties. The next step in the feasibility study of DRM should be a best-estimate calculation of the four cavity-melt and canister-burial concepts. These new analyses will indicate the most critical areas for subsequent research

  1. Release consequence analysis for a hypothetical geologic radioactive waste repository in hard rock

    International Nuclear Information System (INIS)

    1979-12-01

    This report makes an evaluation of the long-term behaviour of the wastes placed in a hard rock repository. Impacts were analyzed for the seven reference fuel cycles of WG 7. The reference repository for this study is for granitic rock or gneiss as the host rock. The descriptions of waste packages and repository facilities used in this study represent only one of many possible designs based on the multiple barriers concept. The repository's size is based on a nuclear economy producing 100 gigawatts of electricity per year for 1 year. The objective of the modeling efforts presented in this study is to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere and thus determine an estimate of the potential dose to humans so that the release consequence impacts of the various fuel cycles can be compared. Currently available hydrologic, leach, transport, and dose models were used in this study

  2. Use of ornamental rock waste to fabricate rustic ceramic tile: industrial test

    International Nuclear Information System (INIS)

    Pacheco, A.T.; Monteiro, S.N.

    2011-01-01

    This work has as its objective to produce rustic wall tiles with the use of a waste from the sawing of gnaisse rock mixed with kaolinitic replacing sand. Compositions were prepared using clay, sand and waste, The wall tiles were fire in a industrial dome type furnace at 850 deg C.The physical and mechanical properties determined were water absorption and flexural rupture strength. The results indicated that the waste did not improve the evaluated properties by replacing sand. This is mainly due to the low temperature used in the experiment. (author)

  3. Brooks under colliery heaps in the Walloon Region

    Energy Technology Data Exchange (ETDEWEB)

    Lardinois, J.P. [IGRETEC, Charleroi (Belgium); Flamion, B. [Mines et Geologie, Dir. Generale des Ressources Naturelles et de l' Environnement. Dir. des Eaux Souterraines, Jambes (Belgium); Zech, Y. [Universite Catholique de Louvain, Unite de Genie civil, Louvain-La-Neuve (Belgium)

    2005-07-01

    Several studies are presently under progress in the Walloon Region so as to assess the long term environmental impact caused by the closing of coal mines. Among the effects on water resources management, mining wastes deposits in the major bed of small rivers becomes a concern since the lack of maintenance of the works leads to difficulties of drainage in period of storm and to situations at risk for the vicinity. A first characterization carried out by the IGRETEC at the request of the Walloon Region leads to the selection of nine spoil heaps for more detailed investigations. The purpose is to update the administrative data by establishing the profile and cross sections of the works, to collect hydrological data and to evaluate measures to be proposed according to the risks and to the dimensioning of the works. The in situ investigations called upon specialized speleologists and the use of video cameras. (authors)

  4. Brooks under colliery heaps in the Walloon Region

    International Nuclear Information System (INIS)

    Lardinois, J.P.; Flamion, B.; Zech, Y.

    2005-01-01

    Several studies are presently under progress in the Walloon Region so as to assess the long term environmental impact caused by the closing of coal mines. Among the effects on water resources management, mining wastes deposits in the major bed of small rivers becomes a concern since the lack of maintenance of the works leads to difficulties of drainage in period of storm and to situations at risk for the vicinity. A first characterization carried out by the IGRETEC at the request of the Walloon Region leads to the selection of nine spoil heaps for more detailed investigations. The purpose is to update the administrative data by establishing the profile and cross sections of the works, to collect hydrological data and to evaluate measures to be proposed according to the risks and to the dimensioning of the works. The in situ investigations called upon specialized speleologists and the use of video cameras. (authors)

  5. Characterization of crystalline rocks in the Lake Superior region, USA: implications for nuclear waste isolation

    International Nuclear Information System (INIS)

    Sood, M.K.; Flower, M.F.J.; Edgar, D.E.

    1984-01-01

    The Lake Superior region (Wisconsin, the Upper Peninsula of Michigan, and Minnesota) contains 41 Precambrian crystalline rock complexes comprising 64 individual but related rock bodies with known surface exposures. Each complex has a map area greater than 78 km 2 . About 54% of the rock complexes have areas of up to 500 km 2 , 15% fall between 500 km 2 and 1000 km 2 , 19% lie between 1000 km 2 and 2500 km 2 , and 12% are over 2500 km 2 . Crystalline rocks of the region vary widely in composition, but they are predominantly granitic. Repeated thermo-tectonic events have produced early Archean gneisses, migmatites, and amphibolites with highly tectonized fabrics that impart a heterogeneous and anisotropic character to the rocks. Late Archean rocks are usually but not invariably gneissose and migmatitic. Proterozoic rocks of the region include synorogenic (foliated) granitic rocks, anorogenic (non-foliated) granites, and the layered gabbro-anorthosite-troctolite intrusives of the rift-related Keweenawan igneous activity. Compared with the Archean rocks of the region, the Proterozoic bodies generally lack highly tectonized fabrics and have more definable contacts where visible. Anorogenic intrusions are relatively homogeneous and isotropic. On the basis of observed geologic characteristics, postorogenic and anorogenic crystalline rock bodies located away from recognized tectonic systems have attributes that make them relatively more desirable as a possible site for a nuclear waste repository in the region. This study was conducted at Argonne National Laboratory under the sponsorship of the US Department of Energy through the Office of Crystalline Repository Development at Battelle Memorial Institute, Columbus, Ohio. 84 references, 4 figures, 3 tables

  6. Characterization of crystalline rocks in the Lake Superior region, USA: implications for nuclear waste isolation

    International Nuclear Information System (INIS)

    Sood, M.K.; Edgar, D.E.; Flower, M.F.J.

    1984-01-01

    The Lake Superior region (Wisconsin, the Upper Peninsula of Michigan, and Minnesota) contains 41 Precambrian crystalline (medium- to coarse-grained igneous and high-grade metamorphic) rock complexes comprising 64 individual but related rock bodies with known surface exposures. Each complex has a map area greater than 78 km 2 . About 54% of the rock complexes have areas of up to 500 km 2 , 15% fall between 500 km 2 and 1000 km 2 , 19% lie between 1000 km 2 and 2500 km 2 , and 12% are over 2500 km 2 . Crystalline rocks of the region vary widely in composition, but they are predominantly granitic. Repeated thermo-tectonic events have produced early Archean gneisses, migmatites, and amphibolites with highly tectonized fabrics that impart a heterogeneous and anisotropic character to the rocks. Late Archean rocks are usually but not invariably gneissose an migmatitic. Proterozoic rocks of the region include synorogenic (foliated) granitic rocks, anorogenic (nonfoliated) granites, and the layered gabbro-anorthosite-troctolite intrusives of the rift-related Keweenawan igneous activity. Compared with the Archean rocks of the region, the Proterozoic bodies generally lack highly tectonized fabrics and have more definable contacts where visible. Anorogenic intrusions are relatively homogeneous and isotropic. On the basis of observed geologic characteristics, postorogenic and anorogenic crystalline rock bodies located away from recognized tectonic systems have attributes that make them relatively more desirable as a possible site for a nuclear waste repository in the region. This study was conducted at Argonne National Laboratory under the sponsorship of the US Department of Energy through the Office of Crystalline Repository Development at Battelle Memorial Institute, Columbus, Ohio

  7. Transient response in granular bounded heap flows

    Science.gov (United States)

    Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.

    2017-11-01

    Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.

  8. Successful approaches. Sports stars and HEAPS.

    Science.gov (United States)

    1996-01-01

    In western Samoa, football stars are being used in the fight against acquired immunodeficiency syndrome (AIDS). Originally recruited by Palanitina Toelupe, chief health educator of the Health Education and Promotion Section (HEAPS), to assist with an anti-smoking campaign, the players became sensitized to issues regarding AIDS and agreed to visit high schools where they could urge young people to "Learn the Facts (about AIDS) and Pass the Word." With assistance from the SPC, HEAPS produced and broadcast radio and TV spots featuring the athletes; a poster was printed and distributed. Sports stars travel regionally and internationally; those with knowledge of AIDS and unsafe sex behavior can reinforce responsible sexual behavior among their teammates. Sports people should be targeted for AIDS and sexually transmitted disease (STD) education and prevention.

  9. Geological disposal of high-level radioactive waste and the role of rock engineering

    International Nuclear Information System (INIS)

    Sugihara, Kozo

    2008-01-01

    Japan Atomic Energy Agency (JAEA) and its predecessors have been conducting an extensive geoscientific research program since the 1970's in order to contribute to the formation of a firm scientific and technological basis for the geological disposal of high level radioactive waste in Japan. As a part of this program, in situ experiments have been performed at the Tono Mine in soft sedimentary rocks and at the Kamaishi Mine in hard crystalline rocks. An experiment on excavation disturbance has been one of these experiments and has revealed the extent and properties of the excavation disturbed zone (EDZ) and the applicability of available measurement methods. It is suggested that mechanical excavation and controlled excavation have reduced excavation damage of the rock mass around a drift, although some improvements in the currently available methods for measuring and simulating the EDZ are essential to understand excavation disturbance in more detail. JAEA is now promoting two underground research laboratory projects in Japan; the Mizunami Underground Research Laboratory (MIU) project for crystalline rocks and the Horonobe Underground Research Laboratory (Horonobe URL) project for sedimentary rocks. From a rock mechanical point of view, the major interest in these projects will be paid to failure phenomenon deep underground, rock stress estimation at larger scales and long-term physical stability of underground structure. These projects are open for international collaboration. (author)

  10. Characteristics of ornamental rocks waste: application of mechanochemical concepts

    International Nuclear Information System (INIS)

    Santos, J. dos; Galembeck, F.

    2016-01-01

    Processing of ornamental rocks produces up to 80% weight residues which become an environmental problem. In this work, we analyzed residual powders from cutting and crushing granite Cinza Corumba, to study the influence of mechanical processes in the properties of the residues. The powders were characterized by X-ray diffraction and fluorescence, infrared spectroscopy, scanning electron microscopy, surface area determination and adsorption of methylene blue. The same elements and minerals are found in both powders but the powders formed during crushing contain lubricating oil residues, from the crusher. Particle shapes of the crushed powder (surface area 2.85 m2/g) are more irregular than cut powder (surface area 1.98 m2/g). Adsorption of methylene blue is lighter in the crushed powder than in the cutting powder. Thus, the powders analyzed have different surface properties. (author)

  11. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    Directory of Open Access Journals (Sweden)

    John W. Dockrey

    2014-03-01

    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  12. Review of potential host rocks for radioactive waste disposal in the Piedmont Province of Georgia

    International Nuclear Information System (INIS)

    Wenner, D.B.; Gillon, K.A.

    1980-10-01

    A literature study was conducted on the Piedmont province of Georgia to designate areas that may be favorable for field exploration for consideration of a repository for storage of radioactive waste. The criteria utilized in such a designation was based upon consideration of the rock unit having favorable geological, geotechnical, and geohydrological features. The most important are that the rock unit have: (1) satisfactory unit dimensions (> 100 km 2 outcrop area and at least 1500 meters (approx. 5000 feet) depth of a continuous rock type); and (2) acceptable geohydrological conditions. Among all rock types, it is concluded that the granites of the large post-metamorphic plutons and large, homogeneous orthogneissic units offer the most favorable geologic settings for exploration for siting a radioactive waste repository. Virtually all other rock types, including most metavolcanic and metasedimentary lithologies have unacceptable unit dimensions, generally unfavorable geohydrologic settings, and deleterious mechanical and physical geotechnical properties. After consideration of all major lithologies that comprise the Georgia Piedmont, the following units were deemed favorable: (1) the Elberton Pluton; (2) the Siloam Pluton; (3) the Sparta Pluton; (4) two unnamed plutons adjacent to the Snelson body of S.W. Georgia; (5) the Lithonia Gneiss; (6) basement orthogneisses and charnockites of the Pine Mountain Belt

  13. Impact of bimodal textural heterogeneity and connectivity on flow and transport through unsaturated mine waste rock

    Science.gov (United States)

    Appels, Willemijn M.; Ireson, Andrew M.; Barbour, S. Lee

    2018-02-01

    Mine waste rock dumps have highly variable flowpaths caused by contrasting textures and geometry of materials laid down during the 'plug dumping' process. Numerical experiments were conducted to investigate how these characteristics control unsaturated zone flow and transport. Hypothetical profiles of inner-lift structure were generated with multiple point statistics and populated with hydraulic parameters of a finer and coarser material. Early arrival of water and solutes at the bottom of the lifts was observed after spring snowmelt. The leaching efficiency, a measure of the proportion of a resident solute that is flushed out of the rock via infiltrating snowmelt or rainfall, was consistently high, but modified by the structure and texture of the lift. Under high rates of net percolation during snowmelt, preferential flow was generated in coarse textured part of the rock, and solutes in the fine textured parts of the rock remained stagnant. Under lower rates of net percolation during the summer and fall, finer materialswere flushed too, and the spatial variability of solute concentration in the lift was reduced. Layering of lifts leads to lower flow rates at depth, minimizing preferential flow and increased leaching of resident solutes. These findings highlight the limited role of large scale connected geometries on focusing flow and transport under dynamic surface net percolation conditions. As such, our findings agree with recent numerical results from soil studies with Gaussian connected geometries as well as recent experimental findings, emphasizing the dominant role of matrix flow and high leaching efficiency in large waste rock dumps.

  14. Nuclear waste. DOE has terminated research evaluating crystalline rock for a repository

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Weigel, Dwayne E.; Price, Vincent P.

    1989-05-01

    We found that DOE terminated funding of research projects specifically designed to evaluate the suitability of crystalline rock for a repository. DOE continued other research efforts involving crystalline rock because they will provide information that it considers useful for evaluating the suitability of Yucca Mountain, Nevada, for a potential repository. Such research activities are not prohibited by the amendments. In January 1988, DOE began evaluating both its domestic and international research programs to ensure their compliance with the 1987 amendments. Several DOE offices and contractors were involved in the evaluation. DOE officials believe that the evaluation effectively brought the Office of Civilian Radioactive Waste Management activities into compliance with the amendments while maintaining useful international relations of continuing benefit to the nuclear waste program in general and to DOE's investigation of the Yucca Mountain site in particular. (The 1987 amendments designated Yucca Mountain as the only site that DOE is to investigate for a potential repository.) The approach and results of DOE's evaluation are discussed. Our review of DOE documents indicates that, by June 22, 1988, DOE completed its evaluation of ongoing crystalline rock research projects to ensure compliance with the 1987 amendments, terminated those research activities it identified as being specifically designed to evaluate the suitability of crystalline rock for a repository, continued some research activities involving crystalline rock because these activities would benefit the investigation and development of the Yucca Mountain repository site, and redirected some research activities so that they would contribute to investigating and developing the Yucca Mountain site

  15. Geological disposal of high-level radioactive waste. Conceptual repository design in hard rock

    International Nuclear Information System (INIS)

    Beale, H.; Griffin, J.R.; Davies, J.W.; Burton, W.R.

    1980-01-01

    The paper gives an interim report on UK studies on possible designs for a repository for vitrified high-level radioactive waste in crystalline rock. The properties of the waste are described and general technical considerations of consequences of disposal in the rock. As an illustration, two basic designs are described associated with pre-cooling in an intermediate store. Firstly, a 'wet repository' is outlined wherein canisters are sealed up closely in boreholes in the rock in regions of low groundwater movement. Secondly, a 'dry repository' above sea level is described where emplacement in tunnels is followed by a loose backfill containing activity absorbers. A connection to deep permeable strata maintains water levels below emplacement positions. Variants on the two basic schemes (tunnel emplacement in a wet repository and in situ cooling) are also assessed. It is concluded that all designs discussed produce a size of repository feasible for construction in the UK. Further, (1) a working figure of 100 0 C per maximum rock temperature is not exceeded, (2) no insuperable engineering problems have so far been found, though rock mechanics studies are at an early stage; (3) it is not possible to discount the escape of a few long-lived 'man-made' isotopes. A minute increment to natural activity in the biosphere may occur from traces of uranium and its decay chains; (4) at this stage, all the designs are still possible candidates for the construction of a UK repository. (author)

  16. Stability Analysis and Stabilization of Miduk Heap Leaching Structure, Iran

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2013-06-01

    Full Text Available To construct copper heap leaching structures, a stepped heap of ore is placed over an isolated sloping surface and then washed with sulphuric acid. The isolated bed of such a heap consists of some natural and geosynthetic layers. Shear strength parameters between these layers are low, so they form the possible sliding surfaces of the heaps. Economic and environmental considerations call for studying such slides. In this study, firstly, results of the laboratory tests carried on the materials of the heap leaching structures bed are presented. Then, the instability mechanisms of such structures are investigated and proper approaches are summarized for their stabilization. Finally, stability of the Miduk copper heap is evaluated as a case history, and appropriate approaches and their effects are discussed for its stabilization.

  17. Hydrological and thermal issues concerning a nuclear waste repository in fractured rocks

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1991-12-01

    The characterization of the ambient conditions of a potential site and the assessment of the perturbations induced by a nuclear waste repository require hydrological and thermal investigations of the geological formations at different spatial and temporal scales. For high-level wastes, the near-field impacts depend on the heat power of waste packages and the far-field long-term perturbations depend on the cumulative heat released by the emplaced wastes. Surface interim storage of wastes for several decades could lower the near-field impacts but would have relatively small long-term effects if spent fuels were the waste forms for the repository. One major uncertainty in the assessment of repository impacts is from the variation of hydrological properties in heterogeneous media, including the effects of fractures as high-permeability flow paths for containment migration. Under stress, a natural fracture cannot be represented by the parallel plate model. The rock surface roughness, the contact area, and the saturation state in the rock matrix could significantly change the fracture flow. In recent years, the concern of fast flow through fractures in saturated media has extended to the unsaturated zones. The interactions at different scales between fractures and matrix, between fractured matrix unites and porous units, and between formations and faults are discussed

  18. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2015-07-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  19. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    International Nuclear Information System (INIS)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T.

    2015-01-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  20. Far-field thermomechanical response of argillaceous rock to emplacement of a nuclear-waste repository

    International Nuclear Information System (INIS)

    McVey, D.F.; Thomas, R.K.; Lappin, A.R.

    1980-08-01

    Before heat-producing wastes can be emplaced safely in any argillaceous rock, it will be necessary to understand the far-field thermal and thermomechanical response of this rock to waste emplacement. This report presents the results of a first series of calculations aimed at estimating the far-field response of argillite to waste emplacement. Because the thermal and mechanical properties of argillite are affected by its content of expandable clay, its behavior is briefly compared and contrasted with that of a shale having the same matrix thermal properties, but containing no expandable clay. Under this assumption, modeled temperatures are the same for the two rock types at equivalent power densities and reflect the large dependence of in-situ temperatures on both initial power density and waste type. Thermomechanical calculations indicate that inclusion of contraction behavior of expandable clays in the assumed argillite thermal expansion behavior results, in some cases, in generation of a large zone in and near the repository that has undergone volumetric contraction but is surrounded by uniformly compressive stresses. Information available to date indicates that this contraction would likely result in locally increased fluid permeability and decreased in-situ thermal conductivity, but might well be advantageous as regards radionuclide retention, because of the increased surface area within the contracted zone. Assumption of continuous and positive expansion behavior for the shale eliminates the near-repository contraction and tensional zones, but results in near-surface tensional zones directly above the repository

  1. Rock mechanics in the disposal of radioactive wastes by hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    McClain, W C

    1968-01-01

    The ultimate capacity of a hydraulic-fracturing waste disposal facility is governed primarily by the integrity of the rocks overlying the injected wastes. The objective of this study is to analyze theoretically the stresses and strains generated by the injected wastes in an effort to understand the behavior of the system sufficiently well that the failure mechanism can be predicted and the capacity of the injection well estimated. The surface uplifts at Oak Ridge National Laboratory's fracturing site were compared with theoretical curves obtained by assuming the uplifts to be inversely analogous to the subsidence which occurs over mining excavations. This analysis, based on assumptions of homogeneity, isotropy, and linear elasticity, provided considerable insight into the mechanics of the process. The most probable mechanism of failure of the rock appears to be by the formation of a vertical instead of a horizontal fracture. Fracture orientation is controlled primarily by the orientation of the principal stress field in the rock. Each successive waste injection slightly modifies this stress field toward a condition more favorable to the formation of a vertical fracture. (16 refs.)

  2. Technology needs for selecting and evaluating high-level waste repository sites in crystalline rock

    International Nuclear Information System (INIS)

    1988-12-01

    This report describes properties and processes that govern the performance of the geological barrier in a nuclear waste isolation system in crystalline rock and the state-of-the-art in the understanding of these properties and processes. Areas and topics that require further research and development as well as technology needs for investigating and selecting repository sites are presented. Experiences from the Swedish site selection program are discussed, and a general investigation strategy is presented for an area characterization phase of an exploratory program in crystalline rocks. 255 refs., 65 figs., 10 tabs

  3. Importance of creep failure of hard rock in the near field of a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Blacic, J D [Los Alamos National Laboratory, NM, (USA)

    1982-12-31

    Potential damage resulting from slow creep deformation intuitively seems unlikely for a high-level nuclear waste repository excavated in hard rock. However, recent experimental and modeling results indicate that the processes of time-dependent microcracking and water-induced stress corrosion can lead to significant reductions in strength and alteration of other key rock properties in the near-field region of a repository. We review the small data base supporting these conclusions and stress the need for an extensive laboratory program to obtain the new data that will be required for design of a repository.

  4. Commercial application of bacterial heap leaching in Ganzhou uranium mine

    International Nuclear Information System (INIS)

    Liu Jian; Fan Baotuan; Meng Yunsheng; Xiao Jinfeng; Chen Sencai; Wu Jinjing; Liu Chengwu; Wu Yichang; Zeng Ruilong

    2003-01-01

    In this paper the situation of commercial application on bacterial heap leaching in Ganzhou Uranium Mine is introduced, and the construction of biomembrane oxidizing tank, regeneration and recycled utilization of barren solution are summarized. Total five heaps, 18436 t, uranium ore are leached by bacteria during the half of a year. The result is consistent with that of commercial experiment. The technology of bacterial heap leaching is more perfected

  5. Acid agglomeration heap leaching: present status, principle and applications

    International Nuclear Information System (INIS)

    Zeng Yijun

    2004-01-01

    For extracting valuable metal from clay-bearing acidic ores of poor permeability, agglomerated acid heap leaching appears to be the most effective method, whereas conventional leaching and general heap leaching bring about unsatisfactory recovery and poor economic returns. The present state of research work on acid agglomeration worldwide and its basic principle are discussed. The first commercial application employing acid agglomeration-heap leaching in China is also introduced

  6. Effects of bacterial action on waste rock producing acid drainage in the Brazilian first uranium mine

    International Nuclear Information System (INIS)

    Rey-Silva, Daniela V.F.M.; Oliveira, Alexandre P. de; Geraldo, Bianca; Campos, Michele B.; Azevedo, Heliana de; Barreto, Rodrigo P.; Souza-Santos, Marcio L. de

    2009-01-01

    This work is an evolution of the methodology showed in the paper 'Study of waste of waste rock piles producing acid drainage in the Brazilian first uranium mine', also submitted for INAC2009. Therefore, the present work also related to the determination of chemical species leaching from waste rock pile 4 (WRP4) of the Uranium Mine and Milling Facility located in the Pocos de Caldas Plateau, as well as the generation of acid waters. With the previous experimental setup, it has been observed that not only water and available oxygen are significant to pyrite oxidation reaction, but bacterial activity as well. As a first approach, the present work addresses the same experiment, but now testing without the influence of bacterial action. Therefore, the new methodology and experimental setup is now capable of determining the acidity of water in contact with material from the WRP4 and the concentration of chemical species dissolved as function of time. Such would also show the extent of bacterial action interference on the pyrite oxidation reaction. Results are based on mass balances comparing concentrations of chemical species in the waste rock before the experiment and in the waste rock plus the remaining water after the experiment. In addition, the evolution of the pH and EMF (electromotive force) values along with chemical species quantified through the experiment are presented through graphics. That is followed by discussions on the significance of such results in terms of concentration of the involved chemical species. The present work has also shown the need of improving the injection of air into the system. A more sophisticated experimental setup should be assembled in the near future, which would allow the quantification of differences between experimental tests with and without bacterial action. (author)

  7. Radioactive waste - Between a rock and a hard place

    International Nuclear Information System (INIS)

    Curtin, T.J.

    1998-01-01

    Full text: Throughout the world, plans for repositories face difficulties. The search for sites has found difficulties in France, Sweden, Switzerland and most recently in the UK. This is despite massive public relations exercises and, in the case of the UK and Switzerland, broad-based local support for the project. Tom Cur-tin will present a view on the lessons to be learnt from the Nirex project and give some pointers on the sociology and politics involved in the disposal of radioactive waste. This paper will review the sociology and politics of radioactive waste disposal. Lessons Learnt: It is not just a scientific process: The fundamental lesson learrit from the Nirex experience so far is that the process is not merely scientific; The project has to succeed politically: To concentrate on the technical aspects of siting without considering the political aspect equates to building castles in the air; Any form of imposition leads to rejection: The prevailing feeling among some politicians was that the project was unfairly imposed; One player cannot support the whole edifice: One company cannot carry on its shoulder the entire weight of the project; Third parties must support the project: Another fundamental criterion of the political process is the active involvement of third parties. Summary: The developer cannot do all the work alone - a number of players are needed. Total control - for example, a timetable - is not possible as local communities must have power. Openness and transparency at all stages are essential and finally, and most importantly, politics comes before science, emotion before rational thought. Finally, delays are a part of long-lived projects. The objective is to manage them, not to be defeated by them

  8. Application of Reactive Transport Modeling to Heap Bioleaching of Copper

    Science.gov (United States)

    Liu, W.

    2017-12-01

    Copper heap bioleaching is a complex industrial process that utilizes oxidative chemical leaching and microbial activities to extract copper from packed ore beds. Mathematical modelling is an effective tool for identifying key factors that determine the leaching performance. HeapSim is a modelling tool that incorporates all fundamental processes that occur in a heap under leach, such as the movement of leaching solution, chemical reaction kinetics, heat transfer, and microbial activities, to predict the leaching behavior of a heap. In this study, the HeapSim model was applied to simulate chalcocite heap bioleaching at Quebrada Blanca mine located in the Northern Chile. The main findings were that the model could be satisfactorily calibrated and validated to simulate chalcocite leaching. Heap temperature was sensitive to the changes in the raffinate temperature, raffinate flow rate, and the extent of pyrite oxidation. At high flow rates, heap temperature was controlled by the raffinate temperature. In contrast, heat removal by the raffinate solution flow was insignificant at low flow rates, leading to the accumulation of heat generated by pyrite reaction and therefore an increase in heap temperature.

  9. Geotechnical core and rock mass characterization for the UK radioactive waste repository design

    International Nuclear Information System (INIS)

    Rawlings, C.G.; Barton, N.; Loset, F.; Vik, G.; Bhasin, R.K.; Smallwood, A.; Davies, N.

    1996-01-01

    The NGI method of characterizing joints (using JRC, JCS and φ r ) and characterizing rock masses (using the Q-system) have been and are currently being used extensively in geotechnical consultancy projects. One such project recently completed for UK Nirex Ltd included the logging of 8 km of 100-mm-diameter drill core from boreholes up to 2km in depth. Preliminary rock reinforcement designs were derived from the Q-system statistics, which were logged in parallel with JRC, JCS and φ r . The data from the NGI method of characterizing joints and the Q-system for characterizing rock masses have also been used as the basis for UDEC-BB numerical modelling of the proposed cavern excavations for the disposal of solid, low- and intermediate-level radioactive wastes. The purpose of this numerical modelling was to investigate the stability of rock caverns and in particular the rock reinforcement requirements (giving predicted bolt loads and rock deformations), the extent of the disturbed zone (joint shearing and hydraulic aperture) with respect to cavern orientation, the effect of various pillar widths, and the effect of the cavern excavation sequence. (Author)

  10. Numerical modeling of the geomechanical response of a rock mass to a radioactive waste repository

    International Nuclear Information System (INIS)

    Hardy, M.P.; St John, C.M.; Hocking, G.

    1979-06-01

    Geotechnical numerical models capable of predicting the thermomechanical response and groundwater movements around an underground radioactive waste repository are vital to the success of the nuclear waste disposal program. In the absence of directly related engineering experience, the design, risk assessment, and licensing procedures of a repository will be reliant on predictions made using such models. This paper reviews models being used to assist in repository design and summarizes the results of a recent parametric study of underground disposal in basaltic rocks. On the basis of preliminary site data, it is concluded that the allowable areal density of heat-generating waste will be controlled by the stability of placement rooms and the boreholes in which waste canisters are placed. Regional effects including thermally induced upward groundwater flow, appear to present less severe problems

  11. Environmental impacts of waste produced from processing of different uraniferous rock samples

    Directory of Open Access Journals (Sweden)

    Ibrahim E. El Aassy

    2016-07-01

    Full Text Available Radon exhalation rates from five studied laboratory waste samples resulted from five different sedimentary rock types named sandy dolostone, siltstone –two samples-, marly claystone and black shale were measured using ‘‘Sealed Can technique”. These rates were found to vary between 0.005 and 0.015 Bq m−2 h−1. A positive correlation was found between the radon exhalation rates and the radium activities. The emanation coefficients were calculated for these laboratory waste samples which varied between 0.0004 and 0.0007 according to the physical and chemical characterize of the wastes. These results are partially in accordance with autonite acid leached tailings on laboratory scale (USA. These results led us to pay attention about the effect and impact of these wastes on the environment.

  12. Carbonate heap leach of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Turney, W.R.; Mason, C.F.V.; Longmire, P.

    1994-01-01

    A new approach to removal of uranium from soils based on existing heap leach mining technologies proved highly effective for remediation of soils from the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. In laboratory tests, remediation of uranium-contaminated soils by heap leaching with carbonate salt solutions was demonstrated in column experiments. An understanding of the chemical processes that occur during carbonate leach of uranium from soils may lead to enhancement of uranium removal. Carbonate leaching requires the use of an integrated and closed circuit process, wherein the leach solutions are recycled and the reagents are reused, resulting in a minimum secondary waste stream. Carbonate salt leach solution has two important roles. Primarily, the formation of highly soluble anionic carbonate uranyl species, including uranyl dicarbonate (UO 2 CO 32 = ) and uranyl tricarbonate (UO 2 CO 33 4- ), allows for high concentration of uranium in a leachate solution. Secondly, carbonate salts are nearly selective for dissolution of uranium from uranium contaminated soils. Other advantages of the carbonate leaching process include (1) the high solubility, (2) the selectivity, (3) the purity of the solution produced, (4) the relative ease with which a uranium product can be precipitated directly from the leachate solution, and (5) the relatively non-corrosive and safe handling characteristics of carbonate solutions. Experiments conducted in the laboratory have demonstrated the effectiveness of carbonate leach. Efficiencies of uranium removal from the soils have been as high as 92 percent. Higher molar strength carbonate solutions (∼0.5M) proved more effective than lower molar strength solutions (∼ 0.1M). Uranium removal is also a function of lixiviant loading rate. Furthermore, agglomeration of the soils with cement resulted in less effective uranium removal

  13. Weathering behavior of mine tailings and waste rock: A surface investigation

    International Nuclear Information System (INIS)

    Domvile, S.J.; Li, M.G.; Sollner, D.D.; Nesbitt, W.

    1994-01-01

    A study focusing on the ion movement in the near surface of sulfide minerals was conducted to better understand the weathering mechanisms of mine waste materials. Tailings and waste rock samples from Canadian mines were subjected to controlled weathering studies using various chemical leachants. Leachates were analyzed for various parameters, and petrographic analyses were conducted on the solid residues. Laboratory oxidation studies of pure pyrrhotite and arsenopyrite were carried out using the surface techniques X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES). The data derived from the weathering study and the surface techniques were correlated to determine mechanisms of oxidation. Several results were observed during the project: ferric iron constitutes one third of the iron present in pyrrhotite, sulfide oxidation is initiated when rock is blasted, sulfide sulfur is oxidized to di- and poly-sulfides prior to forming sulfates, and significantly more sulfate is produced upon exposure to aqueous environments than to air alone

  14. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    International Nuclear Information System (INIS)

    Wolery, T.J.

    1981-02-01

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling

  15. Transient diffusion from a waste solid into water-saturated, fractured porous rock

    International Nuclear Information System (INIS)

    Ahn, J.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.-L.

    1989-09-01

    Numerical illustrations for transient mass transfer from an infinitely long cylinder intersected by a planar fracture are shown based on Chambre's exact analytical solutions. The concentration at the cylinder surface is maintained at the solubility. In the fracture contaminant diffuses in the radial direction. In the rock matrix three-dimensional diffusion is assumed in the cylindrical coordinate. No advection is assumed. Radioactive decay and sorption equilibrium are included. Radioactive decay enhances the mass transfer from the cylinder. Due to the presence of the fracture, the mass flux from the cylinder to the rock matrix becomes smaller, but the fracture effect is limited in the vicinity of the fracture in early times. Even though the fracture is assumed to be a faster diffusion path than the rock matrix, the larger waste surface exposed to the matrix and the greater assumed matrix sorption result in greater release rate to the matrix than to the fracture. 8 refs., 4 figs

  16. STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Huyakorn, P.; Golis, M.J.

    1989-01-01

    1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system

  17. Preoperational assessment of solute release from waste rock at proposed mining operations

    International Nuclear Information System (INIS)

    Lapakko, Kim A.

    2015-01-01

    Highlights: • Modeling to estimate solute release from waste rock at proposed mines is described. • Components of the modeling process are identified and described. • Modeling inputs required are identified and described. • Examples of data generated and their application are presented. • Challenges inherent to environmental review are identified. - Abstract: Environmental assessments are conducted prior to mineral development at proposed mining operations. Among the objectives of these assessments is prediction of solute release from mine wastes projected to be generated by the proposed mining and associated operations. This paper provides guidance to those engaged in these assessments and, in more detail, provides insights on solid-phase characterization and application of kinetic test results for predicting solute release from waste rock. The logic guiding the process is consistent with general model construction practices and recent publications. Baseline conditions at the proposed site are determined and a detailed operational plan is developed and imposed upon the site. Block modeling of the mine geology is conducted to identify the mineral assemblages present, their masses and compositional variations. This information is used to select samples, representative of waste rock to be generated, that will be analyzed and tested to describe characteristics influencing waste rock drainage quality. The characterization results are used to select samples for laboratory dissolution testing (kinetic tests). These tests provide empirical data on dissolution of the various mineral assemblages present as waste rock. The data generated are used, in conjunction with environmental conditions, the proposed method of mine waste storage, and scientific and technical principles, to estimate solute release rates for the operational scale waste rock. Common concerns regarding waste rock are generation of acidic drainage and release of heavy metals and sulfate. Key solid

  18. Rheological characteristics of waste rock materials in abandoned mine deposit and debris flow hazards

    Science.gov (United States)

    Jeong, Sueng-Won; Lee, Choonoh; Cho, Yong-Chan; Wu, Ying-Hsin

    2015-04-01

    In Korea, approximately 5,000 metal mines are spread, but 50% of them are still abandoned without any proper remediation and cleanup. Summer heavy rainfall can result in the physicochemical modification of waste rock materials in the mountainous. From the geotechnical monitoring and field investigation, there are visible traces of mass movements every year. Soil erosion is one of severe phenomena in the study area. In particular, study area is located in the upper part of the Busan Metropolitan City and near the city's water supply. With respect to the supply of drinking water and maintenance of ecological balance, proper disposal of waste rock materials is required. For this reason, we examine the rheological properties of waste rock materials as a function of solid content using a ball- and vane-penetrated rheometer. In the flow curves, which are the relationship between the shear stress and shear rate of waste rock materials, we found that the soil samples exhibited a shear thinning beahivor regardless of solid content. The Bingham, Herschel-Bulkley, Power-law, and Papanastasiou models are used to determine the rheological properties. Assuming that the soil samples behaved as the viscoplastic behavior, the yield stress and viscosity are determined for different water contents. As a result, there are clear relationships between the solid content and rheological values (i.e., Bingham yield stress and plastic viscosity). From these relationships, the maximum and minimum of Bingham yield stresses are ranged from 100 to 2000 Pa. The debris flow mobilization is analysed using a 1D BING and 2D Debris flow models. In addition, the effect of wall slip and test apparatus are discussed.

  19. Thermomigration of fluid inclusions in rock salt. Implications for the disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Noack, W.; Runge, K.

    1984-01-01

    A mathematical model has been suggested to predict the time-dependent accumulation of brine at nuclear waste packages emplaced in a rock salt repository owing to thermomigration of brine inclusions. The model is based mainly on a description of the migration rate as a function of the temperature, temperature gradient, inclusion size and gas/liquid ratio of inclusions. Other factors are treated merely as disturbing quantities with respect to the migration rate. (author)

  20. Modeling of thermal evolution of near field area around single pit mode nuclear waste canister disposal in soft rocks

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Verma, A.K.; Maheshwar, Sachin

    2016-01-01

    Soft rocks like argillites/shales are under consideration worldwide as host rock for geological disposal of vitrified as well as spent fuel nuclear waste. The near field around disposed waste canister at 400-500m depth witnesses a complex heat field evolution due to varying thermal characteristics of rocks, coupling with hydraulic processes and varying intensity of heat flux from the canister. Smooth heat dissipation across the rock is desirable to avoid buildup of temperature beyond design limit (100 °C) and resultant micro fracturing due to thermal stresses in the rocks and intervening buffer clay layers. This also causes enhancement of hydraulic conductivity of the rocks, radionuclide transport and greater groundwater ingress towards the canister. Hence heat evolution modeling constitutes an important part of safety assessment of geological disposal facilities

  1. Close-out of open pit and waste rock piles of a uranium mine in Guangxi province of China

    International Nuclear Information System (INIS)

    Xu Lechang; Zhang Zhao; Zhang Guopu; Liu Min

    2012-01-01

    Close-out of projects of a mine in Guangxi province of China includes open pit,east and west waste rock piles, ore transfer station, industrial fields, buildings, ore transporting road, and equipment and conduits. The following remediation limits are introduced: environment penetrating radiation dose rate and 222 Rn flux of open pit and waste rock piles, 226 Ra specific activity of soil and individual dose. Remediation objective and programme are discussed in details. Remediation effects are evaluated. (authors)

  2. Radionuclide transport in fractured rock: quantifying releases from final disposal of high level waste

    International Nuclear Information System (INIS)

    Silveira, Claudia S. da; Alvim, Antonio C.M.

    2013-01-01

    Crystalline rock has been considered as a potentially suitable matrix for high-level radioactive waste (HLW) repository because it is found in very stable geological formations and may have very low permeability. In this study the adopted physical system consists of the rock matrix containing a discrete horizontal fracture in a water saturated porous rock and a system of vertical fractures as a lineament. The transport in the fractures - horizontal and vertical, is assumed to obey a relation convection-diffusion, while the molecular diffusion is considered dominant mechanism of transport in porous rock. In this model the decay chain is considered. We use a code in Fortran 90, where the partial differential equations that describe the movement of radionuclides were discretized by finite differences methods. We use the fully implicit method for temporal discretization schemes. The simulation was performed with relevant data of nuclides in spent fuel for performance assessment in a hypothetical repository, thus quantifying the radionuclides released into the host rock. (author)

  3. Developments of uranium and gold ores heap leaching technologies

    International Nuclear Information System (INIS)

    Tian Yuan; Guan Zibin; Gao Renxi

    1998-01-01

    The author reviews developments in heap leaching of uranium and gold ores at home and abroad, summarises condition of application. The author also presents problems having to be studied and settled urgently in heap leaching of uranium and gold ores in China

  4. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 7. Baseline rock properties-basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/7 Baseline Rock Properties--Basalt, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report contains an evaluation of the results of a literature survey to define the rock mass properties of a generic basalt, which could be considered as a geological medium for storing radioactive waste. The general formation and structure of basaltic rocks is described. This is followed by specific descriptions and rock property data for the Dresser Basalt, the Amchitka Island Basalt, the Nevada Test Site Basalt and the Columbia River Group Basalt. Engineering judgment has been used to derive the rock mass properties of a typical basalt from the relevant intact rock property data and the geological information pertaining to structural defects, such as joints and faults

  5. High-level radioactive waste isolation by incorporation in silicate rock

    International Nuclear Information System (INIS)

    Schwartz, L.L.; Cohen, J.J.; Lewis, A.E.; Braun, R.L.

