WorldWideScience

Sample records for waste repository site

  1. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  2. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  3. Radioactive waste disposal: Recommendations for a repository site selection

    International Nuclear Information System (INIS)

    Cadelli, N.; Orlowski, S.

    1992-01-01

    This report is a guidebook on recommendations for site selection of radioactive waste repository, based on a consensus in european community. This report describes particularly selection criteria and recommendations for radioactive waste disposal in underground or ground repositories. 14 refs

  4. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    Howell, R.E.; Olsen, D.

    1982-12-01

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed

  5. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  6. Fair rules for siting a high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Easterling, D.

    1992-01-01

    Geologic repositories are designed to resolve the ever-growing problem of high-level nuclear waste, but these facilities invite intense local opposition due to the perceived severity of the risks and the possibility of stigma effects. This analysis examines whether the perceived fairness of the siting process affects local residents' support for hosting a repository. In particular, a survey of 1,001 Nevada residents is used to test the hypothesis that an individual's willingness to accept a local repository will increase if he or she is convinced that this is the safest disposal option available. A logistic analysis indicates that beliefs regarding relative suitability have an independent effect on the acceptability of a local repository (i.e., Yucca Mountain). The article then considers the question of how to implement an optimizing strategy for siting facilities, comparing an idealized strategy against the original Nuclear Waste Policy Act (NWPA) of 1982 and the Amendments Act of 1987. Although choosing the safest site seems as if it could enhance public acceptance of the repository program, there is currently little prospect of identifying the best option to the high-level waste problem and, as a results, little chance of gaining the public support that is necessary to promote a successful siting outcome. 81 refs., 1 fig., 5 tabs

  7. Waste repository planned for Bruce Site

    International Nuclear Information System (INIS)

    King, F.

    2004-01-01

    Ontario Power Generation (OPG) and Kincardine, the municipality nearest the Bruce site, have agreed in principal to the construction of a deep geologic repository for low and medium level radioactive waste on the site. The two parties signed the 'Kincardine Hosting Agreement' on October 13, 2004 to proceed with planning, seek regulatory approval and further public consultation of the proposed project. A construction Licence is not expected before 2013. (author)

  8. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  9. Nuclear waste repository siting and locational conflict analysis: A contextual approach

    International Nuclear Information System (INIS)

    Murauskas, G.T.

    1989-01-01

    This study develops and evaluates an alternative framework that is based on contextual variables. The premise is that differences in attitudes and perceptions regarding the local siting of nuclear wastes and differences in attitudes regarding siting decision-making procedures are influenced by local political, economic, and cultural variables. This framework articulates the nature of conflict in terms of the incongruence between the use-value individuals ascribe to their present situation and the anticipated exchange-value individuals associate with the local siting of a nuclear waste repository. In order to evaluate this conceptual framework a survey was conducted of residents in four communities representing distinct societal contexts: Richton, Mississippi; Peterborough, New Hampshire; Richland, Washington; and Antigo/Waupaca, Wisconsin. Data analyses indicate substantial differences in economic expectations associated with the local siting of a high-level nuclear waste repository and in perception regarding the impacts such a repository might have on the environment, local agriculture, personal health and safety, and the quality of life

  10. Site characterization information needs for a high-level waste geologic repository

    International Nuclear Information System (INIS)

    Gupta, D.C.; Nataraja, M.S.; Justus, P.S.

    1987-01-01

    At each of the three candidate sites recommended for site characterization for High-Level Waste Geologic Repository development, the DOE has proposed to conduct both surface-based testing and in situ exploration and testing at the depths that wastes would be emplaced. The basic information needs and consequently the planned surface-based and in situ testing program will be governed to a large extent by the amount of credit taken for individual components of the geologic repository in meeting the performance objectives and siting criteria. Therefore, identified information to be acquired from site characterization activities should be commensurate with DOE's assigned performance goals for the repository system components on a site-specific basis. Because of the uncertainties that are likely to be associated with initial assignment of performance goals, the information needs should be both reasonably and conservatively identified

  11. SR 97 - Waste, repository design and sites. Background report to SR 97 SKB

    International Nuclear Information System (INIS)

    1999-10-01

    SR 97 is a comprehensive analysis of long-term safety of a deep repository for spent nuclear fuel. The repository is assumed to be designed according to the KBS-3 method. Assessments are performed in SR 97 for three fictitious sites: Aberg, Beberg and Ceberg. One premise is that data used for assessment of the fictitious sites are to be taken from sites that have previously been investigated. The spent nuclear fuel is enclosed in copper canisters with an insert of cast iron. The canisters are emplaced in bored holes in the floor of the deposition tunnels. Around each canister, bentonite blocks are stacked which, after absorbing water and swelling, will isolate the canister from groundwater, hold the canister in place and retard transport of radionuclides from the canister to the surrounding rock. The spent nuclear fuel will emit heat for a long time, due to the decay heat. The maximum permissible temperature on the canister surface has been chosen at 100 deg C. The spacing between the deposition holes and between the deposition tunnels is adjusted site-specifically to meet this requirement. The thermal properties of the rock and the buffer material are of importance for how closely the deposition holes and tunnels can be spaced. After deposition, the deposition tunnels are backfilled with a mixture of bentonite and crushed rock. SR 97 examines above all the consequences of various scenarios and the handling of various types of uncertainties. The different repository sites illustrate normal properties for Swedish bedrock which are of importance for safety. To facilitate the work, the repositories on the three sites are configured as similarly as possible, which means for example that they are located at roughly the same depth and are fitted into the bedrock in a relatively similar fashion. Apart from the siting of a repository for spent nuclear fuel, the site may need to house a separate repository for other long-lived waste. This possibility has been considered in

  12. SR 97 - Waste, repository design and sites. Background report to SR 97 SKB

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    SR 97 is a comprehensive analysis of long-term safety of a deep repository for spent nuclear fuel. The repository is assumed to be designed according to the KBS-3 method. Assessments are performed in SR 97 for three fictitious sites: Aberg, Beberg and Ceberg. One premise is that data used for assessment of the fictitious sites are to be taken from sites that have previously been investigated. The spent nuclear fuel is enclosed in copper canisters with an insert of cast iron. The canisters are emplaced in bored holes in the floor of the deposition tunnels. Around each canister, bentonite blocks are stacked which, after absorbing water and swelling, will isolate the canister from groundwater, hold the canister in place and retard transport of radionuclides from the canister to the surrounding rock. The spent nuclear fuel will emit heat fora long time, due to the decay heat. The maximum permissible temperature on the canister surface has been chosen at 100 deg C. The spacing between the deposition holes and between the deposition tunnels is adjusted site-specifically to meet this requirement. The thermal properties of the rock and the buffer material are of importance for how closely the deposition holes and tunnels can be spaced. After deposition, the deposition tunnels are backfilled with a mixture of bentonite and crushed rock. SR 97 examines above all the consequences of various scenarios and the handling of various types of uncertainties. The different repository sites illustrate normal properties for Swedish bedrock which are of importance for safety. To facilitate the work, the repositories on the three sites are configured as similarly as possible, which means for example that they are located at roughly the same depth and are fitted into the bedrock in a relatively similar fashion. Apart from the siting of a repository for spent nuclear fuel, the site may need to house a separate repository for other long-lived waste. This possibility has been considered in

  13. Site investigations for repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository

  14. Site investigations for repositories for solid radioactive wastes in shallow ground

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository.

  15. Geographical information system (GIS) suitability analysis of radioactive waste repository site in Pahang, Malaysia

    International Nuclear Information System (INIS)

    Faizal Azrin Abd Razalim; Noraini Surip; Ahmad Hasnulhadi; Nazran Harun; Nurul Nadia Abd Malek; Roziah Che Musa

    2010-01-01

    The aim of this project is to identify a suitable site for radioactive waste repository in Pahang using remote sensing and geographical information system (GIS) technologies. There are ten parameters considered in the analysis, which divided into Selection Criteria and Exclusion Criteria. The Selection Criteria parameters consists of land use, rainfall, lineament, slope, groundwater potential and elevation while Exclusion Criteria parameters consist of urban, protected land and island. Furthermore, all parameters were integrated, given weight age and ranked for site selection evaluation in GIS environment. At the first place, about twelve sites have been identified as suitable sites for radioactive waste repository throughout the study area. These sites were further analysed by ground checking on the physical setting including geological, drainage, and population density in order to finalise three most suitable sites for radioactive waste repository. (author)

  16. National radioactive waste repository site selection study. Phase 2. A report on public comment

    International Nuclear Information System (INIS)

    1995-11-01

    Agreement was reached in principle between State/Territory and the Commonwealth of Australia Governments that a suitable site for a radioactive wastes repository must be found. The discussion papers resulting from the Phase 1 and Phase 2 of the site selection study were released for public comment. The national repository will be for disposal of low level and short-lived intermediate level radioactive wastes streaming from the medical, research and industrial use of radioisotopes in Australia. The purpose of this report is to summarise and respond in general terms to comment received on the discussion paper -Phase 2 of the study. Forty five submissions were received. Of these: 18 supported the Phase 2 study approach and the concept of a national repository; 13 did not state a clear position but either requested more information or provided constructive comment on the siting process; 7 supported the site selection approach and the repository concept but suggested that the repository should not be sited in a particular area; 3 opposed the siting of the repository in their vicinity but not necessarily the repository concept and site selection approach; 4 opposed the concept of a national repository. This compares with 124 submissions on Phase 1 of the study, of which 57 opposed the national repository concept (52 of these were from letters elicited by Greenpeace) and 48 supported the establishment of a national repository and the site selection approach proposed. 3 figs

  17. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  18. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008

    International Nuclear Information System (INIS)

    2008-11-01

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  19. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  20. Application of GIS in siting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Zhong Xia; Wang Ju; Huang Shutao

    2010-01-01

    High level radioactive waste geo-disposal is directly related to environment protection and Sustainable Utilization of nuclear energy. To ensure both success and long-term safe disposal of the high level-radioactive waste, finding suitable sites is an important step in the research. Meanwhile, siting and evaluation the geo-disposal repository for high level-radioactive waste need a wide range of relevant information, including geology and geophysical surveys data, geochemistry data and other geoscience data in the field. At the same time, some of the data has its spatial property. Geographic information system (GIS) have a role to play in all geographic and spatial aspects of the development and management of the siting disposal repository. GIS has greatly enhanced our ability to store, analyze and communicate accounts of the information. This study was conducted to compare the more suitable sites for the repository using GIS -based on the data which belongs to the preselected area in BeiShan, Gansu Province, China. First, the data of the pre-selected site is captured by GIS and stored in the geoscience database. Then, according to the relevant guide line in the field, the analysis models based on GIS are build. There are some thematic layers of the sites character grouped into two basic type, namely social factors(town, traffic and nuclear plant) and natural factors (water, land and animals and plants).In the paper, a series of GIS models was developed to compare the pre-selected areas in order to make optimal decision. This study shows that with appropriate and enough information GIS used in modeling is a powerful tool for site selection for disposal repository. (authors)

  1. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  2. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-01-01

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  3. Siting the high level radioactive waste repository in the United States

    International Nuclear Information System (INIS)

    Tourtellotte, J.

    1992-01-01

    For more than twenty-five years after the National Academy of Science issued its 1957 report recommending a Mined Geologic Disposal System (''MGDS'') for high level radioactive waste, no substantial progress was made in selecting and siting a repository. The United States Congress attempted to give substantive and procedural direction to the program in the Nuclear Waste Policy Act of 1982. Seeing that very little had been accomplished some five years later, Congress gave further direction and tentatively selected a single site, Yucca Mountain in Nevada, in the Nuclear Waste Policy Act Amendments of 1987. Selection of the Yucca Mountain site created a political conflict between federal and state authorities. Until recently, that conflict stalled the site characterization and evaluation program. Standards development under a polycentric regulatory regime has also been slow and has created a number of technical, legal and policy controversies. The Environmental Protection Agency (EPA), charged with setting radiation protection rules, may be developing regulatory standards which are technically unachievable and, therefore, legally unprovable in a licensing proceeding. The Nuclear Regulatory Commission (NRC), having the responsibility for licensing and setting performance objectives, may be taking an overly conservative approach. This approach could seriously impact the cost and may preclude the ability to reach an affirmative finding on license issuance. The Department of Energy (DOE) has responsibility for siting, construction and operation of the repository. In so doing, DOE must apply both EPA and NRC standards. To the extent that EPA and NRC standards are untimely, poorly defined, unrealistic, inconsistent, and technically or legally unsound, DOE may be forestalled from fulfilling its responsibilities. The US must rethink its approach to siting the high level radioactive waste repository and take realistic, timely action to preserve the nuclear option. (Author)

  4. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  5. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  6. Uncertainty management in radioactive waste repository site assessment

    International Nuclear Information System (INIS)

    Baldwin, J.f.; Martin, T.P.; Tocatlidou

    1994-01-01

    The problem of performance assessment of a site to serve as a repository for the final disposal of radioactive waste involves different types of uncertainties. Their main sources include the large temporal and spatial considerations over which safety of the system has to be ensured, our inability to completely understand and describe a very complex structure such as the repository system, lack of precision in the measured information etc. These issues underlie most of the problems faced when rigid probabilistic approaches are used. Nevertheless a framework is needed, that would allow for an optimal aggregation of the available knowledge and an efficient management of the various types of uncertainty involved. In this work a knowledge-based modelling of the repository selection process is proposed that through a consequence analysis, evaluates the potential impact that hypothetical scenarios will have on a candidate site. The model is organised around a hierarchical structure, relating the scenarios with the possible events and processes that characterise them, and the site parameters. The scheme provides for both crisp and fuzzy parameter values and uses fuzzy semantic unification and evidential support logic reference mechanisms. It is implemented using the artificial intelligence language FRIL and the interaction with the user is performed through a windows interface

  7. Social impact mitigation and nuclear waste repository siting

    International Nuclear Information System (INIS)

    Peelle, E.

    1980-01-01

    Some aspects of the socioeconomic impacts of siting, constructing, and operating radioactive waste repositories in rural areas are discussed. These include public perceptions of high risk and uncertainty; limited benefits and no incentives; dissociations of costs and benefits; remoteness and inaccessibility of the decision making process for large energy facilities; no institutions to provide protection and accountability for those who may be affected by the siting; the fact that not all risks or impacts are fully mitigable; and constraints on DOE's present ability or authority to mitigate impacts

  8. Public opposition to the siting of the high-level nuclear waste repository: The importance of trust

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    This paper examines several dimensions of public opposition to the proposed siting of the high-level nuclear waste repository at Yucca Mountain. In order to provide a context for the public's views of the repository in metropolitan Clark County, both governmental studies of the repository siting process are analyzed, as well as elements of the Nuclear Waste Policy Act. This analysis suggests that one potentially key component of the public's opposition to the siting, as well as their perceptions of risk of the facility, may be the result of a lack of trust in the Department of Energy. Empirical analysis of survey data collected in Nevada in 1988 confirms the strong relationship between political trust and repository risk perceptions

  9. Workshops for state review of site suitability criteria for high-level radioactive waste repositories: analysis and recommendations

    International Nuclear Information System (INIS)

    1978-02-01

    The purpose of this report is to present the views and recommendations of invited State officials and legislators participating in a workshop concerned with preliminary site suitability criteria for high level radioactive waste repositories. The workshops were open to the public and were conducted by the U. S. Nuclear Regulatory Commission (NRC) during September 1977 in three regional locations across the United States. This contractor report is the second of two reports and consolidates the discussion by State officials on the role of a State in siting a repository, NRC's waste management program, the transportation of high level wastes, the number and location of repositories and concerns with the socio-economic impacts of siting a repository in a community. The recommendations to the NRC can be categorized into four areas. These were: (1) general recommendations, (2) procedural recommendations, (3) recommendations for improving communications, and (4) specific recommendations on the preliminary siting criteria. The recommendations emphasized the need for early State involvement in the siting process, the need for an impacted State to assess repository operations, the need for early solution of waste transportation concerns, and the requirement that any repository developed insure the protection of the public health and safety as its most important characteristic. Other participant recommendations are included in the body of the report

  10. Draft environmental assessment: reference repository location, Hanford Site, Washington. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the reference repository location at the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received on the draft EA. The reference repository location at Hanford is located in the Columbia Plateau, one of five distinct geohydrologic settings that are being considered for the first repository. On the basis of the evaluations reported in this draft EA, the DOE has found that the reference repository location at Hanford is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the reference repository location at Hanford as one of five sites suitable for characterization. Furthermore, having performed a comparative evaluation of the five sites proposed for nomination, the DOE has determined that the reference repository location at Hanford is one of three sites preferred for site characterization

  11. Attitudes and opposition in siting a high level nuclear waste repository

    International Nuclear Information System (INIS)

    Sjoeberg, L.; Viklund, M.; Truedsson, J.

    1998-09-01

    In Sweden, the Swedish Nuclear Fuel and Waste Management Company (SKB) handles all issues concerning nuclear waste, including the siting process, in which the final outcome is intended to be a repository for high level nuclear waste placed deep down in bedrock. The main objective of the siting process is to find a host community fulfilling two important conditions: the safety demands have been met and agreements with the municipality can be accomplished. Only in such municipalities, so-called feasibility studies will be conducted. After conducting general studies in the whole country, SKB, in October 1992, sent letters with information about the intended feasibility studies to all Swedish municipalities. As a result, feasibility studies are or have been considered - and in some cases also been conducted - in eleven Swedish municipalities up until 1998. These are the municipalities where the attitudes and opposition towards a feasibility study, and possibly a final repository, are studied. The discussion can be divided into three main parts: Management of the siting process; Inherent 'chaotic' processes and/or factors and risk perception. It is argued that two important problems could have been avoided at least partly: The citizens in many municipalities were uncertain of the relationship between a feasibility study and a final repository, and in many municipalities the citizens were afraid that the Government could overrule the municipal veto. Because of these fears, a common argument among the opponents of a feasibility study was: 'to be sure of not receiving a final repository, we say no to a feasibility study'. Some inherent factors, more or less prevalent in the municipalities as well as in society in general, may also partly explain the outcome of the siting process. The municipalities in which the debate has been heated, and where public support has been more difficult to reach, share some common characteristics. Esp. in the municipalities in the north of

  12. Attitudes and opposition in siting a high level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, L.; Viklund, M.; Truedsson, J

    1998-09-01

    In Sweden, the Swedish Nuclear Fuel and Waste Management Company (SKB) handles all issues concerning nuclear waste, including the siting process, in which the final outcome is intended to be a repository for high level nuclear waste placed deep down in bedrock. The main objective of the siting process is to find a host community fulfilling two important conditions: the safety demands have been met and agreements with the municipality can be accomplished. Only in such municipalities, so-called feasibility studies will be conducted. After conducting general studies in the whole country, SKB, in October 1992, sent letters with information about the intended feasibility studies to all Swedish municipalities. As a result, feasibility studies are or have been considered - and in some cases also been conducted - in eleven Swedish municipalities up until 1998. These are the municipalities where the attitudes and opposition towards a feasibility study, and possibly a final repository, are studied. The discussion can be divided into three main parts: Management of the siting process; Inherent `chaotic` processes and/or factors and risk perception. It is argued that two important problems could have been avoided at least partly: The citizens in many municipalities were uncertain of the relationship between a feasibility study and a final repository, and in many municipalities the citizens were afraid that the Government could overrule the municipal veto. Because of these fears, a common argument among the opponents of a feasibility study was: `to be sure of not receiving a final repository, we say no to a feasibility study`. Some inherent factors, more or less prevalent in the municipalities as well as in society in general, may also partly explain the outcome of the siting process. The municipalities in which the debate has been heated, and where public support has been more difficult to reach, share some common characteristics. Esp. in the municipalities in the north of

  13. Social and economical aspects in the selection of the site for the final Goiania waste repository

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Tranjan Filho, A.; Rosenthal, J.J.

    2000-01-01

    Site selection criteria for low and intermediate level waste repositories are usually well established as far as the technological and scientific bases are concerned. However, social, cultural and economical aspects need to be examined on a case by case basis because there are many situations to be faced before succeeding to convince the public and authorities that a waste repository is to be built at any chosen site. In the specific case of Goiania there is an ongoing process that started several years ago, to make the repository accepted by local, state and national authorities, and to answer legitimate questions raised by significant segments of the population. This paper will summarise those more relevant aspects concerning the site selection process for the Goiania repository. (author)

  14. Siting the nation's first high-level nuclear waste repository: Social impacts for Utah

    International Nuclear Information System (INIS)

    Olshansky, S.J.

    1986-01-01

    The siting of a high-level nuclear waste repository in the United States has been an issue of great controversy, particulary for the states under consideration. In addition to concerns expressed about the geological stability of the proposed sites, numerous social issues have been raised by the general public--most of which have been addressed by the draft environmental impact statements. Among the social impacts raised by the Department of Engery and the general public, those receiving the greatest attention were the potential influence of the repository on local economics, tourism, and the health status of the local residents. The major issues of interest in the present study include 1) the effects of respondent knowledge of nuclear waste disposal issues on opinions of health effects and tourism, particularly as they are affected by visitation patterns, and 2) the effects of occupation and education (in particular) on knowledge of nuclear waste disposal issues and opinions on technical and non-technical aspects of siting the repository. Preliminary results indicate that only about 40 percent of the respondents have visited the national parks in southeastern Utah, but over 70 percent feel they are informed about the issues associated with siting the repository. Over 60 percent of the respondents were very concerned about the possible negative effect the repository could have on jobs, tourism, health effects, and environmental quality. Cross-tabulations indicate that the respondents self rating on knowledge of nuclear disposal issues has a statistically significant influence on responses to socioeconomic issues, yet the same self rating scale is significantly influenced by the frequency with which respondents have visited the national parks in southeastern Utah

  15. Screening methodology for site selection of a nuclear waste repository in shale formations in Germany

    International Nuclear Information System (INIS)

    Hoth, P.; Krull, P.; Wirth, H.

    2004-01-01

    The radioactive waste disposal policy in the Federal Republic of Germany is based on the principle that all types of radioactive waste must be disposed of in deep geological formations. Because of the favourable properties of rock salt and the existence of thick rock salt formations in Germany, so far most of the research in the field of radioactive waste disposal sites was focused on the study of the use of rock salt. In addition, German research organisations have also conducted generic research and development projects in alternative geological formations (Wanner and Brauer, 2001), but a comprehensive evaluation of their utilisation has been only done for parts of the crystalline rocks in Germany. Research projects on argillaceous rocks started relatively late, so that German experience is mainly connected to German research work with the corresponding European Underground Research Laboratories and the exploration of the former Konrad iron mine as a potential repository site for radioactive waste with negligible heat generation. The German Federal Government has signed in 2001 an agreement with national utility companies to end electricity generation by nuclear power. This decision affected the entire German radioactive waste isolation strategy and especially the repository projects. The utility companies agreed upon standstill of exploration at the Gorleben site and the Federal Ministry for the Environment tries to establish a new comprehensive procedure for the selection of a repository site, built upon well-founded criteria incorporating public participation. Step 3 of the planning includes the examination of further sites in Germany and the comparison with existing sites and concepts. Under these circumstances, argillaceous rock (clay and shale) formations are now a special area of interest in Germany and the development of a screening methodology was required for the evaluation of shales as host and barrier rocks for nuclear waste repositories. (author)

  16. The general situation of clay site for high-level waste geological disposal repository

    International Nuclear Information System (INIS)

    Wang Changxuan; Liu Xiaodong; Liu Pinghui

    2008-01-01

    Host medium is vitally important for safety of high-level radiaoactive waste (HLW) geological disposal. Clay, as host media of geological repository of HLW, has received greater attention for its inherent advantages. This paper summarizes IAEA and OECD/NEA's some safety guides on site selection and briefly introduces the process of the site selection, their studies and the characteristics of the clay formations in Switz-erland, France and Belgian. Based on these analyses, some suggestions are made to China's HLW repository clay site selection. (authors)

  17. Siting of repositories for high level nuclear waste geological and institutional issues

    International Nuclear Information System (INIS)

    Ahagen, H.

    1993-01-01

    Two studies have been conducted in Sweden under contract from SKN-National Board for Spent Nuclear Fuel. The responsibilities of SKN has been transferred to SKI as of July 1, 1992. The first study is related to a compilation of experience and lessons learned from siting of nuclear waste repositories and other controversial facilities in seven countries. The second study is aimed at compiling examples of the state of knowledge related to the regional geological information with relevance to siting of a repository in Sweden. This paper is drawing the general combined conclusions from both these studies. The first study reviewed programs for siting of nuclear and hazardous waste disposal facilities in Canada, Finland, France, Sweden, Switzerland, United Kingdom and USA. The main topics reviewed are related to a/ The use of technical screening, b/ Legal framework and local veto, c/ Public involvement, d/ Interim storage and schedule flexibility, e/ Sequential vs. parallel characterization. The second study focused on the regional geological information available for Sweden and if this information allows for a ''grouping'' of tectonic regions in Sweden with significant differences in history and characteristics. Factors studied as potentially important for siting are bedrock properties, mineralizations, ground water conditions and available volume for a repository. The experience gained from these studies is aimed to be used as background information in the review of the program conducted for the Swedish nuclear utilities by SKB. SKB will according to current plans initiate siting for a repository for spent nuclear fuel in Sweden during 1993. (author). 2 refs

  18. Methodology applied in Cuba for siting, designing, and building a radioactive waste repository under safety conditions

    International Nuclear Information System (INIS)

    Orbera, L.; Peralta, J.L.; Franklin, R.; Gil, R.; Chales, G.; Rodriguez, A.

    1993-01-01

    The work presents the methodology used in Cuba for siting, designing, and building a radioactive waste repository safely. This methodology covers both the technical and socio-economic factors, as well as those of design and construction so as to have a safe siting for this kind of repository under Cuba especial condition. Applying this methodology will results in a safe repository

  19. Draft environmental impact statement. High-level waste repository site suitability criteria

    International Nuclear Information System (INIS)

    1978-01-01

    The purpose of HLWRSSC is to present guidelines which will help in the development of safe waste management schemes. Current regulations require solidification of all high-level waste within 5 years of their generation and transfer to a Federal waste repository within 10 years. Development of the proposed HLWRSSC is part of the overall NRC program to close the ''back end'' of the commercial LWR fuel cycle. In this document, the need for the HLWRSSC is reviewed, and the national energy policy, the need for electrical energy, and the nuclear fuel cycle are discussed. Considerations for HLWRSSC are presented, including the nature of the repository, important site-related factors, and radiological risk assessment methodology. Radiological and nonradiological environment impacts associated with the HLWRSSC are defined. Alternatives to the criteria are presented, and the cost-benefit-risk evaluation is reviewed

  20. FFSM, Long-Term Nuclear Waste Repository Site Simulation by Monte-Carlo

    International Nuclear Information System (INIS)

    Hadlock, L.R.; Hellstrom, D.I.; Mikulis, M.J.B.; Little, A.D.; Golis, M.J.

    1988-01-01

    1 - Description of program or function: FFSM (Far Field State Model) predicts the approximate geologic and climatic state of a site for a nuclear waste repository over relatively long periods of time. The purpose of FFSM is to represent quantitatively certain events and processes that could alter the effectiveness of one or more natural barriers in a waste isolation system. The barriers treated by the model are primarily components of the geologic environment surrounding the repository, although biosphere components (e.g. climate parameters) that could affect the impact of radionuclide releases are also considered. These components are treated outside the realm of wastes or repository-induced effects, which is indicated by use of the term f ar field . The model treats both natural and man-induced changes in these barriers within a probabilistic framework, and it accounts for cumulative and interactive effects of multiple phenomena. 2 - Method of solution: Fifteen submodels are included in FFSM to account for phenomena that may be of importance individually or in combination in evaluating sites for repositories. These submodels include: undetected features, climate, worldwide glaciation, local glaciation, folding, salt dispersion, magmatic events, faulting, biosphere state, regional deformation, geomorphic processes, dissolution fronts, localized dissolution (breccia pipes), solution mining, and drilling. FFSM can be used in both a deterministic mode, to evaluate interactions or to calculate point values, and a probabilistic mode, to make statistical estimates of future changes. In the probabilistic mode, Monte Carlo simulation is used to generate output probabilities, based on user-supplied input, largely in the form of probability density functions for variable or uncertain parameters

  1. Ethical considerations surrounding nuclear waste repository siting and mitigation

    International Nuclear Information System (INIS)

    Peters, T.F.

    1983-01-01

    The potential long-term health and safety effects of the nuclear materials stored in repositories, the extremely long periods of time over which such materials may be dangerous, and the equity implications of the siting of a repository in any given area are unlike the issues involved in other large-scale projects. They involve major philosophical issues basic to human perspectives on social relationships and on insuring the future of mankind. Safety and permanence are the two basic criteria for determining whether a waste proposal is satisfactory. This chapter takes the approach of public (or micro) ethics, whose task is to 1) articulate and clarify public values relevant to a problem, 2) identify and evaluate public options, and 3) rank alternatives in some order of ethical preferability. It addresses the four major repository-related issues: uncertainty and risks, geographic equity, intergenerational ethics, and implementation ethics

  2. Hydrological performance assessment on siting the high level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Wang Ju; Wang Zhiming; Su Rui; Lv Chuanhe; Zong Zihua

    2007-01-01

    Based on the research experiences in China and some developed countries in the world, the processes and methods on hydrological performance assessment for the siting of high radioactive repository are discussed in this paper. The methods and contents of hydrological performance assessment are discussed respectively for region, area and site hydrological investigation stages. At the same time, the hydrological performance assessment of the potential site for high level radioactive waste in China is introduced. (authors)

  3. Ventilation planning for a prospective nuclear waste repository

    International Nuclear Information System (INIS)

    Wallace, K.G. Jr.

    1987-01-01

    In 1982, the US Congress passed the Nuclear Waste Policy Act to provide for the development of underground repositories for spent nuclear fuel. This development will be managed by the United States Department of Energy. In 1986, the President selected three areas for site characterization to determine their suitability for the development of an underground repository; those sites were: (1) A site in volcanic tuff located at Yucca Mountain in Nevada, (2) a site in bedded salt located in Deaf Smith County in Texas, and (3) a site in basalt located in Hanford, Washington. At present conceptual repository designs are being developed for each site. A key element of a repository design is the underground ventilation system required to support construction, nuclear waste emplacement, and potential waste retrieval. This paper describes the preliminary ventilation systems designed for the repository in tuff. The concept provides separate ventilation systems for the construction and waste emplacement activities. The paper further describes the means by which acceptable environmental conditions will be re-established to allow re-entry into previously closed rooms for the purpose of inspection, maintenance or retrieval

  4. Site characterization plan overview: reference repository location, Hanford Site, Washington: Consultation draft: Nuclear Waste Policy Act (Section 113)

    International Nuclear Information System (INIS)

    1988-01-01

    As part of the process for siting the nation's first geologic repository for radioactive waste, the Department of Energy (DOE) is preparing a site characterization plan for the Hanford site in Benton County, Washington. As a step in the preparation of that plan, the DOE has provided, for information and review, a consultation draft of the plan to the State of Washington, the affected Indian Tribes - the Confederated Tribes of the Umatilla Indian Reservation, the Nez Perce Indian Tribe, and the Yakima Indian Nation - and the US Nuclear Regulatory Commission. The Hanford site is one of three sites that the DOE currently plans to characterize;the other sites are the Deaf Smith County site in Texas and the Yucca Mountain site in Nevada. After site characterization has been completed and its results evaluated, the DOE will identify from among the three characterized sites the site that is preferred for the repository. The overview presented here consists of brief summaries of important topics covered in the consulation draft of the site characterization plan;it is not a substitute for the site characterization plan. The arrangement of the overview is similar to that of the plan itself, with breif descriptions of the dispoal system - the site, the repository, and the waste package - preceding the discussion of the characterization program to be carried out at the Hanford site. It is intended primarily for the management staff of organizations involved in the DOE's repository program or other persons who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization

  5. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    Science.gov (United States)

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  6. A radioactive waste repository for Australia: methods for choosing the right site

    International Nuclear Information System (INIS)

    1992-01-01

    This study has developed and used an open and objective approach to site selection. A geographic information system was used to assemble continental-scale information. The information was classified according to suitability criteria and processed to show how the most suitable areas for locating Australia's radioactive waste repository can be identified. The test results show that different regions are identified when different selection criteria are used. The results in this discussion paper are indicative only and are intended to provide a focus for more detailed studies at regional and local levels following public comment on the criteria and methodology. The methodology for identifying a suitable site for a national repository for radioactive wastes will be re-applied with more detailed information to areas identified in this study and on the basis of public comments. 6 figs

  7. Politics and technology in repository siting: military versus commercial nuclear wastes at WIPP 1972-1985

    International Nuclear Information System (INIS)

    Downey, G.L.

    1985-01-01

    During the 1970s, attempts by the federal government to develop a comprehensive system for disposing of nuclear wastes in geologic repositories were plagued by two related political problems; (1) whether or not military and commercial wastes should be buried together in the same repository, and (2) how to define the host state's role in the repository siting mechanism. This article explains why these two problems were connected by showing how they proved to be of decisive importance in the development of the Waste Isolation Pilot Plant (WIPP) project in Carlsbad, New Mexico. Although WIPP was initially conceived as a wholly military facility, The Department of Energy triggered a three-year dispute over the project's scope by proposing in 1978 to include commercial wastes in the repository. The key issue in the dispute concerned the political legitimacy of decision-making mechanisms for repository siting, which depend upon the extent to which they both adequately represent the interests of affected groups and meet an indistinct technical/political criterion of acceptable safety. DOE's ill-fated proposal to mix military and commercial disposal at WIPP demonstrated that the two rely on somewhat different conditions for their legitimacy. The agency overlapped the legitimate authorities of the federal and state governments and gave itself the hopeless task of negotiating a new boundary between them. 50 references, 3 figures

  8. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  9. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    International Nuclear Information System (INIS)

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases

  10. Site selection of radioactive waste repository in the Republic of Croatia

    International Nuclear Information System (INIS)

    Saler, A.

    1992-01-01

    The radioactive waste repository site-selection procedure in Croatia is divided into two stages: the first, related to the exclusionary screening of the national territory and comparison of potential areas in order to identify preferred sites, acceptable for inclusion into the Regional Plan; and the second, comprising all necessary field investigations as well as additional site-characterization tasks planned to be worked out at a preferred sites. Several potential areas, representing an intermediate goal of the first stage, are defined till now. (author) [hr

  11. International perspective on repositories for low level waste

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva

    2011-12-01

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  12. International perspective on repositories for low level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva (SKB International AB (Sweden))

    2011-12-15

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  13. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  14. Nuclear Waste Policy Act of 1982; proposed general guidelines for recommendation of sites for nuclear waste repositories

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In accordance with the requirements of the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425), hereinafter referred to as the Act, the Department of Energy is proposing general guidelines for the recommendation of sites for repositories for disposal of high-level radioactive waste and spent nuclear fuel in geologic formations. These guidelines are based on the criteria that the Department has used in its National Waste Terminal Storage program, the criteria proposed by the Nuclear Regulatory Commission (NRC), and the environmental standards proposed by the Environmental Protection Agency. These guidelines establish the performance requirements for a geologic repository system, specify how the Department will implement its site-selection program, and define the technical qualifications that candidate sites must meet in the various steps of the site-selection process mandated by the Act. After considering comments from the public; consulting with the Council on Environmental Quality, the Administrator of the Environmental Protection Agency, the Director of the Geological Survey, and interested Governors; and obtaining NRC concurrence, the Department will issue these guidelines in final form as a new Part 960 to Title 10 of the Code of Federal Regulations (10 CFR Part 960)

  15. Siting Process for HLW Repository in Japan

    International Nuclear Information System (INIS)

    Masuda, S.; Kitayama, K.; Umeki, H.; Naito, M.

    2002-01-01

    In the year 2000, the geological disposal program for high-level radioactive waste in Japan moved from the phase of generic research and development (R and D) into the phase of implementation. Following legislation entitled the ''Specified Radioactive Waste Final Disposal Act'', the Nuclear Waste Management Organization of Japan (NUMO) was established as the implementing organization. The assigned activities of NUMO include selection of the repository site, demonstration of disposal technology at the site, developing relevant licensing applications and construction, operation and closure of the repository. As the first milestone of siting process, NUMO announced to the public an overall procedure for selection of preliminary investigation areas for potential candidate sites on October 29, 2001. The procedure specifies that NUMO will solicit volunteer municipalities for preliminary investigation areas with publishing four documents as an information package. These documents are tentatively entitled ''Instructions for Application'', ''Siting Factors for the Preliminary Investigation Areas'', a ''Repository Concepts'' as well as an ''Site Investigation Community Outreach Scheme''

  16. Development of site suitability criteria for the high level waste repository for Lawrence Livermore Laboratories

    International Nuclear Information System (INIS)

    1977-06-01

    Results of our mining, geological and geotechnical studies provided in support of the development of site suitability criteria for the high level waste repository are presented. The primary purpose of the work was the identification and development of appropriate geotechnical descriptors and coefficients required for the Site Suitability Repository Model. This model was developed by The Analytic Sciences Corporation (TASC) of Reading, Massachusetts and is not described in this report

  17. Development of site suitability criteria for the high level waste repository for Lawrence Livermore Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    Results of our mining, geological and geotechnical studies provided in support of the development of site suitability criteria for the high level waste repository are presented. The primary purpose of the work was the identification and development of appropriate geotechnical descriptors and coefficients required for the Site Suitability Repository Model. This model was developed by The Analytic Sciences Corporation (TASC) of Reading, Massachusetts and is not described in this report.

  18. Preliminary post-closure safety assessment of repository concepts for low level radioactive waste at the Bruce Site, Ontario

    International Nuclear Information System (INIS)

    Little, R.H.; Penfold, J.S.S.; Egan, M.J.; Leung, H.

    2005-01-01

    The preliminary post-closure safety assessment of permanent repository concepts for low-level radioactive waste (LLW) at the Ontario Power Generation (OPG) Bruce Site is described. The study considered the disposal of both short and long-lived LLW. Four geotechnically feasible repository concepts were considered (two near-surface and two deep repositories). An approach consistent with best international practice was used to provide a reasoned and comprehensive analysis of post-closure impacts of the repository concepts. The results demonstrated that the deep repository concepts in shale and in limestone, and the surface repository concept on sand should meet radiological protection criteria. For the surface repository concept on glacial till, it appears that increased engineering such as grouting of waste and voids should be considered to meet the relevant dose constraint. Should the project to develop a permanent repository for LLW proceed, it is expected that this preliminary safety assessment would need to be updated to take account of future site-specific investigations and design updates. (author)

  19. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  20. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P.

    2015-01-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  1. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P., E-mail: godiva@cdtn.br, E-mail: mouraor@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  2. Review of institutional and socioeconomic issues for radioactive waste repository siting

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Carnes, S.A.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-01-01

    In recent years, the importance of social and institutional issues in the siting of radioactive waste management repositories has been recognized. This study deals with the possibility of using incentives to assist in siting repositories and outlines some of their uses, limitations, and preconditions. Limited survey data and other studies indicate that incentives may help encourage people to formulate positive positions on radioactive waste repositories. In an overall siting strategy, incentives are just one part of a structured process involving the creation of a mutually acceptable set of arrangements that make certain guarantees and confer certain benefits in exchange for the acceptance of the proposed facility. Because the range of needs to be fulfilled is varied, a package of incentives is likely to be more acceptable than any one single incentive. The purpose of incentives is to encourage local approval by minimizing and redressing costs and providing missing benefits. Most previous discussions of incentives have emphasized mitigation mechanisms only. This paper also identifies compensation, incentives, and criteria by which compensation or an incentive system can be evaluated. The study provides the means by which incentives can be identified, assessed, negotiated, and implemented by affected parties and attempts to show where incentives fit into an overall siting strategy by developing a classification scheme and an analytical framework that capture: (1) the preconditions that must exist before any incentive system can be considered; (2) the objective features of an incentive; such as adequacy and ease of administration; (3) community perceptions of an incentive, such as interpretability and relevance; and (4) the consequences of implementing an incentive, such as distributional effects and conflict and consensus. 38 references, 1 figure, 2 tables

  3. Nuclear waste repository in basalt: preconceptual design guidelines

    International Nuclear Information System (INIS)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation

  4. Nuclear waste repository in basalt: preconceptual design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation.

  5. The role of weapons production and military waste in the repository selection process

    International Nuclear Information System (INIS)

    Nelson, D.; Hope, J.; Power, W.; Hunter, T.

    1987-01-01

    The decision to commingle defense waste with commercial waste in the nuclear waste repository program has many impacts on that program. There will be more waste to place in the two repositories authorized under the Nuclear Waste Policy Act, more transport miles to get the waste to a repository, and more costs associated with environmental and socio-economic impact mitigation. This paper explores the links between weapons production and military waste, and the repository selection process. The paper first describes the importance of state, tribe and public participation to the acceptance of a repository site selection. The paper then examines the various estimates of amounts of existing and future military nuclear wastes, and how these estimates affect repository siting decisions. The final section addresses the public policy questions which surround this issue. Repository siting may be jeopardized unless there is open public discussion about existing radioactive contamination at military production sites and about future nuclear weapons production. Cost-sharing is considered within this context

  6. Preliminary assessment of nuclear waste transportation cost and risk for operation of the first repository at candidate sites

    International Nuclear Information System (INIS)

    Peterson, R.W.; McSweeney, T.I.; Varadarajan, R.V.; Wilmot, E.L.; Cashwell, J.W.; Joy, D.S.

    1983-01-01

    To support the selection of the first commercial nuclear waste repository site in 1987, environmental analyses of five candidate site locations are currently being performed. The five locations are in the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain and the Hanford reservation. Costs and operational risks associated with the transportation of nuclear wastes to a single repository located in these regions have been calculated for a life-cycle of 26 years

  7. National radioactive waste repository draft EIS. 2 volumes

    International Nuclear Information System (INIS)

    2002-01-01

    Most Australians benefit either directly or indirectly from the medical, industrial and scientific use of radioactive materials. This use produces a small amount of radioactive waste, including low level and short-lived intermediate level radioactive waste such as lightly contaminated soil, plastic, paper, laboratory equipment, smoke detectors, exit signs and gauges.This waste is temporarily stored at more than 100 urban and rural locations around Australia, much of it in buildings that were neither designed nor located for the long-term storage of radioactive material and that are nearing or have reached capacity. Storage locations include hospitals, research institutions, and industry and government stores. Storing such waste in many locations in non-purpose built facilities potentially poses greater risk to the environment and people than disposing of the material in a national, purpose-built repository where the material can be safely managed and monitored. The objectives of the national repository are to: 1. strengthen Australia's radioactive waste management arrangements by promoting the safe and environmentally sound management of low level and short-lived intermediate level radioactive waste 2. provide safe containment of these wastes until the radioactivity has decayed to background levels. To meet these objectives, it is proposed to construct a national near-surface repository at either the preferred site on the Woomera Prohibited Area (WPA) or either of the two nearby alternative sites. The facility is not intended for the disposal of radioactive ores from mining. A national store for long-lived intermediate level waste will not be co-located with the national repository, and would be subject to a separate environmental assessment process.One preferred and two alternative sites have been selected for the national repository, following an extensive site selection process. All three sites are located in northern South Australia in a region known as central

  8. A methodology for evaluating alternative sites for a near-surface radioactive waste repository

    International Nuclear Information System (INIS)

    Watson, S.R.; Brownlow, S.A.

    1986-02-01

    This report addresses the issue of constructing an evaluation procedure for a near-surface radioactive waste repository. It builds on earlier work of the authors, and describes a basis for a practicable methodology for assessing the relative merits of different sites. (author)

  9. Environmental assessment overview, Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization. 3 figs

  10. Siting regions for deep geological repositories. Why just here?

    International Nuclear Information System (INIS)

    Rieser, A.

