WorldWideScience

Sample records for waste repository safety

  1. Radioactive waste repository of high ecological safety

    International Nuclear Information System (INIS)

    Sobolev, I.; Barinov, A.; Prozorov, L.

    2000-01-01

    With the purpose to construct a radioactive waste repository of high ecological safety and reliable containment, MosNPO 'Radon' specialists have developed an advanced type repository - large diameter well (LBD) one. A project is started for the development of a technology for LDW repository construction and pilot operation of the new repository for 25-30 years. The 2 LDW repositories constructed at the 'Radon' site and the developed monitoring system are described

  2. Types of safety assessments of near surface repository for radioactive waste

    International Nuclear Information System (INIS)

    Mateeva, M.

    2004-01-01

    The purpose of this article is to presents the classification of different types safety assessments of near surface repository for low and intermediate level radioactive waste substantiated with results of safety assessments generated in Bulgaria. The different approach of safety assessments applied for old existing repository as well as for site selection for construction new repository is outlined. The regulatory requirements in Bulgaria define three main types of assessments: Safety assessment; Technical substation of repository safety; Assessment of repository influence on environment that is in form of report prepared from the Ministry of environment and waters on the base of results obtained in two first types of assessments. Additionally first type is subdivided in three categories - preliminary safety assessment, safety assessment and post closure safety assessment, which are generated using deterministic approach. The technical substation of repository safety is generated using probabilistic approach. Safety assessment results that are presented here are based on evaluation of existing old repository type 'Radon' in Novi Han and real site selection procedure for new near surface repository for low and intermediate level radioactive waste from nuclear power station in Kozloduy. The important role of safety assessment for improvement the repository safety as well as for repository licensing, correct site selection and right choice of engineer barriers and repository design is discussed using generated results. (author)

  3. Developing of Radioactive Wastes Management Safety at Baldone Repository Radons

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Abramenkova, G.; Klavins, M.

    2008-01-01

    The near surface radioactive wastes repository Radons near the Baldone city was put in operation in 1962. The safety assessment of repository was performed during 2000-2001 under the PHARE project to evaluate the recommended upgrades of repository. The outline design for new vaults and interim storage for long lived radioactive wastes was elaborated during 2003-2004 years. The Environmental Impact Assessment (EIA) for upgrade of Baldone repository was performed during 2004-2005 years. Additional evaluations of radioactive wastes management safety were performed during 2006 year by the experts of ENRESA, Spain. It was shown, that the additional efforts were spent for improving of radioactive wastes cementation in concrete containers. The results of tritium and Cs 137 leaching studies are presented and discussed. It was shown, that additives can significantly reduce the migration of radionuclides in ground water. The leaching coefficients for tritium and Cs 137 were determined to supply with the necessary data the risk assessment calculations for operation of Baldone repository R adons

  4. Training courses on integrated safety assessment modelling for waste repositories

    International Nuclear Information System (INIS)

    Mallants, D.

    2007-01-01

    Near-surface or deep repositories of radioactive waste are being developed and evaluated all over the world. Also, existing repositories for low- and intermediate-level waste often need to be re-evaluated to extend their license or to obtain permission for final closure. The evaluation encompasses both a technical feasibility as well as a safety analysis. The long term safety is usually demonstrated by means of performance or safety assessment. For this purpose computer models are used that calculate the migration of radionuclides from the conditioned radioactive waste, through engineered barriers to the environment (groundwater, surface water, and biosphere). Integrated safety assessment modelling addresses all relevant radionuclide pathways from source to receptor (man), using in combination various computer codes in which the most relevant physical, chemical, mechanical, or even microbiological processes are mathematically described. SCK-CEN organizes training courses in Integrated safety assessment modelling that are intended for individuals who have either a controlling or supervising role within the national radwaste agencies or regulating authorities, or for technical experts that carry out the actual post-closure safety assessment for an existing or new repository. Courses are organised by the Department of Waste and Disposal

  5. Climate Considerations in Long-Term Safety Assessments for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove; Brandefelt, Jenny; Claesson Liljedahl, Lillemor [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)], E-mail: jens-ove.naslund@skb.se

    2013-05-15

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  6. Nuclear safety requirements for upgrading the National Repository for Radioactive Wastes-Baita Bihor

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Necula, Daniela

    2000-01-01

    The upgrading project of National Repository for Radioactive Wastes-Baita Bihor is based on the integrated concept of nuclear safety. Its ingredients are the following: A. The principles of nuclear safety regarding the management of radioactive wastes and radioprotection; B. Safety objectives for final disposal of low- and intermediate-level radioactive wastes; C. Safety criteria for final disposal of low- and intermediate-level radioactive wastes; D. Assessment of safety criteria fulfillment for final disposal of low- and intermediate-level radioactive wastes. Concerning the nuclear safety in radioactive waste management the following issues are considered: population health protection, preventing transfrontier contamination, future generation radiation protection, national legislation, control of radioactive waste production, interplay between radioactive waste production and management, radioactive waste repository safety. The safety criteria of final disposal of low- and intermediate-level radioactive wastes are discussed by taking into account the geological and hydrogeological configuration, the physico-chemical and geochemical characteristics, the tectonics and seismicity conditions, extreme climatic potential events at the mine location. Concerning the requirements upon the repository, the following aspects are analyzed: the impact on environment, the safety system reliability, the criticality control, the filling composition to prevent radioactive leakage, the repository final sealing, the surveillance. Concerning the radioactive waste, specific criteria taken into account are the radionuclide content, the chemical composition and stability, waste material endurance to heat and radiation. The waste packaging criteria discussed are the mechanical endurance, materials toughness and types as related to deterioration caused by handling, transportation, storing or accidents. Fulfillment of safety criteria is assessed by scenarios analyses and analyses of

  7. Climate considerations in long-term safety assessments for nuclear waste repositories.

    Science.gov (United States)

    Näslund, Jens-Ove; Brandefelt, Jenny; Liljedahl, Lillemor Claesson

    2013-05-01

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  8. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  9. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  10. Safety assessment of geologic repositories for nuclear waste

    International Nuclear Information System (INIS)

    Bartlett, J.W.; Burkholder, H.C.; Winegardner, W.K.

    1977-01-01

    Consideration of geologic isolation for final disposition of radioactive wastes has led to the need for evaluation of the safety of the concept. Such evaluations require consideration of factors not encountered in conventional risk analysis: consequences at times and places far removed from the repository site; indirect, complex, and alternative pathways between the waste and the point of potential consequences; a highly limited data base; and limited opportunity for experimental verification of results. R and D programs to provide technical safety evaluations are under way. Three methods are being considered for the probabilistic aspects of the evaluations: fault tree analysis, repository simulation analysis, and system stability analysis. Nuclide transport models, currently in a relatively advanced state of development, are used to evaluate consequences of postulated loss of geologic isolation. This paper outlines the safety assessment methods, unique features of the assessment problem that affect selection of methods and reliability of results, and available results. It also discusses potential directions for future work

  11. Rad waste disposal safety analysis / Integrated safety assessment of a waste repository

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Choi, Jongwon; Kang, Chulhyung

    2012-04-01

    We developed CYPRUS+and adopted PID and RES method for the development of scenario. Safety performance assessment program was developed using GoldSim for the safety assessment of disposal system for the disposal of spnet fuels and wastes resulting from the pyrpoprocessing. Biosphere model was developed and verified in cooperation with JAEA. The capability to evaluate post-closure performance and safety was added to the previously developed program. And, nuclide migration and release to the biosphere considering site characteristics was evaluated by using deterministic and probabilistic approach. Operational safety assessment for drop, fire, and earthquake was also statistically evaluated considering well-established input parameter distribution. Conservative assessment showed that dose rate is below the limit value of low- and intermediate-level repository. Gas generation mechanism within engineered barrier was defined and its influence on safety was evaluated. We made probabilistic safety assessment by obtaining the probability distribution functions of important input variables and also made a sensitivity analysis. The maximum annual dose rate was shown to be below the safety limit value of 10 mSv/yr. The structure and element of safety case was developed to increase reliability of safety assessment methodology for a deep geological repository. Finally, milestone for safety case development and implementation strategy for each safety case element was also proposed

  12. Long-Term Safety Analysis of Baldone Radioactive Waste Repository and Updating of Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2001-12-01

    The main objective of the project was to provide advice to the Latvian authorities on the safety enhancements and waste acceptance criteria for near surface radioactive waste disposal facilities of the Baldone repository. The project included the following main activities: Analysis of the current status of the management of radioactive waste in Latvia in general and, at the Baldone repository in particular Development of the short and long-term safety analysis of the Baldone repository, including: the planned increasing of capacity for disposal and long term storage, the radiological analysis for the post-closure period Development of the Environment Impact Statement, for the new foreseen installations, considering the non radiological components Proposal of recommendations for future updating of radioactive waste acceptance criteria Proposal of recommendations for safety upgrades to the facility. The work programme has been developed in phases and main tasks as follows. Phase 0: Project inception, Phase 1: Establishment of current status, plans and practices (Legislation, regulation and standards, Radioactive waste management, Waste acceptance criteria), Phase 2: Development of future strategies for long-term safety management and recommendations for safety enhancements. The project team found the general approach use at the installation, the basic design and the operating practices appropriate to international standards. Nevertheless, a number of items subject to potential improvements were also identified. These upgrading recommendations deal with general aspects of the management (mainly storage versus disposal of long-lived sources), site and environmental surveillance, packaging (qualification of containers, waste characterization requirements), the design of an engineered cap and strategies for capping. (author)

  13. Project Guarantee 1985. Final repository for low- and intermediate-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The safety barrier system for the type B repository for low- and intermediate-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). In the case of low- and intermediate-level waste the technical safety barrier system comprises: waste solidification matrix (cement, bitumen and resin), immobilisation of the waste packages in containers using liquid cement, concrete repository containers, backfilling of remaining vacant storage space with special concrete, concrete lining of the repository caverns, sealing of access tunnels on final closure of the repository. Natural geological safety barriers - host rock and overlying formations - have the following important functions. Because of its stability, the host rock in the repository zone protects the technical safety barrier system from destruction caused by climatic effects and erosion for a sufficient length of time. It also provides for low water flow and favourable chemistry (reducing conditions)

  14. Preliminary safety analysis of the Baita Bihor radioactive waste repository, Romania

    International Nuclear Information System (INIS)

    Little, Richard; Bond, Alex; Watson, Sarah; Dragolici, Felicia; Matyasi, Ludovic; Matyasi, Sandor; Naum, Mihaela; Niculae, Ortenzia; Thorne, Mike

    2007-01-01

    A project funded under the European Commission's Phare Programme 2002 has undertaken an in-depth analysis of the operational and post-closure safety of the Baita Bihor repository. The repository has accepted low- and some intermediate-level radioactive waste from industry, medical establishments and research activities since 1985 and the current estimate is that disposals might continue for around another 20 to 35 years. The analysis of the operational and post-closure safety of the Baita Bihor repository was carried out in two iterations, with the second iteration resulting in reduced uncertainties, largely as a result taking into account new information on the hydrology and hydrogeology of the area, collected as part of the project. Impacts were evaluated for the maximum potential inventory that might be available for disposal to Baita Bihor for a number of operational and postclosure scenarios and associated conceptual models. The results showed that calculated impacts were below the relevant regulatory criteria. In light of the assessment, a number of recommendations relating to repository operation, optimisation of repository engineering and waste disposals, and environmental monitoring were made. (authors)

  15. Safety assessment methodology for waste repositories in deep geological formations

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Lewi, J.; Pradel, J.; Queniart, D.; Raimbault, P.; Assouline, M.

    1986-06-01

    The long term safety of a nuclear waste repository relies on the evaluation of the doses which could be transferred to man in the future. This implies a detailed knowledge of the medium where the waste will be confined, the identification of the basic phenomena which govern the migration of the radionuclides and the investigation of all possible scenarios that may affect the integrity of the barriers between the waste and the biosphere. Inside the Institute of protection and nuclear safety of the French Atomic Energy Commission (CEA/IPSN), the Department of the Safety Analysis (DAS) is currently developing a methodology for assessing the safety of future geological waste repositories, and is in charge of the modelling development, while the Department of Technical Protection (DPT) is in charge of the geological experimental studies. Both aspects of this program are presented. The methodology for risk assessment stresses the needs for coordination between data acquisition and model development which should result in the obtention of an efficient tool for safety evaluation. Progress needs to be made in source and geosphere modelling. Much more sophisticated models could be used than the ones which is described; however sensitivity analysis will determine the level of sophistication which is necessary to implement. Participation to international validation programs are also very important for gaining confidence in the approaches which have been chosen

  16. A Deterministic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae; Choi, Jong Won

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called 'A-KRS', in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

  17. Safety assessment of Novi Han radioactive waste repository - features, problems, results and perspectives

    International Nuclear Information System (INIS)

    Mateeva, M.

    2000-01-01

    This paper summarizes the work done and the achievements reached in the Novi Han radioactive waste repository safety assessment within the IAEA Model Project 'Increasing the safety of Novi Han radioactive waste repository BUL 4/005'. The overall safety assessment has a wide context, but the work reported here relates only to some details and results concerning the development and implementation of the appropriate methodology approach, model and computer code used for the calculations. Different steps and procedures are included for a better practical understanding of the obtained results during the safety assessment performance. The methodology approach is widely based on an international experience in safety analysis and implemented for evaluation computer code AMBER, which is one of the recommended from the safety assessments experts. (author)

  18. Evaluation of health and safety impacts of defense high-level waste in geologic repositories

    International Nuclear Information System (INIS)

    Smith, E.D.; Kocher, D.C.; Witherspoon, J.P.

    1985-02-01

    Pursuant to the requirement of the Nuclear Waste Policy Act of 1982 that the President evaluate the use of commercial high-level waste repositories for the disposal of defense high-level wastes, a comparative assessment has been performed of the potential health and safety impacts of disposal of defense wastes in commercial or defense-only repositories. Simplified models were used to make quantitative estimates of both long- and short-term health and safety impacts of several options for defense high-level waste disposal. The results indicate that potential health and safety impacts are not likely to vary significantly among the different disposal options for defense wastes. Estimated long-term health and safety impacts from all defense-waste disposal options are somewhat less than those from commercial waste disposal, while short-term health and safety impacts appear to be insensitive to the differences between defense and commercial wastes. In all cases, potential health and safety impacts are small because of the need to meet stringent standards promulgated by the US Environmental Protection Agency and the US Nuclear Regulatory Commission. We conclude that health and safety impacts should not be a significant factor in the choice of a disposal option for defense high-level wastes. 20 references, 14 tables

  19. Safety analysis methodologies for radioactive waste repositories in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    The report is part of the IAEA Safety Series and is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of shallow ground radioactive waste repositories. It discusses approaches that are applicable for safety analysis of a shallow ground repository. The methodologies, analysis techniques and models described are pertinent to the task of predicting the long-term performance of a shallow ground disposal system. They may be used during the processes of selection, confirmation and licensing of new sites and disposal systems or to evaluate the long-term consequences in the post-sealing phase of existing operating or inactive sites. The analysis may point out need for remedial action, or provide information to be used in deciding on the duration of surveillance. Safety analysis both general in nature and specific to a certain repository, site or design concept, are discussed, with emphasis on deterministic and probabilistic studies

  20. The study on safety facility criteria for radioactive waste repository

    International Nuclear Information System (INIS)

    Lee, S. H.; Choi, M. H.; Han, S. H. and others

    1992-12-01

    The radioactive waste repository are necessary to install the engineered safety systems to secure the safety for operation of the repository in the event of fire and earthquake. Since the development of safety facility criteria requires a thorough understanding about the characteristics of the engineered safety systems, we should investigate by means of literature survey and visit SKB. In particular, definition, composition of the systems, functional requirement of the systems, engineered safety systems of foreign countries, system design, operation and maintenance requirement should be investigated : fire protection system, ventilation system, drainage system, I and C system, electric system, radiation monitoring system. This proposed criteria consist of purpose, scope of application, ventilation system, fire protection system, drainage system, electric system and this proposed criteria can be applied as a basic reference for the final criteria

  1. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    1999-12-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk.