    1978-01-01

    A number of technical possibilities for isolating high-level radioactive materials have been theoretically investigated at various times and places. Isolating such wastes deep underground to ensure long term removal from the biosphere is one such possibility. The present concept involves as a first step creating the necessary void space at considerable depth, say 2 to 5 km, in a very-low-permeability silicate medium such as shale. Waste in dry, calcined or vitrified form is then lowered into the void space, and the access hole or shaft sealed. Energy released by the radioactive decay raises the temperature to a point where the surrounding rock begins to melt. The waste is then dissolved in it. The extent of this melt region grows until the heat generated is balanced by conduction away from the molten zone. Resolidification then begins, and ends when the radioactive decay has progressed to the point that the temperature falls below the melting point of the rock-waste solution. Calculations are presented showing the growth and resolidification process. A nuclear explosion is one way of creating the void space. (author)

  6. Disposal of low- and intermediate-level solid radioactive wastes in rock cavities

    International Nuclear Information System (INIS)

    1983-01-01

    This Guidebook summarizes the factors to be considered and the activities to be undertaken in the overall planning and development of a disposal system for solid or solidified low- and intermediate-level wastes in rock cavities. Aspects related to repository site selection, design, construction, operation, shutdown, surveillance, regulation and safety assessment are discussed here in general terms. They will be covered in greater technical detail in a separate document. This report considers the emplacement of wastes in categories II, III, IV and V, as defined in Table 3.1, in different kinds of cavities located at various depths from just below the surface to deep continental rock. The choice of the type of cavity and its depth and of the disposal site itself is related to the radiological protection requirements for the wastes concerned. The repositories considered include natural caves and abandoned mines as well as specially excavated cavities in various geological formations. Consideration is also given to hydrogeological, environmental and societal factors. The guidelines given in the report are made sufficiently general to cover a broad variety of different circumstances. Consequently, the practical application of these guidelines needs a case-by-case consideration which takes into account the local conditions, e.g. natural circumstances, the characteristics of the wastes and national and international regulations and practices

  7. Disposal of low- and intermediate-level solid radioactive wastes in rock cavities. A guidebook

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This Guidebook summarizes the factors to be considered and the activities to be undertaken in the overall planning and development of a disposal system for solid or solidified low- and intermediate-level wastes in rock cavities. Aspects related to repository site selection, design, construction, operation, shutdown, surveillance, regulation and safety assessment are discussed here in general terms. They will be covered in greater technical detail in a separate document. This report considers the emplacement of wastes in categories II, III, IV and V, as defined in Table 3.1, in different kinds of cavities located at various depths from just below the surface to deep continental rock. The choice of the type of cavity and its depth and of the disposal site itself is related to the radiological protection requirements for the wastes concerned. The repositories considered include natural caves and abandoned mines as well as specially excavated cavities in various geological formations. Consideration is also given to hydrogeological, environmental and societal factors. The guidelines given in the report are made sufficiently general to cover a broad variety of different circumstances. Consequently, the practical application of these guidelines needs a case-by-case consideration which takes into account the local conditions, e.g. natural circumstances, the characteristics of the wastes and national and international regulations and practices.

  8. Oxygen influx and geochemistry of percolate water from reactive mine waste rock underlying a sloping channelled soil cover

    Energy Technology Data Exchange (ETDEWEB)

    Song Qing, E-mail: qsong3@uwo.ca [Geotechnical Research Center, Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9 (Canada); Yanful, Ernest K., E-mail: eyanful@eng.uwo.ca [Geotechnical Research Center, Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9 (Canada)

    2011-05-15

    Research Highlights: > A channelled cover with preferential flow can still mitigate ARD to some extent. > Oxygen ingress was more sensitive to the location of the channel than to K{sub s}. > The channel in the barrier layer was a major passage for O{sub 2} ingress. > Actual flushing was an important factor when estimating O{sub 2} decay coefficient. - Abstract: An ideal engineered soil cover can mitigate acid rock drainage (ARD) by limiting water and gaseous O{sub 2} ingress into an underlying waste rock pile. However, the barrier layer in the soil cover almost invariably tends to develop cracks or fractures after placement. These cracks may change water flow and O{sub 2} transport in the soil cover and decrease performance in the long run. The present study employed a 10-cm-wide sand-filled channel installed in a soil barrier layer (silty clay) to model the aggregate of cracks or fractures that may be present in the cover. The soil cover had a slope of 20%. Oxygen transport through the soil cover and oxidation of the underlying waste rock were investigated and compared to a controlled column test with bare waste rock (without soil cover). Moreover, gaseous O{sub 2} transport in the soil cover with channel and its sensitivity to channel location as well as the influence of the saturated hydraulic conductivity of the channel material were modeled using the commercial software VADOSE/W. The results indicted that the waste rock underlying the soil cover with channel had a lower oxidation rate than the waste rock without cover because of reduced O{sub 2} ingress and water flushing in the soil cover with channel, which meant a partial soil cover might still be effective to some extent in reducing ARD generation. Gaseous O{sub 2} ingress into the covered waste rock was more sensitive to the channel location than to the saturated hydraulic conductivity of the material filling the channel. Aqueous equilibrium speciation modeling and scanning electron microscopy with energy

  9. Host Rock Classification (HRC) system for nuclear waste disposal in crystalline bedrock

    International Nuclear Information System (INIS)

    Hagros, A.

    2006-01-01

    A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q' and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q', fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of

  10. The disposal of radioactive wastes in Brazil with special emphasis on rocks

    International Nuclear Information System (INIS)

    Enokihara, Cyro Teiti

    1983-01-01

    The disposal of radioactive wastes in geological formations seems to be the most appropriate solution for the nuclear waste problem. The disposal sites must provide the maximum safety for the radionuclides during its decay period. The study presents a general analysis of three types rocks: salt, granite and basalt. In our analysis we have dealt with the following aspects: geology, tectonics, seismicity, hydrogeology , mineral resources, geomorphology, population and access. The studied regions were: Sergipe-Alagoas and Reconcavo Basins, Northeastern and Southeastern Folded Regions and Parana Basin. Our study contains the macro-analysis needed for the selection of a safe site for radioactive waste disposal. We believe this work will be useful as a first step for further micro-analysis of selected sites. (author)

  11. Model of heap formation in vibrated gravitational suspensions.

    Science.gov (United States)

    Ebata, Hiroyuki; Sano, Masaki

    2015-11-01

    In vertically vibrated dense suspensions, several localized structures have been discovered, such as heaps, stable holes, expanding holes, and replicating holes. Because an inclined free fluid surface is difficult to maintain because of gravitational pressure, the mechanism of those structures is not understood intuitively. In this paper, as a candidate for the driving mechanism, we focus on the boundary condition on a solid wall: the slip-nonslip switching boundary condition in synchronization with vertical vibration. By applying the lubrication approximation, we derived the time evolution equation of the fluid thickness from the Oldroyd-B fluid model. In our model we show that the initially flat fluid layer becomes unstable in a subcritical manner, and heaps and convectional flow appear. The obtained results are consistent with those observed experimentally. We also find that heaps climb a slope when the bottom is slightly inclined. We show that viscoelasticity enhances heap formation and climbing of a heap on the slope.

  12. Damage-plasticity model of the host rock in a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz [Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)

    2016-06-08

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented in the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.

  13. The far field heating effects of a radioactive waste depository in hard rock

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Bourke, P.J.

    1978-01-01

    Fission product heating of the rock surrounding a depository for high level radioactive waste, will result in high temperatures and high thermal gradients over distances of several hundred metres for many centuries. The consequent thermal expansion of the rock leads to stresses which could alter the fracture pattern and therefore the permeability of the rock. These problems are assessed by considering an idealised model of a depository for which analytic solutions to the temperature and stress fields are derived. A related problem is that any water present in the fissures will tend to rise because of its decrease in density on heating. If the water had previously leached away some of the radionuclides in the waste, then this convective transport constitutes a possible leakage path back to the biosphere. For the low permeabilities expected at a depository site, it is possible to linearise the resulting equations and derive analytic solutions for the flow velocities. This procedure has been carried out for the idealised depository model, in order to estimate the magnitude of these effects

  14. Preliminary analysis of the potential for thermally-induced rock fracture around high-level waste containers

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1976-01-01

    The major results are: the development of parametric formulations relating the potential for thermally induced fracturing in the high-level radioactive waste repository concept to the elastic and thermal properties of the site rock and the depth of the excavation, and the recognition of a need to determine the actual ''failure envelope'' for any potential site rock in the laboratory and adjust the parametric relations appropriately. Analysis of five rock types indicated that none would experience elastic/brittle failure due to the thermal stresses induced by the introduction of a 5 kW heat source. However, the rock strengths and elastic properties are laboratory values and not in situ values

  15. Exploration of cystalline rocks for nuclear waste repositories: Some strategies for area characterization

    International Nuclear Information System (INIS)

    Trask, N.J.; Roseboom, E.H.; Watts, R.D.; Bedinger, M.S.

    1991-01-01

    A general strategy for the exploration of crystalline rock massed in the eastern United States for the identification of potential sites for high-level radioactive waste repositories has been generated by consideration of the Department of Energy (DOE) Siting Guidelines, available information on these crystalline rocks, and the capabilities and limitations of various exploration methods. The DOE has recently screened over 200 crystalline rock massed in 17 states by means of literature surveys and has recommended 12 rock masses for more intensive investigation including field investigations. The suggested strategy applies to the next stage of screen where the objective is to identify those potential sites that merit detailed site characterization including an exploratory shaft and underground study. This document discusses strategies for reconnaissance and field investigations, including the early phases of drilling, to provide geoscience information on the areas under construction. A complete Area Characterization Plan, to be developed by DOE with involvement of the states within which the areas to be studied are located, will outline all of the investigations to be carried out in the area phase including their cost and scheduling. Here, we provide input for the Area Characterization Plan by discussing what we believe to be the most important issues that need to be addressed in this phase and suggesting methods for their resolution. This report is not intended as a complete outline of area phase geoscience investigations, however. 79 refs., 4 figs

  16. Radioactive waste storage in mined caverns in crystalline rock: results of field investigations at Stripa, Sweden

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1980-10-01

    It is generally agreed that the most practicable method of isolating nuclear wastes from the biosphere is by deep burial in suitable geologic formations. Such burial achieves a high degree of physical isolation but raises questions concerning the rate at which some of these wastes may return to the biosphere through transport by groundwater. Any suitable repository site will be disturbed first by excavation and second by the thermal pulse caused by the radioactive decay of the wastes. To assess the effectiveness of geologic isolation it is necessary to develop the capability of predicting the response of a rock mass to such a thermal pulse. Ultimately, this requires field measurements below the surface in media representative of those likely to be encountered at an actual repository. Access to a granitic rock mass adjacent to a defunct iron ore mine at Stripa, Sweden, at a depth of about 350 m below surface has provided a unique opportunity to conduct a comprehensive suite of hydrological and thermo-mechanical experiments under such conditions. The results of these field tests have shown the importance of geologic structure and the functional dependence of the thermo-mechanical properties on temperature in developing a valid predictive model. The results have also demonstrated the vital importance of carrying out large-scale investigations in a field test facility

  17. Hydrogeochemical assessment of crystaline rock for radioactive waste disposal: the Stripa experience

    International Nuclear Information System (INIS)

    Andrews, J.; Fontes, J.C.; Fritz, P.; Nordstroem, K.

    1988-08-01

    This report presents a program for the hydro-geochemical assessment of a crystalline rock site for radioactive waste disposal. It is based upon experience gained during the international program of hydrochemical work at the Stripa mine. The important result of this work are summarized in this report and fuller details may be found in the separate final reports of the Phase 1 and Phase 2 geochemical investigations of the Stripa groundwaters. The present report summarizes the general sampling requirements for a successful hydrochecmical investigation; the isotopic and chemical parameters which should be determined an the geochemical characterization of the rock matrix necessary for the interpretation of hydrochemistry. A general strategy for site evaluation by geochemical methods is presented. (authors)

  18. Nuclear fuel waste management program geotechnical studies of Eye-Dashwa Lakes research area rock properties

    International Nuclear Information System (INIS)

    Chernis, P.J.; Robertson, P.B.

    1992-05-01

    The Eye-Dashwa Lakes pluton near Atikokan Ontario has been used as a study area for the Canadian nuclear fuel waste management research program. The pluton consists predominately of granite. Fractures formed during cooling of the pluton were filled with a succession of different materials at different times. Measurements of a series of geophysical and geotechnical properties of rock samples are published here in this report, including especially microcrack and pore structures. An indication has been found that a larger proportion of the porosity of Whiteshell and Atikokan samples is contained in connecting pores, compared to other rocks. This may seem surprising in view of the finding that approximately 70% of the effective porosity of Atikokan samples is contained in pockets

  19. Comparison of thermally induced and naturally occurring water-borne leakages from hard rock depositories for radioactive waste

    International Nuclear Information System (INIS)

    Bourke, P.J.; Robinson, P.C.

    1981-01-01

    The relative importance of thermally induced and naturally occurring flows of water as causes of leakage from hard rock depositories for radioactive wastes is assessed. Separate analyses are presented for involatile, high level waste from reprocessing of fuel and for plutonium contaminated waste from fabrication of fuel. The effects of varying the quantities of wastes, pre-burial storage and the shapes and depths of depositories are considered. It is concluded that for representative values of these variables, thermal flow will remain the major cause of leakage for long times after the burial of both types of waste. (Auth.)

  20. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    Science.gov (United States)

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize

  1. Interacting via the Heap in the Presence of Recursion

    Directory of Open Access Journals (Sweden)

    Jurriaan Rot

    2012-12-01

    Full Text Available Almost all modern imperative programming languages include operations for dynamically manipulating the heap, for example by allocating and deallocating objects, and by updating reference fields. In the presence of recursive procedures and local variables the interactions of a program with the heap can become rather complex, as an unbounded number of objects can be allocated either on the call stack using local variables, or, anonymously, on the heap using reference fields. As such a static analysis is, in general, undecidable. In this paper we study the verification of recursive programs with unbounded allocation of objects, in a simple imperative language for heap manipulation. We present an improved semantics for this language, using an abstraction that is precise. For any program with a bounded visible heap, meaning that the number of objects reachable from variables at any point of execution is bounded, this abstraction is a finitary representation of its behaviour, even though an unbounded number of objects can appear in the state. As a consequence, for such programs model checking is decidable. Finally we introduce a specification language for temporal properties of the heap, and discuss model checking these properties against heap-manipulating programs.

  2. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China.

    Science.gov (United States)

    Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei

    2016-05-01

    Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. SUITABILITY ANALYSIS OF WASTE ROCK APPLICATION IN HYDRIC RECLAMATION IN THE NATURAL WATER-BEARING SUBSIDENCE TROUGHS IN KARVINSKO, CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Eva Pertile

    2008-12-01

    Full Text Available The paper deals with a suitability analysis of waste rock application in hydric reclamation on the basis of studying its impact on water quality in the natural water-bearing subsidence troughs. The evaluation was carried out in sixteen localities where waste rock had been used in the past for the purposes of bank system improvement. Within the evaluation of waste rock impact on the hydrochemical character of water in the subsidence troughs the values of geochemical background were identified. In order to compare the impact of waste rock on the quality of water, changes in the hydrochemical parameters were monitored in the localities without waste rock banking, with partial (maximum ½ circumference and complete waste rock banking.

  4. Building a Uranium Heap Leach Project

    International Nuclear Information System (INIS)

    Schnell, Henry

    2014-01-01

    Despite all these we have seen many HL successes and many interesting projects coming down the pipe. • Previous experience in Uranium with previous ROM projects in France (Bessines, Langone), Niger (Somair), Canada (Agnew Lake) and other locations had provided some basic background. • Heap leach based on copper experience with crushed ore has operated for many years in Brazil (Caetite). • Many gold operations for many decades in all climates and continents. • Copper at +20% of production, many in Chile, but also now in many other countries. • Uranium with agglomerated crushed ores is now becoming more prominent – Somair, Imouraren, Trekkopje. • Work also ongoing for Ranger, Rossing, and in consideration for other projects. • Other notable work in Nickel, and multi-metal such as Talvivaara

  5. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M.

    1998-01-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  6. MONITORING OF HEAPS USING VARIOUS TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Helena Straková

    2015-07-01

    Full Text Available Coal heaps are frequently self-burning by definite environmental conditions, therefore thermal activity monitoring of these localities is important. For this purpose, data from terrestrial measurement or thermal infrared images are used. Subsurface coal fires monitored by terrestrial measurement by contact thermometers are time-consuming and dangerous because of landslides. That is a reason why coal fires are mostly monitored by thermal infrared images through remote sensing, i.e. satellite-borne or airborne data, which is much more suitable for thermal activity monitoring. The satellite data do not have sufficient geometric resolution (60 - 120m per pixel, aerial thermal data are accurate, but expensive. Unmanned aerial vehicles (UAV or better RPAS - remotely piloted aircraft systems can be solution – thermal images obtained by RPAS have good geometric resolution and can be used for small areas only and our case project areas are not so big. From economic point of view, low cost technology is preferred. The article describes opportunities of low-cost thermal infrared data, the use of RPAS (mapping by Microkopter system in thermal monitoring and photogrammetric tasks (coal heaps such as low cost aerial thermal mapping. The problems of planning and data acquisition are illustrated by creating an orthophoto. Theoretical preparation of data acquisition deals with RPAS Microkopter mission planning and operation. The obtained data are processed by several sets of software specially developed for close range aerial photogrammetry. The outputs are orthophoto images, digital elevation models and thermal map. As a bonus, low-cost aerial methods with small thermal camera are shown.

  7. Present and future: heap leaching of uranium ore in China

    International Nuclear Information System (INIS)

    Li Jianhua

    2010-01-01

    Based on small and disperse uranium deposits, and low grade ores, heap leaching has been developed as the dominating technique in the uranium production of China. It is indicated that heap leaching technique has such advantages as less capital, low cost, low power consumption and water consumption. At the meanwhile, heap leaching technique presents shortcomings of poor adaptability and low recovery rate. In order to meet the oncoming enormous demand of nuclear power, great effort shall be put on research of new technology, new equipment, new material. (authors)

  8. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    Directory of Open Access Journals (Sweden)

    Saeed Yousefi

    2015-04-01

    Full Text Available Introduction Pyrite oxidation and acid mine drainage (AMD are the serious environmental problems associated with the mining activities in sulphide ores. The rate of pyrite oxidation is governed by the availability of oxygen (Borden, 2003. Therefore, the identifying oxygen supplying mechanism is one of the most important issues related to the environmental assessment of waste rock dumps (Cathles and Apps, 1975; Jaynes et al., 1984; Davis and Ritchie, 1986. Although comprehensive researches were performed on the mathematical description of oxygen transport processes using the numerical modeling (Morin et al., 1988; Blowes et al., 1991; Wunderly et al., 1986; Elberling et al., 1994; Jannesar Malakooti et al., 2014, so far, the interactions between these processes and geochemical and mineralogical characteristics has not been studied especially in waste rock dumps. Therefore the main objective of this study is to identify the evidences for knowing the oxygen transport mechanisms in the waste dumps and also, its role in intensity of pyrite oxidation. It is expected that such these structural studies could be useful for better understanding of dominant processes in numerical modeling and also providing environmental management strategies in the study area and other sites by similar characteristics. Materials and Methods In this study, thirty solid samples were collected from six excavated trenches in the waste rock dumps No. 19 and 31 of the Sarcheshmeh porphyry copper mine. Collected samples were studied using several methods such as XRD, ASTM-D2492, paste pH and grain size distribution. The results obtained from these methods were used with the field observations in order to characterize some detail information about oxygen supplying mechanisms for oxidation reactions in the waste rock dumps. Result The main minerals found by the XRD analysis were quartz and muscovite which were present in all samples. Pyrite, orthose, albite, and chlorite were also

  9. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  10. Sawmill "Waste"

    Science.gov (United States)

    Fred C. Simmons; Adna R. Bond

    1955-01-01

    Sawmills have the reputation of being very wasteful in converting logs and bolts into lumber and timbers. Almost everyone has seen the great heaps of sawdust and slabs that collect at sawmills. Frequently the question is asked, "Why doesn't somebody do something about this terrible waste of wood?"

  11. Rock salt as a medium for long-term isolation of radioactive wastes - a reassessment

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1985-01-01

    Rock salt has been regarded as a suitable medium for the permanent disposal of high and medium level radioactive wastes since the National Academy of Sciences recommended it in 1957. As a result of detained site-specific studies conducted for the Waste Isolation Pilot Plant (WIPP) project in New Mexico, however, several potential problems which are unique to bedded salt deposits have emerged. These include 1) the need to delineate the extent and rate of past dissolution and projections for the future, 2) the origin and significance of brines often found underlying the salt beds, 3) the rate and volume of migration of brine from the salt crystals towards the heat producing waste canisters, 4) the creep rates and implications for retrievability, and 5) the existence of potash and oil and gas resources with implications of human intrusion in the future. These questions will also be faced for sites in salt domes with added complications due to more complex structure and hydrology. The experience at WIPP shows that the site characterization process for high level waste repositories in bedded or dome salt should aim at identifying the important issues of site suitability early in the process and a clear program should be established to address these issues

  12. Hydrology of an abandoned uranium mine waste rock dump, Northern Territory

    International Nuclear Information System (INIS)

    Evans, K.G.; Moliere, D.R.; Saynor, M.J.

    1999-01-01

    Field studies were conducted on an abandoned, degraded uranium mine in Kakadu National Park to obtain waste rock dump runoff data to test the ability of a landform evolution model to predict gullying caused by concentrated flow. Runoff data were collected from natural rainfall events on a concentrated flow site and an overland flow erosion site on the waste rock dump at Scinto 6 mine. The data were used to fit parameters to a rainfall/runoff model using a non-linear regression package (NLFIT-DISTFW) which allows a single set of parameters to be fitted to four discharge hydrographs simultaneously. The model generally predicted peak discharge and the rising stage of the observed hydrographs well but there was some lag in the falling stage of the predicted hydrographs. Kinematic wave parameters are dependent on each other and the concentrated flow parameter set was not significantly different from the overland flow set. The infiltration parameter sets were statistically different and difference in cumulative infiltration between sites is controlled by sorptivity

  13. Geological assessment of crystalline rock formations with a view to radioactive waste disposal

    International Nuclear Information System (INIS)

    Mather, J.D.

    1984-01-01

    Field work has been concentrated at the Altnabreac Research Site on north-east Scotland, where three deep boreholes to approximately 300 m and 24 shallow boreholes to approximately 40 m were drilled. The movement of groundwater within 300 m of the surface was investigated using a specially developed straddle packer system. Geochemical studies have demonstrated that most groundwater is dominated by recent recharge but one borehole yielded water with an age of around 10 4 years. Geophysical borehole logging has shown that the full wave train sonic logs and the acoustic logs show most promise for the assessment of crystalline rocks. In the laboratory the interaction of rocks and groundwater at the temperature/pressure conditions to be expected in a repository has established the geochemical environment to which waste canisters and backfill materials would be subjected. Other generic studies reported include the characterization of geotechnical properties of rocks at elevated temperatures and pressures, the development of a new cross-hole sinusoidal pressure test for the measurement of hydraulic properties and the use of thermal infra-red imagery to detect groundwater discharge zones

  14. Radionuclide Transport in Fractured Rock: Numerical Assessment for High Level Waste Repository

    Directory of Open Access Journals (Sweden)

    Claudia Siqueira da Silveira

    2013-01-01

    Full Text Available Deep and stable geological formations with low permeability have been considered for high level waste definitive repository. A common problem is the modeling of radionuclide migration in a fractured medium. Initially, we considered a system consisting of a rock matrix with a single planar fracture in water saturated porous rock. Transport in the fracture is assumed to obey an advection-diffusion equation, while molecular diffusion is considered the dominant mechanism of transport in porous matrix. The partial differential equations describing the movement of radionuclides were discretized by finite difference methods, namely, fully explicit, fully implicit, and Crank-Nicolson schemes. The convective term was discretized by the following numerical schemes: backward differences, centered differences, and forward differences. The model was validated using an analytical solution found in the literature. Finally, we carried out a simulation with relevant spent fuel nuclide data with a system consisting of a horizontal fracture and a vertical fracture for assessing the performance of a hypothetical repository inserted into the host rock. We have analysed the bentonite expanded performance at the beginning of fracture, the quantified radionuclide released from a borehole, and an estimated effective dose to an adult, obtained from ingestion of well water during one year.

  15. Acoustic remote monitoring of rock and concrete structures for nuclear waste repositories

    International Nuclear Information System (INIS)

    Young, R.P.

    2000-01-01

    Excavation and thermally induced damage is of significance for many types of engineering structures but no more so than in the case of nuclear waste repository design. My research and that of my group, formally at Queen's University Canada and Keele University UK and now at the University of Liverpool UK, has focused on the development of acoustic techniques for the in situ detection and quantification of induced damage and fracturing. The application of earthquake seismology to this problem has provided the opportunity to study the micro mechanics of damage mechanisms in situ and provide validation data for predictive geomechanical models used for engineering design. Since 1987 I have been a principal investigator at Atomic Energy of Canada's Underground Research Laboratory (URL), responsible for the development of acoustic emission techniques (AE). In the last twelve years, the application of acoustic techniques to rock damage assessment has been pioneered by my group at the URL and successfully applied in several other major international projects including the ZEDEX, Retrieval and Prototype repository experiments at the Aspo Hard Rock Laboratory (HRL) of SKB Sweden. In this paper I describe what information is available by remote acoustic monitoring of rock and concrete structures and demonstrate this with reference to two international scientific experiments carried out at the URL Canada and the HRL Sweden. (author)

  16. Mechanisms of hydrothermal alteration in a granitic rock. Consequences for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Parneix, J.C.

    1987-06-01

    The study of hydrothermal alteration in the Auriat granitic rock (France, Massif-Central) has evidenced three main events: - a pervasive chloritisation of biotites in some parts of the drill-core, - an alteration localized around subvertical cracks and superimposed on previously chloritized or unaltered granite, - an alteration localized around subhorizontal cracks cross-cutting the preceding ones. The second type of alteration, produced by a geothermal system, gives the most interesting results to be applied to the nuclear radwaste disposal problem. Among primary minerals of granite, only biotite (or chlorite) and oligoclase are intensively altered. Therefore, the chemical composition of these minerals induces the nature of secondary parageneses. These, associated to the subvertical cracks network, indicate a thermal gradient of 150 C/Km. The geochemical code has allowed to corroborate that the thermal gradient was responsible for the occurrence of different parageneses with depth. Moreover, it was shown that the variable mineralogy around cracks was due to a thermal profile established at equilibrium between the rock and the fluid. Therefore, the extent of the alteration was proportional to the thermal power of the fluid. A dissolution and next a precipitation phase of new minerals characterize hydrothermal alteration, which is due to the thermal power emitted by radioactive waste and linked with the evolution of temperature during time. This alteration provokes two favourable events to storage: decrease of rock porosity and increase of sorption capacity [fr

  17. Role of rock texture and mineralogy on the hydrology and geochemistry of three neutral-drainage mesoscale experimental waste rock piles at the Antamina Mine, Peru

    Science.gov (United States)

    Peterson, H.; Bay, D. S.; Beckie, R. D.; Mayer, K. U.; Klein, B.; Smith, L.

    2009-12-01

    An ongoing study at the Antamina Cu-Zn-Mo mine in Peru investigates the hydrology and geochemistry of heterogeneous waste rock at multiple scales. Three of five instrumented mesoscale experimental waste rock piles (36m X 36m X 10m high) were constructed between 2006 and 2008. The coarsest-grained Pile 1 exhibits rapid, intense response to rain and returns to residual saturation relatively quickly, suggesting a significant influence of preferential flow in addition to high-conductivity matrix flow. Pile 2, the finest-grained of the three piles, exhibits signals from rain events that are significantly delayed and muted in comparison to those from Pile 1. Except for in the finest size fractions, the particle size distribution of Pile 3 closely resembles that of Pile 2, yet Pile 3 responds to rain events more similarly to Pile 1 than Pile 2. The presence of large boulders in Pile 3 could facilitate preferential flow, either through surface flow effects across boulders or by contributing to the formation of unfilled void space acting as macropores at high infiltration rates. The rapid rain event response of Pile 3 could also be attributed to a silt-clay percentage that is similar to Pile 1, which is less than half of the silt-clay percentage observed in Pile 2 (i.e., ~3%, ~8.5%, and ~4% for Piles 1, 2 and 3, respectively). For each of the three piles, the pH of effluent collected from bottom lysimeters and internal pore water sampled with suction lysimeters has remained circumneutral, with notable maximum concentrations of 2.8 mg/L Zn from Pile 1, which is comprised of slightly reactive hornfels and marble waste rock; 13.4 mg/L Zn and 22.7 mg/L Mo from Pile 2, comprised of reactive intrusive waste rock; and 42.5 mg/L Zn from Pile 3, comprised of reactive exoskarn waste rock. Ongoing work includes analysis of two additional mixed-rock experimental piles, studies to investigate the role of microbes on metal release (Dockrey et al., this session), analysis of pore gas

  18. Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea

    Science.gov (United States)

    Jeong, S. W.; Wu, Y.-H.; Cho, Y. C.; Ji, S. W.

    2018-01-01

    Incomplete mine reclamation can cause ecological and environmental impacts. This paper focuses on the geotechnical and rheological characteristics of waste rock materials, which are mainly composed of sand-size particles, potentially resulting in mass movement (e.g., slide or flow) and extensive acid mine drainage. To examine the potential for contaminant mobilization resulting from physicochemical processes in abandoned mines, a series of scenario-based debris flow simulations was conducted using Debris-2D to identify different hazard scenarios and volumes. The flow behavior of waste rock materials was examined using a ball-measuring rheometric apparatus, which can be adapted for large particle samples, such as debris flow. Bingham yield stresses determined in controlled shear rate mode were used as an input parameter in the debris flow modeling. The yield stresses ranged from 100 to 1000 Pa for shear rates ranging from 10- 5 to 102 s- 1. The results demonstrated that the lowest yield stress could result in high mobility of debris flow (e.g., runout distance > 700 m from the source area for 60 s); consequently, the material contaminants may easily reach the confluence of the Suyoung River through a mountain stream. When a fast slide or debris flow occurs at or near an abandoned mine area, it may result in extremely dynamic and destructive geomorphological changes. Even for the highest yield stress of debris flow simulation (i.e., τy = 2000 Pa), the released debris could flow into the mountain stream; therefore, people living near abandoned mines may become exposed to water pollution throughout the day. To maintain safety at and near abandoned mines, the physicochemical properties of waste materials should be monitored, and proper mitigation measures post-mining should be considered in terms of both their physical damage and chemical pollution potential.

  19. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  20. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs

  1. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs.

  2. Retrievability of high-level nuclear waste from geologic repositories - Regulatory and rock mechanics/design considerations

    International Nuclear Information System (INIS)

    Tanious, N.S.; Nataraja, M.S.; Daemen, J.J.K.

    1987-01-01

    Retrievability of nuclear waste from high-level geologic repositories is one of the performance objectives identified in 10CFR60 (Code of Federal Regulations, 1985). 10CFR60.111 states that the geologic repository operations area shall be designed to preserve the option of waste retrieval. In designing the repository operations area, rock mechanics considerations play a major role especially in evaluating the feasibility of retrieval operations. This paper discusses generic considerations affecting retrievability as they relate to repository design, construction, and operation, with emphasis on regulatory and rock mechanics aspects

  3. The use of borehole geophysical logs and hydrologic tests to characterize plutonic rock for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Davison, C.C.

    1984-05-01

    The selection of an igneous rock body for the disposal of nuclear fuel waste will likely require the drilling and testing of a number of deep investigative boreholes in the rock body. Although coring of at least one hole at each Research Area will be essential, methods for making in situ geophysical and hydrological measurements can substitute for widespread coring and result in significant savings in time and money. A number of borehole methods have been applied to the investigation of plutonic rocks at Whiteshell Nuclear Research Establishment and Chalk River Nuclear Laboratories in Canada

  4. Recent studies on radiation damage formation in synthetic NaCl and natural rock salt for radioactive waste disposal applications

    International Nuclear Information System (INIS)

    Swyler, K.J.; Klaffky, R.W.; Levy, P.W.

    1980-01-01

    Radiation damage formation in natural rock salt is described as a function of irradiation temperature and plastic deformation. F-center formation decreases with increasing temperature while significant colloidal sodium formation occurs over a restricted temperature range around 150 0 C. Plastic deformation increases colloid formation; it is estimated that colloid concentrations may be increased by a factor of 3 if the rock salt near radioactive waste disposal canisters is heavily deformed. Optical bandshape analysis indicates systematic differences between the colloids formed in synthetic and natural rock salts

  5. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 5. Baseline rock properties-granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/5, Baseline Rock Properties--Granite, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report, on the rock properties of typical granites, includes an evaluation of the various test results reported in the literature. Firstly, a literature survey was made in order to obtain a feel for the range of rock properties encountered. Then, granites representative of different geologic ages and from different parts of the United States were selected and studied in further detail. Some of the special characteristics of granite, such as anisotropy, creep and weathering were also investigated. Lastly, intact properties for a typical granite were selected and rock mass properties were derived using appropriate correction factors

  6. Interim guidelines on performance constraints for nuclear waste disposal in crystalline rock

    International Nuclear Information System (INIS)

    1984-01-01

    Performance constraint guidelines have been developed for geologic disposal of nuclear waste in crystalline rock. The approach taken in defining these guidelines was to consider the thermal, thermomechanical, and thermochemical behavior for three regions (very-near field, near field, and far field) of the repository during three time periods (operational, containment, and isolation) associated with the disposal system. Limits are proposed to ensure compliance with the current repository criteria proposed by the United States Nuclear Regulatory Commission (NRC) concerning repository siting and performance assessment. These criteria are: Substantial containment of all radionuclides within the waste package for a period of time between 300 and 1000 years after emplacement. Release rate after loss of containment of one part in 100,000 annually per radionuclide based on the nuclides inventory when the waste package is breached, and in situ ground-water transit time of 1000 years from the repository horizon to the accessible environment, compliance with the performance constraint guidelines presented herein will be required to ensure that the final repository design is in compliance with NRC criteria. The constraint guidelines have also been developed to satisfy the requirement for technical conservatism. 40 refs., 14 figs., 4 tabs

  7. Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock

    Science.gov (United States)

    Hadgu, T.; Gomez, S. P.; Matteo, E. N.

    2017-12-01

    Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  8. Possibility of Radioactive and Toxic WasteDisposal in a Rock Ssalt Deposits in Slovakia Combining Wells and Cavities

    Directory of Open Access Journals (Sweden)

    Škvareková Erika

    2004-09-01

    Full Text Available Disposal of radioactive and toxic waste in rock salt can be performed in two ways – disposal in the salt mine repository or disposal in the deep wells connected with salt cavity. Presented article deals with the option of the disposal in a salt cavity at medium depths. The article also cover partially salt deposits in Slovakia and their potential suitability for waste disposal..

  9. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    Science.gov (United States)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  10. Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status

    International Nuclear Information System (INIS)

    St John, C.; Krug, A.; Key, S.; Monsees, J.

    1983-05-01

    Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program

  11. Unsaturated flow and transport through fractured rock related to high-level waste repositories

    International Nuclear Information System (INIS)

    Evans, D.D.; Rasmussen, T.C.

    1991-01-01

    Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs

  12. Reference stratigraphy and rock properties for the Waste Isolation Pilot Plant (WIPP) project

    International Nuclear Information System (INIS)

    Krieg, R.D.

    1984-01-01

    A stratigraphic description of the country rock near the working horizon at the Waste Isolation Pilot Plant (WIPP) is presented along with a set of mechanical and thermal properties of materials involved. Data from 41 cores and shafts are examined. The entire stratigraphic section is found to vary in elevation in a regular manner, but individual layer thicknesses and relative separation between layers are found to have no statistically significant variation over the one mile north to south extent of the working horizon. The stratigraphic description is taken to be relative to the local elevation of Anhydrite b. The material properties have been updated slightly from those in the July 1981 Reference Stratigraphy. This reference stratigraphy/properties document is intended primarily for use in thermal/structural analyses. This document supercedes the July 1981 stratigraphy/properties document. 31 references, 7 figures

  13. A heat source probe for measuring thermal conductivity in waste rock dumps

    International Nuclear Information System (INIS)

    Blackford, M.G.; Harries, J.R.

    1985-10-01

    The development and use of a heat source probe to measure the thermal conductivity of the material in a waste rock dump is described. The probe releases heat at a constant rate into the surrounding material and the resulting temperature rise is inversely related to the thermal conductivity. The probe was designed for use in holes in the dump which are lined with 50 mm i.d. polyethylene liners. The poor thermal contact between the probe and the liner and the unknown conductivity of the backfill material around the liner necessitated long heating and cooling times (>10 hours) to ensure that the thermal conductivity of the dump material was being measured. Temperature data acquired in the field were analysed by comparing them with temperatures calculated using a two-dimensional cylindrical model of the probe and surrounding material, and the heat transfer code HEATRAN

  14. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation

    International Nuclear Information System (INIS)

    Junca, E.; Telles, V.B.; Rodrigues, G.F.; Oliveira, J.R. de; Tenorio, J.A.S.

    2010-01-01

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 μm with 4 wt.% over 100 μm and content metallic iron of 93 wt%. (author)

  15. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  16. Artificial porous stone from of ornamental rock waste adaptable for civil construction and heritage restoration

    International Nuclear Information System (INIS)

    Durán Suárez, J.A.; García Casco, A.

    2017-01-01

    The technique of volumetric reintegration in severely deteriorated stone materials is of major importance for the restoration of architectural heritage. In using mortars for restoration it is important to control aspects such as the colour and textural similarity in relation to the adjacent stone, minor or equal strength and equal or greater porosity/permeability with respect to the original stone. This latter aspect is of particular complexity because the percentage distribution of pore-size ranges should not differ from that of the original stone material. The invention patent (with numbers of publication ES2187245 A1 and B1 16. 06. 2004), owned by the University of Granada, allows the production of excellent porous stones for decorative work in construction and mortar for restoration of stone materials with controlled porosity. Both materials consist of ornamental rock waste, so that a particular recycling purpose is given to this type of material which is difficult to reuse. In this paper we present the manufacturing process of these artificial stones and porous mortars with decorative and restorative purposes, from the controlled mixture of aggregates of ornamental rocks, organic and inorganic binders and generators of porosity. Once the curing and hardening has been done it is worth noting that one of the most important aspects of the product is the generation of a complex connected porous system as a result of the incorporation of crushed expanded polystyrene, which is activated after hardening through the application of organic solvents. [es

  17. Reclamation of waste rock material at the Summitville Mine Superfund site using organic matter and topsoil treatments

    Energy Technology Data Exchange (ETDEWEB)

    Winter, M.E.; Redente, E.F.

    1999-07-01

    The Summitville Mine was a high elevation (3,500 m) open-pit gold mine located in southwestern Colorado. The mine was abandoned in 1992 leaving approximately 200 ha of disturbed area comprised partially of two large waste rock piles. Reclamation of waste rock material is challenging due to extreme climatic conditions in conjunction with a high acid-production potential and low organic matter concentration of the material. In addition, stockpiled topsoil at the site is acidic and may be biologically inactive due to long-term storage, and therefore sufficient plant growth medium may be limited. The purpose of this study was to determine the effect of organic amendments (mushroom compost vs. biosolids) and topsoil (stockpiled vs. nonstockpiled) on aboveground biomass, herbaceous cover, and trace element uptake. An on-site field study was established in 1995 to identify the most effective combination of treatments for successful reclamation of waste rock material. Incorporation of organic matter increased total aboveground production and cover, with mushroom compost being more effective than biosolids, but did not show significant trends relative to trace element uptake. The use of topsoil did not show a significant response relative to aboveground production, cover, and trace element uptake. This study shows that waste rock materials can be directly revegetated if properly neutralized, fertilized, and amended with organic matter. Additionally, stockpiled topsoil was equivalent in plant growth to non-stockpiled topsoil when neutralized with lime.

  18. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  19. A feasibility study to determine the functionality of a novel rocking kiln - fluidized bed reactor for the treatment of waste

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Shahazrin Mohd Nasir; Mohd fairus Abdul Farid

    2004-01-01

    Rotary kiln has been widely used in incineration and studied by many researches. Solid wastes of various shapes, sizes and heat value can be fed into rotary kiln either in batches or continually. Waste combustion in rotary kiln involves rotation method and the residence time depends on the length and diameter of the rotary kiln and the total stoichiometric air given to the system. Rocking system is another technology used in incinerator. In the rocking system, internal elements in the combustion chamber move to transports and mix the burning waste so that all combustible material in the waste is fully burnt. Another technology in incinerator is the fluidized bed This method uses air to fluidized the sand thus enhancing the combustion process. The total air is controlled in order to obtain a suitable fluidized condition This preliminary study was conducted to study the feasibility of an incinerator system when three components viz. the rotary kiln, rocking system and fluidized bed are combined This research was also conducted to obtain preliminary data parameters of the three components such as the suitable temperature, the angle of the kiln, residence time, total air for fluidization, rocking speed and the devolatilization rate. The samples used in this research were the palm oil kernel shells. The results of the studies showed that the palm oil kernel shells combusted evenly using the new parameters. (Author)

  20. The Ypresian clays as alternative host rock for radioactive waste disposal in Belgium. A transferability study

    International Nuclear Information System (INIS)

    Van Baelen, Herve; Wouters, Laurent; Brassinnes, Stephane; Van Geet, Maarten; Vandenberghe, Noel

    2012-01-01

    Document available in extended abstract form only. For the long-term management of high-level and/or long-lived radioactive waste, ONDRAF/NIRAS advises deep geological repository in a plastic clay host rock. Since the seventies, Oligocene Boom Clay has been extensively studied for this purpose and is, in the Belgian context, considered as the reference host rock with Mol as the reference site for the RD and D. The alternative host rock, the Ypresian clays, has been studied for their basic properties, from the late nineties onwards, with Doel as reference site. This study aims at determining to which extent methodologies, knowledge and know-how can be transferred from Boom Clay to the Ypresian clays, in order to enhance the knowledge of this alternative without excessive research efforts. It evaluates the present knowledge of the Ypresian clays and figures out which elements are sufficiently known and understood, which elements of the Boom Clay can be reused and which need additional research. The Ypresian clays refer to a nearly continuous sequence of non-indurated, clayey layers, deposited early in the Eocene, in an open marine basin. It has a total thickness of 100 m or more and, in the area of interest, it occurs at a few hundreds of meters depth. Apart from a very slight tilt to the north, no major structures are known to affect the Ypresian clays in the investigated area. The lateral continuity inside the Ypresian clays might, however, be compromised by the potential occurrence of small-scale intra-formational faults. Two drilling campaigns, carried out in the framework of potential radioactive waste disposal, allowed to collect new data and describe and compare the Ypresian clays relative to Boom Clay. The grain size distribution of both clays is comparable. Although the minerals they are composed of are the same, the relative proportions within the clay fraction are significantly different, the Ypresian clays containing more smectite and swelling mixed

  1. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan mine, China

    International Nuclear Information System (INIS)

    Zhou, Jianwei; Nyirenda, Mathews T.; Xie, Lina; Li, Yi; Zhou, Baolong; Zhu, Yue; Liu, Huilin

    2017-01-01

    The Xikuangshan (XKS) mine in China has vast quantities of waste material and reported antimony (Sb) and arsenic (As) contamination of water in the mine area. This study estimated the potential of acid mine drainage (AMD) generation by waste material at XKS mine by using paste pH, acid base accounting and net acid generation geochemical static tests. Distribution of Sb and As in surface and groundwater in relation to mine waste AMD producing potential was also investigated. Thirty four (34) water samples and representative samples of three mine wastes from different periods (fresh, 10 and 50 years) were collected for this study: waste rock, smelting slag and tailings. The AMD prediction shows that waste rock (from 10 year period) is acid producing while the fresh mine waste had alkaline paste pH indicating the presence of reactive carbonates. Hence AMD generation may have occurred after a long time due to dissolution of carbonates. Water analysis found Sb with higher concentration than As with means of 3.74 mg/L and 0.19 mg/L respectively. Highest Sb and As concentrations were observed in the North mine along the water flow path from waste heaps and tailing pond; Mine water in the South mine also had elevated Sb and As concentrations. Mining activities at the XKS mine have accelerated Sb and As releases because of the disturbed natural equilibrium. Proper mine waste management and collection and treatment of outflow from the waste rock heaps and tailing ponds seem to be a promising mitigation options. - Highlights: • High levels of Sb and As were detected in alkaline water at Xikuangshan mine. • Static test showed that mine waste aged over 10 years was acid generating. • Mine waste influenced the high concentration of Sb and As in water. • The Sb/As ratios in water favored Sb because of high Sb content in the ore body.