    2009-09-01

    This report helps to the popularization of the Nagra works accomplished for the management and disposal of the radioactive wastes in Switzerland. The programme for management and disposal of the radioactive wastes are extensively determined by regulations. Protection of mankind and environment is the primary objective. The basic storage process is considered as having been solved. The question addressed in the report is where the facility has to be built; the site selection procedure includes five steps: 1) according to their type the wastes have to be allocated to two different repositories: for low- and intermediate-level wastes (L/ILW), and for high-level and alpha-toxic wastes (HLW); 2) the safety concept for both repositories and the requirements on the geology have to be determined; 3) large suitable geological-tectonic zones must be found where repositories could be built; 4) in these geological zones a suitable host rock has to be identified; 5) the most important spatial geological conditions of the host rock (minimum depth with respect to surface erosion, maximum depth in terms of engineering requirements, lateral extent) have to be identified. Based on these criteria, three suitable siting regions for a HLW repository were found in the North of Switzerland. The preferred host rock is Opalinus clay because of its very low permeability; it is therefore an excellent barrier against nuclide transport. In the three proposed siting regions, Opalinus clay is present in sufficient volumes at a suitable depth. For a L/ILW repository six different possible siting regions were identified, five in Northern Switzerland and one in Central Switzerland. In the three siting regions found for a possible HLW repository, it would also be possible to built a combined repository for both HLW and L/ILW wastes

  11. Repository site characterization

    International Nuclear Information System (INIS)

    Voss, J.W.; Pentz, D.L.

    1987-01-01

    The characterization of candidate repository sites has a number of programmatic objectives. Principal among these is the acquisition of data: a) to determine the suitability of a site relative to the DOE repository siting guidelines, b) to support model development and calculations to determine the suitability of a site relative to the post closure criteria of the NRC and EPA, c) to support the design of a disposal system, including the waste package and the engineered barrier system, as well as the shafts and underground openings of the repository. In meeting the gaols of site characterization, the authors have an obligation to conduct their investigations within an appropriate budget and schedule. This mandates that a well-constructed and systematic plan for field investigations be developed. Such a plan must fully account for the mechanisms which will control the radiologic performance in the repository. The plan must also flexibly and dynamically respond to the results of each step of field investigation, responding to the spatial variability of earth as well as to enhanced understandings of the performance of the disposal system. Such a plan must ensure that sufficient data are available to support the necessary probabilistic calculations of performance. This paper explores the planning for field data acquisition with specific reference to requirements for demonstrations of the acceptable performance for disposal systems

  12. Impact of transporting defense high-level waste to a geologic repository

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options

  13. Site selection factors for repositories of solid high-level and alpha-bearing wastes in geological formations

    International Nuclear Information System (INIS)

    1977-01-01

    The purpose of this report is to provide guidelines for the selection and evaluation of suitable areas and sites for the disposal of solid high-level and alpha-bearing wastes into geological formations. This report is also intended to provide summary information on many types of geological formations underlying the land masses that might be considered as well as guidance on the geological and hydrological factors that should be investigated to demonstrate the suitability of the formations. In addition, other factors that should be considered in selecting a site for a radioactive waste repository are discussed briefly. The information, as presented, was developed to the extent of current technology for application to the evaluation of deep (greater than about 300 metres below ground level) geological formations in the selection of suitable areas for the disposal of solid or solidified high-level and alpha-bearing wastes. The extreme complexity of many geological environments and of the rock features that govern the presence and circulation of groundwater does not make it feasible to derive strict criteria for the selection of a site for a radioactive waste repository in a geological formation. Each potential repository location must be evaluated according to its own unique geological and hydrological setting. Therefore, only general guidance is offered, and this is done through discussion of the many factors that need to be considered in order to obtain the necessary assurances that the radionuclides will be confined in the geological repository over the required period of time

  14. Site selection factors for repositories of solid high-level and alpha-bearing wastes in geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The purpose of this report is to provide guidelines for the selection and evaluation of suitable areas and sites for the disposal of solid high-level and alpha-bearing wastes into geological formations. This report is also intended to provide summary information on many types of geological formations underlying the land masses that might be considered as well as guidance on the geological and hydrological factors that should be investigated to demonstrate the suitability of the formations. In addition, other factors that should be considered in selecting a site for a radioactive waste repository are discussed briefly. The information, as presented, was developed to the extent of current technology for application to the evaluation of deep (greater than about 300 meters below ground level) geological formations in the selection of suitable areas for the disposal of solid or solidified high-level and alpha-bearing wastes. The extreme complexity of many geological environments and of the rock features that govern the presence and circulation of groundwater does not make it feasible to derive strict criteria for the selection of a site for a radioactive waste repository in a geological formation. Each potential repository location must be evaluated according to its own unique geological and hydrological setting. Therefore, only general guidance is offered, and this is done through discussion of the many factors that need to be considered in order to obtain the necessary assurances that the radionuclides will be confined in the geological repository over the required period of time.

  15. Siting guidelines and their role in repository site selection

    International Nuclear Information System (INIS)

    Hanlon, C.L.

    1985-01-01

    The first requirement of the Nuclear Waste Policy Act was for the Secretary of Energy to issue general guidelines for siting repositories. The guidelines were to specify detailed geologic considerations that would be the primary criteria for the selection of sites in various host rocks, as well as factors that would qualify or disqualify any site from development as a repository. These guidelines were clearly intended to provide not only the framework for the siting program but also the stimulus for establishing effective communication and consultation among the parties involved in the program. The Act further required that the guidelines be a factor in the development of all future decision documents of the Office of Civilian Radioactive Waste Management, including the environmental assessments that would accompany the nomination of sites for characterization, the site-characterization plans that are to be prepared before the sinking of exploratory shafts at any candidate site, and the environmental impact statement that is to support the recommendation of a site for development as a repository. More than two years after its passage, the intention of the Act for the guidelines has been realized. Concurred in by the Nuclear Regulatory Commission on June 22, 1984, and issued by the Department in November 1984, the guidelines include postclosure technical guidelines that apply to conditions governing the long-term performance of the repository system; preclosure technical guidelines that apply to conditions governing the siting, construction, operation, and closure of the repository; and system guidelines whose objective is to ensure that the regulatory requirements of the Environmental Protection Agency and the Nuclear Regulatory Commission are met

  16. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  17. Law no. 10.308 of 20th November, 2001 on radioactive waste repositories siting, construction, licensing, operation, inspection, costs, indemnity, civil liability and guarantees concerning to the radioactive wastes repositories and other provisions

    International Nuclear Information System (INIS)

    2001-01-01

    This Act was published on November 20, 2001 and set forth regulations on the final disposal of radioactive wastes produced in Brazil, including siting, construction, licensing, operation, inspection, costs, indemnities, civil liability and guarantees concerning to the radioactive wastes repositories. This act allows for installation and operation of initial, intermediary and final repositories in accordance with the criteria established by the Brazilian Nuclear Energy National Commission - CNEN. The person or organization granted with CNEN authorization for operation of the initial repositories shall be liable for personal, patrimony and environmental radiological damages. The civil liability of CNEN is concerned to the radioactive waste intermediary and final disposals and transportation

  18. NAGRA - Sites for geological repositories - Technical safety factors: Suggestions for stage 3

    International Nuclear Information System (INIS)

    2015-01-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the six sites for repositories for nuclear wastes in Switzerland which have been proposed in Stage 1 of the program concerning nuclear waste repositories. Three of these sites are proposed for both highly radioactive wastes as well as for low and medium-active wastes, the other three for low and medium-active wastes only. The evaluation of the sites is discussed. The sites are to be further evaluated in Stage 2 of the program. The work to be done in the further stages involved in the selection of the final site (or sites) is described. Along with definition of the regions where deep repositories could possibly be built, suggestions for the placing of the facilities required on the surface are discussed. Geological requirements on the repositories and safety-relevant characteristics of the various site options are discussed. The results of the assessments made are presented in tabular form. Maps and geological cross-sections of all the suggested areas are included

  19. Acceptability of a low and intermediate level radioactive waste repository

    International Nuclear Information System (INIS)

    Zeleznik, N.; Polic, M.

    2000-01-01

    Siting of a radioactive waste repository, even for the waste of low and intermediate level (LILW) radioactivity, presents a great problem in almost every country that produces such waste. The main problem is not a technical one, but socio-psychological, namely the acceptability of this kind of repository. In general, people are opposed to any such kind of facility in their vicinity (NIMBY). In this study we try to establish the factors that influence people's behavior regarding the construction of a radioactive waste repository in their local community, with the use of Ajzen's model of planned behavior. Two different scenarios about the construction of a radioactive waste repository in their community, together with a set of questions were presented to participants from different schools. Data from the survey were analysed by multivariate methods, and a model of relevant behaviour was proposed. From the results it can be seen that different approaches to local community participation in site selection process slightly influence people's attitudes towards the LILW repository, while significant differences in answers were found in the responses which depend on participants' knowledge. Therefore the RAO Agency will further intensify preparation of the relevant communication plan and start with its implementation to support LILW repository site selection process, which will also include educational programme. (author)

  20. Technical, normative and social aspects of the site selection process for radioactive waste repositories

    International Nuclear Information System (INIS)

    Branco, Otavio E.A.; Rodrigues, Paulo C.H.; Carvalho Filho, Carlos A.; Cota, Stela D.S.; Ferreira, Vinicius V.M.; Peres, Sueli S.; Hiromoto, Goro

    2009-01-01

    In force since 2001, the Federal Law 10.308 states, in article 37, that the Comissao Nacional de Energia Nuclear - CNEN should start studies for the implementation of a final radioactive waste repository, 'in the shortest timeframe technically feasible'. Nevertheless, not only technical aspects have to be taken into account to accomplish with this schedule, but, also factors of political, economic and social nature. In this paper, the importance and impact of public acceptance aspects are discussed, as well as the methodology of site selection for radioactive wastes repositories, and proposals to accommodate the emanated criteria from the existing legislation. Additionally, practical results from the international experience in the implementation of such deposits are presented. (author)

  1. Radioactive waste repository of high ecological safety

    International Nuclear Information System (INIS)

    Sobolev, I.; Barinov, A.; Prozorov, L.

    2000-01-01

    With the purpose to construct a radioactive waste repository of high ecological safety and reliable containment, MosNPO 'Radon' specialists have developed an advanced type repository - large diameter well (LBD) one. A project is started for the development of a technology for LDW repository construction and pilot operation of the new repository for 25-30 years. The 2 LDW repositories constructed at the 'Radon' site and the developed monitoring system are described

  2. Deep geological repository: Starting communication at potentially suitable sites

    International Nuclear Information System (INIS)

    Sumberova, Vera

    2001-01-01

    The siting of a deep geological repository in the Czech Republic is and will be a complicated process, since it is the first siting process of a nuclear facility designed from the start to be located at non-nuclear sites and to be organised under democratic conditions. This presentation describes the concept of radioactive waste and spent nuclear management in the Czech Republic, Communication activities of Radioactive Waste Repository Authority (RAWRA) with local representatives and lessons learned

  3. Public concerns and choices regarding nuclear-waste repositories

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1981-06-01

    Survey research on nuclear power issues conducted in the late 1970's has determined that nuclear waste management is now considered to be one of the most important nuclear power issues both by the US public and by key leadership groups. The purpose of this research was to determine the importance placed on specific issues associated with high-level waste disposal. In addition, policy option choices were asked regarding the siting of both low-level and high-level nuclear waste repositories. A purposive sampling strategy was used to select six groups of respondents. Averaged across the six respondent groups, the leakage of liquid wastes from storage tanks was seen as the most important high-level waste issue. There was also general agreement that the issue regarding water entering the final repository and carrying radioactive wastes away was second in importance. Overall, the third most important issue was the corrosion of the metal containers used in the high-level waste repository. There was general agreement among groups that the fourth most important issue was reducing safety to cut costs. The fifth most important issue was radioactive waste transportation accidents. Overall, the issues ranked sixth and seventh were, respectively, workers' safety and earthquakes damaging the repository and releasing radioactivity. The eighth most important issue, overall, was regarding explosions in the repository from too much radioactivity, which is something that is not possible. There was general agreement across all six respondent groups that the two least important issues involved people accidentally digging into the site and the issue that the repository might cost too much and would therefore raise electricity bills. These data indicate that the concerns of nuclear waste technologists and other public groups do not always overlap

  4. The status of siting activities for a low level waste repository in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Visitacion, M.; Palattao, B.; Marcelo, E.A.; Venida, L.L.

    2001-01-01

    The process of site selection for a low level waste repository was initiated in 1976 when the Philippine Government decided to go nuclear and constructed the first Philippine Nuclear Power Plant in the Bataan Peninsula. However, all siting activities were suspended when the nuclear power plant was mothballed and the final decision was made to convert the plant into a combined cycle power plant. In 1995, an inter-agency committee was created under the Nuclear Power Steering Committee and mandated to conduct studies on siting of radioactive waste disposal facilities, and at the same time, perform R and D activities in support of the project. This paper describes the various siting activities carried out to date. (author)

  5. Potential host media for a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Hustrulid, W

    1982-01-01

    Earlier studies of burial of radioactive wastes in geologic repositories had concentrated on salt formations for well-publicized reasons. However, under the Carter administration, significant changes were made in the US nuclear waste management program. Changes which were made were: (1) expansion of the number of rock types under consideration; (2) adoption of the multiple-barrier approach to waste containment; (3) additional requirements for waste retrieval; and (4) new criteria proposed by the Nuclear Regulatory Commission for the isolation of high-level waste in geologic repositories. Results of the studies of different types of rocks as repository sites are summarized herein. It is concluded that each generic rock type has certain advantages and disadvantages when considered from various aspects of the waste disposal problem and that characteristics of rocks are so varied that a most favorable or least favorable rock type cannot be easily identified. This lack of definitive characteristics of rocks makes site selection and good engineering barriers very important for containment of the wastes. (BLM)

  6. Planning the rad waste repository - Croatian case

    International Nuclear Information System (INIS)

    Kucar Dragicevic, S.; Subasic, D.; Lokner, V.

    1996-01-01

    Radioactive waste is generated in Croatia from various nuclear applications as well as from the Krsko NPP (Slovenian and Croatian joint venture facility). The national programme on radioactive waste management is aimed at straightening existing infrastructure, establishing new (more transparent) system of responsibilities and development of new legislation. The siting of LL/ILW repository is important segments of the whole radioactive waste management cycle. The status and efficiency of the rad waste management infrastructure in the country have the significant influence on all the activities related to the project of repository construction - from the very first phases of preliminary planning and background preparations to advanced phases of the project development. The present status of the Croatian national radioactive waste infrastructure and its influence on the repository project are presented. The role of national legislation and institutional framework are specially discussed. (author)

  7. Role of mine ventilation in site selection for a nuclear waste repository

    International Nuclear Information System (INIS)

    McPherson, M.J.

    1984-01-01

    The application of mine ventilation practice and theory to the measurement of groundwater flow for the purpose of the selection of sites for underground storage of nuclear spent fuel is described. The discipline of mine ventilation has an important part to play not only in the design and operation of an underground nuclear waste repository but also during the early stages of potential site characterization. One of the most vital factors in the selection of a suitable site is the rate at which groundwater can flow through the native rock. The effects of repository heat on groundwater migration are highlighted and a description of a major experiment in an underground test site is included. Detailed monitoring of airflow and its psychrometric properties enabled quantification of very low rates of water seepage into an isolated heading. The results indicated the relationship between permeability of a fractured rock and temperature. The transient phenomena that govern evaporation of water from fissured rock surfaces in the test chamber are also examined. (author)

  8. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.

  9. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization.

  10. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization

  11. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization

  12. Central repository for low- and intermediate-level waste (ALMA) conceptual design, siting and safety study

    International Nuclear Information System (INIS)

    Kjellbert, N.; Haeggblom, H.; Cederstroem, M.; Lundgren, T.

    1980-07-01

    A generic design, siting and safety study of a proposed repository for low- and intermediate-level waste has been made. Special emphasis has been placed on safety characterostics. The conceptual design and the generic site, on which the study is based, are realistically chosen in accordance with present construction techniques and the existing geohydrological conditions in Sweden. (Auth.)

  13. Basic repository environmental assessment design basis, Richton Dome site

    International Nuclear Information System (INIS)

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Gulf Interior Region at Richton Dome in Perry County, Mississippi. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7,020 canisters of defense high-level reprocessing waste and associated quantities of remote-and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1,000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $4.49 billion. Costs include those for the WHPF, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively easy access to the site. Construction would require an estimated 6.25 years. Engineering factors and costs are not strongly influenced by environmental considerations. 52 refs., 24 figs., 20 tabs

  14. Basic repository environmental assessment design basis, Davis Canyon site

    International Nuclear Information System (INIS)

    1984-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Davis Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7,020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1,000-year-life carbon-steel waste packages in a collected waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.49 billion. Costs include those for the collocated WHPF, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 50 refs., 24 figs., 20 tabs

  15. Basic repository environmental assessment design basis, Lavender Canyon site

    International Nuclear Information System (INIS)

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs

  16. A preliminary analysis of the risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Madsen, M.M.

    1984-01-01

    In accordance with the provisions of the Nuclear Waste Policy Act of 1982, environmental assessments for potential candidate sites are required to provide a basis for selection of the first site for disposal of commercial radioactive waste in deep geologic repositories. A preliminary analysis of the impacts of transportation for each of the five potential sites will be described. Transportation was assumed to be entirely by truck or entirely by rail in order to obtain bounding impacts. This paper presents both radiological and nonradiological risks for the once-through fuel cycle

  17. Basic repository environment assessment design basis, Cypress Creek Dome Site

    International Nuclear Information System (INIS)

    1988-03-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Gulf Interior Region at Cypress Creek Cone, Mississippi. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $4.66 billion. Costs include those for the collocated WHPF, engineering, and contingency, but exclude waste from assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relatively easy access to the site. Construction would require an estimated 7 years. Engineering factors and costs are not strongly influenced by environmental considerations. 53 refs., 24 figs., 10 tabs

  18. Use of geostatistics in high level radioactive waste repository site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P G [Pacific Northwest Laboratory, Richland, WA (USA)

    1980-09-01

    In evaluating and characterizing sites that are candidates for use as repositories for high-level radioactive waste, there is an increasing need to estimate the uncertainty in hydrogeologic data and in the quantities calculated from them. This paper discusses the use of geostatistical techniques to estimate hydrogeologic surfaces, such as the top of a basalt formation, and to provide a measure of the uncertainty in that estimate. Maps of the uncertainty estimate, called the kriging error, can be used to evaluate where new data should be taken to affect the greatest reduction in uncertainty in the estimated surface. The methods are illustrated on a set of site-characterization data; the top-of-basalt elevations at the Hanford Site near Richland, Washington.

  19. GIS for the needs of the Radioactive Waste Repository Authority

    Directory of Open Access Journals (Sweden)

    Jitka Mikšová

    2007-06-01

    Full Text Available The Radioactive Waste Repository Authority (RAWRA is a state organisation responsible for the management of activities related to the disposal of all existing and future radioactive waste and spent nuclear fuel classed as a waste in Czech Republic. Worldwide, a deep geological repository is considered the highest degree of safety for a nuclear waste disposal. Such a repository has to be built in a stable geological environment ensuring the isolation of the stored radioactive waste from the surrounding environment for a long period of time. The selection of suitable site for the deep geological repository construction is a complicated and long term process. Considering this fact and also in respect to an assumed volume of varied datasets the GIS RAWRA was established to ensure convenient management and availability of data containing spatial information.The system is based on ESRI (ArcInfo including extensions, ArcSDE, ArcIMS, Leica Geosystems (Image Analysis and Microsoft software (MS SQL Server. Resulting datasets from six recommended potentially suitable sites for the location of a geological repository have been incorporated into the geodatabase to date. The necessary analysis was made using ESRI software tools and, in addition, custom applications were developed including the metadata editor, etc. This analysis was carried out with respect to existing geological and non-geological criteria defined for a nuclear waste repository. Finally, all six investigated sites with a total area of 240 km2 were reduced in area, each of them resulting in an area of approximately 10km2 for further detailed characterisation.

  20. Strategies for the decision process of siting radioactive waste repositories concerning communication and interaction with the society

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    2009-01-01

    The objective of this paper is to discuss the strategies to be followed in the siting and construction process of radioactive waste repositories considering the communication and relationship with the society. The paper analyzes the prospective advantages and disadvantages of each type of strategy. The strategies can be classified under three different types: 'define, announce and defend' strategy (also called DAD), participative strategy and spontaneous candidacy of host community. Up to the 90s the most common way of construct repositories was the DAD strategy. This type of strategy, despite of some cases of success, is gradually facing opposition in democratic regimes. Examples of failure are the first attempt to construct the Hungarian repository from 1982 to 1990; the French attempt of the construction of high and intermediate waste repository from 1987 to 1989 (both cancelled and substituted by the participative approach) and even the recent discussion to freeze the implantation of the Yucca Mountain repository in United States. The participative strategy has been preferred currently by most of the new repositories projects. Examples are the second attempt in Hungary, the construction of a repository in Slovenia and in the United Kingdom. The participative strategy has the disadvantage of greater expenses at the beginning of the process until the site of the repository is defined. This occurs because the body responsible for the construction has to deal with several potential candidates and spend time and money in the communication and participation process until the definition of the site by technical, economical and social criteria. On the other hand, this process decreases the risk of rejection by the local population. The spontaneous candidacy strategy was also analyzed and it is shown it has some similarities with the participative strategy but hides new risks in the process. (author)

  1. Approaches to gaining public acceptance of repository siting

    International Nuclear Information System (INIS)

    Numark, N.J.; Wonder, E.F.

    1989-01-01

    An eight-country survey reveals a diversity of strategies that have been followed for siting radioactive waste repositories, as well as a range of levels of public acceptance of siting efforts. Although the strategies are not necessarily interchangeable from country to country, certain inferences may be drawn from worldwide siting experience regarding ways to maximize public acceptance. Furthermore, waste management organizations in these countries have placed varying amounts of stock in technical review by outside experts and in a range of communications strategies as means of improving public acceptance. Our survey of worldwide experience also allows some general observations to be made regarding the effectiveness of these efforts. Combining a strategy that elevates public acceptance to part of the overall mission of siting a waste management facility with strategies for appropriate communications and external technical review may be necessary and sufficient for gaining improvements in public acceptance of proposed repository sites

  2. Framework for evaluating the utility of incentive systems for radioactive waste repository siting

    International Nuclear Information System (INIS)

    Carnes, S.A.; Soderstrom, E.J.; Sorensen, J.; Peelle, E.; Reed, J.H.; Bjornstad, D.J.; Copenhaver, E.D.

    1982-01-01

    The importance of social and institutional issues in siting radioactive waste repositories has been recognized in recent years. Within this set of issues, the siting of repositories over the objections of members of potential host communities is viewed as especially problematic. Incentives to potential host communities have been suggested as a means of increasing local support for and offsetting local opposition to such facilities. Incentives are classified according to their function as mitigation, compensation or reward. Our analysis of results of a 1980 survey (conducted by John Kelly, Complex Systems Group, University of New Hampshire) of 420 rural Wisconsin residents indicates that incentives may achieve the purpose of increasing support for and decreasing opposition to accepting a repository. Criteria for evaluating the utility of incentives are identified. They respond to four basic questions: (1) What is absolutely necessary. (2) Will the incentive work. (3) Can the incentive be understood. and (4) What are the consequences of implementing the incentive. It is suggested that meaningful evaluations of incentives can only be performed by members of potential host communities

  3. Regional groundwater chemical characteristics of Aqishan pre-selected site for high level radioactive waste repository and its hydrogeological significance

    International Nuclear Information System (INIS)

    Guo Yonghai; Dong Jiannan; Liu Shufen; Zhou Zhichao

    2014-01-01

    Aqishan area located in Xinjiang Uygur Automonous Region is one of the main preselected site of disposal repository for high-level radioactive waste (HLW) in our country. Groundwater chemical feature is one of the most important consideration factors in the siting and site evaluation for high-level radioactive waste repository, From 2012 to 2013, the regional field hydrogeochemical investigation was carried out in study area and more than 30 groundwater samples were collected. According to the measurement data, the groundwater chemical features for different subareas are discussed in the paper. Furthermore, the location of discharge area of groundwater in Aqishan area was estimated according to the chemical features of different subareas. (authors)

  4. Recharge-area nuclear waste repository in southeastern Sweden. Demonstration of hydrogeologic siting concepts and techniques

    International Nuclear Information System (INIS)

    Provost, A.M.; Voss, C.I.

    2001-11-01

    Nuclear waste repositories located in regional ground-water recharge ('upstream') areas may provide the safety advantage that potentially released radionuclides would have long travel time and path length, and large path volume, within the bedrock before reaching the biosphere. Nuclear waste repositories located in ground-water discharge ('downstream') areas likely have much shorter travel time and path length and smaller path volume. Because most coastal areas are near the primary discharge areas for regional ground-water flow, coastal repositories may have a lower hydrogeologic safety margin than 'upstream' repositories located inland. Advantageous recharge-area sites may be located through careful use of regional three-dimensional, variable-density, ground-water modeling. Because of normal limitations of site-characterization programs in heterogeneous bedrock environments, the hydrogeologic structure and properties of the bedrock will generally remain unknown at the spatial scales required for the model analysis, and a number of alternative bedrock descriptions are equally likely. Model simulations need to be carried out for the full range of possible descriptions. The favorable sites are those that perform well for all of the modeled bedrock descriptions. Structural heterogeneities in the bedrock and local undulations in water-table topography, at a scale finer than considered by a given model, also may cause some locations in favored inland areas to have very short flow paths (of only hundreds of meters) and short travel times, compromising the long times and paths (of many kilometers) predicted by the analysis for these sites. However, in the absence of more detailed modeling, the favored upstream sites offer a greater chance of achieving long times and paths than do downstream discharge areas, where times and paths are expected to be short regardless of the level of detail included in the model. As an example of this siting approach, potential repository

  5. Site selection for deep geologic repositories - Consequences for society, economy and environment

    International Nuclear Information System (INIS)

    2010-03-01

    In a few years, Switzerland will make the decision regarding site selection for geological underground repositories for the storage of radioactive wastes. Besides the safety issue, many citizens are interested in how such a repository will affect environment, economy and society in the selected site's region. This brochure summarizes the results of many studies on the socio-economic impacts of nuclear waste repositories. Radioactive wastes must be stored in such a way that mankind and environment are safely protected for a long period of time. How this goal may be achieved, is already known: geologic deep repositories warrant long-term safety. For the oncoming years in Switzerland the question is where the repository will be built. The search for an appropriate site for a repository in the proposed regions will launch discussions. Within the participative framework the regions may bring their requests. The demonstration of the safety of potential repository sites has the highest priority in the selection process. In the third procedural step additional rock investigations will be made. The socio-economic studies and the experience with existing plants show that radioactive waste management plants can be built and operated in good agreement with environmental requirements. The radioactive wastes in a deep underground repository are stored many hundred meters below the Earth's surface. There, they are isolated from our vital space. Technical barriers and the surrounding dense rock confinement prevent the release of radioactive materials into the environment. A deep repository has positive consequences for the regional economy. It increases trade and value creation and creates work places. The socio-economic impacts practically extend over one century, but strongly vary with time; they are the largest during the building period. High life quality and a positive population development in the selected site region are compatible with a deep repository. A fair and

  6. Basic repository environmental assessment design basis: Deaf Smith County site

    International Nuclear Information System (INIS)

    1988-03-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Palo Duro Basin in Deaf Smith County, Texas. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7,020 canisters of defense high-level reprocessing waste and associated quantities or remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $4.64 billion. Costs include those for the collocate WHPF, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region, the relatively easy access to the site, and the relatively weak nature of the salt at this site. Construction would require an estimated 7 to 7.5 years. Engineering factors and costs are not strongly influenced by environmental considerations. 62 refs., 24 figs., 20 tabs

  7. Repository waste-handling operations, 1998

    International Nuclear Information System (INIS)

    Cottam, A.E.; Connell, L.

    1986-04-01

    The Civilian Radioactive Waste Management Program Mission Plan and the Generic Requirements for a Mined Geologic Disposal System state that beginning in 1998, commercial spent fuel not exceeding 70,000 metric tons of heavy metal, or a quantity of solidified high-level radioactive waste resulting from the reprocessing of such a quantity of spent fuel, will be shipped to a deep geologic repository for permanent storage. The development of a waste-handling system that can process 3000 metric tons of heavy metal annually will require the adoption of a fully automated approach. The safety and minimum exposure of personnel will be the prime goals of the repository waste handling system. A man-out-of-the-loop approach will be used in all operations including the receipt of spent fuel in shipping casks, the inspection and unloading of the spent fuel into automated hot-cell facilities, the disassembly of spent fuel assemblies, the consolidation of fuel rods, and the packaging of fuel rods into heavy-walled site-specific containers. These containers are designed to contain the radionuclides for up to 1000 years. The ability of a repository to handle more than 6000 pressurized water reactor spent-fuel rods per day on a production basis for approximately a 23-year period will require that a systems approach be adopted that combines space-age technology, robotics, and sophisticated automated computerized equipment. New advanced inspection techniques, maintenance by robots, and safety will be key factors in the design, construction, and licensing of a repository waste-handling facility for 1998

  8. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008; Entsorgungsprogramm und Standortgebiete fuer geologische Tiefenlager. Zusammenfassung. November 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  9. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2003-01-01

    The Australian Government is committed to establishing two purpose-built facilities for the management of Australia's radioactive waste; the national repository for disposal of low level and short-lived intermediate level ('low level') waste, and the national store for storage of long-lived intermediate level ('intermediate level') waste. It is strongly in the interests of public security and safety to secure radioactive waste by disposal or storage in facilities specially designed for this purpose. The current arrangements where waste is stored under ad hoc arrangements at hundreds of sites around Australia does not represent international best practice in radioactive waste management. Environmental approval has been obtained for the national repository to be located at Site 40a, 20 km east of Woomera in South Australia, and licences are currently being sought from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) to site, construct and operate the facility. The national repository may be operating in 2004 subject to obtaining the required licences. The national store will be located on Australian Government land and house intermediate level waste produced by Australian Government departments and agencies. The national store will not be located in South Australia. Short-listing of potentially suitable sites is expected to be completed soon

  10. Evaluation of kriging techniques for high level radioactive waste repository site characterization

    International Nuclear Information System (INIS)

    Doctor, P.G.

    1979-01-01

    Kriging is a statistical method for estimating functions that describe spatially distributed phenomena such as groundwater elevation and depth to basalt. It produces a contour model of the geologic formation of a potential site with an associated measure of uncertainty, and it can be used to optimize the selection of additional sampling locations. Kriging was applied to water potential data and top-of-basalt elevations from the Hanford site; the computer code BLUEPACK was used to perform the computations. The water potential contours were in close agreement with a hand-drawn contour map which is used as a standard. It is concluded that kriging can be a useful tool for geologic waste repository site characterization

  11. Underground excavation methods for a high-level waste repository

    International Nuclear Information System (INIS)

    Peshel, J.; Gupta, D.; Nataraja, M.

    1990-01-01

    This paper reports on rock excavation methods for a High-Level Waste repository that should be selected to limit the potential for creating preferential pathways for groundwater to travel to the waste packages or for radionuclides to migrate to the accessible environment. The use of water and other foreign substances should be controlled so that the repository performance is not compromised. The excavated openings should remain stable so that operations can be carried out safely and the retrievability option maintained. As per the current conceptual designs presented by the Department of Energy, the exploratory shaft facility becomes a part of the repository if the Yucca Mountain site is found suitable for repository development. Therefore, the methods of constructing the underground openings should be compatible with the performance requirements for the repository. Also, the degree of damage to the rock surrounding the openings and the extent of the damage zone should not preclude adequate site characterization. The ESf construction and operation should be compatible with the site data gathering activities, such as geological, thermomechanical, hydrological and geochemical testing

  12. Recommended new criteria for the selection of nuclear waste repository sites in Columbia River basalt and US Gulf Coast domed salt

    International Nuclear Information System (INIS)

    Steinborn, T.L.; Wagoner, J.L.; Qualheim, B.; Fitts, C.R.; Stetkar, R.E.; Turnbull, R.W.

    1980-01-01

    Screening criteria and specifications are recommended to aid in the evaluation of sites proposed for nuclear waste disposal in basalt and domed salt. The recommended new criteria proposed in this report are intended to supplement existing repository-related criteria for nuclear waste disposal. The existing criteria are contained in 10 CFR 60 sections which define siting criteria of the Nuclear Regulatory Commission (NRC), and ONWI 33(2) which defines siting criteria of the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy. The specifications are conditions or parameter values that the authors recommend be applied in site acceptance evaluations. The siting concerns covered in this report include repository depth, host rock extent, seismic setting, structural and tectonic conditions, groundwater and rock geochemistry, volcanism, surface and subsurface hydrology, and socioeconomic issues, such as natural resources, land use, and population distribution

  13. Researching radioactive waste disposal. [Underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Feates, F; Keen, N [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1976-02-16

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared.

  14. Siting, design and construction of a deep geological repository for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1990-06-01

    The main objective of this document is to summarize the basic principles and approaches to siting, design and construction of a deep geological repository for disposal of high level and alpha bearing radioactive wastes, as commonly agreed upon by Member States. This report is addressed to decision makers and technical managers as well as to specialists planning for siting, design and construction of geological repositories for disposal of high level and alpha bearing wastes. This document is intended to provide Member States of the IAEA with a summary outline for the responsible implementing organizations to use for siting, designing and constructing confinement systems for high level and alpha bearing radioactive waste in accordance with the protection objectives set by national regulating authorities or derived from safety fundamentals and standards of the IAEA. The protection objectives will be achieved by the isolation of the radionuclides from the environment by a repository system, which consists of a series of man made and natural safety barriers. Engineered barriers are used to enhance natural geological containment in a variety of ways. They must complement the natural barriers to provide adequate safety and necessary redundancy to the barrier system to ensure that safety standards are met. Because of the long timescales involved and the important role of the natural barrier formed by the host rock, the site selection process is a key activity in the repository design and development programme. The choice of the site, the investigation of its geological setting, the exploration of the regional hydrogeological setting and the primary underground excavations are all considered to be part of the siting process. 16 refs

  15. Management of radioactive waste at Novi Han Repository

    International Nuclear Information System (INIS)

    Stefanova, I.G.; Mateeva, M.D.; Milanov, M.V.

    2002-01-01

    The Novi Han Repository is the only existing repository in Bulgaria for the disposal of radioactive waste from nuclear applications in industry, medicine and research. The repository was constructed in the early sixties according to the existing requirements. It was operated by the Institute for Nuclear Research and Nuclear Energy for more than thirty years without any accident or release of radioactivity to the environment, but without any investment for upgrading. As a consequence, the Bulgarian Nuclear Safety Authority temporarily stopped the operation of the repository in 1994. The measures for upgrading the Novi Han Repository, supported by the IAEA under TC Project BUL/4/005 'Increasing Safety of Novi Han Repository', are presented in this paper. They comprise: assessment of radionuclide inventory and future waste arisings, characterisation of disposal vaults, characterisation of the site, safety assessment, upgrading of the monitoring system, option study for the selection of treatment and conditioning processes and the development of a conceptual design for low and intermediate level waste processing and storage facility, immediate measures for improvement of the existing disposal vaults and infrastructure, construction of above-ground temporary storage structures, and resuming the operation of the Novi Han Repository. The necessary activities for re-licensing of the Novi Han Repository, construction of a waste processing and storage facility and a disposal facility for spent sealed sources are discussed. (author)

  16. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2001-01-01

    Over the last few years, significant progress has been made towards siting national, purpose-built facilities for Australian radioactive waste. In 2001, after an eight year search, a preferred site and two alternatives were identified in central-north South Australia for a near-surface repository for Australian low level (low level and short-lived intermediate level) radioactive waste. Site 52a at Everts Field West on the Woomera Prohibited Area was selected as the preferred site as it performs best against the selection criteria, particularly with respect to geology, ground water, transport and security. Two alternative sites, Site 45a and Site 40a, east of the Woomera-Roxby Downs Road, were also found to be highly suitable for the siting of the national repository. A project has commenced to site a national store for intermediate (long-lived intermediate level) radioactive waste on Commonwealth land for waste produced by Commonwealth agencies. Public input has been sought on relevant selection criteria

  17. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs

  18. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  19. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, horizontal emplacment mode: Volume 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packaging, and other surface facility operations are described. Operations in the shafts and underground are described, including waste hoisting, transfer, and horizontal emplacement. This report specifically addresses the horizontal emplacement mode, the passive alternate design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs

  20. Study of nuclear waste storage capacity at Yucca mountain repository

    International Nuclear Information System (INIS)

    Zhou Wei; Apted, M.; Kessler, J.H.

    2008-01-01

    The Yucca Mountain repository is applying license for storing 70000 MTHM nuclear waste including commercial spent nuclear fuel (CSNF) and defense high-level radioactive waste (HLW). The 70000 MTHM is a legal not the technical limit. To study the technical limit, the Electric Power Research Institute (EPRI) carried out a systematic study to explore the potential impact if the repository will accept more waste. This paper describes the model and results for evaluating the spent-fuel disposal capacity for a repository at Yucca Mountain from the thermal and hydrological point of view. Two proposed alternative repository designs are analyzed, both of which would fit into the currently well-characterized site and, therefore, not necessitating any additional site characterization at Yucca Mountain. The two- and three-dimensional models for coupled thermo-hydrological analysis extends from the surface to the water table, covering all the major and subgroup rock layers of the planned repository, as well as formations above and below the repository horizon. A dual-porosity and dual-permeability approach is used to model coupled heat and mass transfer through fracture formations. The waste package heating and ventilation are all assumed to follow those of the current design. The results show that the repository is able to accommodate three times the amount of spent fuel compared to the current design, without extra spatial expansion or exceeding current thermal and hydrological constraints. (authors)

  1. Site selection process for radioactive waste repository (radioactive facility) in Cuba as a fundamental safety criteria

    International Nuclear Information System (INIS)

    Vital, Jose Luis Peralta; Castillo, Reinaldo Gil; Chales Suarez, Gustavo; Rodriguez Reyes, Aymee

    1999-01-01

    The paper show the process of search carried out for the selection of the safest site in the National territory, in order to sitting the Facility (Repository) that will disposal the low and intermediate level radioactive wastes, as well as the possible Storage Facility for nuclear spent Fuel (radioactive wastes of high activity). We summarize the obtained Methodology and the Criterions of exclusion adopted for the development of the Process of site selection, as well as the current condition of the researches that will permit the obtaining of the nominative objectives. (author)

  2. Effects of post-disposal gas generation in a repository for spent fuel, high-level waste and long-lived intermediate level waste sited in opalinus clay

    International Nuclear Information System (INIS)

    Johnson, L.; Marschall, P.; Zuidema, P.; Gribi, P.

    2004-07-01

    This comprehensive report issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at post-disposal gas generation in a repository for spent fuel and highly radioactive wastes in Opalinus clay strata. This study provides a comprehensive treatment of the issue of gas generation in a repository for spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate-level waste (ILW), sited in the Opalinus clay of the Zuercher Weinland in northern Switzerland. The issue of how gas generation in and transport from waste repositories may influence disposal system performance has been under study for many years, both at Nagra and internationally. The report consists of three main parts: (i) A synthesis of basic information on the host rock and on details of repository construction; (ii) A discussion on gas transport characteristics of the engineered barrier system and the geosphere; (iii) A discussion on the effects of gas on system performance, based on the available information on gas generation, gas transport properties and gas pathways provided in the previous parts of the report. Simplified model calculations based on a mass balance approach for the gas generated within the repository are presented and discussed

  3. Estimating and coping with public response to radioactive waste repository siting

    International Nuclear Information System (INIS)

    Payne, B.A.

    1984-01-01

    The siting, construction, and operation of a radioactive waste repository is likely to be controversial in the communities being considered and at the state and national levels as well. Public response can be conceptualized at two levels: individual and group or organizational. At the individual level, public response is the behavior of people motivated by their attitudes, knowledge, and perceptions of radioactive waste and its hazards and risks. Groups or organizations provide a structure to public response through which to pool resources and talents, set up a division of labor, hire experts, develop a skilled leadership, take legal action, and so on. A broad range of organizations is possible: ad hoc, existing community groups with an added purpose, nationally-recognized organizations, or government offices and agencies. Two cases of response to radioactive waste disposal sites illustrate these sources and kinds of response and suggest indicators to estimate the nature and level of response. Specific coping strategies take different forms, depending on the nature and level of response (either supporting or opposing) to the proposed siting, the past experience of community members with similar projects, with federal agencies, and with citizens' action groups, and sources and accuracy of information individuals and groups have. All strategies are based on a policy of honesty and straight-forwardness, with a sincere effort on the part of site evaluators and decision-makers to be attentive and responsive to the public's concerns

  4. Instrument reliability for high-level nuclear-waste-repository applications

    International Nuclear Information System (INIS)

    Rogue, F.; Binnall, E.P.; Armantrout, G.A.

    1983-01-01

    Reliable instrumentation will be needed to evaluate the characteristics of proposed high-level nuclear-wasted-repository sites and to monitor the performance of selected sites during the operational period and into repository closure. A study has been done to assess the reliability of instruments used in Department of Energy (DOE) waste repository related experiments and in other similar geological applications. The study included experiences with geotechnical, hydrological, geochemical, environmental, and radiological instrumentation and associated data acquisition equipment. Though this paper includes some findings on the reliability of instruments in each of these categories, the emphasis is on experiences with geotechnical instrumentation in hostile repository-type environments. We review the failure modes, rates, and mechanisms, along with manufacturers modifications and design changes to enhance and improve instrument performance; and include recommendations on areas where further improvements are needed

  5. The recharge area concept: A strategy for siting nuclear waste repositories

    International Nuclear Information System (INIS)

    Sheng, G.; Toth, J.

    2000-01-01

    The Recharge Area Concept is the proposition that in Canadian-Shield type natural environments recharge areas of regional groundwater flow systems are superior for high-level nuclear waste repositories to other types of groundwater flow regimes, especially to areas of groundwater discharge. This conclusion is reached from an analysis of basinal groundwater flow models. The calculations were made for a two-dimensional flank of a fully saturated topographic basin, 20 km long and 4 km deep, in which groundwater is driven by gravity. Variants of hydraulic-conductivity distributions were considered: 1) homogeneous; 2) stratified; and 3) stratified-faulted. The faults attitudes were changed by steps from vertical to horizontal for different variants. The model is assumed conceptually to represent the crystalline-rock environment of the Canadian Shield. The hydrogeologic performances of hypothetical repositories placed 500 m deep in the recharge and discharge areas were characterized by thirteen parameters. The principal advantages of recharge- over discharge-area locations are: 1) longer travel paths and return-flow times from repository to surface; 2) robustness of predicted values of performance parameters; 3) field-verifiability of favourable hydrogeologic conditions (amounting to an implicit validation of the calculated minimum values of return-flow times); 4) site acceptance based on quantifiable and observable flow-controlling parameters; and 5) simple logistics and favourable economics of site selection and screening. As a by-product of modeling, it is demonstrated that the presence of old water is not an indication of stagnancy. (author)

  6. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  7. The role of waste package specifications as a forerunner to ILW repository conditions for acceptance

    International Nuclear Information System (INIS)

    Barlow, S.V.; Palmer, J.D.