  2. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    International Nuclear Information System (INIS)

    Eriksson, Leif G.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk

  3. A Probabilistic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.

  4. Mathematical simulation for safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Brandstetter, A.; Raymond, J.R.; Benson, G.L.

    1979-01-01

    Mathematical models are being developed as part of the Waste Isolation Safety Assessment Program (WISAP) for assessing the post-closure safety of nuclear waste storage in geologic formations. The objective of this program is to develop the methods and data necessary to determine potential events that might disrupt the integrity of a waste repository and provide pathways for radionuclides to reach the bioshpere, primarily through groundwater transport. Four categories of mathematical models are being developed to assist in the analysis of potential release scenarios and consequences: (1) release scenario analysis models; (2) groundwater flow models; (3) contaminant transport models; and (4) radiation dose models. The development of the release scenario models is in a preliminary stage; the last three categories of models are fully operational. The release scenario models determine the bounds of potential future hydrogeologic changes, including potentially disruptive events. The groundwater flow and contaminant transport models compute the flowpaths, travel times, and concentrations of radionuclides that might migrate from a repository in the event of a breach and potentially reach the biosphere. The dose models compute the radiation doses to future populations. Reference site analyses are in progress to test the models for application to different geologies, including salt domes, bedded salt, and basalt

  5. Development of database systems for safety of repositories for disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hun; Han, Jeong Sang; Shin, Hyeon Jun; Ham, Sang Won; Kim, Hye Seong [Yonsei Univ., Seoul (Korea, Republic of)

    1999-03-15

    In the study, GSIS os developed for the maximizing effectiveness of the database system. For this purpose, the spatial relation of data from various fields that are constructed in the database which was developed for the site selection and management of repository for radioactive waste disposal. By constructing the integration system that can link attribute and spatial data, it is possible to evaluate the safety of repository effectively and economically. The suitability of integrating database and GSIS is examined by constructing the database in the test district where the site characteristics are similar to that of repository for radioactive waste disposal.

  6. Project Guarantee 1985. Final repository for high-level radioactive wastes: Safety report

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Disposal of radioactive was involves preventing releases to the biosphere for a long period of time and subsequently limiting the magnitude of releases by means of a series of safety barriers: the waste solidification matrix (borosilicate glass), massive steel canisters in highly compacted bentonite, sealing of void spacer and access routes on repository closure. The geological barriers are formed by the crystalline bed-rock and the overlying sedimentary layers. In order to perform a safety assessment the behaviour of these technical barriers and of the host rock must be understood and this understanding must be translated into quantitative models which allow calculation of repository performance. For the particular case of a Swiss repository, the main criterion is the individual dose limit of 10 mrem/year, which is given in the safety guidelines of the Swiss authorities. The procedure for the safety analysis involves examination of all scenarios which could give rise to radionuclide release from the repository. Qualitative considerations of both the magnitude of their consequences and their likelihood are used in order to identify a restricted number of scenarios for quantitative analysis

  7. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    International Nuclear Information System (INIS)

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as 36 Cl and 93 Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon

  8. The use of uranium fluxes as safety indicators of radioactive waste repositories

    International Nuclear Information System (INIS)

    Miller, W.M.; Hooker, P.J.

    2002-01-01

    Natural analogues based on uranium deposits are commonly used to represent the long-term behaviour of radioactive waste repositories or the processes that influence their radioactive contents. The geochemical dispersion of naturally occurring uranium can also be used to model natural radioactivity fluxes in the vicinity of a planned repository. These fluxes can be estimated for erosional and groundwater discharge processes and compared with calculated future fluxes of radioactivity that would be released from a repository. The methodology is outlined and the benefits of the approach for supporting the derivation of a safety case for a repository are indicated. (author)

  9. Safe disposal of radioactive waste. Post-closure safety assessment of permanent repository in Novi han

    International Nuclear Information System (INIS)

    Mateeva, M.

    2007-01-01

    A presented material is the third part of the monograph with title 'Safe disposal of radioactive waste. Post-closure safety assessment of the permanent repository in Novi Han'. This part deals with review of the scenario selection procedure. The process system of permanent repository for radioactive waste is describing in details for different levels. Preliminary screening process of features, events and processes is presented here. Interaction matrixes for basic disposal system components are constructed. Final selection and grouping between the included features, events and processes is done. Selected and defined scenarios for post-closure safety assessment are presented too. Key words: post-closure safety assessment, scenario generation procedure, process system, process influence diagram, and interaction matrix

  10. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as {sup 36}Cl and {sup 93}Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon.

  11. Probabilistic safety assessment for a generic deep geological repository for high-level waste and long-lived intermediate-level waste in clay

    International Nuclear Information System (INIS)

    Resele, G.; Holocher, J.; Mayer, G.; Hubschwerlen, N.; Niemeyer, M.; Beushausen, M.; Wollrath, J.

    2010-01-01

    Document available in extended abstract form only. In the selection procedure for the search of a final site location for the disposal of radioactive wastes, the comparison and evaluation of different potentially suitable repository systems in different types of host rocks will be an essential and crucial step. Since internationally accepted guidelines on how to perform such quantitative comparisons between repository systems with regard to their long-term safety behaviour are still lacking, in 2007 the German Federal Office for Radiation Protection launched the project 'VerSi' (Vergleichende Sicherheitsanalysen - Comparing Safety Assessments) that aims at the development of a methodology for the comparison of long-term safety assessments. A vital part of the VerSi project is the performance of long-term safety assessments for the comparison of two repository systems. The comparison focuses on a future repository for heat-generating, i.e. high-level and long-lived intermediate-level radioactive wastes in Germany. Rock salt is considered as a potential host rock for such a repository, and one repository system in VerSi is defined similarly to the potential site located in the Gorleben salt dome. Another suitable host rock formation may be clay. A generic location within the lower Cretaceous clays in Northern Germany is therefore chosen for the comparison of safety assessments within the VerSi project. The long-term safety assessment of a repository system for heat-generating radioactive waste at the generic clay location comprises different steps, amongst others: - Identifying the relevant processes in the near-field, in the geosphere and in the biosphere which are relevant for the long-term safety behaviour. - Development of a safety concept for the repository system. - Deduction of scenarios of the long-term evolution of the repository system. - Definition of statistic weights, i. e. the likelihood of occurrence of the scenarios. - Performance of a

  12. Modelling approach to LILW-SL repository safety evaluation for different waste packing options

    International Nuclear Information System (INIS)

    Perko, Janez; Mallants, Dirk; Volckaert, Geert; Towler, George; Egan, Mike; Virsek, Sandi; Hertl, Bojan

    2007-01-01

    The key objective of the work described here was to support the identification of a preferred disposal concept and packaging option for low and short-lived intermediate level waste (LILW-SL). The emphasis of the assessment, conducted on behalf of the Slovenian radioactive waste management agency (ARAO), was the consideration of several waste treatment and packaging options in an attempt to identify optimised containment characteristics that would result in safe disposal, taking into account the cost-benefit of alternative safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes, including drums with unconditioned ion exchange resins in over-packed tube type containers (TTCs). For decommissioning wastes, the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers (HIC). In relation to operational wastes, three main options were foreseen. The first is over-packing of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralization, and cementation of the dry resins into drums grouted into high integrity containers and the third is direct disposal of TTCs into high integrity containers without additional treatment. The long-term safety of radioactive waste repositories is usually demonstrated with the support of a safety assessment. This normally includes modelling of radionuclide release from a multi-barrier near-surface or deep repository to the geosphere and biosphere. For the current work, performance assessment models were developed for each combination of siting option, repository design and waste packaging option. Modelling of releases from the engineered containment system (the 'near-field') was undertaken using the AMBER code. Detailed unsaturated water flow modelling was undertaken using the

  13. Waste inventory, waste characteristics and waste repositories in Japan

    International Nuclear Information System (INIS)

    Shimooka, K.

    1997-01-01

    There are two types of repositories for the low level radioactive wastes in Japan. One is a trench type repository only for concrete debris generated from the dismantling of the research reactor. According to the safety assurance system, Japan Atomic Energy Research Institute (JAERI) has disposed of the concrete debris arose from the dismantling of the Japan Power Demonstration Reactor (JPDR). The other type is the concreted pit with engineered barriers. Rokkasho Low Level Radioactive Waste Disposal Center has this type of repository mainly for the power plant wastes. Japan Nuclear Fuel Ltd. (JNFL) established by electric power companies is the operator of the LLW disposal project. JNFL began the storage operation in 1992 and buried approximately 60,000 drums there. Two hundred thousand drums of uniformly solidified, waste may be buried ultimately. 4 refs, 3 tabs

  14. Management of radioactive waste at Novi Han Repository

    International Nuclear Information System (INIS)

    Stefanova, I.G.; Mateeva, M.D.; Milanov, M.V.

    2002-01-01

    The Novi Han Repository is the only existing repository in Bulgaria for the disposal of radioactive waste from nuclear applications in industry, medicine and research. The repository was constructed in the early sixties according to the existing requirements. It was operated by the Institute for Nuclear Research and Nuclear Energy for more than thirty years without any accident or release of radioactivity to the environment, but without any investment for upgrading. As a consequence, the Bulgarian Nuclear Safety Authority temporarily stopped the operation of the repository in 1994. The measures for upgrading the Novi Han Repository, supported by the IAEA under TC Project BUL/4/005 'Increasing Safety of Novi Han Repository', are presented in this paper. They comprise: assessment of radionuclide inventory and future waste arisings, characterisation of disposal vaults, characterisation of the site, safety assessment, upgrading of the monitoring system, option study for the selection of treatment and conditioning processes and the development of a conceptual design for low and intermediate level waste processing and storage facility, immediate measures for improvement of the existing disposal vaults and infrastructure, construction of above-ground temporary storage structures, and resuming the operation of the Novi Han Repository. The necessary activities for re-licensing of the Novi Han Repository, construction of a waste processing and storage facility and a disposal facility for spent sealed sources are discussed. (author)

  15. Project Guarantee 1985. Final repository for low- and intermediate level radioactive wastes: Safety report

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Storage of radioactive waste must delay the return of radionuclides to the biosphere for a long period of time and must maintain the release rates at a sufficiently low level for all time. This is achieved with the aid of a series of safety barriers which consist, on the one hand, of technical barriers in the repository and, on the other hand , of natural geological barriers as they occur at the repository location. In order to assess the efficiency of the barriers, the working methods of the technical barriers and the host rock must be understood. This understanding is transferred into quantitative models in order to calculate the safety of the repository. The individual barriers and the methods used to modelling their functions were described in volume NGB 85-07 of the Project Guarantee 1985 report series and the data necessary for modelling were given. The models and data are used in the safety analysis, the results of which are contained in the present report. Safety considerations show that models are available in Switzerland which allow, in principle, an assessment of the long-term behaviour of a repository for low- and intermediate-level waste. The evaluation of earlier studies and experimental work, suitable laboratory measurements and results from field research enable compilation of a representative data-set so that the requirements for quantitative statements on safety of final disposal are met from this side also. The safety calculations show that the radiation doses calculated for a base case scenario with realistic/conservative parameter values are negligibly low. Also, radiation doses which are clearly under the protection standard of 10 mrem per year result for conservative values and the cumulation of several conservative assumptions. Even assuming exposure of the repository by erosion, a radiotoxicity of the soil formed results which is under natural values

  16. Preliminary post-closure safety assessment of repository concepts for low level radioactive waste at the Bruce Site, Ontario

    International Nuclear Information System (INIS)

    Little, R.H.; Penfold, J.S.S.; Egan, M.J.; Leung, H.

    2005-01-01

    The preliminary post-closure safety assessment of permanent repository concepts for low-level radioactive waste (LLW) at the Ontario Power Generation (OPG) Bruce Site is described. The study considered the disposal of both short and long-lived LLW. Four geotechnically feasible repository concepts were considered (two near-surface and two deep repositories). An approach consistent with best international practice was used to provide a reasoned and comprehensive analysis of post-closure impacts of the repository concepts. The results demonstrated that the deep repository concepts in shale and in limestone, and the surface repository concept on sand should meet radiological protection criteria. For the surface repository concept on glacial till, it appears that increased engineering such as grouting of waste and voids should be considered to meet the relevant dose constraint. Should the project to develop a permanent repository for LLW proceed, it is expected that this preliminary safety assessment would need to be updated to take account of future site-specific investigations and design updates. (author)

  17. Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review.

    Science.gov (United States)

    Tosoni, Edoardo; Salo, Ahti; Zio, Enrico

    2018-04-01

    A major challenge in scenario analysis for the safety assessment of nuclear waste repositories pertains to the comprehensiveness of the set of scenarios selected for assessing the safety of the repository. Motivated by this challenge, we discuss the aspects of scenario analysis relevant to comprehensiveness. Specifically, we note that (1) it is necessary to make it clear why scenarios usually focus on a restricted set of features, events, and processes; (2) there is not yet consensus on the interpretation of comprehensiveness for guiding the generation of scenarios; and (3) there is a need for sound approaches to the treatment of epistemic uncertainties. © 2017 Society for Risk Analysis.

  18. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    International Nuclear Information System (INIS)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches

  19. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches.

  20. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-care vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  1. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-car vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  2. Redox processes in the safety case of deep geological repositories of radioactive wastes. Contribution of the European RECOSY Collaborative Project

    International Nuclear Information System (INIS)

    Duro, L.; Bruno, J.; Grivé, M.; Montoya, V.; Kienzler, B.; Altmaier, M.; Buckau, G.