  2. Microstructural variation of vitrified floor tile incorporated with granitic rock waste; Variacao microestrutural de piso ceramico vitrificado incorporado com residuos de rocha granitica

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.J.; Holanda, J.N.F., E-mail: ajsouza@uenf.b [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LAMAV/CCT/UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados. Grupo de Materiais Ceramicos

    2009-07-01

    The ornamental rock industry from Northwest Fluminense generates huge amounts of wastes in the form of a fine powder. These wastes are deposited in nature without any care about environmental degradation, which can cause damage to public health, pollution of the natural water sources, and silted banks of rivers. In addition, they also can to affect the landscape aesthetically. In this work was used a granitic rock waste from Santo Antonio de Padua-RJ. This waste is rich in alkaline oxides, which promote the formation of liquid phase and assist the densification of traditional ceramics. The ceramic bodies with up to 47.5% granitic rock waste were pressed at 50 MPa. The ceramic pieces were fired at 1250 deg C. The evolution of sintered microstructure was evaluated by scanning electron microscopy and X-ray diffraction. The results showed that the granitic rock waste influences significantly the microstructure of the sintered ceramic bodies. (author)

  3. Alteration of national glass in radioactive waste repository host rocks: A conceptional review

    International Nuclear Information System (INIS)

    Apps, J.A.

    1987-01-01

    The storage of high-level radioactive wastes in host rocks containing natural glass has potential chemical advantages, especially if the initial waste temperatures are as high as 250 0 C. However, it is not certain how natural glasses will decompose when exposed to an aqueous phase in a repository environment. The hydration and devitrification of both rhyolitic and natural basaltic natural glasses are reviewed in the context of hypothetical thermodynamic phase relations, infrared spectroscopic data and laboratory studies of synthetic glasses exposed to steam. The findings are compared with field observations and laboratory studies of hydrating and devitrifying natural glasses. The peculiarities of the dependence of hydration and devitrification behavior on compositional variation is noted. There is substantial circumstantial evidence to support the belief that rhyolitic glasses differ from basaltic glasses in their thermodynamic stability and their lattice structure, and that this is manifested by a tendency of the former to hydrate rather than devitrify when exposed to water. Further research remains to be done to confirm the differences in glass structure, and to determine both physically and chemically dependent properties of natural glasses as a function of composition

  4. Site investigation methods used in Canada's nuclear fuel waste management program to determine the hydrogeological conditions of plutonic rock

    International Nuclear Information System (INIS)

    Davison, C.C.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is investigating the concept of disposing of Canada's nuclear fuel wastes in a mined vault at a depth of 500 m to 1000 m within a plutonic rock body. Much effort has been directed at developing site investigation methods that can be used to determine the hydrogeological conditions of plutonic rock bodies. The primary objective of this research is to define the physical and chemical characteristics of groundwater flow systems at the various scales that are relevant to the prediction of potential radionuclide migration from a disposal vault. Groundwater movement through plutonic rock is largely controlled by fractures within the rock, and the hydrogeological parameters of fractured geological media are extremely scale dependent

  5. Site-specific evaluation of safety issues for high-level waste disposal in crystalline rocks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M. (ed.) [DBE Technology GmbH, Peine (Germany)

    2016-03-31

    In the past, German research and development (R and D) activities regarding the disposal of radioactive waste, including spent nuclear fuel, focused mainly on domal rock salt because rock salt was the preferred host rock formation. In addition, generic R and D work regarding alternative host rocks (crystalline rocks and claystones) had been performed as well for a long time but with lower intensity. Around the year 2000, as a consequence of the moratorium on the Gorleben site, the Federal Government decided to have argillaceous rocks and crystalline rocks investigated in more detail. As Germany does not have any underground research and host rock characterization facilities, international cooperation received a high priority in the German R and D programme for high-level waste (HLW) disposal in order to increase the knowledge regarding alternative host rocks. Major cornerstones of the cooperation are joint projects and experiments conducted especially in underground research laboratories (URL) in crystalline rocks at the Grimsel Test Site (Switzerland) and the Hard Rock Laboratory (HRL) Aespoe(Sweden) and in argillaceous rocks at the URL Mont Terri (Switzerland) and Bure (France). In 2001, the topic of radioactive waste disposal was integrated into the agreement between the former Russian Ministry of Atomic Energy (Minatom, now Rosatom) and the German Ministry of Labor (BMWA), now Ministry of Economic Affairs and Energy (BMWi), on cooperation regarding R and D on the peaceful utilization of nuclear power (agreement on ''Wirtschaftlich-Technische Zusammenarbeit'' WTZ). The intention was to have a new and interesting opportunity for international R and D cooperation regarding HLW disposal in crystalline rocks and the unique possibility to perform site-specific work, to test the safety demonstration tools available, and to expand the knowledge to all aspects specific to these host rocks. Another motivation for joining this cooperation was the

  6. Autogenous Tumbling Media Assessment to Clean Weathered Surfaces of Waste-Rock Particles from a Basalt Quarry

    Directory of Open Access Journals (Sweden)

    Baran Tufan

    2015-06-01

    Full Text Available In this study, the optimum feed composition in autogenous tumbling of basalt waste-rock particles to clean their weathered surface was determined. The weathered surfaces of basalt are generally cut out consequent to extraction of basalt columns in quarry operations. The inefficiently cut out portions of basalt cause formation of huge quarry waste dumps causing visual pollution on roadsides. Mixtures of different particle size fractions of basalt waste-rock particles were experimented to achieve the optimum feed material composition. The minimum loss of commercially available basalt particles and maximum clear surface was intended. The results were compared with respect to weight loss (% and reflectance values of used and generated samples.

  7. Main ways and suitable technologies of improving economic benefits for uranium ore heap leaching in China (the end)

    International Nuclear Information System (INIS)

    Guan Zibin

    2001-01-01

    Combining with practice of China's uranium ore heap leaching, the author proposes main ways and suitable technologies in the fields of emphasizing feasibility research, adopting strengthened technologies, improving equipment level, optimizing control technological factors and developing application range and so on, which include adopting acid-currying and ferric sulphate-trickle leaching process, bacteria heap leaching, countercurrent heap leaching, selecting advanced material of heap bottom, developing large mechanized heap construction equipment and methods, popularizing drip irrigation distributing solution, optimizing heap leaching process parameters, as well as developing recovery equipment suited to heap leaching, etc, in order to increase leaching rate, reduce heap leaching period and achieve more economic benefits

  8. Thermo-hydro-mechanical modelling of fractured rock masses application to radioactive wastes storage

    International Nuclear Information System (INIS)

    Vuillod, E.

    1995-01-01

    This work belongs to the Decovalex project (international cooperative project for the development of coupled models and their validation against experiments in nuclear waste isolation) of thermo-hydro-mechanical (THM) modeling of fractured rock massifs inside which high level radioactive waste disposal sites are simulated. The mathematical laws controlling the behaviour of the environment are resolved analytically in the case of a continuous environment (definition of an equivalent environment) and numerically if the environment is discontinuous (modeling of joints behaviour). The coupled THM models strongly influence the behaviour of a model. Modeling performed with the UDEC code shows the importance of HM couplings depending on whether the calculations are made in permanent or transient regime, and the influence of the loading path in the case of TM modeling. The geometry of fractures also influences the behaviour of the model. Studying the connexity of a fractures network allows to determine its degree of homogeneity. The comparison between two methods, continuous environment and discontinuous environment, has been carried out by determining the permeability tensor and the stress-deformation relations on fractured test-samples. It shows the differences in behaviour between an homogenized environment and a discrete environment. Finally two exercises of THM modeling of radioactive waste disposal sites illustrate the researches carried out. A far field model has permitted to compare the results obtained with calculation codes using different logics. The second model, a near field one, focusses more on the importance played by fracturing on the behaviour of the massif. The high density of the reference network has required some mathematical developments, in order to determine the representative equivalent volume (continuous approaches), and some mathematical analyses, to correctly simplify the environment (discontinuous approaches). These methods and analyses are

  9. Evidence for the incorporation of lead into barite from waste rock pile materials

    Energy Technology Data Exchange (ETDEWEB)

    COURTIN-NOMADE, ALEXANDRA; SOUBRAND-COLIN, MARILYNE; MARCUS, MATTHEW A.; FAKRA, SIRINE .C

    2008-01-21

    Because Pb is one of the most toxic elements and is found as a major contaminant in mining environments, this study aims to identify the distribution of this element in host phases issued from the alteration of mine wastes. The sampling location was a former mine near Oakland, California (USA). This mine was once a source of sulfide minerals from which sulfuric acid was made. The material discussed in this paper was collected in iron hardpans that were formed within the waste rock pile resulting from the excavation work. In most contaminated environments (soils, mine waste), secondary metal-bearing phases arising from alteration processes are usually fine-grained (from 10 {micro}m to less than 1 {micro}m) and highly heterogeneous, requiring the use of micron-scale techniques. We performed micro-Raman spectroscopy, microscanning X-ray diffraction (SXRD), and microextended X-ray near edge spectroscopy (XANES) to determine the relationships between Pb and a Ba/Fe-rich host phase. Micro-Raman spectroscopy suggests that Pb is preferentially incorporated into barite rather than goethite. Results from micro-Raman experiments show the high sensitivity of this analytical tool to the incorporation of Pb into barite by being especially sensitive to the variations of the S-O bond and showing the characteristic bands due to the contribution of Pb. This association is confirmed and is well-illustrated by micro-SXRD mineral species maps showing the correlation between Pb and barite. Microfocused XANES indicates that Pb is present as Pb{sup 2+}, agreeing with the in situ physicochemical parameters.

  10. Exploring the techno-economic feasibility of mine rock waste utilisation in road works: The case of a mining deposit in Ghana.

    Science.gov (United States)

    Agyeman, Stephen; Ampadu, Samuel I K

    2016-02-01

    Mine rock waste, which is the rock material removed in order to access and mine ore, is free from gold processing chemical contaminants but presents a significant environmental challenge owing to the large volumes involved. One way of mitigating the environmental and safety challenges posed by the large volume of mine rock waste stockpiled in mining communities is to find uses of this material as a substitute for rock aggregates in construction. This article reports on a study conducted to evaluate the engineering properties of such a mine deposit to determine its suitability for use as road pavement material. Samples of mine rock waste, derived from the granitic and granodioritic intrusive units overlying the gold-bearing metavolcanic rock and volcano-clastic sediments of a gold mining area in Ghana, were obtained from three mine rock waste disposal facilities and subjected to a battery of laboratory tests to determine their physical, mechanical, geotechnical, geometrical and durability properties. The overall conclusion was that the mine rock waste met all the requirements of the Ghana Ministry of Transportation specification for use as aggregates for crushed rock subbase, base and surface dressing chippings for road pavements. The recommendation is to process it into the required sizes for the various applications. © The Author(s) 2015.

  11. Deviations in the Zipf and Heaps laws in natural languages

    Science.gov (United States)

    Bochkarev, Vladimir V.; Lerner, Eduard Yu; Shevlyakova, Anna V.

    2014-03-01

    This paper is devoted to verifying of the empirical Zipf and Hips laws in natural languages using Google Books Ngram corpus data. The connection between the Zipf and Heaps law which predicts the power dependence of the vocabulary size on the text size is discussed. In fact, the Heaps exponent in this dependence varies with the increasing of the text corpus. To explain it, the obtained results are compared with the probability model of text generation. Quasi-periodic variations with characteristic time periods of 60-100 years were also found.

  12. Deviations in the Zipf and Heaps laws in natural languages

    International Nuclear Information System (INIS)

    Bochkarev, Vladimir V; Lerner, Eduard Yu; Shevlyakova, Anna V

    2014-01-01

    This paper is devoted to verifying of the empirical Zipf and Hips laws in natural languages using Google Books Ngram corpus data. The connection between the Zipf and Heaps law which predicts the power dependence of the vocabulary size on the text size is discussed. In fact, the Heaps exponent in this dependence varies with the increasing of the text corpus. To explain it, the obtained results are compared with the probability model of text generation. Quasi-periodic variations with characteristic time periods of 60-100 years were also found

  13. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  14. Importance of creep failure of hard rock in the near field of a nuclear-waste repository

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1981-01-01

    Potential damage resulting from slow creep deformation intuitively seems unlikely for a high-level nuclear waste repository excavated in hard rock. However, recent experimental and modeling results indicate that the processes of time-dependent microcracking and water-induced stress corrosion can lead to significant reductions in strength and alteration of other key rock properties in the near-field region of a repository. We review the small data base supporting these conclusions and stress the need for an extensive laboratory program to obtain the new data that will be required for design of a repository

  15. Distribution coefficient of radionuclides on rocks for performance assessment of high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Shibutani, Tomoki; Shibata, Masahiro; Suyama, Tadahiro

    1999-11-01

    Distribution coefficients of radionuclides on rocks are selected for safety assessment in the 'Second Progress Report on Research and Development for the geological disposal of HLW in Japan (H12 Report)'. The categorized types of rock are granitic rocks (crystalline and acidic rocks), basaltic rocks (crystalline and basic rocks), psammitic rocks (neogene sedimentary (soft)), and tuffaceous-pelitic rocks (pre-neogene sedimentary rocks (hard)). The types of groundwater are FRHP (fresh reducing high-pH), FRLP (fresh reducing low-pH), SRHP (saline reducing high-pH), SRLP (saline reducing low-pH), MRNP (mixing reducing neutral-pH) and FOHP (fresh oxidizing high-pH) groundwater. The elements to be surveyed are Ni, Se, Zr, Nb, Tc, Pd, Sn, Cs, Sm, Pb, Ra, Ac, Th, Pa, U, Np, Pu, Am and Cm. Distribution coefficients are collected from literatures describing batch sorption experimental results, and are selected under consideration of conservativity. (author)

  16. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung–waste paper mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Unuofin, F.O., E-mail: funmifrank2009@gmail.com; Mnkeni, P.N.S., E-mail: pmnkeni@ufh.ac.za

    2014-11-15

    Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.

  17. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung–waste paper mixtures

    International Nuclear Information System (INIS)

    Unuofin, F.O.; Mnkeni, P.N.S.

    2014-01-01

    Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg -1 resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg −1 dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg −1 resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg −1 feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered

  18. Heap leaching of Cu contaminated soil with [S,S]-EDDS in a closed process loop

    International Nuclear Information System (INIS)

    Finzgar, Neza; Zumer, Alenka; Lestan, Domen

    2006-01-01

    Heap leaching of Cu contaminated soil (412 ± 11 mg kg -1 ) with 5 mmol kg -1 ethylenediamine disuccinate [S,S]-EDDS as a chelator was tested in a laboratory-scale soil column study. The washing solution was recycled in a closed process loop after microbial (using a microbially active permeable bed, composed of substrate and absorbent) and oxidative chemical (using combined ozonation and UV irradiation) degradation of metal-[S,S]-EDDS complexes and retention of released Cu on a commercial absorbent Slovakite. Heap leaching using the permeable bed removed 25.5 ± 3.6% of initial total Cu from the soil. Ozone/UV treatment of the [S,S]-EDDS washing solution removed much more, 47.5 ± 7.4%, of Cu. Both methods yielded a clear and colorless final (waste) washing solution, with 7.0 ± 10.0 and 2.6 ± 0.7 mg L -1 Cu (permeable bed and ozone/UV method, respectively). The results of our study indicate that chemical treatment of chelator washing solution with ozone/UV in a closed process loop could lead to the development of a new, efficient and environmentally safe remediation method with controllable Cu emissions

  19. Vertical Object Layout and Compression for Fixed Heaps

    Science.gov (United States)

    Titzer, Ben L.; Palsberg, Jens

    Research into embedded sensor networks has placed increased focus on the problem of developing reliable and flexible software for microcontroller-class devices. Languages such as nesC [10] and Virgil [20] have brought higher-level programming idioms to this lowest layer of software, thereby adding expressiveness. Both languages are marked by the absence of dynamic memory allocation, which removes the need for a runtime system to manage memory. While nesC offers code modules with statically allocated fields, arrays and structs, Virgil allows the application to allocate and initialize arbitrary objects during compilation, producing a fixed object heap for runtime. This paper explores techniques for compressing fixed object heaps with the goal of reducing the RAM footprint of a program. We explore table-based compression and introduce a novel form of object layout called vertical object layout. We provide experimental results that measure the impact on RAM size, code size, and execution time for a set of Virgil programs. Our results show that compressed vertical layout has better execution time and code size than table-based compression while achieving more than 20% heap reduction on 6 of 12 benchmark programs and 2-17% heap reduction on the remaining 6. We also present a formalization of vertical object layout and prove tight relationships between three styles of object layout.

  20. Estimated water requirements for gold heap-leach operations

    Science.gov (United States)

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water necessary for conventional gold heap-leach operations. Water is required for drilling and dust suppression during mining, for agglomeration and as leachate during ore processing, to support the workforce (requires water in potable form and for sanitation), for minesite reclamation, and to compensate for water lost to evaporation and leakage. Maintaining an adequate water balance is especially critical in areas where surface and groundwater are difficult to acquire because of unfavorable climatic conditions [arid conditions and (or) a high evaporation rate]; where there is competition with other uses, such as for agriculture, industry, and use by municipalities; and where compliance with regulatory requirements may restrict water usage. Estimating the water consumption of heap-leach operations requires an understanding of the heap-leach process itself. The task is fairly complex because, although they all share some common features, each gold heap-leach operation is unique. Also, estimating the water consumption requires a synthesis of several fields of science, including chemistry, ecology, geology, hydrology, and meteorology, as well as consideration of economic factors.

  1. The general solution of a Nim-heap game

    Institute of Scientific and Technical Information of China (English)

    宋林森; 卢澎涛

    2010-01-01

    As a combinatorial one,the game Nim turns out to be extremely useful in certain types of combinatorial game analysis.It has given the general solution of the game a Nim-heap game and the result has proved true.

  2. Coarsening of Faraday Heaps: Experiment, Simulation, and Theory

    NARCIS (Netherlands)

    Gerner, van H.J.; Robledo, Caballero G.A.; Meer, van der D.; Weele, van der J.P.; Hoef, van der M.A.

    2009-01-01

    When a layer of granular material is vertically shaken, the surface spontaneously breaks up in a landscape of small Faraday heaps that merge into larger ones on an ever increasing time scale. This coarsening process is studied in a linear setup, for which the average life span of the transient state

  3. Thermal effects on clay rocks for deep disposal of high-level radioactive waste

    Directory of Open Access Journals (Sweden)

    Chun-Liang Zhang

    2017-06-01

    Full Text Available Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions: (1 stresses covering the range from the initial lithostatic state to redistributed levels after excavation, (2 hydraulic drained and undrained boundaries, and (3 heating from ambient temperature up to 90 °C–120 °C and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.

  4. Numerical Model of Fluid Flow through Heterogeneous Rock for High Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Shirai, M.; Chiba, R.; Takahashi, T.; Hashida, T.; Fomin, S.; Chugunov, V.; Niibori, Y.

    2007-01-01

    An international consensus has emerged that deep geological disposal on land is one of the most appropriate means for high level radioactive wastes (HLW). The fluid transport is slow and radioactive elements are dangerous, so it's impossible to experiment over thousands of years. Instead, numerical model in such natural barrier as fractured underground needs to be considered. Field observations reveal that the equation with fractional derivative is more appropriate for describing physical phenomena than the equation which is based on the Fick's law. Thus, non-Fickian diffusion into inhomogeneous underground appears to be important in the assessment of HLW disposal. A solute transport equation with fractional derivative has been suggested and discussed in literature. However, no attempts were made to apply this equation for modeling of HLW disposal with account for the radioactive decay. In this study, we suggest the use of a novel fractional advection-diffusion equation which accounts for the effect of radioactive disintegration and for interactions between major, macro pores and fractal micro pores. This model is fundamentally different from previous proposed model of HLW, particularly in utilizing fractional derivative. Breakthrough curves numerically obtained by the present model are presented for a variety of rock types with respect to some important nuclides. Results of the calculation showed that for longer distance our model tends to be more conservative than the conventional Fickian model, therefore our model can be said to be safer

  5. Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control.

    Science.gov (United States)

    Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi

    2017-05-05

    Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at -700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m.

  6. Principal aspects of petrographical examination of rock salts to assess their suitability for radioactive waste disposal

    International Nuclear Information System (INIS)

    Shekhunova, S.B.

    1995-01-01

    To solve the problem of high-level radioactive waste (HLRW) isolation in Ukraine a preparatory stage of feasibility study as to the construction of a pilot laboratory has been completed. Salty formations are considered as possible host rocks for HLRW isolation. 7 salt formations located in 5 regions of Ukraine have been examined and was found that only two, i.e. the Upper Devonian and Lower Permian halogenic formations of the Dnieper-Donets Depression appeared to have considerable promise for these purposes. In these two formations 4 zones with 12 candidate-sites were selected. The promising zones are located both in bedded salt and in salt domes. Analytical treatment our previous studies as well as a special-purpose research have resulted in designing packages of the schematic information models for the zones and some candidate-sites. Now we are preparing to start exploration drilling at several promising structures. Research has been carried out by the Institute of Geological Sciences (National Academy of Sciences of Ukraine) on budget and contract financial basis with the participation of branch institutes and the State Committee on Nuclear power Utilization (Goskomatom). The drilling and geophysical data were presented by Goskomgeologiya production organizations

  7. A model for the description of oxidation in sulfidic waste rock dumps

    International Nuclear Information System (INIS)

    Bennett, J. W.; Pantelis, G.; Ritchie, A.I.M.; Stepanyants, Y.A.

    2000-03-01

    Basic mathematical equations which describe the processes of sulfide oxidation and gas and water transport in waste rock dumps are presented and discussed. The governing equations account for gas and water flow, vaporisation and condensation with latent heat effects, heat transport and mass balance. Gas, water and solid phases are assumed to be in local thermal equilibrium at all times. Air is approximated as an ideal three-component gas. Different semi-empirical relationships between physical values are used: Darcy's law for fluid flow, ideal gas law, the Van Genuchten formula for the relationship between degree of water saturation and pressure head, Mualem's formula for the relative hydraulic conductivity as a function of pressure head, etc. Some important global quantities, such as the fraction of sulfide sulfur oxidised and the global oxidation rate, are defined and considered as functions of time. The full set of equations is collected and presented in explicit form, convenient for further numerical modelling. The glossary of some technical terms and the table of definitions of the main parameters as well as their units and characteristic values are given

  8. Radon as a natural tracer for gas transport within uranium waste rock piles

    International Nuclear Information System (INIS)

    Silva, N.C.; Chagas, E.G.L.; Dias, D.C.S.; Guerreiro, E.T.Z.; Alberti, H.L.C.; Braz, M.L.; Abreu, C.B.; Lopez, D.; Branco, O.; Fleming, P.

    2014-01-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Industrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222 Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222 Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m -3 with mean concentration of 320.7±263.3 kBq m -3 . (authors)

  9. Study of waste rock piles producing acid drainage in the Brazilian first uranium mine

    International Nuclear Information System (INIS)

    Oliveira, Alexandre P. de; Rey-Silva, Daniela V.F.M.; Barreto, Rodrigo P.; Souza-Santos, Marcio L. de; Veronesi, Luciano da S.

    2009-01-01

    The Uranium Mine and Milling Facility located in the Pocos de Caldas Plateau stopped operating since mid-1990's and remediation actions for the mine areas are going to take place in the near future. However, environmental concerns should be addressed such as acid mine drainage (AMD) in the waste rock piles (WRPs), pit mine, and tailing dam, all driven by pyrite oxidation reactions. The AMD process leaches both heavy metals and radionuclides pollutants through the soil. This work shows the methodology applied for the determination of chemical species leaching from WRP4 as well the generation of acid waters. An experimental setup has been assembled to determine the acidity of water in contact with samples of material from the WRP4. Results are presented along a list of chemical species found in the remaining water. That is followed by discussions regarding its pH and chemical composition measured during the experiments. It has been observed that not only water and available oxygen are significant to the pyrite oxidation reaction, but also bacterial activity. This last effect should be addressed in the near future. Moreover, various important aspects regarding the experimental setup were noticed and are addressed as propositions for the continuation of the present work. (author)

  10. To accelerate technology of in situ leaching and heap leaching for mining mineral resources of China

    International Nuclear Information System (INIS)

    Luo Mei

    1999-01-01

    Recently, in situ leaching and heap leaching are the most advanced technology for mining low-grade mineral resources in the world. The author briefly expounds the basic concept and advantages of in situ leaching and heap leaching and deals with the main research content of the hydrometallurgical technology of in situ leaching and heap leaching, its development and present application at home and abroad. Having expounded the gap existing between China's technology of in situ leaching and heap leaching and the foreign technology, the author forecasts the prospects of accelerating the mining of China's mineral resources by using the technology of in situ leaching and heap leaching

  11. Improvements on heap leaching process for a refractory uranium ore and yellow cake precipitation process

    International Nuclear Information System (INIS)

    Feng Jianke

    2013-01-01

    Some problems such as formed harden matrix, ore heap compaction, poor permeability, and agglomeration of absorption resin occur during extracting uranium from a refractory uranium ore by heap leaching process. After some measures were taken, i.e. spraying a new ore heap by low concentration acid, two or more ore heaps in series leaching, turning ores in ore heap, the permeability was improved, acid consumption was reduced. Through precipitate circulation and aging, the yellow cake slurry in amorphous or microlite form was transformed to crystal precipitate, thus uranium content in yellow cake was improved, and water content in yellow cake was lowered with good economic benefits. (author)

  12. Modelling water and contaminant transport in the Rum Jungle Mine overburden heaps

    International Nuclear Information System (INIS)

    Pantelis, G.

    1987-04-01

    An outline is given of a computer model for water and contaminant transport in and around overburden heaps, with those at the Rum Jungle mine site as a specific example. The model assumes the heaps to lie on a sloping shallow aquifer with identical hydraulic properties. The simulation is carried out for a 40 year period. After the first 20 years a cover which is effectively impermeable to infiltrating rainwater and air is introduced on the heap. The restriction of oxygen supply to the heap terminates contaminant production which results from oxidation of pyrite. Leaching of contaminants from the heap in the following 20-year period is examined

  13. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    International Nuclear Information System (INIS)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-01-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  14. Waste/Rock Interactions Technology Program: the status of radionuclide sorption-desorption studies performed by the WRIT program

    International Nuclear Information System (INIS)

    Serne, R.J.; Relyea, J.F.

    1982-04-01

    The most credible means for radionuclides disposed as solid wastes in deep-geologic repositories to reach the biosphere is through dissolution of the solid waste and subsequent radionuclide transport by circulating ground water. Thus safety assessment activities must consider the physicochemical interactions between radionculides present in ground water with package components, rocks and sediments since these processes can significantly delay or constrain the mass transport of radionuclides in comparison to ground-water movement. This paper focuses on interactions between dissolved radiouclides in ground water and rocks and sediments away from the near-field repository. The primary mechanism discussed is adsorption-desorption, which has been studied using two approaches. Empirical studies of adsorption-desorption rely on distribution coefficient measurements while mechanism studies strive to identify, differentiate and quantify the processes that control nuclide retardation

  15. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  16. Influence of convective-energy transfer on calculated temperature distributions in proposed hard-rock nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, R R; Reda, D C [Sandia National Labs., Albuquerque, NM (USA)

    1982-06-01

    This study assesses the relative influence of convective-energy transfer on predicted temperature distributions for a nuclear-waste repository located in water-saturated rock. Using results for energy transfer by conduction only (no water motion) as a basis of comparison, it is shown that a considerable amount of energy can be removed from the repository by pumping out water that migrates into the drift from regions adjacent to the buried waste canisters. Furthermore, the results show that the influence of convective-energy transfer on mine drift cooling requirements can be significant for cases where the in-situ permeability of the rock is greater than one millidarcy (a regime potentially encountered in repository scenarios).

  17. Proceedings of workshop 5: Flow and transport through unsaturated fractured rock -- related to high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Evans, D.D.; Nicholson, T.J.

    1993-06-01

    The ''Workshop on Flow and Transport Through Unsaturated Fractured Rock Related to High-Level Radioactive Waste Disposal'' was cosponsored by the NRC, the Center for Nuclear Waste Regulatory Analyses, and the University of Arizona (UAZ) and was held in Tucson, Arizona, on January 7--10, 1991. The focus of this workshop, similar to the earlier four (the first being in 1982), related to hydrogeologic technical issues associated with possible disposal of commercial high-level nuclear waste (HLW) in a geologic repository within an unsaturated fractured rock system which coincides with the UAZ field studies on HLW disposal. The presentations and discussions centered on flow and transport processes and conditions, relevant parameters, as well as state-of-the-art measurement techniques, and modeling capabilities. The workshop consisted of: four half-day technical meetings, a one day field visit to the Apache Leap test site to review ongoing field studies that are examining site characterization techniques and developing data sets for model validation studies, and a final half-day session devoted to examining research needs related to modeling groundwater flow and radionuclide transport in unsaturated, fractured rock. These proceedings provide extended abstracts of the technical presentations and short summaries of the research group reports

  18. The TIMODAZ project: Thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks

    International Nuclear Information System (INIS)

    XiangLing, L.

    2009-01-01

    The management of spent nuclear fuel and other long-lived radio active waste is an important environmental issue today. Disposal in deep clay geological formations is one of the promising options to dispose of these wastes. In this context, the related research activities in the Euratom Framework Programme of European Commission are continually taking on an enhanced significance. The TIMODAZ is one of the STREP projects (Specific Targeted Research Project) in the Sixth EURATOM Framework Programme and contributes to the research related to the geological disposal of radioactive waste. The consortium is composed of a strong multidisciplinary team involving both European radioactive waste management organizations and nuclear research institutes, universities, industrial partners as well as consultancy companies (SME's). Totally, 15 partners coming from 8 countries are involved with a total budget of about 4000k EURO. Being the coordinator (through the EURIDICE expertise group), SCK-CEN plays the leading role in the project. Meanwhile, SCK-CEN participates the research in different work packages covering the laboratory tests, in-situ tests as well as the integration of TIMODAZ results within the safety case. An important item for the long-term safety of underground disposal is the proper evaluation of the DZ (damaged zone) in the clay host rock. The DZ is defined here as the zone of host rock that experiences THMC (Thermo-Hydro-Mechanical-Chemical) modifications induced by the repository, with potential major changes in the transport properties for radionuclides. The DZ is first initiated during the repository construction. Its behaviour is dynamic, dependent on changing conditions that vary from the open-drift period, to initial closure period and to the entire heating-cooling cycle of the decaying waste. The early THMC disturbances created by the excavation, the operational phase and the thermal load might be the most severe transient that the repository will undergo

  19. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 6. Baseline rock properties-shale

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM36/6 Baseline Rock Properties--Shale, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. The report is a result of a literature survey of the rock properties of shales occurring in the United States. Firstly, data were collected from a wide variety of sources in order to obtain a feel for the range of properties encountered. Secondly, some typical shales were selected for detailed review and these are written up as separate chapters in this report. Owing to the wide variability in lithology and properties of shales occurring in the United States, it became necessary to focus the study on consolidated illite shales. Using the specific information already generated, a consistent set of intact properties for a typical, consolidated illite shale was obtained. Correction factors, largely based on geological considerations, were then applied to the intact data in order to yield typical rock mass properties for this type of shale. Lastly, excavation problems in shale formations were reviewed and three tunnel jobs were written up as case histories

  20. Modelling of thermo-hydro-mechanical couplings and damage of viscoplastic rocks in the context of radioactive waste storage

    International Nuclear Information System (INIS)

    Kharkhour, H.

    2002-12-01

    Trying to develop a model taking into account the complex rheology of a geologic media characterized by visco-plasticity, damage and thermo-hydro-mechanical couplings is unusual in geotechnics. This is not the case for radioactive waste storage that presents specificities from several viewpoints. Indeed, the scales of time and space concerned by this type of storage are disproportionate to those of civil engineering works or mines. Another specificity of the radioactive waste storage lies in the coupled processes involved. No effect likely to compromise the long-term security of the storage could be ignored. For example this is the case of damage, a phenomenon which does not necessarily lead to a major change of the mechanical behavior of the works but can influence the permeability of the medium in relation with a migration of radionuclides. It can be conceived that this phenomenon finds all its importance in the context of the thermo-hydro-mechanical couplings of a waste storage with high activity. However, the interaction between the damage and the THM coupled processes was the object of very few research subject up to now. This. is even more true for viscoplastic media considered as ductile, and therefore, less prone to cracking than brittle media. It is exactly in this 'original' but difficult context that took place the research presented in this report. This study was dedicated to the analysis of the phenomena and the thermal, hydraulic and mechanical couplings occurring in the near and far field of a high activity radioactive waste storage. Two examples of geological media were considered in this report: the clayey rock of Callovo-Oxfordian, called ' Argilites de l'Est ', target rock of the ANDRA project to carry out a subterranean laboratory for the study of long life radioactive waste storage; and the salt rock of the. subterranean laboratory in the old salt mine of Asse in Germany. (author)

  1. Rationale for geological isolation of high-level radioactive waste, and assessment of the suitability of crystalline rocks

    International Nuclear Information System (INIS)

    Smedes, H.W.

    1980-01-01

    This report summarizes the disposal objective to be met and the requisite geotechnical criteria to meet that objective; evaluates our present ability to determine whether certain criteria can be met and to predict whether they will continue to be met; discusses the consequences of failure to meet certain criteria; assesses what is known about how crystalline rocks meet those criteria; lists important gaps in our knowledge that presently preclude final assessment of suitability; and suggests priority research to fill those gaps. The report presents an elaboration of the above-stated behavior and suitability of crystalline rocks, and a rationale of site-selection in support of the recommended prompt and intensive study of granite and other crystalline rocks as potentially highly suitable candidate media for radioactive waste disposal. An overview is presented on what the rocks are, where they are, and what the critical attributes are of various crystalline-rock terranes in the conterminous United States. This is intended to provide a basis to aid in selecting, first regions, and then sites within those regions, as candidate repository sites

  2. Review of potential host rocks for radioactive waste disposal in the Piedmont Province of Virginia and Maryland

    International Nuclear Information System (INIS)

    Brown, W.R.

    1980-10-01

    This study is a detailed follow-up of a broad study of the Southeastern Piedmont by Acres American, Inc. (1978) based upon literature and existing knowledge. The purpose is to designate broad areas in which the rock type is favorable for field exploration for the possible designation of a site for disposal of solidified radioactive waste. The Acres study classified rock units as favorable, potentially favorable, and unfavorable. The objective of the present study is: (1) to review the criteria used in this classification, and (2) on the basis of a detailed knowledge of local rock units to reassign the rock types in the potentially favorable category to either the favorable or the unfavorable categories. As in the Acres study, the objective is to designate field study areas, not potential sites. This study was based entirely upon a literature study, discussions with persons knowledgeable of the region, and a personal acquaintance with the rocks and structures. No field work was done specifically for this project. No consideration was given to sociological, economic, or non-technical factors

  3. Basic investigation and analysis for preferred host rocks and natural analogue study area with reference to high level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Ryul; Park, J. K.; Hwang, D. H.; Lee, J. H.; Yun, H. S.; Kim, D. Y.; Park, H. S.; Koo, S. B.; Cho, J. D.; Kim, K. E. [Korea Inst. of Geology, Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The purpose of this study is basic investigation and analysis for preferred host rocks and natural analogue study area to develope underground disposal technique of high level radioactive waste in future. The study has been done for the crystalline rocks(especially granitic rocks) with emphasis of abandoned metallic mines and uranium ore deposits, and for the geological structure study by using gravity and aeromagnetic data. 138 refs., 54 tabs., 130 figs. (author)

  4. Lithology, microstructures, fluid inclusions, and geochemistry of rock salt and of the cap-rock contact in Oakwood Dome, East Texas: significance for nuclear waste storage. Report of investigations No. 120

    International Nuclear Information System (INIS)

    Dix, O.R.; Jackson, M.P.A.

    1982-01-01

    Oakwood salt dome in Leon and Freestone Counties, Texas, has a core composed of a diapiric salt stock at a depth of 355 m. A vertical borehole in the center of the salt stock yielded 57.3 m of continuous rock-salt core overlain by 137 m of anhydrite-calcite cap rock. The lower 55.3 m of rock salt exhibits a strong, penetrative schistosity and parallel cleavage dipping at 30 to 40 0 and more than 60 variably dipping layers of disseminated anhydrite. Anhydrite constitutes 1.3 +- 0.7 percent of the rock-salt core. The upper 2 m of rock salt is unfoliated, comprising a lower 1.4-m interval of medium-grained granoblastic rock salt and an upper 0.6-m interval of coarse-grained granoblastic rock salt. An abrupt, cavity-free contact separates rock salt from laminated cap rock consisting of granoblastic-polygonal anhydrite virtually devoid of halite or pore space. Microstructures and concentration gradients of fluid inclusions suggest that the unfoliated rock salt at the crest of the salt stock was once strongly foliated, but that this fabric was destroyed by solid-state recrystallization. Downward movement of brine from the rock-salt - cap-rock contact was apparently accompanied by two recrystallization fronts. Dissolution of halite at the contact released disseminated anhydrite that presumably accumulated as sand on the floor of the dissolution cavity. Renewed rise of the salt stock closed the cavity, and the anhydrite sand was accreted against the base of the cap rock. Much, if not all, of the lamination in the 80 m of anhydrite cap rock may result from cycles of dissolution, recrystallization, and upward movement in the salt stock, followed by accretion of anhydrite residuum as laminae against the base of the cap rock. These processes, which are strongly influenced by fluids, act both to breach waste repositories and to geologically isolate them

  5. Estimates of water and solute release from a coal waste rock dump in the Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Villeneuve, S A; Barbour, S L; Hendry, M J; Carey, S K

    2017-12-01

    Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO 3 - , Cl - and SO 4 2- ) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO 3 - and Cl - ) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO 4 2- concentrations increased proportionally with NO 3 - and Cl - to 2007, but then continued to slowly increase as NO 3 - and Cl - concentrations decreased. This was attributed to ongoing production of SO 4 2- due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fluid geochemistry associated associated to rocks: preliminary tests om minerals of granite rocks potentially hostess of radioactive waste repository

    International Nuclear Information System (INIS)

    Amorim, Lucas E.D.; Rios, Francisco J.; Oliveira, Lucilia A.R. de; Alves, James V.; Fuzikawa, Kazuo; Garcia, Luiz; Ribeiro, Yuri; Matos, Evandro C. de

    2009-01-01

    Fluid inclusions (FI) are micro cavities present on crystals and imprison the mineralizer fluids, and are formed during or posterior to the mineral formation. Those kind of studies are very important for orientation of the engineer barrier projects for this purpose, in order to avoid that the solutions present in the mineral FI can affect the repository walls. This work proposes the development of FI micro compositional studies in the the hostess minerals viewing the contribution for a better understanding of the solution composition present in the metamorphosis granitoid rocks. So, micro thermometric, microchemical and characterization of the material confined in the FI, and the hostess minerals. Great part of the found FI are present in the quartz and plagioclase crystals. The obtained data on the mineral compositions and their inclusions will allow to formulate hypothesis on the process which could occurs at the repository walls, decurrens from of the corrosive character (or not) of the fluids present in the FI, and propose measurements to avoid them

  7. Study on water migration of tunnel surrounding rock in nuclear waste repository based on coupling theory

    International Nuclear Information System (INIS)

    Jiang Zhongming; Zhang Xinmin

    2008-01-01

    Excavation of tunnel changes not only the stresses and deformation of tunnel surrounding rock, but also disturbs the underground water environment in tunnel surrounding rock Water migration happens due to variation of pore water pressure and redistribution. Based on the mechanics of porous media, saturated and unsaturated hydro-mechanical coupling analysis method is employed to study the variation of the stresses, deformation and pore pressure of the surrounding rock. Case study indicates that the excavation of tunnel will induce redistribution of stress and pore water pressure. Redistribution of pore water pressure will seriously affect on evaluation of surrounding rock stability and diffusion of nucleon in the pore water. (authors)

  8. Controls on Weathering of Pyrrhotite in a Low-Sulfide, Granitic Mine-Waste Rock in the Canadian Arctic

    Science.gov (United States)

    Langman, J. B.; Holland, S.; Sinclair, S.; Blowes, D.