    1998-01-01

    In the absence of a finalized repository site, design or associated safety case, Nirex is not in a position to issue conditions for acceptance. Nirex has therefore developed a strategy which facilitates packaging of intermediate level waste by providing guidance through waste package specifications, supported by the formal assessment of specific packaging proposals on a case-by-case basis. The waste package specifications are comprehensive and cover all aspects of the waste package including dimensions and other key features, performance standards, wasteform, quality assurance, and data recording requirements. The waste package specifications will be subject to periodic review as repository design and safety cases are finalized and will progressively become site- and design-specific. The waste package specifications will eventually form the basis for conditions for acceptance. The strategy described in this paper has been successfully followed by Nirex and customers for the past ten years and has permitted wastes to be packaged for a deep repository with confidence in the absence of a finalized site and safety cases for the repository. Because the process has its basis in a generic repository concept, it remains robust, despite the increased uncertainty following the March 1997 Secretary of State's decision, as to the siting and time-scale of a deep waste repository, and continues to be an important component of the UK's waste management strategy. (author)

  8. Geological criteria for site selection of an LILW radioactive waste repository in the Philippines

    International Nuclear Information System (INIS)

    Aurelio, Mario; Taguibao, Kristine Joy; Vargas, Edmundo; Palattao, Maria Visitacion; Reyes, Rolando; Nohay, Carl; Singayan, Alfonso

    2013-01-01

    In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its location along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)

  9. Geological criteria for site selection of an LILW radioactive waste repository in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Aurelio, Mario; Taguibao, Kristine Joy [National Institute of Geological Sciences, University of the Philippines, Quezon City (Philippines); Vargas, Edmundo; Palattao, Maria Visitacion; Reyes, Rolando; Nohay, Carl; Singayan, Alfonso [Philippine Nuclear Research Institute, Department of Science and Technology, Quezon City (Philippines)

    2013-07-01

    In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its location along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)

  10. Method for screening the Nevada Test Site and contiguous areas for nuclear waste repository locations

    International Nuclear Information System (INIS)

    Sinnock, S.; Fernandez, J.A.; Neal, J.T.; Stephens, H.P.; Hartway, B.L.; Los Alamos Technical Associates, Inc., NM)

    1982-01-01

    This paper outlines the general concepts of a technical method for systematic screening of the Nevada Test Site (NTS), Nye County, Nevada, for potentially suitable nuclear waste repository locations. After a general discussion of the organization and the purpose of the current screening activity, the paper addresses the steps of the screening method. These steps include: hierarchically organizing technical objectives for repository performance (an objectives tree); identifying and mapping pertinent physical characteristics of a site and its setting (physical attributes); relating the physical conditions to the objectives (favorability curves); identifying alternative locations and numerically evaluating their relative merits; investigating the effects of subjective judgments on the evaluations (sensitivity analyses); documenting the assumptions, logic, and results of the method. 19 references, 10 figures

  11. Potential site selection for radioactive waste repository using GIS (Study area: Negeri Sembilan) - Phase 1

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin; Faizal Azrin Abdul Razalim; Mohd Abdul Wahab Yusof; Nik Marzukee Nik Ibrahim; Nazran Harun; Muhammad Fathi Sujan; Karuppiah, T.; Surip, N.; Malik, N.N.A.; Che Musa, R.

    2010-01-01

    The main purpose in this paper is to create the Geographic Information System (GIS) based analysis on the potential site area for near-surface radioactive waste repository in the state of Negeri Sembilan. There are several parameters should be considered related to the safety assessment in selecting the potential site. These parameters such as land-use, urban area, soil, rainfall, lithology, lineament, geomorphology, landslide potential, slope, elevation, hydrogeology and protected land need to be considered before choosing the site. In this phase, we only consider ten parameters for determining the potential suitable site. (author)

  12. Workshops for state review of site suitability criteria for high-level radioactive waste repositories: analysis and recommendations

    International Nuclear Information System (INIS)

    1978-02-01

    The responses from various discussion groups on site suitability criteria for high-level radioactive waste repositories are presented. The consensus, principal concern, and minority opinion on each issue are given. The visual aids used in the workshop are included

  13. Geophysical survey aimed at selecting the radioactive waste repository site (Czech republic

    Directory of Open Access Journals (Sweden)

    Dušan Dostál

    2007-01-01

    Full Text Available G IMPULS Praha has been executing a set of geophysical measurements for the Radioactive Waste Repository Authority of the Czech Republic from 2001 (the work continues to be carried out. The measurements are aimed at studying the behaviour of the rock massif, focusing on the Excavation Damaged or Disturbed Zone (EDZ and on selecting an appropriate area for the radioactive material repository site. The geophysical studies use a complex of methods as follows: Airborne geophysical measurement (regional studies, Seismic measurement (detailed studies, G.P.R. (detailed studies, Resistivity tomography (detailed studies, Geoelectric measurement and magnetic survey (stray earth currents. The paper informs about first results and conclusions. The airborne work was executed as a part of the complex study of „GEOBARIERA“ the group and the geophysical measurements of EDZ were executed in co-operation with the Czech Geological Survey.

  14. The Pangea concept for an international radioactive waste repository

    International Nuclear Information System (INIS)

    Kurzeme, M.

    1999-01-01

    Pangea Resources Australia Pty. Ltd. is engaged in a study to investigate the feasibility of constructing and operating an international radioactive waste repository in Australia. Western Australia in particular has a unique combination of geology, topography and climate which makes it eminently suitable for a deep geological repository for the safe and permanent disposal of radioactive waste. Australia also has the political, social, legal and financial systems, together with the technical capability to make it acceptable as a host nation for an international repository. This paper reviews the origins of the Pangea concept, describes the high isolation approach to site selection, the Pangea integrated waste management system, together with its potential economic impact on Australia

  15. To trace the water movements in the sites of nuclear waste repositories by chlorine-36

    International Nuclear Information System (INIS)

    Sun Zhanxue

    1995-01-01

    Chlorine-36 tracing of the water movements in the potential high-level radioactive waste disposal repository sites has been briefly reviewed. The application of this method to the tracing of precipitation infiltration into the unsaturated zone and the water movement in the saturated zone, to the dating of groundwater and the study of solute migration rates have been discussed

  16. Siting regions for deep geological repositories. Nagra’s proposals for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the selection of sites for deep geological repositories for nuclear wastes in Switzerland. The procedure proposed for the selection process is explained. The four sites for possible repositories of high-level radioactive waste as well as for low and intermediate-level wastes are described and rated with respect to the various safety factors involved. The reasons for the long-term safety measures proposed and the geological barriers involved are discussed. The four proposals for depository sites are looked at in more detail. The paper is well illustrated with several diagrams and tables

  17. Rock mass modification around a nuclear waste repository in welded tuff

    International Nuclear Information System (INIS)

    Mack, M.G.; Brandshaug, T.; Brady, B.H.

    1989-08-01

    This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab

  18. VerSi - A Methodology for a Comparison of Potential Repository Sites

    International Nuclear Information System (INIS)

    Hund, Wilhelm

    2010-09-01

    In the year 2000 the moratorium on the exploration of the Gorleben salt dome as a potential repository for all kinds of radioactive waste became effective as a result of the consensus agreement between the Federal Government and the utilities about phasing out nuclear energy in Germany. All exploration activities were interrupted for at maximum ten years to clarify conceptual and safety relevant questions. A new set of safety requirements for the final disposal of heat-generating radioactive waste in deep geological formations was established in July 2009 by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). As the BMU intended to carry out a comparison of potential repository sites it was necessary to initiate the development of a methodology for the identification of the site with the highest level of safety. A comparison of different repository sites requires a tool ensuring most confident and objective criteria for the comparison, whereas up to present long-term safety analyses were focused on confirming the suitability of sites by meeting the protection objectives by the measures of dose and risk. Within the 2006 established project VerSi a methodology for comparing different sites in different host rocks will be developed on the basis of long-term safety analyses taking into account geoscientific databases, inventory of radioactive waste, waste containers, corresponding disposal concepts and the feasibility of appropriate backfilling and closure concepts. The development of the method is aiming at providing measures other than dose and risk for the evaluation of the level of safety. For testing the tools a HLW-repository hosted in a salt dome (Gorleben) will be compared with a generic HLW-repository in consolidated clay as a host rock. As until now in Germany no clay stone site has been investigated for hosting a HLW repository, the required data are transferred from international research projects and repository concepts

  19. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the second part of a report of a preliminary study for AECL. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) geotechnical assessment, 2) hydrogeology and waste containment, 3) thermal loading and 4) rock mechanics. (author)

  20. Technology needs for selecting and evaluating high-level waste repository sites in crystalline rock

    International Nuclear Information System (INIS)

    1988-12-01

    This report describes properties and processes that govern the performance of the geological barrier in a nuclear waste isolation system in crystalline rock and the state-of-the-art in the understanding of these properties and processes. Areas and topics that require further research and development as well as technology needs for investigating and selecting repository sites are presented. Experiences from the Swedish site selection program are discussed, and a general investigation strategy is presented for an area characterization phase of an exploratory program in crystalline rocks. 255 refs., 65 figs., 10 tabs

  1. Preliminary drift design analyses for nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    Hardy, M.P.; Brechtel, C.E.; Goodrich, R.R.; Bauer, S.J.

    1990-01-01

    The Yucca Mountain Project (YMP) is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS). The proposed repository will be excavated in the Topopah Spring Member, which is a moderately fractured, unsaturated, welded tuff. Excavation stability will be required during construction, waste emplacement, retrieval (if required), and closure to ensure worker safety. The subsurface excavations will be subject to stress changes resulting from thermal expansion of the rock mass and seismic events associated with regional tectonic activity and underground nuclear explosions (UNEs). Analyses of drift stability are required to assess the acceptable waste emplacement density, to design the drift shapes and ground support systems, and to establish schedules and cost of construction. This paper outlines the proposed methodology to assess drift stability and then focuses on an example of its application to the YMP repository drifts based on preliminary site data. Because site characterization activities have not begun, the database currently lacks the extensive site-specific field and laboratory data needed to form conclusions as to the final ground support requirements. This drift design methodology will be applied and refined as more site-specific data are generated and as analytical techniques and methodologies are verified during the site characterization process

  2. Types of safety assessments of near surface repository for radioactive waste

    International Nuclear Information System (INIS)

    Mateeva, M.

    2004-01-01

    The purpose of this article is to presents the classification of different types safety assessments of near surface repository for low and intermediate level radioactive waste substantiated with results of safety assessments generated in Bulgaria. The different approach of safety assessments applied for old existing repository as well as for site selection for construction new repository is outlined. The regulatory requirements in Bulgaria define three main types of assessments: Safety assessment; Technical substation of repository safety; Assessment of repository influence on environment that is in form of report prepared from the Ministry of environment and waters on the base of results obtained in two first types of assessments. Additionally first type is subdivided in three categories - preliminary safety assessment, safety assessment and post closure safety assessment, which are generated using deterministic approach. The technical substation of repository safety is generated using probabilistic approach. Safety assessment results that are presented here are based on evaluation of existing old repository type 'Radon' in Novi Han and real site selection procedure for new near surface repository for low and intermediate level radioactive waste from nuclear power station in Kozloduy. The important role of safety assessment for improvement the repository safety as well as for repository licensing, correct site selection and right choice of engineer barriers and repository design is discussed using generated results. (author)

  3. Understanding large scale groundwater flow to aid in repository siting

    International Nuclear Information System (INIS)

    Davison, C.C.; Brown, A.; Gascoyne, M.; Stevenson, D.R.; Ophori, D.U.

    1996-01-01

    Atomic Energy of Canada Limited (AECL) with support from Ontario Hydro has developed a concept for the safe disposal of Canada's nuclear fuel waste in a deep (500 to 1000 m) mined repository in plutonic rocks of the Canadian Shield. The disposal concept involves the use of multiple engineered and natural barriers to ensure long-term safety. The geosphere, comprised of the enclosing rock mass and the groundwater which occurs in cracks and pores in the rock, is expected to serve as an important natural barrier to the release and migration of wastes from the engineered repository. Although knowledge of the physical and chemical characteristics of the groundwater in the rock at potential repository sites is needed to help design the engineered barriers of the repository it can also be used to aid in repository siting, to take greater advantage of natural conditions in the geosphere to enhance its role as a barrier in the overall disposal system

  4. General guidelines for recommendation of sites for nuclear waste repositories

    International Nuclear Information System (INIS)

    1983-01-01

    These guidelines were developed in accordance with the requirements of Section 112(a) of the Nuclear Waste Policy Act of 1982 for use by the Secretary of Energy in evaluating the suitability of sites for the development of repositories. The guidelines will be used for suitability evaluations and determinations made pursuant to Section 112(b) and any preliminary suitability determinations required by Section 114(f). The guidelines set forth in this Part are intended to complement the requirements set forth in the Act, 10 CFR Part 60, and 40 CFR Part 191. In applying these guidelines, the DOE will resolve any inconsistencies between these guidelines and the above documents in a manner determined by the DOE to most closely agree with the intent of the Act

  5. Scientific, institutional, regulatory, political, and public acceptance of the waste isolation pilot plant transuranic waste repository

    International Nuclear Information System (INIS)

    Eriksson, L.G.

    2000-01-01

    The recent successful certification and opening of a first-of-a-kind, deep geological repository for safe disposal of long-lived, transuranic radioactive waste (TRUW) at the Waste Isolation Pilot Plant (WIPP) site, New Mexico, United States of America (USA), embody both long-standing local and wide-spread, gradually achieved, scientific, institutional, regulatory, political, and public acceptance. The related historical background and development are outlined and the main contributors to the successful siting, certification, and acceptance of the WIPP TRUW repository, which may also serve as a model to success for other radioactive waste disposal programs, are described. (author)

  6. Perceived risk, trust in government, and response to repository siting in the United States

    International Nuclear Information System (INIS)

    Kraft, M.E.

    1991-01-01

    Conflicts over the siting of high-level radioactive waste repositories have been intense and unrelenting. Public and state opposition to implementation of the US Nuclear Waste Policy Act is tied closely to the perception of unacceptably high repository risks and to lack of trust and confidence in governmental agencies, particularly the DOE. This paper explores the relationship of perceived risk, trust in government, and opposition to repository siting in the US in an attempt to clarify the conditions of successful implementation of nuclear waste policy in the decades ahead

  7. Conceptual designs for waste packages for horizontal or vertical emplacement in a repository in salt for reference in the site characterization plan

    International Nuclear Information System (INIS)

    1987-06-01

    This report includes the options of horizontal and vertical emplacement, the addition of a phased repository, an additional waste form (intact spent fuel), revised geotechnical data appropriate for the Deaf Smith County site, new corrosion data for the container, and new repository design data. The waste package consists of waste form and canister within a thick-walled, low-carbon steel container surrounded by packing. The container is a hollow cylinder with a flat head welded to each end. The design concepts for the waste container or vertical and horizontal emplacement are identical. This report discusses the results of analyses of aspects of the reference waste package concept needing changes because of new data and information believed applicable to the Deaf Smith County site. Included are waste package conceptual designs or (1) the reference defense high-level waste form from the Savannah River Plant; (2) intact spent fuel with our pressurized-water-reactor or nine boiling-water-reactor assemblies per package for emplacement during Phase 1 of repository operation; and (3) spent fuel which has been disassembled and consolidated into a segmented cylindrical canister with rods from either 12 pressurized-water-reactor or 30 boiling-water-reactor assemblies per package for emplacement during Phase 2. 30 refs., 61 figs., 30 tabs

  8. SKI SITE-94, deep repository performance assessment project, summary

    International Nuclear Information System (INIS)

    1999-01-01

    SITE-94 is a comprehensive performance assessment exercise for a hypothetical repository for spent nuclear fuel at a real site in Sweden. SITE-94 was carried out to develop the capability and tools to enable Swedish Nuclear Power Inspectorate (SKI) to review fully the proposals for a deep repository which are expected to be made by the Swedish Nuclear Fuel and Waste Management Company, SKB (the implementor). Sweden is one of the leading countries in the research and development of geological disposal of radioactive waste. The developed methodology for performance assessment has attracted interests from other countries. The Summary of the main report of the SITE-94 project is translated here into Japanese to allow to make the information on the methodology and the related issues available among Japanese concerned. (author)

  9. The procedure of alternative site selection within the report of the study group on the radioactive waste final repository selection process (AKEnd)

    International Nuclear Information System (INIS)

    Brenner, M.

    2005-01-01

    The paper discusses the results of the report of the study group on the radioactive waste final repository selection process with respect to the alternative site selection procedure. Key points of the report are the long-term safety, the alternativity of sites and the concept of one repository. The critique on this report is focussed on the topics site selection and licensing procedures, civil participation, the factor time and the question of cost

  10. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    Science.gov (United States)

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  11. Monitoring of geological repositories for high level radioactive waste

    International Nuclear Information System (INIS)

    2001-04-01

    Geological repositories for disposal of high level radioactive waste are designed to provide isolation of the waste from human environment for many thousands of years. This report discusses the possible purposes for monitoring geological repositories at the different stages of a repository programme, the use that may be made of the information obtained and the techniques that might be applied. This report focuses on the different objectives that monitoring might have at various stages of a programme, from the initiation of work on a candidate site, to the period after repository closure. Each objective may require somewhat different types of information, or may use the same information in different ways. Having evaluated monitoring requirements, the report concludes with a brief evaluation of available monitoring techniques

  12. Radioactive Waste Repositories and Incentives to Local Communities

    International Nuclear Information System (INIS)

    Knapp, A.; Medakovic, S.

    2008-01-01

    Public acceptance of radioactive waste (RW) repository depends on various and often community-specific factors. Although radiological risk from a properly constructed low and intermediate level waste (LILW) repository is practically negligible, routine safety considerations will favor low populated areas and therefore probably underdeveloped communities. Repository acceptance in such communities is more likely to be facilitated by prospective benefits to local economy, such as infrastructure development and increased employment, as well as by dedicated financial incentives to the community. Direct financial compensation to the local community for acceptance of the repository has been considered in some documents in countries experienced in RW management, but it has not become a widely accepted practice. In Croatia, a possibility for such compensation is mentioned in the land use plan in conjunction with the prospective RW repository site. In Slovenia, the government has already specified the annual amount of 2.33 million euro as a compensation for 'limited land use' to be shared by local communities in the vicinity of the planned LILW repository during its operation. Applicability of the Slovenian compensations to the prospective joint Slovenian-Croatian repository is not yet clear, at least in the aspect of joint funding. The joint Slovenian-Croatian Decommissioning and LILW and SF management program for NPP Krsko from 2004 did conservatively include the compensations into the repository cost estimates, but that might not be retained in subsequent revisions of the Program. According to the agreement between governments of Slovenia and Croatia on the Nuclear power plant Krsko, Croatian side has no obligations to participate in 'public expenditures' introduced after the agreement, as would be the case of community compensations for LILW repository in Slovenia. Before further decisions on joint NPP Krsko waste management are made, including the issue of LILW

  13. Geological status of NWTS repository siting activities in the paradox basin

    International Nuclear Information System (INIS)

    Frazier, N.A.; Conwell, F.R.

    1981-01-01

    Emplacement of waste packages in mined geological repositories is one method being evaluated for isolating high-level nuclear wastes. Granite, dome salt, tuff, basalt and bedded salt are among the rock types being investigated. Described in this paper is the status of geological activities in the Paradox Basin of Utah and Colorado, one region being explored as a part of the National Waste Terminal Storage (NWTS) program to site a geological repository in bedded salt

  14. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, horizontal emplacement mode: Volume 2

    International Nuclear Information System (INIS)

    1987-12-01

    Chapter 6 discusses the repository design features and operating procedures that will be used to ensure compliance with regulatory limits for preclosure releases, performance objectives for waste retrieval, and performance objectives for post closure or long-term waste isolation. Chapter 7 discusses the analyses that were conducted in developing the repository design and the impacts of various external factors on the design of repository elements and the repository as a whole. These discussions are divided into preclosure design analysis, post closure design analysis, and engineering analysis of design. Also discussed are the structures, systems, and components that have been identified as important to safety and the barriers that have been, or need to be, identified as important to waste isolation. Chapter 8 discusses the engineering design information needs that were identified during conceptual design as necessary to advance the current conceptual design to Licence Application Design. These information needs should be resolved during the site characterization program or by other technology development studies. The discussion of these design issues and data needs is arranged according to the major elements of the repository. Chapter describes the quality assurance program. 146 refs., 40 figs., 22 tabs

  15. A geotechnical evaluation of potentially acceptable sites for a high-level nuclear waste repository near the Red Lake Indian Reservation

    International Nuclear Information System (INIS)

    1986-01-01

    The scope and work which served as the basis for this report included the following major activities; (1) A review and summary of the screening methodologies utilized by DOE for the selection of proposed nuclear waste repository sites, including a description of the inherent weakness in those methodologies. (2) A description of the geologic and hydrologic features of the rock bodies selected by DOE and an identification of those features which could result in hazardous conditions as a result of the location of a high-level nuclear waste repository. (3) An assessment of potential environmental impacts of the repository and discussion of endanged species in the proposed repository project areas. This report is organized in three major sections in relationship to the scope of work. A list of references is also included at the end of this report. 37 refs., 2 figs

  16. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the first part of a report of a preliminary study for Atomic Energy of Canada Limited. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) underground layout, 2) cost estimates, 3) waste handling, 4) retrievability, decommissioning, sealing and monitoring, and 5) research and design engineering requirements. (author)

  17. Cost estimate of the Yucca Mountain repository based on the site characterization plan conceptual design: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Gruer, E.R.; Fowler, M.E.; Rocha, G.A.

    1987-06-01

    This report of the life-cycle costs of a mined repository in tuff is based on the site characterization conceptual design and contains estimates of two methods of waste emplacement - vertical and horizontal. The life cycle of the repository progresses from design and construction to emplacement operations that last 25 years. When emplacement has ended, a caretaker period begins and continues until 50 years from emplacement of the first waste. The life of the repository concludes with closure and decommissioning, which includes backfilling and sealing the repository, decontaminating and razing the surface facilities, restoring the land to as near its original condition as possible, and marking the site. The estimates, developed for each phase of the life cycle of the repository, are based on January 1986 constant (unescalated) dollars and include an allowance for contingency. This report mainly comprises explanations of design and operating assumptions, estimating methods, exclusions, definition of cost accounts, calculating procedures, data sources, staffing and other qualifying remarks. Cost estimates are approximations of value and should not be construed as exact. The cost and staffing detail provided in this estimate is commensurate with the detail in the conceptual design

  18. Surface-type repository for low and intermediate level radioactive waste in the Republic of Croatia

    International Nuclear Information System (INIS)

    Kucar-Dragicevic, S.; Zarkovic, V.; Subasic, D.

    1995-01-01

    The low-level intermediate-level (LL/IL) radioactive waste repository siting and construction project is one of the activities related to establishing the rad waste management system in the Republic of Croatia. The repository project design is one in an array of project activities which also include the site selection procedure and public attitude issues. The prepared design documentation gives technical, safety and financial background relevant for making a final decision on the waste disposal type, and it includes the technological, mechanical, civil and financial documentation on the preliminary/basic design level. During the last few years, the preliminary design has been prepared and safety assessment conducted for the tunnel-type LL/IL rad waste repository. As the surface-type repository is one of alternatives for final disposal the design documentation for that repository type was prepared during 1994. (author)

  19. Effects of radiation on the chemical environment surrounding waste canisters in proposed repository sites and possible effects on the corrosion process

    International Nuclear Information System (INIS)

    Glass, R.S.

    1981-12-01

    This report explores the interaction of ionizing radiation with various environments. In particular, worst case (aqueous) environments for the proposed nuclear waste repository sites are considered. Emphasis is on the fundamental chemical and physical processes involved. The identities of possible radiolysis products (both transient and stable) have been sought through a literature search. The effect of radiation on corrosion processes is discussed. The radiation-induced chemical environment in the worst case repository sites is not well defined. Attention should therefore be given to fundamental studies exploring the interaction of such environments with components of the nuclear waste package, including the canister materials and backfills. Identification and quantification of radiolysis products would be helpful in this regard

  20. Commercial nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Hardy, M.P.; Patricio, J.G.; Heley, W.H.

    1980-06-01

    The Basalt Waste Isolation Project (BWIP) is an ongoing research and engineering effort being conducted by Rockwell Hanford Operations (Rockwell), which is under contract to the US Department of Energy. The objectives of this program are to assess the feasibility of and to provide the technology needed to design and construct a licensed commercial nuclear waste repository in the deep basalt formations underlying the Hanford Site. An extensive preconceptual design effort was undertaken during 1979 to develop a feasible concept that could serve as a reference design for both surface and underground facilities. The preconceptual design utilized existing technology to the greatest extent possible to offer a system design that could be utilized in establishing schedule and cost baseline data, recommend alternatives that require additional study, and develop basic design requirements that would allow evolution of the design process prior to the existence of legislated criteria. This paper provides a description of the concept developed for the subsurface aspects of this nuclear waste repository

  1. The main demands and criteria for building site choice for radioactive waste repositories

    International Nuclear Information System (INIS)

    Angelova, R.; Sandul, G.A.; Sen'ko, T.Ya.

    2002-01-01

    There are considered the main demands of building site choice for RAW repositories. At this the accent is placed on geological repositories (underground repositories of geological type) and near surface repositories assigned to disposal of low- and intermediate-level short- and mediate-lived radionuclides. These demands are conditionally separated into two blocks: account of social development of the adjoining territories; account of natural factors characterizing building site. Further there are discussed the questions of anthropogenous influence on a safety functioning of RAW repositories and of urgency of stable development of the adjoining territories. In context of the Ukrainian and other states nuclear laws there is also considered the lawful aspect defining the building site choice for RAW repositories

  2. Radioactive waste repository site selection in the Republic of Slovenia

    International Nuclear Information System (INIS)

    Jeran, M.

    1992-01-01

    The report shows the procedure for the low and intermediate level radwaste (LLW and ILW) repository site selection and the work performed up to the present. The procedure for the repository site selection is divided into four steps. In the first step the unsuitable areas are excluded by taking into consideration the rough exclusion criteria. In the second step, the remaining suitable areas are screened to identify the potential sites with respect to preference criteria. In the third step three to five candidate sites will be assessed and selected among the potential sites. In the final, the fourth step, detailed site investigation and confirmation of one or two most suitable sites will follow. In Slovenia the 1st and the 2nd step of site selection have been completed, while step 3 is now in its final stage. (author) [sl

  3. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  4. Nuclear waste repository design and construction

    International Nuclear Information System (INIS)

    Bohlke, B.M.; Monsees, J.E.

    1987-01-01

    Extensive underground excavation will be required for construction of a mined geologic repository for nuclear waste. Hundreds of thousands of feet of drift will be required based on the conceptual layout design for each candidate nuclear waste repository. Comparison of boring and blasting excavation methods are discussed, as are special design and construction requirements (e.g., quality assurance procedures and performance assessment) for the nuclear waste repository. Comparisons are made between boring and blasting construction methods for the repository designs proposed for salt, volcanic tuff, and basalt

  5. Applying system engineering methods to site characterization research for nuclear waste repositories

    International Nuclear Information System (INIS)

    Woods, T.W.

    1985-01-01

    Nuclear research and engineering projects can benefit from the use of system engineering methods. This paper is brief overview illustrating how system engineering methods could be applied in structuring a site characterization effort for a candidate nuclear waste repository. System engineering is simply an orderly process that has been widely used to transform a recognized need into a fully defined system. Such a system may be physical or abstract, natural or man-made, hardware or procedural, as is appropriate to the system's need or objective. It is a way of mentally visualizing all the constituent elements and their relationships necessary to fulfill a need, and doing so compliant with all constraining requirements attendant to that need. Such a system approach provides completeness, order, clarity, and direction. Admittedly, system engineering can be burdensome and inappropriate for those project objectives having simple and familiar solutions that are easily held and controlled mentally. However, some type of documented and structured approach is needed for those objectives that dictate extensive, unique, or complex programs, and/or creation of state-of-the-art machines and facilities. System engineering methods have been used extensively and successfully in these cases. The scientific methods has served well in ordering countless technical undertakings that address a specific question. Similarly, conventional construction and engineering job methods will continue to be quite adequate to organize routine building projects. Nuclear waste repository site characterization projects involve multiple complex research questions and regulatory requirements that interface with each other and with advanced engineering and subsurface construction techniques. There is little doubt that system engineering is an appropriate orchestrating process to structure such diverse elements into a cohesive, well defied project

  6. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  7. Performance analysis of a repository for low and intermediate level reactor waste

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.; Vuori, S.; Peltonen, E.

    1987-01-01

    In Finland, utilities producing nuclear energy are responsible for the management of the radioactive waste, including final disposal. As regards low and intermediate level waste, the approach has been adopted to employ the power plant sites for locations of repositories. The repositories will be excavated at the depth of about 50 to 125 m in the bedrock of the two Finnish nuclear power plant sites, Loviisa and Olkiluoto. The performance analysis presented in this paper has been carried out for the Preliminary Safety Analysis Report (PSAR) of the Olkiluoto repository. A flexible model has been developed to estimate the release of radionuclides from waste packages and their subsequent transport through the engineered barriers in the repository. Gradual degradation of the engineered barriers is accounted for by altering parameters at fixed time points. Safety margins of the disposal concept have been evaluated by including disturbed evolution scenarios in the analysis. 13 references, 10 figures, 2 tables

  8. Low and intermediate level waste repositories: public involvement aspects

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Mourao, Rogerio P.; Fleming, Peter M.; Soares, Wellington A.; Braga, Leticia T.P.; Santos, Rosana A.M.

    2009-01-01

    The nuclear energy acceptance creates several problems, and one of the most important is the disposal of the radioactive waste. International experiences show that not only environmental, radiological and technical questions have to be analyzed, but the public opinion about the project must be considered. The objective of this article is to summarize some public involvement aspects associated with low and intermediate level waste repositories. Experiences from USA, Canada, South Africa, Ukraine and other countries are studied and show the importance of the population in the site selection process for a repository. (author)

  9. Development and application of a quality assurance system for waste repositories

    International Nuclear Information System (INIS)

    Beckmerhagen, I.; Berg, H.P.

    1996-01-01

    A large set of requirements are developed for the structures, systems and components of a waste repository. These requirements cover different regulations concerning planning, design, construction, operation and decommissioning of a waste repository as well as nuclear-specific requirements on the design of the plant. The implementation of a quality assurance (QA) system is an essential task in order to ensure that the requirements are fulfilled by systematic means. The QA system for the German repositories for radioactive waste is built up as a hierarchic system and described in more detail in particular covering aspects like maintenance of QA relevant systems, structures and components as well as the procedure in case of changes. For the operational phase of a repository a separate site-specific manual had to be developed. Such a manual has been elaborated for the operation of the Morsleben repository; main topics of this manual are presented

  10. Identification of candidate sites for a near surface repository for radioactive waste

    International Nuclear Information System (INIS)

    Motiejunas, S.

    2004-01-01

    This Report comprises results of the area survey stage, which involves regional screening to define the regions of interest and identification of potential sites within suitable regions. The main goal was to define a few sites potentially suitable for constructing of the near surface repository. It was concluded that a vicinity of Ignalina NPP is among the best suitable regions for the near surface repository. At the present investigation level a ridge in Galilauke village has the most favorable conditions. However, Apvardai site is potentially suitable for the repository too

  11. Development of database systems for safety of repositories for disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hun; Han, Jeong Sang; Shin, Hyeon Jun; Ham, Sang Won; Kim, Hye Seong [Yonsei Univ., Seoul (Korea, Republic of)

    1999-03-15

    In the study, GSIS os developed for the maximizing effectiveness of the database system. For this purpose, the spatial relation of data from various fields that are constructed in the database which was developed for the site selection and management of repository for radioactive waste disposal. By constructing the integration system that can link attribute and spatial data, it is possible to evaluate the safety of repository effectively and economically. The suitability of integrating database and GSIS is examined by constructing the database in the test district where the site characteristics are similar to that of repository for radioactive waste disposal.

  12. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    International Nuclear Information System (INIS)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P.

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information

  13. Conceptualization of a hypothetical high-level nuclear waste repository site in unsaturated, fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, A.M.; Olague, N.E.; Gallegos, D.P. [Sandia National Labs., Albuquerque, NM (USA)

    1991-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL) is developing a performance assessment methodology for the analysis of long-term disposal and isolation of high-level nuclear wastes (HLW) in alternative geologic media. As part of this exercise, SNL created a conceptualization of ground-water flow and radionuclide transport in the far field of a hypothetical HLW repository site located in unsaturated, fractured tuff formations. This study provides a foundation for the development of conceptual mathematical, and numerical models to be used in this performance assessment methodology. This conceptualization is site specific in terms of geometry, the regional ground-water flow system, stratigraphy, and structure in that these are based on information from Yucca Mountain located on the Nevada Test Site. However, in terms of processes in unsaturated, fractured, porous media, the model is generic. This report also provides a review and evaluation of previously proposed conceptual models of unsaturated and saturated flow and solute transport. This report provides a qualitative description of a hypothetical HLW repository site in fractured tuff. However, evaluation of the current knowledge of flow and transport at Yucca Mountain does not yield a single conceptual model. Instead, multiple conceptual models are possible given the existing information.

  14. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  15. Waste inventory, waste characteristics and waste repositories in Japan

    International Nuclear Information System (INIS)

    Shimooka, K.

    1997-01-01

    There are two types of repositories for the low level radioactive wastes in Japan. One is a trench type repository only for concrete debris generated from the dismantling of the research reactor. According to the safety assurance system, Japan Atomic Energy Research Institute (JAERI) has disposed of the concrete debris arose from the dismantling of the Japan Power Demonstration Reactor (JPDR). The other type is the concreted pit with engineered barriers. Rokkasho Low Level Radioactive Waste Disposal Center has this type of repository mainly for the power plant wastes. Japan Nuclear Fuel Ltd. (JNFL) established by electric power companies is the operator of the LLW disposal project. JNFL began the storage operation in 1992 and buried approximately 60,000 drums there. Two hundred thousand drums of uniformly solidified, waste may be buried ultimately. 4 refs, 3 tabs

  16. Judicial progress in Germany's nuclear waste disposal policy the Konrad repository decisions of 26 march 2007

    International Nuclear Information System (INIS)

    Kuhne, G.

    2007-01-01

    Its exists three final repository sites in Germany, an overview of the status of these sites is necessary to understand concretely the situation. Morsleben, is actually the only final repository for low and medium level radioactive waste. Gorleben is the site of a salt dome which is under exploration as an eventual repository for high level radioactive waste but the study is under a decree of exploration moratorium of at least three years, in order to allow for investigation into conceptual and safety issues. The Konrad ore mine is the site under preparation for a final repository for low and medium level radioactive waste. The present article will briefly address three aspects of the court reasoning: the legal character of the plan approval notice (act of discretion or strict execution of laws), the necessity of planning and safety aspects. (N.C.)

  17. Workshop material for state review of USNRC site suitability criteria for high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    1977-08-01

    The Nuclear Regulatory Commission (NRC) is developing criteria on which to judge whether a proposed site for a geologic repository is suitable for disposal of high-level nuclear wastes. To aid in its analysis and assessment, NRC is planning three early independent reviews of the site suitability criteria development effort: a peer review by experts outside of NRC; a review by the National Academy of Sciences; and a review by State officials. This document has been prepared to aid workshop participants in understanding the Preliminary Site Suitability Criteria and to prepare them to contribute to an evaluation of those criteria

  18. Sites and projects for the disposal of radioactive waste and repositories in Russia and other states of the former USSR

    International Nuclear Information System (INIS)

    Schneider, L.; Herzog, C.

    2000-01-01

    The nuclear industry in Russia and other states of the former USSR contents the whole nuclear fuel cycle - Uranium mining, fuel element production, nuclear power and research reactors, nuclear powered ships and reprocessing of nuclear fuel. High amounts of radioactive waste are already disposed at the sites of these industrial centers and further radioactive waste is arising in production, reprocessing and decommissioning processes. Spent fuel elements are reprocessed or stored onsite. Solid and liquid wastes are disposed near surface at the sites of nuclear power plants, radiochemical plants, 'Radon'- and other sites. High volumes of high-, medium- and low-level liquid waste with high radioactivity has been injected into deep geologic formations at the sites of radiochemical plants. In Russia perspective all spent fuel elements shall be reprocessed and dry storage facilities are planned for long term storage until reprocessing. Repositories for solid waste are foreseen in deep geological formations (e.g. salt, granite) at several sites. (author)

  19. Salt Repository Project waste emplacement mode decision paper: Revison 1

    International Nuclear Information System (INIS)

    1987-08-01

    This paper provides a recommendation as to the mode of waste emplacement to be used as the current basis for site characterization activity for the Deaf Smith County, Texas, high level nuclear waste repository site. It also presents a plan for implementing the recommendation so as to provide a high level of confidence in the project's success. Since evaluations of high-level waste disposal in geologic repositories began in the 1950s, most studies emplacement in salt formations employed the vertical orientation for emplacing waste packages in boreholes in the floor of the underground facility. This orientation was used in trials at Project Salt Vault in the 1960s. The Waste Isolation Pilot Plant (WIPP) has recently settled on a combination of vertical and horizontal modes for various waste types. This paper analyzes the information available and develops a project position upon which to base current site characterization activities. The position recommended is that the SRP should continue to use the vertical waste emplacement mode as the reference design and to carry the horizontal mode as a ''passive'' alternative. This position was developed based upon the conclusions of a decision analysis, risk assessment, and cost/schedule impact assessment. 52 refs., 6 figs., 1 tab

  20. Siting regions for deep geological repositories. Why just here?; Standortgebiete fuer geologische Tiefenlager. Warum gerade hier?

    Energy Technology Data Exchange (ETDEWEB)

    Rieser, A

    2009-09-15

    This report helps to the popularization of the Nagra works accomplished for the management and disposal of the radioactive wastes in Switzerland. The programme for management and disposal of the radioactive wastes are extensively determined by regulations. Protection of mankind and environment is the primary objective. The basic storage process is considered as having been solved. The question addressed in the report is where the facility has to be built; the site selection procedure includes five steps: 1) according to their type the wastes have to be allocated to two different repositories: for low- and intermediate-level wastes (L/ILW), and for high-level and alpha-toxic wastes (HLW); 2) the safety concept for both repositories and the requirements on the geology have to be determined; 3) large suitable geological-tectonic zones must be found where repositories could be built; 4) in these geological zones a suitable host rock has to be identified; 5) the most important spatial geological conditions of the host rock (minimum depth with respect to surface erosion, maximum depth in terms of engineering requirements, lateral extent) have to be identified. Based on these criteria, three suitable siting regions for a HLW repository were found in the North of Switzerland. The preferred host rock is Opalinus clay because of its very low permeability; it is therefore an excellent barrier against nuclide transport. In the three proposed siting regions, Opalinus clay is present in sufficient volumes at a suitable depth. For a L/ILW repository six different possible siting regions were identified, five in Northern Switzerland and one in Central Switzerland. In the three siting regions found for a possible HLW repository, it would also be possible to built a combined repository for both HLW and L/ILW wastes.

  1. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  2. Appraisal of hard rock for potential underground repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1977-10-01

    The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  3. Status of technologies related to the isolation of radioactive wastes in geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    Irish, E R [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Safety and Environmental Protection; Cooley, C R [Department of Energy, Washington, DC (USA). Office of Nuclear Waste Management

    1980-09-01

    The authors present an overview of the status of technologies relevant to the isolation of radioactive wastes in geologic repositories. In addition to summarizing scientific and technical work on waste forms and packages, the: a) importance of the systems viewpoint, b) importance of modeling, c) need for site-specific investigations, d) consideration of future sub-surface human activities and e) prospects for successful isolation are discussed. It is concluded that successful isolation of radioactive wastes from the biosphere appears technically feasible for periods of thousands of years provided that the systems view is used in repository siting and design.

  4. Site investigations, design, construction, operation, shutdown and surveillance of repositories for low- and intermediate-level radioactive wastes in rock cavities

    International Nuclear Information System (INIS)

    1984-01-01

    The report provides an overview and technical guidelines for considerations and for activities to be undertaken for safety assessment, site investigations, design, construction, operation, shutdown and surveillance of repositories for the disposal of low- and intermediate-level radioactive wastes in rock cavities. A generalized sequence of investigations is introduced which proceeds through region and site selection to the stage where the site is confirmed by detailed geoscientific investigations as being suitable for a waste repository. The different procedures and somewhat specific investigative needs with respect to existing mines are dealt with separately. General design, as well as specific requirements with respect to the different stages of design and construction, are dealt with. A review of activities related to the operational and post-operational stages of repositories in rock cavities is presented. The report describes in general terms the procedures related to different stages of disposal operation; also the conditions for shutdown together with essential shutdown and sealing activities and the related safety assessment requirements. Guidance is also given on the surveillance programme which will allow for inspection, testing, maintenance and security of a disposal facility during the operational phase, as well as for the post-operational stage for periods determined as necessary by the national authorities

  5. Reconstruction and modernization of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Kolev, I.; Dralchev, D.; Spasov, P.; Jordanov, M.

    2000-01-01

    This report presents briefly the most important issues of the study performed by EQE - Bulgaria. The objectives of the study are the development of conceptual solutions for construction of the following facilities in the Novi Han radioactive waste repository: an operational storage for unconditioned high level spent sources; new temporary buildings over the existing radioactive waste storage facilities; a rain-water draining system ect. The study also includes the engineering solutions for conservation of the existing facilities, currently full with high level spent sources. A 'Program for reconstruction and modernization' has been created, including the analysis of some regulation aspects concerning this program implementation. In conclusions the engineering problems of Novi Han repository are clear and appropriate solutions are available. They can be implemented in both cases of 'small' or 'large' reconstruction. The reconstruction project anyway should start with the construction of a new site infrastructure. Reconstruction and modernization of Novi Han radioactive waste repository is the only way to improve the management and safety of radioactive waste from medicine, industry and scientific research in Bulgaria

  6. The procedure of alternative site selection within the report of the study group on the radioactive waste final repository selection process (AKEnd)

    International Nuclear Information System (INIS)

    Nies, A.

    2005-01-01

    The study group on the selection procedures of radioactive waste final repository sites has presented the report in December 2002. The author dicusses the consequences of this report with respect to the site selection focussing on two topics: the serach for the best possible site and the prevention of prejudices

  7. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed

  8. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  9. The alternative site selection procedure as covered in the report by the Repository Site Selection Procedures Working Group

    International Nuclear Information System (INIS)

    Brenner, M.

    2005-01-01

    The 2002 Act on the Regulated Termination of the Use of Nuclear Power for Industrial Electricity Generation declared Germany's opting out of the peaceful uses of nuclear power. The problem of the permanent management of radioactive residues is becoming more and more important also in the light of that political decision. At the present time, there are no repositories offering the waste management capacities required. Such facilities need to be created. At the present stage, eligible repository sites are the Konrad mine, a former iron ore mine near Salzgitter, and the Gorleben salt dome. While the fate of the Konrad mine as a repository for waste generating negligible amounts of heat continues to be uncertain, despite a plan approval decision of June 2002, the Gorleben repository is still in the planning phase, at present in a dormant state, so to speak. The federal government expressed doubt about the suitability of the Gorleben site. Against this backdrop, the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety in February 1999 established AkEnd, the Working Group on Repository Site Selection Procedures. The Group was charged with developing, based on sound scientific criteria, a transparent site selection procedure in order to facilitate the search for repository sites. The Working Group presented its final report in December 2002 after approximately four years of work. The Group's proposals about alternative site selection procedures are explained in detail and, above all, reviewed critically. (orig.)

  10. Technical conservatism in the design and analysis of a nuclear-waste repository in basalt

    International Nuclear Information System (INIS)

    Jones, K.A.

    1982-01-01

    The US Department of Energy's National Waste Terminal Storage Program has adopted a policy of technical conservatism to guide the design and analysis of geologic disposal systems for commercial high-level radioactive waste. Technical conservatism serves as the programmatic philosophy for managing uncertainty in the performance of the disposal system. The implementation of technical conservatism as applied to a nuclear waste repository in basalt is discussed. Preliminary assessments of the performance of the waste package, repository, and site subsystems are compared to key proposed regulatory criteria. The comparison shows that there are substantial safety margins in the predicted performance of the nuclear waste repository in basalt

  11. Designing shafts for handling high-level radioactive wastes in mined geologic repositories

    International Nuclear Information System (INIS)

    Hambley, D.F.; Morris, J.R.

    1988-01-01

    Waste package conceptual designs developed in the United States by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management are the basis for specifying the dimensions and weights of the waste package and transfer cask combinations to be hoisted in the waste handling shafts in mined geologic repositories for high-level radioactive waste. The hoist, conveyance, counterweight, and hoist ropes are then sized. Also taken into consideration are overwind and underwind arrestors and safety features required by the U.S. Nuclear Regulatory Commission. Other design features such as braking systems, chairing system design, and hoisting speed are considered in specifying waste hoisting system parameters for example repository sites

  12. Preliminary waste acceptance requirements - Konrad repository project

    International Nuclear Information System (INIS)

    Brennecke, P.W.; Warnecke, E.H.