    2014-01-01

    Highlights: • The RECOSY project produced results relevant for the Safety Case of nuclear disposal. • We classify the safety related features where RECOSY has contributed. • Redox processes effect the retention of radionuclides in all repository subsystems. - Abstract: Redox processes influence key geochemical characteristics controlling radionuclide behaviour in the near and far field of a nuclear waste repository. A sound understanding of redox related processes is therefore of high importance for developing a Safety Case, the collection of scientific, technical, administrative and managerial arguments and evidence in support of the safety of a disposal facility. This manuscript presents the contribution of the specific research on redox processes achieved within the EURATOM Collaborative Project RECOSY (REdox phenomena COntrolling SYstems) to the Safety Case of nuclear waste disposal facilities. Main objectives of RECOSY were related to the improved understanding of redox phenomena controlling the long-term release or retention of radionuclides in nuclear waste disposal and providing tools to apply the results to Performance Assessment and the Safety Case. The research developed during the project covered aspects of the near-field and the far-field aspects of the repository, including studies relevant for the rock formations considered in Europe as suitable for hosting an underground repository for radioactive wastes. It is the intention of this paper to highlight in which way the results obtained from RECOSY can feed the scientific process understanding needed for the stepwise development of the Safety Case associated with deep geological disposal of radioactive wastes

  3. Repository waste-handling operations, 1998

    International Nuclear Information System (INIS)

    Cottam, A.E.; Connell, L.

    1986-04-01

    The Civilian Radioactive Waste Management Program Mission Plan and the Generic Requirements for a Mined Geologic Disposal System state that beginning in 1998, commercial spent fuel not exceeding 70,000 metric tons of heavy metal, or a quantity of solidified high-level radioactive waste resulting from the reprocessing of such a quantity of spent fuel, will be shipped to a deep geologic repository for permanent storage. The development of a waste-handling system that can process 3000 metric tons of heavy metal annually will require the adoption of a fully automated approach. The safety and minimum exposure of personnel will be the prime goals of the repository waste handling system. A man-out-of-the-loop approach will be used in all operations including the receipt of spent fuel in shipping casks, the inspection and unloading of the spent fuel into automated hot-cell facilities, the disassembly of spent fuel assemblies, the consolidation of fuel rods, and the packaging of fuel rods into heavy-walled site-specific containers. These containers are designed to contain the radionuclides for up to 1000 years. The ability of a repository to handle more than 6000 pressurized water reactor spent-fuel rods per day on a production basis for approximately a 23-year period will require that a systems approach be adopted that combines space-age technology, robotics, and sophisticated automated computerized equipment. New advanced inspection techniques, maintenance by robots, and safety will be key factors in the design, construction, and licensing of a repository waste-handling facility for 1998

  4. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  5. International perspective on repositories for low level waste

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva

    2011-12-01

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  6. International perspective on repositories for low level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva (SKB International AB (Sweden))

    2011-12-15

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  7. Nuclear waste in a repository: amount as a factor in risk duration

    International Nuclear Information System (INIS)

    Zen, E.

    1980-01-01

    The relationship between the amount of nuclear waste in a nuclear repository and the safety of the repository is examined. It is shown that the amount of a given hazardous nuclide that is potentially leachable depends on the initial amount of waste in the repository and the time that has elapsed since the repository was put into operation. Nuclear repository safety can be enhanced if repositories are designed as modular units with leach-resistant watertight compartments

  8. Safety analysis of the VLJ repository

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.

    1991-05-01

    The VLJ repository is an underground disposal facility for the low and medium level waste generated at the Olkiluoto nuclear power plant. The repository is located within 1 km from TVO I and TVO II (2 x 710 MWe) BWR's on the Olkiluoto island at the west coast of Finland. It contains two rock silos excavated at the depth of 60...100 meters in the bedrock. Low level waste will be disposed of in a shotcreted rock silo. For bituminized medium level waste, a separate silo of reinforced concrete has been built inside the shotcreted rock silo. The post-closure safety analysis has been done for the Final Safety Analysis Report (FSAR) of the VLJ repository. In addition to the normal evolution scenario, several disturbed evolution and accident scenarios have been analysed. In the reference scenario, radio-nuclides are assumed to be released from the bituminized waste within 500 years, the concrete silo is assumed to gradually disintegrate and finally to collapse at 5 000 years, all concrete in the silo is assumed to be also chemically depleted within 6 000 years, and all the seals of the repository are assumed to deteriorate within 12 000 years. The ability of alone natural barriers to restrict the release of radionuclides into the biosphere has been evaluated by means of scenarios where the degradation of engineered barriers has been assumed to take place at a still faster rate. In one of the disturbed evolution scenarios it has been assumed that the concrete silo for medium level waste is severely impaired immediately after sealing of the repository. Effects of gas generation and consequences of human intrusion have been evaluated, too. The results of the safety analysis show that radiation doses of any significance are caused only if a well is bored in the vicinity of the repository or if the groundwater discharge spot is inhabited and used for cultivation. In the reference scenario the maximum expectation value of the individual dose rate is 0.3 mSv/a

  9. Evaluation of repository safety

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S. [Center for Nuclear Waste Regulatory Analyses, San Antonio (United States)

    2002-07-01

    The United States high-level waste program requires evaluation of radiological safety during two distinct time intervals. The first interval, commonly referred to as the preclosure period, deals with receipt of waste at the site, transfer into disposal containers, if needed, emplacement in the underground openings, monitoring and maintenance activities, backfill and closure of the underground openings, and decontamination and decommissioning of the surface facilities of the geologic repository. The preclosure period may extend from a few tens of years to as long as a few hundred of years, depending on repository design and societal norms regarding a final decision to permanently seal the repository. During the preclosure or operational period, performance confirmation studies are conducted to provide a basis for updating and reevaluating estimates of postclosure performance and, finally, to provide a basis for a closure decision. The postclosure period during which expected repository performance must meet certain standards may range from ten thousands years, as it does in the United States, to millions of years, as it does in some European nations. Waste handling operations in the preclosure period are to be evaluated in relation to their potential effect on workers, members of general public, and the general environment. During this period, releases of radioactivity are to be monitored and appropriate actions taken whenever established limits are approached or exceeded. Preclosure safety is highly dependent on facility design, operational hardware and automated systems, operational sequences, and reliability of humans involved in operations. Preclosure safety analyses conducted before operations begin play a major role in the design process, selection of equipment, and development of operational procedures. Because of the complexity, duration, and spatial scales of the operations, analyses are conducted using mathematical models implemented in computer codes

  10. Evaluation of repository safety

    International Nuclear Information System (INIS)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S.

    2002-01-01

    The United States high-level waste program requires evaluation of radiological safety during two distinct time intervals. The first interval, commonly referred to as the preclosure period, deals with receipt of waste at the site, transfer into disposal containers, if needed, emplacement in the underground openings, monitoring and maintenance activities, backfill and closure of the underground openings, and decontamination and decommissioning of the surface facilities of the geologic repository. The preclosure period may extend from a few tens of years to as long as a few hundred of years, depending on repository design and societal norms regarding a final decision to permanently seal the repository. During the preclosure or operational period, performance confirmation studies are conducted to provide a basis for updating and reevaluating estimates of postclosure performance and, finally, to provide a basis for a closure decision. The postclosure period during which expected repository performance must meet certain standards may range from ten thousands years, as it does in the United States, to millions of years, as it does in some European nations. Waste handling operations in the preclosure period are to be evaluated in relation to their potential effect on workers, members of general public, and the general environment. During this period, releases of radioactivity are to be monitored and appropriate actions taken whenever established limits are approached or exceeded. Preclosure safety is highly dependent on facility design, operational hardware and automated systems, operational sequences, and reliability of humans involved in operations. Preclosure safety analyses conducted before operations begin play a major role in the design process, selection of equipment, and development of operational procedures. Because of the complexity, duration, and spatial scales of the operations, analyses are conducted using mathematical models implemented in computer codes

  11. Classifying decommissioning wastes for allocation to appropriate final repositories

    International Nuclear Information System (INIS)

    Alder, J.C.; Tunaboylu, K.

    1982-01-01

    For the safe disposal of radioactive wastes in different repositories, it is of advantage to classify them in well-defined conditioned categories, appropriate for final disposal. These categories, the so-called waste sorts are characterized by similar radionuclide distribution, similar nuclide-specific activity concentrations and similar waste matrix. A methodology is presented for classifying decommissioning wastes and is applied to the decommissioning wastes arising from a Swiss program of 6 GWe. The amounts and nuclide-specific activity inventories of the decommissioning waste sorts have been estimated. A first allocation into two different repository types has been performed. Such a classification enables one to define the source parameters for repository safety analysis and allows one to allocate the different waste categories into appropriate final repositories. This work presents a first iteration to determine which waste sorts belong to which repository type. The characteristics of waste sorts have to be better defined and the protective strength of the repository barriers has to be optimized. 7 references, 2 figures, 4 tables

  12. THEREDA - a contribution to long-term safety of repositories of nuclear and non-nuclear wastes

    International Nuclear Information System (INIS)

    Altmaier, M.; Kienzler, B.; Marquardt, C.M.; Neck, V.; Voigt, W.; Wilhelm, S.

    2008-01-01

    Long-term safety analyses of German repositories of radioactive waste as well as underground repositories for chemical toxic waste and other uses (contaminated site remediation) urgently require a standardized, comprehensive thermodynamic reference database. The former 'Thermodynamic Standard Database Working Party' was set up to establish such a database. The activities of that group have been supported within the integrated 'THEREDA' (Thermodynamic Reference Database) project since July 2006 for an initial period of 3 years by the German Federal Ministries of Education and Research, of Economics, and by the Federal Office of Radiation Protection. THEREDA at present is composed of 5 partner institutions essentially representing the key German research institutions in the field of repository safety research. THEREDA is to improve the transparency and validity of safety analyses in Germany and, for the first time, provides consistent thermodynamic datasets for the repository options discussed in Germany. Quality levels are indicated for each thermodynamic quantity on the basis of unambiguously defined evaluation criteria, which allow users to either include or exclude data in accordance with the specific problems at hand. Missing thermodynamic data are substituted in THEREDA by well-founded estimates, thus permitting future model calculations for safety analysis to be carried out on a clearly broader basis of data. The data are managed centrally in a database and will be available to users free of charge on the Internet. Import formats allowing THEREDA to be transferred into the most common modeling codes (EQ3/6, PHREEQC, Geochemist's Workbench, CHEMAPP, etc.) are also made available free of charge. (orig.)

  13. Recommendations: Procedure to develop a preliminary safety report as part of the radioactive waste repository construction licensing process

    International Nuclear Information System (INIS)

    2003-01-01

    The structure of a preliminary safety report for the title purpose should be as follows: A. Textual part: 1. General (Introduction, Basic information about the construction, Timetable); 2. Site information (Siting, Geography and demography, Meteorology and climatic situation, Hydrology, Geology and hydrogeology); 3. Repository design description (Basic function and performance requirements, Design, Auxiliary systems, Fire prevention/protection, Emergency plans); 4. Operation of the repository (Waste acceptance and inspection, Waste handling and interim storage, Waste disposal, Operating monitoring), 5. Health and environmental impact assessment (Radionuclide inventory, Radionuclide transport paths and mechanisms of release into the environment, Radionuclide release in normal and emergency situations, Radiation protection - health impact assessment and regulatory compliance, Draft operating limits and conditions, Proposed ways of assuring physical protection, Uncertainty assessment), 6. Safe repository shutdown/decommissioning concept, 7 Quality assurance assessment, 8. List of selected equipment. B. Annexes: Maps, Drawings, Diagrams, Miscellaneous; C. Documentation: Previous safety report amendments, Protocols, Miscellaneous. (P.A.)

  14. Central repository for low- and intermediate-level waste (ALMA) conceptual design, siting and safety study

    International Nuclear Information System (INIS)

    Kjellbert, N.; Haeggblom, H.; Cederstroem, M.; Lundgren, T.

    1980-07-01

    A generic design, siting and safety study of a proposed repository for low- and intermediate-level waste has been made. Special emphasis has been placed on safety characterostics. The conceptual design and the generic site, on which the study is based, are realistically chosen in accordance with present construction techniques and the existing geohydrological conditions in Sweden. (Auth.)

  15. Public concerns and choices regarding nuclear-waste repositories

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1981-06-01

    Survey research on nuclear power issues conducted in the late 1970's has determined that nuclear waste management is now considered to be one of the most important nuclear power issues both by the US public and by key leadership groups. The purpose of this research was to determine the importance placed on specific issues associated with high-level waste disposal. In addition, policy option choices were asked regarding the siting of both low-level and high-level nuclear waste repositories. A purposive sampling strategy was used to select six groups of respondents. Averaged across the six respondent groups, the leakage of liquid wastes from storage tanks was seen as the most important high-level waste issue. There was also general agreement that the issue regarding water entering the final repository and carrying radioactive wastes away was second in importance. Overall, the third most important issue was the corrosion of the metal containers used in the high-level waste repository. There was general agreement among groups that the fourth most important issue was reducing safety to cut costs. The fifth most important issue was radioactive waste transportation accidents. Overall, the issues ranked sixth and seventh were, respectively, workers' safety and earthquakes damaging the repository and releasing radioactivity. The eighth most important issue, overall, was regarding explosions in the repository from too much radioactivity, which is something that is not possible. There was general agreement across all six respondent groups that the two least important issues involved people accidentally digging into the site and the issue that the repository might cost too much and would therefore raise electricity bills. These data indicate that the concerns of nuclear waste technologists and other public groups do not always overlap

  16. Safety Assessment Context for Croatian Low and Intermediate Level Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Levanat, I.; Lokner, V.

    1998-01-01

    Safety assessments in a small country are usually performed to support the national waste management strategy, demonstrating compliance with national regulation for a particular facility. However, this assessment should - quite generally - provide reasonable assurance both to the public and to decision makers than the Croatian share of LILW from NPP Krsko can be safely disposed in Croatia. More specifically, assessment should clearly present all realistic options and compare the associated long term repository performances, demonstrating that desirable safety goals can be archived by an appropriate choice of (a) location, (b) facility design, (c) institutional control period and (d) waste acceptance criteria. As relevant national legislation is presently under review, generally recognized international safety standards, criteria and recommendations (e.g. as presented in the recent IAEA publications) should provide guidance for the assessment evaluation, since it is expected that they will be incorporated in the new national regulations. Finally, since Croatian radioactive waste management strategy is yet to be developed, such an assessment may contribute to its formulation and facilitate some specific decisions. (author)

  17. Long term safety requirements and safety indicators for the assessment of underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Vovk, Ivan

    1998-01-01

    This presentation defines: waste disposal, safety issues, risk estimation; describes the integrated waste disposal process including quality assurance program. Related to actinides inventory it shows the main results of calculated activity obtained by deterministic estimation. It includes the Radioactive Waste Safety Standards and requirements; features related to site, design and waste package characteristics, as technical long term safety criteria for radioactive waste disposal facilities. Fundamental concern regarding the safety of radioactive waste disposal systems is their radiological impact on human beings and the environment. Safety requirements and criteria for judging the level of safety of such systems have been developed and there is a consensus among the international community on their basis within the well-established system of radiological protection. So far, however, little experience has been gained in applying long term safety criteria to actual disposal systems; consequently, there is an international debate on the most appropriate nature and form of the criteria to be used, taking into account the uncertainties involved. Emerging from the debate is the increasing conviction that the combined use of a variety of indicators would be advantageous in addressing the issue of reasonable assurance in the different time frames involved and in supporting the safety case for any particular repository concept. Indicators including risk, dose, radionuclide concentration, transit time, toxicity indices, fluxes at different points within the system, and barrier performance have all been identified as potentially relevant. Dose and risk are the indicators generally seen as most fundamental, as they seek directly to describe the radiological impact of a disposal system, and these are the ones that have been incorporated into most national standards to date. There are, however, certain problems in applying them. Application of a variety of different indicators

  18. Repository Safety Strategy: Strategy for Protecting Public Health and Safety after Closure of a Yucca Mountain Repository, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    1998-01-01

    The updated Strategy to Protect Public Health and Safety explains the roles that the natural and engineered systems are expected to play in achieving the objectives of a potential repository system at Yucca Mountain. These objectives are to contain the radionuclides within the waste packages for thousands of years, and to ensure that annual doses to a person living near the site will be acceptably low. This strategy maintains the key assumption of the Site Characterization Plan (DOE 1988) strategy that the potential repository level (horizon) will remain unsaturated. Thus, the strategy continues to rely on the natural attributes of the unsaturated zone for primary protection by providing a setting where waste packages assisted by other engineered barriers are expected to contain wastes for thousands of years. As in the Site Characterization Plan (DOE 1988) strategy, the natural system from the walls of the underground openings (drifts) to the human environment is expected to provide additional defense by reducing the concentrations of any radionuclides released from the waste packages. The updated Strategy to Protect Public Health and Safety is the framework for the integration of site information, repository design and assessment of postclosure performance to develop a safety case for the viability assessment and a subsequent license application. Current site information and a reference design are used to develop a quantitative assessment of performance to be compared with a performance measure. Four key attributes of an unsaturated repository system that are critical to meeting the objectives: (1) Limited water contacting the waste packages; (2) Long waste package lifetime; (3) Slow rate of release of radionuclides from the waste form; and (4) Concentration reduction during transport through engineered and natural barriers.