    2013-12-01

    Increased environmental risk is incurred with expansion of mineral extraction in the Arctic. A greater understanding of geochemical processes associated with hard-rock mining in this cold climate is needed to evaluate and mitigate these risks. A laboratory and in-situ experiment was conducted to examine mineral weathering and the generation of acid rock drainage in a low-sulfide, run-of-mine waste rock in an Arctic climate. Rock with different concentrations of sulfides (primarily pyrrhotite [Fe7S8] containing small amounts of Co and Ni) and carbonates were weathered in the laboratory and in-situ, large-scale test piles to examine leachate composition and mineral weathering. The relatively larger sulfide-containing rock produced sufficient acid to overcome carbonate buffering and produced a declining pH environment with concomitant release of SO4, Fe, Co, and Ni. Following carbonate consumption, aluminosilicate buffering stabilized the pH above 4 until a reduction in acid generation. Results from the laboratory experiment assisted in determining that after consumption of 1.6 percent of the total sulfide, the larger sulfide-concentration test pile likely is at an internal steady-state or maximal weathering rate after seven years of precipitation input and weathering that is controlled by an annual freeze-thaw cycle. Further weathering of the test pile should be driven by external factors of temperature and precipitation in this Arctic, semi-arid region instead of internal factors of wetting and non-equilibrium buffering. It is predicted that maximal weathering will continue until at least 20 percent of the total sulfide is consumed. Using the identified evolution of sulfide consumption in this Arctic climate, a variable rate factor can now be assessed for the possible early evolution and maximal weathering of larger scale waste-rock piles and seasonal differences because of changes in the volume of a waste-rock pile undergoing active weathering due to the freeze

  9. Review of potential host rocks for radioactive waste disposal in the southeast United States: Southeastern Coastal Plain Subregion

    International Nuclear Information System (INIS)

    1980-10-01

    A literature review was made of the geological characteristics of the Southeastern Coastal Plain physiograhic province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose of this study was to identify candidate exploration areas for the possible location of a mined repository for the storage of radioactive waste in the argillaceous sedimentary rocks of the Coastal Plain. Candidate areas were selected on the basis of geological characteristics, available subsurface data, and generally accepted requirements for waste isolation developed by previous studies. Factors considered in the evaluation include the stratigraphy and lithology, geologic history, structure, seismicity, hydrogeology, and natural resources of the candidate area. Unlike other potential regions, the Southeastern Coastal Plain is not composed of competent rock, but consists primarily of unconsolidated and water-saturated sediments overlying a basement of crystalline and metavolcanic rocks. Thus, construction of both shafts and tunnels to depths of approx. 1000 meters may encounter difficulties. Socio-economic and construction considerations have not been addressed in the evaluation. Based on the applied criteria, four areas were selected as being most favorable for future field investigation. These include one in Maryland, one in North Carolina, and two in Georgia

  10. Site selection and general layout of heap leaching uranium mill

    International Nuclear Information System (INIS)

    Zhang Chunmao; Rongfeng

    2011-01-01

    The site selection and general layout of uranium mill is an important work in the design and consultation stage of uranium mining and metallurgy's engineering construction. Based on the design practices, the principles and methods for the site selection and general layout of heap leaching uranium mill are analyzed and studied. Some problems which should be paid much attention to in the design are discussed in hopes of providing a useful reference for the design and consultation of similar projects. (authors)

  11. The role of the disturbed rock zone in radioactive waste repository safety and performance assessment. A topical discussion and international overview

    International Nuclear Information System (INIS)

    Winberg, A.

    1991-06-01

    A discussion was presented of the role and relative importance of the disturbed rock zone (DRZ) around the underground openings of a repository for nuclear waste in crystalline rock. The term disturbed rock zone was defined and possible criteria to be sued to distinguish if from undisturbed rock was suggested. The processes decisive for the hydraulic characteristics of the DRZ were discussed. With regard to the integral hydraulic characteristics of the DRZ, the effects of the excavation methodology, stress redistribution, thermal changes, chemical changes and backfill were discussed. A review of in-situ observations of the DRZ was provided. Model analysis where the DRZ has been explicitly or implicitly represented, either from a phenomenological and performance assessment aspect were reviewed. The implications of the disturbed rock zone for the safe performance of a nuclear waste repository were discussed. Conceptual models for the geometry of the DRZ and hydraulic conductivity distribution in the DRZ were suggested. (au) (82 refs.)

  12. Repository for high level radioactive wastes in Brazil: the importance of geochemical (Micro thermometric) studies and fluid migration in potential host rocks

    International Nuclear Information System (INIS)

    Rios, Francisco Javier; Fuzikawa, Kazuo; Alves, James Vieira; Neves, Jose Marques Correia

    2003-01-01

    A detailed fluid inclusion study of host rocks, is of fundamental importance in the selection of geologically suitable areas for high level nuclear waste repository constructions (HLRW). The LIFM-CDTN is enabled to develop studies that confirm: the presence or not, of corrosive fluid in minerals from host rocks of the repository and the possible presence of micro fractures (and fluid leakage) when these rocks are submitted to high temperatures. These fluid geochemistry studies, with permeability determinations by means of pressurized air injection must be carried out in rocks hosting nuclear waste. Micro fracture determination is of vital importance since many naturally corrosive solutions, present in the mineral rocks, could flow out through these plans affecting the walls of the repository. (author)

  13. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    International Nuclear Information System (INIS)

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnical characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia

  14. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    International Nuclear Information System (INIS)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions

  15. Analysis of hydraulic gradients across the host rock at the proposed Texas Panhandle nuclear-waste repository site

    International Nuclear Information System (INIS)

    Bair, E.S.

    1987-01-01

    Analysis of the direction of ground-water flow across the host rock at the proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, is complicated by vertical and lateral changes in the density of formation fluids in the various hydrogeologic units that overlie and underlie the proposed host rock. Because the concept of hydraulic head is not valid when evaluating vertical hydraulic gradients in a variably-density flow system, other methods were used to determine the direction and magnitude of vertical hydraulic gradients at the proposed site where the specific gravity of formation fluids varies between 1.00 and 1.28. The direction of ground-water flow across the proposed host rock, an 80-foot-thick salt bed in the Lower San Andres Formation, was determined by calculating vertical hydraulic gradients based on formation pressure and fluid density data, and by analysis of pressure-depth diagrams. Based on data from the vicinity of the proposed site, both methods indicate the potential for downflow across the host rock. Downflow or predominantly horizontal flow is considered a favorable prewaste emplacement condition because it prolongs the travel time to the biosphere of any naturally or accidentally released radionuclides

  16. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    Energy Technology Data Exchange (ETDEWEB)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  17. Immobilization of radioactive waste through cementation using Cuban zeolitic rock as additive

    International Nuclear Information System (INIS)

    Chales Suarez, G.; Castillo Gomez, R.

    1997-01-01

    The cementation of both simulated and real low level aqueous wastes using Cuban zeolite as additive is described. Mechanical characteristics and leach testing of the cemented waste forms has been studied. The results obtained have shown that the presence of zeolite in the cemented waste for reduces considerably the leach rates of Cs and Co and moreover, mechanical characteristics (set time and compressive strength) are better when compared with direct cementation of aqueous wastes. (author). 13 refs, 8 tabs

  18. A review and synthesis of international proposals for the disposal of high-level radioactive wastes into crystalline rock formations

    International Nuclear Information System (INIS)

    1981-05-01

    Examination of the broad range of international concepts for the disposal of high-level radioactive wastes into crystalline rock formations has indicated that systems based upon solid waste units provide the greatest degree of engineering control and security. Three particular disposal concepts are considered worthy of detailed evaluation. In order of priority these are:-tunnel networks with 'in-floor' waste emplacement; matrix of vertical emplacement holes drilled from the surface; tunnel networks with 'in-room' waste emplacement. A review of the international literature has shown that at least ten countries have embarked upon study programmes, but only five have developed detailed conceptual design proposals. These are:- Canada, France, Sweden, the United Kingdom, and the United States. Differing economic, environmental, historical and political circumstances have influenced the pattern of international studies and, to the uninitiated, these factors may obscure some of the relevant technical considerations. Nevertheless, a broad technical concensus is apparent in that all countries currently favour tunnel networks with 'in-floor' waste emplacement. The subject is discussed in detail. (author)

  19. An integrated approach to isotopic study of crystalline rock for a high-level waste repository: Area phase

    International Nuclear Information System (INIS)

    Gilbert, L.A.

    1986-01-01

    An integrated approach to assessing isotopic systems in crystalline rock is planned for area phase studies. This approach combines radiogenic isotope systems with petrography in order to characterize potential crystalline repository media. The coeval use of selected isotope systems will minimize the limitations of each method and provide intensive parameters yielding data on alteration timing, secondary mineral formation, temperature history, and radionuclide species migration. Isotope systems will be selected in order to measure differences in sensitivity to thermal disturbances and mobility due to fluid interaction. Comparative evaluation of isotope pair behavior may be used in combination with mineral versus whole-rock dates to provide data on heating and mobilization of alkali elements, lanthanides, and gases, caused by future introduction of waste

  20. Rock mechanics methods and in situ heater tests for design of a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Board, M.P.

    1978-01-01

    Methods of integrating data from the Near-Surface Test Facility into the overall Waste Isolation Program are examined. Discussions are presented dealing primarily with the application of numerical models to the design of a waste repository. The various types of models currently available are discussed with reference to design in basalt and the breakdown of the problem of repository design is summarized. It is shown that the most efficient method for analyzing repository design is to break the problem down into several problems which are based on physical scale. These include the area directly surrounding a single waste canister (the very near field), the area including many canisters and canister emplacement rooms (the near field), and the area including the entire repository and the rock mass to the free surface (the far field). The methods by which numerical models are used for design are discussed. Flow charts are used to show the basic input data required, the calculational processes used, and the preliminary criteria for judgment of suitable repository performance. It is shown that the ultimate design of the allowable gross thermal loading density, and, thus, the layout of the underground workings is highly dependent upon the rock mass properties supplied as base line input data to the numerical models. Of the many input properties required, the thermal conductivity, the thermal expansion coefficient, and elastic moduli of the rock mass have, perhaps, the greatest effect on the calculation of induced temperatures, stresses, and displacements and, thus, repository design. To ensure that the design continues with confidence, field (in situ) values of input data must be obtained. The role of the Near-Surface Test Facility in situ testing in obtaining these basic required data is discussed

  1. Actinorhizal Alder Phytostabilization Alters Microbial Community Dynamics in Gold Mine Waste Rock from Northern Quebec: A Greenhouse Study.

    Directory of Open Access Journals (Sweden)

    Katrina L Callender

    Full Text Available Phytotechnologies are rapidly replacing conventional ex-situ remediation techniques as they have the added benefit of restoring aesthetic value, important in the reclamation of mine sites. Alders are pioneer species that can tolerate and proliferate in nutrient-poor, contaminated environments, largely due to symbiotic root associations with the N2-fixing bacteria, Frankia and ectomycorrhizal (ECM fungi. In this study, we investigated the growth of two Frankia-inoculated (actinorhizal alder species, A. crispa and A. glutinosa, in gold mine waste rock from northern Quebec. Alder species had similar survival rates and positively impacted soil quality and physico-chemical properties in similar ways, restoring soil pH to neutrality and reducing extractable metals up to two-fold, while not hyperaccumulating them into above-ground plant biomass. A. glutinosa outperformed A. crispa in terms of growth, as estimated by the seedling volume index (SVI, and root length. Pyrosequencing of the bacterial 16S rRNA gene for bacteria and the ribosomal internal transcribed spacer (ITS region for fungi provided a comprehensive, direct characterization of microbial communities in gold mine waste rock and fine tailings. Plant- and treatment-specific shifts in soil microbial community compositions were observed in planted mine residues. Shannon diversity and the abundance of microbes involved in key ecosystem processes such as contaminant degradation (Sphingomonas, Sphingobium and Pseudomonas, metal sequestration (Brevundimonas and Caulobacter and N2-fixation (Azotobacter, Mesorhizobium, Rhizobium and Pseudomonas increased over time, i.e., as plants established in mine waste rock. Acetate mineralization and most probable number (MPN assays showed that revegetation positively stimulated both bulk and rhizosphere communities, increasing microbial density (biomass increase of 2 orders of magnitude and mineralization (five-fold. Genomic techniques proved useful in

  2. Mechanisms and modelling of waste-cement and cement-host rock interactions

    Science.gov (United States)

    2017-06-01

    Safe and sustainable disposal of hazardous and radioactive waste is a major concern in today's industrial societies. The hazardous waste forms originate from residues of thermal treatment of waste, fossil fuel combustion and ferrous/non-ferrous metal smelting being the most important ones in terms of waste production. Low- and intermediate-level radioactive waste is produced in the course of nuclear applications in research and energy production. For both waste forms encapsulation in alkaline, cement-based matrices is considered to ensure long-term safe disposal. Cementitious materials are in routine use as industrial materials and have mainly been studied with respect to their evolution over a typical service life of several decades. Use of these materials in waste management applications, however, requires assessments of their performance over much longer time periods on the order of thousands to several ten thousands of years.

  3. Radiation damage studies on natural rock salt from various geological localities of interest to the radioactive waste disposal program

    International Nuclear Information System (INIS)

    Levy, P.W.

    1981-01-01

    As part of a program to investigate radiation damage in geological materials of interest to the radioactive waste disposal program, radiation damage, particularly radiation induced sodium metal colloid formation, has been studied in 14 natural rock salt samples. All measurements were made with equipment for making optical absorption and other measurements on samples, in a temperature controlled irradiation chamber, during and after 0.5 to 3.0 MeV electron irradiation. Samples were chosen for practical and scientific purposes, from localities that are potential repository sites and from different horizons at certain localities

  4. Characterisation of gas transport properties of the Opalinus clay, a potential host rock formation for radioactive waste disposal

    International Nuclear Information System (INIS)

    Marschall, P.; Horseman, S.; Gimmi, T.

    2005-01-01

    The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10 -20 to 10 -21 m 2 and a moderate anisotropy ratio ≤ 10. Porosity depends on clay content and burial depth; values of ∼ 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30% of voids can be classed as macro-pores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drill-cores demonstrate that gas transport through the rock is accompanied by pore water displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macro-pores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gas-fractures). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance. (authors)

  5. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  6. Predictability of the evolution of hydrogeological and hydrogeochemical systems; geological disposal of nuclear waste in crystalline rocks

    International Nuclear Information System (INIS)

    Murphy, W.M.; Diodato, D.M.

    2009-01-01

    Confidence in long-term geologic isolation of high-level nuclear waste and spent nuclear fuel requires confidence in predictions of the evolution of hydrogeological and hydrogeochemical systems. Prediction of the evolution of hydrogeological and hydrogeochemical systems is based on scientific understanding of those systems in the present - an understanding that can be tested with data from the past. Crystalline rock settings that have been geologically stable for millions of years and longer offer the potential of predictable, long-term waste isolation. Confidence in predictions of geologic isolation of radioactive waste can measured by evaluating the extent to which those predictions and their underlying analyses are consistent with multiple independent lines of evidence identified in the geologic system being analysed, as well as with evidence identified in analogs to that geologic system. The proposed nuclear waste repository at Yucca Mountain, Nevada, United States, differs in significant ways from potential repository sites being considered by other nations. Nonetheless, observations of hydrogeological and hydrogeochemical systems of Yucca Mountain and Yucca Mountain analogs present multiple independent lines of evidence that can be used in evaluating long-term predictions of the evolution of hydrogeological and hydrogeochemical systems at Yucca Mountain. (authors)

  7. Transferability of geodata from European to Canadian (Ontario) sedimentary rocks to study gas transport from nuclear wastes repositories

    International Nuclear Information System (INIS)

    Fall, M.; Ghafari, H.; Evgin, E.; Nguyen, T.S.

    2010-01-01

    Document available in extended abstract form only. A deep geological repository (DGR) for low and intermediate level waste in southern Ontario is currently proposed, at a depth of approximately 680 m in an argillaceous limestone formation (Cobourg Limestone) overlain by 200 m of low permeability shale (Ordovician Shale). Significant quantities of gas could be generated in the aforementioned DGR from several processes (e.g., degradation of waste forms, corrosion of waste containers). The accumulation and release of such gases from the repository system may affect a number of processes that influence its long-term safety. Consequently, safety assessments of the proposed DGR need to be supported by a solid understanding of the main mechanisms associated with gas generation and migration and the capability to mathematically model those mechanisms. The development of those mathematical models would usually require the consideration of complex coupled thermo-hydro-mechanical- chemical (THMC) processes. A research program is being conducted in the Department of Civil Engineering of the University of Ottawa in collaboration with the Canadian Nuclear Safety Commission (CNSC) to model the coupled THMC processes associated with gas migration and their impacts on the safety of DGR in southern Ontario. The development and validation of such model as well as the assessment of the impact of gas migration need the acquisition of sufficient amount of (good quality) data on the geomechanical, geochemical, hydraulic, thermal properties of the sedimentary rocks in Southern Ontario as well as relevant gas transport parameters, such as gas entry pressure, Klinkenberg effect, intrinsic permeability, capillary pressure-water saturation relationship. During the past fifteen years, several laboratory and field investigations have been conducted in several countries to acquire geo-data to study and model the THMC processes associated with gas migration in DGR in sedimentary rocks. However

  8. Application of Response Surface Methodology on Leaching of Iron from Partially Laterised Khondalite Rocks: A Bauxite Mining Waste

    Science.gov (United States)

    Swain, Ranjita; Bhima Rao, R.

    2018-04-01

    In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.

  9. Application of Response Surface Methodology on Leaching of Iron from Partially Laterised Khondalite Rocks: A Bauxite Mining Waste

    Science.gov (United States)

    Swain, Ranjita; Bhima Rao, R.

    2017-08-01

    In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.

  10. Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction.

    Science.gov (United States)

    Lidelöw, S; Lagerkvist, A

    2007-01-01

    Three years of leachate emissions from municipal solid waste incineration bottom ash and crushed rock in a full-scale test road were evaluated. The impact of time, construction design, and climate on the emissions was studied, and the predicted release from standard leaching tests was compared with the measured release from the road. The main pollutants and their respective concentrations in leachate from the roadside slope were Al (12.8-85.3 mg l(-1)), Cr (2-125 microg l(-1)), and Cu (0.15-1.9 mg l(-1)) in ash leachate and Zn (1-780 microg l(-1)) in crushed rock leachate. From the ash, the initial Cl(-) release was high ( approximately 20 g l(-1)). After three years, the amount of Cu and Cl(-) was in the same range in both leachates, while that of Al and Cr still was more than one order of magnitude higher in ash leachate. Generally, the release was faster from material in the uncovered slopes than below the pavement. Whether the road was asphalted or not, however, had minor impacts on the leachate quality. During rain events, diluted leachates with respect to, e.g., salts were observed. The leaching tests failed to simulate field leaching from the crushed rock, whereas better agreement was observed for the ash. Comparisons of constituent release from bottom ash and conventional materials solely based on such tests should be avoided.

  11. Leaching behaviour of copper slag, construction and demolition waste and crushed rock used in a full-scale road construction.

    Science.gov (United States)

    Lidelöw, Sofia; Mácsik, Josef; Carabante, Ivan; Kumpiene, Jurate

    2017-12-15

    The leaching behaviour of a road construction with fayalitic copper slag, recycled concrete and crushed rock as sub-base materials was monitored over ten years. All studied materials used in the road construction, including crushed rock, contained concentrations of several elements exceeding the guideline values recommended by the Swedish EPA for total element concentrations for waste materials used in constructions. Despite that, leaching from the road construction under field conditions in general was relatively low. The leachates from the recycled materials contained higher concentrations of several constituents than the leachates from the reference section with crushed rock. The leaching of the elements of interest (Cr, Mo, Ni, Zn) reached peak concentrations during the second and fourth (Cu) years and decreased over the observation period to levels below the Swedish recommended values. Carbonation of the concrete aggregates caused a substantial but short-term increase in the leaching of oxyanions such as chromate. The environmental risks related to element leaching are highest at the beginning of the road life. Ageing of materials or pre-treatment through leaching is needed prior to their use in construction to avoid peak concentrations. Also, the design of road constructions should be adjusted so that recycled materials are covered with low-permeability covers, which would minimize the exposure to atmospheric precipitation and weathering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermomechanical effects of the salt rock on the solidified waste product during ultimate stoage of radioactive waste

    International Nuclear Information System (INIS)

    Schoen, R.

    1981-01-01

    The thermal stresses in the salt to be expected in the elastic case are very much reduced by the viscous behavior of the salt rock. The occurrence of tensile stresses may be prevented by reducing the differential temperatures by means of a decrease of the mould heat rate and/or the mechanical behavior of the glass as well as design measures. As far as the mechanical aspect is concerned thicker coverings have no positive effect on the stress in the glass. In the course of time the three principal stresses in the salt rock are matching. At the terminal point of the reference calculations these stresses amount to 12.5 MPa and 15 MPa in the horizontal and vertical direction respectively. (DG) [de

  13. Rock waste dumps on the Davydov Glacier (Akshyirak Range, Tien Shan

    Directory of Open Access Journals (Sweden)

    V. A. Kuzmichenok

    2012-01-01

    Full Text Available Since 1995, a barren rock has been formed at the Davydov Glacier, due to the works at the Kumtor Gold Mine. By the end of 2010, total amount of the rock, stockpiled on the glacier, apparently exceeded 200 million tons, the height of dumps of rock sometimes exceeded 50 meters. The most noticeable effects of this are provoking local surges of the Davydov Glacier and squeezing glacier ice out of the dumps of rock. For a detailed analysis of both processes, we also used the results of periodic geodetic measurements (over 8000 of monitoring rods (about 800 rods of the gold mining company. A number of local surges of the glacier has been found, the first of which began in March–April 2002. To analyze glacier squeezing out of the dumps of rock, mathematical modeling of that process has been done. It was established that in most cases, the glacier is almost completely squeezed out of for 1–2 years.

  14. Environmental remediation of the Wismut legacy and utilization of the reclaimed areas, waste rock piles and tailings ponds

    International Nuclear Information System (INIS)

    Hagen, M.; Jakubick, A.T.

    2006-01-01

    Between 1945 and reunification (1989) of Germany more than 232 000 t of U 3 O 8 has been produced in Saxony and Thuringia, East Germany. This affected an area of approximately 100 km 2 and left behind an extensive legacy of contaminated operations areas, underground and open pit mines, waste rock piles and tailings ponds. Following reunification, DM 13 billion (Euro 6.6 billion) were committed (and later revised to Euro 6.2 billion) to remediation of the liabilities and the government owned corporation, Wismut GmbH entrusted with the implementation of the Environmental Remediation (ER) of the liabilities. The prime goal of the ER Project follows from the legal requirements to abate health risks, mitigate existing and prevent future environmental damages. During the investigations and assessment of risks, development of remediation concepts, adoption of suitable technologies and work procedures as well as physical implementation of the remedial measures extensive use was made of international (mostly US and Canadian) ER experience. The extent of remedial measures was based on object-specific Environmental Assessments rather than on uniformly applied health/environmental standards. The ER workflow is more an iterative process than a linear succession of tasks, such as common for civil engineering projects. The internal (technical) parts of the problems were partly resolved by using Conceptual Site Models (CSM) for selection and prioritization of remedial measures. Reclamation of the waste rock piles is by covering in situ, relocation to a central pile or backfilling into an open pit. The backfilling of the open pit at Ronneburg with acid generating waste rock has been optimized from a geochemical point of view. For tailings ponds reclamation in form of dry landforms is being followed. To increase release (and reuse) of scrap metal from demolition, a fast and reliable method of discrimination of the non-contaminated metal has been developed. The flooding of

  15. Modelling of crustal rock mechanics for radioactive waste storage in Fennoscandia - problem definition

    International Nuclear Information System (INIS)

    Stephansson, O.

    1987-05-01

    Existing knowledge of crustal stresses for Fennoscandia is presented. Generic, two-dimensional models are proposed for vertical and planar sections of a traverse having a direction NW-SE in Northern Fennoscandia. The proposed traverse will include the major neotectonic structures at Lansjaerv and Paervie, respectively, and also the study site for storage of spent nuclear fuel at Kamlunge. The influence of glaciation, deglaciation, glacial rebound on crustal rock mechanics and stability is studied for the modelling work. Global models, with a length of roughly 100 km, will increase our over all understanding of the change in stresses and deformations. These can provide boundary conditions for regional and near-field models. Properties of strength and stiffness of intact granitic rock masses, faults and joints are considered in the modelling of the crustal rock mechanics for any of the three models described. (orig./HP)

  16. A probabilistic approach to rock mechanical property characterization for nuclear waste repository design

    International Nuclear Information System (INIS)

    Kim, Kunsoo; Gao, Hang

    1996-01-01

    A probabilistic approach is proposed for the characterization of host rock mechanical properties at the Yucca Mountain site. This approach helps define the probability distribution of rock properties by utilizing extreme value statistics and Monte Carlo simulation. We analyze mechanical property data of tuff obtained by the NNWSI Project to assess the utility of the methodology. The analysis indicates that laboratory measured strength and deformation data of Calico Hills and Bullfrog tuffs follow an extremal. probability distribution (the third type asymptotic distribution of the smallest values). Monte Carlo simulation is carried out to estimate rock mass deformation moduli using a one-dimensional tuff model proposed by Zimmermann and Finley. We suggest that the results of these analyses be incorporated into the repository design

  17. Long-term temporal variability of the radon-222 exhalation flux from a landform covered by low uranium grade waste rock

    International Nuclear Information System (INIS)

    Bollhöfer, Andreas; Doering, Che

    2016-01-01

    Radon-222 exhalation flux densities from two different substrates of several metres thickness, waste rock and waste rock mixed with approximately 30% lateritic material, were measured over a period of five years in the wet-dry tropics of Northern Australia. Fourteen measurement campaigns using activated charcoal canisters (n > 1000) covered both dry and wet seasons and showed differences in seasonal and long term trends of the "2"2"2Rn exhalation flux densities normalised to the "2"2"6Ra activity concentrations of the substrate. Dry season "2"2"2Rn exhalation was generally higher for the mixed substrate, due to the larger fraction of fines. Seasonality established within the first year of landform construction on the mixed substrate, due to the higher water holding capacity of the lateritic material. In contrast, waste rock only shows no seasonality until years four and five after construction, when average normalised dry season "2"2"2Rn exhalation flux densities from waste rock increase to values (0.47 ± 0.06 mBq m"−"2 s"−"1 per Bq kg"−"1) similar to the mixed substrate (0.64 ± 0.08 mBq m"−"2 s"−"1 per Bq kg"−"1), likely due to an increase in fines from rapid weathering of the schistose waste rock. Volumetric water content has been used to parametrize relative "2"2"2Rn exhalation and we determined that wet season "2"2"2Rn exhalation is about 40% of the dry season exhalation. - Highlights: • We determined "2"2"2Rn exhalation flux densities normalised to "2"2"6Ra activity concentrations (R_E_-_R) for two substrates. • R_E_-_R was lower for waste rock only compared to waste rock blended with 30% fine grained lateritic material. • Seasonality in waste rock "2"2"2Rn exhalation flux densities established 4 years after construction. • Wet season R_E_-_R was about 40% of the dry season R_E_-_R.

  18. Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue

    Science.gov (United States)

    Charlet, Laurent; Alt-Epping, Peter; Wersin, Paul; Gilbert, Benjamin

    2017-08-01

    Clay rocks are low permeability sedimentary formations that provide records of Earth history, influence the quality of water resources, and that are increasingly used for the extraction or storage of energy resources and the sequestration of waste materials. Informed use of clay rock formations to achieve low-carbon or carbon-free energy goals requires the ability to predict the rates of diffusive transport processes for chemically diverse dissolved and gaseous species over periods up to thousands of years. We survey the composition, properties and uses of clay rock and summarize fundamental science challenges in developing confident conceptual and quantitative gas and solute transport models.

  19. Evaluation of possible host rocks for China's high level radioactive waste repository and the progress in site characterization at the Beishan potential site in NW China's Gansu province

    International Nuclear Information System (INIS)

    Wang Ju; Jin Yuanxin; Chen Zhangru; Chen Weiming; Wang Wenguang

    2000-01-01

    Evaluation of possible host rocks for China's high level radioactive waste repository is summarized in this paper. The distribution and characteristics of granite, tuff, clay stone, salt and loess in China are described, while maps showing the distribution of host rocks are presented. Because of the wide distribution, large scale, good heat conductivity and suitable mechanical properties, granite is considered as the most potential host rock. Some granite bodies distributed in NW China, SW China, South China and Inner Mongolia have been selected as potential areas. Detailed site characterization at Beishan area, Gansu Province NW China is in progress

  20. Creation and Plan of an Underground Geologic Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif in Russia

    International Nuclear Information System (INIS)

    Gupalo, T A; Kudinov, K G; Jardine, L J; Williams, J

    2004-01-01

    This joint geologic repository project in Russia was initiated in May 2002 between the United States (U.S.) International Science and Technology Center (ISTC) and the Federal State Unitary Enterprise ''All-Russian Research and Design Institute of Production Engineering'' (VNIPIPT). The project (ISTC Partner Project 2377) is funded by the U.S. Department of Energy Office of Civilian Radioactive Waste Management (DOE-RW) for a period of 2-1/2 years. ISTC project activities were integrated into other ongoing geologic repository site characterization activities near the Mining and Chemical Combine (MCC K-26) site. This allowed the more rapid development of a plan for an underground research laboratory, including underground design and layouts. It will not be possible to make a final choice between the extensively studied Verkhne-Itatski site or the Yeniseiski site for construction of the underground laboratory during the project time frame because additional data are needed. Several new sources of data will become available in the next few years to help select a final site. Studies will be conducted at the 1-km deep borehole at the Yeniseisky site where drilling started in 2004. And in 2007, after the scheduled shutdown of the last operating reactor at the MCC K-26 site, data will be collected from the rock massif as the gneiss rock cools, and the cool-down responses modeled. After the underground laboratory is constructed, the data collected and analyzed, this will provide the definitive evidence regarding the safety of the proposed geologic isolation facilities for radioactive wastes (RW). This data will be especially valuable because they will be collected at the same site where the wastes will be subsequently placed, rather than on hypothetical input data only. Including the operating costs for 10 to 15 years after construction, the cost estimate for the laboratory is $50M. With additional funding from non-ISTC sources, it will be possible to complete this

  1. Numerical modeling of rock stresses within a basaltic nuclear waste repository. Final report

    International Nuclear Information System (INIS)

    Hardy, M.P.; Hocking, G.

    1978-01-01

    The modeling undertaken during this project incorporated a wide range of problems that impact the design of the waste repository. Interaction of groundwater, heat and stress were considered on a regional scale, whereas on the room and canister scale thermo-mechanical analyses were undertaken. In the Phase II report, preliminary guidelines for waste densities were established based primarily on short-term stress criteria required to maintain stability during the retrievability period. Additional analyses are required to evaluate the effect of joints, borehole linings, room support and ventilation on these preliminary waste loading densities. The regional analyses did not indicate any adverse effect that could control the allowable waste loading densities. However, further refinements of geologic structure, hydrologic models, seismicity and possible induced seismicity are required before firm estimates of the loading densities can be made

  2. Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hurtado, L.D.

    1998-06-01

    The US Department of Energy has developed the Waste Isolation Pilot Plant (WIPP) in the bedded salt of southeastern New Mexico to demonstrate the safe disposal of radioactive transuranic wastes. Four vertical shafts provide access to the underground workings located at a depth of about 660 meters. These shafts connect the underground facility to the surface and potentially provide communication between lithologic units, so they will be sealed to limit both the release of hazardous waste from and fluid flow into the repository. The seal design must consider the potential for fluid flow through a disturbed rock zone (DRZ) that develops in the salt near the shafts. The DRZ, which forms initially during excavation and then evolves with time, is expected to have higher permeability than the native salt. The closure of the shaft openings (i.e., through salt creep) will compress the seals, thereby inducing a compressive back-stress on the DRZ. This back-stress is expected to arrest the evolution of the DRZ, and with time will promote healing of damage. This paper presents laboratory data from tertiary creep and hydrostatic compression tests designed to characterize damage evolution and healing in WIPP salt. Healing is quantified in terms of permanent reduction in permeability, and the data are used to estimate healing times based on considerations of first-order kinetics

  3. Technical application of agglomerated acidic heap leaching of clay-bearing uranium ore in China

    International Nuclear Information System (INIS)

    Zeng Yijun; Li Jianhua; Li Tieqiu; Zhong Pingru

    2002-01-01

    The permeability of ore mass has a great influence on the leaching period of heap leaching and the leaching efficiency, hence the uranium ores with high content of clay is difficult to acidic heap leaching. The Research Institute of Uranium Mining has engaged several years studies on the cementing agents of acidic agglomeration, agglomeration conditions, as well as the curing measures of agglomerated balls. On the basis of these studies, several types of clay-bearing ores have been tested with good results. The technique of agglomerated acidic heap leaching has been successfully applied in a uranium mine. Since agglomeration has effectively increased the permeability of ore heap, its leaching period is decreased from 200 days to 60 days, the leaching efficiency is increased to 96% from less than 40% comparing with direct heap leaching program

  4. An analysis of the heap construction by long hole blasting for in-situ leaching of blasted ore

    International Nuclear Information System (INIS)

    Yang Shijiao

    1999-01-01

    The author establishes specific requirements for heap construction by blasting on the basis of the mechanism for in situ leaching of blasted ore, analyses the feasibility of heap construction by long hole blasting, selection of the blast plan and the relevant technological problems, and gives a case of heap construction by long hole blasting in Renhua uranium mine

  5. Degradation of rocks, through cracking caused by differential thermal expansion, in relation to nuclear waste repositories

    International Nuclear Information System (INIS)

    McLaren, J.R.; Davidge, R.W.; Titchell, I.; Sincock, K.; Bromley, A.

    1982-01-01

    Heating to temperatures up to 500 0 C gives a reduction in Young's modulus and increases in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anistropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined. 6 figures, 2 tables

  6. Proceedings of the establishment conference of Professional Committee on Waste Underground Disposal of Chinese Society for Rock Mechanics and Engineering and the first academic seminar

    International Nuclear Information System (INIS)

    2006-07-01

    Approved by the China Association for Science and Technology, Chinese Society for Rock Mechanics and Engineering newly established 'Professional Committee on Waste Underground Disposal'. The committee will organise the national and international academic exchange, and provide advice on discipline development, sustainable industrial development, environmental protection, etc.. This is the establishing conference of the professional committee, as well as the first academic seminar. The following topics on waste underground disposal are discussed: the theory, practice and exploration, project examples, new technologies and new methods. The contents include: waste disposal technology in the new century, the geological disposal of high level radioactive waste, LLW and ILW underground waste disposal, urban and industrial waste underground disposal, and etc.

  7. Demonstration of nuclide migration phenomena in rock on high level irradiation waste geological disposal

    International Nuclear Information System (INIS)

    Kanazawa, Yasuo; Okuyama, Yasuko; Takahashi, Manabu

    1997-01-01

    We have studied on main three theme. From study of material movement in rock-groundwater system in the area of high concentration of irradiative elements, the results proved that minerals with Fe 3+ and clay mineral were very important as mineral held nuclide, the existence of pyrite suggested uranium nuclei enrichment and the latter reduced circumstances, and nuclei movement and accumulation could be estimated from oxidation-reduction potential, kinds of dissolved ions and activity ratio. By study of evaluation of permeability in deep rock fissure system, each measurement method of transmissivity in the Transient Pulse method, the Oscillation test and the Flow Pump method was established. The effect of principle stress, confining pressure, pore water pressure and axial pressure on transmissivity could be determined in the limited level of stress. By study of nuclide migration phenomena and change of rock depend on fissure system, the relation between the degree of change and fissure system was investigated and alternation mineral was identified and it's formation conditions estimated. (S.Y.)

  8. Industrial Application of Valuable Materials Generated from PLK Rock-A Bauxite Mining Waste

    Science.gov (United States)

    Swain, Ranjita; Routray, Sunita; Mohapatra, Abhisek; Ranjan Patra, Biswa

    2018-03-01

    PLK rock classified in to two products after a selective grinding to a particular size fraction. PLK rocks ground to below 45-micron size which is followed by a classifier i.e. hydrocyclone. The ground product classified in to different sizes of apex and vortex finder. The pressure gauge was attached for the measurement of the pressure. The production of fines is also increasing with increase in the vortex finder diameter. In order to increase in the feed capacity of the hydrocyclone, the vortex finder 11.1 mm diameter and the spigot diameter 8.0 mm has been considered as the best optimum condition for recovery of fines from PLK rock sample. The overflow sample contains 5.39% iron oxide (Fe2O3) with 0.97% of TiO2 and underflow sample contains 1.87% Fe2O3 with 2.39% of TiO2. The cut point or separation size of overflow sample is 25 μm. The efficiency of separation, or the so-called imperfection I, is at 6 μm size. In this study, the iron oxide content in underflow sample is less than 2% which is suitable for making of refractory application. The overflow sample is very fine which can also be a raw material for ceramic industry as well as a cosmetic product.

  9. Analysis of the stability of underground high-level nuclear waste repository in discontinuous rock mass using 3DEC

    International Nuclear Information System (INIS)

    Kwon, Sang Ki; Park, Jeong Hwa; Choi, Jong Won; Kang, Chul Hyung

    2001-03-01

    For the safe design of a high-level nuclear waste repository in deep location, it is necessary to confirm the stability of the underground excavations under the high overburden pressure and also to investigate the influence of discontinuities such as fault, fracture zone, and joints. In this study, computer simulations using 3DEC, which is a Distince Element (DEM) code, were carried out for determining important parameters on the stability of the disposal tunnel and deposition holes excavated in 500 m deep granite body. The development of plastic zone and stress and strain distributions were analyzed with various modelling conditions with variation on the parameters including joint numbers, tunnel size, joint properties, rock properties, and stress ratio. Furthermore, the influence of fracture zone, which is located around the underground excavations, on the stability of the excavation was investigated. In this study, the variation of stress and strain distribution due to the variation of fracture zone location, dip, and width was analyzed

  10. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.; Fiehn, B.; Halm, G.

    1990-05-01

    In previous corrosion studies performed in salt brines, unalloyed steels, Ti 99.8-Pd and Hastelloy C4 have proved to be the most promising materials for long-term resistant packagings to be used in heat-generating waste (vitrified HLW, spent fuel) disposal in rock-salt formations. To characterise the corrosion behaviour of these materials in more detail, further in-depth laboratory-scale and in-situ corrosion studies have been performed in the present study. Besides the above-mentioned materials, also some in-situ investigations of the iron-base materials Ni-Resist D2 and D4, cast iron and Si-cast iron have been carried out in order to complete the results available to date. (orig.) [de

  11. Hydrogeochemical studies of the Rustler Formation and related rocks in the Waste Isolation Pilot Plant Area, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Siegel, M.D.; Lambert, S.J.; Robinson, K.L.

    1991-08-01

    Chemical, mineralogical, isotopic, and hydrological studies of the Culebra dolomite member of the Rustler Formation and related rocks are used to delineate hydrochemical facies and form the basis for a conceptual model for post-Pleistocene groundwater flow and chemical evolution. Modern flow within the Culebra in the Waste Isolation Pilot Plant (WIPP) area appears to be largely north-to-south; however, these flow directions under confined conditions are not consistent with the salinity distribution in the region surrounding the WIPP Site. Isotopic, mineralogical, and hydrological data suggest that vertical recharge to the Culebra in the WIPP area and to the immediate east and south has not occurred for several thousand years. Eastward increasing 234 U/ 238 U activity ratios suggest recharge from a near-surface Pleistocene infiltration zone flowing from the west-northwest and imply a change in flow direction in the last 30,000 to 12,000 years. 49 refs., 34 figs., 4 tabs

  12. The effect of the cover and landscape design of waste rock dumps and tailings ponds on the water balance

    International Nuclear Information System (INIS)

    Haehne, R.; Eckart, M.; Marski, R.; Wolf, J.

    1998-01-01

    The dimensioning of cover systems for waste rock dumps and tailings ponds requires the prognosis of the water balances. Site specific field experiments as well as additional modelling efforts are necessary. The cover system could be a simple recultivation layering or a storage systems or a complex multi-layer-system. Uncovered dumps show typical percolation rates between 30 and 60%. Storage cover systems reduce the percolation rate down to 15 to 35%. The evapotranspiration rate is influenced especially by exposition and vegetation. Specific features for the cover of tailings ponds include a very low surface slope and the of percolation rate below 10%. Therefore, multi-layer-systems are most suitable, also because it is characterized by very low drainage velocities of hypodermic runoffs. The resulting, but temporarily high moisture and almost standing water at the surface leads to extreme evapotranspiration rates and consequently to an increase of percolation. (orig.) [de

  13. Summary of United States Geological Survey investigations of fluid-rock-waste reactions in evaporite environments under repository conditions

    International Nuclear Information System (INIS)

    Stewart, D.B.; Jones, B.F.; Roedder, E.; Potter, R.W. II

    1980-01-01

    The interstitial and inclusion fluids contained in rock salt and anhydrite, though present in amounts less than 1 weight per cent, are chemically aggressive and may react with canisters or wastes. The three basic types of fluids are: (1) bitterns residual from saline mineral precipitation including later recrystallization reactions; (2) brines containing residual solutes from the formation of evaporite that have been extensively modified by reactions with contiguous carbonate of clastic rocks; and (3) re-solution brines resulting from secondary dehydration of evaporite minerals or solution of saline minerals by undersaturated infiltrating waters. Fluid composition can indicate that meteoric flow systems have contacted evaporites or that fluids from evaporites have migrated into other formations. The movement of fluids trapped in fluid inclusions in salt from southeast New Mexico is most sensitive to ambient temperature and to inclusion size, although several other factors such as thermal gradient and vapour/liquid ratio are also important. There is no evidence of a threshold temperature for movement of inclusions. Empirical data are given for determining the amount of brine reaching the heat source if the temperature, approximate amount of total dissolved solids, and Ca:Mg ratio in the brine are known. SrCl 2 and CsCl can reach high concentrations in saturated NaCl solutions and greatly depress the liquidus. The possibility that such fluids, if generated, could migrate from a high-level waste repository must be minimized because the fluid would contain its own radiogenic energy source in the first decades after repository closure, thus changing the thermal evolution of the repository from designed values. (author)

  14. Analysis of the potential impact of capillarity on long-term geochemical processes in sulphidic waste-rock dumps

    International Nuclear Information System (INIS)

    Pedretti, Daniele; Lassin, Arnault; Beckie, Roger D.