    1991-01-01

    In Germany, the planned Konrad repository is proposed for the disposal of all types of radioactive wastes whose thermal influence upon the host rock is negligible. The Bundesamt fuer Strahlenschutz has established Preliminary Waste Acceptance Requirements (as of April 1990) for this facility. The respective requirements were developed on the basis of the results of site-specific safety assessments. They include general requirements on the waste packages to be disposed of as well as more specific requirements on the waste forms, the packaging and the radionuclide inventory per waste package. In addition, the delivery of waste packages was regulated. An outline of the structure and the elements of the Preliminary Waste Acceptance Requirements of April 1990 is given including comments on their legal status. (Author)

  13. On ocean island geological repository - a second-generation option for disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1993-01-01

    The concept of an ocean subseabed geological high-level waste repository with access via an ocean island is discussed. The technical advantages include, in addition to geologic waste isolation, geographical isolation, near-zero groundwater flow through the disposal site, and near-infinite ocean dilution as a backup in the event of a failure of the repository geological waste isolation system. The institutional advantages may include reduced siting problems and the potential of creating an international waste repository. Establishment of a repository accepting wastes from many countries would allow cost sharing, aid international nonproliferation goals, and ensure proper disposal of spent fuel from developing countries. Major uncertainties that are identified in this concept are the uncertainties in rock conditions at waste disposal depths, costs, and ill-defined institutional issues

  14. Preliminary waste acceptance requirements for the planned Konrad repository

    International Nuclear Information System (INIS)

    Warnecke, E.; Brennecke, P.

    1987-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) has established Preliminary Waste Acceptance Requirements for the planned Konrad repository. These requirements were developed, in accordance with the Safety Criteria of the Reactor Safety Commission, with the help of a site specific safety assessment; they are under the reservation of the plan approval procedure, which is still in progress. In developing waste acceptance requirements, the PTB fulfills one of its duties as the institute responsible for waste disposal and gives guidelines for waste conditioning to waste producers and conditioners. (orig.) [de

  15. Use of petrophysical data for siting of deep geological repository of radioactive waste

    Science.gov (United States)

    Petrenko, Liliana; Shestopalov, Vyacheslav

    2017-11-01

    The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.

  16. Use of petrophysical data for siting of deep geological repository of radioactive waste

    Directory of Open Access Journals (Sweden)

    Petrenko Liliana

    2017-01-01

    Full Text Available The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.

  17. Preliminary analysis of the cost and risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Madsen, M.M.; Cashwell, J.W.; Joy, D.S.

    1983-06-01

    This report documents preliminary cost and risk analyses that were performed in support of the Nuclear Waste Terminal Storage (NWTS) program. The analyses compare the costs and hazards of transporting wastes to each of five regions that contain potential candidate nuclear waste repository sites being considered by the NWTS program. These regions are: the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain, and Hanford. Two fuel-cycle scenarios were analyzed: once-through and reprocessing. Transportation was assumed to be either entirely by truck or entirely by rail for each of the scenarios. The results from the risk analyses include those attributable to nonradiological causes and those attributable to the radioactive character of the wastes being transported. 17 references

  18. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project [BWIP

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.; Newell, R.L.; Page, T.L.

    1989-01-01

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facility consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs

  19. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  20. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  1. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  2. Development of rail access to the proposed repository site at Yucca Mountain

    International Nuclear Information System (INIS)

    Standish, P.N.; Seidler, P.E.; Andrews, W.B.; Shearin, G.

    1991-01-01

    In accordance with the Nuclear Waste Policy Amendment Act of 1987, Yucca Mountain was designated as the initial site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is considered desirable by the Office of Civilian Radioactive Waste Management (OCRWM) program because of the potential of rail transportation to reduce (1) costs and (2) number of shipments, relative to highway transportation. Therefore, it is necessary to conduct a study to determine (1) that there are alignments for a potential rail line from existing mainline railroads to Yucca Mountain and (2) that these are consistent with present rail design standards and are acceptable relative to environmental and land access considerations

  3. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  4. Waste package/repository impact study: Final report

    International Nuclear Information System (INIS)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs

  5. Workshops for state review of site suitability criteria for high-level radioactive waste repositories. Discussion Group reports

    International Nuclear Information System (INIS)

    1977-10-01

    The NRC Waste Management Program and the Office of State Programs held three regional workshops to solicit ideas from State executives and legislators on the siting and licensing procedures for high level waste repositories and to solicit comments on the NRC preliminary site suitability criteria. The workshops were held in Denver, Colorado; New Orleans, Louisiana; and Philadelphia, Pennsylvania during the period 19-30 September 1977. The reports from these workshops are contained herein. The workshops were attended by 170 invited State executives and legislators from 46 states. In addition, there were over 80 observers from diverse backgrounds including the general public, government, industry, professional consultants and university faculty. The workshops were announced in the Federal Register on September 1, 1977

  6. Global nuclear waste repository proposal highlights Australia's nuclear energy vacuum

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  7. Repository simulation tests

    International Nuclear Information System (INIS)

    Wicks, G.G.; Bibler, N.E.; Jantzen, C.M.; Plodinec, M.J.

    1984-01-01

    The repository simulation experiments described in this paper are designed to assess the performance of SRP waste glass under the most realistic repository conditions that can be obtained in the laboratory. These tests simulate the repository environment as closely as possible and introduce systematically the variability of the geology, groundwater chemistry, and waste package components during the leaching of the waste glass. The tests evaluate waste form performance under site-specific conditions, which differ for each of the geologic repositories under consideration. Data from these experiments will aid in the development of a realistic source term that can describe the release of radionuclides from SRP waste glass as a component of proposed waste packages. Hence, this information can be useful to optimize waste package design for SRP waste glass and to provide data for predicting long-term performance and subsequent conformance to regulations. The repository simulation tests also help to bridge the gap in interpreting results derived from tests performed under the control of the laboratory to the uncertainity and variability of field tests. In these experiments, site-specific repository components and conditions are emphasized and only the site specific materials contact the waste forms. An important feature of these tests is that both actual and simulated waste glasses are tested identically. 7 figures, 2 tables

  8. Estimation of expenses for low and intermediate level radioactive waste repository project in Croatia up to site license acquisition

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Subasic, D.

    2003-01-01

    The expenses needed for development of low- and intermediate level radioactive waste (LILW) repository project in Croatia include: (a) preliminary activities, (b) preparatory activities, and (c) preparing of environmental impact study. The first group of expenses are referring to the project leading activities, project plan updating, build-up of required infrastructure, preparing of licensing documentation, site investigations, data acquisition programme, pre-operational radio-ecological monitoring, modelling, safety analysis (first iteration) and public related activities. Preparatory activities are referring to purchasing of land for repository and preparatory activities for carrying out of on-site investigations, while third group of expenses are related to preparation and validation of Environmental impact study. It was found out that about 50 % of total expenses refer to build-up of infrastructure. Additional 25 % finances are related to radio-ecological monitoring, site investigations and development of calculations and models, while remaining 25 % of total estimated sum is expected to be spent for repository safety assessment, public relations, purchasing and preparing the on-site terrain for construction, etc. It was calculated 607 EUR per m3 of LILW to be needed up to site license acquisition. According to the world-wide practice, by extrapolating of additional expenses necessary for construction of the repository and acquisition of operational license, it comes out the cost of 1.723 EUR per m3 of LILW for shallow-ground and 2.412 EUR per m3 of LILW for tunnel repository. The estimated expenses for Croatia are within the span of expenses for the same purpose in the countries considered. Expected duration of the project performance up to acquisition of the site license is 4 years and 3 months. (author)

  9. Siting of large diameter well type repositories for the central region of Russia

    International Nuclear Information System (INIS)

    Dmitriev, A.S.; Tkachenko, A.V.; Prozorov, L.B.; Guskov, A.V.; Korneva, S.A.

    2002-01-01

    To date only 14 from 16 RADON facilities are in operation. Most of them have not more than about 10% of their repositories free and available for new upcoming radioactive waste. Construction of new repositories and selection of new perspective sites is very actual problem for RAW management in Russia now. Near surface repositories are considered to be acceptable for storage of wastes with low and intermediate activity levels (LILW), which decay to safe levels in some hundreds of years. However, the experience with LILW isolation in the near surface facilities in Russia has shown that a lot of operational and natural factors impact on the engineered barriers and may cause failure of the isolation. In addition, the exploitation of the old repositories and construction of new ones require more area. Significant increase in LILW isolation reliability and area saving may be achieved by wastes disposal/storage in Large Diameter Wells (LDW), drilled in homogeneous sediments with low permeable properties. It could be considered as an intermediate between near-surface and geological repositories, and its specific features should be taken into account when choosing new sites for RAW disposal or long-term storage. (author)

  10. Qualified public involvement in the decision making process of siting a waste repository

    International Nuclear Information System (INIS)

    Rodrigues, Danielle Monegalha; Almeida, Ivan Pedro Salati de

    2009-01-01

    The main objective of this paper is to identify the most important characteristics required for the qualification of local communities for participating in the process of defining a specific site for a radioactive waste repository. It also compares the strategies used by Hungary, United Kingdom and Belgium to stimulate the public participation in the decision-making process of building and operating a radioactive waste repository, considering both the stepwise process and the spontaneous candidacy. Two main aspects are discussed as prerequisites to constitute a qualified public. The first aspect is how well the person or entity can be considered an effective representative of the community affected by the repository. This means the conditions the representative has to speak on behalf of the community and participate in the decision making process as its voice. The second characteristic is the level and quality of the information that the community and its representatives must have to participate actively in the decision-making process and what can be done to improve this status. Referring to the strategy to public involvement, this paper discusses the importance of transparency in the process, aiming the credibility of the entrepreneur as the first pace to gaining the confidence of the public affected by the project. Implementing an open dialog and listening to the needs and claims of the population are the first steps to being accepted as a true partner of the community. Preliminary discussions and explanations are important to introduce the subject and to reduce beliefs of false threats in the affected community. The constitution of a local committee is suggested, to act as a legal and formal channel to facilitate the partnership between local community, neighbors and the entrepreneur in order to achieve a positive result in the whole process. (author)

  11. The Hidden Risk Decisions in Waste Repository Regulation

    International Nuclear Information System (INIS)

    Frishman, Steve

    2001-01-01

    The move toward risk-informed, performance-based regulation of activities involving radioactive materials is becoming wide spread and broadly applied. While this approach may have some merit in specific applications in which there is a considerable body of experience, its strict application in regulation of geologic repositories for highly radioactive wastes may not be appropriate for this unproven and socially controversial technology. The U.S. Nuclear Regulatory Commission describes risk-informed, performance-based regulation as 'an approach in which risk insights, engineering analysis and judgement (eg. defense in depth), and performance history are used to (1) focus attention on the most important activities, (2) establish objective criteria based upon risk insights for evaluating performance, (3) develop measurable or calculable parameters for monitoring system and licensee performance, and (4) focus on the results as the primary basis for regulatory decision-making.' Both the risk-informed and performance-based elements of the approach are problematic when considering regulation of geologic repositories for highly radioactive wastes - an activity yet to be accomplished by any nation. In investigating potential sites for geologic repositories there will always be residual uncertainty in understanding the natural system and the events and processes that affect it. The more complex the natural system, the greater will be the uncertainty in both the data and the models used to describe the characteristics of the site's natural barriers, and the events and processes that could affect repository waste isolation. The engineered barriers also are subject to uncertainties that are important to the repository system. These uncertainties translate themselves into a range of probabilities that certain events or processes, detrimental to waste isolation, will occur. The uncertainties also translate to a range of consequences and magnitudes of consequences, should the

  12. A geologic scenario for catastrophic failure of the Yucca Mountain Nuclear Waste Repository, Nevada

    International Nuclear Information System (INIS)

    McMackin, M.R.

    1993-01-01

    A plausible combination of geologic factors leading to failure can be hypothesized for the Yucca Mountain Nuclear Waste Repository. The scenarios is constructed using elementary fault mechanics combined with geologic observations of exhumed faults and published information describing the repository site. The proposed repository site is located in the Basin and Range Province, a region of active crustal deformation demonstrated by widespread seismicity. The Yucca Mountain area has been characterized as tectonically quiet, which in the context of active crustal deformation may indicate the accumulation of the stresses approaching the levels required for fault slip, essentially stick-slip faulting. Simultaneously, dissolution of carbonate rocks in underlying karst aquifers is lowering the bulk strength of the rock that supports the repository site. Rising levels of hydrostatic stress concurrent with a climatically-driven rise in the water table could trigger faulting by decreasing the effective normal stress that currently retards fault slip. Water expelled from collapsing caverns in the underlying carbonate aquifer could migrate upward with sufficient pressure to open existing fractures or create new fractures by hydrofracturing. Water migrating through fractures could reach the repository in sufficient volume to react with heated rock and waste perhaps creating steam explosions that would further enhance fracture permeability. Closure of conduits in the underlying carbonate aquifer could lead to the elevation of the saturated zone above the level of the repository resulting in sustained saturation of radioactive waste in the repository and contamination of through-flowing groundwater

  13. A Strategy for Describing the Biosphere at Candidate Sites for Repositories of Nuclear Waste: Linking Ecosystem and Landscape Modeling

    International Nuclear Information System (INIS)

    Lindborg, Tobias; Loefgren, Anders; Soederbaeck, Bjoern; Kautsky, Ulrik; Lindborg, Regina; Bradshaw, Clare

    2006-01-01

    To provide information necessary for a license application for a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Co. has started site investigations at two sites in Sweden. In this paper, we present a strategy to integrate site-specific ecosystem data into spatially explicit models needed for safety assessment studies and the environmental impact assessment. The site-specific description of ecosystems is developed by building discipline-specific models from primary data and by identifying interactions and stocks and flows of matter among functional units at the sites. The conceptual model is a helpful initial tool for defining properties needed to quantify system processes, which may reveal new interfaces between disciplines, providing a variety of new opportunities to enhance the understanding of the linkages between ecosystem characteristics and the functional properties of landscapes. This type of integrated ecosystem-landscape characterization model has an important role in forming the implementation of a safety assessment for a deep repository

  14. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  15. Is Croatia Going to Build a Radioactive Waste Repository?

    International Nuclear Information System (INIS)

    Knapp, Alemka; Levanat, Ivica; Saponja-Milutinovc, Diana

    2014-01-01

    Site selection process for low and intermediate level radioactive waste repository in Croatia was ended in 1999, nominating Trgovska gora as the potential macrolocation for the facility. Feasibility of the Trgovska gora disposal project was analyzed in a number of studies prepared by APO Ltd. from the mid-nineties up to 2003. An affirmative, though preliminary and largely generic safety assessment was completed. Specific microlocations were selected and analyzed based on literature data (garnished with low-resolution digital satellite pictures), and the best microlocation was tentatively narrowed down to Pavlovo brdo. After 2003, no further activities related to the repository project were undertaken for nearly ten years, until in its public procurement plan for 2013 the Croatian Fund for financing the NPP Krsko decommissioning and waste disposal dedicated over half a million euro to continuation of the project. In general, safe radioactive waste disposal pre-requires establishment of a complex national framework with appropriate functionality and competence; with such a framework established, decisive first steps towards building a repository are to identify potentially suitable locations and to ensure local community consent and cooperation. The rest should mainly be routine. But in Croatia, both lack of proper framework and the project history of indecisiveness may adversely affect further developments. Trgovska gora was designated as the potential location in the national land use plan only after three other potential locations had been dismissed by political decisions based on the largely assumed adverse attitudes of local communities. Repository project now appears to depend on cooperation of a single local community hosting the only potential site. The site has never been visited by any repository project participants, nor has the local community ever been officially contacted in an open and straightforward way, despite the 20-year old history of the project

  16. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  17. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  18. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  19. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  20. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C.; Ballou, L.B.; Revelli, M.A.; Ducharme, A.R.; Shephard, L.E.; Dudley, W.W.; Hoxie, D.T.; Herbst, R.J.; Patera, E.A.; Judd, B.R.; Docka, J.A.; Rickertsen, L.D.

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE's Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ''current information'' or ''available evidence.''

  1. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  2. Multi criteria decision analysis on a waste repository in Mol

    International Nuclear Information System (INIS)

    Carle, B.

    2005-01-01

    In Belgium, the management of radioactive waste is taken care of by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials. Local partnerships with stakeholders from municipalities in existing nuclear zones were setup to facilitate the dialogue between the repository designers and the local community. Since the establishment of the partnership in Mol, MONA in February 2000, all aspects of a possible near-surface or a deep geological repository are discussed in 4 working groups by around 50 volunteer members. The outcome of the discussions in the partnership can be a shared project, supported by both local stakeholders and ONDRAF/NIRAS, in which the specifications and the conditions needed for establishing a repository in Mol are elaborated. MONA asked the Decision Strategy Research Department of SCK-CEN to organise a Multi Criteria Analysis (MCA) in the context of the deciding between a surface and a deep repository for low level radioactive waste. The objective of the multi criteria analysis is to support a number of representatives of the various working groups within MONA in their selection between two acceptable options for a repository of low level radioactive waste on the territory of Mol. The options are the surface repository developed by the working groups of MONA, and a deep repository in the clay layers underneath the nuclear site of Mol. This study should facilitate the selection between both options, or in case this appears to be difficult, at least to get a well-structured overview of all factors (criteria) of importance to the judgement, and to get insight into the degree in which the various criteria contribute to the selection

  3. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed

  4. Gabbro as a host rock for a nuclear waste repository

    International Nuclear Information System (INIS)

    Ahlbom, K.; Leijon, B.; Smellie, J.; Liedholm, M.

    1992-09-01

    As an alternative to granitic rocks, gabbro and other basic rock types have been investigated with respect to their suitability to host a nuclear waste repository. The present report summarizes and examines existing geoscientific knowledge of relevance in assessing the potential merits of gabbro as a repository host rock. Implications in terms of site selection, repository construction and post-closure repository performance are also discussed. The objective of the study is to provide a basis for decisions as regards future consideration of the gabbro alternative. It is found that there are rather few gabbro bodies in Sweden, that are potentially of sufficient size to host a repository. Thus, gabbro offers little latitude as regards site selection. In comparison to siting a repository in granitic rocks, this is a major disadvantage, and it may in fact remove gabbro from further consideration. The potential advantages of gabbro refer to repository performance, and include low hydraulic conductivity and a chemical environment promoting efficient radionuclide retardation. However, results from field investigations show that groundwater flow in gabbro bodies is largely controlled by intersecting heterogeneities, in particular granitic dykes, that are significantly more conductive to water than the gabbro. In the far-field scale significant to repository performance, this may reduce or eliminate the potential effects of favourable hydraulic and chemical characteristics of the gabbro itself. In conclusion, there are apparent difficulties associated with siting a repository in gabbro, due to lack of sufficiently large gabbro bodies. On the basis of the present state of knowledge, no decisive differences can be demonstrated when comparing gabbro with granitic rocks, neither with respects to repository construction, nor as regards repository performance. (au)

  5. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  6. Integrated management system for radioactive waste repositories (SGI3R)

    International Nuclear Information System (INIS)

    Silva, Fabio; Tello, Cledola Cassia Oliveira de

    2009-01-01

    The implantation of a repository for radioactive wastes is a multidisciplinary project that needs specialists of different areas of knowledge, interaction with public and private institutions, data and information related to radioactive wastes, geology, technology etc. All the activities must be in accordance with norms, requirements and procedures, including national and international legislation. The maintenance of the waste inventory records is an important regulatory requirement and must be available even after the closure of the repository. CDTN - Center of Nuclear Technology Development - is coordinating the Project for the construction of the national repository to dispose the low -and intermediate-level wastes. In order to consolidate all information that will come from this Project, it is being developed and implanted in CDTN a manager system of database, called Integrated Management System for Radioactive Waste Repositories (SGI3R), which will also manage all data from previous work carried out in Brazil and around the world about this subject. The proposal is to build a structure of modules, having as base eight modules: inventory, site selection, types of repository, technology, partners, legislation, communication and documents. The SGI3R running comprises the data processing (inclusion, update and exclusion), integration, standardization, and consistency among the processes. The SGI3R will give support to the stages of this Project, which will allow the preservation of all the available information, preventing duplication of efforts and additional costs, improving, in this way, the Project planning and execution. Additionally the SGI3R will make possible the information access to all stakeholders. (author)

  7. Barriers to migration of radionuclides from radioactive waste repositories

    International Nuclear Information System (INIS)

    Stefanova, I.

    1999-01-01

    Natural inorganic sorbents are known as effective barriers that reduce the migration of radionuclides from radioactive waste repositories and contaminated sites. They could be used as buffer, backfill and sealing materials in the repository and their presence in the host rock and the surrounding geological formations increases the retention properties of the strata. Natural occurring minerals from local origin are used in the study - zeolites (clinoptilolite and mordenite), celadonite and loess. Sorption of wide range of radionuclides is studies. Batch capacity is determined. Sorption of radionuclides from simulated natural solution is studied. Distribution coefficients are calculated from sorption isotherms. Desorption in presence of different natural solutions is studied. Sorption properties are compared. It is shown that clinoptilolite acts as effective barrier against migration of radionuclides from repositories. The presence of celadonite in the clinoptilolite rock increases the retention of polyvalent ions. The retention of radionuclides on loess samples fulfils the requirements for host media for repository for low and intermediate level waste. A method for construction of additional barrier to the existing in the country disposal vault for spent sealed sources is proposed

  8. Definition of the waste package environment for a repository located in salt

    International Nuclear Information System (INIS)

    Clark, D.E.; Bradley, D.J.

    1983-01-01

    The expected environmental conditions for emplaced waste packages in a salt repository are simulated in the materials testing program to evaluate performance. Synthetic brines, based on the analyses of actual brines (both intrusion and inclusion), are used for corrosion and leach testing. Elevated temperatures (to 150 0 C) and radiation fields of up to 10 3 rad/h are employed as conservative conditions to bracket expected performance and provide data for worst case scenarios. Obtaining a precise definition of the waste package environment in a salt repository and its change with time is closely tied to detailed site characterization of the candidate salt repository horizon. It is expected that field testing can augment some of the materials testing currently under way and can provide increased confidence in the predicted site-specific near-field conditions. 17 references, 5 figures, 1 table

  9. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  10. Classifying decommissioning wastes for allocation to appropriate final repositories

    International Nuclear Information System (INIS)

    Alder, J.C.; Tunaboylu, K.

    1982-01-01

    For the safe disposal of radioactive wastes in different repositories, it is of advantage to classify them in well-defined conditioned categories, appropriate for final disposal. These categories, the so-called waste sorts are characterized by similar radionuclide distribution, similar nuclide-specific activity concentrations and similar waste matrix. A methodology is presented for classifying decommissioning wastes and is applied to the decommissioning wastes arising from a Swiss program of 6 GWe. The amounts and nuclide-specific activity inventories of the decommissioning waste sorts have been estimated. A first allocation into two different repository types has been performed. Such a classification enables one to define the source parameters for repository safety analysis and allows one to allocate the different waste categories into appropriate final repositories. This work presents a first iteration to determine which waste sorts belong to which repository type. The characteristics of waste sorts have to be better defined and the protective strength of the repository barriers has to be optimized. 7 references, 2 figures, 4 tables

  11. Flammable gas production in Land 2 and Land 3/4 radioactive waste repositories

    International Nuclear Information System (INIS)

    1988-02-01

    Geological, radiolytic and microbiological sources of gas are considered in relation to Land 2 and Land 3/4 type radioactive waste repositories. Geological sources are potentially the most troublesome and it is concluded that site investigation work should be designed to detect gas trap structures, reservoir lithologies or source rocks. Known source and reservoir lithologies should not be considered as suitable for the siting of waste repositories. Radiolytic and microbiological sources will depend on waste characteristics. A detailed review of the literature on radiolytic gas generation is presented and conclusions from this work indicate that water in waste and matrix should be kept to a minimum. Similarly, the level of radioactivity stored in each waste container should be kept to the minimum compatible with the storage design. Microbiological gas sources will be reduced by maintaining the cellulose content of the waste at a minimum. It is suggested that the removal of organics from the waste stream would be beneficial in terms of potential gas production. (author)

  12. Natural analogues, paradigm for manmade repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Pavelescu, M.; Pavelescu, A.

    2004-01-01

    Natural analogues are given by nature. They show the results of natural processes which have lasted thousands or millions of years. They provide an excellent example of what could happen in an underground site, offering in the same time the opportunity to test by observation and measurement, many of the geochemical processes that are expected to influence in a realistic and appropriate way, the predicted reliability of the radioactive waste repository over long periods of geological time. The natural analogue studies attempt to understand the multiprocessing complexity of the natural system, which contrasts with the limitations of the laboratory experiments and bring arguments to overcome the difficult time scale issue. By this the natural analogues are a useful paradigm for manmade repository for radioactive wastes. The paper discusses the implicit link in the public mind between natural analogues and manmade waste repository with an accent of the positive impact on public acceptance. It is also discussed the decisive qualities of the natural analogues concerning providing valid long term data and increasing the confidence of the public for manmade repositories. The debate is conducting in terms of sustainable development, having at base high-level principles in order to protect humans and their environment, both now and in the future, from potential hazards arising from such wastes. Safe radwaste management involves the application of technology and resources in a regulated manner so that the public, workers and the environment are protected in accordance with the accepted national and international standards. There are at least seven high-level principles which are mentioned in the paper. It is presented the general concept of the deep geological repository, very important for an acceptable solution for the management of nuclear waste, what is a prerequisite for a renewal of nuclear power. Further are introduced natural and archaeological (manufactured) analogue

  13. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  14. Dispute resolution in the nuclear waste repository program

    International Nuclear Information System (INIS)

    Creighton, J.L.; Shorett, A.J.

    1988-01-01

    During 1987 a seven-person team addressed just that question for the State of Washington, as part of the studies of the socioeconomic impacts of a possible nuclear waste repository site at the Hanford site. The authors were, respectively, the Mitigation/Compensation team leader and the conflict resolution specialist within the team. While the studies were terminated when Congress selected the Nevada site, the conclusions may still have value for the State of Nevada, or for other controversial federal projects

  15. Data base for a site-specific migration analysis radioactive elements out of a waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, J

    1981-11-01

    Migration analysis is of considerable importance in long-term safety analysis of radioactive waste repositories. In a first step our plans are to calculate transport of radionuclides using data - as far as possible - for an undisturbed hydrogeology. Thereby a reference case is defined. In a later step, possible events and processes can be considered leading to a deviation from the reference case. The present work gives the data base for a selected part of a comprehensive geosphere transport calculation. We restrict ourselves to a critical evaluation of parameters pertinent to the migration analysis of the /sup 245/Cm chain. This includes the important nuclide /sup 237/Np. For the first time we are able to perform a site specific calculation for repositories planned in deep geologic formations in Switzerland. The well-known fact that the data basis is extremely sparse is pointed out once more and concretized in detail.

  16. Chemical risks from nuclear waste repositories

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    Studies concerning the chemical risks of nuclear waste are reviewed. The radiological toxicity of the material is of primary concern but the potential nonradiological toxicity should not be overlooked as the chemotoxic substances may reach the biosphere from a nuclear waste repository. In the report is concluded that the possible chemotoxic effects of a repository for nuclear waste should be studied as a part of the formal risk assessment of the disposal concept. (author)

  17. Low- and intermediate-level waste repository-induced effects

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom); Savage, D. [Savage Earth Associates Ltd, Bournemouth, Dorset (United Kingdom); Senger, R. [Intera Inc., Ennetbaden (Switzerland)

    2016-10-15

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a low- and intermediate level waste (L/ILW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects arising principally from the heat generated by the waste and the setting of cement. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement caverns and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock. Deep geological repositories are designed to avoid or mitigate the impact of potentially detrimental repository-induced effects on long-term safety. For the repository under consideration in the present report, an assessment of those repository-induced effects that remain shows that detrimental chemical and mechanical impacts are largely confined to the rock adjacent to the excavations, thermal impacts are minimal and gas effects can be mitigated by appropriate design measures to reduce gas production and provide pathways for gas transport that limit gas pressure build-up (engineered gas transport system, or EGTS). Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The disposal system described in this report provides a system of passive barriers with multiple safety functions. The disposal

  18. Low- and intermediate-level waste repository-induced effects

    International Nuclear Information System (INIS)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J.; Smith, P.; Savage, D.; Senger, R.

    2016-10-01

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a low- and intermediate level waste (L/ILW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects arising principally from the heat generated by the waste and the setting of cement. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement caverns and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock. Deep geological repositories are designed to avoid or mitigate the impact of potentially detrimental repository-induced effects on long-term safety. For the repository under consideration in the present report, an assessment of those repository-induced effects that remain shows that detrimental chemical and mechanical impacts are largely confined to the rock adjacent to the excavations, thermal impacts are minimal and gas effects can be mitigated by appropriate design measures to reduce gas production and provide pathways for gas transport that limit gas pressure build-up (engineered gas transport system, or EGTS). Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The disposal system described in this report provides a system of passive barriers with multiple safety functions. The disposal

  19. High level radioactive waste repositories. Task 3. Review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A review is presented of proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository appropriate to the U.K. context, with particular reference to waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development.

  20. Appraisal of hard rock for potential underground repositories of radioactive wastes. LBL-7004

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1978-01-01

    Underground burial of radioactive wastes in hard rock may be an effective and safe means of isolating them from the environment and from man. The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 km to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  1. Global nuclear waste repository proposal highlights Australia`s nuclear energy vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-06-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  2. A logistic and cost model for the transport of radioactive waste to a repository

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Gray, I.L.S.; Manville, W.D.

    1997-01-01

    UK Nirex Ltd is planning a deep repository for intermediate level radioactive waste, and also some low level waste. Part of this work is to develop a transport system to bring the packaged waste to the repository from nuclear industry sites across the United Kingdom. To assess the logistics and costs of this transport system and to provide inputs to the repository specification and design, Nirex has commissioned the development of a flexible computer model which can be used on a desktop PC. The requirements for the LOGCOST model are explained, and the solutions adopted, and then examples shown of the graphical and tabular outputs that LOGCOST can provide. (Author)

  3. High level waste repository site suitability criteria. Environmental impact statement methodology

    International Nuclear Information System (INIS)

    1977-06-01

    The approach (methodology) which has been developed for the preparation of the environmental impact statement (EIS) is described. A suggested outline is presented for the High Level Waste Repository Site Suitability Criteria EIS together with a detailed description of the approach to be used in preparing the EIS. In addition, a methodology is presented by which the necessary cost/benefit/risk comparisons of alternative sets of site suitability criteria can be made. The TERA environmental research data bank, a computerized data bank which contained information on current and historical licensing activities for power plants was modified to include information on generic or programmatic EIS related issues. The content of the modified data bank was utilized to develop the EIS outline presented in this report. The report recommends that a modified matrix evaluation approach be used to make the cost/benefit/risk comparisons. The suggested matrix is designed to facilitate between criteria comparative analyses of economic, environmental, sociological and radiological risk factors. The quantitative compositing of dollar cost and benefits, environmental and sociological impacts, and radiological risks is to be performed using a semi-analytical, semi-visual procedure based on the concept of ''decision surfaces.''

  4. Final storage of radioactive waste in Germany. Waste arisings and availability of a repository as seen by an electricity utility

    International Nuclear Information System (INIS)

    Broeskamp, H.; Brammer, K.J.; Graf, R.

    2004-01-01

    The management of waste arising in the operation of nuclear power plants has been taken into account since the beginnings of the peaceful uses of nuclear power in Germany. As early as in 1957, a memorandum of the German Advisory Committee on Atomic Energy contains a reference to the need for safe disposal of radioactive waste. Legislation adopted the suggestion and laid down some provisions on the safe utilization of radioactive materials as early as in the Atomic Energy Act of December 23, 1959. In connection with the nuclear waste management center, the Federal Republic also looked for a suitable site for a repository. After thorough site selection proceedings by the federal government and the state of Lower Saxony, the Lower Saxony state government in 1977 defined Gorleben as the site. The decision has been preceded by a three-stage selection process in which more than 140 sites had been investigated. Exploration of the Gorleben site began in 1979 and was interrupted on October 1, 2000 to clarify conceptual and safety-related doubts of the federal government. The German Federal Ministry for the Environment (BMU) seeks to make a repository (for high-level waste) available in 2030. Technically, it is still possible to commission a repository for waste generating heat at Gorleben after 2025 if the salt dome is found to be suitable after speedy conclusion of the exploration work. Reference is made to foreseeable problem areas. Another project pursued by the federal government is the use of the Konrad mine as a repository for low and medium-level radioactive waste. After well over twenty years, the plans approval decision was made in May 2002 and is at present the subject of litigation. On the basis of the data presented about the expected arisings of waste generating no heat in combination with the possible start of emplacement in Konrad in 2013, detailed results are presented. (orig.) [de

  5. Benchmark problems for repository siting models

    International Nuclear Information System (INIS)

    Ross, B.; Mercer, J.W.; Thomas, S.D.; Lester, B.H.

    1982-12-01

    This report describes benchmark problems to test computer codes used in siting nuclear waste repositories. Analytical solutions, field problems, and hypothetical problems are included. Problems are included for the following types of codes: ground-water flow in saturated porous media, heat transport in saturated media, ground-water flow in saturated fractured media, heat and solute transport in saturated porous media, solute transport in saturated porous media, solute transport in saturated fractured media, and solute transport in unsaturated porous media

  6. Environmental monitoring and radiation protection programs of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Christoskova, M.; Kostova, M.; Sheherov, L.; Bekiarov, P.; Iovtchev, M.

    2000-01-01

    The system for monitoring and control as an important part of the safety management of the Novi Han Radioactive Waste Repository contains two independent programs: environmental monitoring of the site (controlled area), the restricted access area and the surveillance area (supervised area) of the repository and radiation protection program including personal dosimetric control and indoor dosimetric control of workplaces in the buildings of the repository. The main activities related to the programs implementation are presented

  7. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  8. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    International Nuclear Information System (INIS)

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as 36 Cl and 93 Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon

  9. Effective summary evaluators for deep nuclear waste repositories: geohydrologic response function

    International Nuclear Information System (INIS)

    Nelson, R.W.; Dove, F.H.

    1981-03-01

    Useful insight has been gained over the past four years as hydrologic system modeling has been applied to evaluate hypothetical, waste-repository sites in various geologic media. The Geohydrologic Response Functions, described in this paper, are shown to: blend extensive results of technical analysis into simple summary relationships, and to potentially help the public and decision makers to evaluate the magnitude of any loss in repository integrity

  10. Projected environmental impacts of radioactive material transportation to the first US repository site

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Cashwell, J.W.; Reardon, P.C.; Ostmeyer, R.M.; McNair, G.W.

    1986-01-01

    This paper discusses the relative national environmental impacts of transporting nuclear wastes to each of the nine candidate repository sites in the United States. Several of the potential sites are closely clustered and, for the purpose of distance and routing calculations, are treated as a single location. These are: Cypress Creek Dome and Richton Dome in Mississippi (Gulf Interior Region), Deaf Smith County and Swisher County sites in Texas (Permian Basin), and Davis Canyon and Lavender Canyon site in Utah (Paradox Basin). The remaining sites are: Vacherie Dome, Louisiana; Yucca Mountain, Nevada; and Hanford Reservation, Washington. For compatibility with both the repository system authorized by the NWPA and with the MRS option, two separate scenarios were analyzed. In belief, they are (1) shipment of spent fuel and high-level wastes (HLW) directly from waste generators to a repository (Reference Case) and (2) shipment of spent fuel to a Monitored Retrievable Storage (MRS) facility and then to a repository. Between 17 and 38 truck accident fatalities, between 1.4 and 7.7 rail accident fatalities, and between 0.22 and 12 radiological health effects can be expected to occur as a result of radioactive material transportation during the 26-year operating period of the first repository. During the same period in the United States, about 65,000 total deaths from truck accidents and about 32,000 total deaths from rail accidents would occur; also an estimated 58,300 cancer fatalities are predicted to occur in the United States during a 26-year period from exposure to background radiation alone (not including medical and other manmade sources). The risks reported here are upper limits and are small by comparison with the ''natural background'' of risks of the same type. 3 refs., 6 tabs

  11. Refinancing of the search for a repository and of the repository for heat generating radioactive waste. Pt. 1

    International Nuclear Information System (INIS)

    Moench, Christoph

    2013-01-01

    The final disposal of radioactive waste is a state task that is assigned to the Federal Government pursuant to section 9a (3) sentence 1 of the Atomic Energy Act (AtG). Since the early 1970's, the Federal Government has been actively searching for and exploring final disposal sites for radioactive waste. In a proceeding accompanied by the intensive participation of technical experts and the public, the Gorleben salt dome (Salzstock) has emerged as a presumably suitable disposal site from a mining standpoint (eignungshoeffig) according to the current status of the exploration. The cost of these exploratory measures - and the subsequent construction - will be financed by the waste producers, in particular the utility companies, by means of advance payments on their contributions. Part I of this article will evaluate the selection and exploration of the Gorleben salt dome to date and examine the provisions on the pre-financing burden from the point of view of constitutional law. Constitutional objections can also be raised against the regulation in section 21b (4) AtG that was introduced in 1998, which excludes a refunding of the pre-financing contributions even if the repository is never erected or operated. Part II of this article, which will appear in the next issue, will take up the question of whether a search for an alternative repository site, as the Federal Ministry for the Environment (BMU) envisions in the working draft of an 'Act on the search for and selection of a site for a repository for heat generating radioactive waste' (Gesetz zur Suche und Auswahl eines Standortes fuer ein Endlager fuer waermeentwickelnde radioaktive Abfaelle), is likewise to be refinanced as a contribution by the parties obliged to make advance payments. (orig.)

  12. Refinancing of the search for a repository and of the repository for heat generating radioactive Waste. Pt. 2

    International Nuclear Information System (INIS)

    Moench, Christoph

    2013-01-01

    Part I of this article, which appeared in the preceding issue, described in general terms the background to the search for a disposal site and the result of the exploration to date of the repository, which would appear to be suitable from a mining standpoint according to the present knowledge. According to the rules in effect up to now, the exploration and construction would be financed by advance payments on the contributions of the waste producing companies, in particular the utility companies. The working draft of an 'Act on the search for and selection of a site for a repository for heat generating radioactive waste' (Gesetz zur Suche und Auswahl eines Standortes fuer ein Endlager fuer waermeentwickelnde radioaktive Abfaelle) from autumn 2012 provides for a new version of section 21b Atomic Energy Act, under which the costs for 'carrying out a repository selection procedure pursuant to the Repository Selection Act (Standort-auswahlgesetz)' would be allocated to the future users of the repository who are obliged to make contributions as a 'necessary expense'. Part II evaluates this provision of the working draft on the basis of the financial constitutional law. A comparison of sites is not a measure that could be allocated to the future users of the repository who are obliged to make contributions as a 'necessary expense'. Moreover, there is a lack of responsibility for the financing and of a legally relevant advantage that would be conferred by a cumulative alternative repository search for the later users of the repository who are obliged to provide the pre-financing. The costs can therefore not be allocated to the later users as either a contribution or a special charge, not even by way of an association with mandatory membership (Zwangsverband). They must be borne by the state. Consequently, the allocation stipulated by provision would constitute an impermissible charge under financial constitutional law. (orig.)

  13. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  14. Experience from developed and licensing an underground repository for low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Ebel, K.; Richter, D.

    1988-01-01

    In the German Democratic Republic an abandoned salt mine was selected and reconstructed to serve as a central repository for low and intermediate level wastes from nuclear power plants and radioisotope production and application from all over the country. The decision to establish such a repository was based on safety and technical-economic studies performed in the 1960s. The repository is owned by the main waste producer, the nuclear plant utility. It was designed, constructed and commissioned during 1972-1978. The licensing steps included a site licence (1972), a construction licence (1974), a comissioning licence and a continuous operation licence (1979). The paper reviews the overall choice of the disposal option, the responsibilities in radioactive waste management, the licensing and surveillance activities, the methods for transport and disposal, and the waste acceptance criteria established for the repository. (author)

  15. Can multi-criteria analysis models support the site selection for a repository for heat-generating waste?

    International Nuclear Information System (INIS)

    Gutberlet, Daniela

    2015-01-01

    The decision for or against a potential site for a nuclear waste repository is highly complex and requires decision-makers to consider multiple assessment criteria. The complexity of each site and its characteristics, and the differing opinions among members of the public and advocacy groups mean t hat conflicts of interest are likely to arise. In this paper, the author suggests that multi-criteria analysis models could be used to provide methodological support during the selection process. The models can map these types of decision situations and suggest coherent solutions with relatively little formal effort. They allow users to compare different opt ions simultaneously and ensure that t heir decision-making Is conscious rather than arbitrary.

  16. Plans for characterization of the potential geologic repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dobson, D.C.; Blanchard, M.B.; Voegele, M.D.; Younker, J.L.

    1990-01-01

    Site investigations in the vicinity of the potential repository site at Yucca Mountain, Nevada, have occurred for many years. Although information from previous site investigations was adequate to support preliminary evaluations by the US Department of Energy (DOE) in the Environmental Assessment and to develop conceptual repository and waste package designs, this information is insufficient to proceed to the advanced designs and performance assessments required for the license application to the US Nuclear Regulatory Commission (NRC). Therefore, intensive site characterization is planned, as described in the December 1988 Site Characterization Plan (SCP). The data acquisition activities described in the SCP are focused on obtaining information to allow evaluations of the natural and engineered barriers considered potentially relevant to repository performance. The site data base must be adequate to allow predictions of the range of expected variation in geologic conditions over the next 10,000 years, as well as predictions of the probabilities for catastrophic geologic events that could affect repository performance. 4 refs., 4 figs

  17. Expert and non-expert groups perception of LILW repository site selection procedure

    International Nuclear Information System (INIS)

    Zeleznik, N.; Polic, M.

    2001-01-01

    Slovenia is now in the process of the site selection for a low and intermediate level radioactive waste (LILW) repository. Earlier searches for the LILW repository site confronted the Agency for radwaste management (ARAO) with a number of problems, mainly concerning the contacts with the local communities and their willingness to accept the repository. Therefore the Agency started with a new, so-called mixed mode approach to the site selection, where the special role of a mediator is introduced. The mediator represents the link between the investor and the local community, and facilitates the communication and negotiations between both. In this study we try to find out how people perceive the mediating process and conditions under which the LILW repository would be accepted in the local community. Therefore a special survey was conducted. The results showed some of the conditions under which participants would possibly accept the LILW repository. Differences in the perception between non-expert and expert groups were demonstrated and analysed, especially in the assessment of the consequences of LILW repository construction on the environment. Also the socio-psychological influences of the LILW repository were noted and examined. Consequences and recommendations for future work on the site selection procedure were prepared on the basis of the research results.(author)

  18. Surveys for desert tortoise on the proposed site of a high-level nuclear waste repository at the Nevada Test Site

    International Nuclear Information System (INIS)

    Collins, E.; Sauls, M.L.; O'Farrell, T.P.

    1983-01-01

    The National Waste Terminal Storage Program is a national search for suitable sites to isolate commercial spent nuclear fuel or high-level radioactive waste. The Nevada Nuclear Waste Storage Investigation (NNWSI) managed by the U.S. Department of Energy (DOE), Nevada Operations Office, was initiated to study the suitability of a portion of Yucca Mountain on the DOE's Nevada Test Site (NTS) as a location for such a repository. EG and G was contracted to provide information concerning the ecosystems encountered on the site. A comprehensive literature survey was conducted to evaluate the status and completeness of the existing biological information for the previously undisturbed area. Site specific studies were begun in 1981 when preliminary field surveys confirmed the presence of the desert tortoise (Gopherus agassizi) within the project area FY82 studies were designed to determine the overall distribution and abundance of the tortoise within the area likely to be impacted by NNWSI activities. The Yucca Mountain area of the Nevada Test Site is situated close to the northern range limit of the desert tortoise. Prior to the 1982 surveys, the desert tortoise was reported from only nine locations on NTS. A known population had been under study in Rock Valley about 25 miles southeast of the project area. However, the distribution and population densities of tortoise in the southwest portion of NTS were virtually unknown. Results of our surveys indicate that desert tortoise can be expected, albeit in small numbers, in a wide range of Mojavean and Transitional habitats

  19. Nuclear waste repository simulation experiments

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1986-12-01

    This document is the third joint annual report on the Cooperative German-American 'Brine Migration Tests' that are in progress at the Asse salt mine in the Federal Republic of Germany (FRG). This Government supported mine serves as an underground test facility for research and development (R and D)-work in the field of nuclear waste repository research and simulation experiments. The tests are designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. This document covers the following sections: Issues and test objectives: This section presents issues that are investigated by the Brine Migration Test, and the test objectives derived from these issues; test site: This section describes the test site location and geology in the Asse mine; test description: A description of the test configuration, procedures, equipment, and instrumentation is given in this section; actual test chronology: The actual history of the test, in terms of the dates at which major activities occured, is presented in this section. Test results: This section presents the test results observed to data and the planned future work that is needed to complete the test; conclusions and recommendations: This section summarizes the conclusions derived to date regarding the Brine Migration Test. Additional work that would be useful to resolve the issues is discussed. (orig.)