  19. Establishing managerial requirements for low-and intermediate-level waste repository

    International Nuclear Information System (INIS)

    Chung, C. W.; Lee, Y. K.; Kim, H. T.; Park, W. J.; Suk, T. W.; Park, S. H.

    2004-01-01

    This paper reviews basic considerations for establishing managerial requirements on the domestic low-and intermediate-level radioactive waste repository and presents the corresponding draft requirements. The draft emphasizes their close linking with the related regulations, standards and safety assessment for the repository. It also proposes a desirable direction towards harmonizing together with the existing waste acceptance requirements for the repository

  20. Role of waste packages in the safety of a high level waste repository in a deep geological formation

    International Nuclear Information System (INIS)

    Bretheau, F.; Lewi, J.

    1990-06-01

    The safety of a radioactive waste disposal facility lays on the three following barriers placed between the radioactive materials and the biosphere: the waste package; the engineered barriers; the geological barrier. The function assigned to each of these barriers in the performance assessment is an option taken by the organization responsible for waste disposal management (ANDRA in France), which must show that: expected performances of each barrier (confinement ability, life-time, etc.) are at least equal to those required to fulfill the assigned function; radiation protection requirements are met in all situations considered as credible, whether they be the normal situation or random event situations. The French waste management strategy is based upon two types of disposal depending on the nature and activity of waste packages: - surface disposal intended for low and medium level wastes having half-lives of about 30 years or less and alpha activity less than 3.7 MBq/kg (0.1 Ci/t), for individual packages and less than 0.37 MBq/kg (0.01 Ci/t) in the average. Deep geological disposal intended for TRU and high level wastes. The conditions of acceptance of packages in a surface disposal site are subject to the two fundamental safety rules no. I.2 and III.2.e. The present paper is only dealing with deep geological disposal. For deep geological repositories, three stages are involved: stage preceding definitive disposal (intermediate storage, transportation, handling, setting up in the disposal cavities); stage subsequent to definitive sealing of the disposal cavities but prior to the end of operation of the repository; stage subsequent to closure of the repository. The role of the geological barrier has been determined as the essential part of long term radioactivity confinement, by a working group, set up by the French safety authorities. Essential technical criteria relating to the choice of a site so defined by this group, are the following: very low permeability

  1. Status of the safety concept and safety demonstration for an HLW repository in salt. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Bollingerfehr, W.; Buhmann, D.; Filbert, W.; and others

    2013-12-15

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safety assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  2. The safety case in support of the license application of the surface repository of low-level waste in Dessel, Belgium

    International Nuclear Information System (INIS)

    Wacquier, William; Cool, Wim

    2014-01-01

    The modern concept of the safety case, developed by the OECD/NEA for geological repositories of high- and medium-level waste has been successfully applied by ONDRAF/ NIRAS for a surface repository for Category A waste (i.e. low-level waste) in Belgium in the current project phase 2006-2012. This resulted in the submission on 31 January 2013 by ONDRAF/NIRAS of an application for a 'construction and operation license' to the safety authorities. The benefits of using the notion of the safety case have been that: i) safety has been incorporated in an integrated manner within all assessment basis, design and safety assessment activities; ii) the process of development of the license application has gained in clarity and traceability; iii) the documentation of the license application contains multiple lines of argumentation for safety rather than argumentation based only on quantitative radiological impact calculations. To offer a comprehensive view on the safety argumentation and its development, it has been found useful to develop the argumentation not only along a safety statements structure but also along the safety report structure. (authors)

  3. Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, Jin; Kwon, Sang Ki

    2005-01-01

    In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene and safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low and medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems and real time ventilation simulation, and fire simulation and emergency system in the repository are briefly discussed.

  4. Aerosol particle transport modeling for preclosure safety studies of nuclear waste repositories

    International Nuclear Information System (INIS)

    Gelbard, F.

    1989-01-01

    An important concern for preclosure safety analysis of a nuclear waste repository is the potential release to the environment of respirable aerosol particles. Such particles, less than 10 μm in aerodynamic diameter, may have significant adverse health effects if inhaled. To assess the potential health effects of these particles, it is not sufficient to determine the mass fraction of respirable aerosol. The chemical composition of the particles is also of importance since different radionuclides may pose vastly different health hazards. Thus, models are needed to determine under normal and accident conditions the particle size and the chemical composition distributions of aerosol particles as a function of time and of position in the repository. In this work a multicomponent sectional aerosol model is used to determine the aerosol particle size and composition distributions in the repository. A range of aerosol mass releases with varying mean particle sizes and chemical compositions is used to demonstrate the sensitivities and uncertainties of the model. Decontamination factors for some locations in the repository are presented. 8 refs., 1 tab

  5. Preliminary waste acceptance requirements for the planned Konrad repository

    International Nuclear Information System (INIS)

    Warnecke, E.; Brennecke, P.

    1987-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) has established Preliminary Waste Acceptance Requirements for the planned Konrad repository. These requirements were developed, in accordance with the Safety Criteria of the Reactor Safety Commission, with the help of a site specific safety assessment; they are under the reservation of the plan approval procedure, which is still in progress. In developing waste acceptance requirements, the PTB fulfills one of its duties as the institute responsible for waste disposal and gives guidelines for waste conditioning to waste producers and conditioners. (orig.) [de

  6. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  7. Project Guarantee 1985. Radioactive wastes: Properties and allocation to final repository types

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An overview of waste-specific data, as input into constructional engineering studies and safety analyses of Project Guarantee, is presented which describes the activity inventory of the radioactive waste to be disposed of, classified according to origin, the quantitative spezifications of the waste, the concept of classifying waste into appropriate categories, grouping into major categories and distribution of these between the different repository types, and finally, control measures which ensure observance of the specifications of the waste to be disposed of. It is expedient, for conceptional considerations and for the operational phase of the repository, to split the waste up into several suitably specified waste categories according to the practical aspects of origin and conditioning. This can be done in such a way that the waste within a specific category is sufficiently homogeneous with regard to its radiological properties and chemical composition for the requirements of safety analysis. The present volume contains base-data for around 30 waste types. Two waste types are documented with more detailed data as an example of the practicability of the comprehensive waste characterisation contained in reference report NTB 84-47. It is shown that waste-specific data which go into safety analysis and constructional engineering project studies are available in an appropriate degree of detail. The method of distributing the waste between repositories with differing degrees of protection and procedures for controlling adherence to admission specifications are developed and documented. It can be ensured that no waste with an impermissibly high radiotoxicity level will later be emplaced in a repository for low- and intermediate-level waste

  8. Assessment of the long-term safety of repositories. Scientific basis

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Becker, Dirk; Fahrenholz, Christine

    2008-12-01

    The project contributed to increase the scientific knowledge on the long-term safety assessment and the safety cases of a radioactive waste repository. International guidelines and more recent safety cases from other countries were evaluated. The feasibility study of the three safety indicators ''individual dose rate'', ''radiotoxicity concentration in the biosphere water'' and ''radiotoxicity flux from the geosphere'' showed that due to the independently derived corresponding reference values these indicators describe three different safety statements. The combination of the three values can give a stronger argument for the safety of the repository system. Another important methodological aspect of the safety cases is the definition and selection of scenarios, one of these the human intrusion scenario. Various human intrusion scenarios are considered in the different nations, which differ significantly with respect to type and time scale, the exposition type and exposition pathway. Further progress has been achieved in how to treat human intrusion scenarios in a German post-closure safety case. Another port of the project dealt with the impact of specific geochemical processes on the long-term safety of the repository. The impact of climate changes on the long-term safety of a radioactive waste repository in rock salt was investigated with respect to processes in the overburden and the biosphere where highest impact is expected. Sofa simplified models and only discrete climate estates have been considered

  9. The role of waste package specifications as a forerunner to ILW repository conditions for acceptance

    International Nuclear Information System (INIS)

    Barlow, S.V.; Palmer, J.D.

    1998-01-01

    In the absence of a finalized repository site, design or associated safety case, Nirex is not in a position to issue conditions for acceptance. Nirex has therefore developed a strategy which facilitates packaging of intermediate level waste by providing guidance through waste package specifications, supported by the formal assessment of specific packaging proposals on a case-by-case basis. The waste package specifications are comprehensive and cover all aspects of the waste package including dimensions and other key features, performance standards, wasteform, quality assurance, and data recording requirements. The waste package specifications will be subject to periodic review as repository design and safety cases are finalized and will progressively become site- and design-specific. The waste package specifications will eventually form the basis for conditions for acceptance. The strategy described in this paper has been successfully followed by Nirex and customers for the past ten years and has permitted wastes to be packaged for a deep repository with confidence in the absence of a finalized site and safety cases for the repository. Because the process has its basis in a generic repository concept, it remains robust, despite the increased uncertainty following the March 1997 Secretary of State's decision, as to the siting and time-scale of a deep waste repository, and continues to be an important component of the UK's waste management strategy. (author)

  10. Radioactive waste transport to a Nirex deep repository

    International Nuclear Information System (INIS)

    Bennett, D.; Appleton, P.R.; Eastman, C.R.

    1989-01-01

    Nirex is addressing the transport of radioactive wastes, repository construction materials, personnel and spoil as part of their development of a deep repository. An integrated transport system will be developed for wastes which may involve, road, rail and sea transport. The possible application and the scale of operation of the transport system is described. Environmental impact assessments will be carried out, and the proposed approach to these is described. A methodology for the assessment of transport safety has been established and the results of a preliminary assessment are given. (author)

  11. Application of geostatistical methods to long-term safety analyses for radioactive waste repositories

    International Nuclear Information System (INIS)

    Roehlig, K.J.

    2001-01-01

    Long-term safety analyses are an important part of the design and optimisation process as well as of the licensing procedure for final repositories for radioactive waste in deep geological formations. For selected scenarios describing possible evolutions of the repository system in the post-closure phase, quantitative consequence analyses are performed. Due to the complexity of the phenomena of concern and the large timeframes under consideration, several types of uncertainties have to be taken into account. The modelling work for the far-field (geosphere) surrounding or overlaying the repository is based on model calculations concerning the groundwater movement and the resulting migration of radionuclides which possibly will be released from the repository. In contrast to engineered systems, the geosphere shows a strong spatial variability of facies, materials and material properties. The paper presented here describes the first steps towards a quantitative approach for an uncertainty assessment taking into account this variability. Due to the availability of a large amount of data and information of several types, the Gorleben site (Germany) has been used for a case study in order to demonstrate the method. (orig.)

  12. Quality assurance for safety in the radioactive waste management: a quality assurance system in Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Petrova, A.; Kolev, I.

    2000-01-01

    Novi Han Radioactive Waste Repository (RWR) is still the only place in Bulgaria for storage of low and intermediate level radioactive waste. It is necessary to establish and maintain a Quality Assurance (QA) system to ensure that the RWR can be operated safely with regard to the health and safety of the general public and site personnel. A QA system has to establish the basic requirements for quality assurance in order to enhance nuclear safety by continuously improving the methods employed to achieve quality. It is envisaged that the QA system for the Novi Han RWR will cover the operation and maintenance of the radioactive waste disposal facilities, the radiation protection and monitoring of the site, as well as the scientific and technology development aspects. The functions of the Novi Han RWR presume the availability of an environmental management system. It is appropriate to establish a QA system based on the requirements of the ISO Standards 9001 and 14000, using the recommendations of the IAEA (Quality assurance for safety in NPPs and other nuclear installations, code and safety guides Q1-Q14). (authors)

  13. Safety indicators in different time frames for the safety assessment of underground radioactive waste repositories. First report of the INWAC subgroup on principles and criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-10-01

    Principles and criteria for the disposal of long lived radioactive waste involve issues which go beyond those normally considered in the basic system of radiation protection. Safety criteria based on radiation risk an dose limitation are commonly accepted as the principal basis for judging the acceptability of radioactive waste repositories. However, the long time-scales of interest mean that risks or doses to future individuals cannot be predicted with any certainty as they depend, amongst other things, on assumptions made about the integrity of the waste matrix, the man-made barriers, the geology, the dispersion of groundwater, etc. and future biospheric conditions and human lifestyles. This document discusses various safety indicators and their applicability in the context of the future time-scales which have to be considered in safety assessments of deep geologic repositories. Quantitative assessment are based on numerical estimates of consequences (e.g. risk or dose) and the assessment is made against numerical criteria. Qualitative assessments are based on estimates of hazard potential which are not exact or absolute and the assessment is made against criteria which may not be numerically defined. Examples of such criteria are the convenient reference values provided by levels of radionuclides in the natural environment. Refs, figs and tabs

  14. Deep geologic repository for low and intermediate radioactive level waste in Canada

    International Nuclear Information System (INIS)

    Liu Jianqin; Li Honghui; Sun Qinghong; Yang Zhongtian

    2012-01-01

    Ontario Power Generation (OPG) is undergoing a project for the long-term management of low and intermediate level waste (LILW)-a deep geologic repository (DGR) project for low and intermediate level waste. The waste source term disposed, geologic setting, repository layout and operation, and safety assessment are discussed. It is expected to provide reference for disposal of low and intermediate level waste that contain the higher concentration of long-lived radionuclides in China. (authors)

  15. Safety considerations of disposal of disused sealed sources in Puspokszilagy Repository, Hungary

    International Nuclear Information System (INIS)

    2003-01-01

    The report presents the management of radioactive waste in Hungary Puspokszilagy Repository (RWTDF) including waste acceptance criteria, safety assessments, Action Plan for the safety improvement and present projects. The Puspokszilagy Repository is a typical near-surface repository, sink into the ground 6 m depth. The facility is a shallow land disposal type, appropriated for disposal of short and medium lived LILW, acceptable for temporary storage of long lived LILW. It consists of vaults containing cells for solidified drummed waste, wells for spent sealed sources, work building for treatment and interim storage and office building for environmental measurements. Two safety assessments have been performed in 2000 and 2002. The new safety assessment confirms the main statements of SA 2000, according to which several waste types can cause serious problems in the distant future: Until the finish of passive control the safety of the environment is guaranteed. After that time it is possible to arise events leading to exceeding of dose restricts (more then 10 mSv/yr but less then 100 mSv/yr), because of disposal of long lived radionuclides (mainly C-14,Tc-99, Ra-226, Th-232, U-234) and significant activities of Cs-137 sources.There are uncertainties in radionuclide amounts and distributions, as well as in the physical and chemical characteristics of the wastes that determine radionuclide mobility and toxicity. The recommendations to improve the safety include: Long lived SSRS in the 'B' and 'D' wells should be removed before the closure of repository. Large Cs-137 sources and long lived sources in the 'A' vaults should be recovered (if its feasible); All vaults should be backfilled to provide chemical conditioning; The waste packaged in plastic bags should be repackaged and compacted into drums or containers; The inventory should be revise. Waste acceptance requirements in the future are: The disposal of long lived radionuclides is no permitted. The long lived waste

  16. Surface-type repository for low and intermediate level radioactive waste in the Republic of Croatia

    International Nuclear Information System (INIS)

    Kucar-Dragicevic, S.; Zarkovic, V.; Subasic, D.