    2015-01-01

    Highlights: • Capillarity may affect geochemical reactions generating acid-rock drainage. • We studied its impact in a simplified, synthetic WRD. • Capillarity mainly affects the formation of secondary minerals. • It can strongly control long-term formation of gypsum and in turn sulfate release. • Capillarity can be also important for the analysis of calcite passivation. - Abstract: Assessing long-term production of acid rock drainage (ARD) from waste-rock dumps (WRDs) requires a careful analysis of the processes controlling acid-generating geochemical reactions under unsaturated conditions. In this work, we focus on the potential control of capillarity on these reactions, as previous studies showed that capillarity affects the activity of water and solutes in the unsaturated zone through the pore water pressure. We used capillarity-corrected thermodynamic databases and compared calculated speciation and solubility results with those from databases that do not account for capillarity. We developed a simple dynamic model with reduced geochemical components to analyze in detail the effect of capillarity. Results indicate that under low pH conditions simulations with capillarity-controlled reactions generate relatively larger dissolved sulfate concentrations from the WRDs over longer time scales, when compared against simulations without capillarity control. This occurs because capillarity strongly controls the formation of secondary sulfate-bearing minerals such as gypsum. When sufficient oxygen and carbon dioxide partial pressures are maintained within WRDs (such as in well-ventilated systems) and calcite content is insufficient to buffer acidity, the amount of secondary gypsum was calculated to be much larger in capillarity-corrected models. No appreciable effects of capillarity were observed under conditions where gypsum was not generated. Model results are also insensitive to temperature changes in typical climatic ranges. These results indicate some of

  15. Characterizing and modelling the excavation damaged zone (EDZ) in crystalline rock in the context of radioactive waste disposal

    International Nuclear Information System (INIS)

    Hudson, J.A.; Backstrom, A.; Rutqvist, J.; Jing, L.; Backers, T.; Chijimatsu, M.; Christiansson, R.; Feng, X.-T.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Neretnieks, I.; Pan, P.Z.; Rinne, M.; Shen, B.-T.

    2008-01-01

    This paper describes current knowledge about the nature of and potential for thermo-hydro-mechanical-chemical modelling of the Excavation Damaged Zone (EDZ) around the excavations for an underground radioactive waste repository. In the first part of the paper, the disturbances associated with excavation are explained, together with reviews of Workshops that have been held on the subject. In the second part of the paper, the results of a DECOVALEX research programme on modelling the EDZ are presented. Four research teams used four different models to simulate the complete stress-strain curve for Avro granite from the Swedish Aespoe Hard Rock Laboratory. Subsequent research extended the work to computer simulation of the evolution of the repository using a 'wall block model' and a 'near-field model'. This included assessing the evolution of stress, failure and permeability and time dependent effects during repository evolution. As discussed, all the computer models are well suited to sensitivity studies for evaluating the influence of their respective supporting parameters on the complete stress-strain curve for rock and for modelling the EDZ

  16. Geosphere migration studies as support for the comparison of candidate sites for disposal of radioactive waste in rock-salt

    International Nuclear Information System (INIS)

    Glasbergen, P.; Hassanizadeh, S.M.; Noordijk, H.; Sauter, F.

    1988-01-01

    The Dutch research program on the geological disposal of radioactive waste was designed to supply a basis for the selection of combinations of three factors, i.e., type of rock-salt formation, site, and disposal technique, satisfying radiological standards and other criteria for final disposal. The potential sites have been grouped according to the type of rock-salt formation (e.g. bedded salt and salt domes) and two classes of depth below the surface of the ground. Values for geohydrological parameters were obtained by extrapolation of data from existing boreholes and analysis of the sedimentary environment. A three-dimensional model of groundwater flow and contaminant transport, called METROPOL, has been developed. To investigate the effect of high salinity on nuclide transport properly, a theoretical experimental study was carried out. Use of a thermodynamic approach showed that terms related to salt mass fraction have to be added to Darcy's and Fick's laws. An experimental study to investigate effects of these modifications is in progress. 8 refs.; 8 figs.; 1 table

  17. Characterising and modelling the excavation damaged zone (EDZ) in crystalline rock in the context of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, J.A.; Backstrom, A.; Rutqvist, J.; Jing, L.; Backers, T.; Chijimatsu, M.; Christiansson, R.; Feng, X.-T.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Neretnieks, I.; Pan, P.Z.; Rinne, M.; Shen, B.-T.

    2008-10-01

    This paper describes current knowledge about the nature of and potential for thermo-hydro-mechanical-chemical modelling of the Excavation Damaged Zone (EDZ) around the excavations for an underground radioactive waste repository. In the first part of the paper, the disturbances associated with excavation are explained, together with reviews of Workshops that have been held on the subject. In the second part of the paper, the results of a DECOVALEX research programme on modelling the EDZ are presented. Four research teams used four different models to simulate the complete stress-strain curve for Avro granite from the Swedish Aespoe Hard Rock Laboratory. Subsequent research extended the work to computer simulation of the evolution of the repository using a 'wall block model' and a 'near-field model'. This included assessing the evolution of stress, failure and permeability and time dependent effects during repository evolution. As discussed, all the computer models are well suited to sensitivity studies for evaluating the influence of their respective supporting parameters on the complete stress-strain curve for rock and for modelling the EDZ.

  18. Radon emission from uranium mining waste rock dumps and resulting radon immission; Radonemissionsverhalten von Halden des Uranbergbaus und daraus resultierende Radonemissionen

    Energy Technology Data Exchange (ETDEWEB)

    Regner, J.; Hinz, W.; Schmidt, P. [Wismut GmbH, Chemnitz (Germany)

    2016-07-01

    Since more than 20 years, Wismut GmbH has been investigating the radon situation at uranium mining waste rock dumps. In the present paper the results of 19 complex studies at uranium mining dumps in the Erzgebirge (Ore Mountains) are reported. Although the mean specific activity of Ra-226 of the waste rock material was on a rather low level of about 0.5 Bq/g, the mean radon concentration in free atmosphere at the public exposure sites in the immediate vicinity of the dumps reached a value of about 1000 Bq/m{sup 3} for a half-year exposition and of about 600 Bq/m{sup 3} for a one-year exposition. Certain geometries and structures of waste rock dumps and the occurrence of convective airflows in the dumps are main reasons for the high radon emission despite of the relatively low specific Ra-226 activity. A case study for two buildings directly on the top of a waste rock dump in the town Johanngeorgenstadt is presented. The hypothetical interpolation of the results for Ra-226-activity to a value below the threshold value of 0.2 Bq/g leads to the assumption that problematic radon situations may also occur outside the areas of legacies of uranium mining. Considering the aspects mentioned, a clearance level for NORM of 1 Bq/g is questionable.

  19. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    Science.gov (United States)

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...

  20. Preparation of soda-lime glass using rock wool waste; Preparacao de vidros sodo-calcicos utilizando residuo de la de rocha

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, F.C.; Della, V.P. [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil); Ballmann, T.J.S.; Folgueras, M.V. [Universidade do Estado de Santa Catarina (UESC), Joinville, SC (Brazil); Junkes, J.A., E-mail: janajunkes@gmail.com [Centro Universitario Tiradentes, Maceio, AL (Brazil)

    2016-10-15

    Discarded by the mining industry during the maintenance stoppages of pelletizing furnaces, rock wool has in its composition SiO{sub 2} (56%), Na{sub 2} O (12%) and CaO (7%) propitious for obtaining soda-lime glasses. Under this focus, this work developed soda-lime glasses formulations, using as main raw-material rock wool waste in proportions from 50 to 100% by adjusting the chemical composition of the formulations with sand, sodium and calcium carbonates, as silica, soda and lime sources, respectively. In some formulations the sodium carbonate was replaced by sodium sulfate, which acts as a refining agent, improving homogenization and reducing the bubble formation during the melting. Initially, the raw-materials were evaluated by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and thermogravimetric analysis. The tests showed that the rock wool waste has potential to be used in soda-lime glasses production, however, the chemical composition must be corrected. After knowing the waste potential, seven mixtures were prepared and molten at 1550 °C for 1 to 2 h. It has been found that the maximum rock wool waste percentage that can be used is between 60 and 80%, and that the 2 h melting time resulted in more homogeneous glasses and fewer bubbles according to the addition of sodium sulfate which is efficient for bubbles removal. (author)

  1. Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada

    Science.gov (United States)

    Power, Christopher; Tsourlos, Panagiotis; Ramasamy, Murugan; Nivorlis, Aristeidis; Mkandawire, Martin

    2018-03-01

    Mine waste rock piles (WRPs) can contain sulfidic minerals whose interaction with oxygen and water can generate acid mine drainage (AMD). Thus, WRPs can be a long-term source of environmental pollution. Since the generation of AMD and its release into the environment is dependent on the net volume and bulk composition of waste rock, effective characterization of WRPs is necessary for successful remedial design and monitoring. In this study, a combined DC resistivity and induced polarization (DC-IP) approach was employed to characterize an AMD-generating WRP in the Sydney Coalfield, Nova Scotia, Canada. Two-dimensional (2D) DC-IP imaging with 6 survey lines was performed to capture the full WRP landform. 2D DC results indicated a highly heterogeneous and moderately conductive waste rock underlain by a resistive bedrock containing numerous fractures. 2D IP (chargeability) results identified several highly-chargeable regions within the waste, with normalized chargeability delineating regions specific to waste mineralogy only. Three-dimensional (3D) DC-IP imaging, using 17 parallel lines on the plateau of the pile, was then used to focus on the composition of the waste rock. The full 3D inverted DC-IP distributions were used to identify coincident and continuous zones (isosurfaces) of low resistivity (0.4 mS/m) that were inferred as generated AMD (leachate) and stored AMD (sulfides), respectively. Integrated geological, hydrogeological and geochemical data increased confidence in the geoelectrical interpretations. Knowledge on the location of potentially more reactive waste material is extremely valuable for improved long-term AMD monitoring at the WRP.

  2. Annotated bibliography of selected reports relating to the isolation of nuclear waste in crystalline rock

    International Nuclear Information System (INIS)

    1988-06-01

    BMI/OCRD-29 is an annotated bibliography of published reports that have been produced for the US Department of Energy Crystalline Repository Project Office or the Swedish-American Cooperative Program on Radioactive Waste Storage in Mined Caverns. This document consists of a main report listing of citations and abstracts and a topical index

  3. Radiological impact of high activity wastes disposal in a granitic rock

    International Nuclear Information System (INIS)

    Oliveira, A.A.; Palacios, E.

    1987-01-01

    This work analyzes, by a simplified model, the radiological impact due to radioactive wastes release when engineering and geologic barriers individually fail. Doses are calculated resulting from the individuals of a hypothetical critical group and the potential collective dosis for each one of the considered situations. (Author) [es

  4. Application of Ga-Al discrimination plots in identification of high strength granitic host rocks for deep geological repository of high level radioactive waste

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Narayan, P.K.; Trivedi, R.K.; Purohit, M.K.

    2010-01-01

    The permanent disposal of vitrified high level wastes and in some cases even spent fuel, is being planned in specifically designed and built deep geological repository located in the depth range of 500-600m in appropriate host rock at carefully selected sites. Such facilities are expected to provide very long term isolation and confinement to the disposed waste by means of long term mechanical stability of such structures that results from very high strength and homogeneity of the chosen rock, geochemical compatible environment around the disposed waste and general lack of groundwater. In Indian geological repository development programme, granites have been selected as target host rock and large scale characterization studies have been undertaken to develop database of mineralogy, petrology, geochemistry and rock mechanical characteristics. The paper proposes a new approach for demarcation of high strength homogeneous granite rocks from within an area of about 100 square kilometres wherein a cocktail of granites of different origins with varying rock mass characteristics co exists. The study area is characterised by the presence of A, S and I type granites toughly intermixed. The S type granites are derived from sedimentary parent material and therefore carry relics of parent fabric and at times undigested material with resultant reduction in their strength and increased inhomogeneity. On the other hand I type varieties are derived from igneous parents and are more homogeneous with sufficient strength. The A type granites are emplaced as molten mass in a complete non-tectonic setting with resultant homogeneous compositions, absence of tectonic fabric and very high strength. Besides they are silica rich with less vulnerability to alterations with time. Thus A type granites are most suited for construction of Deep Geological Repository. For developing a geochemical approach for establishing relation between chemical compositions and rock strength parameters, a

  5. Safety evaluation of geological disposal concepts for low and medium-level wastes in rock-salt (Pacoma project)

    International Nuclear Information System (INIS)

    Prij, J.; Van Dalen, A.; Roodbergen, H.A.; Slagter, W.; Van Weers, A.W.; Zanstra, D.A.; Glasbergen, P.; Koester, H.W.; Lembrechts, J.F.; Nijhof-Pan, I.; Slot, A.F.M.

    1991-01-01

    In the framework of the Performance Assessment of Confinements for MLW and Alpha Waste (PACOMA) the disposal options dealing with rock-salt are studied by GSF and ECN (with subcontract to RIVM). The overall objectives of these studies are to develop and demonstrate procedures for the radiological safety assessment of a deep repository in salt formations. An essential objective is to show how far appropriate choices of the repository design parameters can improve the performances of the whole system. The research covers two waste inventories (the Dutch OPLA and the PACOMA reference inventory), two disposal techniques (conventional and solution mining) and three types of formations (salt dome, pillow and bedded salt). An important part of the research has been carried out in the socalled VEOS project within the framework of the Dutch OPLA study. The methodology used in the consequence analysis is a deterministic one. The models and calculation tools used to perform the consequence analysis are the codes: EMOS, METROPOL and BIOS. The results are expressed in terms of dose rates and doses to individuals as well as to groups. Detailed information with respect to the input data and the results obtained with the three codes is given in three annexes to this final report

  6. Five-year performance monitoring of a high-density polyethylene (HDPE) cover system at a reclaimed mine waste rock pile in the Sydney Coalfield (Nova Scotia, Canada).

    Science.gov (United States)

    Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin

    2017-12-01

    Cover systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although covers containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE cover was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five years. A range of parameters within the atmosphere, cover, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the cover is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/year) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term cover system performance.

  7. Treatment and final disposal of nuclear waste. Aespoe hard rock laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The scientific investigations within SBK's research programme are a part of the work of designing a deep repository and identifying and investigating a suitable site. A balanced appraisal of the facts, requirements and assessments presented in connection with the preparation of R and D-programme 86 led to the proposal to construct an underground research laboratory. This proposal was presented in the aforementioned research programme and was very positively recived by the reviewing bodies. In the autumn of 1986, SKB initiated the field work for the siting of an underground laboratory, the Aespoe hard rock laboratory, in the Simpevarp area in the municipality of Oskarshamn. At the end of 1988, SKB arrived at a decision in principle to site the facility on southern Aespoe about 2 km north of the Oskarshamn nuclear power station. After regulatory review, SKB ordered the excavation of the access tunnel to the Aespoe hard rock laboratory to commence in the autumn of 1990. In conjunction with the tunneling work, which has now (September 1992) reached a depth of more than 200 m, a large number of investigations have been carried out. This background report to SKB's RD and D-programme 92 is based on the previous and 89 /2/. The report provides a general background and presents goals, projects results obtained to date and future work. Compared to the previous background reports, more space is devoted here to experiment planning and the future demonstration programme. (au)

  8. Simulation of concrete deterioration in Finnish rock cavern conditions for final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Kari, O.P.; Puttonen, J.

    2014-01-01

    Highlights: • Concrete deterioration in Finnish rock cavern disposal conditions was simulated. • Simulation requires advanced models instead of traditional linear diffusion models. • Concrete analysed performed moderately during the period of 500 years. • Corrosion of steel reinforcement cannot be excluded during the period analysed. - Abstract: A simulation of concrete ageing in Finnish rock cavern disposal conditions showed that the concrete undergoes complex deterioration processes during the period required for lowering the level of radiation. In respect of the concrete ageing, the life time of the disposal facilities shall be divided into the periods before and after the closing of the caverns. Generally, the sulphate-resistant type of concrete analysed performed moderately during the analysed period of 500 years contrary to the corrosion of steel reinforcement, which cannot be excluded. Simulation of ageing clearly requires thermodynamical methods instead of linear diffusion models based on Fick’s law, which are traditionally used in construction industry. The study proves that the thermodynamical simulation method developed with adequate experimental data also makes it possible to observe latent factors of concrete deterioration

  9. Use of overburden rocks from open-pit coal mines and waste coals of Western Siberia for ceramic brick production with a defect-free structure

    Science.gov (United States)

    Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.

    2017-09-01

    The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.

  10. Uraniferous minerals heap leaching process by counter techique

    International Nuclear Information System (INIS)

    Fuentes G, D.A.

    1978-01-01

    An experimental study was made at laboratory level with respect to a process for the treatment of an uranium ore by counter current acid heap leaching with maturity periods and washing. This mineral with an average grade of 0.24% of U 3 O 8 from the levels zero-fourty of the El Nopal uraniferous deposit, located in the Sierra of Pena Blanca, State of Chihuahua (Mexico). The process which is proposed consist of 4 consecutive stages: a) The prehumectation with a fertile solution of a 0.0034 g U 3 O 8 /1 and 3 g H 2 SO 4 /l concentration, b) The counter current acid attack, c) The maturity or hardening, d) The washing with current water. The relaton liquid-solid in the stages of prehumectation, acid attack, as well as washing stage was of 0.3 m 3 /t. The average efficiency was of 77% of recovered *uranium. (author)

  11. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  12. Investigation of the erosional stability of waste rock dumps under simulated rainfall: a proposal

    International Nuclear Information System (INIS)

    Riley, S.J.; East, T.J.

    1990-12-01

    There are large volumes of material involved in the rehabilitation structures at Ranger uranium mine and the areas of disturbance are extensive. The major agent of erosion of these structures will be water, either as concentrated or distributed flow across the surface of the structure or as soil-water and groundwater flow. It is proposed to use simulated rainfall and concentrated surface flow to study the erodibility characteristics of the surface materials and to assess the impact on erosion rates of different surface materials, slope geometries (gradients, shapes and lengths) and ground covers (vegetation and rock material). Concentrated flow will be produced by discharging water through a flume siting on the slopes. The experiment will enable existing hydrological and erosion models to be tested and will allow new models to be developed. 67 refs., 1 tab., 7 figs

  13. Monitoring the rehabilitated waste rock dumps at the Rum Jungle mine site

    International Nuclear Information System (INIS)

    Bennett, J.W.; Harries, J.R.; Ritchie, A.I.M.

    1988-01-01

    Acid drainage and the release of heavy metals create a major environmental problem at many mine sites and the problem can continue long after mine operations cease. The long term control of these pollutants is essential for the acceptance of mining as a temporary land use. There is a need to compare the advantages, disadvantages and costs of various rehabilitation techniques. This paper describes measurements on two dumps of pyritic mine wastes from open cut mining before and after rehabilitation of the dumps. The effectiveness of the rehabilitation is discussed

  14. Effluents from a waste rock deposit of a former uranium mine in Saxony/Germany - Mass flow balance of water and dissolved solids

    International Nuclear Information System (INIS)

    Biehler, D.

    2002-01-01

    Soon after uranium mining had ceased in eastern Germany in 1990, work for remediation of several mining sites began. The Wismut GmbH, owner of the Mine of Dresden-Gittersee's waste rock dump, introduced the concept of reducing the impact to the environment via water and air paths by implementing a multi-layer soil cover. The deposit consists mainly of waste rock (clastic sediments of Doehlener Becken, deep metamorphic rocks) but also of low-grade ore (U-rich coal) and tailing materials. At the time when remediation started, the effluents completely infiltrated the underground. Because of previous surface exfiltration activities, they were already known to be very rich in dissolved solids, especially in sulphate and uranium. As demanded by the state authorities, the owner funded a vast hydrogeological study of the site. In testing the efficiency of surface sealing, the study indicated a mass flow balance of water and dissolved solids for the current situation, and predicted emissions into the water path which would occur after realisation of the proposed soil cover. The field investigation program consisted of: measurements of flow, of concentrations of dissolved solids (esp. U and Ra-226) and of contents of environmental isotopes in precipitation, surface runoff, seepage water and groundwater in the current condition of the dump; the study of waste rock material (geochemistry, mineralogy); waste rock material elution tests; underground investigation by drilling boreholes up to 270 m in depth. The resulting data allowed for: a hydrogeological conceptual model of the site; a consistent mass flow balance for the current condition of the dump; a prediction of concentrations in groundwater resulting after the realisation of a soil cover. The predictions show that the concentrations of dissolved solids in the contaminated groundwater would be significantly decreased. Furthermore it would be possible to reach the standards for drinking water with respect to uranium

  15. Ni, Co, and Cr contents in the soil and in some plants of Dobsina asbestos heaps

    Energy Technology Data Exchange (ETDEWEB)

    Banasova, V

    1978-01-01

    Results of analyses of substrates of heaps after mining and working of asbestos as well as of two plants viz. Melilotus officinalis Lam. and Calamagrostis epigeios Roth. for Ni, Co and Cr. Ni and Co concentrations in the analyzed plants and heap substrates were found to be higher than in common soils and in plants growing at unsophisticated localities. The values ascertained are at the same time lower than in soils and plants on serpentines. There were very low Cr contents in substrates of the studied heaps. On the contrary, in both analyzed plant species Cr concentration was found to be much higher than in the investigated heap substrates. At that locality Melilotus officinalis and Calamagrostis epigeios appear to be concentrators of chromium.

  16. Event heap: a coordination infrastructure for dynamic heterogeneous application interactions in ubiquitous computing environments

    Science.gov (United States)

    Johanson, Bradley E.; Fox, Armando; Winograd, Terry A.; Hanrahan, Patrick M.

    2010-04-20

    An efficient and adaptive middleware infrastructure called the Event Heap system dynamically coordinates application interactions and communications in a ubiquitous computing environment, e.g., an interactive workspace, having heterogeneous software applications running on various machines and devices across different platforms. Applications exchange events via the Event Heap. Each event is characterized by a set of unordered, named fields. Events are routed by matching certain attributes in the fields. The source and target versions of each field are automatically set when an event is posted or used as a template. The Event Heap system implements a unique combination of features, both intrinsic to tuplespaces and specific to the Event Heap, including content based addressing, support for routing patterns, standard routing fields, limited data persistence, query persistence/registration, transparent communication, self-description, flexible typing, logical/physical centralization, portable client API, at most once per source first-in-first-out ordering, and modular restartability.

  17. Study on the locational criteria for submarine rock repositories of low and medium level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G H; Kang, W J; Kim, T J. and others [Chungnam National Univ., Taejon (Korea, Republic of)

    1992-01-15

    Submarine repositories have significant advantages over their land counterparts locating close to the areas of daily human activities. Consequently, the construction of submarine repositories on the vast continental shelves around Korean seas is considered to be highly positive. In this context, the development of locational criteria primarily targeting the safety of submarine rock repositories is very important.The contents of the present study are: analyzing characteristics of marine environment: Search of potential hazards to, and environmental impact by, the submarine repositories; Investigation of the oceanographic, geochemical, ecological and sedimentological characteristics of estuaries and coastal seas. Locating potential hazards to submarine repositories by: Bibliographical search of accidents leading to the destruction of submarine structures by turbidity currents and other potentials; Review of turbidity currents. Consideration of environmental impact caused by submarine repositories: Logistics to minimize the environmental impacts in site selection; Removal and dispersion processes of radionuclides in sea water. Analyses of oceanographical characteristics of, and hazard potentials in, the Korean seas. Evaluation of the MOST 91-7 criteria for applicability to submarine repositories and the subsequent proposition of additional criteria.

  18. Study on the locational criteria for submarine rock repositories of low and medium level radioactive wastes

    International Nuclear Information System (INIS)

    Kim, G. H.; Kang, W. J.; Kim, T. J. and others

    1992-01-01

    Submarine repositories have significant advantages over their land counterparts locating close to the areas of daily human activities. Consequently, the construction of submarine repositories on the vast continental shelves around Korean seas is considered to be highly positive. In this context, the development of locational criteria primarily targeting the safety of submarine rock repositories is very important.The contents of the present study are: analyzing characteristics of marine environment: Search of potential hazards to, and environmental impact by, the submarine repositories; Investigation of the oceanographic, geochemical, ecological and sedimentological characteristics of estuaries and coastal seas. Locating potential hazards to submarine repositories by: Bibliographical search of accidents leading to the destruction of submarine structures by turbidity currents and other potentials; Review of turbidity currents. Consideration of environmental impact caused by submarine repositories: Logistics to minimize the environmental impacts in site selection; Removal and dispersion processes of radionuclides in sea water. Analyses of oceanographical characteristics of, and hazard potentials in, the Korean seas. Evaluation of the MOST 91-7 criteria for applicability to submarine repositories and the subsequent proposition of additional criteria

  19. Reagents and fractions impact on sulphide ore heap bioleaching at Smolnik mine

    Science.gov (United States)

    Oros, L. M.; Zavada, J.

    2017-10-01

    Mine Smolnik is one of the oldest sulphide ore mines in Europe and it is also an important part of bioleaching development. This paper follows previous attempts to extract residual metals from nearby heaps via variations in bioleaching reagents with regard to recent findings and needs in the related industry. Furthermore, economic and process relations between reagents and chosen heap fractions were also investigated in this case study.

  20. Uptake of Radium by Grass and Shrubs Grown on Mineral Heaps: A Preliminary Study

    International Nuclear Information System (INIS)

    Laili, Z.; Omar, M.; Yusof, M.A. Wahab; Ibrahim, M.Z.

    2015-01-01

    A preliminary study of the uptake of 226 Ra and 228 Ra by grass and shrubs grown on mineral heaps was carried out. Activity concentrations of 226 Ra and 228 Ra in grass and shrubs were measured using gamma spectrometry. The result showed that grass and shrubs grown on mineral heaps contained elevated levels of radium compared to grass and shrubs grown on normal soils. Thus, these plants might be used for phytoremediation of radium contaminated soil. (author)

  1. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  2. Leach test methodology for the Waste/Rock Interactions Technology Program

    International Nuclear Information System (INIS)

    Bradley, D.J.; McVay, G.L.; Coles, D.G.

    1980-05-01

    Experimental leach studies in the WRIT Program have two primary functions. The first is to determine radionuclide release from waste forms in laboratory environments which attempt to simulate repository conditions. The second is to elucidate leach mechanisms which can ultimately be incorporated into nearfield transport models. The tests have been utilized to generate rates of removal of elements from various waste forms and to provide specimens for surface analysis. Correlation between constituents released to the solution and corresponding solid state profiles is invaluable in the development of a leach mechanism. Several tests methods are employed in our studies which simulate various proposed leach incident scenarios. Static tests include low temperature (below 100 0 C) and high temperature (above 100 0 C) hydrothermal tests. These tests reproduce nonflow or low-flow repository conditions and can be used to compare materials and leach solution effects. The dynamic tests include single-pass, continuous-flow(SPCF) and solution-change (IAA)-type tests in which the leach solutions are changed at specific time intervals. These tests simulate repository conditions of higher flow rates and can also be used to compare materials and leach solution effects under dynamic conditions. The modified IAEA test is somewhat simpler to use than the one-pass flow and gives adequate results for comparative purposes. The static leach test models the condition of near-zero flow in a repository and provides information on element readsorption and solubility limits. The SPCF test is used to study the effects of flowing solutions at velocities that may be anticipated for geologic groundwaters within breached repositories. These two testing methods, coupled with the use of autoclaves, constitute the current thrust of WRIT leach testing

  3. Uso do residuo de beneficiamento de rochas ornamentais na producao de argamassa de multiplo uso; Use of the ornamental rock waste in mortar multiple-use

    Energy Technology Data Exchange (ETDEWEB)

    Faial, Alline Silveira Ribeiro; Xavier, Gustavo de Castro; Alexandre, Jonas; Maia, Paulo Cesar de Almeida; Albuquerque Junior, Fernando Saboya, E-mail: gxavier@uenf.br [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF/LECIV), Campos dos Goytacazes, RJ (Brazil). Lab. de Engenharia Civil

    2012-07-01

    The municipal district of Itapemirim-ES is the largest producer of ornamental stones in Brazil. The processing of these rocks for the manufacture of floor and produces a large amount of waste approximately 15,000 tons/month, which still are responsible for damage to the environment. Aiming at the use of this waste, this paper studies experimentally the production of mortars of multiple use, making the replacement of the use of hydrated lime, widely used in the manufacture of mortars in construction, by the waste of the processing of a marble industry Itapemirim -ES. The mortar waste was characterized and evaluated by comparing performance with mortar with the addition of hydrated lime. We used a slurry with lime as a reference, ie the mixture was made of 1:1:8 (cement: waste / lime sand), where the workability and the properties of the hardened condition were evaluated and compared with the mortars made with the waste of marble. The compressive strength results showed that the waste with lime mortars were 1.6 ± 0.5 MPa and 1.4 MPa respectively ± 0.6 after 28 days of curing, two were classified as P1 (ABNT 13279, 2005), can replace the waste lime, thereby reducing the cost of manufacture of the mortar. (author)

  4. Long term growth of crop plants on experimental plots created among slag heaps.

    Science.gov (United States)

    Halecki, Wiktor; Klatka, Sławomir

    2018-01-01

    Suppression of plant growth is a common problem in post-mining reclaimed areas, as coarse texture of soils may increase nitrate leaching. Assessing feasibility of using solid waste (precipitated solid matter) produced by water and sewage treatment processes in field conditions is very important in mine soil reclamation. Our work investigated the possibility of plant growth in a degraded site covered with sewage-derived sludge material. A test area (21m × 18m) was established on a mine soil heap. Experimental plant species included Camelina sativa, Helianthus annuus, Festuca rubra, Miscanthus giganteus, Amaranthus cruentus, Brassica napus, Melilotus albus, Beta vulgaris, and Zea mays. ANOVA showed sufficient water content and acceptable physical properties of the soil in each year and layer in a multi-year period, indicating that these species were suitable for phytoremediation purposes. Results of trace elements assays indicated low degree of contamination caused by Carbocrash waste material and low potential ecological risk for all plant species. Detrended correspondence analysis revealed that total porosity and capillary porosity were the most important variables for the biosolids among all water content related properties. Overall, crop plants were found useful on heavily degraded land and the soil benefited from their presence. An addition of Carbocrash substrate to mine soil improved the initial stage of soil reclamation and accelerated plant growth. The use of this substrate in phytoremediation helped to balance the content of nutrients, promoted plant growth, and increased plant tolerance to salinity. Sewage sludge-amended biosolids may be applied directly to agricultural soil, not only in experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Judgement of properties and function of concrete in connection with final disposal of nuclear fuel wastes in rock

    International Nuclear Information System (INIS)

    Bergstroem, S.G.; Fagerlund, G.; Romben, L.

    1977-06-01

    This report deals with the possibility of using concrete in conjuction with the permanent storage of nuclear fuel waste in rock storage facilities. The emphasis has been placed on properties such as strength and tightness and how these may be affected by internal and external causes of destruction during a filling stage of approximately 100 years and during the final storage stage of 1 000 - 100 000 years. It is established that spontaneous structural changes, which lead to a certain increase in porosity, cannot be precluded during the filling stage and uring the final storage stage. It is deemed possible to avoid cracking during the manufacture and during the filling stage if the concrete is kept moist. The risk for cracking during the final storage stage is difficult to assess. Attempts are made to estimate the tightness of aged concrete during the various stages. The tightness during the final storage stage is difficult to assess due to the fact that the scope of the cracking cannot be estimated. Chemical attacks during the filling stage are deemed to be small and can be repaired. The risk for destruction due to radioactive radiation is extremely small. Reinforcement, if any, can be protected during the filling stage on condition that the concrete is kep saturated but all reinforcement will be destroyed during the final storage stage. By way of conclusion, a number of general views on the choice of concrete and work methods are provided. (author)

  6. Hydrogeochemical studies of the Rustler Formation and related rocks in the Waste Isolation Pilot Plant Area, Southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, M.D.; Lambert, S.J.; Robinson, K.L. (eds.)

    1991-08-01

    Chemical, mineralogical, isotopic, and hydrological studies of the Culebra dolomite member of the Rustler Formation and related rocks are used to delineate hydrochemical facies and form the basis for a conceptual model for post-Pleistocene groundwater flow and chemical evolution. Modern flow within the Culebra in the Waste Isolation Pilot Plant (WIPP) area appears to be largely north-to-south; however, these flow directions under confined conditions are not consistent with the salinity distribution in the region surrounding the WIPP Site. Isotopic, mineralogical, and hydrological data suggest that vertical recharge to the Culebra in the WIPP area and to the immediate east and south has not occurred for several thousand years. Eastward increasing {sup 234}U/{sup 238}U activity ratios suggest recharge from a near-surface Pleistocene infiltration zone flowing from the west-northwest and imply a change in flow direction in the last 30,000 to 12,000 years. 49 refs., 34 figs., 4 tabs.

  7. In situ corrosion studies on selected high level waste packaging materials under simulated disposal conditions in rock salt

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1988-01-01

    In order to qualify corrosion resistant materials for high level waste (HLW) packagings acting as a long-term barrier in a rock salt repository, the corrosion behavior of preselected materials is being investigated in laboratory-scale and in-situ experiments. This work reports about in-situ corrosion experiments on unalloyed steels, Ti 99.8-Pd, Hastelloy C4, and iron-base alloys, as nodular cast iron, Ni-Resist D4 and Si-cast iron, under simulated disposal conditions. The results of the investigations can be summarized as follows: (1) all materials investigated exhibited high resistance to corrosion under the conditions prevailing in the Brine Migration Test; (2) all materials and above all the materials with passivating oxide layers such as Ti 99.8-Pd and Hastelloy C4 which may corrode selectively already in the presence of minor amounts of brine had been resistant with respect to any type of local corrosion attack; the gamma-radiation of 3 · 10 2 Gy/h did not exert an influence on the corrosion behavior of the materials

  8. The long-term strength and deformation properties of crystalline rock in a high level nuclear waste repository

    International Nuclear Information System (INIS)

    Tuokko, T.

    1990-12-01

    The time-dependent phenomena which can affect the strength and deformation properties of hard crystal line rock are clarified. Suitable measuring methods for field conditions are also summarized. The significance of time is evaluated around a shaft in a high level nuclear waste repository. According to the investigation it is generally held that creep and cyclic fatigue are the most important phenomena. They arise from subcritical crack growth which is most affected by stress intensity, chemical environment, temperature, and microstructure. There are many theoretical models, which can be used to analyse creep and cyclic fatigue, but they are defective in describing the triaxial stress condition and strength criteria. Additionally, the required parameters are often too difficult to determine with adequate accuracy. The joint creep rate depends on the affecting stress regime, on the water conditions, and on the properties of filling material. The acoustic emission method is suited to observe long-term microcrack development in field conditions. The computer program developed by Atomic Energy of Canada Limited (AECL) is used to evaluate the time-dependent de-formation around a main shaft. According to the model the enlargement of the shaft radius by 30 cm takes millions of years. The possible reduction of shaft radius by 3 mm will happen during 200 years. The model is very sensitive to changes in stress state, in the uniaxial compressive strength, and in the stress corrosion index

  9. Review of potential host rocks for radioactive waste disposal in the southeastern United States. Executive summary

    International Nuclear Information System (INIS)

    Bledsoe, H.W. Jr.; Marine, I.W.

    1980-10-01

    The geology of the southeastern United States was studied to recommend areas that should be considered for field exploration in order to select a site for a radioactive waste repository. The region studied included the Piedmont Province, the Triassic Basins, and the Atlantic Coastal Plain in Maryland, Virginia, North Carolina, South Carolina, and Georgia. This study was entirely a review of literature and existing knowledge from a geotechnical point of view and was performed by subcontractors whose individual reports are listed in the bibliography. No field work was involved. The entire study was geotechnical in nature, and no consideration was given to socioeconomic or demographic factors. These factors need to be addressed in a separate study. For all areas, field study is needed before any area is further considered. A total of 29 areas are recommended for further consideration in the Piedmont Province subregion: one area in Maryland, 8 areas in Virginia, 4 areas in North Carolina, 6 areas in South Carolina, and 10 areas in Georgia. Of the 14 exposed and 5 buried or hypothesized basins identified in the Triassic basin subregion, 6 are recommended for further study: one basin in Virginia, 3 basins in North Carolina, and 2 basins in South Carolina. Four potential candidate areas are identified within the Atlantic Coastal Plain subregion: one in Maryland, one in North Carolina, and 2 in Georgia

  10. Development of the Method of Bacterial Leaching of Metals out of Low-Grade Ores, Rocks, and Industrial Wastes Using Neutron Activation Analysis

    CERN Document Server

    Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2001-01-01

    The results of preliminary investigations aimed at the development of an economical and easy to apply technique of bacterial leaching of rare and valuable metals out of low-grade ores, complex composition ores, rocks, and industrial wastes in Georgia are discussed. The main groups of microbiological community of the peat suspension used in the experiments of bacterial leaching are investigated and the activity of particular microorganisms in the leaching of probes with different mineral compositions is assessed. The element composition of the primary and processed samples was investigated by the epithermal neutron activation analysis method and the enrichment/subtraction level is estimated for various elements. The efficiency of the developed technique to purify wastes, extract some scrace metals, and enrich ores or rocks in some elements, e.g. Au, U, Th, Cs, Sr, Rb, Sc, Zr, Hf, Ta, Gd, Er, Lu, Ce, etc., is demonstrated.

  11. Accumulated energy determination in salts rocks irradiated by means of thermoluminescence techniques: application to the high level radioactive wastes repositories analysis

    International Nuclear Information System (INIS)

    Dies, J.; Ortega. J.; Tarrasa. F.; Cuevas, C.

    1995-01-01

    The report summarizes the study carried out to develop the radiation effects on salt rocks in order to repository the high level radioactive wastes. The study is structured into 3 main aspects: 1.- Analysis of irradiation experiences in Haw project of Pet ten reactor. 2.- Irradiation of salt sample of CESAR industrial irradiator. 3.- Correlation study between the accumulated energy, termoluminescence answer and the defect concentration

  12. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Yoshida, H.; Metcalfe, R.; Yamamoto, K.; Murakami, Y.; Hoshii, D.; Kanekiyo, A.; Naganuma, T.; Hayashi, T.

    2008-01-01

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure

  13. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan)], E-mail: dora@num.nagoya-u.ac.jp; Metcalfe, R. [Quintessa Japan, Queen' s Tower A7-707, Minatomirai, Yokohama 220-6007 (Japan); Yamamoto, K. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan); Murakami, Y. [Japan Atomic Energy Agency (JAEA), Tono Geoscience Centre (Japan); Hoshii, D.; Kanekiyo, A.; Naganuma, T. [Hiroshima University, Higashi Hiroshima, Kagamiyama 1-4-4 (Japan); Hayashi, T. [Asahi University, Department of Dental Pharmacology, Hozumi, Gifu (Japan)

    2008-08-15

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure.

  14. Parameter-sensitivity analysis of near-field radionuclide transport in buffer material and rock for an underground nuclear fuel waste vault

    International Nuclear Information System (INIS)

    Cheung, S.C.H.; Chan, T.

    1983-08-01

    An analytical model has been developed for radionuclide transport in the vicinity of a nuclear fuel waste container emplaced in a borehole. The model considers diffusion in the buffer surrounding the waste container, and both diffusion and groundwater convection in the rock around the borehole. A parameter-sensitivity analysis has been done to study the effects on radionuclide flux of (a) Darcian velocity of groundwater in the rock, (b) effective porosity of the buffer, (c) porosity of the rock, (d) radial buffer thickness, and (e) radius and length of the container. It is found that the radionuclide flux, Fsub(R), and the total integrated flux, Fsub(T), are greater for horizontal flow than for vertical flow; Fsub(R) decreases with increasing radial buffer thickness for all Darcian velocities, whereas Fsub(T) decreases at high velocities but increases at low velocities. The rate of change of Fsub(R) and of Fsub(T) decreases with decreasing flow velocity and increasing buffer thickness; Fsub(R) is greater for higher effective porosity of buffer or rock; and Fsub(R) increases and Fsub(T) decreases with decreasing container radius or length

  15. Biodesulphurisation of high sulphur coal by heap leaching

    Energy Technology Data Exchange (ETDEWEB)

    J. Cara; M.T. Carballo; A. Moran; D. Bonilla; O. Escolano; F.J. Garcia Frutos [Universidad de Leon, Leon (Spain). Departamento de Ingenieria Quimica

    2005-10-01

    The biodesulphurisation of coal carried out in pile could be an interesting option to clean coal. In view of the good results obtained in biodesulphurisation test column at lab scale on a sample of semianthracite coal that proceed of an industrial plant with a high sulphur content, mainly pyritic sulphur, the feasibility of the process at pilot plant scale was studied. The pile was formed with 6 ton of gravity middlings coal sample with a grain size -12+0.5 mm from S.A. Hullera Vasco-Leonesa industrial plant. The coal has a total sulphur content of 3.78% and a pyritic sulphur content of 2.88%, the rest of sulphur is organic sulphur. The biodesulphurisation process in pilot plant follows three stages: stabilization of the pile, biodesulphurisation and washing. Heap was sampled twice during stabilisation stage, at the end of desulphurisation process and finally once washed. A pyritic sulphur removal of 39% and total sulphur removal of 23% was obtained. To complete the bioleaching process, the treatment of purge of leachate was carried out with the objective to recycling to head of process. The best treatment was a pre-treatment of the leachate until pH 4, and further treatment by reverse osmosis of the clarified water. Comparing this process with conventional precipitation to reach disposal limits, the reagents consumption and sludges were reduced considerably and due to the high quality of permeate it permits to recycle it to head of process. 18 refs., 6 figs., 6 tabs.