  20. Improvement of storage conditions and closure of the radioactive waste repository - Rozan

    International Nuclear Information System (INIS)

    Dutton, L.M.C.; Pacey, N.R.; Buckley, M.J.; Thomson, J.G.; Miller, W.; Barraclough, I.; Tomczak, W.; Mitrega, J.; Smietanski, L.

    2005-01-01

    The Rozan repository is a near-surface repository on the site of an ex-military fort, operated by Radioactive Waste Management Plant (RWMP). Solid or encapsulated waste is consigned to the repository. Low- and medium-activity waste produced in Poland is collected, processed, solidified and prepared for disposal at the Swierk facility. The waste is currently stored or disposed of within the fort structures, these have robust concrete walls, that provide both shielding and containment. The project, funded by the European Commission through the Phare Programme, aimed to improve the storage conditions and determine a strategy for closure achieving two key results; Stakeholder agreement to a strategy for the management and closure of the repository, and; Approval by the National Atomic Energy Agency of the safety case for the selected strategy. The strategy was selected using a multi-criteria analysis methodology at workshops that involved experts, regulators and other stakeholders. The selected strategy proposed that the waste in Facilities 3A and 8 should be left in situ and these facilities should continue to operate until the repository is closed. The waste in Rooms K7 to K9 of Facility 1 and in Facilities 2 and 3 should be retrieved, assayed, treated and packaged prior to redisposal. The short-lived waste that is retrieved from Rooms K7 to K9 of Facility 1 and Facilities 2 and 3 should be emplaced in Facility 8 subject to acceptance by the NAEA of the dose of 0.3mSv/y that might occur at long times in the future from a very unlikely scenario. When operations at the repository end, Facilities 3A and 8 should be covered with a multi-layer cap. Following selection of the strategy, assessment work was undertaken to support the production of the suite of safety cases. (author)

  1. Long term effects on potential repository sites: climatic and geomorphological changes

    International Nuclear Information System (INIS)

    Seddon, M.B.; Worsley, P.

    1985-05-01

    A study of the effects of climatic variability on the geomorphological processes operating on the landscape are important in the study of radioactive waste repository sites. The effects of glacial erosion and deposition are fundamental to an examination of repository safety, particularly in North Britain. Rates of climatic shift need to be examined. Predictive simulation models, based on a knowledge of past climatic events, for future global climates are proposed. (UK)

  2. Learning from nuclear waste repository design: the ground-control plan

    International Nuclear Information System (INIS)

    Schmidt, B.

    1988-01-01

    At present, under a U.S. Department of Energy program, three repositories for commercial spent fuel-in salt, tuff and basalt-are in the phase of site characterization and conceptual design, and one pilot project for defense waste in salt is under development. Because of strict quality assurance requirements throughout design and construction, and the need to predict and ascertain in advance the satisfactory performance of the underground openings, underground openings in the unusual circumstances of the repository environment have been analysed. This will lead to an improved understanding of rock behavior and improved methods of underground analysis and design. A formalized ground control plan was developed, the principles of which may be applied to other types of projects. This paper summarizes the status of underground design and construction for nuclear waste repositories and presents some details of the ground control plan and its individual elements. (author)

  3. Nuclear waste. DOE has terminated research evaluating crystalline rock for a repository

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Weigel, Dwayne E.; Price, Vincent P.

    1989-05-01

    We found that DOE terminated funding of research projects specifically designed to evaluate the suitability of crystalline rock for a repository. DOE continued other research efforts involving crystalline rock because they will provide information that it considers useful for evaluating the suitability of Yucca Mountain, Nevada, for a potential repository. Such research activities are not prohibited by the amendments. In January 1988, DOE began evaluating both its domestic and international research programs to ensure their compliance with the 1987 amendments. Several DOE offices and contractors were involved in the evaluation. DOE officials believe that the evaluation effectively brought the Office of Civilian Radioactive Waste Management activities into compliance with the amendments while maintaining useful international relations of continuing benefit to the nuclear waste program in general and to DOE's investigation of the Yucca Mountain site in particular. (The 1987 amendments designated Yucca Mountain as the only site that DOE is to investigate for a potential repository.) The approach and results of DOE's evaluation are discussed. Our review of DOE documents indicates that, by June 22, 1988, DOE completed its evaluation of ongoing crystalline rock research projects to ensure compliance with the 1987 amendments, terminated those research activities it identified as being specifically designed to evaluate the suitability of crystalline rock for a repository, continued some research activities involving crystalline rock because these activities would benefit the investigation and development of the Yucca Mountain repository site, and redirected some research activities so that they would contribute to investigating and developing the Yucca Mountain site

  4. Safety analysis methodologies for radioactive waste repositories in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    The report is part of the IAEA Safety Series and is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of shallow ground radioactive waste repositories. It discusses approaches that are applicable for safety analysis of a shallow ground repository. The methodologies, analysis techniques and models described are pertinent to the task of predicting the long-term performance of a shallow ground disposal system. They may be used during the processes of selection, confirmation and licensing of new sites and disposal systems or to evaluate the long-term consequences in the post-sealing phase of existing operating or inactive sites. The analysis may point out need for remedial action, or provide information to be used in deciding on the duration of surveillance. Safety analysis both general in nature and specific to a certain repository, site or design concept, are discussed, with emphasis on deterministic and probabilistic studies

  5. Experiences from risk communication in the siting of a geological repository for high level waste in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Thegerstroem, C.; Engstroem, S. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1999-12-01

    SKB is planning in the year 2001 to designate two siting alternatives for further site characterisation. The work in the municipalities of Oesthammar, Nykoeping, Oskarshamn and Tierp is taking place in an atmosphere of constructive discussions. There is a growing feeling in Sweden among broad categories of the public that the nuclear waste exists and should be taken care of by our generation, without many of these people ever getting positive to the use of nuclear energy. While the NIMBY syndrome might still have a good grip on some, there has never been a more constructive debate about the nuclear waste than now, even though there still is a lot of work to do. Siting a geological repository for high level waste puts our democratic system under hard tests. The decision making process is about openness, skills in interacting with the public, respect of people's fears and concerns and at last but not the least independent, competent and visible participation by other stakeholders (politicians locally and nationally, regulatory bodies etc). Good skills in risk communication are important ingredients that might facilitate SKB's task as a developer. Far more important however, is the trust we might get from past and present record of handling the waste and from the way we work and behave in the feasibility studies in the municipalities where SKB is involved.

  6. Experiences from risk communication in the siting of a geological repository for high level waste in Sweden

    International Nuclear Information System (INIS)

    Thegerstroem, C.; Engstroem, S.

    1999-01-01

    SKB is planning in the year 2001 to designate two siting alternatives for further site characterisation. The work in the municipalities of Oesthammar, Nykoeping, Oskarshamn and Tierp is taking place in an atmosphere of constructive discussions. There is a growing feeling in Sweden among broad categories of the public that the nuclear waste exists and should be taken care of by our generation, without many of these people ever getting positive to the use of nuclear energy. While the NIMBY syndrome might still have a good grip on some, there has never been a more constructive debate about the nuclear waste than now, even though there still is a lot of work to do. Siting a geological repository for high level waste puts our democratic system under hard tests. The decision making process is about openness, skills in interacting with the public, respect of people's fears and concerns and at last but not the least independent, competent and visible participation by other stakeholders (politicians locally and nationally, regulatory bodies etc). Good skills in risk communication are important ingredients that might facilitate SKB's task as a developer. Far more important however, is the trust we might get from past and present record of handling the waste and from the way we work and behave in the feasibility studies in the municipalities where SKB is involved

  7. Licensing information needs for a high-level waste repository

    International Nuclear Information System (INIS)

    Wright, R.J.; Greeves, J.T.; Logsdon, M.J.

    1985-01-01

    The information needs for licensing findings during the development of a repository for high-level waste (HLW) are described. In particular, attention is given to the information and needs to demonstrate, for construction authorization purposes: repository constructibility, waste retrievability, waste containment, and waste isolation

  8. Management of scientific and engineering data collected during site characterization of a potential high-level waste repository

    International Nuclear Information System (INIS)

    Newbury, C.M.; Heitland, G.W.

    1992-01-01

    This paper discusses the characterization of Yucca Mountain as a potential site for a high-level nuclear waste repository encompasses many diverse investigations to determine the nature of the site. Laboratory and on-site investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and past use of the area, to name a few. Effective use of the data from these investigations requires development of a system for the collection, storage, and dissemination of those scientific and engineering data needed to support model development, design, and performance assessment. The time and budgetary constraints associated with this project make sharing of technical data within the geoscience community absolutely critical to the successful solution of the complex scientific problem challenging us

  9. A review of construction techniques available for surface and underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Godfrey, D.G.; Davies, I.L.; MacKenzie, R.D.

    1985-01-01

    In terms of engineering requirements the construction of surface or indeed underground radioactive waste repositories is not unduly difficult. The civil engineering techniques likely to be required have generally been carried out previously, albeit not in the context of radioactive waste repositories in this country. The emphasis will have to be very much on the quality of construction. This paper emphasises the need for quality construction and describes the techniques likely to be used in the construction of repositories. Reference is made to the materials likely to be used in the construction of repositories and also to the need for being able to convince the designers, regulating authorities and the general public that the materials used will indeed last for the required time. Brief reference is made at the end of the paper to the civil engineering parameters requiring consideration in the location of repository siting. (author)

  10. Summary of repository siting models. Final report

    International Nuclear Information System (INIS)

    Thomas, S.D.; Ross, B.; Mercer, J.W.

    1982-07-01

    This report is the first in a series of reports that will provide critical reviews and summaries of computer programs that can be used to analyze the potential performance of a high-level radioactive waste repository. The computer programs identified address the following phenomena: saturated and unsaturated subsurface flow, heat transport, solute transport, surface water runoff, geomechanical interactions, and geochemical interactions. The report identifies 183 computer programs that can be used to analyze a repository site and provides a summary description of 31 computer programs. The summary descriptions can be used: to assist in code evaluation, to facilitate code comparison, to determine applicability of codes to specific problems, to identify code deficiencies, and to provide a screening mechanism for code selection

  11. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs

  12. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  13. Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, Jin; Kwon, Sang Ki

    2005-01-01

    In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene and safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low and medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems and real time ventilation simulation, and fire simulation and emergency system in the repository are briefly discussed.

  14. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as {sup 36}Cl and {sup 93}Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon.

  15. Summary of four release consequence analyses for hypothetical nuclear waste repositories in salt and granite

    International Nuclear Information System (INIS)

    Cole, C.R.; Bond, F.W.

    1980-12-01

    Release consequence methology developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) program has now been applied to four hypothetical repository sites. This paper summarizes the results of these four studies in order to demonstrate that the far-field methodology developed under the AEGIS program offers a practical approach to the post-closure safety assessment of nuclear waste repositories sited in deep continental geologic formations. The four studies are briefly described and compared according to the following general categories: physical description of the repository (size, inventory, emplacement depth); geologic and hydrologic description of the site and the conceptual hydrologic model for the site; description of release scenario; hydrologic model implementation and results; engineered barriers and leach rate modeling; transport model implementation and results; and dose model implementation and results. These studies indicate the following: numerical modeling is a practical approach to post-closure safety assessment analysis for nuclear waste repositories; near-field modeling capability needs improvement to permit assessment of the consequences of human intrusion and pumping well scenarios; engineered barrier systems can be useful in mitigating consequences for postulated release scenarios that short-circuit the geohydrologic system; geohydrologic systems separating a repository from the natural biosphere discharge sites act to mitigate the consequences of postulated breaches in containment; and engineered barriers of types other than the containment or absorptive type may be useful

  16. Technical and logistic provisions for the delivery of radioactive wastes in the final repository Konrad

    International Nuclear Information System (INIS)

    Poeppinghaus, Jens

    2013-01-01

    The beginning of radioactive waste delivery to the final repository Konrad is planned for 2019. The main issue for the technical and logistic provisions is the development of a concept for the transport of the licensed radioactive waste containers to the site, including a turning concept for cylindrical waste forms and planning, construction and manufacture of transport equipment. Further issues include a logistic concept considering specific boundary conditions as administrative processes, priorities, special features of the delivering institutions and technical requirements of the repository.

  17. NAGRA - Long-term safety - The main task of deep repositories for radioactive wastes

    International Nuclear Information System (INIS)

    2015-10-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the necessity for the safe disposal of radioactive wastes in Switzerland and discusses the requirements placed on such long-term waste depositories The effects of ionizing radiation on people and the protection provided by the deep repositories are examined. The construction of such deep repositories is looked at, as are the developments expected in the depositories over thousands of years. A comparison with natural occurrences is made and lessons to be learned from nature are discussed. Ideas for the marking of the depository sites are presented. A glossary of relevant terms completes the report

  18. Kriging analysis for a candidate nuclear waste repository

    International Nuclear Information System (INIS)

    Devary, J.L.

    1983-08-01

    An important aspect of ensuring the safety of a geologic nuclear waste repository involves the study of ground-water flow at the proposed site. Geohydrologic site characterization involves the evaluation of potentiometric (head) data from confined aquifers. Geostatistical techniques (kriging) are applied to head measurements from the Permian System, a geologic formation being considered by the Department of Energy for nuclear waste disposal. The kriging analysis investigates the adequacy of the data base, provides methods for data screening, and determines optimal locations for additional data collection. This presentation illustrates the development of a generalized covariance and the production of potentiometric contour maps and error maps. The advantages of kriging over traditional least squares regression analysis are also discussed. 17 references

  19. Rhode Island crystalline repository siting project: Technical progress report, Calendar year 1986

    International Nuclear Information System (INIS)

    Vild, B.

    1987-01-01

    A Nuclear Waste Fund established by the Nuclear Waste Policy Act of 1982 provides financial support to affected states to participate in the high-level radioactive waste repository siting program of the US Department of Energy. In Rhode Island, that function was performed by a multidisciplinary Project Review Team consisting of staff from three State agencies. Members of the Review Team attended several meetings in 1986 to discuss mutual concerns with Federal, State and Tribal officials. Comments were developed on DOE's Draft Area Recommendation Report. Members of the Review Team also testified at a public hearing in Providence on the Draft ARR, and developed and distributed a public information booklet. In May, Secretary of Energy John Herrington announced the suspension of the crystalline repository siting program. The remainder of the year was spent monitoring litigation challenging that decision and pending legislation. Administrative phase-down of the program was essentially complete by the close of the calendar year

  20. Repository surface design site layout analysis

    International Nuclear Information System (INIS)

    Montalvo, H.R.

    1998-01-01

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond

  1. Siting high-level nuclear waste repositories: A progress report for Rhode Island

    International Nuclear Information System (INIS)

    Frohlich, R.K.; Vild, B.F.

    1986-03-01

    In this booklet, we will not try to argue the pros and cons of nuclear power or weapons production. We will focus instead on the issue of nuclear waste disposal. With the passage of the Nuclear Waste Policy Act (NWPA) of 1982, the US Congress and the President charged federal and state regulators with the responsibility of settling that issue by the end of this century - with extensive public involvement. This booklet, now in its second printing, is designed to explain the nature of ''high-level'' nuclear waste, the essential criteria for its safe and permanent disposal, and Rhode Island's participation in the federal repository program. It has been funded from a USDOE grant derived from a utility-financed Nuclear Waste Fund established under the NWPA. 17 refs., 10 figs., 2 tabs

  2. A new approach to the LILW repository site selection

    International Nuclear Information System (INIS)

    Mele, I.; Zeleznik, N.

    1998-01-01

    After the failure of site selection, which was performed between 1990-1993, the Agency for Radwaste Management was urged to start a new site selection process for low and intermediate level waste (LILW). Since this is the most sensitive and delicate phase of the whole disposal project extensive analyses of foreign and domestic experiences in siting were performed. Three different models were studied and discussed at a workshop on preparation of the siting procedure for LILW repository. The participants invited to the workshop supported the combined approach, to the site selection, which is presented in this paper.(author)

  3. OPG's deep geologic repository for low and intermediate level waste - recent progress

    International Nuclear Information System (INIS)

    King, F.K.

    2006-01-01

    This paper provides a status report on Canada's first project to build a permanent repository for the long-term management of radioactive waste. Ontario Power Generation has initiated a project to construct a deep geologic repository for low- and intermediate-level waste at the Bruce Nuclear Site, at a depth in the range of 600 to 800 m in an Ordovician-age argillaceous limestone formation. The project is currently undergoing an Environmental Assessment and consulting companies in the areas of environmental assessment, geoscientific site characterization, engineering and safety assessment have been hired and technical studies are underway. Seismic surveys and borehole drilling will be initiated in the fall of 2006. The next major milestone for the project is the submission of the Environmental Assessment report, currently scheduled for December 2008. (author)

  4. Evaluation of alternative spent fuel waste package concepts for a repository in Basalt

    International Nuclear Information System (INIS)

    Hall, G.V.B.; Nair, B.R.

    1986-01-01

    The United States government has established a program for the disposal of spent nuclear fuel and high-level radioactive waste. The Nuclear Waste Policy Act (NWPA) of 1982 requires the first nuclear waste repository to begin receiving high-level radioactive waste in 1998. One of the potentially acceptable sites currently being evaluated is the Hanford Site in the Pasco Basin in the state of Washington where the host rock is basalt. Under the direction of the United States Department of Energy (DOE), Rockwell International's Rockwell Hanford Operations (RHO) has initiated the Basalt Waste Isolation Project (BWIP). The BWIP must design waste packages for emplacement in the repository. As part of the BWIP waste package development program, several alternative designs were considered for the disposal of spent nuclear fuel. This paper describes the concepts that were evaluated, the criteria that was developed for judging their relative merits, and the methodology that was employed. The results of the evaluation show that a Pipe-In-Tunnel design, which uses a long carbon steel pipe for the containment barrier for multiple packages of consolidated spent fuel, has the highest rating. Other designs which had high ratings are also discussed

  5. Numerical modeling of the geomechanical response of a rock mass to a radioactive waste repository

    International Nuclear Information System (INIS)

    Hardy, M.P.; St John, C.M.; Hocking, G.

    1979-06-01

    Geotechnical numerical models capable of predicting the thermomechanical response and groundwater movements around an underground radioactive waste repository are vital to the success of the nuclear waste disposal program. In the absence of directly related engineering experience, the design, risk assessment, and licensing procedures of a repository will be reliant on predictions made using such models. This paper reviews models being used to assist in repository design and summarizes the results of a recent parametric study of underground disposal in basaltic rocks. On the basis of preliminary site data, it is concluded that the allowable areal density of heat-generating waste will be controlled by the stability of placement rooms and the boreholes in which waste canisters are placed. Regional effects including thermally induced upward groundwater flow, appear to present less severe problems

  6. Safety assessment of geologic repositories for nuclear waste

    International Nuclear Information System (INIS)

    Bartlett, J.W.; Burkholder, H.C.; Winegardner, W.K.

    1977-01-01

    Consideration of geologic isolation for final disposition of radioactive wastes has led to the need for evaluation of the safety of the concept. Such evaluations require consideration of factors not encountered in conventional risk analysis: consequences at times and places far removed from the repository site; indirect, complex, and alternative pathways between the waste and the point of potential consequences; a highly limited data base; and limited opportunity for experimental verification of results. R and D programs to provide technical safety evaluations are under way. Three methods are being considered for the probabilistic aspects of the evaluations: fault tree analysis, repository simulation analysis, and system stability analysis. Nuclide transport models, currently in a relatively advanced state of development, are used to evaluate consequences of postulated loss of geologic isolation. This paper outlines the safety assessment methods, unique features of the assessment problem that affect selection of methods and reliability of results, and available results. It also discusses potential directions for future work

  7. The projected environmental impacts of transportation of radioactive material to the first United States repository site

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.; Reardon, P.C.; McNair, G.W.

    1987-01-01

    The relative national environmental impacts of transporting spent fuel and other nuclear wastes to each of 9 candidate repository sites in the United States were analyzed for the 26-year period of repository operation. Two scenarios were examined for each repository: 1) shipment of 5-year-old spent fuel and Defence High-Level Waste (DHLW) directly from their points of origin to a repository (reference case); and 2) shipment of 5-year-old spent fuel to a Monitored Retrievable Storage (MRS) facility and shipment (by dedicated rail) of 10-year-old consolidated spent fuel from the MRS to a repository. Transport by either all truck or all rail from the points of origin were analyzed as bounding cases. The computational system used to analyze these impacts included the WASTES II logistics code and the RADTRAN III risk analysis code. The radiological risks for the reference case increased as the total shipment miles to a repository increased for truck; the risks also increased with mileage for rail but at a lower rate. For the MRS scenario the differences between repository sites were less pronounced for both modal options, because of the reduction in total shipment miles possible with the large dedicated rail casks. All the risks reported are small in comparison to the radiological risks due to 'natural background'

  8. Repository sealing concepts for the Nevada nuclear waste storage Investigations Project

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Freshley, M.D.

    1984-08-01

    This report describes concepts for sealing a nuclear waste repository in an unsaturated tuff environment. The repository site under consideration is Yucca Mountain, which is on and adjacent to the Nevada Test Site. The hydrogeology of Yucca Mountain, preliminary repository concepts, functional requirements and performance criteria for sealing, federal and state regulations, and hydrological calculations are considered in developing the sealing concepts. Water flow through the unsaturated zone is expected to be small and generally vertically downward with some potential to occur through discrete fault and fracture zones. These assumptions are used in developing sealing concepts for shafts, ramps, and boreholes. Sealing of discrete, water-producing faults and fracture zones encountered in horizontal emplacement holes and in access and emplacement drifts is also described. 49 references, 21 figures, 6 tables

  9. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  10. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    Science.gov (United States)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving

  11. Uncertainties in sealing a nuclear waste repository in partially saturated tuff

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Fernandez, J.A.; Hinkebein, T.E.

    1989-01-01

    Sealing a nuclear waste repository in partially saturated tuff presents unique challenges to assuring performance of sealing components. Design and performance of components for sealing shafts, ramps, drifts, and exploratory boreholes depend on specific features of both the repository design and the site; of particular importance is the hydrologic environment in the unsaturated zone, including the role of fracture flow. Repository design features important to sealing of a repository include the size and location of shaft and ramp accesses, excavation methods, and the underground layout features such as grade (drainage direction) and location relative to geologic structure. Uncertainties about seal components relate to the postclosure environment for the seals, the emplacement methods, the material properties, and the potential performance of the components. An approach has been developed to reduce uncertainties and to increase confidence in seal performance; it includes gathering extensive site characterization data, establishing conservative design requirements, testing seal components in laboratory and field environments, and refining designs of both the seals and the repository before seals are installed. 9 refs., 5 figs., 2 tabs

  12. Should high-level nuclear waste be disposed of at geographically dispersed sites?

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.

    1992-01-01

    Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy

  13. Summary Record of the First Meeting of the Radioactive Waste Repository Metadata Management (RepMet) Initiative

    International Nuclear Information System (INIS)

    2014-01-01

    National radioactive waste repository programmes are collecting large amounts of data to support the long-term management of their nations' radioactive wastes. The data and related records increase in number, type and quality as programmes proceed through the successive stages of repository development: pre-siting, siting, characterisation, construction, operation and finally closure. Regulatory and societal approvals are included in this sequence. Some programmes are also documenting past repository projects and facing a challenge in allowing both current and future generations to understand actions carried out in the past. Metadata allows context to be stored with data and information so that it can be located, used, updated and maintained. Metadata helps waste management organisations better utilise their data in carrying out their statutory tasks and can also help verify and demonstrate that their programmes are appropriately driven. The NEA Radioactive Waste Repository Metadata Management (RepMet) initiative aims to bring about a better understanding of the identification and administration of metadata - a key aspect of data management - to support national programmes in managing their radioactive waste repository data, information and records in a way that is both harmonised internationally and suitable for long-term management and use. This is a summary record of the 1. meeting of the RepMet initiative. The actions and decisions from this meeting were sent separately to the group after the meeting, but are also included in this document (Annex A). The list of participants is attached as well (Annex B)

  14. Long-Term Safety Analysis of Baldone Radioactive Waste Repository and Updating of Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2001-12-01

    The main objective of the project was to provide advice to the Latvian authorities on the safety enhancements and waste acceptance criteria for near surface radioactive waste disposal facilities of the Baldone repository. The project included the following main activities: Analysis of the current status of the management of radioactive waste in Latvia in general and, at the Baldone repository in particular Development of the short and long-term safety analysis of the Baldone repository, including: the planned increasing of capacity for disposal and long term storage, the radiological analysis for the post-closure period Development of the Environment Impact Statement, for the new foreseen installations, considering the non radiological components Proposal of recommendations for future updating of radioactive waste acceptance criteria Proposal of recommendations for safety upgrades to the facility. The work programme has been developed in phases and main tasks as follows. Phase 0: Project inception, Phase 1: Establishment of current status, plans and practices (Legislation, regulation and standards, Radioactive waste management, Waste acceptance criteria), Phase 2: Development of future strategies for long-term safety management and recommendations for safety enhancements. The project team found the general approach use at the installation, the basic design and the operating practices appropriate to international standards. Nevertheless, a number of items subject to potential improvements were also identified. These upgrading recommendations deal with general aspects of the management (mainly storage versus disposal of long-lived sources), site and environmental surveillance, packaging (qualification of containers, waste characterization requirements), the design of an engineered cap and strategies for capping. (author)

  15. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  16. Site characterization report for the basalt waste isolation project. Volume II

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment

  17. Hydrological and thermal issues concerning a nuclear waste repository in fractured rocks

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1991-12-01

    The characterization of the ambient conditions of a potential site and the assessment of the perturbations induced by a nuclear waste repository require hydrological and thermal investigations of the geological formations at different spatial and temporal scales. For high-level wastes, the near-field impacts depend on the heat power of waste packages and the far-field long-term perturbations depend on the cumulative heat released by the emplaced wastes. Surface interim storage of wastes for several decades could lower the near-field impacts but would have relatively small long-term effects if spent fuels were the waste forms for the repository. One major uncertainty in the assessment of repository impacts is from the variation of hydrological properties in heterogeneous media, including the effects of fractures as high-permeability flow paths for containment migration. Under stress, a natural fracture cannot be represented by the parallel plate model. The rock surface roughness, the contact area, and the saturation state in the rock matrix could significantly change the fracture flow. In recent years, the concern of fast flow through fractures in saturated media has extended to the unsaturated zones. The interactions at different scales between fractures and matrix, between fractured matrix unites and porous units, and between formations and faults are discussed

  18. Hydrothermal conditions around a radioactive waste repository

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1981-12-01

    Numerical solutions for the hydrothermal conditions around a hard rock repository for nuclear fuel waste are presented. The objective of the present investigation is to illustrate in principle the effect of heat released from a hypothetical radioactive waste repository with regard to anisotropy in the rock permeability. Permeability and porosity are assumed to be constant or to decrease exponentially with depth. The hypothetical repository is situated below a horizontal ground surface or below the crest of a hill, and it is assumed that the water table follows the topography. Major interest in the analysis is directed towards the influence of anisotropy in the permeability on the flow patterns and travel times for water particles, being traced from the repository to the ground surface. The presented results show that anisotropy in the permeability may have a significant influence on the flow conditions around the repository and subsequently also on the travel times from the repository. (Authors)

  19. Viability Assessment of a Repository at Yucca Mountain. Volume 1: Introduction and Site Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This first volume contains an introduction to the viability assessment, including the purpose, scope, waste forms, technical challenges, an historical perspective, regulatory framework, management of the repository, technical components, preparations for the license application, and repository milestones after the assessment. The second part of this first volume addresses characteristics of the Yucca Mountain site.

  20. Technical expertise on the safety of the proposed geological repository sites. Planning for geological deep repositories, step 1; Sicherheitstechnisches Gutachten zum Vorschlag geologischer Standortgebiete. Sachplan geologische Tiefenlager, Etappe 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    On October 17, 2010, on request of those Swiss government institutions responsible for the disposal of radioactive wastes, the National Co-operative for the Disposal of Radioactive Waste (NAGRA) presented its project concerning geological sites for the foreseen disposal of radioactive wastes to the Federal Authorities. According to the present disposal concept, two types of repository are foreseen: one for highly radioactive wastes (HAA) and the other for low radioactive and intermediate-level radioactive wastes (SMA). If a site fulfils the necessary conditions for both HAA as well as for SMA, a combined site for both types of waste may be chosen. As a qualified control authority in Switzerland, the Federal Nuclear Safety Inspectorate (ENSI) has to examine the quality of the NAGRA proposals from the point of view of the nuclear safety of the sites. The project for deep underground waste disposal first defines the process and the criteria according to which sites for the geological storage of all types of radioactive wastes in Switzerland have to be chosen. The choice is based on the actual knowledge of Swiss geology. After dividing the wastes into SMA and HAA, some large-scale areas are to be identified according to their suitability from the geological and tectonic points of view. NAGRA's division of waste into SMA and HAA is based on calculations of the long-term safety for a broad range of different rock types and geological situations and takes the different properties of all waste types into account. As a conclusion, a small portion of SMA has to be stored with {alpha}-toxic wastes in the HAA repository. The estimation of the total volume of wastes to be stored is based on 60 years of operation of the actual nuclear power plants, augmented with the wastes from possible replacement plants with a total power of 5 GW{sub e} during a further 60 years. The safety concept of the repository is based on passive systems using technical and natural barriers. The

  1. Chemical conditions in the repository for low- and intermediate-level reactor waste

    International Nuclear Information System (INIS)

    Snellman, M.; Uotila, H.

    1984-01-01

    The chemical conditions in the proposed repositories for low- and intermediate-level reactor waste at Haestholmen (IVO) and Olkiluoto (TVO) have been discussed with respect to materials introduced into the repository, their possible long-term changes and interaction with groundwater flowing into the repository. The main possible groundwater-rock interactions have been discussed, as well as the role of micro-organisms, organic acids and colloids in the estimation of the barrier integrity. Experimental and theoretical studies have been performed on the basis of the natural groundwater compositions expected at the repository sites. Main emphasis is put on the chemical parameters which might influence the integrity of the different barriers in the repository as well as on the parameters which might effect the release and transport of radionuclides from the repository

  2. Site characterization report for the basalt waste isolation project. Volume III

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 3 contains chapters 13 through 19: site issues and plans; geoengineering and repository design issues and plans; waste package and site geochemistry issues and plans; performance-assessment issues and plans; site characterization program; quality assurance; and identification of alternate sites

  3. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  4. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  5. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Notz, K.J.

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will be disposed of in a geologic repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. Detailed characterizations are required for all of these potential repository wastes. These characterizations include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. This information has been extracted from primary data sources, evaluated, and assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. The Characteristics Data Base provides a standard set of self-consistent data to the various areas of responsibility including systems integration and waste stream analysis, storage, transportation, and geologic disposal. The data will be used for design studies, evaluation of alternatives, and system optimization by OCRWM and supporting contractors. 7 refs., 5 figs., 7 tabs

  6. Addressing concerns about the agricultural impacts of siting a nuclear waste repository in Texas

    International Nuclear Information System (INIS)

    Boryczka, M.; Darrough, B.

    1986-01-01

    Public concerns related to the siting of a nuclear repository have included the potential impacts to specific economic sectors. In Texas, local residents have expressed concern about how a repository will affect agriculture. Several major questions have arisen with respect to this issue including: 1) how will a repository's requirements for land and water affect agriculture, 2) how will a repository affect agricultural land values, and 3) how will actual or perceived contamination of locally grown products affect their marketability? This paper describes the concerns raised by local residents and discusses the approach to analyzing the concerns identified. An evaluation of agricultural impacts has been prepared for the Department of Energy's Enviromental Assessment (EA) documents. In addition, activities needed to further evaluate these impacts are planned for site characterization. Both the current analysis and planned activities are described

  7. An assessment of the radiological impact of coastal erosion of the UK Low-Level Waste Repository - 59137

    International Nuclear Information System (INIS)

    Sumerling, Trevor; Shevelan, John; Cummings, Richard; Fish, Paul; Towler, George; Penfold, James

    2012-01-01

    The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste to our regulator, the Environment Agency, on the 1 May 2011. This includes assessments of the long-term radiological safety of past and future disposals. A particular feature of the Low Level Waste Repository (LLWR) is that, because of its proximity to the coast, the site is vulnerable to coastal erosion. Our present understanding is that the site will be eroded on a timescale of a few hundred to a few thousand years, with consequent disruption of the repository, and dispersal of the wastes. We have undertaken a programme of scientific research and monitoring to characterise the evolution and function of the current coastal system that provides a basis for forecasting its future evolution. This has included modelling of contemporary hydrodynamics, geo-morphological mapping, repeat LiDAR and aerial photographic surveys to detect patterns and rates of change, coastal inspections and reconstructions of post-glacial (i.e. last 15, 000 years) sea levels and sediment budgets. Estimates of future sea-level rise have been derived from international sources and consideration given to the impact of such on the local coastline. Two alternative models of coastal recession have then been applied, one empirical and one physical-process based, taking account of the composition of Quaternary-age sediments between the coast and the site and uncertainties in future local sea level change. Comparison of the ranges of calculated times to site contact with sea-level rise indicate that the repository is most likely to be disrupted by undercutting of the engineered vaults and of the trenches. A novel and flexible radiological assessment model has been developed to analyse the impacts of the erosion of the repository and subsequent dispersal of wastes. The model represents the spatial layout of the site and distribution of radionuclides within the repository and is able to take

  8. Transparency and Public Involvement in Siting a Nuclear Waste Repository in Germany

    International Nuclear Information System (INIS)

    Lennartz, Hans-Albert; Mussel, Christine; Nies, Alexander

    2001-01-01

    The 1998 election of the Federal Parliament led to a significant reorientation of German energy policy. In June 2000, the Federal Government (FG) has achieved an agreement with the utility companies in which they respect the decision of the FG to put an orderly end to nuclear power generation by prohibiting the erection of new, and limiting the operational period of existing power plants. The agreement also contains cornerstones of a new radioactive waste management policy: New interim storage facilities will be built at reactor sites in order to minimise transports to the existing central interim storage facilities at Ahaus and Gorleben; The utilities will use all acceptable contractual possibilities with their international partners to end reprocessing as soon as possible. By mid 2005 at the latest, spent fuel management in Germany will be limited to direct disposal; The exploration of the salt dome at Gorleben will be interrupted for at least three, and at most ten years, to clarify conceptual and safety questions. Correspondingly, the FG has initiated an amendment of the atomic energy act and the development of a new plan for radioactive waste management. In the field of radioactive waste disposal, the Federal Government pursues two new objectives: For the disposal of all kinds and amounts of radioactive waste, one single repository in deep geologic formations shall be erected around 2030; The suitability of further sites in different host formations shall be examined. Feasibility and consequences of the first objective have still to be carefully examined in detail. Development of a new disposal concept and final decisions on both the existing disposal projects as well as on new potential sites are therefore an ambitious challenge for the coming years. The second objective brings up a key question which several leading countries presently attempt to successfully address: how to select sites which are both suitable for safe disposal and accepted in the public

  9. Transparency and Public Involvement in Siting a Nuclear Waste Repository in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Hans-Albert; Mussel, Christine [WIBERA/PWIBERA/PriceWaterhouseCoopers Deutsche Rev., Hannover (Germany); Nies, Alexander [Federal Ministry for the Environment, Bonn (Germany)

    2001-07-01

    The 1998 election of the Federal Parliament led to a significant reorientation of German energy policy. In June 2000, the Federal Government (FG) has achieved an agreement with the utility companies in which they respect the decision of the FG to put an orderly end to nuclear power generation by prohibiting the erection of new, and limiting the operational period of existing power plants. The agreement also contains cornerstones of a new radioactive waste management policy: New interim storage facilities will be built at reactor sites in order to minimise transports to the existing central interim storage facilities at Ahaus and Gorleben; The utilities will use all acceptable contractual possibilities with their international partners to end reprocessing as soon as possible. By mid 2005 at the latest, spent fuel management in Germany will be limited to direct disposal; The exploration of the salt dome at Gorleben will be interrupted for at least three, and at most ten years, to clarify conceptual and safety questions. Correspondingly, the FG has initiated an amendment of the atomic energy act and the development of a new plan for radioactive waste management. In the field of radioactive waste disposal, the Federal Government pursues two new objectives: For the disposal of all kinds and amounts of radioactive waste, one single repository in deep geologic formations shall be erected around 2030; The suitability of further sites in different host formations shall be examined. Feasibility and consequences of the first objective have still to be carefully examined in detail. Development of a new disposal concept and final decisions on both the existing disposal projects as well as on new potential sites are therefore an ambitious challenge for the coming years. The second objective brings up a key question which several leading countries presently attempt to successfully address: how to select sites which are both suitable for safe disposal and accepted in the public

  10. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  11. Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories. An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions

    International Nuclear Information System (INIS)

    Swanson, J.S.; Reed, D.T.; Cherkouk, A.; Arnold, T.; Meleshyn, A.; Patterson, Russ

    2018-01-01

    For the past several decades, the Nuclear Energy Agency Salt Club has been supporting and overseeing the characterisation of rock salt as a potential host rock for deep geological repositories. This extensive evaluation of deep geological settings is aimed at determining - through a multidisciplinary approach - whether specific sites are suitable for radioactive waste disposal. Studying the microbiology of granite, basalt, tuff, and clay formations in both Europe and the United States has been an important part of this investigation, and much has been learnt about the potential influence of microorganisms on repository performance, as well as about deep subsurface microbiology in general. Some uncertainty remains, however, around the effects of microorganisms on salt-based repository performance. Using available information on the microbial ecology of hyper-saline environments, the bioenergetics of survival under high ionic strength conditions and studies related to repository microbiology, this report summarises the potential role of microorganisms in salt-based radioactive waste repositories

  12. Investigation on design of repository for radioactive waste

    International Nuclear Information System (INIS)

    Zhang Boming; Zhang Ruixue; Wang Fengying

    2010-01-01

    The scheme design of the repository for radioactive waste is introduced according to the traits of radioactive waste in Jiangsu province, such as the style of the repository, lifting facilities, the step for preventing or controlling flood, the aseismatic measure, the pollution prevention and so on. This ensured the radioactive waste and the waste radioactive sources to be stored in security, the area environment not to be polluted. It can improve the use of nuclear technology in Jiangsu province. (authors)

  13. The influence of geological loading on the structural integrity of an underground nuclear waste repository

    International Nuclear Information System (INIS)

    Jakeman, N.

    1985-08-01

    Stresses are developed in underground nuclear waste repositories as a result of applied loads from geological movements caused by the encroachment of ice sheets or seismic activity for example. These stresses may induce fracturing of the waste matrix, repository vault and nearfield host geology. This fracturing will enhance the advective flow and allow more-rapid transfer of radionuclides from their encapsulation through the repository barriers and nearfield host rock. Geological loads may be applied either gradually as in crustal folding or encroachment of ice sheets, or rapidly as in the case of seismic movements. The analysis outlined in this report is conducted with a view to including the effects of geological loading in a probabilistic repository site assessment computer code such as SYVAC. (author)

  14. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  15. Update on the national low level radioactive waste repository study

    International Nuclear Information System (INIS)

    Veitch, S.M.

    1997-01-01

    Activity to establish a national repository for low-level and short-lived intermediate-level radioactive waste in Australia began in the early 1980's. From the early 1990's computer-based geographic information systems had developed sufficiently so that all of Australia could be quickly reviewed using digital data relevant to site selection criteria. A three-phased approach to site selection was commenced which included an iterative process of data collection, interpretation, and public involvement through discussion papers. All of Australia was reviewed using national-scale data, and eight broad regions were identified and reviewed using regional-scale data. A third phase report will be released shortly which includes details on the process for identifying the preferred region of the eight. This region will be the focus for public involvement and for detailed study to identify a site for the national repository

  16. Building trust with the public in site selection of radioactive waste repository in Croatia

    International Nuclear Information System (INIS)

    Cerskov Klika, Mirjana; Schaller, Antun

    1995-01-01

    It should be emphasised that the Republic of Croatia ought to find a solution to dispose not only radioactive waste generated on its own territory, i.e. waste derived from diverse medical, industrial and scientific nuclear applications which does not exceed some 70 cubic metres: in total. It is also obliged to find acceptable solutions for disposal of a half of total radioactive waste accumulating in the Krsko NPP which is situated in Slovenia, but is a joint venture facility of both countries, Slovenia and Croatia. Therefore, one of essential duties of the APO - Hazardous Waste Management Agency is just performance of these activities in Croatia. The site selection process of low- and intermediate radioactive waste disposal in Croatia started in 1988. The site selection process itself is organized in two stages: (1) site survey stage; and 2) site evaluation stage. The first stage, being currently in progress, is related to all activities directed to inclusion of preferred sites into the Regional Plan of Croatia, whilst the second stage includes a necessary on-field investigations at few preferred sites and identification of the most suitable one, i.e. the final repository site. Eight potential areas containing even 42 potential sites have been determined so far. Promotion of several preferred sites is expected to be done until July 1995. Official announcement of preferred sites will be followed by public debate on their acceptance at a level of political-territorial organization, including local communities. The people working in APO - Hazardous Waste Management Agency have been aware of considerable public resistance to most of activities the Agency is dealing with since the very beginning of its operation. Consequently, permanent education and honest information to the public have been taken as the Agency's high priority tasks. Namely, if the public is treated as a competent participant in decision making process then it gets obvious that publicity of work is

  17. Rock support for nuclear waste repositories

    International Nuclear Information System (INIS)

    Abramson, L.W.; Schmidt, B.

    1984-01-01

    The design of rock support for underground nuclear waste repositories requires consideration of special construction and operation requirements, and of the adverse environmental conditions in which some of the support is placed. While repository layouts resemble mines, design, construction and operation are subject to quality assurance and public scrutiny similar to what is experienced for nuclear power plants. Exploration, design, construction and operation go through phases of review and licensing by government agencies as repositories evolve. This paper discusses (1) the various stages of repository development; (2) the environment that supports must be designed for; (3) the environmental effects on support materials; and (4) alternative types of repository rock support

  18. Synthetic hydrogeological study on Beishan preselected area for high-level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Ji Ruili; Wang Hailong; Liu Shufen; Zong Zihua; Dong Jiannan; Zhang Ming

    2014-01-01

    On the basis of large scale field hydrogeological investigation, synthetic hydrogeological studies related to groundwater system characteristics, permeability of rock bodies, groundwater dynamic, hydrogeochemistry, isotopic hydrology, CFC's of groundwater and groundwater flow field simulation were carried out for Beishan area, Gansu province. According to analysis on a large amount of hydrogeological data, the characteristics of groundwater circulation, groundwater hydrodynamics and hydrgeochemistry were described and the suitability of Beishan area as the potential area of high-level radioactive waste disposal was evaluated in the paper. Through this study, the hydrogeological study and evaluation methods in the siting of China's high level radioactive waste repository were set up. Furthermore, the important hydrogeological scientific evidence was provided for optimal site filtration of China's high-level radioactive waste repository in Beishan area. (authors)

  19. System analysis methods for geological repository of high level radioactive waste in granite

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju; Li Yunfeng; Jin Yuanxin; Zhao Honggang

    2009-01-01

    Taking Beishan granite site as an example, this paper proposes the conceptual and structural design of repository for high level radioactive waste at first. Then the function, structure, environment and evolution of the repository are described by the methodology of system analysis. Based on these designs and descriptions, a calculation model for the repository is developed with software GoldSim. At last, this calculation model is applied to emulate the space-time distribution of repository radiotoxicity, to analyze the sensitivity of parameters in the model, to optimize the design parameters, and to predict and assess the repository performance. The results of this study can provide technical supports for resources allocation and coordination of R and D projects. (authors)

  20. Mapping and monitoring nuclear waste repositories with subsurface electrical resistivity arrays

    International Nuclear Information System (INIS)

    Asch, T.; Morrison, H.F.