    1995-01-01

    The low-level intermediate-level (LL/IL) radioactive waste repository siting and construction project is one of the activities related to establishing the rad waste management system in the Republic of Croatia. The repository project design is one in an array of project activities which also include the site selection procedure and public attitude issues. The prepared design documentation gives technical, safety and financial background relevant for making a final decision on the waste disposal type, and it includes the technological, mechanical, civil and financial documentation on the preliminary/basic design level. During the last few years, the preliminary design has been prepared and safety assessment conducted for the tunnel-type LL/IL rad waste repository. As the surface-type repository is one of alternatives for final disposal the design documentation for that repository type was prepared during 1994. (author)

  17. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2003-01-01

    The Australian Government is committed to establishing two purpose-built facilities for the management of Australia's radioactive waste; the national repository for disposal of low level and short-lived intermediate level ('low level') waste, and the national store for storage of long-lived intermediate level ('intermediate level') waste. It is strongly in the interests of public security and safety to secure radioactive waste by disposal or storage in facilities specially designed for this purpose. The current arrangements where waste is stored under ad hoc arrangements at hundreds of sites around Australia does not represent international best practice in radioactive waste management. Environmental approval has been obtained for the national repository to be located at Site 40a, 20 km east of Woomera in South Australia, and licences are currently being sought from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) to site, construct and operate the facility. The national repository may be operating in 2004 subject to obtaining the required licences. The national store will be located on Australian Government land and house intermediate level waste produced by Australian Government departments and agencies. The national store will not be located in South Australia. Short-listing of potentially suitable sites is expected to be completed soon

  18. Model of evolution of radioactive waste repositories and their influence on the resource-ecological safety of an adjoining territories

    International Nuclear Information System (INIS)

    Angelova, R.; Sandul, G.A.; Sen'ko, T.Ya.

    2002-01-01

    In this paper it is considered the mathematical model of evolution of radioactive waste (RAW) repositories and their influence on the resource-ecological safety (RES) and sustainable development of an adjoining territories. Heart of considered model consists of that RAW repository is considered as a system with two processes proceeding in parallel: deterioration of repository buildings, equipment etc. enlarging resource-ecological danger (RED) on account of probability increase (risk increase) of emergency conditions; natural decay of RAW being in repository that lead to RED decrease. Considered model allows to learn RAW repositories evolution in given time interval and to analyze their behavior at its different stages depending on state of repositories, e.g., their modernization or other events as well as to define periods of RAW repositories peak danger for environment

  19. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  20. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    International Nuclear Information System (INIS)

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules

  1. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Carr, J.A.; Cunnane, J.C.

    1986-01-01

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  2. Some concepts of model uncertainty for performance assessments of nuclear waste repositories

    International Nuclear Information System (INIS)

    Eisenberg, N.A.; Sagar, B.; Wittmeyer, G.W.

    1994-01-01

    Models of the performance of nuclear waste repositories will be central to making regulatory decisions regarding the safety of such facilities. The conceptual model of repository performance is represented by mathematical relationships, which are usually implemented as one or more computer codes. A geologic system may allow many conceptual models, which are consistent with the observations. These conceptual models may or may not have the same mathematical representation. Experiences in modeling the performance of a waste repository representation. Experiences in modeling the performance of a waste repository (which is, in part, a geologic system), show that this non-uniqueness of conceptual models is a significant source of model uncertainty. At the same time, each conceptual model has its own set of parameters and usually, it is not be possible to completely separate model uncertainty from parameter uncertainty for the repository system. Issues related to the origin of model uncertainty, its relation to parameter uncertainty, and its incorporation in safety assessments are discussed from a broad regulatory perspective. An extended example in which these issues are explored numerically is also provided

  3. Planning and Design Considerations for Geological Repository Programmes of Radioactive Waste

    International Nuclear Information System (INIS)

    2014-11-01

    Disposal in a geological repository is the generally accepted solution for the long term management of high level and/or long lived radioactive wastes, in line with the general principles defined in the IAEA Safety Fundamentals. This publication presents practical information on the way a geological repository programme for radioactive waste could be defined and planned, with special attention to all aspects having an impact on the timing. Country specific examples for repository development phases are provided, based on actual experiences from Member States

  4. Enlargement of the Baldone near-surface radioactive waste repository

    International Nuclear Information System (INIS)

    Dreimanis, A.

    2007-01-01

    A unified analysis of the enlargement of the Baldone near-surface radioactive waste (RW) repository RADONS considers the interplay of the existing engineering, safety and infrastructure premises, with the foreseen newly socio-technical features. This enlargement consists in construction of two additional RW disposal vaults and in building a long-term storage facility for spent sealed sources at the RADONS territory. Our approach is based on consecutive analysis of following basic elements: - the origin of enlargement - the RADONS safety analysis and a set of optimal socio-technical solutions of Salaspils research reactor decommissioning waste management; - the enlargement - a keystone of the national RW management concept, including the long-term approach; - the enlargement concept - the result of international co-operation and obligations; - arrangement optimization of new disposal and storage space; - environmental impact assessment for the repository enlargement - the update of socio-technical studies. The study of the public opinion revealed: negative attitude to repository enlargement is caused mainly due to missing information on radiation level and on the RADONS previous operations. These results indicate: basic measures to improve the public attitude to repository enlargement: the safety upgrade, public education and compensation mechanisms. A detailed stakeholders engagement and public education plan is elaborated. (author)

  5. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    Energy Technology Data Exchange (ETDEWEB)

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger [US Department of Energy, Carlsbad Field Office, 4021 S. National parks Highway, Carlsbad, NM 88220 (United States); Leigh, Christi [Sandia National Laboratories Carlsbad Operations, 4100 S. National parks Highway, Carlsbad, NM 88220 (United States)

    2013-07-01

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA for re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)

  6. Performance analysis of a repository for low and intermediate level reactor waste

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.; Vuori, S.; Peltonen, E.

    1987-01-01

    In Finland, utilities producing nuclear energy are responsible for the management of the radioactive waste, including final disposal. As regards low and intermediate level waste, the approach has been adopted to employ the power plant sites for locations of repositories. The repositories will be excavated at the depth of about 50 to 125 m in the bedrock of the two Finnish nuclear power plant sites, Loviisa and Olkiluoto. The performance analysis presented in this paper has been carried out for the Preliminary Safety Analysis Report (PSAR) of the Olkiluoto repository. A flexible model has been developed to estimate the release of radionuclides from waste packages and their subsequent transport through the engineered barriers in the repository. Gradual degradation of the engineered barriers is accounted for by altering parameters at fixed time points. Safety margins of the disposal concept have been evaluated by including disturbed evolution scenarios in the analysis. 13 references, 10 figures, 2 tables

  7. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  8. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  9. Safety evaluation methodology of engineering barriers at repository for low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Zarnic, R.; Bokan Bosiljkov, V.; Giacomelli, M.

    2007-01-01

    Analyses of the roles of cement-based barriers in radioactive waste isolation show that models used to estimate their characteristics during the lifetime of the repository must consider the alteration of material properties with time due to degradation processes. Reinforced concrete barriers at repositories shall be designed in such manner that they fulfil besides isolative capabilities also the required functions of mechanical resistance and stability. Key elements of safety evaluation are mainly the correct selection of materials for mineral composites with cement binder (cements, aggregates, mineral additives and chemical admixtures) and their design, execution of construction works and production of precast concrete containers (continuous casting of concrete - no cold joints, limited number of construction joints, proper placing and consolidation, finishing and curing), strict control of used materials and inspection of works, as well as investigation after the construction (visual inspection, non-destructive testing, monitoring, ageing assessment on test containers). According to the methodology presented in this paper the lifetime of the repository can be estimated and, if shorter than 300 years or shorter than the period resulting from safety analysis, appropriate corrective measures shall be taken. (author)

  10. Conclusion of the Preliminary Safety report for the LILW Repository on Trgovska Gora

    International Nuclear Information System (INIS)

    Lokner, V.; Levanat, I.; Schaller, A.; Kucar-Dragicevic, S.; Cerskov Klika, M.; Subasic, D.

    2002-01-01

    For more than a decade, APO d.o.o. has been engaged in preparations which might lead to establishment of a radioactive waste repository on Trgovska Gora, suitable for disposal of low and intermediate level waste (LILW) from the nuclear power plant Krsko. A recent product of theses activities is the preliminary safety assessment report (PSAR) for the proposed repository. In addition to an extensive overview of the repository project status, this preliminary SAR describes how the safety assessment methodology is used to demonstrate that a LILW facility will comply with radiological protection and safety requirements after the repository closure. LILW repository is designed to isolate waste from the environment for a couple hundred years in a reasonably efficient manner. It is generally not practicable to grant full waste containment throughout that period, because it suffices to demonstrate that radionuclide release and migration will remain below acceptable levels, which is achieved through safety assessment scenarios, modeling and calculations. However, with very limited repository specific data, safety assessment can only produce a conservative estimate of the upper bounds of potential exposures the repository could inflict. This PSAR arrives at such estimates in two different ways: (a) by simple bounding calculations and (b) through more sophisticated modeling and application of dedicated computer codes, but with similar conservative assumptions. Both approaches conservatively estimate that the highest potential dose to a nearby resident cannot significantly exceed the dose constraint of 0.2 mSv per year. Only in case of inadvertent intrusion into the near-surface disposal vault, much higher doses might be inflicted immediately after the planned institutional control of 250 years expires, but that can be prevented by a longer control period. Despite the preliminary and bounding style of the calculations, the PSAR has identified most important assumptions and

  11. The German quality system for waste repositories

    International Nuclear Information System (INIS)

    Beckmerhagen, I.; Berg, H.P.; Brennecke, P.

    1993-01-01

    The Bundesamt fuer Strahlenschutz (BfS)--Federal Office for Radiation protection--has to guarantee that the requirements resulting from different regulations concerning planning, design, construction, operation and decommissioning of a waste repository are fulfilled. In addition, the results of the safety assessments lead to nuclear-specific requirements on the design of the plant as well as to requirements on the radioactive waste packages intended to be disposed of. Therefore, the implementation of a quality assurance (QA) and quality control (QC) system is an essential task in order to ensure that the designed quality is achieved so that the necessary precaution against damage is taken. In this paper, a detailed description of QA and QC to be applied to the planned Konrad repository as well as the basic principles and the present status of the waste package QC are indicated and discussed

  12. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the second part of a report of a preliminary study for AECL. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) geotechnical assessment, 2) hydrogeology and waste containment, 3) thermal loading and 4) rock mechanics. (author)

  13. Building the safety case for a hypothetical underground repository in crystalline rock. Final report. Vol. 2. Safety file

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.J.; Jobmann, M.; Lommerzheim, A.; Popp, W.; Frentz, R.R. v.; Wahl, A.

    1996-10-01

    The study was intended as a desk simulation of the process of preparing a licensing application for a deep repository for spent fuel and high level waste in crystalline rock. After clarifying of organizational aspects of table of contents specifying all aspects in a safety life for license application were considered. The volume II is subdivided in two parts. Part A describes the general information, waste description, site characteristics, disposal facility design, reporitory construction and operation, quality assurance, operational safety, repository closure, organization and financial aspects, and long-term safety assessment. Part B deals with the impact of retrievability. (DG)

  14. Preliminary safety evaluation of an aircraft impact on a near-surface radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, R.; Forasassi, G.; Pugliese, G. [Department of Industrial and Civil Engineering (DICI), University of Pisa, Pisa (Italy)

    2013-07-01

    The aircraft impact accident has become very significant in the design of a nuclear facilities, particularly, after the tragic September 2001 event, that raised the public concern about the potential damaging effects that the impact of a large civilian airplane could bring in safety relevant structures. The aim of this study is therefore to preliminarily evaluate the global response and the structural effects induced by the impact of a military or commercial airplane (actually considered as a 'beyond design basis' event) into a near surface radioactive waste (RWs) disposal facility. The safety evaluation was carried out according to the International safety and design guidelines and in agreement with the stress tests requirements for the security track. To achieve the purpose, a lay out and a scheme of a possible near surface repository, like for example those of the El Cabril one, were taken into account. In order to preliminarily perform a reliable analysis of such a large-scale structure and to determine the structural effects induced by such a types of impulsive loads, a realistic, but still operable, numerical model with suitable materials characteristics was implemented by means of FEM codes. In the carried out structural analyses, the RWs repository was considered a 'robust' target, due to its thicker walls and main constitutive materials (steel and reinforced concrete). In addition to adequately represent the dynamic response of repository under crashing, relevant physical phenomena (i.e. penetration, spalling, etc.) were simulated and analysed. The preliminary assessment of the effects induced by the dynamic/impulsive loads allowed generally to verify the residual strength capability of the repository considered. The obtained preliminary results highlighted a remarkable potential to withstand the impact of military/large commercial aircraft, even in presence of ongoing concrete progressive failure (some penetration and spalling of the

  15. Source terms for analysis of accidents at a high level waste repository

    International Nuclear Information System (INIS)

    Mubayi, V.; Davis, R.E.; Youngblood, R.