  16. Preliminary environmental assessments of disposal of rock mined during excavation of a federal repository for radioactive waste

    International Nuclear Information System (INIS)

    1977-09-01

    Since the environmental impact of mined rock handling will be dependent not only upon the nature of the material and the way in which it might be disposed but also upon the features of the disposal site area and surroundings, it was necessary to select ''reference environmental locii'' within the regions of geological interest to typify the environmental setting into which the rock would be placed. Reference locii (locations) were developed for consideration of the environmental implications of mined rock from: bedded rock salt from the Salina region, bedded rock salt from the Permian region, dome rock salt from the Gulf Interior region, Pierre shale from the Argillaceous region, granite from the crystalline rock region, volcanic basalt rock from the crystalline ash region, and carbonate rock from the limestone region. Each of these reference locii was examined with respect to those demographic, geographic, physical and ecological attributes which might be impacted by various mined rock disposal alternatives. Alternatives considered included: onsite surface storage, industrial or commercial use, offsite disposal, and environmental blending. Potential impact assessment consists of a qualitative look at the environmental implications of various alternatives for handling the mined rock, given baseline characteristics of an area typified by those represented by the ''reference locus''

  17. Programme of research into the disposal of radioactive waste into geological formations. Studies on crystalline rock. Contract 059-78-1 WASUK. Final report: General studies of physical properties

    International Nuclear Information System (INIS)

    1981-11-01

    This report covers the following topics: groundwater dating; heat transfer and associated thermal studies (in-situ heat transfer experiment; thermal rock and fluid mechanics studies; thermal convection; hydraulic permeability experiments; laboratory studies); corrosion and chemical compatibility studies (field and laboratory corrosion studies; waste - rock interactions). (U.K.)

  18. Effect of Callovo-Oxfordian clay rock on the dissolution rate of the SON68 simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J., E-mail: James.Neeway@pnnl.gov [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France); Abdelouas, Abdesselam; Ribet, Solange; El Mendili, Yassine [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France); Schumacher, Stéphan [ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry (France); Grambow, Bernd [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France)

    2015-04-15

    Long-term storage of high-level nuclear waste glass in France is expected to occur in an engineered barrier system (EBS) located in a subsurface Callovo-Oxfordian (COx) clay rock formation in the Paris Basin in northeastern France. Understanding the behavior of glass dissolution in the complex system is critical to be able to reliably model the performance of the glass in this complex environment. To simulate this multi-barrier repository scenario in the laboratory, several tests have been performed to measure glass dissolution rates of the simulated high-level nuclear waste glass, SON68, in the presence of COx claystone at 90 °C. Experiments utilized a High-Performance Liquid Chromatography (HPLC) pump to pass simulated Bure site COx pore water through a reaction cell containing SON68 placed between two COx claystone cores for durations up to 200 days. Silicon concentrations at the outlet were similar in all experiments, even the blank experiment with only the COx claystone (∼4 mg/L at 25 °C and ∼15 mg/L at 90 °C). The steady-state pH of the effluent, measured at room temperature, was roughly 7.1 for the blank and 7.3–7.6 for the glass-containing experiments demonstrating the pH buffering capacity of the COx claystone. Dissolution rates for SON68 in the presence of the claystone were elevated compared to those obtained from flow-through experiments conducted with SON68 without claystone in silica-saturated solutions at the same temperature and similar pH values. Additionally, through surface examination of the monoliths, the side of the monolith in direct contact with the claystone was seen to have a corrosion thickness 2.5× greater than the side in contact with the bulk glass powder. Results from one experiment containing {sup 32}Si-doped SON68 also suggest that the movement of Si through the claystone is controlled by a chemically coupled transport with a Si retention factor, K{sub d}, of 900 mL/g.

  19. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  20. The Effect of Initial Irrigation Conditions on Heap Leaching Efficiency

    Science.gov (United States)

    Briseño Arellano, A. D.; Milczarek, M.; Yao, M.; Brusseau, M. L. L.

    2017-12-01

    Heap leaching is an unsaturated flow metal recovery process, in which mined ore is irrigated with a lixiviant to dissolve metal contained in the ore. The metal is then extracted from solution. Large scale operations involve stacking ore to depths of 6 to 18 meters on pads that may be hundreds of hectares in area. Heterogeneities within the stacked ore can lead to uneven wetting and the formation of preferential flow pathways, which reduces solution contact and lowers metal recovery. Furthermore, mineral dissolution can cause alteration of the porous media structure and loss of ore permeability. Many mine operators believe that slow initial irrigation rates help minimize permeability loss and increase metal recovery rates. However, this phenomenon has not been studied in detail. Experiments were conducted to investigate the effect of varying initial irrigation rates on leach ore stability. These were conducted with large columns (1.5 m high, 0.5 m in diameter) packed with crushed ore samples that are known to have permeability constraints. The columns were highly instrumented to assess potential changes in material properties both spatially and temporally. Water content was measured with three different methods: capacitance soil moisture sensors placed at 20-cm intervals; a neutron probe to periodically log every 30 cm from four different directions; and electrical resistivity sensors to create a 2-dimensional tomography profile of water content over time. Tensiometers were paired with the soil moisture sensors to measure matric suction and characterize moisture retention characteristics. A non-reactive tracer was used to characterize advective-dispersive transport under unsaturated conditions. A dye solution was introduced at the end of each experiment to map preferential pathways. Continuous monitoring of settling at the surface assisted in measuring consolidation and loss in permeability.

  1. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    Directory of Open Access Journals (Sweden)

    Helen R. Watling

    2015-07-01

    Full Text Available In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II and/or reduced inorganic sulphur compounds (RISC, such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity.

  2. Assessment of two kinetic tests to predict the acid mine drainage in waste rock samples of a uranium mine

    OpenAIRE

    Abreu,Adriana Trópia de; Faria,Efigênia Miranda de; Chaves,Carla Thamilis Fonseca; Leite,Adilson do Lago; Lena,Jorge Carvalho de

    2014-01-01

    Acid mine drainage is the result of the oxidation process of sulfide bearing rocks. This process occurs when the sulfide material is exposed to atmospheric conditions. Under these conditions, successive oxidation reactions yield sulfuric acid generating acidic waters. This problem becomes more serious when the surrounding rocks are not able to neutralize the acid. The low pH condition of the drained water accelerates the solubility process of solid materials (rocks, soils and sediments) and f...

  3. Comparison of the intermediate storage periods and areas required for final storage of high-level radioactive waste and spent fuel in various types of host rock

    International Nuclear Information System (INIS)

    Mueller-Hoeppe, N.; Lerch, C.; Jobmann, M.; Filbert, W.

    2005-01-01

    The present new version of the German concept for radioactive waste and spent fuel management is based on the assumption that a repository for high-level waste and spent fuel will not be required until 2030. One reason frequently given for this date is the intermediate storage period of at least forty years to allow the very high initial heat generation to decay. However, calculations performed by the authors have shown that the minimum intermediate storage period for a repository in rock salt is only between four and nineteen years, depending on the final storage concept and the load of the waste package. In clay as a host rock, the minimum intermediate storage times were calculated to be between 31 and 142 years; the same time spans are expected to apply to final storage in magmatic rock, such as granite. The maximum permissible loads of a container holding spent fuel in salt are many times those in clay and granite, respectively. It was also seen that the area requirement for final storage of the same waste structures is roughly a factor of ten higher in clay than in salt. The differences between granite and salt are similar. The reasons for these grave differences, on the one hand, are the better thermal conductivity of salt and, on the other hand, the better heat tolerance of the crushed salt used as backfill material compared to that of bentonite used in the clay and granite concepts. While salt will allow temperatures of up to 200 C, the maximum temperature in bentonite is limited to 100 C. (orig.)

  4. Shaft sealing concepts for high-level radioactive waste repositories based on the host-rock options rock salt and clay stone; Schachtverschlusskonzepte fuer zukuenftige Endlager fuer hochradioaktive Abfaelle fuer die Wirtsgesteinsoptionen Steinsalz und Ton

    Energy Technology Data Exchange (ETDEWEB)

    Kudla, Wolfram; Gruner, Matthias [TU Bergakademie Freiberg (Germany). Inst. fuer Erdbau und Spezialtiefbau; Herold, Philipp; Jobmann, Michael [DBE Technology GmbH, Peine (Germany)

    2015-07-01

    Unlike the shaft barriers used for the dry preservation of former mine workings and underground storage sites, shaft seals designed for radioactive-waste repositories must also fulfil additional requirements associated with the design diversity of the sealing system. This diversity makes use of the simple redundancy principle in order to prevent the proliferation of defects. In practice this means combining several sealing elements made from different materials or from materials with different properties. The R and D project, Shaft sealing systems for final repositories for high-level radioactive waste (ELSA) - phase 2: concept design for shaft seals and testing of the functional elements of shaft seals', which was funded by the Federal Ministry for Economic Affairs and Energy (BMWi), set out to investigate potential sealing elements for the two host-rock options rock salt and mudstone. This paper combines the text that the authors presented at the First International Freiberg Shaft Colloquium held at the Freiberg University of Mining and Technology on 01.10.2014 with a presentation on the sealing elements that were investigated as part of the R and D project.

  5. Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes

    Science.gov (United States)

    Grigoryan, Artyom M.

    2015-03-01

    In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.

  6. A preliminary study on the suitability of host rocks for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-02-01

    It is expected that the key issues are listed as the disposal concept, reference disposal system and other relevant technical development for the deep geological disposal of HLW in each country. First above all, however, the preferred host rocks should be suggested prior execution of these activities. And, it is desirable to be reviewed and proposed some host rocks representative its country. For the reviewing of host rocks in Korean peninsula, several issues were considered such as the long-term geological stability, fracture system, surface and groundwater system and geochemical characteristics in peninsula. The three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the R and D of HLW disposal based on the upper stated information. In the following stages, it is suggested that these preferred host rocks would be made an object of all relevant R and D activities for HLW disposal. And, many references for these geologic medium should be characterized and constructed various technical development for the Korean reference disposal system.

  7. A preliminary study on the suitability of host rocks for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-02-01

    It is expected that the key issues are listed as the disposal concept, reference disposal system and other relevant technical development for the deep geological disposal of HLW in each country. First above all, however, the preferred host rocks should be suggested prior execution of these activities. And, it is desirable to be reviewed and proposed some host rocks representative its country. For the reviewing of host rocks in Korean peninsula, several issues were considered such as the long-term geological stability, fracture system, surface and groundwater system and geochemical characteristics in peninsula. The three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the R and D of HLW disposal based on the upper stated information. In the following stages, it is suggested that these preferred host rocks would be made an object of all relevant R and D activities for HLW disposal. And, many references for these geologic medium should be characterized and constructed various technical development for the Korean reference disposal system

  8. Uranium mining and heap leaching in India and related safety measures - A case study of Jajawal mines

    International Nuclear Information System (INIS)

    Saxena, V.P.; Verma, S.C.

    2001-01-01

    -project and post-operational data collections both in the project areas and in the surrounding drainage systems are mandatory and overviewed by AERB before clearance. In Jajawal underground mines in Central India, the radiation level is registered at 0.12-0.25 mR/hr and radon daughter working level is measures at 0.005 to 0.015 WL for air. These levels have shown an increase of 15 to 20% during the operations. About 1000 tonnes of low grade ore was heap leached on the surface as technology demonstration project. Measurements of water in pre-heap leaching stage, have indicated concentrations of different nuclides at 0.90 mg/cu.m. (U Nat.), 35 bq/cu.m. (Ra-226), 33 bq/cu.m. (Th-230) and <2 bq/cu.m. (Po-210). Long lived alpha activity in and around heap leaching site has been measured at 0.13 to 0.38 bq/cu.m during the process of operation. Post operational biological uptake of radionuclides, viz. U (natural) : 0.057 mg/kg; Ra-226 : 1.69 Bq/kg; Th-230 : 5.13 Bq/kg and Po-210 : 2.98 Bq/kg, show an increase of 20 to 30% above the pre-operational measurements. The radionuclide related pollution could be contained to manageable limits by current strategy of ventilation of underground mines, disposal by isolation and burial of waste, use of wet scrubbers, adding neutralizing agents to tailing liquids, besides following the principle of ALARA. (author)

  9. Location-independent study concerning the construction, operation and closure of possible facilities for the final storage of radioactive waste in rock-salt formations in the Netherlands

    International Nuclear Information System (INIS)

    1986-04-01

    Final storage of radioactive waste has been studied on the base of two main concepts: in deep boreholes and caverns from the mowing-field, and for a, for this purpose to be developed, underground ore. Storage supplies have been designed, including the closing constructions after finishing the storage activities, with a, much longer than usually, technical lifetime. Herein use has been made of in general known materials whose properties and behaviour were assumed to remain unaltered over long periods and also will not be influenced by the rock-salt environment. The possible storage concepts described are location independent and based upon the geological and geomechanical information which have been provided with the task and which are indicative for the rock-salt formations occurring in the Netherlands. In first instance the authors have started from the thermodynamical, chemical and fysical properties of the storage rock-formations as are mentioned in the apendices of the task. It particularly concerns properties of the storage rock-formations and the construction materials needed for a qualitatively good and reliable closing of the storage. The construction and operation of the in this report described storage concepts is based upon the storage scenario's as indicated in the task circumscriptions

  10. Summary of northern Atlantic coastal plain hydrology and its relation to disposal of high-level radioactive waste in buried crystalline rock; a preliminary appraisal

    Science.gov (United States)

    Lloyd, O.B.; Larson, J.D.; Davis, R.W.

    1985-01-01

    Interpretation of available hydrologic data suggests that some areas beneath the Coastal Plain in the States of Delaware, Maryland, New Jersey, North Carolina, and Virginia might have some potential for the disposal of nuclear waste in crystalline rock that is buried beneath the Coastal Plain sediments. The areas of major interest occur where the top of the basement rock lies between 1,000 and 4,000 feet below sea level, the aquifer(s) immediately above the basement rock are saturated with saline water, confining material overlies the saline water bearing aquifer(s), and groundwater flow in the saline water aquifer(s) can be established. Preliminary data on (1) the distribution and thickness of the lowermost aquifers and confining beds, (2) the distribution of hydraulic conductivity in the lowermost aquifers, (3) estimated hydraulic heads and inferred direction of lateral groundwater flow for 1980, and (4) the distribution of saline water and brine, indicate eastern parts of the study area relatively best meet most of the criteria proposed for sediments that would overlie any potential buried crystalline-rock disposal site.

  11. Rock engineering in Finland

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contains a large collection of short articles concerned with tunnels and underground caverns and their construction and use. The articles are grouped under the following headings: use of the subsurface space; water supply; waste water services; energy management (includes articles on power stations, district heating and oil storage and an article on coal storage); multipurpose tunnels; waste disposal; transport; shelters; sporting and recreational amenities located in rock caverns; storage facilities; industrial, laboratory, and service facilities; rock foundations; tourism and culture; utilization of rock masses; research on the disposal of nuclear waste; training and research in the field of rock engineering; site investigation techniques; design of structures in rock; construction; the environment and occupational safety; modern equipment technology; underground space in Helsinki.

  12. Methods and results of the investigation of the thermomechanical behaviour of rock salt with regard to the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Wieczorek, K.; Klarr, K.

    1993-01-01

    This report summarizes the knowledge about thermal and mechanical behaviour of rock salt that has been accumulated by various R and D institutions in Germany from laboratory and in situ investigations. An important objective is to give a comprehensive overview of the investigation methods and instruments available and to discuss these methods and instruments with regard to their applicability and reliability for the investigation of the thermomechanical effects of high level radioactive waste emplacement in rock salt formations. The report is focused on the activities of the GSF-Institut fur Tieflagerung in the Asse mine regarding the disposal of high and intermediate level radioactive waste during the last decades. The design and the results of the most important in situ experiments are presented and discussed in detail. The results are compared to model calculations in order to evaluate the reliability of both the measurements and the calculation results. The relevance of the results for the situation in Spain is discussed in a separate chapter. As the investigations in Germany have been performed in domal salt, while the Spanish concept is based on waste disposal in bedded salt, significant differences in the thermomechanical behaviour cannot be excluded. The investigation methods, however, will be applicable. (Author)

  13. Review of Studies of Clay Minerals as Significant Component of Potential Host Rocks or Engineering Barriers for Radioactive Waste Disposals Performed at Comenius University in Bratislava

    International Nuclear Information System (INIS)

    Peter, Uhlik; Vladimir, Sucha; Maria, Caplovicova; Igor, Stricek

    2013-01-01

    About 50 % of electric power is produced by nuclear power plants in Slovakia. In spite of the significant production of nuclear waste, Slovakia has not defined basic strategy of radioactive-waste isolation. However, some pilot projects and studies have been carried out. Five areas were determined as prospective sites for construction of deep geological repository (DGR). Two of them are situated in the south of Slovakia. Szecseny schlier (mixture of siltstones and Clay-stones) of Lucenec Formation (Egerian) is one of the most prospective host rocks from lithological, structural and spatial perspective. Besides the investigation of potential host rock for DGR the studies of bentonite properties as important part of engineering barriers for radioactive waste disposals were performed. Detailed mineral and structural analyses of smectites from the bentonitic material exposed to laboratory Mock-Up test were realised. Particular interest has been focused on interaction between Fe and smectites. Other field of interest is investigation of sorption of Cs and Sr on natural and modified bentonites, including irradiation. Purpose of this work is to present a short review of other studies done by our group with partial focusing to interaction of organic dye (Rhoda-mine 6G) with smectite that is connected with changes of layer charge after treatment; possibilities to measure preferential orientation of clays after compaction by TEM and to effort to use X-ray micro-tomography for inner structure of sediments. (authors)

  14. Use of the mixture of clay and crushed rock as a backfill material for low and intermediate level radioactive waste repository. Appendix 10: Republic of Korea

    International Nuclear Information System (INIS)

    Cho, W.J.; Lee, J.O.; Hahn, P.S.; Chun, K.S.

    2001-01-01

    At the time of the CRP, a repository for low and intermediate level radioactive wastes arising from nuclear power plant operation and radioisotope application in the Republic of Korea was to be constructed in the bedrock below ground surface. As the intermediate level waste cavern would contain the major part of radionuclide inventory in the cavern, the radionuclide release from the intermediate level waste cavern was therefore important from the viewpoint of disposal facility performance. The then current design concept suggested that the intermediate level waste would be emplaced into the compartment made of reinforced concrete, and the space between the concrete wall and cavern surface would be backfilled with a clay-based material. As compacted clay-based materials have a low hydraulic conductivity and the hydraulic gradient in a disposal cavern was expected to be relatively low, molecular diffusion was considered to be the principal mechanism by which radionuclides would migrate through the backfill. The mixture of calcium bentonite and crushed rock was being suggested as a candidate backfill material. This appendix summarises the KAERI research activities on the evaluation of hydraulic conductivity, radionuclide diffusion coefficient, and mechanical properties of the candidate clay-based backfill material for the intermediate level waste cavern

  15. A Phase-Adaptive Garbage Collector Using Dynamic Heap Partitioning and Opportunistic Collection

    Science.gov (United States)

    Roh, Yangwoo; Kim, Jaesub; Park, Kyu Ho

    Applications usually have their own phases in heap memory usage. The traditional garbage collector fails to match various application phases because the same heuristic on the object behavior is used throughout the entire execution. This paper introduces a phase-adaptive garbage collector which reorganizes the heap layout and adjusts the invocation time of the garbage collection according to the phases. The proposed collector identifies phases by detecting the application methods strongly related to the phase boundaries. The experimental results show that the proposed phase-adaptive collector successfully recognizes application phases and improves the garbage collection time by as much as 41%.

  16. Commercial experimental on bacteria heap leaching of uranium ore from Caotaobei mining area in Ganzhou uranium mine

    International Nuclear Information System (INIS)

    Fan Baotuan; Meng Yunsheng; Liu Jian; Xiao Jinfeng; Chen Sencai; Cao Jianbo; Wu Yichang; Liu Chengwu

    2002-01-01

    The author presents the result of commercial experiment on bacteria heap leaching of uranium ore from Caotaobei mining area in Ganzhou Uranium Mine and summarizes the heap situation, installation of spraying and sprinkling devices, and operation management of continuous oxidizing tank of bio-membrane. The leaching rate is 92.95% and 91.88% respectively by liquid and residue measurement during 85 d bacterial leaching experiment. The acid consumption is 2.1% and the total liquid-solid ratio is 2.9 m 3 /t. Compared with conventional heap leaching, the time of bacteria heap leaching shorted about 75 d, the acid consumption reduced by 0.35% and the leaching rate improved by 2%. It is an optimize plan to reform the heap leaching technology for Caotaobei ore

  17. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Y., E-mail: yann.lucas@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Schmitt, A.D., E-mail: anne-desiree.schmitt@univ-fcomte.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)] [Universite de Franche-Comte et CNRS-UMR 6249, Chrono-Environnement, 16, Route de Gray, 25030 Besancon Cedex (France); Chabaux, F., E-mail: francois.chabaux@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Clement, A.; Fritz, B. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Elsass, Ph. [BRGM, GEODERIS, 1, rue Claude Chappe, 57070 Metz (France); Durand, S. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)

    2010-11-15

    Research highlights: {yields} Major and trace elements along with strontium and uranium isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect a conservative mixing. {yields} A coupled hydrogeochemical model demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process. {yields} The model requires only a small amount of montmorillonite. {yields} It is necessary to consider the pollution history to explain the important chloride, sodium and calcium concentration modifications. {yields} The model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. - Abstract: In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves

  18. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    International Nuclear Information System (INIS)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs

  19. In situ investigations on the impact of heat production and gamma radiation with regard to high-level radioactive waste disposal in rock salt formations

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1986-01-01

    Deep geological formations especially rock salt formations, are considered worldwide as suitable media for the final disposal of radioactive high-level waste (HLW). In the Federal Republic of Germany, the Institut fur Tieflagerung of the Gesellschaft fur Strahlen- und Umweltforschung mbH Munchen operates the Asse Salt Mine as a pilot facility for testing the behavior of an underground nuclear waste repository. The tests are performed using heat and radiation sources to simulate disposed HLW canisters. The measured data obtained since 1965 show that the thermomechanical response of the salt formation and the physical/chemical changes in the vicinity of disposal boreholes are not a serious concern and that their long-term consequences can be estimated based on theoretical considerations and in-situ investigations

  20. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  1. Role of HHM coupling mechanisms on the evolution of rock masses around nuclear waste disposals in the context of gas generation

    International Nuclear Information System (INIS)

    Hoxha, D.; Do, D.-P.; Wendling, J.; Poutrel, A.

    2010-01-01

    Document available in extended abstract form only. This paper aims at modelling of long term evolution of hydro-mechanical state of rock masses around sealing nuclear waste disposals. In the principles of nuclear waste disposals the geological barrier must play a long term confining role in respect with nuclide transport. In terms of hydro-mechanical properties this calls for managing the damage around the underground workings of the waste disposals. In particular the seal buffers and barrier rock will support the generation of hydrogen of different origins, mainly from the corrosion of steals used in various elements of a nuclear waste disposal. This generation would generate gas pressures sufficiently high to partially dry seal or barrier rock leading to a redistribution of stress around underground openings, to a reactivation of the rock damage and finally could put in question the concept of geological barrier itself. The object of this paper is to shed light in the mechanisms of HHM coupling in rocks around a repository by comparative numerical analyses. Basically, we chose two configurations to proceed with analyses: one in plan strain conditions and the other an axial symmetric configuration. The goal of the first configuration is the assessment of gas pressure evolution in the openings of a repository. The principal input of the problem is the kinetics of gas generation (H 2 generation) given by a step-wise function of time describing the gas generation of one single nuclear waste coli. Then known the repository architecture one could easily calculate the mass of gas generated on one access gallery. Since extreme scenario is studied, we suppose that the gas generated by the set of alveoli is fully located in the access gallery and only a radial gas flux is possible.The hydro mechanical properties of rocks up to the surface were taken into account. For the callovo-Oxfordian clay that constitutes barrier rock in immediate neighbouring of the gallery a model

  2. Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea

    International Nuclear Information System (INIS)

    Lee, Pyeong-koo; Kang, Min-Ju; Choi, Sang-Hoon; Touray, Jean-Claude

    2005-01-01

    Mineralogical examinations were performed to characterize the formation of secondary minerals and natural removal process of dissolved As and trace metals (Pb, Zn and Cu) from sulfide oxidation. Laboratory-based leaching tests were also conducted to determine whether the concentrations of As and trace metals in the leachates from waste-rock materials and contaminated soil could be affected by the presence acids such as acid rainwater or acid mine drainage. Waste-rock materials and contaminated soil were compared by 4-day leaching tests using HNO 3 solutions of increasing acidity (0.00001-0.1mole/L). Mineralogical studies of the waste rocks confirmed the presence of Fe-(oxy)hydroxides (e.g. goethite), jarosite, elemental S, Fe-sulfates, amorphous Fe-As phases, anglesite and covellite as secondary minerals. These secondary minerals act as mineralogical scavengers of dissolved trace metals, SO 4 2- and acidity released by sulfide oxidation. Arsenic was attenuated by the adsorption on Fe-(oxy)hydroxides and/or the formation of an amorphous Fe-As phase, with a Fe/As ratio=1 (maybe scorodite: FeAsO 4 .2H 2 O). Electron probe microanalyses data showed that the Fe-(oxy)hydroxides had high concentrations of Pb (up to 21wt%), with appreciable amounts of As (up to 7.7wt%), Zn (up to 4.6wt%) and Cu (up to 2.5wt%) indicating that dissolved metals were co-precipitated and adsorbed onto Fe-(oxy)hydroxides, Fe(Mn)-hydroxides and Fe-sulfates. The results of the leaching experiments within the pH-range 3.5-5.0 indicated that acidic rainstorms may leach minor amounts of Pb (ca. 1.7-4.0% of total), Zn (ca. 0.8-2.2% of total), Cu (ca. 0.0-0.2% of total) and As (ca. 0.02-0.1% of total) from waste rocks, including the dissolution of soluble secondary minerals previously formed during prolonged dry periods, while dissolution of these elements was negligible from the contaminated soil. In the pH-range 1.0-3.0, the leaching of Pb (ca. 2.4-31% of total) and As (ca. 0.1-5.8% of total) from

  3. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  4. Studies on feasibility of recovering uranium from Dongkeng second class submarginal ore by heap leaching

    International Nuclear Information System (INIS)

    Yang Qingyi

    1994-01-01

    It was proved that it is feasible in economy and in technology to recover uranium from Dongkeng second class submarginal ore by heap leaching, on the basis of analysing the conditions of Mine No. 743 and the tests conducted. Moreover, the social and environmental effects are good. Two valuable suggestions are presented

  5. Role of hydrogen ions in standard and activation heap leaching of gold

    Science.gov (United States)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  6. Biomembrane oxidizing tank used in the process of bacterial heap leaching of uranium ore

    International Nuclear Information System (INIS)

    Meng Yunsheng; Fan Baotuan; Liu Jian; Zheng Ying; Liu Chao

    2004-01-01

    The construction characteristic of biomembrane oxidizing tank and specialty of packing material used in the process of bacterial heap leaching of uranium ore are introduced in this paper. Method for designing biomembrane oxidizing tank, layout principle of aeration system and measurements on running management are summarized

  7. Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code.

    Science.gov (United States)

    Donato, D B; Madden-Hallett, D M; Smith, G B; Gursansky, W

    2017-06-01

    Exposed cyanide-bearing solutions associated with gold and silver recovery processes in the mining industry pose a risk to wildlife that interact with these solutions. This has been documented with cyanide-bearing tailings storage facilities, however risks associated with heap leach facilities are poorly documented, monitored and audited. Gold and silver leaching heap leach facilities use cyanide, pH-stabilised, at concentrations deemed toxic to wildlife. Their design and management are known to result in exposed cyanide-bearing solutions that are accessible to and present a risk to wildlife. Monitoring of the presence of exposed solutions, wildlife interaction, interpretation of risks and associated wildlife deaths are poorly documented. This paper provides a list of critical monitoring criteria and attempts to predict wildlife guilds most at risk. Understanding the significance of risks to wildlife from exposed cyanide solutions is complex, involving seasonality, relative position of ponding, temporal nature of ponding, solution palatability, environmental conditions, in situ wildlife species inventory and provision of alternative drinking sources for wildlife. Although a number of heap leach operations are certified as complaint with the International Cyanide Management Code (Cyanide Code), these criteria are not considered by auditors nor has systematic monitoring regime data been published. Without systematic monitoring and further knowledge, wildlife deaths on heap leach facilities are likely to remain largely unrecorded. This has ramifications for those operations certified as compliance with the Cyanide Code. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Substrate induced respiration in soils developed under four stages of succession on a colliery heap

    Czech Academy of Sciences Publication Activity Database

    Szili-Kovács, T.; Elhottová, Dana

    2007-01-01

    Roč. 35, č. 2 (2007), s. 1169-1172 ISSN 0133-3720 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : respiration * soils * colliery heap Subject RIV: EH - Ecology, Behaviour Impact factor: 1.190, year: 2007

  9. Earthworm succession in afforested colliery spoil heaps in the Sokolov region, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Pižl, Václav

    2001-01-01

    Roč. 9, č. 4 (2001), s. 359-364 ISSN 1061-2971 Institutional research plan: CEZ:AV0Z6066911 Keywords : earthworms * colliery spoil heaps * succession Subject RIV: EH - Ecology, Behaviour Impact factor: 1.011, year: 2001

  10. Analysis of the possibility of isolation of radioactive wastes of Chernobyl nuclear power plant into the deep drills of the Korosten crystalline rocks

    International Nuclear Information System (INIS)

    Shestopalov, V.; Kedrovsky, O.; Shishits, I.

    1996-01-01

    The aim of the offered research: - investigation and proving the possibility to isolate the radioactive wastes (RAW), that were created as a result of the Chernobyl accident, its operation, and shutting down, by placing the wastes into the chinks of the depth up to 4 km. The chinks are supposed to be made in the crystalline rocks of the Korosten massif located near of the Chernobyl NPP. - developing of the basis of the technology and fulfilling the designing work for isolation the RAW in the deep chinks. The basic aims of the researches of the project are the following : Finding out the location of a suitable place. The Ukraine plate's territory (having non-deep occurrences of the crystalline rocks that are minimally subjected to the tectonic destroying), near of the Chernobyl NPP, would be investigated. To solve the problem , the decoding of the aero- and space-photos, geophysical and indicating works, testing drilling of non-deep chinks, and testing works in it have to be done. So, during of the carrying out the project , the following points would be developed: - the geological grounds for creating the RAW isolating system in the deep chinks (taking the conditions at the Nuclear Power Plant), - the best design of the deep chink, - the technology of isolating the RAW in the deep chinks, - the requirements on the monitoring, - the estimations of the ecological safety and efficiency of the chink type systems for RAW isolating

  11. Site investigations, design, construction, operation, shutdown and surveillance of repositories for low- and intermediate-level radioactive wastes in rock cavities

    International Nuclear Information System (INIS)

    1984-01-01

    The report provides an overview and technical guidelines for considerations and for activities to be undertaken for safety assessment, site investigations, design, construction, operation, shutdown and surveillance of repositories for the disposal of low- and intermediate-level radioactive wastes in rock cavities. A generalized sequence of investigations is introduced which proceeds through region and site selection to the stage where the site is confirmed by detailed geoscientific investigations as being suitable for a waste repository. The different procedures and somewhat specific investigative needs with respect to existing mines are dealt with separately. General design, as well as specific requirements with respect to the different stages of design and construction, are dealt with. A review of activities related to the operational and post-operational stages of repositories in rock cavities is presented. The report describes in general terms the procedures related to different stages of disposal operation; also the conditions for shutdown together with essential shutdown and sealing activities and the related safety assessment requirements. Guidance is also given on the surveillance programme which will allow for inspection, testing, maintenance and security of a disposal facility during the operational phase, as well as for the post-operational stage for periods determined as necessary by the national authorities

  12. Conceptual and safety-related questions in the final storage of radioactive waste - a comparison of various types of host rock

    International Nuclear Information System (INIS)

    Kleemann, U.

    2005-01-01

    The German Federal Office for Radiation Protection (BfS) in early November published the synthesis report (BfS 2005) about the conceptual and safety-related specific questions associated with the final storage of radioactive waste. In addition to a condensed version of twelve individual projects, the report contains a description of the results of the peer review and the workshops carried out, in particular an evaluation comparing different types of host rock in Germany. The whole project constitutes a comprehensive documentation of the current state of the art. Findings are expressed at a general level referring neither to the suitability of any specific repository site nor to that of salts as a repository formation, but covering all potential repository formations in deep geologic strata in Germany. The limits to and possibilities of, generic comparisons of various types of host rock are shown. It si seen that, in principle, none of the host rock varieties in Germany would be preferable to others. Numerous problems can be solved only for specific sites, thus requiring site comparisons. While some questions indicate a need for regulatory treatment, the need for basic research is considered to be low. The contribution presents the main findings made in each of the specific projects and the evaluations by the Office. (orig.)

  13. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables

  14. Rock solidification method

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Funakoshi, Toshio; Inagaki, Yuzo; Hashimoto, Yasuhide.

    1985-01-01

    Purpose: To convert radioactive wastes into the final state for storage (artificial rocks) in a short period of time. Method: Radioactive burnable wastes such as spent papers, cloths and oils and activated carbons are burnt into ashes in a burning furnace, while radioactive liquid wastes such as liquid wastes of boric acid, exhausted cleaning water and decontaminating liquid wastes are powderized in a drying furnace or calcining furnace. These powders are joined with silicates as such as white clay, silica and glass powder and a liquid alkali such as NaOH or Ca(OH) 2 and transferred to a solidifying vessel. Then, the vessel is set to a hydrothermal reactor, heated and pressurized, then taken out about 20 min after and tightly sealed. In this way, radioactive wastes are converted through the hydrothermal reactions into aqueous rock stable for a long period of time to obtain solidification products insoluble to water and with an extremely low leaching rate. (Ikeda, J.)

  15. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 18. Facility construction feasibility and costs by rock type

    International Nuclear Information System (INIS)

    1978-04-01

    The results of a study that compared the general engineering feasibility and unit costs associated with sinking shafts and mining storage rooms in the four rock types (salt, granite, shale, basalt) are presented in this volume. The report includes a discussion of the general effects of rock characteristics on shaft and mine design, the application of these design considerations to the specific designs developed for the Draft GEIS, shaft and mine construction techniques, and the unit cost comparison. The repository designs upon which this comparison was based are presented in other volumes of this series

  16. Influence of the Trojan Nickel Mine on surface water quality, Mazowe valley, Zimbabwe: Runoff chemistry and acid generation potential of waste rock

    Science.gov (United States)

    Lupankwa, Keretia; Love, David; Mapani, Benjamin; Mseka, Stephen; Meck, Maideyi

    The impacts of mining on the environment depend on the nature of the ore body, the type of mining and the size of operation. The focus of this study is on Trojan Nickel Mine which is located 90 km north of Harare, Zimbabwe. It produces nickel from iron, iron-nickel and copper-nickel sulphides and disposes of waste rock in a rock dump. Surface water samples were taken at 11 points selected from a stream which drains the rock dump, a stream carrying underground water and the river into which these streams discharge. Samples were analysed for metals using atomic absorption spectrometry, for sulphates by gravitation and for carbonates and bicarbonates by back titration. Ninteen rock samples were collected from the dump and static tests were performed using the Sobek acid base accounting method. The results show that near neutral runoff (pH 7.0-8.5) with high concentrations of sulphate (over 100 mg/L) and some metals (Pb > 1.0 mg/L and Ni > 0.2 mg/L) emanates from the dump. This suggests that acid mine drainage is buffered in the dump (probably by carbonates). This is supported by the static tests, which show that the fine fraction of dump material neutralises acid. Runoff from the dump flows into a pond. Concentrations of sulphates and metals decrease after the dump runoff enters the pond, but sufficient remains to increase levels of calcium, sulphate, bicarbonate, iron and lead in the Pote River. The drop in concentrations at the pond indicates that the settling process has a positive effect on water quality. This could be enhanced by treating the pond water to raise pH, thus precipitating out metals and decreasing their concentrations in water draining from the pond.

  17. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    Science.gov (United States)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  18. FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock. Final report

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J. M.; Campos, R.; Cuevas, A. M.; Fernandez, E.

    2000-01-01

    FEBEX has the multiple objective of demonstrating the feasibility of manufacturing, handling and constructing the engineered barriers and of developing codes for the thermo-hydro-mechanical and thermo-hydro-geochemical performance assessment of a deep geological repository for high level radioactive wastes. These objectives require integrated theoretical and experimental development work. The experimental work consists of three parts: an in situ test, a mock-up test and a series of laboratory tests. The experiments is based on the Spanish reference concept for crystalline rock, in which the waste capsules are placed horizontally in drifts surround by high density compacted bentonite blocks. In the two large-scale tests, the thermal effects of the wastes were simulated by means of heaters; hydration was natural in the in situ test and controlled in the mock-up test. The large-scale tests, with their monitoring systems, have been in operation for more than two years. the demonstration has been achieved in the in situ test and there are great expectation that numerical models sufficiently validated for the near-field performance assessment will be achieved. (Author)

  19. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum).

    Science.gov (United States)

    Nishanth, D; Biswas, D R

    2008-06-01

    An attempt was made to study the efficient use of rice straw and indigenous source of phosphorus and potassium in crop production through composting technology. Various enriched composts were prepared using rice straw, rock phosphate (RP), waste mica and bioinoculant (Aspergillus awamori) and kinetics of release of phosphorus and potassium from enriched composts and their effect on yield and nutrient uptake by wheat (Triticum aestivum) were carried out. Results showed sharp increases in release in water-soluble P and K from all the composts at 8th to 12th day of leaching, thereafter, it decreased gradually. Maximum release of water-soluble P and K were obtained in ordinary compost than enriched composts during the initial stages of leaching, but their differences narrowed down at latter stages. Data in pot experiments revealed that enriched composts performed poorly than diammonium phosphate during initial stages of crop growth, but they out yielded at the latter stages, particularly at maturity stage, as evident from their higher yield, uptake, nutrient recoveries and fertility status of P and K in soils. Moreover, enriched composts prepared with RP and waste mica along with A. awamori resulted in significantly higher biomass yield, uptake and recoveries of P and K as well as available P and K in soils than composts prepared without inoculant. Results indicated that enriched compost could be an alternate technology for the efficient management of rice straw, low-grade RP and waste mica in crop production, which could help to reduce the reliance on costly chemical fertilizers.

  20. FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock

    Energy Technology Data Exchange (ETDEWEB)

    Alberid, J; Barcala, J M; Campos, R; Cuevas, A M; Fernandez, E [Ciemat. Madrid (Spain)

    2000-07-01

    FEBEX has the multiple objective of demonstrating the feasibility of manufacturing, handling and constructing the engineered barriers and of developing codes for the thermo-hydro-mechanical and thermo-hydro-geochemical performance assessment of a deep geological repository for high level radioactive wastes. These objectives require integrated theoretical and experimental development work. The experimental work consists of three parts: an in situ test, a mock-up test and a series of laboratory tests. The experiments is based on the Spanish reference concept for crystalline rock, in which the waste capsules are placed horizontally in drifts surround by high density compacted bentonite blocks. In the two large-scale tests, the thermal effects of the wastes were simulated by means of heaters; hydration was natural in the in situ test and controlled in the mock-up test. The large-scale tests, with their monitoring systems, have been in operation for more than two years. the demonstration has been achieved in the in situ test and there are great expectation that numerical models sufficiently validated for the near-field performance assessment will be achieved. (Author)

  1. Effect of channelling on water balance, oxygen diffusion and oxidation rate in mine waste rock with an inclined multilayer soil cover.

    Science.gov (United States)

    Song, Qing; Yanful, Ernest K

    2010-05-20

    Engineered soil covers provide an option to mitigate acid rock drainage through reduced water flow and gaseous oxygen influx to underlying mine waste. Channels such as fissures, cracks or fractures developed in the barrier may influence the long-term performance of the soil cover. However, limited published information is available on the extent to which soil cover performance is impacted by these fissures and cracks. This study was conducted to investigate the effect of channelling in a barrier layer on water flow and oxygen transport in a soil cover. Two inclined (a slope of 20%) multilayer soil covers were examined under laboratory conditions. One cover had a 10-cm wide sand-filled channel in a compacted barrier layer (silty clay) at the upslope section, while the other cover was a normal one without the channel pathway. The soil covers were installed in plastic boxes measuring 120 cm x 120 cm x 25 cm (width x height x thickness). The sand-filled channel was designed to represent the aggregate of fissures and cracks that may be present in the compacted barrier. The soil covers were subjected to controlled drying and wetting periods selected to simulate field situation at the Whistle mine site near Capreol, Ontario, Canada. The measured results indicated that interflow decreased from 72.8% of the total precipitation in the soil cover without channel flow to 35.3% in the cover with channel flow, and percolation increased from zero in the normal soil cover to 43.0% of the total precipitation in the cover with channel flow. Gaseous oxygen transfer into the waste rock below the cover soils was 1091 times greater in the cover with channel than in the soil cover without channel. The channel pathway present in the barrier layer acted as a major passage for water movement and gaseous oxygen diffusion into the waste rock layer, thus decreasing the performance of the soil cover. The spacing of the channel with respect to the length of the test box is similar to those found

  2. Effect of channelling on water balance, oxygen diffusion and oxidation rate in mine waste rock with an inclined multilayer soil cover

    Science.gov (United States)

    Song, Qing; Yanful, Ernest K.