    1987-01-01

    The siting and future integrity of nuclear waste repositories is critically dependent on the local ground water regime. Electrical methods seem particularly promising in mapping and monitoring this regime since the electrical conductivity of rocks depends almost entirely on the fluid saturation, salinity and distribution. The most important recent developments in resistivity include the use of numerical modeling and resistivity mapping using subsurface electrodes. The latter yields far greater accuracy and resolution than can be obtained with surface arrays. To illustrate the power of subsurface-surface arrays the authors studied an idealized two dimensional model of a nuclear repository. Since they are interested in emphasizing the anomaly caused by the repository, or subsequent changes over time in its vicinity, the authors discovered that it is very useful to express the apparent resistivity results as percentage differences from either the background (for surface arrays) or from the apparent resistivities observed at a particular depth of the current source (for subsurface arrays). Percent differencing with respect to data at the repository depth dramatically reduce near-surface and topographic effects that usually confound quantitative interpretation of surface surveys. Thus, dc resistivity appears to have great potential for nuclear waste repository mapping and monitoring

  1. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1993-02-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This Paper describes a mathematical model design to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (author)

  2. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1992-07-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (Author)

  3. Geoscience data base handbook for modeling a nuclear waste repository. Volume 1

    International Nuclear Information System (INIS)

    Isherwood, D.

    1979-12-01

    This handbook contains reference information on parameters that should be considered in analyzing or modeling a proposed nuclear waste repository site. Only those parameters and values that best represent the natural environment are included. Rare extremes are avoided. Where laboratory and field data are inadequate, theoretical treatments and informed engineering judgements are presented. Volume 1 contains a data base on salt as a repository medium. Chapters on the geology of bedded and dome salt, the geomechanics of salt, hydrology, geochemistry, natural and man-made features, and seismology provide compiled data and related information useful for studying a proposed repository in salt. These and other data will be needed to derive generic deep geologic modeling parameters and will also serve as background for the verification of source data that may be presented in licensing applications for nuclear waste repositories. Volume 2 is the result of a scoping study for a data base on the geology, geomechanics, and hydrology of shale, granite, and basalt as alternative repository media. Except for the geomechanics of shale, most of the sections contain relatively complete compilations of the available data, as well as discussions of the properties that are unique to each rock type

  4. High-level wastes: DOE names three sites for characterization

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    DOE announced in May 1986 that there will be there site characterization studies made to determine suitability for a high-level radioactive waste repository. The studies will include several test drillings to the proposed disposal depths. Yucca Mountain, Nevada; Deaf Smith Country, Texas, and Hanford, Washington were identified as the study sites, and further studies for a second repository site in the East were postponed. The affected states all filed suits in federal circuit courts because they were given no advance warning of the announcement of their selection or the decision to suspend work on a second repository. Criticisms of the selection process include the narrowing or DOE options

  5. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-01-01

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used

  6. Spent fuel as a waste form: Data needs to allow long term performance assessment under repository disposal conditions

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1986-12-01

    Performance assessment calculations are required for high level waste repositories for a period of 10,000 years. The Siting Guidelines require a comparison of sites following site characterization and prior to final site selection to be made over a 100,000 year period. To perform the required calculations, a detailed knowledge of the physical and chemical processes that affect waste form performance will be needed for each site. This paper will review the factors that affect the release of radionuclides from spent fuel under repository conditions, summarize our present state of knowledge, and suggest areas where more work is needed to support the performance assessment calculations. 17 refs., 5 figs., 3 tabs

  7. Geotechnical conditions of Bulgaria and site selection for radioactive waste repository

    International Nuclear Information System (INIS)

    Iliev, I.; Tacheva, E.

    1993-01-01

    A comparative study of the complex structure of the Bulgarian lands and the engineering geological criteria for site selection of national repositories for high level radwastes is made. A detailed description of the following geotechnical conditions of Bulgaria's territory is given: genetic, lithological and engineering-geological types of rocks; physico-mechanical parameters of the most widespread rocky and semi-rocky engineering geological types; fissuring of the rocks; rock massifs; geodynamic processes. The number of promising variants for repositories have been classified according to the structure of the rock massif and the engineering-geological properties of the layers which are promising for the purpose. The following sites are investigated: 1) sites in one-type homogeneous rock massifs of high strength and elasticity; 2) sites of various type massifs with a promising layer of rocks with medium strength and elasticity; 3) sites in various type massifs with a promising layer of plastic rocks of low strength. It is concluded that the complexity of the geotechnical and other conditions in the territory of Bulgaria would predetermine the deficiency of the list of the properties required for the selected sites. The building up of engineering defence will be needed to offset that deficiency and their problems will be resolved after the specific site have been chosen. Geotechnical elements should be likewise envisaged within the general pattern of the monitoring needed. The designing, installing and putting into operation of the monitoring systems should be accomplished as early as the stage of the detailed investigation of the site selected. 19 refs., 2 suppls. (author)

  8. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 2

    International Nuclear Information System (INIS)

    1987-12-01

    Chapter 6 discusses the repository design features and operating procedures that will be used to ensure compliance with regulatory limits for preclosure releases, performance objectives for waste retrieval, and performance objectives for postclosure or long-term waste isolation. Chapter 7 discusses the analyses that were conducted in developing the repository design and the impacts of various external factors on the design of repository elements and the repository as a whole. Chapter 8 discusses the engineering design information needs that were identified during conceptual design as necessary to advance the current conceptual design to License Application Design (LAD). The quality assurance (QA) program applicable to the Architect/Engineer (A/E) activities during the repository conceptual design effort is defined in Chapter 9. 146 refs., 44 figs., 21 tabs

  9. Status of technology for isolating high-level radioactive wastes in geologic repositories

    International Nuclear Information System (INIS)

    Klingsberg, C.; Duguid, J.

    1980-10-01

    This report attempts to summarize the status of scientific and technological knowledge relevant to long-term isolation of high-level and transuranic wastes in a mined geologic repository. It also identifies and evaluates needed information and identifies topics in which work is under way or needed to reduce uncertainties. The major findings and conclusions on the following topics are presented: importance of the systems approach; prospects for successful isolation of wastes; need for site-specific investigations; human activities in the future; importance of modelling; disposal of transuranic wastes; status of technology of isolation barriers, performance assessment, site selection and characterization, and potential host rocks

  10. Preliminary thermal/thermomechanical analyses of the Site Characterization Plan's Conceptual Design for a repository containing horizontally emplaced waste packages at the Deaf Smith County site

    International Nuclear Information System (INIS)

    Ghantous, N.Y.; Raines, G.E.

    1987-10-01

    This report presents thermal/thermomechanical analyses of the Site Characterization Plan Conceptual Design for horizontal package emplacement at the Deaf Smith County site, Texas. The repository was divided into three geometric regions. Then two-dimensional finite-element models were set up to approximate the three-dimensional nature of each region. Thermal and quasistatic thermomechanical finite-element analyses were performed to evaluate the thermal/thermomechanical responses of the three regions. The exponential-time creep law was used to represent the creep behavior of salt rock. The repository design was evaluated by comparing the thermal/thermomechanical responses obtained for the three regions with interim performance constraints. The preliminary results show that all the performance constraints are met except for those of the waste package. The following factors were considered in interpreting these results: (1) the qualitative description of the analytical responses; (2) the limitations of the analyses; and (3) either the conclusions based on overall evaluation of limitations and analytical results or the conclusions based on the fact that the repository design may be evaluated only after further analyses. Furthermore, a parametric analysis was performed to estimate the effect of material parameters on the predicted thermal/thermomechanical response. 23 refs., 34 figs., 9 tabs

  11. Proposal for geological site selection for L/ILW and HLW repositories. Statement of requirements, procedure and results. Technical report 08-03

    International Nuclear Information System (INIS)

    2008-10-01

    Important steps in the process of managing radioactive wastes have already been implemented in Switzerland. These include the handing and packaging of the waste, waste characterisation and documentation of waste inventories and interim storage along with associated transport. In terms of preparing for deep geological disposal, the necessary scientific and technical work is well advanced and the feasibility of constructing geological repositories that provide the required long-term safety has been successfully demonstrated for all waste types arising in Switzerland. Sufficient knowledge is available to allow the next steps in the selection of repository sites to be defined. The legal framework is also in place and organisational measures have been provided that will allow the tasks to be performed in the coming years to be implemented efficiently. The selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages. Stage 1 ends with the definition of geological siting regions within which the repository projects will be elaborated in more detail in stages 2 and 3. This report documents and justifies the siting proposals prepared by Nagra for the repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). Formulation of these proposals is conducted in five steps: 1) The waste inventory, which includes reserves for future developments, is allocated to the L/ILW and HLW repositories; 2) Based on this waste allocation, the second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability

  12. Expected environment for waste packages in a salt repository

    International Nuclear Information System (INIS)

    Pederson, L.R.; Clark, D.E.; Hodges, F.N.; McVay, G.L.; Rai, D.

    1983-01-01

    This paper discusses results of recent efforts to define the very near-field (within approximately 2 m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and standard brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported. 38 references, 3 figures, 2 tables

  13. Selection of candidate canister materials for high-level nuclear waste containment in a tuff repository

    International Nuclear Information System (INIS)

    McCright, R.D.; Weiss, H.; Juhas, M.C.; Logan, R.W.

    1983-11-01

    A repository located at Yucca Mountain at the Nevada Test Site is a potential site for permanent geological disposal of high-level nuclear waste. The repository can be located in a horizon in welded tuff, a volcanic rock, which is above the static water level at this site. The environmental conditions in this unsaturated zone are expected to be air and water vapor dominated for much of the containment period. Type 304L stainless steel is the reference material for fabricating canisters to contain the solid high-level wastes. Alternative stainless alloys are considered because of possible susceptibility of 304L to localized and stress forms of corrosion. For the reprocessed glass wastes, the canisters serve as the recipient for pouring the glass with the result that a sensitized microstructure may develop because of the times at elevated temperatures. Corrosion testing of the reference and alternative materials has begun in tuff-conditioned water and steam environments. 21 references, 8 figures, 8 tables

  14. High-level waste repository-induced effects

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom); Savage, D. [Savage Earth Associates Ltd, Bournemouth, Dorset (United Kingdom); Senger, R. [Intera Inc., Ennetbaden (Switzerland)

    2016-10-15

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a high-level waste (HLW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects on the host rock and engineered barriers arising principally from the heat generated by the waste. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement rooms and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock, with a focus on chemical effects of the waste and engineered materials on the host rock. The assessment of the repository-induced effects shows that detrimental chemical and mechanical impacts are largely confined to the rock immediately adjacent to the excavations, thermal impacts are controllable by limiting the heat load and gas effects are limited by ensuring acceptably low gas production rates and by the natural tendency of the gas to escape along the excavations and the excavation damaged zone (EDZ) rather than through the undisturbed rock. Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The SF/HLW emplacement rooms (emplacement drifts) are designed, constructed, operated and finally backfilled in such a way that formation of excavation damaged zones is limited. Specifically this is achieved

  15. High-level waste repository-induced effects

    International Nuclear Information System (INIS)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J.; Smith, P.; Savage, D.; Senger, R.

    2016-10-01

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a high-level waste (HLW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects on the host rock and engineered barriers arising principally from the heat generated by the waste. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement rooms and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock, with a focus on chemical effects of the waste and engineered materials on the host rock. The assessment of the repository-induced effects shows that detrimental chemical and mechanical impacts are largely confined to the rock immediately adjacent to the excavations, thermal impacts are controllable by limiting the heat load and gas effects are limited by ensuring acceptably low gas production rates and by the natural tendency of the gas to escape along the excavations and the excavation damaged zone (EDZ) rather than through the undisturbed rock. Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The SF/HLW emplacement rooms (emplacement drifts) are designed, constructed, operated and finally backfilled in such a way that formation of excavation damaged zones is limited. Specifically this is achieved

  16. Peculiarities of the High-Level Concrete-Encased Radwaste Repository Disposition at the Radwaste Disposal Site of the Russian Research Center 'Kurchatov Institute'

    International Nuclear Information System (INIS)

    Volkov, V.G.; Ponomarev-Stepnoi, N.N.; Gorodetsky, G.G.; Zverkov, Yu.A.; Ivanov, O.P.; Lemus, A.V.; Semenov, S.G.; Stepanov, V.E.; Chesnokov, A.V.; Shisha, A.D.

    2006-01-01

    The paper presents peculiarities of organization and performance of activities on disposition of the old repository that contained high-level waste and located at the radwaste disposal site of the Russian Research Center 'Kurchatov Institute' in Moscow. The repository was constructed in the late 1950's. A large number of cases with high-level waste were placed in the repository along with low- and intermediate-level waste. When the repository was filled in 1973, the entire radwaste mass was encased in concrete matrix which caused difficulties with the radwaste extraction and made the work on the repository disposition highly hazardous in terms of radiation conditions. Based on results of the preliminary radiation survey of the repository, technologies and equipment to be used in disposition works were selected, and a decision on construction of external radiation shielding around the repository to maintain normal radiation conditions during these works was made. Specific features of the selected radiation shielding design constructed around the repository and of a technology used for the radwaste extraction from the repository are provided. According to the technology, conventional construction machines equipped with a hydraulic hammer or a clamshell were used for destruction of the concrete-encased radwaste mass and extraction of low-level waste. Intermediate- and high-level waste was extracted by remotely controlled robots operating inside the radiation shielding structure. Video cameras and a gamma imager were used for detection of high-level waste or fragments of such radwaste in the mass concrete being destroyed and for guiding remotely controlled robots. Peculiarities of rapid control of changes in radiation conditions in the working areas are presented. This control was performed using a gamma locator with on-line transmission of its data to a PC for their processing. With disposition of this not easily accessible repository, the stage of remediation of old

  17. Probabilistic safety assessment for a generic deep geological repository for high-level waste and long-lived intermediate-level waste in clay

    International Nuclear Information System (INIS)

    Resele, G.; Holocher, J.; Mayer, G.; Hubschwerlen, N.; Niemeyer, M.; Beushausen, M.; Wollrath, J.

    2010-01-01

    Document available in extended abstract form only. In the selection procedure for the search of a final site location for the disposal of radioactive wastes, the comparison and evaluation of different potentially suitable repository systems in different types of host rocks will be an essential and crucial step. Since internationally accepted guidelines on how to perform such quantitative comparisons between repository systems with regard to their long-term safety behaviour are still lacking, in 2007 the German Federal Office for Radiation Protection launched the project 'VerSi' (Vergleichende Sicherheitsanalysen - Comparing Safety Assessments) that aims at the development of a methodology for the comparison of long-term safety assessments. A vital part of the VerSi project is the performance of long-term safety assessments for the comparison of two repository systems. The comparison focuses on a future repository for heat-generating, i.e. high-level and long-lived intermediate-level radioactive wastes in Germany. Rock salt is considered as a potential host rock for such a repository, and one repository system in VerSi is defined similarly to the potential site located in the Gorleben salt dome. Another suitable host rock formation may be clay. A generic location within the lower Cretaceous clays in Northern Germany is therefore chosen for the comparison of safety assessments within the VerSi project. The long-term safety assessment of a repository system for heat-generating radioactive waste at the generic clay location comprises different steps, amongst others: - Identifying the relevant processes in the near-field, in the geosphere and in the biosphere which are relevant for the long-term safety behaviour. - Development of a safety concept for the repository system. - Deduction of scenarios of the long-term evolution of the repository system. - Definition of statistic weights, i. e. the likelihood of occurrence of the scenarios. - Performance of a

  18. Decompression of magma into repository tunnels

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    It is nontrivial to find and design safe repository sites for nuclear waste. It appears common sense to drill tunnels as repository sites in a mountain in remote and relatively dry regions. However, erosion of the waste canisters by naturally abundant chemicals in the mountains water cycle remains a

  19. Radionuclide transport from near-surface repository for radioactive waste - The unsaturated zone approach

    Energy Technology Data Exchange (ETDEWEB)

    Jakimaviciute-Maseliene, V. [Vilnius University (Lithuania); Mazeika, J. [Nature Research Centre (Lithuania); Motiejunas, S. [Radioactive Waste Management Agency (Lithuania)

    2014-07-01

    About 100 000 m{sup 3} of solid conditioned Low and Intermediate Level Waste (LILW), generated during operation and decommissioning of the Ignalina nuclear power plant (INPP), are to be disposed of in a near-surface repository (NSR) - a 'hill'-type repository with reinforced concrete vaults and with engineered and natural barriers. The northeastern Lithuania and the environment of the INPP in particular were recognized as the areas most suitable for a near-surface repository (Stabatiske Site). The engineered barriers of the repository consist of concrete cells surrounded by clay-based material of low permeability with about the same isolating capacity in all directions. The clay materials must be effectively compactable so that required hydraulic conductivity is reached. The Lithuanian Triassic clay turned out to be sufficiently rich in smectites and was proposed as main candidate for sealing of the repository. When the concrete vaults are filled, the repository cover will be constructed. The surface of the mound will be planted with grass. In this study a computer code FEFLOW 5.0 was applied for simulating the transport of the most mobile radionuclides ({sup 3}H, {sup 14}C, {sup 59}Ni and {sup 94}Nb) with moisture through an unsaturated vault of the near-surface repository in Stabatiske Site. The HYDRUS-1D analysis was used to assess the radionuclide transport in the repository and to estimate initial activity concentrations of radionuclides transported from the cemented waste matrix. Radionuclide release from the vault in the unsaturated conditions after closure of the repository and consequent contaminant plume transport has been assessed taking into account site-specific natural and engineering conditions and based on a normal evolution scenario. The highest peak radionuclide activity concentrations were estimated applying the FEFLOW code. The highest value of {sup 14}C activity concentration(about 1.3x10{sup 8} Bq/m{sup 3}) at the groundwater table

  20. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs

  1. NAGRA - Sites for geological repositories - Geological surveys for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the aims involved in the selection of sites for deep geological repositories for nuclear wastes in Switzerland. Various methods involved in their implementation are described. These include 3D-seismology, deep probe drillings, shallow drillings as well as field studies, gravimetric measurements and the study of the electrical properties of the ground and rock involved. These factors are discussed in detail. Maps are presented of the locations that are to be surveyed and details of the selected perimeters are shown. Also, the layout of a sample drilling site is presented. A timescale for the various surveys and work to be done is presented

  2. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities

  3. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.; Raymond, J. R.; Brandley, D. J.; Serne, R. J.; Soldat, J. K.; Cole, C. R.; Deutsch, W. J.; Gupta, S. K.; Harwell, C. C.; Napier, B. A.; Reisenauer, A. E.; Prater, L. S.; Simmons, C. S.; Strenge, D. L.; Washburn, J. F.; Zellmer, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario

  4. Human intrusion into geologic repositories for high-level radioactive waste: potential and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, F X [Nuclear Regulatory Commission, Washington, DC (USA). Office of Nuclear Regulatory Research

    1981-12-01

    Isolation of high-level radioactive waste over long periods of time requires protection not only from natural events and processes, but also from the deliberate or inadvertent activities of future societies. This paper evaluates the likelihood of inadvertent human intrusion due to the loss of societal memory of the repository site. In addition measures to prevent inadvertent intrusion, and to guide future societies in any decision to deliberately intrude into the repository are suggested.

  5. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the third part of a report of a preliminary study for AECL. It summarizes the topics considered in reports AECL-6188-1 and AECL-6188-2 as requirements for an undergpound repository for disposal of wastes produced by the Canadian Nuclear Fuel Program. (author)

  6. Design perspectives for the low and intermediate level radioactive waste repository in Korea

    International Nuclear Information System (INIS)

    Kim, Young Ki; Koh, Kwang Hoon; Lee, Sang Sun; Lee, Byung Sik; Choi, Gi Won

    2007-01-01

    The underground waste repository is located at Gyeongju and is designed for the disposal of all the Low- and Intermediate Level Radioactive Waste(LILW). It is scheduled to commence operations in the beginning of 2009. The repository, with a disposal capacity of 800,000 drums, will be constructed in granite rock near the seashore at the Gyeongju site. The repository will be designed to be constructed in phases to reach its final capacity 800,000 drums. In the first phase of construction, the repository will have a capacity to store 100,000 drums. The repository will house all LILW generated in the Republic of Korea. The first phase of the repository design consists of an assess shaft, a construction tunnel, an operating tunnel, an unloading tunnel, and six(6) silos. The silos are located at 80 to 130 meters below Mean Sea level (MSL), in bedrock. Each silo is 24.8m in diameter and 52.4m in height. The silo will be reinforced with concrete lining for rock supports which will also act aas an engineered barrier in limiting radioactive nuclide release aft closure. After serving its intended function the repository will be filled and sealed. The primary objective of filling and sealing is to prevent ground water flow into the silo through the tunnel system and to prevent inadvertent intrusion into the repository after closure

  7. Development of local partnership for siting of LILW repository in Slovenia

    International Nuclear Information System (INIS)

    Kralj, Metka; Zeleznik, Nadja

    2007-01-01

    Available in abstract form only. Full text of publication follows: Slovenia has only temporary storage facilities for radioactive waste. According to the legislation, a permanent LILW repository site should be authorized by 2008, and the repository has to acquire the operating licence by 2013. In 2006, ARAO, the general public and three municipalities established local partnerships in order to increase public acceptability of the LILW repository. Civil initiative groups opposed to the siting appeared in all three local communities. In one case they forced the municipality to withdraw, in one case they changed the siting location, and in one case they were integrated to local partnership. In the municipality of Krsko, the program of local partnership was publicly discussed. There is an NPP in Krsko, so the local partnership also demanded to discuss the power plant issues. Thematic committees were established that worked separately. They also discussed the issues of the spatial plan for the repository. In the municipality of Brezice, a steering committee was established to promote local partnership activities and organization of thematic committees. There was only one active thematic committee, but many activities for the general public were organised. In the municipality of Sevnica, the local partnership was soon cancelled. (authors)

  8. Developing of Radioactive Wastes Management Safety at Baldone Repository Radons

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Abramenkova, G.; Klavins, M.

    2008-01-01

    The near surface radioactive wastes repository Radons near the Baldone city was put in operation in 1962. The safety assessment of repository was performed during 2000-2001 under the PHARE project to evaluate the recommended upgrades of repository. The outline design for new vaults and interim storage for long lived radioactive wastes was elaborated during 2003-2004 years. The Environmental Impact Assessment (EIA) for upgrade of Baldone repository was performed during 2004-2005 years. Additional evaluations of radioactive wastes management safety were performed during 2006 year by the experts of ENRESA, Spain. It was shown, that the additional efforts were spent for improving of radioactive wastes cementation in concrete containers. The results of tritium and Cs 137 leaching studies are presented and discussed. It was shown, that additives can significantly reduce the migration of radionuclides in ground water. The leaching coefficients for tritium and Cs 137 were determined to supply with the necessary data the risk assessment calculations for operation of Baldone repository R adons

  9. Geologic software for nuclear waste repository studies: A quality assurance program

    International Nuclear Information System (INIS)

    Figuli, S.; English, S.L.

    1987-04-01

    This paper discusses a Quality Assurance (QA) program that Kent State University (KSU) has implemented for the development of geologic software. The software being developed at KSU will be used in the site characterization of nuclear waste repositories and must meet the requirements of federal regulations. This QA program addresses the development of models that will be used in the evaluation of the long-term climatic stability of three sites in the western US

  10. Analysis on one underground nuclear waste repository rock mass in USA

    International Nuclear Information System (INIS)

    Ha Qiuling; Zhang Tiantian

    2012-01-01

    When analyzing the rock mass of a underground nuclear waste repository, the current studies are all based on the loading mechanical condition, and the unloading damage of rock mass is unconsidered. According to the different mechanical condition of actual engineering rock mass of loading and unloading, this paper implements a comprehensive analysis on the rock mass deformation of underground nuclear waste repository through the combination of present loading and unloading rock mass mechanics. It is found that the results of comprehensive analysis and actual measured data on the rock mass deformation of underground nuclear waste repository are basically the same, which provide supporting data for the underground nuclear waste repository. (authors)

  11. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  12. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Rozental, J.J.; Tranjan Filho, A.

    2001-01-01

    As it is well known, an accident with a teletherapy source made of 137 CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10 3 m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10 3 m 3 of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10 5 m 2 . The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The problem of a fixed, or near

  13. The function of packing materials in a high-level nuclear waste repository and some candidate materials: Salt Repository Project

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Shade, J.W.

    1987-03-01

    Packing materials should be included in waste package design for a high-level nuclear waste repository in salt. A packing material barrier would increase confidence in the waste package by alleviating possible shortcomings in the present design and prolonging confinement capabilities. Packing materials have been studied for uses in other geologic repositories; appropriately chosen, they would enhance the confinement capabilities of salt repository waste packages in several ways. Benefits of packing materials include retarding or chemically modifying brines to reduce corrosion of the waste package, providing good thermal conductivity between the waste package and host rock, retarding or absorbing radionuclides, and reducing the massiveness of the waste package. These benefits are available at low percentage of total repository cost, if the packing material is properly chosen and used. Several candidate materials are being considered, including oxides, hydroxides, silicates, cement-based mixtures, and clay mixtures. 18 refs

  14. Establishing managerial requirements for low-and intermediate-level waste repository

    International Nuclear Information System (INIS)

    Chung, C. W.; Lee, Y. K.; Kim, H. T.; Park, W. J.; Suk, T. W.; Park, S. H.

    2004-01-01

    This paper reviews basic considerations for establishing managerial requirements on the domestic low-and intermediate-level radioactive waste repository and presents the corresponding draft requirements. The draft emphasizes their close linking with the related regulations, standards and safety assessment for the repository. It also proposes a desirable direction towards harmonizing together with the existing waste acceptance requirements for the repository

  15. Assessment of Public Acceptability in LILW Repository Site Selection Process in Slovenia

    International Nuclear Information System (INIS)

    Zeleznik, N.; Kralj, M.; Polic, M.; Kos, D.

    2006-01-01

    Slovenian national agency for radioactive waste management ARAO has after longer period of preparation activities started with the more direct work on the site selection process for low and intermediate level waste (LILW) repository. In November 2004, the official administrative procedure for the siting of the repository started with the First public conference on spatial planning issues carried out by the Ministry of Environment and Spatial Planning together with ARAO. Just after the conference the Program for the preparation of the Detailed plan of national importance for the LILW repository was accepted by the Ministry. ARAO invited in the beginning of December 2004 all local communities in Slovenia (except 3 of them which have already refused to cooperate) to participate and volunteer a site or area in their local community for further investigation. The invitation for the application of local communities provided clear instructions on how to participate in further determination of potentially suitable sites and under what conditions. By the beginning of April 2005 ARAO finished the bidding process with 8 applications of local communities which decided to participate in the further site selection for LILW repository. Due to the financial and other limitations (human resources, spatial planning procedure, etc.) only in maximum three local communities further characterization could be performed. Therefore prefeasibility study of all volunteer local communities was conducted in which besides technical, environmental and spatial availability also public acceptability should be assessed. For assessment of public acceptability the methodology has been prepared which includes objective parameters of local environment (such as demographic data, economy, infrastructure and social issues in relation to the repository) as well as subjective values (attitudes of individual groups - opinion makers, politicians and all residents - to the sitting and construction of LILW

  16. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Zhou Hongwei; Jiang Pengfei; Yang Chunhe

    2008-01-01

    High-level radioactive wastes (HLW) repository is a special deep underground engineering, and in the stages of site selection, designing, constructing ,the stability evaluation, lots of important rock mechanics problems need to be resolved. During the decay of nuclear waste, enormous thermal energy was released and temperature variation caused dynamic distribution of stress and deformation field of surrounding rock of repository. BeiShan region of Gansu province was selected to be the repository field in the future, it is of practical significance to do research on granite in this region. Based on the concept model of HLW repository, this thesis calculates temperature field, stress field and deformation field of HLW repository surrounding rock under the condition of TM coupled with applying the finite difference FLAC 3D . From this study, thermo-mechanical characteristic of granite is obtained primarily under given canister heat source and given decay law function. And these results show that the reasonable space between disposal hole is 8 m-12 m, and the peak temperature of the canister surface is 130 ℃, the centerline temperature between pits is about 40 ℃ which is maintained for about hundreds of years under given heating output at -500 m depth. (authors)

  17. Site descriptive modelling during characterization for a geological repository for nuclear waste in Sweden

    International Nuclear Information System (INIS)

    Stroem, A.; Andersson, J.; Skagius, K.; Winberg, A.

    2008-01-01

    The Swedish programme for geological disposal of spent nuclear fuel is approaching major milestones in the form of permit applications for an encapsulation plant and a deep geologic repository. This paper presents an overview of the bedrock and surface modelling work that comprises a major part of the on-going site characterization in Sweden and that results in syntheses of the sites, called site descriptions. The site description incorporates descriptive models of the site and its regional setting, including the current state of the geosphere and the biosphere as well as natural processes affecting long-term evolution. The site description is intended to serve the needs of both repository engineering with respect to layout and construction, and safety assessment, with respect to long-term performance. The development of site-descriptive models involves a multi-disciplinary interpretation of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and ecosystems using input in the form of available data for the surface and from deep boreholes

  18. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  19. Natural sorbents as barriers against migration of radionuclides from radioactive waste repositories

    International Nuclear Information System (INIS)

    Stefanova, I.; Gradev, G.D.

    1993-01-01

    The sorption properties of Bulgarian inorganic sorbents - clinoptilolite, vermiculite, bentonite, glauconite, celadonite and loess, which can be used as buffer, backfill and sealing materials in radwaste repository are studied. Experimental data about sorption and desorption capacities, radiation and thermal stability of sorbents from different Bulgarian deposits are reported and compared. Clinoptilolite from Beli Plast and its sodium variety from Kostino and Moryantsi is recommended as a barrier against radionuclide migration from radwaste repository due to their high sorption capacity of 137 Ce, 90 Sr and 60 Co. The high selectivity of vermiculite for polyvalent ions ( 144 Ce, 59 Fe and 90 Sr) gives grounds to include the sorption on vermiculite as a second step in the ion exchange technology for low level laundry waste decontamination. Bentonite is studied as a proposed buffer, backfill and sealing material. Its selectivity for cesium is lower compared to those of clinoptilolite. Thus a tailored-made mixture of bentonite and clinoptilolite will act as a barrier against radionuclides in different oxidation state. Glauconite can be successfully used as a barrier against migration of 144 Ce, 90 Sr, 54 Mn and 65 Zn. Loess is also included in the study, as the Kozloduy NPP is sited on loess formation and it is a natural potential site for low and intermediate level waste burial. It is concludes that zeolites and clays of Bulgarian deposits can be used effectively against radionuclide migration from radioactive waste repositories. 59 refs., 5 tabs. (author)

  20. National radioactive wasterRepository Mochovce

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the scheme of the Mochovce National radioactive waste repository for the Slovak Republic is presented. The National radioactive waste repository in Mochovce is a surface type storage facility. It is intended for final disposal of solid and solidified low and intermediate radioactive waste produced during the operation of nuclear power plants and institutions located within the territory of the Slovak Republic. The Repository site is situated about 2 km northwest to the Mochovce NPP

  1. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    International Nuclear Information System (INIS)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste

  2. Co-operation between Slovenia and Croatia in the low- and intermediate level radioactive waste repository project

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Subasic, D.; Zeleznik, N.; Mele, I.; Tomse, P.

    2001-01-01

    The paper describes the LILW repository project development in Slovenia and Croatia from the viewpoint of co-operation of national agencies for radioactive waste management - ARAO in Slovenia and APO in Croatia. The project performance, as well as the co-operation itself, are based on the fact that NPP Krsko, sited in Slovenia, is the joint venture facility of both countries, which are consequently obliged to find a proper solution for final disposal of operational and decommissioning radioactive waste generated by the plant. The main aspects of the project development in both countries, such as LILW repository site selection and characterisation, development of repository conceptual design, performance assessment/safety analysis procedures and public participation, are presented in the paper. Based on separate descriptions of the project development in Slovenia and Croatia respectively, the main aspects of co-operation between ARAO and APO are elaborated.(author)

  3. The role of the national low level waste repository operator in delivering new solutions for the management of low level wastes in the UK - 16217

    International Nuclear Information System (INIS)

    Walkingshaw, Martin

    2009-01-01

    The UK National Low Level Waste Repository (LLWR) is located near to the village of Drigg in West Cumbria. It is the principal site for disposal of solid Low Level Radioactive Waste (LLW) in the United Kingdom. This paper describes the program of work currently being undertaken by the site's operators, (LLW Repository Ltd and its newly appointed Parent Body Organisation), to extend the life of the LLWR and reduce the overall cost of LLW management to the UK taxpayer. The current focus of this program is to prevent disposal capacity being taken up at LLWR by waste types which lend themselves to alternative treatment and/or disposition routes. The chosen approach enables consignors to segregate LLW at source into formats which allow further treatment for volume reduction or, (for wastes with lower levels of activity), consignment in the future to alternative disposal facilities. Segregated waste services are incorporated into LLW Disposal commercial agreements between the LLWR operator and waste consignors. (author)

  4. Gas cooled reactor decommissioning. Packaging of waste for disposal in the United Kingdom deep repository

    International Nuclear Information System (INIS)

    Barlow, S.V.; Wisbey, S.J.; Wood, P.

    1998-01-01

    United Kingdom Nirex Limited has been established to develop and operate a deep underground repository for the disposal of the UK's intermediate and certain low level radioactive waste. The UK has a significant Gas Cooled Reactor (GCR) programme, including both Magnox and AGR (Advanced Gas-cooled Reactor) capacity, amounting to 26 Magnox reactors, 15 AGR reactors as well as research and prototype reactor units such as the Windscale AGR and the Windscale Piles. Some of these units are already undergoing decommissioning and Nirex has estimated that some 15,000 m 3 (conditioned volume) will come forward for disposal from GCR decommissioning before 2060. This volume does not include final stage (Stage 3) decommissioning arisings from commercial reactors since the generating utilities in the UK are proposing to adopt a deferred safe store strategy for these units. Intermediate level wastes arising from GCR decommissioning needs to be packaged in a form suitable for on-site interim storage and eventual deep disposal in the planned repository. In the absence of Conditions for Acceptance for a repository in the UK, the dimensions, key features and minimum performance requirements for waste packages are defined in Waste Package Specifications. These form the basis for all assessments of the suitability of wastes for disposal, including GCR wastes. This paper will describe the nature and characteristics of GCR decommissioning wastes which are intended for disposal in a UK repository. The Nirex Waste Package Specifications and the key technical issues, which have been identified when considering GCR decommissioning waste against the performance requirements within the specifications, are discussed. (author)

  5. Site selection for deep geologic repositories - Consequences for society, economy and environment; was kommt auf die regionen zu? Auswirkungen geologischer tiefenlager auf gesellschaft, wirtschaft und lebensraum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In a few years, Switzerland will make the decision regarding site selection for geological underground repositories for the storage of radioactive wastes. Besides the safety issue, many citizens are interested in how such a repository will affect environment, economy and society in the selected site's region. This brochure summarizes the results of many studies on the socio-economic impacts of nuclear waste repositories. Radioactive wastes must be stored in such a way that mankind and environment are safely protected for a long period of time. How this goal may be achieved, is already known: geologic deep repositories warrant long-term safety. For the oncoming years in Switzerland the question is where the repository will be built. The search for an appropriate site for a repository in the proposed regions will launch discussions. Within the participative framework the regions may bring their requests. The demonstration of the safety of potential repository sites has the highest priority in the selection process. In the third procedural step additional rock investigations will be made. The socio-economic studies and the experience with existing plants show that radioactive waste management plants can be built and operated in good agreement with environmental requirements. The radioactive wastes in a deep underground repository are stored many hundred meters below the Earth's surface. There, they are isolated from our vital space. Technical barriers and the surrounding dense rock confinement prevent the release of radioactive materials into the environment. A deep repository has positive consequences for the regional economy. It increases trade and value creation and creates work places. The socio-economic impacts practically extend over one century, but strongly vary with time; they are the largest during the building period. High life quality and a positive population development in the selected site region are compatible with a deep repository. A fair

  6. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a

  7. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    International Nuclear Information System (INIS)

    2002-01-01

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that the Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of

  8. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  9. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    International Nuclear Information System (INIS)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions

  10. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    Energy Technology Data Exchange (ETDEWEB)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  11. The importance of counting cows: Social and economic effects of a high-level nuclear waste repository in Texas

    International Nuclear Information System (INIS)

    Fleishman, J.; Brody, J.; Galavotti, C.

    1987-01-01

    Impact assessments that rely on existing records and extrapolation from broad geographic areas provide inadequate information about social and economic conditions important in siting a high-level nuclear waste repository. Texas has used an alternative approach, involving systematic surveys of representative samples of local residents, farm operators and businesses in the proposed site counties and comparison areas. Results show that this technique is useful in describing current economic conditions, including characteristics of key sectors of the economy, changes related to the siting process, and expectations that may influence investment. In addition, the surveys are useful in assessing the degree of consensus in local communities and in identifying possible differential effects of a repository on particular groups. They also provide a baseline for long-term monitoring of repository effects and contribute to their understanding of the underlying processes that shape public response to the nuclear waste program

  12. Future extension of the Swedish repository for low and intermediate level waste (SFR)

    International Nuclear Information System (INIS)

    Carlsson, Jan

    2006-01-01

    The existing Swedish repository for low and intermediate level waste (SFR) is licensed for disposal of short-lived waste originated from operation and maintenance of Swedish nuclear power plants. The repository is foreseen to be extended to accommodate short-lived waste from the future decommissioning of the Nuclear Power Plants. Long-lived waste from operation, maintenance and eventually decommissioning will be stored some years before disposal in a geological repository. This repository can be build either as a further extension of the SFR facility or as a separate repository. This paper discusses the strategy of a step-wise extended repository where the extensions are performed during operation of the existing parts of the repository. It describes the process for licensing new parts of the repository (and re-license of the existing parts). (author)

  13. Geochemical site-selection criteria for HLW repositories in Europe and North America

    International Nuclear Information System (INIS)

    Savage, David; Arthur, Randolph C.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

    2000-01-01

    Geochemical as well as socio-economic issues associated with the selection of potential sites to host a high-level nuclear waste repository have received considerable attention in repository programs in Europe (Belgium, Finland, France, Germany, Spain, Sweden, Switzerland and the U.K.) and North America (Canada and the United States). The objective of the present study is to summarize this international experience with particular emphasis on geochemical properties that factor into the adopted site-selection strategies. Results indicate that the geochemical properties of a site play a subordinate role, at best, to other geotechnical properties in the international site-selection approaches. In countries where geochemical properties are acknowledged in the site-selection approach, requirements are stated qualitatively and tend to focus on associated impacts on the stability of the engineered barrier system and on radionuclide transport. Site geochemical properties that are likely to control the long-term stability of geochemical conditions and radionuclide migration behavior are unspecified, however. This non-prescriptive approach may be reasonable for purposes of screening among potential sites, but a better understanding of site properties that are most important in controlling the long-term geochemical evolution of the site over a range of possible scenarios would enable the potential sites to be ranked in terms of their suitability to host a repository. (author)

  14. Recommendations: Procedure to develop a preliminary safety report as part of the radioactive waste repository construction licensing process

    International Nuclear Information System (INIS)

    2003-01-01

    The structure of a preliminary safety report for the title purpose should be as follows: A. Textual part: 1. General (Introduction, Basic information about the construction, Timetable); 2. Site information (Siting, Geography and demography, Meteorology and climatic situation, Hydrology, Geology and hydrogeology); 3. Repository design description (Basic function and performance requirements, Design, Auxiliary systems, Fire prevention/protection, Emergency plans); 4. Operation of the repository (Waste acceptance and inspection, Waste handling and interim storage, Waste disposal, Operating monitoring), 5. Health and environmental impact assessment (Radionuclide inventory, Radionuclide transport paths and mechanisms of release into the environment, Radionuclide release in normal and emergency situations, Radiation protection - health impact assessment and regulatory compliance, Draft operating limits and conditions, Proposed ways of assuring physical protection, Uncertainty assessment), 6. Safe repository shutdown/decommissioning concept, 7 Quality assurance assessment, 8. List of selected equipment. B. Annexes: Maps, Drawings, Diagrams, Miscellaneous; C. Documentation: Previous safety report amendments, Protocols, Miscellaneous. (P.A.)

  15. The procedure of alternative site selection within the report of the study group on the radioactive waste final repository selection process (AKEnd); Das Verfahren der alternativen Standortsuche im Bericht des Arbeitskreises Auswahlverfahren Endlagerstandorte (AKEnd)

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, M. [Jena Univ. (Germany)

    2005-07-01

    The paper discusses the results of the report of the study group on the radioactive waste final repository selection process with respect to the alternative site selection procedure. Key points of the report are the long-term safety, the alternativity of sites and the concept of one repository. The critique on this report is focussed on the topics site selection and licensing procedures, civil participation, the factor time and the question of cost.

  16. Modelling approach to LILW-SL repository safety evaluation for different waste packing options

    International Nuclear Information System (INIS)

    Perko, Janez; Mallants, Dirk; Volckaert, Geert; Towler, George; Egan, Mike; Virsek, Sandi; Hertl, Bojan

    2007-01-01

    The key objective of the work described here was to support the identification of a preferred disposal concept and packaging option for low and short-lived intermediate level waste (LILW-SL). The emphasis of the assessment, conducted on behalf of the Slovenian radioactive waste management agency (ARAO), was the consideration of several waste treatment and packaging options in an attempt to identify optimised containment characteristics that would result in safe disposal, taking into account the cost-benefit of alternative safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes, including drums with unconditioned ion exchange resins in over-packed tube type containers (TTCs). For decommissioning wastes, the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers (HIC). In relation to operational wastes, three main options were foreseen. The first is over-packing of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralization, and cementation of the dry resins into drums grouted into high integrity containers and the third is direct disposal of TTCs into high integrity containers without additional treatment. The long-term safety of radioactive waste repositories is usually demonstrated with the support of a safety assessment. This normally includes modelling of radionuclide release from a multi-barrier near-surface or deep repository to the geosphere and biosphere. For the current work, performance assessment models were developed for each combination of siting option, repository design and waste packaging option. Modelling of releases from the engineered containment system (the 'near-field') was undertaken using the AMBER code. Detailed unsaturated water flow modelling was undertaken using the

  17. Problem trap final repository. Social challenges concerning nuclear waste

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim

    2016-01-01

    How is it possible that there is still no final storage facility in the entire world for highly radioactive waste from nuclear power stations? How is it possible that electricity has been generated by industrial-scale nuclear installations for decades without the issue of the disposal of nuclear waste having been resolved? The events in Chernobyl in 1986 and Fukushima in 2011 have made it blatantly obvious how risky this technology is and how important it is to keep humans and the environment at a safe distance from radioactivity. This anthology examines the technological, political, social and economic dimensions of the permanent disposal of nuclear waste. It provides an insight into the emergence of the problem and the people involved and their interests. It describes and analyses the changes that are taking place in Germany (for instance, in relation to the government's commission on nuclear repositories) and other countries with regard to how they handle nuclear waste. The book deals with both questions related to socio-technical aspects of the permanent disposal of nuclear waste and calls for the democratic need for participation and new ways of doing so, without which the search for a permanent disposal site will not bear fruit. This anthology presents a comprehensive discussion of the disposal of nuclear waste and the search for a permanent repository for it. Not only will students and teachers find it extremely useful, but so will any readers who are interested in its subject matter and wish to gain a more in-depth insight into it.