    1989-01-01

    This paper describes an approach to identifying source terms from possible accidents during the preclosure phase of a high-level nuclear waste repository. A review of the literature on repository safety analyses indicated that source term estimation is in a preliminary stage, largely based on judgement-based scoping analyses. The approach developed here was to partition the accident space into domains defined by certain threshold values of temperature and impact energy density which may arise in potential accidents and specify release fractions of various radionuclides, present in the waste form, in each domain. Along with a more quantitative understanding of accident phenomenology, this approach should help in achieving a clearer perspective on scenarios important to preclosure safety assessments of geologic repositories. 18 refs., 3 tabs

  16. Improvement of storage conditions and closure of the radioactive waste repository - Rozan

    International Nuclear Information System (INIS)

    Dutton, L.M.C.; Pacey, N.R.; Buckley, M.J.; Thomson, J.G.; Miller, W.; Barraclough, I.; Tomczak, W.; Mitrega, J.; Smietanski, L.

    2005-01-01

    The Rozan repository is a near-surface repository on the site of an ex-military fort, operated by Radioactive Waste Management Plant (RWMP). Solid or encapsulated waste is consigned to the repository. Low- and medium-activity waste produced in Poland is collected, processed, solidified and prepared for disposal at the Swierk facility. The waste is currently stored or disposed of within the fort structures, these have robust concrete walls, that provide both shielding and containment. The project, funded by the European Commission through the Phare Programme, aimed to improve the storage conditions and determine a strategy for closure achieving two key results; Stakeholder agreement to a strategy for the management and closure of the repository, and; Approval by the National Atomic Energy Agency of the safety case for the selected strategy. The strategy was selected using a multi-criteria analysis methodology at workshops that involved experts, regulators and other stakeholders. The selected strategy proposed that the waste in Facilities 3A and 8 should be left in situ and these facilities should continue to operate until the repository is closed. The waste in Rooms K7 to K9 of Facility 1 and in Facilities 2 and 3 should be retrieved, assayed, treated and packaged prior to redisposal. The short-lived waste that is retrieved from Rooms K7 to K9 of Facility 1 and Facilities 2 and 3 should be emplaced in Facility 8 subject to acceptance by the NAEA of the dose of 0.3mSv/y that might occur at long times in the future from a very unlikely scenario. When operations at the repository end, Facilities 3A and 8 should be covered with a multi-layer cap. Following selection of the strategy, assessment work was undertaken to support the production of the suite of safety cases. (author)

  17. Evaluation of methods and tools to develop safety concepts and to demonstrate safety for an HLW repository in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bollingerfehr, W.; Buhmann, D.; Doerr, S.; and others

    2017-03-15

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safe ty assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  18. Evaluation of methods and tools to develop safety concepts and to demonstrate safety for an HLW repository in salt. Final report

    International Nuclear Information System (INIS)

    Bollingerfehr, W.; Buhmann, D.; Doerr, S.

    2017-03-01

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safe ty assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  19. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the first part of a report of a preliminary study for Atomic Energy of Canada Limited. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) underground layout, 2) cost estimates, 3) waste handling, 4) retrievability, decommissioning, sealing and monitoring, and 5) research and design engineering requirements. (author)

  20. Radiological Protection Criteria for the Safety of LILW Repository in Croatia

    International Nuclear Information System (INIS)

    Levanat, I.; Lokner, V.; Subasic, D.

    2000-01-01

    Preparations for a LILW repository development in Croatia, conducted by APO Hazardous Waste Management Agency, have reached a point where the first safety assessment of the prospective facility is being attempted. For evaluation of the calculated radiological impact in the assessed option of repository development, a set of radiological protection criteria should be included in the definition of the assessment context. The Croatian regulations do not explicitly require that the repository development be supported by such safety assessment process, and do not provide a specific set of radiological criteria intended for the repository assessment which would be suitable for the constrained optimization of protection. For the initial safety assessment iterations of the prospective repository, which will address long term performance of the facility for various design and other safety options, we propose to use relatively simple radiological protection criteria, consisting only of individual dose and risk constraints for the general population. The numerical values for these constraints are established in accordance with the recognized international recommendations and in compliance with all possibly relevant Croatian safety requirements. (author)

  1. Technical conservatism in the design and analysis of a nuclear-waste repository in basalt

    International Nuclear Information System (INIS)

    Jones, K.A.

    1982-01-01

    The US Department of Energy's National Waste Terminal Storage Program has adopted a policy of technical conservatism to guide the design and analysis of geologic disposal systems for commercial high-level radioactive waste. Technical conservatism serves as the programmatic philosophy for managing uncertainty in the performance of the disposal system. The implementation of technical conservatism as applied to a nuclear waste repository in basalt is discussed. Preliminary assessments of the performance of the waste package, repository, and site subsystems are compared to key proposed regulatory criteria. The comparison shows that there are substantial safety margins in the predicted performance of the nuclear waste repository in basalt

  2. Workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories, July 27-28, 1977

    International Nuclear Information System (INIS)

    Jacobson, J.J.

    1977-01-01

    The workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories brought together experts in the geosciences to identify and evaluate potentially disruptive events and processes and to contribute ideas on how to extrapolate data from the past into the next one million years. The analysis is to be used to model a repository in geologic media for long-term safety assessments of nuclear waste storage. The workshop included invited presentations on the following items: an overview of the Waste Isolation Safety Assessment Program (WISAP), simulation techniques, subjective probabilities and methodology of obtaining data, similar modeling efforts at Lawrence Livermore and Sandia Laboratories, and geologic processes or events

  3. Designing shafts for handling high-level radioactive wastes in mined geologic repositories

    International Nuclear Information System (INIS)

    Hambley, D.F.; Morris, J.R.

    1988-01-01

    Waste package conceptual designs developed in the United States by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management are the basis for specifying the dimensions and weights of the waste package and transfer cask combinations to be hoisted in the waste handling shafts in mined geologic repositories for high-level radioactive waste. The hoist, conveyance, counterweight, and hoist ropes are then sized. Also taken into consideration are overwind and underwind arrestors and safety features required by the U.S. Nuclear Regulatory Commission. Other design features such as braking systems, chairing system design, and hoisting speed are considered in specifying waste hoisting system parameters for example repository sites

  4. GIS for the needs of the Radioactive Waste Repository Authority

    Directory of Open Access Journals (Sweden)

    Jitka Mikšová

    2007-06-01

    Full Text Available The Radioactive Waste Repository Authority (RAWRA is a state organisation responsible for the management of activities related to the disposal of all existing and future radioactive waste and spent nuclear fuel classed as a waste in Czech Republic. Worldwide, a deep geological repository is considered the highest degree of safety for a nuclear waste disposal. Such a repository has to be built in a stable geological environment ensuring the isolation of the stored radioactive waste from the surrounding environment for a long period of time. The selection of suitable site for the deep geological repository construction is a complicated and long term process. Considering this fact and also in respect to an assumed volume of varied datasets the GIS RAWRA was established to ensure convenient management and availability of data containing spatial information.The system is based on ESRI (ArcInfo including extensions, ArcSDE, ArcIMS, Leica Geosystems (Image Analysis and Microsoft software (MS SQL Server. Resulting datasets from six recommended potentially suitable sites for the location of a geological repository have been incorporated into the geodatabase to date. The necessary analysis was made using ESRI software tools and, in addition, custom applications were developed including the metadata editor, etc. This analysis was carried out with respect to existing geological and non-geological criteria defined for a nuclear waste repository. Finally, all six investigated sites with a total area of 240 km2 were reduced in area, each of them resulting in an area of approximately 10km2 for further detailed characterisation.

  5. International comparison of safety criteria applied to radwaste repositories. Safety aspects of the post-operational phase

    International Nuclear Information System (INIS)

    Baltes, B.

    1994-01-01

    There is a generally accepted system of framework safety conditions governing the construction, operation, and post-operational monitoring of radwaste repositories. Although the development of these framework conditions may vary from country to country, the resulting criteria are based on the commonly accepted system of priciples and purposes established for ultimate radioactive waste disposal. The experience accumulated by GRS in the course of the plan approval procedure for the Konrad mine site and the safety-relevant studies performed for the planned Morsleben repository clearly show demand for further development of the safety criteria. In Germany, it is especially the safety criteria and detailed requirements filling the framework safety conditions that need revision and in-depth definition, as well as comparison and harmonisation with internationally applied criteria. These activities will particularly consider the international convention on radioactive waste management currently in preparation under the auspieces of the IAEA. (orig.) [de

  6. Initialization of Safety Assessment Process for the Croatian Radioactive Waste repository on Trgovska gora

    International Nuclear Information System (INIS)

    Lokner, V.; Levanat, I.; Subasic, D.

    2000-01-01

    An iterative process of safety assessment, presently focusing on the site-specific evaluation of the post-closure phase for the prospective LILW repository on Trgovska gora in Croatia, has recently been initiated. The primary aim of the first assessment iterations is to provide the experts involved, the regulators and the general public with a reasonable assurance that the applicable long term performance and safety objectives can be met. Another goal is to develop a sufficient understanding of the system behavior to support decisions about the site investigation, the facility design, the waste acceptance criteria and the closure conditions. In this initial phase, the safety assessment is structured in a manner following closely methodology of the ISAM. The International Programme for Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities the IAEA coordinated research program started in 1997. Results of the safety assessment first iteration will be organized and presented in the form of a preliminary safety analysis report (PSAR), expected to be completed in the second part of the year 2000. As the first report on the initiated safety assessment activities, the PSAR will describe the concept and aims of the assessment process. Particular emphasis will be placed on description of the key elements of a safety assessment approach by: a) defining the assessment context; b) providing description of the disposal system; c) developing and justifying assessment scenarios; d) formulating and implementing models; and e) interpreting the scoping calculations. (author)

  7. Reconstruction and modernization of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Kolev, I.; Dralchev, D.; Spasov, P.; Jordanov, M.

    2000-01-01

    This report presents briefly the most important issues of the study performed by EQE - Bulgaria. The objectives of the study are the development of conceptual solutions for construction of the following facilities in the Novi Han radioactive waste repository: an operational storage for unconditioned high level spent sources; new temporary buildings over the existing radioactive waste storage facilities; a rain-water draining system ect. The study also includes the engineering solutions for conservation of the existing facilities, currently full with high level spent sources. A 'Program for reconstruction and modernization' has been created, including the analysis of some regulation aspects concerning this program implementation. In conclusions the engineering problems of Novi Han repository are clear and appropriate solutions are available. They can be implemented in both cases of 'small' or 'large' reconstruction. The reconstruction project anyway should start with the construction of a new site infrastructure. Reconstruction and modernization of Novi Han radioactive waste repository is the only way to improve the management and safety of radioactive waste from medicine, industry and scientific research in Bulgaria

  8. Preliminary waste acceptance requirements - Konrad repository project

    International Nuclear Information System (INIS)

    Brennecke, P.W.; Warnecke, E.H.

    1991-01-01

    In Germany, the planned Konrad repository is proposed for the disposal of all types of radioactive wastes whose thermal influence upon the host rock is negligible. The Bundesamt fuer Strahlenschutz has established Preliminary Waste Acceptance Requirements (as of April 1990) for this facility. The respective requirements were developed on the basis of the results of site-specific safety assessments. They include general requirements on the waste packages to be disposed of as well as more specific requirements on the waste forms, the packaging and the radionuclide inventory per waste package. In addition, the delivery of waste packages was regulated. An outline of the structure and the elements of the Preliminary Waste Acceptance Requirements of April 1990 is given including comments on their legal status. (Author)

  9. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  10. Nuclear waste repository design and construction

    International Nuclear Information System (INIS)

    Bohlke, B.M.; Monsees, J.E.

    1987-01-01

    Extensive underground excavation will be required for construction of a mined geologic repository for nuclear waste. Hundreds of thousands of feet of drift will be required based on the conceptual layout design for each candidate nuclear waste repository. Comparison of boring and blasting excavation methods are discussed, as are special design and construction requirements (e.g., quality assurance procedures and performance assessment) for the nuclear waste repository. Comparisons are made between boring and blasting construction methods for the repository designs proposed for salt, volcanic tuff, and basalt

  11. NAGRA - Sites for geological repositories - Technical safety factors: Suggestions for stage 3

    International Nuclear Information System (INIS)

    2015-01-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the six sites for repositories for nuclear wastes in Switzerland which have been proposed in Stage 1 of the program concerning nuclear waste repositories. Three of these sites are proposed for both highly radioactive wastes as well as for low and medium-active wastes, the other three for low and medium-active wastes only. The evaluation of the sites is discussed. The sites are to be further evaluated in Stage 2 of the program. The work to be done in the further stages involved in the selection of the final site (or sites) is described. Along with definition of the regions where deep repositories could possibly be built, suggestions for the placing of the facilities required on the surface are discussed. Geological requirements on the repositories and safety-relevant characteristics of the various site options are discussed. The results of the assessments made are presented in tabular form. Maps and geological cross-sections of all the suggested areas are included

  12. Low- and intermediate-level waste repository-induced effects

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom); Savage, D. [Savage Earth Associates Ltd, Bournemouth, Dorset (United Kingdom); Senger, R. [Intera Inc., Ennetbaden (Switzerland)

    2016-10-15

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a low- and intermediate level waste (L/ILW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects arising principally from the heat generated by the waste and the setting of cement. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement caverns and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock. Deep geological repositories are designed to avoid or mitigate the impact of potentially detrimental repository-induced effects on long-term safety. For the repository under consideration in the present report, an assessment of those repository-induced effects that remain shows that detrimental chemical and mechanical impacts are largely confined to the rock adjacent to the excavations, thermal impacts are minimal and gas effects can be mitigated by appropriate design measures to reduce gas production and provide pathways for gas transport that limit gas pressure build-up (engineered gas transport system, or EGTS). Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The disposal system described in this report provides a system of passive barriers with multiple safety functions. The disposal

  13. Low- and intermediate-level waste repository-induced effects

    International Nuclear Information System (INIS)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J.; Smith, P.; Savage, D.; Senger, R.

    2016-10-01

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a low- and intermediate level waste (L/ILW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects arising principally from the heat generated by the waste and the setting of cement. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement caverns and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock. Deep geological repositories are designed to avoid or mitigate the impact of potentially detrimental repository-induced effects on long-term safety. For the repository under consideration in the present report, an assessment of those repository-induced effects that remain shows that detrimental chemical and mechanical impacts are largely confined to the rock adjacent to the excavations, thermal impacts are minimal and gas effects can be mitigated by appropriate design measures to reduce gas production and provide pathways for gas transport that limit gas pressure build-up (engineered gas transport system, or EGTS). Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The disposal system described in this report provides a system of passive barriers with multiple safety functions. The disposal

  14. Influence of Groundwater Flow Rate on Nuclide Releases from Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2011-01-01

    Since the early 2000s several template programs for the safety assessment of a high-level radioactive waste repository as well as a low- and intermediate level radioactive waste repository systems have been developed by utilizing GoldSim and AMBER at KAERI. Very recently, another template program for a conceptual hybrid-typed repository system, called 'A-KRS' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from pyroprocessing of PWR nuclear spent fuels has been developed and are to be disposed of by separate disposal strategies. The A-KRS is considered to be constructed at two different depths in geological media: 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and 500m depth, believed to be in the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of waste package and canister. To quantify a nuclide release and transport through the possible various pathways especially in the near-fields of the A-KRS repository system, some illustrative evaluations have been made through the study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  15. NAGRA - Long-term safety - The main task of deep repositories for radioactive wastes

    International Nuclear Information System (INIS)

    2015-10-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the necessity for the safe disposal of radioactive wastes in Switzerland and discusses the requirements placed on such long-term waste depositories The effects of ionizing radiation on people and the protection provided by the deep repositories are examined. The construction of such deep repositories is looked at, as are the developments expected in the depositories over thousands of years. A comparison with natural occurrences is made and lessons to be learned from nature are discussed. Ideas for the marking of the depository sites are presented. A glossary of relevant terms completes the report

  16. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  17. Analysis of the geological stability of a hypothetical radioactive waste repository in a bedded salt formation

    International Nuclear Information System (INIS)

    Tierney, M.S.; Lusso, F.; Shaw, H.R.