    2010-05-01

    Engineered soil covers provide an option to mitigate acid rock drainage through reduced water flow and gaseous oxygen influx to underlying mine waste. Channels such as fissures, cracks or fractures developed in the barrier may influence the long-term performance of the soil cover. However, limited published information is available on the extent to which soil cover performance is impacted by these fissures and cracks. This study was conducted to investigate the effect of channelling in a barrier layer on water flow and oxygen transport in a soil cover. Two inclined (a slope of 20%) multilayer soil covers were examined under laboratory conditions. One cover had a 10-cm wide sand-filled channel in a compacted barrier layer (silty clay) at the upslope section, while the other cover was a normal one without the channel pathway. The soil covers were installed in plastic boxes measuring 120 cm × 120 cm × 25 cm (width × height × thickness). The sand-filled channel was designed to represent the aggregate of fissures and cracks that may be present in the compacted barrier. The soil covers were subjected to controlled drying and wetting periods selected to simulate field situation at the Whistle mine site near Capreol, Ontario, Canada. The measured results indicated that interflow decreased from 72.8% of the total precipitation in the soil cover without channel flow to 35.3% in the cover with channel flow, and percolation increased from zero in the normal soil cover to 43.0% of the total precipitation in the cover with channel flow. Gaseous oxygen transfer into the waste rock below the cover soils was 1091 times greater in the cover with channel than in the soil cover without channel. The channel pathway present in the barrier layer acted as a major passage for water movement and gaseous oxygen diffusion into the waste rock layer, thus decreasing the performance of the soil cover. The spacing of the channel with respect to the length of the test box is similar to those

  3. A Coupled Model for Solution Flow and Bioleaching Reaction Based on the Evolution of Heap Pore Structure

    Directory of Open Access Journals (Sweden)

    Shenghua Yin

    2014-01-01

    Full Text Available Based on the basic seepage law, equations have been derived to descript the solution flow within the copper ore heap which is treated as anisotropy porous media. The relationship between heap permeability and pore ratio has been revealed. Given the consideration of cover pressure and particle dissolution, pore evolution model has been set up. The pore evolution mechanism, due to the process of dissolution, precipitation, blockage, collapse, and caking, has been investigated. The comprehensive model for pore evolution and solution flow under the effect of solute transport and leaching reaction has been established. A trapezoidal heap was calculated, and the estimated results show that permeability decreases with the decreasing of pore ratio. Therefore, the permeability of the heap with small particles is relatively low because of its low pore ratio. Furthermore, permeability and height are found to be the two main factors influencing the solution flow.

  4. New technology of bio-heap leaching uranium ore and its industrial application in Ganzhou uranium mine

    International Nuclear Information System (INIS)

    Fan Baotuan; Meng Yunsheng; Liu Jian; Meng Jin; Li Weicai; Xiao Jinfeng; Chen Sencai; Du Yuhai; Huang Bin

    2006-10-01

    Bioleaching mechanism of uranium ore is discussed. Incubation and selection of new strain, biomembrane oxidizing tank--a kind of new equipment for bacteria culture and oxidation regeneration of leaching agent are also introduced. The results of industrial experiment and industrial production are summarized. Compared with conventional heap leaching, bioleaching period and acid amount are reduced, oxidant and leaching agent are saved, and uranium concentration in leaching solution is increased. It is the first time to realize industrial production by bio-heap leaching in Chinese uranium mine. New equipment-biomembrane oxidizing tank give the basis of bio-heap leaching industrial application. Bio-heap leaching process is an effective technique to reform technique of uranium mine and extract massive low-content uranium ore in China. (authors)

  5. Questa baseline and pre-mining ground-water quality investigation. 19. Leaching characteristics of composited materials from mine waste-rock piles and naturally altered areas near Questa, New Mexico

    Science.gov (United States)

    Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.

    2007-01-01

    The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the

  6. The copper spoil heap Knappenberg, Austria, as a model for metal habitats – Vegetation, substrate and contamination

    Energy Technology Data Exchange (ETDEWEB)

    Adlassnig, Wolfram; Weiss, Yasmin S. [University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstraße 14, A-1090 Vienna (Austria); Sassmann, Stefan [University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstraße 14, A-1090 Vienna (Austria); University of Exeter, College of Life and Environmental Sciences, Biosciences, Stocker Road, Exeter EX4 4QD (United Kingdom); Steinhauser, Georg [Leibniz University Hannover, Institute of Radioecology and Radiation Protection, Herrenhäuser Straße 2, D30419 Hannover (Germany); Hofhansl, Florian [University of Vienna, Department of Microbiology and Ecosystem Science, Althanstraße 14, A-1090 Vienna (Austria); Instituto Nacional de Pesquisas da Amazônia, Coordenação de Dinâmica Ambiental, Manaus (Brazil); Baumann, Nils [Helmholtz-Zentrum Dresden-Rossendorf, Division of Biogeochemistry, Bautzner Landstraße 400, D-01328 Dresden (Germany); Lichtscheidl, Irene K. [University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstraße 14, A-1090 Vienna (Austria); Lang, Ingeborg, E-mail: ingeborg.lang@univie.ac.at [University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstraße 14, A-1090 Vienna (Austria)

    2016-09-01

    Historic mining in the Eastern Alps has left us with a legacy of numerous spoil heaps hosting specific, metal tolerant vegetation. Such habitats are characterized by elevated concentrations of toxic elements but also by high irradiation, a poorly developed substrate or extreme pH of the soil. This study investigates the distribution of vascular plants, mosses and lichens on a copper spoil heap on the ore bearing Knappenberg formed by Prebichl Layers and Werfener Schist in Lower Austria. It serves as a model for discriminating between various ecological traits and their effects on vegetation. Five distinct clusters were distinguished: (1) The bare, metal rich Central Spoil Heap was only colonised by highly resistant specialists. (2) The Northern and (3) Southern Peripheries contained less copper; the contrasting vegetation was best explained by the different microclimate. (4) A forest over acidic bedrock hosted a vegetation overlapping with the periphery of the spoil heap. (5) A forest over calcareous bedrock was similar to the spoil heap with regard to pH and humus content but hosted a vegetation differing strongly to all other habitats. Among the multiple toxic elements at the spoil heap, only Cu seems to exert a crucial influence on the vegetation pattern. Besides metal concentrations, irradiation, humidity, humus, pH and grain size distribution are important for the establishment of a metal tolerant vegetation. The difference between the species poor Northern and the diverse Southern Periphery can be explained by the microclimate rather than by the substrate. All plant species penetrating from the forest into the periphery of the spoil heap originate from the acidic but not from the calcareous bedrock. - Highlights: • Strong impact on plant diversity by isolation and extreme abiotic conditions • Both, microclimate and substrate explain species distribution. • Increased cellular metal tolerance of plants from the Central Spoil Heap • Among toxic elements

  7. An overview of a possible approach to calculate rock movements due to earthquakes at Finnish nuclear waste repository sites

    International Nuclear Information System (INIS)

    LaPointe, P.R.; Cladouhos, T.T.

    1999-02-01

    The report outlines a possible approach to estimating rock movements due to earthquakes that may diminish canister safety. The method is based upon an approach developed for studying similar problems in Sweden at three generic Swedish sites. In the first part of the report, the problem of rock movements during earthquakes is described. The second section of the report outlines the approach used to estimate rock movements in Sweden, and discusses how the approach could be adapted to evaluating movements at Finnish repositories. This section also discusses data needs and potential problems in applying the approach in Finland. The next section presents some simple earthquake calculations for the four Finnish sites. These simulations use the discrete fracture network model geometric parameters developed by VTT (Technical Research Centre of Finland) for the use in hydrological calculations. The calculations are not meant for performance assessment purposes for reasons discussed in the report, but are designed to show (1) the importance of fracture size, intensity and orientation on induced displacement magnitudes; (2) the need for additional studies with regards to fracture size and intensity; and (3) the need to resolve issues regarding the role of post-glacial faulting, glacial rebound and tectonic processes in present-day and future earthquakes. (orig.)

  8. Can we rely on Swedish granites and gneisses as sage host rock for hazardous waste disposal during future geological periods?

    International Nuclear Information System (INIS)

    Morfeldt, C.O.; Morfeldt, D.

    1991-01-01

    The rapid growth of our industrial societies, together with an increased awareness and sense of responsibility towards the environment in most countries, has made us being to understand the urgency of halting and preventing further pollution and destruction of irreparable environments. The main issue sat present focus on neutralizing the harmful effects of toxic waste by isolating it from the biosphere for long periods of time, perhaps for many hundreds of thousands of years. These issues no longer focus on radioactive substances and their harmful ionizing radiation effects but also on heavy alloys and chemical pollutants generated during transformation processes of different types of waste, or through incineration of waste. Ash and sedimentary deposits from sewage plants for example, also contain heavy alloys. (au)

  9. Characterization of steel grit recovered from ornamental rocks waste by magnetic separation; Caracterizacao da granalha de aco recuperada do residuo de rochas ornamentais por separacao magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Junca, E.; Telles, V.B.; Rodrigues, G.F.; Oliveira, J.R. de; Tenorio, J.A.S., E-mail: eduardojunca@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2010-07-01

    The aim of this work is characterization of steel grit recovered from ornamental rock waste by magnetic separation. The magnetic separation was realized in three steps: first, using a high intensity wet magnetic separator, which used only the remaining magnetic field of equipment. In the second step, the magnetic material obtained in the first phase was subjected to a new manual magnetic separation using rare earth magnets. In a third step, magnetic material obtained with rare earth magnets was subjected to manual magnetic separation using ferrite magnets. After the magnetic separation, the material was sent to characterization which was obtained by chemical analysis, scanning electron microscopy, X-ray diffraction and size analysis. The size analysis showed that the concentrate range from 0,5 to 563,67 {mu}m with 4 wt.% over 100 {mu}m and content metallic iron of 93 wt%. (author)

  10. Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes

    International Nuclear Information System (INIS)

    Xuegang Wang; Zhongkui Zhou

    2017-01-01

    We evaluated uranium bioleaching from low-grade, granite-type uranium ore using mixed acidophilic microbes from uranium mine leachate. A 4854-ton plant-scale heap bioleaching process achieved sustained leaching with a uranium leaching efficiency of 88.3% using a pH of 1.0-2.0 and an Fe"3"+ dosage of 3.0-5.5 g/L. Acid consumption amounted to 25.8 g H_2SO_4 kg"-"1 ore. Uranium bioleaching follows a diffusion-controlled kinetic model with a correlation coefficient of 0.9136. Almost all uranium was dissolved in aqueous solution, except those encapsulated in quartz particles. Therefore, heap bioleaching by mixed acidophilic microbes enables efficient, economical, large-scale recovery of uranium from low-grade ores. (author)

  11. Heap Leaching Technology. Moving the Frontier for Treatment: Applications in Niger and Namibia

    International Nuclear Information System (INIS)

    Thiry, Jacques; Bustos, Sergio

    2014-01-01

    • Uranium is being successfully extracted from low grade ores by heap leaching operations; • The response of the reaction system both at acid or alkaline leaching conditions is well know; • Proper characterization of ore feed is required to anticipate agglomeration quality, heap permeability and stability, and uranium dissolution kinetics and final recovery; • Many laboratory, bench scale tests and pilot plant demonstration at proper scale are necessary to provide suitable design parameters and to fit modeling efforts to actual results; • Large space for optimization opportunities to reduce ore throughput, water and reagents consumption; • Proper effluent solution management and control as well as proper residue disposal are required for safe and clean operation

  12. Environmental Impact and Remediation of Uranium Tailings and Waste Rock Dumps at Mailuu-Suu in Kyrgyzstan

    International Nuclear Information System (INIS)

    Kunze, C.; Walter, U.; Wagner, F.; Schmidt, P.; Barnekow, U.; Gruber, A.

    2011-01-01

    This paper describes the environmental situation in the former uranium mining and milling region of Mailuu-Suu (Kyrgyzstan), the approach to environmental remediation of the waste facilities (tailings ponds and waste dumps) and the results achieved so far. It starts with an outline of the history of the environmental remediation project which has received international attention and is seen as a pilot project for further remediation activities of former uranium mining and milling sites in the region. Apart from technical aspects, the paper draws conclusions with respect to the administrative environment, institutional capacity building and the local availability of resources needed to successfully implement a complex remediation project. (author)

  13. Performance assessment of a single-layer moisture store-and-release cover system at a mine waste rock pile in a seasonally humid region (Nova Scotia, Canada).

    Science.gov (United States)

    Power, Christopher; Ramasamy, Murugan; Mkandawire, Martin

    2018-03-03

    Cover systems are commonly applied to mine waste rock piles (WRPs) to control acid mine drainage (AMD). Single-layer covers utilize the moisture "store-and-release" concept to first store and then release moisture back to the atmosphere via evapotranspiration. Although more commonly used in semi-arid and arid climates, store-and-release covers remain an attractive option in humid climates due to the low cost and relative simplicity of installation. However, knowledge of their performance in these climates is limited. The objective of this study was to assess the performance of moisture store-and-release covers at full-scale WRPs located in humid climates. This cover type was installed at a WRP in Nova Scotia, Canada, alongside state-of-the-art monitoring instrumentation. Field monitoring was conducted over 5 years to assess key components such as meteorological conditions, cover material water dynamics, net percolation, surface runoff, pore-gas, environmental receptor water quality, landform stability and vegetation. Water balances indicate small reductions in water influx to the waste rock (i.e., 34 to 28% of precipitation) with the diminished AMD release also apparent by small improvements in groundwater quality (increase in pH, decrease in sulfate/metals). Surface water quality analysis and field observations of vegetative/aquatic life demonstrate significant improvements in the surface water receptor. The WRP landform is stable and the vegetative cover is thriving. This study has shown that while a simple store-and-release cover may not be a highly effective barrier to water infiltration in humid climates, it can be used to (i) eliminate contaminated surface water runoff, (ii) minimize AMD impacts to surface water receptor(s), (iii) maintain a stable landform, and (iv) provide a sustainable vegetative canopy.

  14. Studying microfungi-mineral interactions in sulphide-bearing waste-rock dumps: a 7 years survey in the Libiola mine, North-Eastern Italy

    Science.gov (United States)

    Marescotti, P.; Cecchi, G.; Di Piazza, S.; Lucchetti, G.; Zotti, M.

    2015-12-01

    Sulphide-bearing waste-rock dumps represent complex geological systems characterised by high percentages of low-grade mineralisations and non-valuable sulphides (such as pyrite and pyrrhotite). The sulphide oxidation triggers acid mine drainage (AMD) processes and the release of several metals of environmental concern. The severe physicochemical properties of these metal-contaminated environments tend to inhibit soil forming processes and represent an important stress factor for the biotic communities by exerting a strong selective pressure. Some macro- and micro-fungi are pioneer and extremophile organisms, which may survive and tolerate high concentrations of toxic metals in contaminated environments. Many studies show the fungal capability to bioaccumulate, biosorb, and store in their cells a high concentration of ecotoxic metals. A 7 years multidisciplinary survey was carried out in the Libiola sulphide mine. The results evidenced that the waste rock dumps of the area are characterized by an extremely poor flora and a specific mycobiota, due to the soil acidity, high concentration of trace metals, and unavailability or paucity of nutrients and organic matter. Our studies allowed the complete mineralogical, geochemical, and mycological characterization of one of the biggest dumps of the mine. 30 microfungal vital strains were isolated in pure cultures and studied with molecular and morphological approach, for their identification. The results allowed the isolation of some rare and important extremophilic species. Penicillium was the most recurrent genus, together with Trichoderma and Cladosporium. In particular, Penicillium glandicola is a rare species previously isolated from cave or arid environments, whereas P. brevicompactum is one of the most important fungi for metal corrosion. Hence, some bioaccumulation tests allowed to select a Trichoderma harzianum strain efficient to uptake Cu and Ag from pyrite-bearing soils, highlighting its central role in fungal

  15. Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clay-rock in the context of a nuclear waste geological disposal

    International Nuclear Information System (INIS)

    Lassin, A.; Dymitrowska, M.; Azaroual, M.

    2011-01-01

    In nuclear waste geological disposals, large amounts of hydrogen (H 2 ) are expected to be produced by different (bio-)geochemical processes. Depending on the pressure generated by such a process, H 2 could be produced as a gas phase and displace the neighbouring pore water. As a consequence, a water-unsaturated zone could be created around the waste and possibly affect the physical and physic-chemical properties of the disposal and the excavation disturbed zone around it. The present study is the first part of an ongoing research program aimed at evaluating the possible chemical evolution of the pore water-minerals-gas system in such a context. The goal of this study was to evaluate, in terms of thermodynamic equilibrium conditions, the geochemical disturbance of the pore water due to variations in hydrogen pressure, temperature and relative humidity. No heterogeneous reactions involving mineral phases of the clay-rock or reactive surface sites were taken into account in the thermodynamic analysis. In the case sulphate reduction reaction is allowed, geochemical modelling results indicate that the main disturbance is the increase in pH (from around 7 up to more than 10) and an important decrease in the redox potential (Eh) related to hydrogen dissolution. This occurs from relatively low H 2 partial pressures (∼1 bar and above). Then, temperature and relative humidity (expressed in terms of capillary pressure) further displace the thermodynamic equilibrium conditions, namely the pH and the aqueous speciation as well as saturation indices of mineral phases. Finally, the results suggest that the generation of hydrogen, combined with an increase in temperature (between 30 deg. C and 80 deg. C) and a decrease in relative humidity (from 100% to 30%), should increase the chemical reactivity of the pore water-rock-gas system. (authors)

  16. Technological project of serpentine raw material milling from Dobšiná heaps

    Directory of Open Access Journals (Sweden)

    Alena Pietriková

    2005-11-01

    Full Text Available Serpentine heaps in the surrounding of Dobšiná are an old ecological problem of the city and at the same time a suitable material for the production of MgCl2 and SiO2. The technology of the production is based on the chemical processing of the raw material, which is preceded by the raw material preparation comprising of the mechanical and hydraulic sorting, milling and the magnetic separation operations.

  17. Studies of thermal and radiation effects on water-rock systems related to envisaged isolation of high level radioactive wastes in crystalline formations of the Ukrainian shield (Ukraine)

    International Nuclear Information System (INIS)

    Litovchenko, A.; Kalinichenko, E.; Ivanitsky, V.; Bagmut, M.; Plastinina, M.; Zlobenko, B.

    2000-01-01

    In this work there are presented the general data on the study of thermal and radiation effects in minerals separated from rocks of the Ukrainian shield. These minerals (quartz, feldspar, amphiboles, apatite, biotite, kaolinite, etc.), exposed by doses 10 4 , 10 6 , 10 8 Gy by Co 60 source, were studied by a complex of physical methods. Special attention was given to the study of radiation defects formation (electron-hole paramagnetic centres, OH- groups destruction, changes in a charge state of ions) in a mineral structure. The mentioned radiation defects were used in the extrapolation method. The connection between structural peculiarities of minerals (containing uranium and thorium) and processes of their metamyctization are considered. It is demonstrated that the minerals, which have large channels or interlayer spaces in their structure, as a rule, are not metamyct. Using the spectroscopic methods of the extrapolation it is shown that the crystalline massifs, which do not have detectable amounts of hydroxyl containing minerals (biotite, amphibole, etc.) and ions Fe 2- , are perspective for long-lived radioactive wastes (RAW) dumping. As it follows from obtained results, the rocks, containing minerals with OH- groups and gas-liquid inclusions, should be considered as the 'mineral-water' system. (author)

  18. A comparison study of single and double layer repositories for high level radioactive wastes within a saturated and discontinuous granitic rock mass

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Choi, Jong Won; Bae, Dae Suk

    2004-02-01

    The present study is to analyze and compare a long term thermohydro mechanical interaction behavior of a single layer and a double layer repository for high level radioactive wastes within a saturated and discontinuous granitic rock mass, and then to contribute this understanding to the development of a Korean disposal concept. The model includes a saturated and discontinuous granitic rock mass, PWR spent nuclear fuel in a disposal canister surrounded by compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within the model. Joint set 1 includes joints of 56 .deg. dip angle, spaced at 20 m, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of .deg. dip angle, spaced at 20 m. The two dimensional distinct element code, UDEC is used for the analysis. To understand the joint behavior adjacent to the repository cavern, Barton-Bandis joint model is used. Effect of the decay heat from PWR spent fuels on the repository model has been analyzed, and a steady state flow algorithm is used for the hydraulic analysis

  19. Generalized stress field in granular soils heap with Rayleigh–Ritz method

    Directory of Open Access Journals (Sweden)

    Gang Bi

    2017-02-01

    Full Text Available The stress field in granular soils heap (including piled coal will have a non-negligible impact on the settlement of the underlying soils. It is usually obtained by measurements and numerical simulations. Because the former method is not reliable as pressure cells instrumented on the interface between piled coal and the underlying soft soil do not work well, results from numerical methods alone are necessary to be doubly checked with one more method before they are extended to more complex cases. The generalized stress field in granular soils heap is analyzed with Rayleigh–Ritz method. The problem is divided into two cases: case A without horizontal constraint on the base and case B with horizontal constraint on the base. In both cases, the displacement functions u(x, y and v(x, y are assumed to be cubic polynomials with 12 undetermined parameters, which will satisfy the Cauchy's partial differential equations, generalized Hooke's law and boundary equations. A function is built with the Rayleigh–Ritz method according to the principle of minimum potential energy, and the problem is converted into solving two undetermined parameters through the variation of the function, while the other parameters are expressed in terms of these two parameters. By comparison of results from the Rayleigh–Ritz method and numerical simulations, it is demonstrated that the Rayleigh–Ritz method is feasible to study the generalized stress field in granular soils heap. Solutions from numerical methods are verified before being extended to more complicated cases.

  20. The current state of the heaps in Rosicko-Oslavany coal-field and the possibilities of their utilization; Soucasny stav hald v Rosicko-oslavanskem uhelnem reviru a moznosti jejich vyuziti

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, M. [Univerzita Palackeho v Olomouci, Prirodovedecka fakulta, Katedra rozvojovych studii, 77146 Olomouc (Czech Republic)

    2013-04-16

    The purpose of the article is to assess the importance of heaps for the land Rosicko-Oslavany coal-field. The heap is an anthropogenic land-form resulting from the accumulation of mineral resources extracted from the land. The heap shows as an unusual geomorfophological shape, which does not belong to the environment at first glance. In many respects the heap acts as a barrier for the other development because the heap may contains a dangerous material or may be unstable because of wrong storage of the material. The heaps in studied region stem from the black coal mining. The totals of 11 heaps were discovered during the field reconnaissance. While the heap Jindrich has a good potential for the other use, the heap Kukla represents a burden for its nearest surroundings. (authors)

  1. Radiation damage studies on synthetic NaCl crystals and natural rock salt for waste disposal applications

    International Nuclear Information System (INIS)

    Klaffky, R.W.; Swyler, K.J.; Levy, P.W.

    1979-01-01

    Radiation damage studies are being made on synthetic NaCl and natural rock salt crystals from various localities, including potential repository sites. Measurements are being made with equipment for recording the radiation induced F-center and colloid particle absorption bands during irradiation with 1.5 MeV electrons at various temperatures. A technique has been developed to resolve the overlapping F-center and colloid bands. The resulting spectra and curves of absorption vs. dose provide information on colloid particle size and concentration, activation energies for processes occurring during colloid formation, and additional data suggesting that both strain and radiation induced dislocations contribute to the colloid formation process

  2. Experimental studies on the migration of radionuclides of the elements I, Sr, Cs, Co and Pd in the roof rock of the projected waste repository at Gorleben

    International Nuclear Information System (INIS)

    Klotz, D.; Lang, H.; Moser, H.

    1985-07-01

    The studies were intended to provide information on the sorptive properties of 15 samples of fine-grain and medium-grain sands with regard to the radionuclides of I, Sr, Cs, Co, and Pd, and on their hydraulic properties. The samples were taken from the geologic formations in the area surrounding the projected waste repository in the Gorleben salt mine, at depth of up to 250 m down from terrain surface, and were analysed by means of column and batch experiments. Further goals were to determine the radionuclide migration as a function of flow velocity of the groundwater, and of sand compactness, as well as the effects of carrier ions and main groundwater contituents. The margins of retardation factors for the various radionuclides are given. One important result of the studies is that it could be expeimentally verified that there is the process of quasi irreversible sorption, i.e. it could be shown that desorption of radionuclides from natural, unconsolidated rock proceeds very much slowlier than sorption, so that this finding is of great significance to the safety assessment of a radioactive waste repository in geologic formations. (orig./HP) [de

  3. The disposal of high level radioactive waste in argillaceous host rocks identification of parameters, constraints and geological assessment priorities

    International Nuclear Information System (INIS)

    Horseman, S.T.

    1994-01-01

    The purpose of this report, commissioned by ENRESA, is to examine the characteristics, properties and responses of argillaceous media (clays and more indurated mudrocks) in some detail in order to identify the main parameters that will influence the radiological safety of a deep underground facility for the disposal of high-level radioactive wastes (HLW) and to highlight possible constraints and other important issues relating to the construction, operation and performance of such a facility

  4. Radiological hazards of TENORM in precipitated calcium carbonate generated as waste at nitrophosphate fertilizer plant in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Javied, Sabiha, E-mail: sabihajavied@yahoo.com [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Akhtar, Nasim [Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad (Pakistan); Tufail, M. [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan)

    2011-08-15

    Highlights: {yields} NORM (naturally occurring radioactive material) in phosphate rock (PR) is converted to TENORM (technologically enhanced naturally occurring radioactive material) as a result of chemical processing of the PR to make phosphate fertilizers. {yields} Precipitated calcium carbonate (PCC) is generated as process waste during nitrophosphate fertilizer production, which contains TENORM. {yields} Activity concentration of the radionuclide in the TENORM was measured using gamma spectrometry and radiological hazard was derived from the measured activities. {yields} Radiological pollution in the environment from TENORM in the PCC has been addressed. {yields} Restricted application of the PCC dose not pose a significant radiological hazard. -- Abstract: The NORM (naturally occurring radioactive material) in phosphate rock is transferred as TENORM (technologically enhanced naturally occurring radioactive material) to phosphatic fertilizers and to the waste generated by the chemical processes. The waste generated at the NP (nitrophosphate) fertilizer plant at Multan in Pakistan is PCC (precipitated calcium carbonate). Thirty samples of the PCC were collected from the heaps of the waste near the fertilizer plant. Activity concentrations of radionuclides in the waste samples were measured by using the technique of gamma ray spectrometry consisting of coaxial type HPGe (high purity germanium) detector coupled with a PC (personal computer) based MCA (multichannel analyzer) through a spectroscopy amplifier. Activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K in the waste samples were determined to be 273 {+-} 23 (173-398), 32 {+-} 4 (26-39) and 56 {+-} 5 (46-66) Bq kg{sup -1} respectively. The activity concentration of {sup 226}Ra in the PCC waste was found to be higher than that in naturally occurring calcium carbonate (limestone and marble) and in worldwide soil. Radiological hazard was estimated from indoor and outdoor exposure to gamma rays from

  5. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 3: geosphere model

    International Nuclear Information System (INIS)

    Stanchell, F.W.; Davison, C.C.; Melnyk, T.W.; Scheier, N.W.; Chan, T.

    1996-06-01

    This report discusses the approach we used to develop a model of the 3-D network of transport pathways through the geosphere from the location of a nuclear fuel waste disposal vault at a depth of 500 m in a hypothetical permeable plutonic rock mass. The transport pathways correspond to the pathways of advective groundwater movement through this permeable rock from the disposal vault to discharge areas at groundsurface. In this analysis we assumed the permeability of the region of rock immediately surrounding the waste emplacement areas of the disposal vault was considerably higher than the permeability used in the geosphere model for the EIS case study. We also assumed the porosity of the rock could fall within the range 10 -3 to 10 -5 to represent the range of effects by alternative conceptual models of flow through fracture networks in the rock. Advection by the groundwater flow field in the rock surrounding the disposal vault entirely controls the rate and direction of transport from the vault in this geosphere model. The hydrogeological environment we assumed for this geosphere model is entirely hypothetical, unlike the model we developed for the EIS case study which was a conservative, yet realistic, representation of the hydrogeological conditions encountered at the site of our Underground Research Laboratory in the Whiteshell Research Area. We used the same geometry of rock structures for this model as we used in the geosphere model for the EIS case study but we assigned hydrogeologic properties to the various rock domains of the model that result in relatively rapid groundwater flow from the depth of the disposal vault to surface discharge areas. This report desribes the modelling and sensitivity analyses we performed with the MOTIF finite element model to develop the GEONET transport network for this hypothetical geosphere situation. The geosphere model accounts for the effects of natural geothermal heat and vault-induced heat on transport pathways

  6. Effects of Pregnant Leach Solution Temperature on the Permeability of Gravelly Drainage Layer of Heap Leaching Structures

    Directory of Open Access Journals (Sweden)

    mehdi amini

    2013-12-01

    Full Text Available In copper heap leaching structures, the ore is leached by an acidic solution. After dissolving the ore mineral, the heap is drained off in the acidic solution using a drainage system (consisting of a network of perforated polyethylene pipes and gravelly drainage layers and is, then, transferred to the leaching plant for copper extraction where the copper is extracted and the remaining solution is dripped over the ore heap for re-leaching. In this process, the reaction between the acidic solution and copper oxide ore is exothermal and the pregnant leach solution (PLS, which is drained off the leaching heap, has a higher temperature than the dripped acidic solution. The PLS temperature variations cause some changes in the viscosity and density which affect the gravelly drainage layer's permeability. In this research, a special permeability measuring system was devised for determining the effects of the PLS temperature variations on the permeability coefficient of the gravelly drainage layer of heap leaching structures. The system, consisting of a thermal acid resistant element and a thermocouple, controls the PLS temperature, which helps measure the permeability coefficient of the gravelly drainage layer. The PLS and gravelly drainage layer of Sarcheshmeh copper mine heap leaching structure No. 1 were used in this study. The permeability coefficient of the gravelly soil was measured against the PLS and pure water at temperatures varying between 3°C to 60°C. Also, the viscosity and density of the PLS and pure water were measured at these temperatures and, using existing theoretical relations, the permeability coefficient of the gravel was computed. A comparison between the experimental and theoretical results revealed a good conformity between the two sets of results. Finally, a case (Taft heap leaching structure, Yazd, Iran was studied and its gravelly drainage layer was designed based on the results of the present research.

  7. Characteristics of ornamental rocks waste: application of mechanochemical concepts; Caracterizacao de residuos de rochas ornamentais: aplicacao de conceitos mecanoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J. dos; Galembeck, F., E-mail: jsquimica@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2016-07-01

    Processing of ornamental rocks produces up to 80% weight residues which become an environmental problem. In this work, we analyzed residual powders from cutting and crushing granite Cinza Corumba, to study the influence of mechanical processes in the properties of the residues. The powders were characterized by X-ray diffraction and fluorescence, infrared spectroscopy, scanning electron microscopy, surface area determination and adsorption of methylene blue. The same elements and minerals are found in both powders but the powders formed during crushing contain lubricating oil residues, from the crusher. Particle shapes of the crushed powder (surface area 2.85 m2/g) are more irregular than cut powder (surface area 1.98 m2/g). Adsorption of methylene blue is lighter in the crushed powder than in the cutting powder. Thus, the powders analyzed have different surface properties. (author)

  8. Mass transfer between waste canister and water seeping in rock fractures. Revisiting the Q-equivalent model

    International Nuclear Information System (INIS)

    Neretnieks, Ivars; Liu Longcheng; Moreno, Luis

    2010-03-01

    Models are presented for solute transport between seeping water in fractured rock and a copper canister embedded in a clay buffer. The migration through an undamaged buffer is by molecular diffusion only as the clay has so low hydraulic conductivity that water flow can be neglected. In the fractures and in any damaged zone seeping water carries the solutes to or from the vicinity of the buffer in the deposition hole. During the time the water passes the deposition hole molecular diffusion aids in the mass transfer of solutes between the water/buffer interface and the water at some distance from the interface. The residence time of the water and the contact area between the water and the buffer determine the rate of mass transfer between water and buffer. Simple analytical solutions are presented for the mass transfer in the seeping water. For complex migration geometries simplifying assumptions are made that allow analytical solutions to be obtained. The influence of variable apertures on the mass transfer is discussed and is shown to be moderate. The impact of damage to the rock around the deposition hole by spalling and by the presence of a cemented and fractured buffer is also explored. These phenomena lead to an increase of mass transfer between water and buffer. The overall rate of mass transfer between the bulk of the water and the canister is proportional to the overall concentration difference and inversely proportional to the sum of the mass transfer resistances. For visualization purposes the concept of equivalent flowrate is introduced. This entity can be thought as of the flowrate of water that will be depleted of its solute during the water passage past the deposition hole. The equivalent flowrate is also used to assess the release rate of radionuclides from a damaged canister. Examples are presented to illustrate how various factors influence the rate of mass transfer

  9. A Study of the Solid Waste Chain in Benin Metropolis, Nigeria ...

    African Journals Online (AJOL)

    Benin metropolis like other fast urbanizing towns and cities in Nigeria is faces with a solid waste management problem. Solid waste is seen in huge heaps on any piece of unused land, around buildings, in the open market places and in drainage and water ways. The work reported in this paper involves a study of the path ...

  10. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  11. Requirements for a long-term safety certification for chemotoxic substances stored in a final storage facility for high radioactive and heat-generating radioactive waste in rock salt formations

    International Nuclear Information System (INIS)

    Tholen, M.; Hippler, J.; Herzog, C.

    2007-01-01

    Within the scope of a project funded by the German Federal Ministry of Economics and Technology (Bundesministerium fuer Wirtschaft und Technologie, BMWi), a safety certification concept for a future permanent final storage for high radioactive and heat-generating radioactive waste (HAW disposal facility) in rock salt formations is being prepared. For a reference concept, compliance with safety requirements in regard to operational safety as well as radiological and non-radiological protection objectives related to long-term safety, including ground water protection, will be evaluated. This paper deals with the requirements for a long-term safety certification for the purpose of protecting ground water from chemotoxic substances. In particular, longterm safety certifications for the permanent disposal of radioactive waste in a HAW disposal facility in rock salt formations and for the dumping of hazardous waste in underground storage facilities in rock salt formations are first discussed, followed by an evaluation as to whether these methods can be applied to the long-term safety certification for chemotoxic substances. The authors find it advisable to apply the long-term safety certification for underground storage facilities to the long-term safety certification for chemotoxic substances stored in a HAW disposal facility in rock salt formations. In conclusion, a corresponding certification concept is introduced. (orig.)

  12. Preliminary evaluation of 30 potential granitic rock sites for a radioactive waste storage facility in southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, C.R.; Knutson, C.F.

    1978-02-15

    Results of preliminary study are presented which was performed under subtask 2.7 of the NTS Terminal Waste Storage Program Plan for 1978. Subtask 2.7 examines the feasibility of locating a nuclear waste repository in a granitic stock or pluton in southern Nevada near the Nevada Test Site (NTS). It is assumed for the purposes of this study that such a repository cannot be located at NTS. This assumption may or may not be correct. This preliminary report does not identify a particular site as being a suitable location for a repository. Nor does it absolutely eliminate a particular site from further consideration. It does, however, answer the basic question of probable suitability of some of the sites and present a systematic method for site evaluation. Since the findings of this initial study have been favorable, it will be followed by more exhaustive and detailed studies of the original 30 sites and perhaps others. In future studies some of the evaluation criteria used in the preliminary study may be modified or eliminated, and new criteria may be introduced.

  13. Preliminary evaluation of 30 potential granitic rock sites for a radioactive waste storage facility in southern Nevada

    International Nuclear Information System (INIS)

    Boardman, C.R.; Knutson, C.F.

    1978-01-01

    Results of preliminary study are presented which was performed under subtask 2.7 of the NTS Terminal Waste Storage Program Plan for 1978. Subtask 2.7 examines the feasibility of locating a nuclear waste repository in a granitic stock or pluton in southern Nevada near the Nevada Test Site (NTS). It is assumed for the purposes of this study that such a repository cannot be located at NTS. This assumption may or may not be correct. This preliminary report does not identify a particular site as being a suitable location for a repository. Nor does it absolutely eliminate a particular site from further consideration. It does, however, answer the basic question of probable suitability of some of the sites and present a systematic method for site evaluation. Since the findings of this initial study have been favorable, it will be followed by more exhaustive and detailed studies of the original 30 sites and perhaps others. In future studies some of the evaluation criteria used in the preliminary study may be modified or eliminated, and new criteria may be introduced

  14. Measurement and modeling of flow through unsaturated heterogeneous rock in the context of geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sagar, B.; Bagtzoglou, A.C.; Green, R.T.; Stothoff, S.A.

    1995-01-01

    Deep geologic disposal of high-level and transuranic waste is currently being pursued vigorously. Assessing long-term performance of such repositories involves laboratory and field measurements, and numerical modeling. There exist two primary characteristics, associated with assessing repository performance, that define problems of modeling and measurement of non-isothermal flow through geologic media exposed to variable boundary conditions (e.g., climatic changes). These are: (1) the large time scale (tens of thousands of years) and highly variable space scale (from one meter to 10 5 meters); and (2) the hierarchy of heterogeneities and discontinuities characterizing the medium. This paper provides an overview of recent work, conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA), related to laboratory experiments, consideration of similitude, and numerical modeling of flow through heterogeneous media under non-homogeneous boundary conditions. As discussed, there exist neither good methods of measuring flows at these scales nor are there adequate similitude analyses that would allow reasonable scaling up of laboratory-scale experiments. Reliable assessment of long-term geologic repositories will require sophisticated geostatistical models capable of addressing variables scales of heterogeneities conditioned with observed results from adequately sized field-scale experiments conducted for sufficiently long durations

  15. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  16. Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals.

    Science.gov (United States)

    Pedretti, Daniele; Mayer, K Ulrich; Beckie, Roger D

    2017-06-01

    In mining environmental applications, it is important to assess water quality from waste rock piles (WRPs) and estimate the likelihood of acid rock drainage (ARD) over time. The mineralogical heterogeneity of WRPs is a source of uncertainty in this assessment, undermining the reliability of traditional bulk indicators used in the industry. We focused in this work on the bulk neutralizing potential ratio (NPR), which is defined as the ratio of the content of non-acid-generating minerals (typically reactive carbonates such as calcite) to the content of potentially acid-generating minerals (typically sulfides such as pyrite). We used a streamtube-based Monte-Carlo method to show why and to what extent bulk NPR can be a poor indicator of ARD occurrence. We simulated ensembles of WRPs identical in their geometry and bulk NPR, which only differed in their initial distribution of the acid generating and acid neutralizing minerals that control NPR. All models simulated the same principal acid-producing, acid-neutralizing and secondary mineral forming processes. We show that small differences in the distribution of local NPR values or the number of flow paths that generate acidity strongly influence drainage pH. The results indicate that the likelihood of ARD (epitomized by the probability of occurrence of pH<4 in a mixing boundary) within the first 100years can be as high as 75% for a NPR=2 and 40% for NPR=4. The latter is traditionally considered as a "universally safe" threshold to ensure non-acidic waters in practical applications. Our results suggest that new methods that explicitly account for mineralogical heterogeneity must be sought when computing effective (upscaled) NPR values at the scale of the piles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of the distribution of rare earths elements in fluvial sediments, rocks and wastes correlated to the Caldas Ore Treatment Unit (UTM-Caldas), Minas Gerais State, Brazil

    International Nuclear Information System (INIS)

    Possas, Clara R.; Moura, Rodrigo R. de; Carvalho Filho, Carlos A. de; Menezes, Maria Ângela de B.C.

    2017-01-01

    The Caldas Ore Treatment Unit (UTM-Caldas), located at the municipality of Caldas (Minas Gerais-Brazil), was a site for the exploration and treatment of uranium between 1982 and 1995. The area is located in the Alcalino Complex of Poços de Caldas, a geologically peculiar region, composed of alkaline igneous rocks with exotic minerals, some rich in rare earth elements (REE). The UTM-Caldas uranium deposit was defined as a U, Th, Zr, Mo and REE mineralization. The objective of the present study was to evaluate the distribution of REEs in river sediments adjacent to UTM-Caldas and to verify if effluents from the mine are interfering in the concentration of REEs in these sediments. To develop the research, five samples were collected in 2011, including sediments from the Soberbo river, the waste dam and the tank of radio precipitation. The samples were prepared in the Sedimentology Laboratory of the Center for the Development of Nuclear Technology (CDTN), where the rocks and tailings were crushed, ground and pulverized while the sediments were sieved and an aliquot of the silt-clay fraction was separated for analysis at the CDTN. The analytical method employed was Neutron Activation Analysis (ANA), method k 0 . The samples were irradiated in the TRIGA MARK I IPR-R1 research reactor, and the REEs identified by gamma-spectrometry in the Neutron Activation Laboratory (LAN-CDTN). The results showed a distribution model of the REEs in the study area, which may be useful in evaluating of the environmental impacts of effluents from UTM-Caldas, now in the process of decommissioning

  18. Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data

    KAUST Repository

    Kobayashi, Masaaki

    2017-04-20

    Recent availability of large-scale genomic resources enables us to conduct so called genome-wide association studies (GWAS) and genomic prediction (GP) studies, particularly with next-generation sequencing (NGS) data. The effectiveness of GWAS and GP depends on not only their mathematical models, but the quality and quantity of variants employed in the analysis. In NGS single nucleotide polymorphism (SNP) calling, conventional tools ideally require more reads for higher SNP sensitivity and accuracy. In this study, we aimed to develop a tool, Heap, that enables robustly sensitive and accurate calling of SNPs, particularly with a low coverage NGS data, which must be aligned to the reference genome sequences in advance. To reduce false positive SNPs, Heap determines genotypes and calls SNPs at each site except for sites at the both ends of reads or containing a minor allele supported by only one read. Performance comparison with existing tools showed that Heap achieved the highest F-scores with low coverage (7X) restriction-site associated DNA sequencing reads of sorghum and rice individuals. This will facilitate cost-effective GWAS and GP studies in this NGS era. Code and documentation of Heap are freely available from https://github.com/meiji-bioinf/heap (29 March 2017, date last accessed) and our web site (http://bioinf.mind.meiji.ac.jp/lab/en/tools.html (29 March 2017, date last accessed)).