  18. Siting of a deep repository for spent fuel - how are we communicating the risks?

    International Nuclear Information System (INIS)

    Hammarstroem, Monika

    2000-01-01

    During 1998 the strategy of the Swedish Nuclear Waste Management Company for the siting process was refined in order to strengthen the possibilities for implementing deep geological disposal of spent nuclear fuel. Our new organisation was formed to meet the demands of the strategy. The strategy implies focused activities in municipalities where we are performing so called feasibility studies. An important milestone for us is to be able to choose two sites for site investigations in 2001. The problem of waste exists and has to be taken care of in Sweden. The work is performed in steps to ensure dialogue and changes and modifications if needed. The method for solution is robust, a repository can be constructed in a reasonable time and ensure safety in a long-term perspective Our attitude shall be characterised by high quality and competence in all aspects.Honesty and openness are key words. The fear that people feels regarding radioactive waste shall be taken seriously. We are proud to be able to show one already existing waste management system and of our knowledge and experiences. The results so far from the various communication activities show that we are going in the right direction. The support we are gaining from various sectors in society together with our own motivation and clear objectives will, I'm sure, lead us to at least two sites for site investigations for a deep repository in Sweden by the end of 2001

  19. Sellafield repository design concept

    International Nuclear Information System (INIS)

    1998-01-01

    Between 1989 and 1997, UK Nirex Ltd carried out a programme of investigations to evaluate the potential of a site adjacent to the BNFL Sellafield works to host a deep repository for the United Kingdom's intermediate-level and certain low-level radioactive waste. The programme of investigations was wound down following the decision in March 1997 to uphold the rejection of the Company's planning application for the Rock Characterisation Facility (RCF), an underground laboratory which would have allowed further investigations to confirm whether or not the site would be suitable. Since that time, the Company's efforts in relation to the Sellafield site have been directed towards documenting and publishing the work carried out. The design concept for a repository at Sellafield was developed in parallel with the site investigations through an iterative process as knowledge of the site and understanding of the repository system performance increased. This report documents the Sellafield repository design concept as it had been developed, from initial design considerations in 1991 up to the point when the RCF planning application was rejected. It shows, from the context of a project at that particular site, how much information and experience has been gained that will be applicable to the development of a deep waste repository at other potential sites

  20. Safety Report within the licence application for the siting of a radioactive waste repository/disposal facility

    International Nuclear Information System (INIS)

    Horyna, J.; Sinaglova, R.

    2004-01-01

    The initial safety specification report, which is submitted to the licensing authority as one of the application documents, is the basic document assessing the planned repository/disposal facility with respect to the suitability of the chosen site for this purpose. The following topics are covered: General information; Description and evidence of suitability of the site chosen; Description and tentative assessment of the repository/disposal facility design; Tentative assessment of impacts of running the facility on the employees, general public and environment (radionuclide inventory, transport routes, radionuclide release in normal, abnormal and emergency situations); Proposed concept of repository/disposal facility shutdown; and Assessment of quality assurance in the site selection, in preparatory work for the construction of the facility and in the subsequent stages. (P.A.)

  1. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    On April 2008, the Swiss Federal Council approved the conceptual part of the Sectoral Plan for Deep Geological Repositories. The Plan sets out the details of the site selection procedure for geological repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). It specifies that selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages, the first one (the subject of this report) being the definition of geological siting regions within which the repository projects will be elaborated in more detail in the later stages of the Sectoral Plan. The geoscientific background is based on the one hand on an evaluation of the geological investigations previously carried out by Nagra on deep geological disposal of HLW and L/ILW in Switzerland (investigation programmes in the crystalline basement and Opalinus Clay in Northern Switzerland, investigations of L/ILW sites in the Alps, research in rock laboratories in crystalline rock and clay); on the other hand, new geoscientific studies have also been carried out in connection with the site selection process. Formulation of the siting proposals is conducted in five steps: A) In a first step, the waste inventory is allocated to the L/ILW and HLW repositories; B) The second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability, reliability of geological findings and engineering suitability; C) In the third step, the large-scale geological-tectonic situation is assessed and large-scale areas that remain under consideration are defined. For the L

  2. The challenge of long-term participatory repository governance. Lessons learned for high level radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Landstroem, Catharina

    2012-01-01

    Voluntaristic siting procedures for deep geological repositories are becoming increasingly common; they reconfigure the relationship of repositories and society in ways that have implications for the long-term governance of these facilities. This paper identifies three challenges emerging in relation to this question: principles of monitoring, repository content, and facility closure. This paper discusses them in a comparison with similar challenges being addressed in Belgian partnerships founded to facilitate the siting and design of a low- and intermediate level short lived waste repository. The empirical exploration confirms the importance of securing stakeholder engagement throughout the repository lifecycle, for which there is a need to develop knowledge about how to encourage long-term democratic governance systems.

  3. Socioeconomic impacts of large-scale developments: implications for high-level nuclear waste repositories

    International Nuclear Information System (INIS)

    Murdock, S.H.; Leistritz, F.L.; Hamm, R.R.

    1983-01-01

    High-level nuclear waste repositories will likely be located in sparsely settled rural areas in the US. These projects will significantly affect the economic, demographic, public service, fiscal, and social (the socioeconomic) dimensions of those rural areas. The impacts and means of mitigating them thus require careful analysis. This paper examines some of the potential socioeconomic impacts likely to occur in rural areas as a result of repository siting and development, and it describes some of the characteristics of mitigation programs that are likely to be necessary, if the impacts are to be addressed. Both (1) standard impacts, those resulting from the fact that, like many other large-scale developments, repositories will involve a substantial number of new workers and residents (relative to the size of existing communities), and (2) special impacts, those resulting from the fact that repositories store radioactive materials, are examined. The discussion indicates that economic, demographic, public service, fiscal, and social impacts (standard and special) of these repositories will be substantial and problematic in many cases. Unless the impacts are effectively addressed with carefully planned and well financed mitigation efforts that insure that high-quality planning information is provided to local residents, and that local residents are involved in impact planning and management throughout the siting and development process, repository siting is unlikely to be effectively and equitably achieved. 44 references

  4. Design, construction, operation, shutdown and surveillance of repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a part of the IAEA publications under its Programme on Underground Disposal of Radioactive Wastes and is addressed to administrative and technical authorities and specialists who consider the shallow-ground disposal of low- and intermediate-level solid radioactive wastes of short half-lives. The report emphasizes the technological aspects, however it briefly discusses the safety philosophy and regulatory considerations too. The design, construction, operation, shutdown and surveillance of the repositories in shallow ground are considered in some detail, paying special attention to their interrelated aspects. In particular, a review is given of the following aspects: main design and construction considerations in relation to the natural features of the site; design and construction aspects during the repository development process; activities related to operational and post-operational stages of the repository; major steps in repository operation and essential activities in shutdown and operational and post-operational surveillance

  5. Investigation on long-term safety aspects of a radioactive waste repository in a diagenic clay formation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Gazul, R. [DBE Technology GmbH, Peine (Germany); Fluegge, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Braunschweig (Germany); and others

    2017-03-28

    The report presents the sealing concept developed for a Russian near surface low/intermediate level (LILW) waste repository at the ''radon site'' in the lower Cambrian ''blue clay'' formation. The radioactive wastes will be transported to the repository through a tunnel that will connect the underground disposal areas with the surface facilities. Two ventilation shafts for fresh and exhaust air will also connect the underground facilities with the surface. Specific characteristics of the flow regime in the studied area have been simulated. For the construction of a potential repository site it is necessary to know the possible contaminant transport paths to the surface and the biosphere. Due to the lack of sufficient data the calculation can only indicate tendencies that can trigger future explorations. Simulations of the radionuclide (C-14, Cl-36, Se-79, I-129) release from the repository in the liquid phase show a similar behavior as for other repositories in clay. Probabilistic simulations show a large variation of obtained results as a result of the parameter uncertainty.

  6. Project Guarantee 1985. Repository for low- and intermediate-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A constructional engineering project study aimed at clarification of the feasibility of a repository for low- and intermediate-level radioactive waste (type B repository) has been carried out; the study is based on a model data-set derived from the geological, rock mechanical and topographical characterictics of one of Nagra's planned exploration areas. Final storage is effected in subterranean rock caverns accessed by horizontal tunnel. The reception area also is sited below the surface. Storage is conceived in such a way that, after closure of the repository, maintenance and supervision can be dispensed with and a guarantee of high long-term safety can nevertheless be provided. The envisaged repository consists of an entry tunnel for road vehicles and a reception area with a series of caverns for receiving waste, for additional technical facilities and for the production of the concrete back-fill material. The connecting tunnel is serviced by a tunnel railway and the actual repository area consists of several storage caverns. The repository is intended to accomodate a total of 200'000 m3 of solidified low- and intermediate-level waste. Valanginian marl is assumed as the host rock, although it would also be basically possible to house the proposed installations in other host rocks. The excavated material will total around 1'000'000 m3. The construction time for the whole installation is estimated as about 7 years and a working team of around 30 people will be required for the estimated 60-year operational duration. The project described in the present report justifies the conclusion that construction of a repository for low-and intermediate-level radioactive waste is feasible with present-day technology. This conclusion takes into consideration quantitative and operational constraints as well as geological and hydrogeological data relevant to constructional engineering. The latter are derived from a model data-set based on a specific locality

  7. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  8. Environmental issues of repository licensing: an evaluation of a hypothetical high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Owen, J.L.; McGinnis, J.T.; Harper, C.M.; Battelle Columbus Labs., OH)

    1982-01-01

    This paper presents results of an environmental assessment conducted under the direction of the Office of Nuclear Waste Isolation as part of the National Waste Terminal Storage program. The study defined a range of potential environmental effects of constructing, operating, decommissioning, and long-term isolation of a nuclear waste repository. The analytical methodology used to determine potential environmental effects required definition of a hypothetical environmental setting and repository. Potentially applicable regulatory requirements were identified and were used as guidelines to evaluate permitting feasibility. The environmental effects of repository development were analyzed for the two major time periods of concern: short term (the period of construction, operation, and decommissioning) and long term (the isolation period after decommissioning). As a result of this analysis, major environmental uncertainties and issues were identified. 11 references, 5 figures

  9. High-level radioactive waste repositories site selection plan

    International Nuclear Information System (INIS)

    Castanon, A.; Recreo, F.

    1985-01-01

    A general vision of the high level nuclear waste (HLNW) and/or nuclear spent fuel facilities site selection processes is given, according to the main international nuclear safety regulatory organisms quidelines and the experience from those countries which have reached a larger development of their national nuclear programs. (author)

  10. Mathematical simulation for safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Brandstetter, A.; Raymond, J.R.; Benson, G.L.

    1979-01-01

    Mathematical models are being developed as part of the Waste Isolation Safety Assessment Program (WISAP) for assessing the post-closure safety of nuclear waste storage in geologic formations. The objective of this program is to develop the methods and data necessary to determine potential events that might disrupt the integrity of a waste repository and provide pathways for radionuclides to reach the bioshpere, primarily through groundwater transport. Four categories of mathematical models are being developed to assist in the analysis of potential release scenarios and consequences: (1) release scenario analysis models; (2) groundwater flow models; (3) contaminant transport models; and (4) radiation dose models. The development of the release scenario models is in a preliminary stage; the last three categories of models are fully operational. The release scenario models determine the bounds of potential future hydrogeologic changes, including potentially disruptive events. The groundwater flow and contaminant transport models compute the flowpaths, travel times, and concentrations of radionuclides that might migrate from a repository in the event of a breach and potentially reach the biosphere. The dose models compute the radiation doses to future populations. Reference site analyses are in progress to test the models for application to different geologies, including salt domes, bedded salt, and basalt

  11. The effect of microorganisms on asphaltopropylene concrete in a radioactive waste repository. Part 2

    International Nuclear Information System (INIS)

    Hlavackova, I.; Hlavacek, I.; Mara, M.; Wasserbauer, R.

    1993-11-01

    The permeability of asphaltopropylene concrete (APC) was examined after the action of aerobic bacteria and molds, and the changes in its volume, weight and swelling capacity were recorded. APC has been used as a sealing material in low level radioactive waste pits at the Dukovany NPP repository. Results of check-up sampling of microorganisms in the repository are evaluated. Sulphate reducing bacteria, which have been detected in soil near the reactor site, were isolated and their action upon asphaltopropylene (AP) was investigated. The resistance of bitumen layers containing model waste, against the action of aerobic bacteria and molds and against water was also examined. Bitumen samples containing model waste were found to absorb water at low temperatures considerably faster than unfilled bitumen. At elevated temperatures the absorption of water is appreciable, causing high weight losses of the bituminized waste layer due to degradation. The time dependences of the bitumen sample weight at 20 degC and 60 degC in distilled and cement water are given in the Appendix. The results included in the final reports ''Investigation of the effect of microorganisms on asphaltopropylene-based insulating materials employed as sealing in the secondary radioactive waste repository at the Dukovany NPP in relation to the microbial flora present. Bacteria'' and ''Investigation of the impact of biodegradation effects of aerobic and anaerobic microorganisms including molds on asphalt and asphaltopropylene in conditions of the ground repository at the Dukovany NPP'' are also given. (J.B.). 8 tabs., 33 figs

  12. Nuclear waste in a repository: amount as a factor in risk duration

    International Nuclear Information System (INIS)

    Zen, E.

    1980-01-01

    The relationship between the amount of nuclear waste in a nuclear repository and the safety of the repository is examined. It is shown that the amount of a given hazardous nuclide that is potentially leachable depends on the initial amount of waste in the repository and the time that has elapsed since the repository was put into operation. Nuclear repository safety can be enhanced if repositories are designed as modular units with leach-resistant watertight compartments

  13. Implementation of technical conservatism in the development of nuclear waste repositories

    International Nuclear Information System (INIS)

    1981-03-01

    The Department of Energy (DOE) waste management program is committed to assuring the safe disposal of radioactive waste. It is recognized that long-term disposal concepts will contain inherent uncertainties in predictive techniques and scientific information. Accordingly, conservative approaches ae being followed to enhance levels of confidence that the disposal system will perform in such a manner that the established performance requirements will be met. Limiting values of critical parameters will be established for each site based on its inherent characteristics prior to beginning site development. The performance limits will be established for each geometric region of the repository system and be applied simultaneously to assure that no single limit is violated over the repository life cycle. A site-specific set of specifications will be determined when the site is fully characterized, establishing a conservative design basis to increase confidence in safe system performance. The implementation of the NWTS program policy on technical conservatism, as discussed in this document, takes two forms--(1) conservatism in the conduct of the program and (2) conservatism in the performance of the disposal system. The first is achieved by a stepwise approach to system development and operation, the systems viewpoint, the retrievability requirement, and the extensive use of peer reviews throughout the conduct of the program. The second is achieved by the proper selection and application of conservative design and operational limits

  14. A Rock Mechanics and Coupled Hydro mechanical Analysis of Geological Repository of High Level Nuclear Waste in Fractured Rocks

    International Nuclear Information System (INIS)

    Min, Kibok

    2011-01-01

    This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow

  15. Record of responses to public comments on proposed general guidelines for recommendation of sites for nuclear waste repositories

    International Nuclear Information System (INIS)

    1983-01-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425, referred to in this document as the Act) assigned to the US Department of Energy (DOE) the authority for the disposal of high-level radioactive waste and spent nuclear fuel. Among other provisions, the Act specifies a process and schedule for the siting of two geologic repositories for this purpose. The Act requires that the DOE issue general guidelines for the recommendation of sites for repositories. The guidelines are to be developed in consultation with three Federal agencies (the Council on Environmental Quality, the US Environmental Protection Agency, and the US Geological Survey) and with interested Governors and issued with the concurrence of the US Nuclear Regulatory Commission. To meet this directive, the DOE convened a task force of program experts to develop proposed guidelines, issued the proposed guidelines on February 7, 1983, and invited comments from the specified Federal agencies, interested Governors, and the general public. Public hearings on the proposed guidelines were held in March at the following locations: Chicago, New Orleans, Washington, DC, Salt Lake City, and Seattle. After considering the resulting comments and preparing responses to them, the task force prepared a draft of this comment-response document and a set of alternative guidelines; these documents were issued on May 27, 1983. This document summarizes the record of comments that directly led to the alternative guidelines of May 27, 1983. It contains synopses of comments, presents the responses of the task force to the comments, and briefly describes how the proposed guidelines of February 7, 1983, were revised to produce the alternative guidelines of May 27, 1983. 13 references

  16. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs.

  17. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    International Nuclear Information System (INIS)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs

  18. Design criteria development for the structural stability of nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Yu, T S [Daewoo Engineering Company, Sungnam (Korea, Republic of); Ko, H M [Seoul National Univ., Seoul (Korea, Republic of)

    1990-11-15

    The objective of the present project is to develop design criteria for the structural stability of rock cavity for the underground repository are defined, according to which detailed descriptions for design methodologies, design stages and stability analysis of the cavity are made. The proposed criteria can be used as a guide for the preparation of design codes which are to be established as the site condition and technical emplacement procedure are fixed. The present report first reviews basic safety requirements and criteria of the underground disposal of nuclear wastes for the establishment of design concepts and stability analysis of the rock cavity. Important factors for the design are also described by considering characteristics of the wastes and underground facilities. The present project has investigated technical aspects on the design of underground structures based on the currently established underground construction technologies, and presented a proposal for design criteria for the structural stability of the nuclear waste repository. The proposed criteria consist of general provisions, geological exploration, rock classification, design process and methods, supporting system, analyses and instrumentation.

  19. Information base for waste repository design. Volume 3. Waste/rock interactions

    International Nuclear Information System (INIS)

    Koplick, C.M.; Pentz, D.L.; Oston, S.G.; Talbot, R.

    1979-01-01

    This report describes the important effects resulting from interaction between radioactive waste and the rock in a nuclear waste repository. The state of the art in predicting waste/rock interactions is summarized. Where possible, independent numerical calculations have been performed. Recommendations are made pointing out areas which require additional research

  20. Status of Equipment Development for a High-Level Waste Repository in Germany

    International Nuclear Information System (INIS)

    Biurrun, E.; Haverkamp, B.; Filbert, W.; Bollingerfehr, W.; Graf, R.

    2009-01-01

    In Germany, a potential site for a deep geological repository mainly for heat generating high-level waste was selected back on February 22, 1977: a salt dome located near the village of Gorleben, at the shores of the Elbe River in Northern Germany. Concurrent with site exploration from the surface, and later exploration mine construction, a large-scale R and D effort was conducted to have the science and technology needed to license and later operate a repository available when needed. An important part of these efforts was the development and 1:1 scale demonstration of all technologies required to run a repository, which had not been state-of-the-art. Underground exploration of the Gorleben site has come to a moratorium due to political decisions taken by the former Federal Government formed by a coalition between the Social Democrats and the Green Party back in 2000. However, research and development in regard to emplacement techniques and equipment has continued. This paper reflects the consistent, long-term technological effort that has led to having available all advanced technologies required to run a repository for spent fuel and HLW. The paper details previous achievements and points at present optimization work. (authors)

  1. Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; O'Kelley, G.D.; Case, F.I.; Land, J.F.

    1989-08-01

    Information that is being developed by projects within the Department of Energy (DOE) pertinent to the potential geochemical behavior of radionuclides at candidate sites for a high-level radioactive waste repository is being evaluated by Oak Ridge National Laboratory (ORNL) for the Nuclear Regulatory Commission (NRC). During this report period, all experiments were conducted with tuff from the proposed high-level nuclear waste site at Yucca Mountain, Nevada. The principal emphasis in this report period was on column studies of migration of uranium and technetium in water from well J-13 at the Yucca Mountain site. Columns 1 cm in diameter and about 5 cm long were constructed and carefully packed with ground tuff. The characteristics of the columns were tested by determination of elution curves of tritium and TcO 4 - . Elution peaks obtained in past studies with uranium were asymmetrical and the shapes were often complex, observations that suggested irreversibilities in the sorption reaction. To try to understand these observations, the effects of flow rate and temperature on uranium migration were studied in detail. Sorption ratios calculated from the elution peaks became larger as the flow rate decreased and as the temperature increased. These observations support the conclusion that the sorption of uranium is kinetically hindered. To confirm this, batch sorption ratio experiments were completed for uranium as a function of time for a variety of conditions

  2. DOE/OBES/Geosciences initiative on radioactive-waste isolation in mined repositories

    International Nuclear Information System (INIS)

    1983-05-01

    The Geosciences Program within the Office of Basic Energy Sciences supports fundamental research of scientific importance and of technological relevance in the energy field. The present document describes an ongoing scientific effort on the geoscience aspects of the emplacement of radioactive waste in a mined repository. Basic research in geochemical transport, rock mechanics, geodynamics and hydrologic modelings is needed to improve understanding of geoscience processes influenced by the introduction of mechanical and thermal stresses and by the introduction of new chemical and radioactive species to the subsurface. Laboratory and in-situ data are required for scaling, modeling, and predicting parameters most relevant to locating, developing, constructing, and operating geologic radioactive waste repositories. Testing and development of high resolution surface and borehole geophysical methods are needed for subsurface characterization. Special emphasis is given to the role of fractures because they control flow and are sites for geochemical interactions

  3. The stability of candidate buffer materials for a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.; Burton, G.R.; Tosello, N.B.; Maves, S.R.; Blimkie, M.E.; Donaldson, J.R.

    1989-11-01

    Inorganic ion-exchangers, clinoptilolite and clay, will be placed on the floor of a low-level radioactive waste repository to be built at Chalk River Nuclear Laboratories. The stability of these ion-exchange materials for a range of potential chemical environments in the repository was investigated. The leaching of waste forms and concrete and biological activity may create acidic or basic environment. The dissolution mechanisms of the ion exchangers for both acid and alkali conditions were established. Changes in distribution coefficients occurred shortly after the commencement of the treatment and were due to changes in the counter-ion content of the ion exchangers. No evidence was found to suggest gradual selective destruction of exchange sites responsible for the high distribution coefficients observed

  4. Postclosure risks of alternative SRP nuclear waste forms in geologic repositories

    International Nuclear Information System (INIS)

    Cheung, H.; Edwards, L.; Harvey, T.; Revelli, M.

    1982-05-01

    The postclosure risk of REFERENCE and ALTERNATIVE waste forms for the defense high-level waste at the Savannah River Plant (SRP) were compared by analyses with a computer code, MISER, written to study the effects of repository features in a probabilistic framework. MISER traces radionuclide flows through a network of stream tubes from the repository to risk-sensitive points. Uncertainties in waste form, package properties, and geotechnical data are accounted for with Monte Carlo techniques. Our results show: (1) for generic layered-salt and basalt repositories, the difference in performance between the two waste forms is insignificant; (2) where the doses are sensitive to uncertainties in leaching rates, the doses are orders of magnitude below background; (3) disruptive events contribute only slightly to the risk of a layered-salt repository; (4) simple design alterations have strong effects on near field doses; (5) great care should be exercised in selecting the location at which repository risks are to be measured, calculated, or regulated

  5. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Paschoa, A.S. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil); Rozental, J.J. [Ministry of Environment (Israel); Tranjan Filho, A. [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2001-07-01

    As it is well known, an accident with a teletherapy source made of {sup 137}CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10{sup 3} m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10{sup 3} m{sup 3} of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10{sup 5} m{sup 2}. The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The

  6. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1984-01-01

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion

  7. An assessment of the radiological impact of human intrusion at the UK Low Level Waste Repository (LLWR) - 59356

    International Nuclear Information System (INIS)

    Hicks, Tim; Baldwin, Tamara; Cummings, Richard; Sumerling, Trevor

    2012-01-01

    The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste (LLW) to the Environment Agency on the 1 May 2011. The Environmental Safety Case (ESC) presents a complete case for the environmental safety of the Low Level Waste Repository (LLWR) both during operations and in the long term (Cummings et al, in these proceedings). This includes an assessment of the long-term radiological safety of the facility, including an assessment of the potential consequences of human intrusion at the site. The human intrusion assessment is based on a cautiously realistic approach in defining intrusion cases and parameter values. A range of possible human intrusion events was considered based on present-day technologies and credible future uses of the site. This process resulted in the identification of geotechnical investigations, a housing development and a smallholding as requiring quantitative assessment. A particular feature of the site is that, because of its proximity to the coast and in view of expected global sea-level rise, it is vulnerable to coastal erosion. During such erosion, wastes and engineered barrier materials will be exposed, and could become targets for investigation or recovery. Therefore, human intrusion events have been included that are associated with such activities. A radiological assessment model has been developed to analyse the impacts of potential human intrusion at the site. A key feature of the model is the representation of the spatial layout of the disposal site, including the engineered cap design and the large-scale spatial heterogeneity of radionuclide concentrations within the repository. The model has been used to calculate the radiation dose to intruders and to others following intrusion at different times and at different locations across the site, for the each of the selected intrusion events, considering all relevant exposure modes. Potential doses due to radon and its daughters in

  8. Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area

    International Nuclear Information System (INIS)

    Mattson, S.R.; Broxton, D.E.; Buono, A.; Crowe, B.M.; Orkild, P.P.

    1989-01-01

    In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation's first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab

  9. The alternative site selection procedure as covered in the report by the Repository Site Selection Procedures Working Group; Das Verfahren der alternativen Standortsuche im Bericht des Arbeitskreises Auswahlverfahren Endlagerstandorte

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, M. [Jena Univ. (Germany). Juristische Fakultaet

    2005-01-01

    The 2002 Act on the Regulated Termination of the Use of Nuclear Power for Industrial Electricity Generation declared Germany's opting out of the peaceful uses of nuclear power. The problem of the permanent management of radioactive residues is becoming more and more important also in the light of that political decision. At the present time, there are no repositories offering the waste management capacities required. Such facilities need to be created. At the present stage, eligible repository sites are the Konrad mine, a former iron ore mine near Salzgitter, and the Gorleben salt dome. While the fate of the Konrad mine as a repository for waste generating negligible amounts of heat continues to be uncertain, despite a plan approval decision of June 2002, the Gorleben repository is still in the planning phase, at present in a dormant state, so to speak. The federal government expressed doubt about the suitability of the Gorleben site. Against this backdrop, the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety in February 1999 established AkEnd, the Working Group on Repository Site Selection Procedures. The Group was charged with developing, based on sound scientific criteria, a transparent site selection procedure in order to facilitate the search for repository sites. The Working Group presented its final report in December 2002 after approximately four years of work. The Group's proposals about alternative site selection procedures are explained in detail and, above all, reviewed critically. (orig.)

  10. Swiss plans for deep geological repositories for radioactive wastes - Basics for communication at the localities affected

    International Nuclear Information System (INIS)

    Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the concept of how information concerning deep geological repositories for radioactive wastes should be presented and communicated to those in the areas which have been designated as potential sites for the repositories. Communication basics based on scientific knowledge in this area are discussed. The importance of a concept for general communication and risk-communication as a particular challenge are discussed. Trust and transparency are quoted as being indispensable in this connection. Ways of dealing with various target audiences and the media are examined. The report is concluded with a check-list that deals with important questions arising from the process of communicating information on deep geological repositories for radioactive wastes

  11. Modeling of waste/near field interactions for a waste repository in bedded salt: the Dynamic Network (DNET) model

    International Nuclear Information System (INIS)

    Cranwell, R.M.

    1983-01-01

    The Fuel Cycle Risk Analysis Division of Sandia National Laboratories has been funded by the US Nuclear Regulatory Commission to develop a methodology for use in assessing the long-term risk from the disposal of radioactive wastes in deep geologic formations. As part of this program, the Dynamic Network (DNET) model was developed to investigate waste/near field interactions associated with the disposal of radioactive wastes in bedded salt formations. The model is a quasi-multi-dimensional network model with capabilities for simulating processes such as fluid flow, heat transport, salt dissolution, salt creep, and the effects of thermal expansion and subsedence on the rock units surrounding the repository. The use of DNET has been demonstrated in the analysis of a hypothetical disposal site containing a bedded salt formation as the host medium for the repository. An example of this demonstration analysis is discussed. Furthermore, the outcome of sensitivity analyses performed on the DNET model are presented

  12. Application of ArcGIS to the geoscience data management of the preselected site in Beishan high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Zhong Xia; Wang Ju; Huang Shutao; Wang Shuhong; Gao Min

    2010-01-01

    The site selection of a high-level radioactive waste (HLW) repository is long-term and complicated system project. In the study, the information and data are not only related to different research fields, but also of large volume, diverse types and dispersed storage. In order to wholly manage and effectively make use of the information, the authors study how to set up the platform of the geoscience database to store, manage and apply the diverse type, based on ArcGIS, and present the data management and sharing solution. (authors)

  13. Pre-treatment of bituminized NPP wastes for disposal in near-surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Vanessa Mota; Tello, Clédola Cássia Oliveira de, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. The Brazilian repository is being planned to be a near-surface one. In Brazil the low and intermediate level radioactive wastes are immobilized using cement and bitumen for Angra 1 and Angra 2 NPP, respectively. The main problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degradation in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70 - 90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to find solutions for the storage in surface repository of bituminized radioactive waste products, making them compatible with the acceptance criteria of cemented waste products. It was also performed a modeling with the results obtained in the leaching test using the ALT program and defined the transport model of the cesium leachate element and it was verified that in the early times the leaching was governed by the diffusion model and later by the partition model. The results obtained in this study can be used in the evaluation of performance of repositories. (author)

  14. Pre-treatment of bituminized NPP wastes for disposal in near-surface repository

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Clédola Cássia Oliveira de

    2017-01-01

    The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. The Brazilian repository is being planned to be a near-surface one. In Brazil the low and intermediate level radioactive wastes are immobilized using cement and bitumen for Angra 1 and Angra 2 NPP, respectively. The main problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degradation in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70 - 90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to find solutions for the storage in surface repository of bituminized radioactive waste products, making them compatible with the acceptance criteria of cemented waste products. It was also performed a modeling with the results obtained in the leaching test using the ALT program and defined the transport model of the cesium leachate element and it was verified that in the early times the leaching was governed by the diffusion model and later by the partition model. The results obtained in this study can be used in the evaluation of performance of repositories. (author)

  15. Project Guarantee 1985. Repository for high-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An engineering project study aimed at demonstrating the feasibility of constructing a deep repository for high-level waste (Type C repository) has been carried out; the study is based on a model data-set representing typical geological and rock mechanical conditions as found outside the so-called Permocarboniferous basin in the regions under investigation by Nagra in Cantons Aargau, Schaffhausen, Solothurn and Zuerich. The repository is intended for disposal of high-level waste and any intermediate-level waste from re-processing in which the concentration of long-lived alpha-emitters exceeds the permissible limits set for a Type B repository. Final disposal of high-level waste is in subterranean, horizontally mined tunnels and of intermediate-level waste in underground vertical silos. The repository is intended to accomodate a total of around 6'000 HWL-cylinders (gross volume of around 1'200 m3) and around 10'000 m3 of intermediate-level waste. The total excavated volume is around 1'100'000 m3 and a construction time for the whole repository (up to the beginning of emplacement) of around 15 years is expected. For the estimated 50-year emplacement operations, a working team of around 60 people will be needed and a team of around 160 for the simultaneous tunnelling operations and auxiliary work. The project described in the present report permits the conclusion that construction of a repository for high-level radioactive waste and, if necessary, spent fuel-rods is feasible with present-day technology

  16. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  17. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  18. Application of systems engineering to determine performance requirements for repository waste packages

    International Nuclear Information System (INIS)

    Aitken, E.A.; Stimmell, G.L.

    1987-01-01

    The waste package for a nuclear waste repository in salt must contribute substantially to the performance objectives defined by the Salt Repository Project (SRP) general requirements document governing disposal of high-level waste. The waste package is one of the engineered barriers providing containment. In establishing the performance requirements for a project focused on design and fabrication of the waste package, the systems engineering methodology has been used to translate the hierarchy requirements for the repository system to specific performance requirements for design and fabrication of the waste package, a subsystem of the repository. This activity is ongoing and requires a methodology that provides traceability and is capable of iteration as baseline requirements are refined or changed. The purpose of this summary is to describe the methodology being used and the way it can be applied to similar activities in the nuclear industry

  19. Deep repositories for waste central to uranium debate

    International Nuclear Information System (INIS)

    Kannegieter, T.

    1991-01-01

    While no deep repositories for high level wastes (HLW) have yet been constructed it is shown that technology to safely entomb the wastes for tens of thousands of years already exists. The borosilicate glass (vitrification) developed in France has been accepted by all countries who are reprocessing. Meanwhile, the Australian Synroc has not yet been put into service. Synroc developers at the Australian Nuclear Science and Technology Organization believe it will be the second generation waste form. The advantages and disadvantages of both technologies are briefly discussed as well as some of the regulatory, political, legal and technical conflicts surrounding the issue of HLW repositories. 1 tab., ills

  20. High-level radioactive waste disposal: Key geochemical issues and information needs for site characterization

    International Nuclear Information System (INIS)

    Brooks, D.J.; Bembia, P.J.; Bradbury, J.W.; Jackson, K.C.; Kelly, W.R.; Kovach, L.A.; Mo, T.; Tesoriero, J.A.

    1986-01-01

    Geochemistry plays a key role in determining the potential of a high-level radioactive waste disposal site for long-term radionuclide containment and isolation. The Nuclear Regulatory Commission (NRC) has developed a set of issues and information needs important for characterizing geochemistry at the potential sites being investigated by the Department of Energy Basalt Waste Isolation Project, Nevada Nuclear Waste Storage Investigations project, and Salt Repository Project. The NRC site issues and information needs consider (1) the geochemical environment of the repository, (2) changes to the initial geochemical environment caused by construction and waste emplacement, and (3) interactions that affect the transport of waste radionuclides to the accessible environment. The development of these issues and information needs supports the ongoing effort of the NRC to identify and address areas of geochemical data uncertainty during prelicensing interactions

  1. Third report, development of site suitability and design performance data base for a high level nuclear waste repository

    International Nuclear Information System (INIS)

    1978-05-01

    This report presents the results of mining and geotechnical studies provided as support for the development of a technical data base suitable for the generation of a regulatory framework governing high-level nuclear waste disposal: flow path models for basalts, salt domes, and crystalline rocks; simplistic model evaluations; loss of administrative control; repository conceptual designs; repository design considerations; and design performance criteria

  2. Post-closure resaturation of a deep radioactive waste repository

    International Nuclear Information System (INIS)

    Cox, I.C.S.; Rodwell, W.R.

    1989-03-01

    The post-closure resaturation of a deep radioactive waste repository has been modelled for a number of generic disposal concepts. A combination of numerical ground water flow simulations and analytical calculations has been used to investigate the variation of repository fluid pressure and degree of water saturation with time, and to determine the factors influencing resaturation times. The host rock permeability was found to be the most important determining factor. For geological environments regarded as likely for a waste repository, resaturation is predicted to be a short term process compared with gas generation and contaminant migration timescales. (author)

  3. CONSIDERATIONS ON SOILS ISOLATIVE PROPERTIES FOR SITING OF A NEW NEAR-SURFACE RADIOACTIVE WASTE REPOSITORY IN POLAND IN THE LIGHT OF THE LONG TERM SAFETY

    Directory of Open Access Journals (Sweden)

    Monika Skrzeczkowska

    2012-07-01

    Full Text Available The paper presents a brief description of the occurrence of favorable isolative conditions for new surface radioactive waste repository in Poland. Selected soils may be used as a natural bottom layer or engineering barrier in multi-barrier system of RW repository. Currently, there is no regulation establishing standards for the bottom isolation, and the only quantifiable parameter with regard to water permeability is given for the repository objects, which in their case has to be lower than 10-9 m/s. For the purposes of this paper, treating on providing suitable bottom isolation for the new repository, this parameter has been transferred onto the consideration for soils suitability with a statement that it shall not be lower than the one given for the infrastructure. Submitted information should be taken into consideration by updating the information for the siting process according to IAEA Safety Standards.

  4. Guidelines for the operation and closure of deep geological repositories for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1991-10-01

    The operation and closure of a deep geological repository for the disposal of high level and alpha bearing wastes is a long term project involving many disciplines. This unique combination of nuclear operations in a deep underground location will require careful planning by the operating organization. The basic purpose of the operation stage of the deep repository is to ensure the safe disposal of the radioactive wastes. The purpose of the closure stage is to ensure that the wastes are safely isolated from the biosphere, and that the surface region can be returned to normal use. During these two stages of operation and closure, it is essential that both workers and the public are safely protected from radiation hazards, and that workers are protected from the hazards of working underground. For these periods of the repository, it is essential to carry out monitoring for purposes of radiological protection, and to continue testing and investigations to provide data for repository performance confirmation and for final safety assessment. Over the lengthy stages of operation and closure, there will be substantial feedback of experience and generation of site data. These will lead both to improved quality of operation and a better understanding of the site characteristics, thereby enhancing the confidence in the ability of the repository system to isolate the waste and protect future generations. 15 refs

  5. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    1991-02-01

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  6. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Carr, J.A.; Cunnane, J.C.

    1986-01-01

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  7. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  8. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J

    2007-01-15

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project.

  9. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2007-01-01

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project

  10. Long term effects on potential repository sites: occurrence and diagenesis of anhydrite

    International Nuclear Information System (INIS)

    Bath, A.H.; George, I.A.; Milodowski, A.E.; Darling, W.G.

    1985-10-01

    The report deals with the long-term behaviour of anhydrite as a potential host rock for deep disposal of intermediate-level radioactive wastes. The principal long-term effect on the integrity of such a repository is the possibility of penetration of groundwater and consequent transformation to gypsum. Therefore, in order to assess the chydrological and geochemical processes of hydration in detail, mineralogical and geochemical analyses have been carried out on anhydrite samples in a drillcore taken near Darlington, United Kingdom. The results are discussed in terms of the long-term integrity of anhydrite as a repository site. (U.K.)

  11. Thermal analyses for a nuclear-waste repository in tuff using USW-G1 borehole data

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1982-10-01

    Thermal calculations using properties of tuffs obtained from the USW-G1 borehole, located near the SW margin of the Nevada Test Site (NTS), have been completed for a nuclear waste repository sited in welded tuff below the water table. The analyses considered two wasteforms, high level waste and spent fuel, emplaced at two different, gross thermal loadings, 50 and 75 kW/Acre (20.24 and 30.36 kW/ha). Calculations were made assuming that no boiling of the groundwater occurs; i.e., that the hydrostatic head potential was reestablished soon after waste emplacement. 23 figures, 2 tables

  12. Geohydrology of the near-surface unsaturated zone adjacent to the disposal site for low-level radioactive waste near Beatty, Nevada: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    Science.gov (United States)

    Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.

  13. Siting, design and construction of underground repositories for radioactive wastes

    International Nuclear Information System (INIS)

    1986-01-01

    The objectives of the Symposium were to provide a forum for exchange of information internationally on the various scientific, technological, engineering and safety bases for the siting, design and construction of underground repositories, and to highlight current important issues and identify possible approaches. Forty-nine papers were presented, covering general approaches and regulatory aspects, disposal in shallow ground and rock cavities, disposal in deep geological formations and safety assessments related to the subject of the Symposium. Separate abstracts were prepared for each of these papers

  14. Preliminary postclosure risk assessment: Yucca Mountain, Nevada, candidate repository site

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Elwood, D.M.; Freshley, M.D.; Reimus, P.W.; Tanner, J.E.; Doctor, P.G.; Engel, D.W.; Liebetrau, A.M.; Strenge, D.L.; Van Luik, A.E.

    1989-10-01

    A study was conducted by the Pacific Northwest Laboratory for the US Department of Energy, Office of Civilian Radioactive Waste Management, to estimate the postclosure risk, in terms of population health effects, of a proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The risk estimates cover a time span of 1 million years following repository closure. Representative disruptive and intrusive events were selected and evaluated in addition to expected conditions. The estimates were generated assuming spent fuel as the waste form and included all important nuclides from inventory, half-life and dose perspectives. The base case results yield an estimate of 36 health effects over the first million years of repository operation. The doses attributed to the repository corresponds to about 0.1 percent of the doses received from natural background radiation. 16 refs., 1 fig

  15. Risk assessment for the Yucca Mountain high-level nuclear waste repository site: Estimation of volcanic disruption. Final report

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang.

    1992-01-01

    In this article, we model the volcanism near the proposed nuclear waste repository at Yucca Mountain, Nevada, U.S.A. by estimating the instantaneous recurrence rate using a nonhomogeneous Poisson process with Weibull intensity and by using a homogeneous Poisson process to predict future eruptions. We then quantify the probability that any single eruption is disruptive in terms of a (prior) probability distribution, since not every eruption would result in disruption of the repository. Bayesian analysis is performed to evaluate the volcanic risk. Based on the Quaternary data, a 90% confidence interval for the instantaneous recurrence rate near the Yucca Mountain site is (1.85 x 10 -6 /yr, 1.26 x 10 -5 /yr). Also, using these confidence bounds, the corresponding 90% confidence interval for the risk (probability of at least one disruptive eruption) for an isolation time of 10 4 years is (1.0 x 10 -3 , 6.7 x 10 -3 ), if it is assumed that the intensity remains constant during the projected time frame

  16. Salt repository project closeout status report

    International Nuclear Information System (INIS)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE's) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs

  17. Estimates of secondary waste production from operations at a proespective geologic repository in tuff

    International Nuclear Information System (INIS)

    Engelhard, M.P.; Jardine, L.J.

    1985-01-01

    In this paper, a method is outlined for estimating the volumes of solid and liquid radioactive wastes produced during the operation of a repository in tuff. Volume estimates were also developed based on a preliminary conceptual facility design. Based on a disposal rate of 3000 MTU/y of commercial spent fuel, the waste estimates ranged from 793 to 2464 m 3 /y of uncompacted solids and from 80,431 to 128,690 L/y of liquids, depending on the specific set of facility features assumed. The estimates of waste quantities were most dependent on variations in the ratio of truck to rail cask shipments received. The quantities of waste generated on site decreased as this ratio decreased. Although there are large uncertainties in the current estimates caused by the preliminary nature of the facility designs and the limited amount of engineering detail completed, the methodology can be used to refine estimates as the repository design progresses

  18. How many geologic repositories will be needed

    International Nuclear Information System (INIS)

    Evans, T.J.; Halstead, R.J.

    1987-01-01

    DOE's postponement of site-specific work on the second repository program had rekindled debate over the number of geologic repositories needed for disposal of high level radioactive waste. The multiple repository approach grew out of the March, 1979 IRG report, which recommended co-disposal of civilian and defense HLW in a system of regional repositories. The multiple repository approach was adopted by DOE, and incorporated in the Nuclear Waste Policy Act passed by Congress in December, 1982. Since the late 1970's, the slower than anticipated growth of the nuclear power industry has substantially reduced earlier estimates of the amount of civilian spent fuel which will require geologic disposal. Reactors currently in operation (78.5 GWe) and reactors in the construction pipeline (28 GWe) are expected to discharge about 103,200 MTU of spent fuel by the year 2036, assuming no increase in fuel burnup rate. By the year 2020, defense high level radioactive wastes equivalent to as much as 27,000 MTU could require geologic disposal. Small amounts of high level waste from other sources will also require geologic disposal. Total disposal requirements appear to be less than 140,000 MTU. The five sites nominated for the first repository, as well as hypothetical sites in granite, the host rock under primary consideration for the second repository, all appear capable of accommodating up to 140,000 MTU

  19. Low and intermediate level waste repositories: Socioeconomic aspects and public involvement. Proceedings of a workshop

    International Nuclear Information System (INIS)

    2007-06-01

    Waste management facilities are needed to protect the environment and improve public health for the long term future. One significant challenge is to inform the public on the relative hazards of radioactive waste compared to other hazards in our modern society and to get the acceptance of the appropriate members of the public for these necessary facilities. Over the entire life cycle of these facilities, the projects must be managed without expending a disproportionate share of the collective resources. Public involvement plays a key role and the sophisticated and extensive public education systems that exist provide a vital service to gain public acceptance. There is a full range of compensation and benefit programmes used as incentives for hosting a LILW facility. Even if exemptions exist the experience in most countries indicate the direct/indirect incentives as a necessary part of gaining public acceptance. The countries, regions and local communities have their own established processes to make public decisions. Each organization developing a site must select and implement the methods that are acceptable within their framework of laws and regulations. A three day workshop on socio-economic issues and public involvement practices and approaches for developing and operating repositories for low and intermediate level waste took place in the IAEA headquarters on 9-11 November 2005. The workshop provided a forum where experts from Member States shared their experiences in non-technical aspects of planning, licensing and operating LILW disposal facilities. Description of both principles and practices applied in particular countries provides a useful overview of potential approaches in application of non-technical issues during a repository lifecycle. Participants presented approaches and practices applied in their countries, established new contacts and were able to take advantage of activities and experiences from abroad. There were 25 interesting presentations

  20. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    Science.gov (United States)

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  1. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-care vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  2. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-car vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  3. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  4. Repository documentation rethought. A comprehensive approach from untreated waste to waste packages for final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton Philipp; Schubert, Johannes [VPC GmbH, Dresden (Germany)

    2017-11-15

    The German Act on Reorganization of Responsibility for Nuclear Disposal (Entsorgungsuebergangsgesetz (EntsorgUebG)) adopted in June 2017 provides the energy utilities with the new option of transferring responsibility for their waste packages to the Federal Government. This is conditional on the waste packages being approved for delivery to the Konrad final repository. A comprehensive approach starts with the dismantling of nuclear facilities and extends from waste disposal and packaging planning to final repository documentation. Waste package quality control measures are planned and implemented as early as in the process qualification stage so that the production of waste packages that are suitable for final deposition can be ensured. Optimization of cask and loading configuration can save container and repository volume. Workflow planning also saves time, expenditure and exposure time for personnel at the facilities. VPC has evaluated this experience and developed it into a comprehensive approach.