    1978-01-01

    This document reports on the development of mathematical models used in preliminary studies of the long-term safety of radioactive wastes deeply buried in bedded salt formations. Two analytical approaches to estimating the geological stability of a waste repository in bedded salt are described: (a) use of probabilistic models to estimate the a priori likelihoods of release of radionuclides from the repository through certain idealized natural and anthropogenic causes, and (b) a numerical simulation of certain feedback effects of emplacement of waste materials upon ground-water access to the repository's host rocks. These models are applied to an idealized waste repository for the sake of illustration

  18. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  19. Old waste products - new requirements. Preparations for the later repository

    International Nuclear Information System (INIS)

    Graf, A.; Merx, H.

    2003-01-01

    For more than 30 years now, the Hauptabteilung Dekontaminationsbetriebe (HDB, Central Decontamination Department) of the Forschungszentrum Karlsruhe has been engaged in the management of radioactive wastes produced by the operation and decommissioning of research reactors and institutes of the Research Center, the Karlsruhe reprocessing plant, the European Institute for Transuranium Elements, and the Baden-Wuerttemberg state collection center. For this purpose, the wastes delivered to HDB have been conditioned at various facilities according to the requirements specified. These conditioning requirements, however, have changed in the course of time. In the past, only minimum declaration and conditioning requirements had to be fulfilled for the ASSE repository storage facility. Since 1994, the KONRAD repository storage conditions have been adopted. They comprise a variety of quality criteria. Judging from today, duration of interim storage until transfer to a repository storage facility will take another 30 years at least. In addition to the documentary qualification of the waste products, it is therefore required to take measures to ensure long-term safety of both the waste packages and their storage. This is why the HDB, in agreement with the supervisory authority, i.e. the Federal Radiation Protection Authority, and its experts, has decided to put the waste products into KONRAD containers in certified compliance with the repository storage conditions and to backfill these containers with concrete in accordance with approved procedures. Thus, waste packages suited for repository storage will be produced and corrosion processes and the possible release of radioactivity will be prevented. (orig.)

  20. Old waste products - new requirements. Preparations for the later repository

    Energy Technology Data Exchange (ETDEWEB)

    Graf, A.; Merx, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Hauptabteilung Dekontaminationsbetriebe

    2003-07-01

    For more than 30 years now, the Hauptabteilung Dekontaminationsbetriebe (HDB, Central Decontamination Department) of the Forschungszentrum Karlsruhe has been engaged in the management of radioactive wastes produced by the operation and decommissioning of research reactors and institutes of the Research Center, the Karlsruhe reprocessing plant, the European Institute for Transuranium Elements, and the Baden-Wuerttemberg state collection center. For this purpose, the wastes delivered to HDB have been conditioned at various facilities according to the requirements specified. These conditioning requirements, however, have changed in the course of time. In the past, only minimum declaration and conditioning requirements had to be fulfilled for the ASSE repository storage facility. Since 1994, the KONRAD repository storage conditions have been adopted. They comprise a variety of quality criteria. Judging from today, duration of interim storage until transfer to a repository storage facility will take another 30 years at least. In addition to the documentary qualification of the waste products, it is therefore required to take measures to ensure long-term safety of both the waste packages and their storage. This is why the HDB, in agreement with the supervisory authority, i.e. the Federal Radiation Protection Authority, and its experts, has decided to put the waste products into KONRAD containers in certified compliance with the repository storage conditions and to backfill these containers with concrete in accordance with approved procedures. Thus, waste packages suited for repository storage will be produced and corrosion processes and the possible release of radioactivity will be prevented. (orig.)

  1. Judicial progress in Germany's nuclear waste disposal policy the Konrad repository decisions of 26 march 2007

    International Nuclear Information System (INIS)

    Kuhne, G.

    2007-01-01

    Its exists three final repository sites in Germany, an overview of the status of these sites is necessary to understand concretely the situation. Morsleben, is actually the only final repository for low and medium level radioactive waste. Gorleben is the site of a salt dome which is under exploration as an eventual repository for high level radioactive waste but the study is under a decree of exploration moratorium of at least three years, in order to allow for investigation into conceptual and safety issues. The Konrad ore mine is the site under preparation for a final repository for low and medium level radioactive waste. The present article will briefly address three aspects of the court reasoning: the legal character of the plan approval notice (act of discretion or strict execution of laws), the necessity of planning and safety aspects. (N.C.)

  2. Groundwater-stream-simulation experiments for the evaluation of the safety of proposed nuclear waste repositories

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1981-01-01

    A bench-scale experimental design which integrates repository components to simulate a groundwater stream infiltrating a breached repository is described in this paper. An experiment performed with a nuclear waste solid and one rock core is briefly summarized. The nuclear waste solid consists of borosilicate glass containing formulated nuclear waste and is the source of the leached radionuclides. The rock core used is of granite and serves as the adsorption medium for the leached radionuclides

  3. Consideration on safety assessment methodologies applied to the near surface repository Baita Bihor

    International Nuclear Information System (INIS)

    Dogaru, D.

    2003-01-01

    The Romanian legislation in respect of RAW management is described. The waste facilities in the country are: for low and intermediate level waste - Radioactive Waste Treatment Plant - Bucharest Magurele; Radioactive Waste Treatment Plant - Pitesti; National Repository for Radioactive Waste - Baita Bihor. for spent fuel - Intermediate dry spent fuel storage facility (DICA) - CNE Cernavoda; Intermediate wet spent fuel storage facility WWR-S - Bucharest Magurele. A detailed description of the facilities and waste characterisation are given in the report. Due o insufficient and incomplete information about site characterisation and inventory a Phare project 'Preliminary Safety Analysis for the Low-Level Radioactive Waste Repository Baita Bihor, Romania' has been approved. The project purposes are: to achieve a database with specific parameters; validation of scenarios and conceptual models for normal and altered evolution of the disposal site; validation and qualification of existing calculation methods and identification of the complementary suitable computer codes to be installed in Romania; validation and analyses of the final results expertise PSAR final results; recommendation for further completion of Integrated Performance Assessment. The results, conclusions and recommendations of the project will be included in the Preliminary Safety Analyses Report to be sent to the Romanian Authority - CNCAN for licensing of the repository operation

  4. Radioactive Waste Repositories and Incentives to Local Communities

    International Nuclear Information System (INIS)

    Knapp, A.; Medakovic, S.

    2008-01-01

    Public acceptance of radioactive waste (RW) repository depends on various and often community-specific factors. Although radiological risk from a properly constructed low and intermediate level waste (LILW) repository is practically negligible, routine safety considerations will favor low populated areas and therefore probably underdeveloped communities. Repository acceptance in such communities is more likely to be facilitated by prospective benefits to local economy, such as infrastructure development and increased employment, as well as by dedicated financial incentives to the community. Direct financial compensation to the local community for acceptance of the repository has been considered in some documents in countries experienced in RW management, but it has not become a widely accepted practice. In Croatia, a possibility for such compensation is mentioned in the land use plan in conjunction with the prospective RW repository site. In Slovenia, the government has already specified the annual amount of 2.33 million euro as a compensation for 'limited land use' to be shared by local communities in the vicinity of the planned LILW repository during its operation. Applicability of the Slovenian compensations to the prospective joint Slovenian-Croatian repository is not yet clear, at least in the aspect of joint funding. The joint Slovenian-Croatian Decommissioning and LILW and SF management program for NPP Krsko from 2004 did conservatively include the compensations into the repository cost estimates, but that might not be retained in subsequent revisions of the Program. According to the agreement between governments of Slovenia and Croatia on the Nuclear power plant Krsko, Croatian side has no obligations to participate in 'public expenditures' introduced after the agreement, as would be the case of community compensations for LILW repository in Slovenia. Before further decisions on joint NPP Krsko waste management are made, including the issue of LILW

  5. Safety Assessment of Radioactive waste Repositories

    International Nuclear Information System (INIS)

    1991-01-01

    It is planned to dispose of high-level radioactive wastes in deep geological formations. To access the long-term safety of radioactive waste disposal systems, mathematical models are used to describe groundwater flow, chemistry and potential radionuclide migration through these formations. Establishing the validity of such models is important in order to obtain the necessary confidence in the safety of the disposal method. The papers in these proceedings of the GEOVAL'90 Symposium describe the current state of knowledge on the validation of geosphere flow and transport models. This symposium, divided into five sessions, contains 65 technical papers: session 1 - Necessity of validation. Session 2 - Progress in validation of flow and transport models in orystalline rock, unsaturated media, salt media or clay. Session 3 - Progress in validation of geochemical models. Session 4 - Progress in validation of coupled thermo-hydro-mechanical effects. Session 5 - Validation strategy

  6. Identification of structures, systems, and components important to safety at the potential repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Klamerus, L.J.

    1991-10-01

    This study recommends which structures, systems, and components of the potential repository at Yucca Mountain are important to safety. The assessment was completed in April 1990 and uses the reference repository configuration in the Site Characterization Plan Conceptual Design Report and follows the methodology required at that time by DOE Procedure AP6.10-Q. Failures of repository items during the preclosure period are evaluated to determine the potential offsite radiation doses and associated probabilities. Items are important to safety if, in the event they fail to perform their intended function, an accident could result which causes a dose commitment greater than 0.5 rem to the whole body or any organ of an individual in an unrestricted area. This study recommends that these repository items include the structures that house spent fuel and high-level waste, the associated filtered ventilation exhaust systems, certain waste- handling equipment, the waste containers, the waste treatment building structure, the underground waste transporters, and other items listed in this report. This work was completed April 1990. 27 refs., 7 figs., 9 tabs

  7. High level radioactive waste repositories. Task 3. Review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A review is presented of proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository appropriate to the U.K. context, with particular reference to waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development.

  8. Postclosure safety assessment of a used fuel repository in sedimentary rock

    International Nuclear Information System (INIS)

    Gobien, M.; Garisto, F.; Hunt, N.; Kremer, E.

    2014-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for the implementation of Adaptive Phased Management (APM), the federally-approved plan for safe long-term management of Canada's used nuclear fuel. Under the APM plan, used nuclear fuel will ultimately be placed within a deep geological repository in a suitable rock formation. This paper summarizes an illustrative case study of the current multi-barrier design and postclosure safety of a deep geological repository in a hypothetical sedimentary Michigan Basin setting. The purpose of this postclosure safety assessment is to determine potential effects of the repository on the health and safety of persons and the environment. Results are compared against acceptance criteria established for the protection of persons and the environment from potential radiological and non-radiological hazards. (author)

  9. Postclosure safety assessment of a used fuel repository in sedimentary rock

    Energy Technology Data Exchange (ETDEWEB)

    Gobien, M.; Garisto, F.; Hunt, N.; Kremer, E. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2014-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for the implementation of Adaptive Phased Management (APM), the federally-approved plan for safe long-term management of Canada's used nuclear fuel. Under the APM plan, used nuclear fuel will ultimately be placed within a deep geological repository in a suitable rock formation. This paper summarizes an illustrative case study of the current multi-barrier design and postclosure safety of a deep geological repository in a hypothetical sedimentary Michigan Basin setting. The purpose of this postclosure safety assessment is to determine potential effects of the repository on the health and safety of persons and the environment. Results are compared against acceptance criteria established for the protection of persons and the environment from potential radiological and non-radiological hazards. (author)

  10. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  11. Viability Assessment of a Repository at Yucca Mountain. Volume 2: Preliminary Design Concept for the Repository and Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This volume describes the major design features of the Monitored Geologic Repository. This document is not intended to provide an exhaustive, detailed description of the repository design. Rather, this document summarizes the major systems and primary elements of the design that are radiologically significant, and references the specific technical documents and design analyses wherein the details can be found. Not all portions of the design are at the same level of completeness. Highest priority has been given to assigning resources to advance the design of the Monitored Geologic Repository features that are important to radiological safety and/or waste isolation and for which there is no NRC licensing precedent. Those features that are important to radiological safety and/or waste isolation, but for which there is an NRC precedent, receive second priority. Systems and features that have no impact on radiological safety or waste isolation receive the lowest priority. This prioritization process, referred to as binning, is discussed in more detail in Section 2.3. Not every subject discussed in this volume is given equal treatment with regard to the level of detail provided. For example, less detail is provided for the surface facility design than for the subsurface and waste package designs. This different level of detail is intentional. Greater detail is provided for those functions, structures, systems, and components that play key roles with regard to protecting radiological health and safety and that are not common to existing nuclear facilities already licensed by NRC. A number of radiological subjects are not addressed in the VA, (e.g., environmental qualification of equipment). Environmental qualification of equipment and other radiological safety considerations will be addressed in the LA. Non-radiological safety considerations such as silica dust control and other occupational safety considerations are considered equally important but are not addressed in

  12. Environmental monitoring and radiation protection programs of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Christoskova, M.; Kostova, M.; Sheherov, L.; Bekiarov, P.; Iovtchev, M.

    2000-01-01

    The system for monitoring and control as an important part of the safety management of the Novi Han Radioactive Waste Repository contains two independent programs: environmental monitoring of the site (controlled area), the restricted access area and the surveillance area (supervised area) of the repository and radiation protection program including personal dosimetric control and indoor dosimetric control of workplaces in the buildings of the repository. The main activities related to the programs implementation are presented

  13. Source-book of International Activities Related to the Development of Safety Cases for Deep Geological Repositories

    International Nuclear Information System (INIS)

    2017-01-01

    All national radioactive waste management authorities recognise today that a robust safety case is essential in developing disposal facilities for radioactive waste. To improve the robustness of the safety case for the development of a deep geological repository, a wide variety of activities have been carried out by national programs and international organisations over the past years. The Nuclear Energy Agency, since first introducing the modern concept of the 'safety case', has continued to monitor major developments in safety case activities at the international level. This Source-book summarises the activities being undertaken by the Nuclear Energy Agency, the European Commission and the International Atomic Energy Agency concerning the safety case for the operational and post-closure phases of geological repositories for radioactive waste that ranges from low-level to high-level waste and for spent fuel. In doing so, it highlights important differences in focus among the three organisations

  14. Natural analogues, paradigm for manmade repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Pavelescu, M.; Pavelescu, A.