  19. An instrumented leach column for the study of sulphide oxidation in waste heaps

    International Nuclear Information System (INIS)

    Lowson, R.T.; Sarbutt, J.V.

    1985-05-01

    The construction, commissioning and first year of operation of a large scale, instrumented leach column are described. The column material was sulphidic mine overburden. Monitored parameters included matrix potential, temperature, redox potential, dissolved oxygen, pore space gas, water addition and drainage, together with pH, Cd, Cu, Fe, Ni, Zn, Cl - , F - , SO 4 2- and PO 4 3- in the effluent

  20. Far Field Sorption Data Bases for Performance Assessment of a High-Level Radioactive Waste Repository in an Undisturbed Opalinus Clay Host Rock

    International Nuclear Information System (INIS)

    Bradburry, M.; Baeyens, B.

    2003-08-01

    An Opalinus Clay formation in the Zuercher Weinland is under consideration by Nagra as a potential location for a high-level and long-Iived intermediate-level radioactive waste repository. Performance assessment studies will be performed for this site and the purpose of this report is to describe the procedures used to develop sorption data bases appropriate for an undisturbed Opalinus Clay host rock which are required for such safety analysis calculations. In tight, low water content argillaceous rock formations such as Opalinus Clay, there is uncertainty concerning the in situ pH/P CO 2 . In order to take this intrinsic uncertainty into account porewater chemistries were calculated for a reference case, pH = 7.24, and for two other pH values, 6.3 and 7.8. Sorption data bases are given for the three cases. The basis for the sorption data bases is 'in-house' sorption measurements for Cs(I), Sr(II), Ni(II), Eu(III), Sn(IV), Se(IV), Th(IV) and I(-I) carried out on Opalinus Clay samples from Mont Terri (Canton Jura) since at the time the experiments were performed no core samples from the Benken borehole (Zuercher Weinland) were available. The Opalinus Clay at Mont Terri and Benken are part of the same geological formation . Despite having directly measured data for the above key radionuclides, some of the required distribution ratios (Rd) used to generate the sorption data bases still came from the open literature. An important part of this report is concerned with describing the procedures whereby these selected literature Rd values were modified so as to apply to the Benken Opalinus Clay mineralogy and groundwater chemistries calculated at the three pH values given above. The resulting Rd values were then further modified using so-called Lab→Field transfer factors to produce sorption values which were appropriate to the in situ bulk rock for the selected range of water chemistry conditions. Finally, it is important to have some appreciation of the uncertainties

  1. Far Field Sorption Data Bases for Performance Assessment of a High-Level Radioactive Waste Repository in an Undisturbed Opalinus Clay Host Rock

    Energy Technology Data Exchange (ETDEWEB)

    Bradburry, M.; Baeyens, B

    2003-08-01

    An Opalinus Clay formation in the Zuercher Weinland is under consideration by Nagra as a potential location for a high-level and long-Iived intermediate-level radioactive waste repository. Performance assessment studies will be performed for this site and the purpose of this report is to describe the procedures used to develop sorption data bases appropriate for an undisturbed Opalinus Clay host rock which are required for such safety analysis calculations. In tight, low water content argillaceous rock formations such as Opalinus Clay, there is uncertainty concerning the in situ pH/P{sub CO{sub 2}}. In order to take this intrinsic uncertainty into account porewater chemistries were calculated for a reference case, pH = 7.24, and for two other pH values, 6.3 and 7.8. Sorption data bases are given for the three cases. The basis for the sorption data bases is 'in-house' sorption measurements for Cs(I), Sr(II), Ni(II), Eu(III), Sn(IV), Se(IV), Th(IV) and I(-I) carried out on Opalinus Clay samples from Mont Terri (Canton Jura) since at the time the experiments were performed no core samples from the Benken borehole (Zuercher Weinland) were available. The Opalinus Clay at Mont Terri and Benken are part of the same geological formation . Despite having directly measured data for the above key radionuclides, some of the required distribution ratios (Rd) used to generate the sorption data bases still came from the open literature. An important part of this report is concerned with describing the procedures whereby these selected literature Rd values were modified so as to apply to the Benken Opalinus Clay mineralogy and groundwater chemistries calculated at the three pH values given above. The resulting Rd values were then further modified using so-called Lab{yields}Field transfer factors to produce sorption values which were appropriate to the in situ bulk rock for the selected range of water chemistry conditions. Finally, it is important to have some

  2. Survey of in situ testing at underground laboratories with application to geologic disposal of spent fuel waste in crystalline rock

    International Nuclear Information System (INIS)

    Hardin, E.

    1992-04-01

    This report is intended for use in designing testing programs, or as backup material for the review of 'R and D 92' which will be the next three-year plan for spent fuel repository siting and characterization activities in Sweden. There are eight major topics, each of which is addressed in a chapter of around 2000 to 10000 words. The major topics are defined to capture the reasons for testing, in a way that limits overlap between chapters. Other goals of this report are to provide current information on recent or ongoing tests in crystalline rock, and to describe insights which are important but not obvious from the literature. No data are presented, but the conclusions of testing programs are summarized. The principal sources were reports (in English) produced by the laboratory projects particularly the Stripa Project (SKB), the Underground Research Laboratory in Canada (AECL), and the Grimsel Test Site in Switzerland (Nagra). Articles from refereed journals have been used in lieu of project literature where possible and appropriate. (au)

  3. Self-sealing of rock fractures. A possibility around the repositories of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Chigira, Masahiro; Nakata, Eiji

    1995-01-01

    To the goal of the safe geological disposal of high-level radioactive wastes (HLW), we must provide long-term confidence for the isolation of HLW in various ways. In particular, groundwater flow, the most likely transport media of radioactive nuclides from HLW, must be restricted around a repository for long time. For that purpose, grouting techniques using cement, bentonite, or other materials have been studied in many countries. In this paper we report the results of a series of experiments on silica precipitation behavior in a flow path with negative temperature gradients in granite and also describe a natural example of hydrothermal alteration of diatomite intruded by andesite. Based on these, we will discuss the possibility of self-sealing around HLW repository. (J.P.N.)

  4. Application of the continuously-yielding joint model for studying disposal of high-level nuclear waste in crystalline rock

    International Nuclear Information System (INIS)

    Hakala, M.; Johansson, E.; Simonen, A.

    1993-04-01

    The non-linear Continuously-Yielding (CY) joint model and its use in numerical analyses of a nuclear waste repository are studied in the report. On major advantage of using CY-model is that laboratory test results, if available, can directly be used in analyses thus reducing uncertainties about joint input parameters. The new testing machine MTS-815 of Helsinki University of Technology was used to determine the joint behaviour of some granitic joints from the depth of 400-600 m below the ground surface. The procedure for triaxial joint tests was refined during this work. Two programs called NormFit and SherFit were developed and tested to determine the best fit parameter values for CY-model from laboratory test results

  5. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  6. Taoshan uranium ore fields in situ blasting heap leaching rate influence factors to investigate

    International Nuclear Information System (INIS)

    Xie Wangnan; Dong Chunming

    2014-01-01

    Taoshan ore field ore in situ blasting heap leaching out build industrial test and production process, stope leaching rate and leaching cycle is large than that, after analysis, blasting method and cloth liquid way is to affect leaching rate and leaching cycle of the main factors. This paper holds that as far as possible using stratified deep hole blasting of squeezing up ways to reduce the building pile of in-situ leaching ore block rate; Adopting effective cloth tube way, increase the leaching agent and ore contact comprehensive; Introduction of bacterial leaching, and other means to improve leaching rate, shorten production cycle, etc to solve it. (authors)

  7. Monitoring of a burning conical heap by combining topographical mapping with infrared thermography

    International Nuclear Information System (INIS)

    Carpentier, O.; Antczak, E.; Defer, D.; Duthoit, B.

    2003-01-01

    One of the most used method for monitoring a slag heap is the air infrared thermography. Even if it permit to survey a large area and provide a well contrasted display of dangerous areas, this method is expensive, perturbed by atmospheric conditions and cannot offer an accurate localization of defects. In order to mitigate this disadvantage, the LAMH, in association with Groupe Charbonnages de France, set up a method based on topographic and infrared thermographic cross reading which is more accurate, less expensive and, in a near future, will permit a monitoring of combustion reaction. (authors)

  8. Transient response in granular quasi-two-dimensional bounded heap flow.

    Science.gov (United States)

    Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B

    2017-10-01

    We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.

  9. How did women count? A note on gender-specific age heaping differences in the sixteenth to nineteenth centuries.

    Science.gov (United States)

    Földvári, Peter; Van Leeuwen, Bas; Van Leeuwen-Li, Jieli

    2012-01-01

    The role of human capital in economic growth is now largely uncontested. One indicator of human capital frequently used for the pre-1900 period is age heaping, which has been increasingly used to measure gender-specific differences. In this note, we find that in some historical samples, married women heap significantly less than unmarried women. This is still true after correcting for possible selection effects. A possible explanation is that a percentage of women adapted their ages to that of their husbands, hence biasing the Whipple index. We find the same effect to a lesser extent for men. Since this bias differs over time and across countries, a consistent comparison of female age heaping should be made by focusing on unmarried women.

  10. Deep ground water microbiology in Swedish granite rock and it's relevance for radio-nuclide migration from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    1989-03-01

    Data on numbers, species and activity of deep ground water microbial populations in Swedish granite rock have been collected. Specific studies are performed on radio-nuclid uptake on bacteria judge to be probable inhabitants in Swedish nuclear waste repositories. An integrated mobile field laboratory was used for water sampling and for the immediate counting and inoculation of the samples from boreholes at levels between 129 and 860 m. A sampler adapted for the collection of undisturbed samples for gas analysis was used to collect samples for bacterial enumerations and enrichments. The sampler can be opened and closed from the surface at the actual sampling depth. The samples can subsequently be brought to the surface without contact with air and with the pressure at the actual sampling depth. The number of bacteria were determined in samples from the gas sampler when this was possible. Else numbers are determined in the water that is pumped up to the field lab. The average total number of bacteria is 3 x 10 5 bacterial ml -1 . The number of bacteria possible to recover with plate count arrays from 0.10 to 21.9%. (author)

  11. Some observations on the mechanism of corrosion to be encountered in nuclear waste repositories located in tuffaceous rock

    International Nuclear Information System (INIS)

    Wilde, M.H.; Wilde, B.E.

    1993-01-01

    Potentiostatic anodic polarization studies have been conducted in a J-13 simulated nuclear waste repository environment, which was allowed to evaporate to dryness followed by rehydration prior to polarization. The behavior of Type 316L stainless steel, AISI 1020 carbon steel, Hastelloy C22 and platinum was compared with that noted previously for a non-baked simulate. The anodic dissolution characteristics of Type 316L stainless steel in environments containing 1000X Cl - J-13 depend markedly on whether the solution is merely a mixture of virgin chemicals or a mixture that has been evaporated to dryness, baked and rehydrated to the same volume. In the non-evaporated environment Type 316L stainless steel pitted severely, and in the evaporated/rehydrated environment a non-corroding type of behavior was observed along with the precipitation of a dense scale. Similar behavior was observed for Hastelloy C22. The polarization curves for carbon steel and platinum were the same as those noted for 316L and Hastelloy C22, when conducted in the evaporated/rehydrated environment. X-ray diffraction studies indicated that the scale produced in all tests conducted on evaporated/rehydrated solutions was calcium carbonate. Based on the qualitatively similar polarization characteristics of materials having such widely differing corrosion properties, it is concluded that the major factor controlling the anodic charge transfer reaction under these conditions is the formation of a calcium carbonate scale. (Author)

  12. Performance assessment of confinements for medium-level and α-contaminated waste. PACOMA project. Rock salt option

    International Nuclear Information System (INIS)

    Hirsekorn, R.P; Nies, A.; Rausch, H.; Storck, R.

    1991-03-01

    The objective of the contribution to the PACOMA project is to develop and demonstrate procedures for radiological safety of repositories in salt domes. An analogue study is performed by the Netherlands Energy Research Foundation ECN, where alternative disposal concepts in different salt formations were investigated. It is discussed, how far appropriate choice of the repository design parameters can improve the whole systems. The research covers deterministic calculations for three scenarios, the normal evolution scenario with subrosion of the salt dome, the combined brine intrusion scenario with brine intrusion from brine pockets and via an anhydrite vein, and the human intrusion scenario of solution mining of a storage cavern. For the combined brine intrusion scenario alternative waste inventories, different disposal concepts, variants of the layout of dams and sealings are investigated, and results obtained from variations of parameter values are discussed. Additionally, comprehensive probabilistic calculations have been carried out with the help of a Monte-Carlo simulation. Results are discussed in form of an uncertainty analysis of the maximum dose and global sensitivity studies of system parameters. The assessments main result is, that the reference case, where the reference repository design and the reference disposal concept are applied, deterministic calculations with best estimate values as well as probabilistic calculations do not manifest unacceptable risk. Investigation of alternative concepts and design variants indicate a high potential for system optimization. (orig./HP)

  13. Development of a Comprehensive Plan for Scientific Research, Exploration, and Design: Creation of an Underground Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif

    International Nuclear Information System (INIS)

    Jardine, L J

    2005-01-01

    ISTC Partner Project No.2377, ''Development of a General Research and Survey Plan to Create an Underground RW Isolation Facility in Nizhnekansky Massif'', funded a group of key Russian experts in geologic disposal, primarily at Federal State Unitary Enterprise All-Russian Design and Research Institute of Engineering Production (VNIPIPT) and Mining Chemical Combine Krasnoyarsk-26 (MCC K-26) (Reference 1). The activities under the ISTC Partner Project were targeted to the creation of an underground research laboratory which was to justify the acceptability of the geologic conditions for ultimate isolation of high-level waste in Russia. In parallel to this project work was also under way with Minatom's financial support to characterize alternative sections of the Nizhnekansky granitoid rock massif near the MCC K-26 site to justify the possibility of creating an underground facility for long-term or ultimate isolation of radioactive waste (RW) and spent nuclear fuel (SNF). (Reference 2) The result was a synergistic, integrated set of activities several years that advanced the geologic repository site characterization and development of a proposed underground research laboratory better than could have been expected with only the limited funds from ISTC Partner Project No.2377 funded by the U.S. DOE-RW. There were four objectives of this ISTC Partner Project 2377 geologic disposal work: (1) Generalize and analyze all research work done previously at the Nizhnekansky granitoid massif by various organizations; (2) Prepare and issue a declaration of intent (DOI) for proceeding with an underground research laboratory in a granite massif near the MCC K-26 site. (The DOI is similar to a Record of Decision in U.S. terminology). (3) Proceeding from the data obtained as a result of scientific research and exploration and design activities, prepare a justification of investment (JOI) for an underground research laboratory in as much detail as the available site characterization

  14. Solid as a rock

    International Nuclear Information System (INIS)

    Pincus, H.J.

    1984-01-01

    Recent technologic developments have required a more comprehensive approach to the behavior of rock mass or rock substance plus discontinuities than was adequate previously. This work considers the inherent problems in such operations as the storage of hot or cold fluids in caverns and aquifers, underground storage of nuclear waste, underground recovery of heat from hydrocarbon fuels, tertiary recovery of oil by thermal methods, rapid excavation of large openings at shallow to great depths and in hostile environments, and retrofitting of large structures built on or in rock. The standardization of methods for determining rock properties is essential to all of the activities described, for use not only in design and construction but also in site selection and post-construction monitoring. Development of such standards is seen as a multidisciplinary effort

  15. Redox front penetration in the fractured Toki Granite, central Japan: An analogue for redox reactions and redox buffering in fractured crystalline host rocks for repositories of long-lived radioactive waste

    International Nuclear Information System (INIS)

    Yamamoto, Koshi; Yoshida, Hidekazu; Akagawa, Fuminori; Nishimoto, Shoji; Metcalfe, Richard

    2013-01-01

    Highlights: • Deep redox front developed in orogenic granitic rock have been studied. • The process was controlled by the buffering capacity of minerals. • This is an analogue of redox front penetration into HLW repositories in Japan. - Abstract: Redox buffering is one important factor to be considered when assessing the barrier function of potential host rocks for a deep geological repository for long-lived radioactive waste. If such a repository is to be sited in fractured crystalline host rock it must be demonstrated that waste will be emplaced deeper than the maximum depth to which oxidizing waters can penetrate from the earth’s surface via fractures, during the assessment timeframe (typically 1 Ma). An analogue for penetration of such oxidizing water occurs in the Cretaceous Toki Granite of central Japan. Here, a deep redox front is developed along water-conducting fractures at a depth of 210 m below the ground surface. Detailed petrographical studies and geochemical analyses were carried out on drill core specimens of this redox front. The aim was to determine the buffering processes and behavior of major and minor elements, including rare earth elements (REEs), during redox front development. The results are compared with analytical data from an oxidized zone found along shallow fractures (up to 20 m from the surface) in the same granitic rock, in order to understand differences in elemental migration according to the depth below the ground surface of redox-front formation. Geochemical analyses by XRF and ICP-MS of the oxidized zone at 210 m depth reveal clear changes in Fe(III)/Fe(II) ratios and Ca depletion across the front, while Fe concentrations vary little. In contrast, the redox front identified along shallow fractures shows strong enrichments of Fe, Mn and trace elements in the oxidized zone compared with the fresh rock matrix. The difference can be ascribed to the changing Eh and pH of groundwater as it flows downwards in the granite, due to

  16. The disposal of Canada`s nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    Energy Technology Data Exchange (ETDEWEB)

    Wikjord, A G; Baumgartner, P; Johnson, L H; Stanchell, F W; Zach, R; Goodwin, B W

    1996-06-01

    The concept for disposal of Canada`s nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada`s nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL`s disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs.

  17. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock volume 1: summary

    International Nuclear Information System (INIS)

    Wikjord, A.G.; Baumgartner, P.; Johnson, L.H.; Stanchell, F.W.; Zach, R.; Goodwin, B.W.

    1996-06-01

    The concept for disposal of Canada's nuclear fuel waste involves isolating the waste in corrosion-resistant containers emplaced and sealed within a vault at a depth of 500 to 1000 m in plutonic rock of the Canadian Shield. The case for the acceptability of the concept as a means of safely disposing of Canada's nuclear fuel waste is presented in an Environmental Impact Statement (EIS) The disposal concept permits a choice of methods, materials, site locations and designs. The EIS presents a case study of the long-term (i.e., postclosure) performance of a hypothetical implementation of the concept, referred to in this report as the reference disposal system. The reference disposal system is based on borehole emplacement of used CANDU fuel in Grade-2 titanium alloy containers in low-permeability, sparsely fractured plutonic rock of the Canadian Shield. We evaluate the long-term performance of another hypothetical implementation of the concept based on in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. The geological characteristics of the geosphere assumed for this study result in short groundwater travel times from the disposal vault to the surface. In the present study, the principal barrier to the movement of contaminants is the long-lasting copper container. We show that the long-lasting container can effectively compensate for a permeable host rock which results in an unfavourable groundwater flow condition. These studies illustrate the flexibility of AECL's disposal concept to take advantage of the retention, delay, dispersion, dilution and radioactive decay of contaminants in a system of natural barriers provided by the geosphere and hydrosphere and of engineered barriers provided by the waste form, container, buffer, backfills, other vault seals and grouts. In an actual implementation, the engineered system would be designed for the geological conditions encountered at the host site. 34 refs., 2 tabs., 11 figs

  18. Water/rock interactions and mass transport within a thermal gradient Application to the confinement of high level nuclear waste

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Ecole Normale Superieure, 92 - Fontenay-aux-Roses

    1998-01-01

    The initial stage of a high level nuclear waste disposal will be characterised by a large heat release within the near-field environment of the canisters. This heat flux caused by radioactive decay will lead to an increase of temperature and a subsequent thermal gradient between the 'hot' canisters and the 'cold'geological medium. In addition, this thermal gradient will decrease with time due to the heat decay although it could last hundred years. What will be the consequences of such a thermal field varying both on space and time for the alteration of the different constituents of the near field environment. In particular, what could be the effects on the radionuclides migration in the accidental case of an early breach of a canister during the thermal stage? This study brings significant answers to these questions in the light of a performance assessment study. This work is supported by a triple methodological approach involving experimental studies, modelling calculations and a natural analogues study. This complete work demonstrates that a thermal gradient leads to a large re-distribution of elements within the system: some elements are incorporated in the solid phases of the hot end (Si, Zr, Ca) whereas some others are in those of the cold end (Fe, Al, Zn). The confrontation of the results of very simple experiments with the results of a model built on equilibrium thermodynamics allow us to evidence the probable mechanisms causing this mass transport: out-of-equilibrium thermodiffusion processes coupled to irreversible precipitation. Moreover, the effects of the variation of temperatures with time is studied by the way of a natural system which underwent a similar temperature evolution as a disposal and which was initially rich in uranium: the Jurassic Alpine bauxites. In addition, part of the initial bauxite escaped this temperature transformations due to their incorporation in outer thrusting nappes. They are used as a reference. (author)

  19. Summary of the engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U 3 O 8 whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future

  20. Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U 3 O 8 whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future

  1. Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

  2. Human error analysis project (HEAP) - The fourth pilot study: verbal data for analysis of operator performance

    International Nuclear Information System (INIS)

    Braarud, Per Oeyvind; Droeyvoldsmo, Asgeir; Hollnagel, Erik

    1997-06-01

    This report is the second report from the Pilot study No. 4 within the Human Error Analyses Project (HEAP). The overall objective of HEAP is to provide a better understanding and explicit modelling of how and why ''cognitive errors'' occur. This study investigated the contribution from different verbal data sources for analysis of control room operator's performance. Operator's concurrent verbal report, retrospective verbal report, and process expert's comments were compared for their contribution to an operator performance measure. This study looked into verbal protocols for single operator and for team. The main findings of the study were that all the three verbal data sources could be used to study performance. There was a relative high overlap between the data sources, but also a unique contribution from each source. There was a common pattern in the types of operator activities the data sources gave information about. The operator's concurrent protocol overall contained slightly more information on the operator's activities than the other two verbal sources. The study also showed that concurrent verbal protocol is feasible and useful for analysis of team's activities during a scenario. (author)

  3. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.

    Science.gov (United States)

    Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping

    2011-09-15

    A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site

  4. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  5. Application of a new thermo-mechanical model for the study of the nuclear waste disposal in clay rocks

    International Nuclear Information System (INIS)

    Dizier, A.; Li, X.L.; Francois, B.; Collin, F.; Charlier, R.

    2012-01-01

    Document available in extended abstract form only. One of the cornerstones of the nuclear waste disposal researches concerns the evolution of the damaged zone which can offer a preferential path for migration of radionuclide through modifications of its mechanical and hydraulic properties. Even if the thermo-mechanical behaviour of clays is well documented in the literature, the development of the damaged zone induced by an excavation with temperature is not well known. To investigate this problem, a new thermo-mechanical constitutive law has been implemented in the non-linear finite element code LAGAMINE developed at ULg (Universite de Liege) and has been used to model the PRACLAY experiment (Preliminary demonstration test for clay disposal of vitrified high level radioactive waste) at Mol URL (Underground Research Laboratory). Though several models are being to reproduce the different phenomena met when a thermal loading is applied to a clay specimen, the applications of such thermo-mechanical models to simulate large scale in-situ experiment are rare. Based on the work of Sultan a new thermo-mechanical constitutive law has been implemented in combination with a Cap model in the code LAGAMINE. The Cap model is a combination of a frictional criterion, a Cam-Clay model and a traction criterion. The influence of the temperature is considered through the thermo-mechanical law developed by Cui et al. (2000). This law permits to reproduce common features of the thermo-mechanical behaviour of clay, such as the decrease of the pre-consolidation pressure with temperature, the volume change, the thermal hardening, the transition between thermal dilation and thermal contraction for over-consolidated clays. These aspects are modelled with two curves in the (p',T) plane. The first one is related to the generation of the thermal volumetric plastic strains (TY curve (Thermal Yield)). The second one reproduces the decrease of the pre-consolidation pressure with the temperature

  6. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden

    International Nuclear Information System (INIS)

    Gómez, Javier B.; Gimeno, María J.; Auqué, Luis F.; Acero, Patricia

    2014-01-01

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result

  7. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Javier B., E-mail: jgomez@unizar.es; Gimeno, María J., E-mail: mjgimeno@unizar.es; Auqué, Luis F., E-mail: lauque@unizar.es; Acero, Patricia, E-mail: patriace@unizar.es

    2014-01-01

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result

  8. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  9. A Review of the Decommissioning Plan and Cost Estimate for the Studsvik Rock Facility (AM) for the Storage of Low and Intermediate Level Wastes

    International Nuclear Information System (INIS)

    Varley, Geoff

    2004-03-01

    The AM facility is a storage facility for packaged wastes that have been conditioned at the Studsvik site. It is located inside a rock mass on the Studsvik industrial site. The task of the facility is to store the wastes on an interim basis before dispatch to a repository. The waste packages sentenced for storage in AM include: Low-level waste (LLW) packages that do not need any special protection against ionising radiation; Intermediate-level waste (ILW) packages that must be handled with a protective shield and using remote controlled equipment. In all cases the waste packages delivered to AM do not have any surface radioactive contamination. To date no release of contamination has been known to occur. The AM decommissioning cost estimate prepared for SVAFO addresses a Main Case (all wastes removed) and an Alternate Case (in which the scope of removal of equipment is unclear). The cost estimates for the Main Case and the Alternate case are MSEK 16.8 and MSEK 10.0 respectively. The overall program, comprising preparation, dismantling and concluding work, is projected to take 24 months. There are a number of aspects of the program that are not clear in the AB SVAFO report. For example, the assumed route for the disposition of wastes generated in dismantling process equipment and building materials is unclear. In addition, the detailed schedule of program items (Section A items in cost estimate) is somewhat confusing with the possibility that several cost elements have been omitted. AM normalised unit costs for selected, individual decommissioning activities have been derived and compared with relevant benchmark data from other recent decommissioning cost estimate analyses performed for SKI. Taking into account that there is very good access at AM, the results of these analyses give some comfort that the AM equipment dismantling estimate is in the correct ballpark. Regarding resources needed for project planning and management, the AM ratio of man-hours to project

  10. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  11. Chemical and isotopic characterization of water-rock interactions in shales induced by the intrusion of a basaltic dike: A natural analogue for radioactive waste disposal

    International Nuclear Information System (INIS)

    Techer, Isabelle; Rousset, Davy; Clauer, Norbert; Lancelot, Joel; Boisson, Jean-Yves

    2006-01-01

    Disposal of nuclear waste in deep geological formations is expected to induce thermal fluxes for hundreds of years with maximum temperature reaching about 100-150 deg. C in the nearfield argillaceous environment. The long-term behavior of clays subjected to such thermal gradients needs to be perfectly understood in safety assessment considerations. In this respect, a Toarcian argillaceous unit thermally disturbed by the intrusion of a 1.1-m wide basaltic dike at the Perthus pass (Herault, France), was studied in detail as a natural analogue. The thermal imprint induced by the dike was evaluated by a mineralogical, chemical and K-Ar study of the <2 μm clay fraction of shale samples collected at increasing distance from the basalt. The data suggest that the mineral composition of the shales was not significantly disturbed when the temperature was below 100-150 deg. C. Closer to the dike at 150-300 deg. C, changes such as progressive dissolution of chlorite and kaolinite, increased content of the mixed layers illite-smectite with more illite layers, complete decalcification and subsequent increased content of quartz, were found. At the eastern contact with the dike, the mineral and chemical compositions of both the shales and the basalt suggest water-rock interactions subsequent to the intrusion with precipitation of palagonite and renewed but discrete deposition of carbonate. A pencil cleavage developed in the shales during the dike emplacement probably favored water circulation along the contact. Strontium isotopic data suggest that the fluids of probable meteoric origin, reacted with Bathonian and Bajocian limestones before entering the underlying Toarcian shales. By analogy with deep geological radioactive waste repositories, the results report discrete mineralogical variations of the clays when subjected to temperatures of 100-150 deg. C that are expected in deep storage conditions. Beyond 150 deg. C, significant mineralogical changes may alter the physical and

  12. Effect of biotic and abiotic factors on soil microbial community diversity during primary succession on colliery spoil heaps

    Czech Academy of Sciences Publication Activity Database

    Elhottová, Dana; Frouz, Jan; Chroňáková, Alica; Malý, S.; Krištůfek, Václav; Kalčík, Jiří; Szili-Kovács, T.; Picek, T.

    2004-01-01

    Roč. 45, - (2004), s. 51 ISSN 0009-0646. [Kongres československé společnosti mikrobiologické /23./. 06.09.2004-09.09.2004, Brno] Keywords : soil microbial community * primary succession * colliery spoil heaps Subject RIV: EH - Ecology, Behaviour

  13. Colonization of colliery spoil heaps by millipedes (Diplopoda) and terrestrial isopods (Oniscidea) in the Sokolov region, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Tajovský, Karel

    2001-01-01

    Roč. 9, č. 4 (2001), s. 365-369 ISSN 1061-2971 Institutional research plan: CEZ:AV0Z6066911 Keywords : colliery spoil heaps * succession * rekultivation Subject RIV: EH - Ecology, Behaviour Impact factor: 1.011, year: 2001

  14. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    International Nuclear Information System (INIS)

    Economy, Kathleen M.; Helton, Jon Craig; Vaughn, Palmer

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  15. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  16. Evaluation of single- and dual-porosity models for reproducing the release of external and internal tracers from heterogeneous waste-rock piles.

    Science.gov (United States)

    Blackmore, S; Pedretti, D; Mayer, K U; Smith, L; Beckie, R D

    2018-05-30

    Accurate predictions of solute release from waste-rock piles (WRPs) are paramount for decision making in mining-related environmental processes. Tracers provide information that can be used to estimate effective transport parameters and understand mechanisms controlling the hydraulic and geochemical behavior of WRPs. It is shown that internal tracers (i.e. initially present) together with external (i.e. applied) tracers provide complementary and quantitative information to identify transport mechanisms. The analysis focuses on two experimental WRPs, Piles 4 and Pile 5 at the Antamina Mine site (Peru), where both an internal chloride tracer and externally applied bromide tracer were monitored in discharge over three years. The results suggest that external tracers provide insight into transport associated with relatively fast flow regions that are activated during higher-rate recharge events. In contrast, internal tracers provide insight into mechanisms controlling solutes release from lower-permeability zones within the piles. Rate-limited diffusive processes, which can be mimicked by nonlocal mass-transfer models, affect both internal and external tracers. The sensitivity of the mass-transfer parameters to heterogeneity is higher for external tracers than for internal tracers, as indicated by the different mean residence times characterizing the flow paths associated with each tracer. The joint use of internal and external tracers provides a more comprehensive understanding of the transport mechanisms in WRPs. In particular, the tracer tests support the notion that a multi-porosity conceptualization of WRPs is more adequate for capturing key mechanisms than a dual-porosity conceptualization. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A preliminary assessment of mineralogical criteria on the utility of argillaceous rocks and minerals for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kopp, O.C.

    1986-12-01

    The purpose of this study was to review available data concerning the properties reported for shales and clay-rich rocks and clay minerals to determine whether such information could be instrumental in selecting the more favorable assemblages of clays for high-level waste repository purposes. Literature searches were conducted for reports dealing with the properties of these argillaceous materials. The properties that were obtained from appropriate references were recorded in an Appleworks Database. The data are divided into five major goups: chemical properties, general physical properties, hydrologic properties, mechanical properties, and thermal properties. The Database includes such information as the type of material, formation name, geological age, location, depth, test conditions, results, and reference(s). In general, noticeable correlations were not apparent when mineralogical information was compared with various properties using plots of the data for each individual property. The best correlations were obtained for chemical and certain mechanical and hydrologic properties. Thermal properties appear to be least influenced by clay mineral composition. An important reason for the inability to correlate mineralogical compositions with most properties was the lack of uniformity of test methods, test conditions, and even the units used for reporting the final data. There was very limited information concerning the mineralogical compositions of most of the shales tested. The potential exists for identifying the more suitable formations (or specific horizons within formations) using mineralogical data; however, in order to make such selections, it will be necessary to collect future data using standardized test methods and conditions. The mineralogical compositions of the samples tested need to be determined quantitatively rather than qualitatively

  18. Radiation induced F-center and colloid formation in synthetic NaCl and natural rock salt: applications to radioactive waste repositories

    International Nuclear Information System (INIS)

    Levy, P.W.; Loman, J.M.; Kierstead, J.A.

    1983-01-01

    Radiation damage, particularly Na metal colloid formation, has been studied in synthetic NaCl and natural rock salt using unique equipment for making optical absorption, luminescence and other measurements during irradiation with 1 to 3 MeV electrons. Previous studies have established the F-center and colloid growth phenomenology. At temperatures where colloids form most rapidly, 100 to 250 C, F-centers appear when the irradiation is initiated and increase at a decreasing rate to a plateau, reached at doses of 10 6 to 10 7 rad. Concomitant colloid growth is described by classical nucleation and growth curves with the transition to rapid growth occurring at 10 6 to 10 7 rad. The colloid growth rate is low at 100 C, increases markedly to a maximum at 150 to 175 C and decreases to a negligible rate at 225 C. At 1.2x10 8 rad/h the induction period is >10 4 sec at 100 C, 10 4 sec at 275 C. The colloid growth in salt from 14 localities is well described by C(dose)/sup n/ relations. Data on WIPP site salt (Los Medanos, NM, USA) has been used to estimate roughly the colloid expected in radioactive waste repositories. Doses of 1 to 2x10 10 rad, which will accumulate in salt adjacent to lightly shielded high level canisters in 200 to 500 years, will convert between 1 and 100% of the salt to Na colloids (and Cl) if back reactions or other limiting reactions do not occur. Each high level lightly shielded canister may ultimately be surrounded by 200 to 300 kg of colloid sodium. Low level or heavily shielded canisters may produce as little as 1 kg sodium

  19. Corrosion behaviour of selected high-level waste packaging materials under gamma irradiation and in-situ disposal conditions in rock salt

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1988-07-01

    Corrosion studies performed until now on a number of materials have shown that unalloyed steels, Hastelloy C4 and Ti 99.8-Pd are the most promising materials for a long-term resistant packaging to be used in high-level waste (HLW) canister disposal in rock salt formations. To characterize their corrosion behaviour in more detail, additional studies have been performed. The influence has been examined which is exerted by the gamma dose rate (1 Gy/h to 100 Gy/h) on the corrosion of three preselected steels and Hastelloy C4 at 90 0 C in a salt brine (Q-brine) rich in MgCl 2 , i.e., conditions relevant to accident scenarios in a repository. In addition, in-situ corrosion experiments have been carried out in the Asse salt mine at elevated temperatures (120 0 C to 210 0 C) in the absence and in the presence of a gamma radiation field of 3 x 10 2 Gy/h, within the framework of the German/US Brine Migration Test. Under the test conditions the gamma radiation did not exert a significant influence on the corrosion of the steels investigated, whereas Hastelloy C4, exposed to dose rates of 10 Gy/h and 100 Gy/h, underwent pitting and crevice corrosion (20 μm/a at the maximum).The low amounts of migrated salt brine (140 ml after 900 days) in the in-situ- experiment did not produce noticeable corrosion of the materials. (orig./RB) [de

  20. Assessment of the long-term risks of inadvertent human intrusion into a proposed Canadian nuclear fuel waste disposal vault in deep plutonic rock -revision 1

    International Nuclear Information System (INIS)

    Wuschke, D.M.

    1996-04-01

    Canada has conducted an extensive research program on a concept of safe disposal of nuclear fuel wastes deep In plutonic rock of the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada's regulatory agency, the Atomic Energy Control Board. These criteria are expressed in terms of risk, where risk is defined as the sum, over all significant scenarios, of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This report describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility, and the results of its application to the proposed facility. Four intrusion scenarios were analysed, all initiated by a drilling operation. These scenarios are exposure of a member of the drilling crew, of a technologist conducting a core examination, of a construction worker and of a resident. The consequence of each scenario was estimated using standard computer codes for environmental pathways analysis and radiation dosimetry. For comparison with the risk criterion, an estimate of the probability of each scenario is also required. An event-tree methodology was used to estimate these probabilities. The estimated risks from these intrusion scenarios are several orders of magnitude below the established risk criterion. The event-tree methodology has the advantages of explicity displaying the assumptions made, of permitting easy testing of the sensitivity of the risk estimates to assumptions, and of combining technical and sociological information. (author). 53 refs., 8 tabs., 2 figs

  1. Assessment of the long-term risks of inadvertent human intrusion into a proposed Canadian nuclear fuel waste disposal vault in deep plutonic rock -revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Wuschke, D M

    1996-04-01

    Canada has conducted an extensive research program on a concept of safe disposal of nuclear fuel wastes deep In plutonic rock of the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada`s regulatory agency, the Atomic Energy Control Board. These criteria are expressed in terms of risk, where risk is defined as the sum, over all significant scenarios, of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This report describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility, and the results of its application to the proposed facility. Four intrusion scenarios were analysed, all initiated by a drilling operation. These scenarios are exposure of a member of the drilling crew, of a technologist conducting a core examination, of a construction worker and of a resident. The consequence of each scenario was estimated using standard computer codes for environmental pathways analysis and radiation dosimetry. For comparison with the risk criterion, an estimate of the probability of each scenario is also required. An event-tree methodology was used to estimate these probabilities. The estimated risks from these intrusion scenarios are several orders of magnitude below the established risk criterion. The event-tree methodology has the advantages of explicity displaying the assumptions made, of permitting easy testing of the sensitivity of the risk estimates to assumptions, and of combining technical and sociological information. (author). 53 refs., 8 tabs., 2 figs.

  2. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden.

    Science.gov (United States)

    Gómez, Javier B; Gimeno, María J; Auqué, Luis F; Acero, Patricia

    2014-01-15

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water-rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. © 2013 Elsevier B.V. All rights reserved.

  3. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  4. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining.

    Science.gov (United States)

    Stefanowicz, Anna M; Stanek, Małgorzata; Woch, Marcin W; Kapusta, Paweł

    2016-04-01

    The study evaluated the levels of nine metals, namely Ca, Cd, Fe, K, Mg, Mn, Pb, Tl, and Zn, in soils and tissues of ten plant species growing spontaneously on heaps left by historical mining for Zn-Pb ores. The concentrations of Cd, Pb, Tl, and Zn in heap soils were much higher than in control soils. Plants growing on heaps accumulated excessive amounts of these elements in tissues, on average 1.3-52 mg Cd kg(-1), 9.4-254 mg Pb kg(-1), 0.06-23 mg Tl kg(-1) and 134-1479 mg Zn kg(-1) in comparison to 0.5-1.1 mg Cd kg(-1), 2.1-11 mg Pb kg(-1), 0.02-0.06 mg Tl kg(-1), and 23-124 mg Zn kg(-1) in control plants. The highest concentrations of Cd, Pb, and Zn were found in the roots of Euphorbia cyparissias, Fragaria vesca, and Potentilla arenaria, and Tl in Plantago lanceolata. Many species growing on heaps were enriched in K and Mg, and depleted in Ca, Fe, and Mn. The concentrations of all elements in plant tissues were dependent on species, organ (root vs. shoot), and species-organ interactions. Average concentrations of Ca, K, and Mg were generally higher in shoots than in roots or similar in the two organs, whereas Cd, Fe, Pb, Tl, and Zn were accumulated predominantly in the roots. Our results imply that heaps left by historical mining for Zn-Pb ores may pose a potential threat to the environment and human health.

  5. Use of low-cost heat sources to improve the efficiency of heap leaching of uranium ores. Part of a coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Ajuria, S.

    1977-12-01

    Basic technical parameters are given of two solar heaters designed for use in heap leaching of uranium ores. Inexpensive and easily available materials such as flat glass panes, glass tubing and corrugated metal sheets were used in the construction of the heaters. Under optimum conditions, the heaters can produce temperature differentials of 52 0 C (50 0 C) at the flow rate of 30ml/min. The dependence of percent recovery on the temperature of solutions in heap leaching of ore from 'El Nopal' was studied. Even though no precise correlation was found, an increase in the temperature of solutions seems to improve the efficiency of heap leaching

  6. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  7. Repository for high level radioactive wastes in Brazil: the importance of geochemical (Micro thermometric) studies and fluid migration in potential host rocks; Repositorios para rejeitos radioativos de alto nivel (RANR) no Brasil: a importancia de estudos geoquimicos (microtermometricos) e de migracao de fluidos em rochas potenciamente hospedeiras

    Energy Technology Data Ex