  5. The use of performance assessments in Yucca Mountain repository waste package design activities

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1990-01-01

    The Yucca Mountain Project is developing performance assessment approaches as part of the evaluations of the suitability of Yucca Mountain as a repository site. Lawrence Livermore National Laboratory is developing design concepts and the scientific performance assessment methodologies and techniques used for the waste package and engineered barrier system components. This paper presents an overview of the approach under development for postclosure performance assessments that will guide the conceptual design activities and assist in the site suitability evaluations. This approach includes establishing and modeling for the long time periods required by regulations: near-field environment characteristics surrounding the emplaced wastes; container materials performance responses; and waste form properties. All technical work is being done under a fully qualified quality assurance program

  6. Old waste products - new requirements. Preparations for the later repository

    International Nuclear Information System (INIS)

    Graf, A.; Merx, H.

    2003-01-01

    For more than 30 years now, the Hauptabteilung Dekontaminationsbetriebe (HDB, Central Decontamination Department) of the Forschungszentrum Karlsruhe has been engaged in the management of radioactive wastes produced by the operation and decommissioning of research reactors and institutes of the Research Center, the Karlsruhe reprocessing plant, the European Institute for Transuranium Elements, and the Baden-Wuerttemberg state collection center. For this purpose, the wastes delivered to HDB have been conditioned at various facilities according to the requirements specified. These conditioning requirements, however, have changed in the course of time. In the past, only minimum declaration and conditioning requirements had to be fulfilled for the ASSE repository storage facility. Since 1994, the KONRAD repository storage conditions have been adopted. They comprise a variety of quality criteria. Judging from today, duration of interim storage until transfer to a repository storage facility will take another 30 years at least. In addition to the documentary qualification of the waste products, it is therefore required to take measures to ensure long-term safety of both the waste packages and their storage. This is why the HDB, in agreement with the supervisory authority, i.e. the Federal Radiation Protection Authority, and its experts, has decided to put the waste products into KONRAD containers in certified compliance with the repository storage conditions and to backfill these containers with concrete in accordance with approved procedures. Thus, waste packages suited for repository storage will be produced and corrosion processes and the possible release of radioactivity will be prevented. (orig.)

  7. Old waste products - new requirements. Preparations for the later repository

    Energy Technology Data Exchange (ETDEWEB)

    Graf, A.; Merx, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Hauptabteilung Dekontaminationsbetriebe

    2003-07-01

    For more than 30 years now, the Hauptabteilung Dekontaminationsbetriebe (HDB, Central Decontamination Department) of the Forschungszentrum Karlsruhe has been engaged in the management of radioactive wastes produced by the operation and decommissioning of research reactors and institutes of the Research Center, the Karlsruhe reprocessing plant, the European Institute for Transuranium Elements, and the Baden-Wuerttemberg state collection center. For this purpose, the wastes delivered to HDB have been conditioned at various facilities according to the requirements specified. These conditioning requirements, however, have changed in the course of time. In the past, only minimum declaration and conditioning requirements had to be fulfilled for the ASSE repository storage facility. Since 1994, the KONRAD repository storage conditions have been adopted. They comprise a variety of quality criteria. Judging from today, duration of interim storage until transfer to a repository storage facility will take another 30 years at least. In addition to the documentary qualification of the waste products, it is therefore required to take measures to ensure long-term safety of both the waste packages and their storage. This is why the HDB, in agreement with the supervisory authority, i.e. the Federal Radiation Protection Authority, and its experts, has decided to put the waste products into KONRAD containers in certified compliance with the repository storage conditions and to backfill these containers with concrete in accordance with approved procedures. Thus, waste packages suited for repository storage will be produced and corrosion processes and the possible release of radioactivity will be prevented. (orig.)

  8. Site investigations for final disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Aeikaes, T.; Laine, T.

    1982-12-01

    Research concerning disposal of high-level nuclear waste of the Industrial Power Company Ltd has focused on deep underground disposal in Finnish precambrian bedrock. The present target is to have a repository for high-level waste in operation by 2020. Selection of the repository site is based on site investigations. In addition to geosciences, selection of appropriate site includes many branches of studies; engineering, safety analysis, ecology, transport, demography etc. The investigations required for site selection for high-level waste have been arranged in a sequence of four phases. The aim of the phases is that investigations become more and more detailed as the selection process continues. Phase I of the investigations is the characterization of potential areas. This comprises establishment of criteria for site selection and identification of areas that meet selection criteria. Objective of these studies is to determine areas for phase II field investigations. The studies are largely made by reviewing existing data and remote-sensing techniques. Phase II field investigations will be undertaken between 1986-1992. The number of potential candidates for repository site is reduced to few preferred areas by preceeding generic study. The site selection process culminates in phase III in site confirmation studies carried out at 2...3 most suitable sites during 1992-2010. This is then followed by phase IV, which comprises very detailed investigations at the selected site. An alternative for these investigations is to undertake them by using pilot shaft and drifts. Active development is taking place in all phases concerning investigation methods, criteria, parameters, data processing and modelling. The applicability of the various investigation methods and techniques is tested in a deep borehole in phase I. The co-operation with countries with similar geological conditions makes it possible to compare results obtained by different techniques

  9. The German quality system for waste repositories

    International Nuclear Information System (INIS)

    Beckmerhagen, I.; Berg, H.P.; Brennecke, P.

    1993-01-01

    The Bundesamt fuer Strahlenschutz (BfS)--Federal Office for Radiation protection--has to guarantee that the requirements resulting from different regulations concerning planning, design, construction, operation and decommissioning of a waste repository are fulfilled. In addition, the results of the safety assessments lead to nuclear-specific requirements on the design of the plant as well as to requirements on the radioactive waste packages intended to be disposed of. Therefore, the implementation of a quality assurance (QA) and quality control (QC) system is an essential task in order to ensure that the designed quality is achieved so that the necessary precaution against damage is taken. In this paper, a detailed description of QA and QC to be applied to the planned Konrad repository as well as the basic principles and the present status of the waste package QC are indicated and discussed

  10. Multiattribute utility analysis of alternative sites for the disposal of nuclear waste

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Keeney, R.L.

    1987-01-01

    Five potential sites nominated for the Nation's first geologic repository for disposing of nuclear waste are evaluated using multiattribute utility analysis. The analysis was designed to aid the Department of Energy in its selection of 3 sites for characterization, a detailed data-gathering process that will involve the construction of exploratory shafts for underground testing and that may cost as much as $1 billion per site. The analysis produced insights into the relative advantages and disadvantages of the nominated sites and clarified current uncertainties regarding repository performance

  11. Radioactive waste transport to a Nirex deep repository

    International Nuclear Information System (INIS)

    Bennett, D.; Appleton, P.R.; Eastman, C.R.

    1989-01-01

    Nirex is addressing the transport of radioactive wastes, repository construction materials, personnel and spoil as part of their development of a deep repository. An integrated transport system will be developed for wastes which may involve, road, rail and sea transport. The possible application and the scale of operation of the transport system is described. Environmental impact assessments will be carried out, and the proposed approach to these is described. A methodology for the assessment of transport safety has been established and the results of a preliminary assessment are given. (author)

  12. Thermal analysis of a heat generating waste repository on the seabed

    International Nuclear Information System (INIS)

    Maynard, M.J.; Butler, T.P.; Firmin, G.H.

    1987-02-01

    The time dependent thermal behaviour of a repository containing heat generating waste has been investigated during loading, transport, and subsequent emplacement on the seabed. Variations of less than 1 0 C in the sealed repository water temperature were calculated to be sufficient to create adequate water circulation. Conservative 1-D analyses were used to estimate a maximum repository water temperature of 256 0 C, occuring about 3 years after emplacement. The temperature distributions within the heat generating waste canisters and grouted titanium tubes have been calculated using 2-D axisymmetric finite element models. Peak temperatures at the waste centre-line were found to be approx. 40 0 C above the repository water temperature. The sensitivity of the results to assumed thermal parameters and to the effect of sediment accumulation have been considered. The possibility and consequences of steam formation within a vented repository have been discussed. (author)

  13. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  14. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed

  15. Studies relating to human intrusion into a repository. Report pertaining to work package 11. Preliminary safety case of the Gorleben site (VSG)

    Energy Technology Data Exchange (ETDEWEB)

    Beuth, Thomas; Buhmann, Dieter; Fischer-Appelt, Klaus; Moenig, Joerg; Ruebel, Andre; Wolf, Jens [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Bollingerfehr, Wilhelm; Filbert, Wolfgang [DBE Technology GmbH, Peine (Germany); Charlier, Frank [international nuclear safety engineering gmbh (nse), Aachen (Germany); Baltes, Bruno

    2014-10-15

    The question of the long-term safety of a repository system is inseparably linked with the intensive technical examination of the possible future evolution of the site and the repository system e. g. as a result of climatic, geologic, waste-related and repository-related processes. Here, the possible evolutions to be considered are those that have the potential to have a negative impact on the intended, furthest-possible, immediate, and lasting isolation of the radioactive waste in a defined area around the underground workings of the repository mine in salt rock, which is referred to as the containment-providing rock zone (CPRZ).

  16. Preliminary uncertainty analysis of pre-waste-emplacement groundwater travel times for a proposed repository in basalt

    International Nuclear Information System (INIS)

    Clifton, P.M.; Arnett, R.C.

    1984-01-01

    Preliminary uncertainty analyses of pre-waste-emplacement groundwater travel times are presented for a potential high-level nuclear waste repository in the deep basalts beneath the Hanford Site, Washington State. The uncertainty analyses are carried out by means of a Monte Carlo technique, which requires the uncertain inputs to be described as either random variables or spatial stochastic processes. Pre-waste-emplacement groundwater travel times are modeled in a continuous, flat-lying basalt flow top that is assumed to overlie the repository horizon. Two-dimensional, steady state groundwater flow is assumed, and transmissivity, effective thickness, and regional hydraulic gradient are considered as uncertain inputs. Groundwater travel time distributions corresponding to three groundwater models are presented and compared. Limitations of these preliminary simulation results are discussed in detail

  17. Public involvement in the siting of contentious facilities; Lessons from the radioactive waste repository siting programmes in Canada and the United States, with special reference to the Swedish repository siting process

    International Nuclear Information System (INIS)

    Richardson, P.J.

    1997-08-01

    This report describes the conclusion of a two-part programme, begun in 1994 with the overall aim of assisting in the development of an acceptable public participation strategy for use in Sweden for the siting of contentious facilities, with particular reference to the ongoing siting programme for a deep repository for spent nuclear fuel. The first part of the work programme, a global review of siting practice, was reported as SSI Rapport 94-15, in November 1994. This recommended further detailed studies of at least two individual programmes, which have now been carried out in Canada and the United States, and are reported on here. They involved face to face meetings with many of the main stake holders in the two programmes and enabled valuable insight to be gained into the potential problems associated with increased public participation, as well as identifying good practice where it exists. The lessons learned have then been applied to the evolving repository siting process in Sweden. 35 refs

  18. Public involvement in the siting of contentious facilities; Lessons from the radioactive waste repository siting programmes in Canada and the United States, with special reference to the Swedish repository siting process

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, P J [Geosciences for Development and the Environment (United Kingdom)

    1997-08-01

    This report describes the conclusion of a two-part programme, begun in 1994 with the overall aim of assisting in the development of an acceptable public participation strategy for use in Sweden for the siting of contentious facilities, with particular reference to the ongoing siting programme for a deep repository for spent nuclear fuel. The first part of the work programme, a global review of siting practice, was reported as SSI Rapport 94-15, in November 1994. This recommended further detailed studies of at least two individual programmes, which have now been carried out in Canada and the United States, and are reported on here. They involved face to face meetings with many of the main stake holders in the two programmes and enabled valuable insight to be gained into the potential problems associated with increased public participation, as well as identifying good practice where it exists. The lessons learned have then been applied to the evolving repository siting process in Sweden. 35 refs.

  19. Repository development status in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Beceiro, Alvaro; Zuloaga, Pablo [ENRESA (Spain)

    2009-06-15

    The paper describes the status of repository development for the different waste categories. Low and Intermediate Waste Disposal facility of El Cabril was commissioned in 1992 and is in normal operation. The major modifications and activities during the last years are the adaptation to waste streams not initially foreseen such as some decommissioning waste or waste from steel industry, and the improvement of its performance assessment, supported by a R and D and refined models. As part of this facility, a new disposal facility specifically intended for very low activity waste has been constructed and commissioned in July 2008. Its design is based on the European Directive for hazardous waste disposal. National policy for Nuclear Spent Fuel and High-Level waste is focused on the development of a centralized storage facility of the vault type, whose site location would be selected through a volunteering process. Meanwhile, with the aim of solving specific problems, three individual storage facilities are in different status at reactor sites. Research on final solution, including some repository aspects as well as separation and transmutation are being carried out in accordance to ENRESA's R and D program. ENRESA has developed conceptual designs for non site specific repositories, both in granite and clay, and has carried out their corresponding performance assessment exercises. (authors)

  20. Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects. Annual report, October 1984-September 1985. Volume 4

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Blencoe, J.G.; Jacobs, G.K.; Kelmers, A.D.; Seeley, F.G.; Whatley, S.K.

    1986-05-01

    Information pertaining to the potential geochemical behavior of radionuclides at candidate sites for a high-level radioactive waste repository, which is being developed by projects within the Department of Energy (DOE), is being evaluated by Oak Ridge National Laboratory for the Nuclear Regulatory Commission (NRC). During this report period, emphasis was placed on the evaluation of information pertinent to the Hanford site in southeastern Washington. Results on the sorption/solubility behavior of technetium, neptunium, and uranium in the basalt/water geochemical system are summarized and compared to the results of DOE. Also, summaries of results are reported from two geochemical modeling studies: (1) an evaluation of the information developed by DOE on the native copper deposits of Michigan as a natural analog for the emplacement of copper canisters in a repository in basalt, and (2) calculation of the solubility and speciation of radionuclides for representative groundwaters from the Yucca Mountain site in Nevada

  1. Developing multinational radioactive waste repositories: Infrastructural framework and scenarios of cooperation

    International Nuclear Information System (INIS)

    2004-10-01

    Currently the management of radioactive wastes centres on national strategies for collection, treatment, interim storage and disposal. This tendency to focus exclusively on national strategies reflects the fact that radioactive waste is a sensitive political issue, making cooperation among countries difficult. It is consistent with the accepted principle that a country that enjoys the benefit of nuclear energy, or the utilization of nuclear technology, should also take full responsibility for managing the generated radioactive waste. However, there are countries whose radioactive waste volumes do not easily justify a national repository, and/or countries that do not have the resources or favourable natural conditions for waste disposal to dedicate to a national repository project or would prefer to collaborate in shared initiatives because of their economic advantages. In such cases it may be appropriate for these countries to engage in a multinational collaborative effort to ensure that they have access to a common repository, in order that they can fulfil their responsibilities for their managing wastes safely. In response to requests from several Member States expressing an interest in multinational disposal options, the IAEA produced in 1998 a TECDOC outlining the important factors to be taken into account in the process of realizing such options. These factors include for example, technical (safety), institutional (legal, safeguards), economic (financial) socio-political (public acceptance) and ethical considerations. The present report reviews the work done in the previous study, taking into account developments since its publication as well as current activities in the field of multinational repositories. The report attempts to define the concepts involved in the creation of multinational repositories, to explore the likely scenarios, to examine the conditions for successful implementation, and to point out the benefits and challenges inherent to

  2. A reliability study on influence of the geosphere thickness over the activity release from a near surface radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Lais Alencar de, E-mail: laguiar@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Damaso, Vinicius Correa, E-mail: vcdamaso@gmail.com [Estado-Maior do Exercito (EME/EB), Brasilia, DF (Brazil)

    2013-07-01

    Infiltration of water into a waste disposal facility and into the waste region is the main factor inducing the release of radionuclides from a disposal facility. Since infiltrating water flow is dependent on the natural percolation at the site and the performance of engineered barriers, its prediction requires modelling of unsaturated water flow through intact or partially/completely failed components of engineered barriers and through the rock layer of the geosphere on which the repository is constructed. The engineered barriers include the cover systems, concrete vault, backfill, waste forms, and overpacks. This paper aims to carry out a performance study regarding a near surface repository in terms of reliability engineering. It is assumed that surface water infiltrates through the barriers reaching the matrix where radionuclides are contained, thus releasing them into the environment. The repository consists of a set of barriers which are considered saturated porous medium. As results, this paper presents the relation between the thickness of the geosphere layer and the radionuclide release rate in terms of activity. Such results represent a useful information for choosing the repository sites in order to keep the released activity in acceptable levels over time. (author)

  3. A reliability study on influence of the geosphere thickness over the activity release from a near surface radioactive waste repository

    International Nuclear Information System (INIS)

    Aguiar, Lais Alencar de; Damaso, Vinicius Correa

    2013-01-01

    Infiltration of water into a waste disposal facility and into the waste region is the main factor inducing the release of radionuclides from a disposal facility. Since infiltrating water flow is dependent on the natural percolation at the site and the performance of engineered barriers, its prediction requires modelling of unsaturated water flow through intact or partially/completely failed components of engineered barriers and through the rock layer of the geosphere on which the repository is constructed. The engineered barriers include the cover systems, concrete vault, backfill, waste forms, and overpacks. This paper aims to carry out a performance study regarding a near surface repository in terms of reliability engineering. It is assumed that surface water infiltrates through the barriers reaching the matrix where radionuclides are contained, thus releasing them into the environment. The repository consists of a set of barriers which are considered saturated porous medium. As results, this paper presents the relation between the thickness of the geosphere layer and the radionuclide release rate in terms of activity. Such results represent a useful information for choosing the repository sites in order to keep the released activity in acceptable levels over time. (author)

  4. Reference Design Description for a Geologic Repository

    International Nuclear Information System (INIS)

    2000-01-01

    One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay

  5. Geotechnical instrumentation for repository shafts

    International Nuclear Information System (INIS)

    Lentell, R.L.; Byrne, J.

    1993-01-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts

  6. The German Final Repository Konrad for Low and Intermediate Level Waste with Negligible Heat Generation - Water Law Issues

    International Nuclear Information System (INIS)

    Boetsch, W.; Grundler, D.; Kugel, K.; Brennecke, P.; Steyer, S.

    2009-01-01

    A survey on the conceptual realization of the requirements due to water law aspects within the license the KONRAD repository for radioactive waste with negligible heat generation in Germany is given [1]. The regulatory decision for the implementation and operation of the repository KONRAD includes, among other things, water law issues. In particular, the KONRAD license includes waste requirements concerning non-radioactive hazardous material (waste package constituents) which have to be considered producing KONRAD waste packages. The intended philosophy of waste acceptance and waste package quality assurance measures to be considered by the KONRAD site operator as well as by the waste producer will be presented. It will demonstrate the selected procedure of the waste declaration and acceptance and describe the structure and logic of tools and aids to comply with the legal requirements of the license and its collateral clause issued under water law. (authors)

  7. A multiattribute utility analysis of sites nominated for characterization for the first radioactive-waste repository: A decision-aiding methodology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In December 1984, the Department of Energy (DOE) published draft environmental assessments (EAs) to support the proposed nomination of five sites and the recommendation of three sites for characterization for the first radioactive-waste repository. A chapter common to all the draft EAs (Chapter 7) presented rankings of the five sites against the postclosure and the preclosure technical siting guidelines. To determine which three sites appeared most favorable for recommendation for characterization, three simple quantitative methods were used to aggregate the rankings assigned to each site for the various technical guidelines. In response to numerous comments on the methods, the DOE has undertaken a formal application of one of them (hereafter referred to as the decision-aiding methodology) for the purpose of obtaining a more rigorous evaluation of the nominated sites. The application of the revised methodology is described in this report. The method of analysis is known as multiattribute utility analysis; it is a tool for providing insights as to which sites are preferable and why. The decision-aiding methodology accounts for all the fundamental considerations specified by the siting guidelines and uses as source information the data and evaluations reported or referenced in the EAs. It explicitly addresses the uncertainties and value judgments that are part of all siting problems. Furthermore, all scientific and value judgments are made explicit for the reviewer. An independent review of the application of the decision-aiding methodology has been conducted by the Board on Radioactive Waste Management of the National Academy of Sciences; the comments of the Board are included as an appendix to this report.

  8. A multiattribute utility analysis of sites nominated for characterization for the first radioactive-waste repository: A decision-aiding methodology

    International Nuclear Information System (INIS)

    1986-05-01

    In December 1984, the Department of Energy (DOE) published draft environmental assessments (EAs) to support the proposed nomination of five sites and the recommendation of three sites for characterization for the first radioactive-waste repository. A chapter common to all the draft EAs (Chapter 7) presented rankings of the five sites against the postclosure and the preclosure technical siting guidelines. To determine which three sites appeared most favorable for recommendation for characterization, three simple quantitative methods were used to aggregate the rankings assigned to each site for the various technical guidelines. In response to numerous comments on the methods, the DOE has undertaken a formal application of one of them (hereafter referred to as the decision-aiding methodology) for the purpose of obtaining a more rigorous evaluation of the nominated sites. The application of the revised methodology is described in this report. The method of analysis is known as multiattribute utility analysis; it is a tool for providing insights as to which sites are preferable and why. The decision-aiding methodology accounts for all the fundamental considerations specified by the siting guidelines and uses as source information the data and evaluations reported or referenced in the EAs. It explicitly addresses the uncertainties and value judgments that are part of all siting problems. Furthermore, all scientific and value judgments are made explicit for the reviewer. An independent review of the application of the decision-aiding methodology has been conducted by the Board on Radioactive Waste Management of the National Academy of Sciences; the comments of the Board are included as an appendix to this report

  9. Data base for site specific migration analysis of radioactive elements in repositories

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, J

    1982-01-01

    Migration analysis is of considerable importance in long-term safety aspects of radioactive waste repositories. The present work gives the data base for a selected part of a comprehensive geosphere transport calculation. We restrict ourselves to a critical evaluation of parameters pertinent to the migration analysis of the /sup 245/Cm chain. This includes the important nuclide /sup 237/Np. With these we are able to perform a site specific calculation for repositories planned in deep geologic formations in Switzerland. It is shown that the granitic basement induces strong time delays in nuclide migration. In contrast to that, the overlaying sedimentary layers cause primarily a dilution of the radionuclide concentrations.

  10. Long-term durability experiments with concrete-based waste packages in simulated repository conditions

    International Nuclear Information System (INIS)

    Ipatti, A.

    1993-03-01

    Two extensive experiments on long-term durability of waste packages in simulated repository conditions are described. The first one is a 'half-scale experiment' comprising radioactive waste product and half-scale concrete containers in site specific groundwater conditions. The second one is 'full-scale experiment' including simulated inactive waste product and full-scale concrete container stored in slowly flowing fresh water. The scope of the experiments is to demonstrate long-term behaviour of the designed waste packages in contact with moderately concrete aggressive groundwater, and to evaluate the possible interactions between the waste product, concrete container and ground water. As the waste packages are made of high-quality concrete, provisions have been made to continue the experiments for several years

  11. Region-to-area screening methodology for the crystalline repository project

    International Nuclear Information System (INIS)

    1984-08-01

    The ''Nuclear Waste Policy Act of 1982'' (NWPA), enacted January 7, 1983 as Public Law 97-425, confirmed the responsibility of the US Department of Energy (DOE) for management of high-level radioactive waste. The NWPA directed the DOE to provide safe facilities for isolation of high-level radioactive waste from the environment in federally owned and federally licensed repositories. To achieve the goals of providing licensed repositories for high-level radioactive waste, a technical program has been developed by the DOE to meet all relevant radiological protection criteria and other requirements. By March 1987, the NWPA requires the DOE to recommend to the President a single site, chosen from five nominated sites for construction of the first repository. Rock types being considered as potential hosts for the first repository include salt, basalt, and tuff. The NWPA also requires the DOE to select three candidate sites, chosen from five nominated sites to be recommended to the President by July 1989, as possible locations for the second repository. Potential host rock types for the second federal repository will include crystalline rock. This document outlines the methodology for region-to-area screening of exposed crystalline rock bodies for suitability as sites for further study. 17 refs., 14 figs., 2 tabs

  12. Final storage high-level radioactive waste in Sweden - the way to the 2009 siting decision

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    In Sweden, high-level radioactive waste producing heat, i.e. spent fuel, is to be emplaced for final storage on the site of Forsmark, which also holds three reactor units. The siting decision was taken in June 2009. A 100 percent private company, a merger of the commercial nuclear power plant operators as producers of the waste, is responsible for the siting decision as well as for waste storage. Major impulses were given to the back-end fuel cycle policy in the early 1970s. Sweden practically gave up the reprocessing option very soon, but kept on pursuing final storage in deep geologic formations. Between 1977, when legislation was adopted with conditions relating to repository storage, and 2009, when the decision in favour of the Forsmark site was taken, the path followed was not always a straight line. The boundary conditions, such as the organization of the repository and procedural and safety criteria established by the government, are interesting with regard to their influence on the siting decision, if any. For this reason, the approaches chosen and their connections with government criteria and with geological conditions in Sweden, including their impacts on the repository concept chosen, will be examined. After a summary review of developments in Sweden, filing of the licensing application and the accompanying documents up to commissioning of the repository, a short comparison will be made with the situation in Germany, especially the status reached of the Gorleben salt dome, highlighting and evaluating important criteria and parameters. Sweden as a model is important especially in these respects: A repository site was found by a private company in consensus with the local government within the framework of government criteria, and with ultimate responsibility resting with the government; the local government of a place not winning the siting decision is disappointed although it will have the conditioning plant and receive higher grants; it was not only

  13. Managing the nation's nuclear waste. Site descriptions: Cypress Creek, Davis Canyon, Deaf Smith, Hanford Reference, Lavender Canyon, Richton Dome, Swisher, Vacherie Dome, and Yucca Mountain

    International Nuclear Information System (INIS)

    1985-01-01

    In 1982, the Congress enacted the Nuclear Waste Policy Act (Public Law 97-425), which established a comprehensive national program directed toward siting, constructing, and operating geologic repositories for the permanent disposal of high-level radioactive waste. In February 1983, the United States Department of Energy (DOE) identified the nine referenced repository locations as potentially acceptable sites for a mined geologic repository. These sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. The DOE findings and determinations are based on the evaluations contained in the draft Environmental Assessments (EA). A final EA will be prepared after considering the comments received on the draft EA. The purpose of this document is to provide the public with specific site information on each potential repository location

  14. Preliminary research work on building of repositories for burial of NPP radioactive waste in loess beds

    International Nuclear Information System (INIS)

    Stefanov, G.; Prodanov, Ya.

    1984-02-01

    The choice of a disposal site for burial of intermediate and low-level wastes from the NPS depends on a complex of conditions, requirements and methods resulting from the complex geologo-geographic and demographic conditions in the People's Republic of Bulgaria. The analysis of the geologic conditions shows that the various structures of the rocks, the tectonism, the seismicity in vast regions, the lack of plateau basalts hinder the choice of convenient sites for radioactive waste disposal. In Bulgaria the loess massives are studied and proposals are made to use them as a suitable environment for building of radioactive waste repositories

  15. Stream-simulation experiments for waste-repository investigations

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1980-01-01

    The potential for radionuclide migration by groundwater flow from a breached-water repository depends on the leaching process and on chemical changes that might occur as the radionuclide moves away from the repository. Therefore, migration involves the interactions of leached species with (1) the waste and canister, (2) the engineered barrier, and (3) the geologic materials surrounding the repository. Rather than attempt to synthesize each species and study it individually, another approach is to integrate all species and interactions using stream-simulation experiments. Interactions identified in these studies can then be investigated in detail in simpler experiments

  16. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs

  17. Integrating repositories with fuel cycles: The airport authority model

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  18. Integrating repositories with fuel cycles: The airport authority model

    International Nuclear Information System (INIS)

    Forsberg, C.

    2012-01-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  19. Assessment of volcanic and tectonic hazards to high level radioactive waste repositories

    International Nuclear Information System (INIS)

    Wallmann, P.C.; Miller, I.; Kossik, R.

    1993-01-01

    Golder Associates Inc. (GAI) has developed a computer program (RIP) for performing probabilistic total system performance assessment and site characterization strategy evaluation which can be applied in an iterative manner to evaluate repository site suitability and to guide characterization activities. The performance assessment model incorporated in RIP has three basic component models: (1) waste package behavior, (2) radionuclide transport pathways, and (3) disruptive events. Classes of disruptive events are specified in RIP by (1) a disruption rate (events/yr.), (2) open-quotes event descriptorsclose quotes which describe event characteristics and magnitude, and (3) the consequences associated with an event. One of the strengths of RIP is its flexibility, which allows it to evaluate different sites and conceptual models. Examples of seismic and volcanic disruptive event models constructed by GAI for Yucca Mountain are presented. Analysis of the results of these models indicates that for the simulated models, neither of these event classes significantly impacts the performance of the proposed repository over a 10,000 year time span

  20. Stabilities of nuclear waste forms and their geochemical interactions in repositories

    International Nuclear Information System (INIS)

    White, W.B.

    1980-01-01

    The stabilities of high-level nuclear waste forms in a repository environment are briefly discussed. The advantages and disadvantages of such waste forms as borosilicate glass, supercalcine ceramics, and synthetic minerals are presented in context with the different rock types which have been proposed as possible host rocks for repositories. It is concluded that the growing geochemical evidence favors the use of a silicate rock repository because of the effectiveness of aluminosilicate rocks as chemical barriers for most radionuclides

  1. The preliminary design and feasibility study of the spent fuel and high level waste repository in the Czech Republic

    International Nuclear Information System (INIS)

    Valvoda, Z.; Holub, J.; Kucerka, M.

    1996-01-01

    In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow from NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in next period

  2. Supply-side approach to nuclear waste repositories

    International Nuclear Information System (INIS)

    Harmon, L.H.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) was signed into law on January 7, 1983. Its purpose was to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Its goal is to have the first waste repository operational by 1998. It is believed by many that this goal cannot possibly be met. The Act is exceedingly complex with something in it for everybody. There are serious impediments to the program - not the least of which is legislation itself. The process will cost tens of billions of dollars and, even if it does succeed, will take many years to accomplish. This paper proposes a method for getting there in 7 years while saving billions of dollars. It is a summary of a more extensive research effort by the author while attending the Industrial College of the Armed Forces

  3. Review of geochemical measurement techniques for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    Knauss, K.G.; Steinborn, T.L.

    1980-01-01

    A broad, general review is presented of geochemical measurement techniques that can provide data necessary for site selection and repository effectiveness assessment for a radioactive waste repository in bedded salt. The available measurement techniques are organized according to the parameter measured. The list of geochemical parameters include all those measurable geochemical properties of a sample whole values determine the geochemical characteristics or behavior of the system. For each technique, remarks are made pertaining to the operating principles of the measurement instrument and the purpose for which the technique is used. Attention is drawn to areas where further research and development are needed

  4. Nuclear waste and social peace - Strategies of site selection for radioactive waste disposal. Proceeding

    International Nuclear Information System (INIS)

    Dally, A.

    2003-01-01

    In February 1999, BMU appointed a working party to establish site selection procedures for repositories (AkEnd) which was to develop a transparent procedure of finding and selecting sites for the final storage of all kinds of radioactive waste in Germany. The procedure finally proposed by AkEnd implies considerable uncertainty, inter alia, about its legal implementability, the time required, and funding. The discussion papers of the meeting ''atomic waste and social peace'' show a tightrope walk between society, clerical aspects and scientists taking into account also a right of say for critical citizens. (GL)

  5. Engineering studies: high-level radioactive waste repositories task 3 - review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The report reviews proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository with particular reference to: waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development. In carrying out this programme due attention was given to work already carried out both in the U.K. and overseas and where appropriate comparisons with this work have been made to substantiate and explain the observations made in this report. The examination and use of this previous work however has been confined to those proposals which were considered capable of meeting the basic design criterion for a U.K. based repository, that the maximum temperature achieved by the host rock should not exceed 100/sup 0/C.

  6. The design of the Bulgaria rad waste repository

    International Nuclear Information System (INIS)

    Stefonova, I.; Petrov, I.; Navarro, M.; Sanchez, M.; Medinilla, G.

    2012-01-01

    In October 2011 a consortium composed by Westinghouse Engineering Spain SAU, ENRESA and DBE Technology GmbH was awarded a contract for the design of the Bulgaria rad waste repository. The facility, inspired in the spanish centre of El Cabril owned by ENRESA, will consist of a 66 reinforced concrete cells surface repository capable of receiving 18600 already conditioned waste containers of 20 t each, during 60 years, and the related auxiliary facilities and buildings. The project, representing a challenge because of the schedule and required level of detail, goes on fulfilling main milestones and getting customer satisfaction. (Author)

  7. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company's (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP

  8. Status of siting studies for a near surface repository site for radioactive wastes in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Palattao, M.V.B.; Marcelo, E.A.; Caseria, E.S.; Venida, L.L.; Cruz, J.M. dela

    2002-01-01

    The Philippines, through the Philippine Nuclear Research Institute (PNRI), decided to conduct a study on siting a low level radioactive waste disposal facility. The infrastructure set up for this purpose, the radioactive waste disposal concept, the overall siting process, the methodology applied and preliminary results obtained are described in this paper. (author)

  9. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  10. NF-PRO research on a repository for vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Sneyers, A.

    2006-01-01

    NF-PRO is a four-year (2004-2007) Integrated Project supported by funding under the Sixth Research (EURATOM) Programme of the European Commission. NF-PRO is coordinated by SCK C EN and investigates key processes in the near-field of geological repositories for the disposal of high-level vitrified waste and spent nuclear fuel. The near-field of a geological repository consists of the area surrounding the waste packages and is composed of several engineered barriers that enclose and confine the disposed waste. These barriers include the waste form, the waste canisters, backfills, seals, plugs and the part of the host rock that has been modified by the excavation of the repository. In all repository designs under investigation within EU Member States, the near-field plays an important role in ensuring the overall safety of disposal: its principal function is to retain radionuclides over extended periods of time and to minimise their release from the waste to the host rock. The main objective of NF-PRO is to integrate European research on the near field with the aim of enhancing common understanding of the long-term changes taking place in a deep repository. NF-PRO assesses how these changes affect the containment of the disposed radioactive waste. Knowledge generated by the project can be applied in waste management programmes to optimise repository designs and to make barriers functional and resource-efficient. The integration of results from detailed process studies in assessments on the overall near-field system performance is a key objective of NF-PRO. The level of integration envisaged by NF-PRO has not yet been achieved in earlier research projects supported by the European Commission. Accordingly, NF PRO represents a major step forward in the establishing of the scientific and technical basis for geological disposal and the safe management of radioactive wastes

  11. Program criteria for subseabed disposal of radioactive waste: site qualification plan

    International Nuclear Information System (INIS)

    Laine, E.P.; Anderson, D.R.; Hollister, C.D.

    1982-05-01

    This document describes the evolving methodology which is being used to identify, and study sites in subseabed geological formations which may be candidates for use as repositories for high-level nuclear waste. Two primary criteria guide all phases of this work: the stability and barrier criteria. The stability criterion defines areas of the seabed that are unlikely to be disturbed by tectonic forces and oceanographic changes durig the lifetime of a waste repository. The barrier criterion defines those subseabed geological formations most likely to form an effective barrier to the release of radionuclides. Because of the large area of the oceans, a phased approach has been adopted through which successively smaller areas of the sea floor are studied in ever greater detail. The first phase, which is complete, has identified abyssal clay deposits that are remote from tectonic boundaries and continental margins as being the regions (>10 5 km 2 ) on the sea floor within which acceptable sites might be most readily identified. The second phase involves downgrading less desirable areas (>10 4 km 2 ) within these regions, using archived seismic reflection profiling, sediment cores, and oceanographic data. This winnowing process identifies locations about one degree square (greater than or equal to 10 4 km 2 ) for more detailed field studies during the first part of the third phase. From these locations candidate sites (less than or equal to 10 4 km 2 ) will be chosen based on detailed geological and geophysical surveying. In the second part of the third phase, detailed monitoring of the candidate sites will begin to determine long-term baseline conditions. After monitoring is underway, a pilot repository will be established using waste canisters. Based on this work, a site selection/rejection report will be written. The fourth and last phase will involve extended monitoring of oceanographic conditions at each repository

  12. Scientific studies in support of the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Chu, M.S.Y.; Weart, W.D.

    1996-01-01

    The DOE submitted a Compliance Certification Application for WIPP in october, 1996. A critical part of this application was a Performance Assessment which predicts the cumulative radioactive release to the accessible environment over a time period of 10,000 years. Comparison of this predicted release to the EPA standard shows a comfortable margin of compliance. The scientific understanding that was critical to developing this assessment spans a broad range of geotechnical disciplines, and required a thorough understanding of the site's geology and hydrology. Evaluation of the geologic processes which are active in the site region establishes that there will be no natural breach of site integrity for millions of years, far longer than the 10,000 year regulatory period. Inadvertent human intrusion is, therefore, the only credible scenario to lead to potential radioactive release to the accessible environment. To substantiate this conclusion and to quantify these potential releases from human intrusion, it has been necessary to develop an understanding of the following processes: salt creep and shaft seal efficacy; gas generation from organic decomposition of waste materials and anoxic corrosion of metals in the waste and waste packages; solubilities for actinides in brine; fluid flow in Salado formation rocks, and hydrologic transport of actinides in the overlying dolomite aquifers. Other issues which had to be evaluated to allow definition of breach scenarios were brine reservoir occurrences and their associated reservoir parameters, consequences of mining over the repository, and drilling for natural resources in the vicinity of the repository. Results of all these studies will be briefly summarized in this paper

  13. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  14. Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Yang Tianxiao; Liu Shufen

    2001-01-01

    Groundwater is the major carrier for radionuclide migration in the high-level radioactive waste disposal. For this reason the hydrogeological study is one of the main contents in repository siting. According to the field investigation which has been carried out during the last few years and some data from the previous study, the author describes the general hydrogeological situation and groundwater circulation, as well as chemical characteristics of groundwater in Beishan preselected area, Gansu province. The research shows that main hydrogeological characteristics of the Beishan area is water-bearing character, low permeability and slow water movement while the major chemical feature of groundwater is high mineralization. This recognition will provide an important basis for repository siting in the site area

  15. Site selection for Canada's national repository for used nuclear fuel

    International Nuclear Information System (INIS)

    Ben Belfadhel, M.; Watts, B.; Facella, J.

    2015-01-01

    In 2007, the Government of Canada selected Adaptive Phased Management as Canada's plan for the long-term management of Canada's used nuclear fuel. The approach provides for containment and isolation of the material in a deep geological repository at a safe site with an informed and willing host. The Nuclear Waste Management Organization is tasked through federal legislation with selecting the site and developing and managing all aspects of the plan. In May 2010, the organization published and initiated the site selection process that serves as a road map for decision making on the location for the deep geological repository. It continues to lead the site selection process for the repository and an associated Centre of Expertise. The screening process is advancing and, from an initial starting point of 22 communities expressing interest in learning about the project; as of September 2015, 9 communities are the focus of more detailed technical and community well-being studies. Preliminary Assessments, the third step in the 9-step site selection process are underway in these communities. The Assessments involve preliminary technical and social desktop and field assessments, engagement activities within and beyond each interested community, and involvement of Indigenous peoples and nearby municipalities in the planning and conduct of the work. This paper provides an update on the advancement of the site selection process. It describes the nature of the technical and social studies being conducted at this phase of work, including the progressively more detailed field studies that are the focus of technical work at the current stage, the approach to engagement and collaboration with communities to direct these studies, and the work underway to ensure the framework used for this assessment and engagement includes the range of priorities and perspectives of First Nations and Metis peoples and communities in the broader area. (author)

  16. Buoyancy flow in fractures intersecting a nuclear waste repository

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.

    1980-07-01

    The thermally induced buoyancy flow in fractured rocks around a nuclear waste repository is of major concern in the evaluation of the regional, long-term impact of nuclear waste disposal in geological formation. In this study, buoyancy flow and the development of convective cells are calculated in vertical fractures passing through or positioned near a repository. Interaction between buoyancy flow and regional hydraulic gradient is studied as a function of time, and the interference of intersecting fractures with each other is also discussed

  17. Information base for waste repository design. Volume 5. Decommissioning of underground facilities. Technical report

    International Nuclear Information System (INIS)

    Giuffre, M.S.; Plum, R.L.; Koplik, C.M.; Talbot, R.

    1979-03-01

    This report is Volume 5 of a seven volume document on nuclear waste repository design issues. This report discusses the requirements for decommissioning a deep underground facility for the disposal of radioactive waste. The techniques for sealing the mined excavations are presented and an information base on potential backfill materials is provided. Possible requirements for monitoring the site are discussed. The performance requirements for backfill materials are outlined. The advantages and disadvantages of each sealing method are stated

  18. Site characterization plan: Conceptual design report, Volume 2: Chapters 4-9: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    This document presents a description of a prospective geologic repository for high-level radioactive waste to support the development of the Site Characterization Plan for the Yucca Mountain site. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases (site and properties of the waste package), design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. 147 refs., 145 figs., 83 tabs

  19. Role of waste packages in the safety of a high level waste repository in a deep geological formation

    International Nuclear Information System (INIS)

    Bretheau, F.; Lewi, J.

    1990-06-01

    The safety of a radioactive waste disposal facility lays on the three following barriers placed between the radioactive materials and the biosphere: the waste package; the engineered barriers; the geological barrier. The function assigned to each of these barriers in the performance assessment is an option taken by the organization responsible for waste disposal management (ANDRA in France), which must show that: expected performances of each barrier (confinement ability, life-time, etc.) are at least equal to those required to fulfill the assigned function; radiation protection requirements are met in all situations considered as credible, whether they be the normal situation or random event situations. The French waste management strategy is based upon two types of disposal depending on the nature and activity of waste packages: - surface disposal intended for low and medium level wastes having half-lives of about 30 years or less and alpha activity less than 3.7 MBq/kg (0.1 Ci/t), for individual packages and less than 0.37 MBq/kg (0.01 Ci/t) in the average. Deep geological disposal intended for TRU and high level wastes. The conditions of acceptance of packages in a surface disposal site are subject to the two fundamental safety rules no. I.2 and III.2.e. The present paper is only dealing with deep geological disposal. For deep geological repositories, three stages are involved: stage preceding definitive disposal (intermediate storage, transportation, handling, setting up in the disposal cavities); stage subsequent to definitive sealing of the disposal cavities but prior to the end of operation of the repository; stage subsequent to closure of the repository. The role of the geological barrier has been determined as the essential part of long term radioactivity confinement, by a working group, set up by the French safety authorities. Essential technical criteria relating to the choice of a site so defined by this group, are the following: very low permeability

  20. Experiences of risk in connection with site selection for a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Biel, A.; Dahlstrand, U.

    1991-03-01

    Describes an investigation of the experiences of risks the the Swedish inhabitants have in connection with site selection for a repository for radioactive waste. The attitudes show a rather complicated picture. It is influenced by such factors as: sex, education and distance to the facility. (KAE)