    2004-01-01

    projects. In this way it is expected to understand better how the results of the natural analogues may be applied to help to solve the geological disposal safety issues and so be able to fill the gap between decision makers, public acceptance and waste management understanding. The main conclusions are that the natural analogues can play an important role in explaining some of the essential components of the safety case and can attract very large audience from the large public in the feasibility of deep manmade repository and implicit of the nuclear energy. The challenge is to build and maintain an integrated programme including face-to-face presentations during site visits, publications for technical and non-technical audiences, radio, TV, film and, especially now, the internet.(author)

  15. Ethical considerations surrounding nuclear waste repository siting and mitigation

    International Nuclear Information System (INIS)

    Peters, T.F.

    1983-01-01

    The potential long-term health and safety effects of the nuclear materials stored in repositories, the extremely long periods of time over which such materials may be dangerous, and the equity implications of the siting of a repository in any given area are unlike the issues involved in other large-scale projects. They involve major philosophical issues basic to human perspectives on social relationships and on insuring the future of mankind. Safety and permanence are the two basic criteria for determining whether a waste proposal is satisfactory. This chapter takes the approach of public (or micro) ethics, whose task is to 1) articulate and clarify public values relevant to a problem, 2) identify and evaluate public options, and 3) rank alternatives in some order of ethical preferability. It addresses the four major repository-related issues: uncertainty and risks, geographic equity, intergenerational ethics, and implementation ethics

  16. Safety related aspects of ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Goemmel, R.

    1992-01-01

    Solutions and questions related to nuclear waste management are presented. In particular, long-term safety of repositories in Germany and Sweden is considered, with special attention being paid to methods of detection, geotechnical barriers and post-operational phase of salt dome repositories, and conditioning of wastes to make them fit for ultimate disposal. (DG) [de

  17. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  18. Waste package/repository impact study: Final report

    International Nuclear Information System (INIS)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs

  19. Safety assessment of radioactive wastes storage 'Mironova Gora'

    International Nuclear Information System (INIS)

    Serbryakov, B.; Karamushka, V.; Ostroborodov, V.

    2000-01-01

    A project of transforming the radioactive wastes storage 'Mironova Gora' is under development. A safety assessment of this storage facility was performed to gain assurance on the design decision. The assessment, which was based on the safety assessment methods developed for radioactive wastes repositories, is presented in this paper. (author)

  20. NF-PRO research on a repository for vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Sneyers, A.

    2006-01-01

    NF-PRO is a four-year (2004-2007) Integrated Project supported by funding under the Sixth Research (EURATOM) Programme of the European Commission. NF-PRO is coordinated by SCK C EN and investigates key processes in the near-field of geological repositories for the disposal of high-level vitrified waste and spent nuclear fuel. The near-field of a geological repository consists of the area surrounding the waste packages and is composed of several engineered barriers that enclose and confine the disposed waste. These barriers include the waste form, the waste canisters, backfills, seals, plugs and the part of the host rock that has been modified by the excavation of the repository. In all repository designs under investigation within EU Member States, the near-field plays an important role in ensuring the overall safety of disposal: its principal function is to retain radionuclides over extended periods of time and to minimise their release from the waste to the host rock. The main objective of NF-PRO is to integrate European research on the near field with the aim of enhancing common understanding of the long-term changes taking place in a deep repository. NF-PRO assesses how these changes affect the containment of the disposed radioactive waste. Knowledge generated by the project can be applied in waste management programmes to optimise repository designs and to make barriers functional and resource-efficient. The integration of results from detailed process studies in assessments on the overall near-field system performance is a key objective of NF-PRO. The level of integration envisaged by NF-PRO has not yet been achieved in earlier research projects supported by the European Commission. Accordingly, NF PRO represents a major step forward in the establishing of the scientific and technical basis for geological disposal and the safe management of radioactive wastes

  1. Developing multinational radioactive waste repositories: Infrastructural framework and scenarios of cooperation

    International Nuclear Information System (INIS)

    2004-10-01

    Currently the management of radioactive wastes centres on national strategies for collection, treatment, interim storage and disposal. This tendency to focus exclusively on national strategies reflects the fact that radioactive waste is a sensitive political issue, making cooperation among countries difficult. It is consistent with the accepted principle that a country that enjoys the benefit of nuclear energy, or the utilization of nuclear technology, should also take full responsibility for managing the generated radioactive waste. However, there are countries whose radioactive waste volumes do not easily justify a national repository, and/or countries that do not have the resources or favourable natural conditions for waste disposal to dedicate to a national repository project or would prefer to collaborate in shared initiatives because of their economic advantages. In such cases it may be appropriate for these countries to engage in a multinational collaborative effort to ensure that they have access to a common repository, in order that they can fulfil their responsibilities for their managing wastes safely. In response to requests from several Member States expressing an interest in multinational disposal options, the IAEA produced in 1998 a TECDOC outlining the important factors to be taken into account in the process of realizing such options. These factors include for example, technical (safety), institutional (legal, safeguards), economic (financial) socio-political (public acceptance) and ethical considerations. The present report reviews the work done in the previous study, taking into account developments since its publication as well as current activities in the field of multinational repositories. The report attempts to define the concepts involved in the creation of multinational repositories, to explore the likely scenarios, to examine the conditions for successful implementation, and to point out the benefits and challenges inherent to

  2. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  3. Experience from developed and licensing an underground repository for low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Ebel, K.; Richter, D.

    1988-01-01

    In the German Democratic Republic an abandoned salt mine was selected and reconstructed to serve as a central repository for low and intermediate level wastes from nuclear power plants and radioisotope production and application from all over the country. The decision to establish such a repository was based on safety and technical-economic studies performed in the 1960s. The repository is owned by the main waste producer, the nuclear plant utility. It was designed, constructed and commissioned during 1972-1978. The licensing steps included a site licence (1972), a construction licence (1974), a comissioning licence and a continuous operation licence (1979). The paper reviews the overall choice of the disposal option, the responsibilities in radioactive waste management, the licensing and surveillance activities, the methods for transport and disposal, and the waste acceptance criteria established for the repository. (author)

  4. Nuclear waste repository siting and locational conflict analysis: A contextual approach

    International Nuclear Information System (INIS)

    Murauskas, G.T.

    1989-01-01

    This study develops and evaluates an alternative framework that is based on contextual variables. The premise is that differences in attitudes and perceptions regarding the local siting of nuclear wastes and differences in attitudes regarding siting decision-making procedures are influenced by local political, economic, and cultural variables. This framework articulates the nature of conflict in terms of the incongruence between the use-value individuals ascribe to their present situation and the anticipated exchange-value individuals associate with the local siting of a nuclear waste repository. In order to evaluate this conceptual framework a survey was conducted of residents in four communities representing distinct societal contexts: Richton, Mississippi; Peterborough, New Hampshire; Richland, Washington; and Antigo/Waupaca, Wisconsin. Data analyses indicate substantial differences in economic expectations associated with the local siting of a high-level nuclear waste repository and in perception regarding the impacts such a repository might have on the environment, local agriculture, personal health and safety, and the quality of life

  5. A Probabilistic Consideration on Nuclide Releases from a Pyro-processed Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jeong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Very recently, a GoldSim template program, GSTSPA, for a safety assessment of a conceptual hybrid-typed repository system, called 'A-KRS,' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyroprocessing of PWR nuclear spent fuels, has been developed and is to be disposed of by 'separate disposal' strategies. The A-KRS is considered to be constructed at two different depths in geological media: at a 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and at a 500m depth, believed to be the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for a probabilistic total system performance assessment (TSPA) which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of a waste package and canister with associated uncertainty. To quantify the nuclide release and transport through the various possible pathways in the near- and far-fields of the A-KRS repository system under a normal groundwater flow scenario, some illustrative evaluations have been made through this study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  6. A Probabilistic Consideration on Nuclide Releases from a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    Very recently, a GoldSim template program, GSTSPA, for a safety assessment of a conceptual hybrid-typed repository system, called 'A-KRS,' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyroprocessing of PWR nuclear spent fuels, has been developed and is to be disposed of by 'separate disposal' strategies. The A-KRS is considered to be constructed at two different depths in geological media: at a 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and at a 500m depth, believed to be the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for a probabilistic total system performance assessment (TSPA) which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of a waste package and canister with associated uncertainty. To quantify the nuclide release and transport through the various possible pathways in the near- and far-fields of the A-KRS repository system under a normal groundwater flow scenario, some illustrative evaluations have been made through this study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  7. The deep geologic repository technology programme: toward a geoscience basis for understanding repository safety

    International Nuclear Information System (INIS)

    Jensen, M.R.

    2007-01-01

    Within the Deep Geologic Repository Technology Programme (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Canadian Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a deep geologic repository for used nuclear fuel waste. This is being achieved through a coordinated multi-disciplinary approach intent on: i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions, boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility of various geo-scientific data in supporting a safety case for a deep geologic repository. This multi-disciplinary DGRTP approach is yielding an improved understanding of groundwater flow system evolution and stability in Canadian Shield settings that is further contributing to the geo-scientific basis for understanding and communicating aspects of DGR safety. (author)

  8. SR 97 - Waste, repository design and sites. Background report to SR 97 SKB

    International Nuclear Information System (INIS)

    1999-10-01

    SR 97 is a comprehensive analysis of long-term safety of a deep repository for spent nuclear fuel. The repository is assumed to be designed according to the KBS-3 method. Assessments are performed in SR 97 for three fictitious sites: Aberg, Beberg and Ceberg. One premise is that data used for assessment of the fictitious sites are to be taken from sites that have previously been investigated. The spent nuclear fuel is enclosed in copper canisters with an insert of cast iron. The canisters are emplaced in bored holes in the floor of the deposition tunnels. Around each canister, bentonite blocks are stacked which, after absorbing water and swelling, will isolate the canister from groundwater, hold the canister in place and retard transport of radionuclides from the canister to the surrounding rock. The spent nuclear fuel will emit heat for a long time, due to the decay heat. The maximum permissible temperature on the canister surface has been chosen at 100 deg C. The spacing between the deposition holes and between the deposition tunnels is adjusted site-specifically to meet this requirement. The thermal properties of the rock and the buffer material are of importance for how closely the deposition holes and tunnels can be spaced. After deposition, the deposition tunnels are backfilled with a mixture of bentonite and crushed rock. SR 97 examines above all the consequences of various scenarios and the handling of various types of uncertainties. The different repository sites illustrate normal properties for Swedish bedrock which are of importance for safety. To facilitate the work, the repositories on the three sites are configured as similarly as possible, which means for example that they are located at roughly the same depth and are fitted into the bedrock in a relatively similar fashion. Apart from the siting of a repository for spent nuclear fuel, the site may need to house a separate repository for other long-lived waste. This possibility has been considered in

  9. SR 97 - Waste, repository design and sites. Background report to SR 97 SKB

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    SR 97 is a comprehensive analysis of long-term safety of a deep repository for spent nuclear fuel. The repository is assumed to be designed according to the KBS-3 method. Assessments are performed in SR 97 for three fictitious sites: Aberg, Beberg and Ceberg. One premise is that data used for assessment of the fictitious sites are to be taken from sites that have previously been investigated. The spent nuclear fuel is enclosed in copper canisters with an insert of cast iron. The canisters are emplaced in bored holes in the floor of the deposition tunnels. Around each canister, bentonite blocks are stacked which, after absorbing water and swelling, will isolate the canister from groundwater, hold the canister in place and retard transport of radionuclides from the canister to the surrounding rock. The spent nuclear fuel will emit heat fora long time, due to the decay heat. The maximum permissible temperature on the canister surface has been chosen at 100 deg C. The spacing between the deposition holes and between the deposition tunnels is adjusted site-specifically to meet this requirement. The thermal properties of the rock and the buffer material are of importance for how closely the deposition holes and tunnels can be spaced. After deposition, the deposition tunnels are backfilled with a mixture of bentonite and crushed rock. SR 97 examines above all the consequences of various scenarios and the handling of various types of uncertainties. The different repository sites illustrate normal properties for Swedish bedrock which are of importance for safety. To facilitate the work, the repositories on the three sites are configured as similarly as possible, which means for example that they are located at roughly the same depth and are fitted into the bedrock in a relatively similar fashion. Apart from the siting of a repository for spent nuclear fuel, the site may need to house a separate repository for other long-lived waste. This possibility has been considered in

  10. Influence of climate on landscape characteristics in safety assessments of repositories for radioactive wastes.

    Science.gov (United States)

    Becker, J K; Lindborg, T; Thorne, M C

    2014-12-01

    In safety assessments of repositories for radioactive wastes, large spatial and temporal scales have to be considered when developing an approach to risk calculations. A wide range of different types of information may be required. Local to the site of interest, temperature and precipitation data may be used to determine the erosional regime (which may also be conditioned by the vegetation characteristics adopted, based both on climatic and other considerations). However, geomorphological changes may be governed by regional rather than local considerations, e.g. alteration of river base levels, river capture and drainage network reorganisation, or the progression of an ice sheet or valley glacier across the site. The regional climate is in turn governed by the global climate. In this work, a commentary is presented on the types of climate models that can be used to develop projections of climate change for use in post-closure radiological impact assessments of geological repositories for radioactive wastes. These models include both Atmosphere-Ocean General Circulation Models and Earth Models of Intermediate Complexity. The relevant outputs available from these models are identified and consideration is given to how these outputs may be used to inform projections of landscape development. Issues of spatial and temporal downscaling of climate model outputs to meet the requirements of local-scale landscape development modelling are also addressed. An example is given of how climate change and landscape development influence the radiological impact of radionuclides potentially released from the deep geological disposal facility for spent nuclear fuel that SKB (the Swedish Nuclear Fuel and Waste Management Company) proposes to construct at Forsmark, Sweden. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Aspects on the gas generation and migration in repositories for high level waste in salt formations

    International Nuclear Information System (INIS)

    Ruebel, Andre; Buhmann, Dieter; Meleshyn, Artur; Moenig, Joerg; Spiessl, Sabine

    2013-07-01

    In a deep geological repository for high-level waste, gases may be produced during the post-closure phase by several processes. The generated gases can potentially affect safety relevant features and processes of the repository, like the barrier integrity, the transport of liquids and gases in the repository and the release of gaseous radionuclides from the repository into the biosphere. German long-term safety assessments for repositories for high-level waste in salt which were performed prior 2010 did not explicitly consider gas transport and the consequences from release of volatile radionuclides. Selected aspects of the generation and migration of gases in repositories for high-level waste in a salt formation are studied in this report from the viewpoint of the performance assessment. The knowledge on the availability of water in the repository, in particular the migration of salt rock internal fluids in the temperature field of the radioactive waste repository towards the emplacement drifts, was compiled and the amount of water was roughly estimated. Two other processes studied in this report are on the one hand the release of gaseous radionuclides from the repository and their potential impact in the biosphere and on the other hand the transport of gases along the drifts and shafts of the repository and their interaction with the fluid flow. The results presented show that there is some gas production expected to occur in the repository due to corrosion of container material from water disposed of with the backfill and inflowing from the host rock during the thermal phase. If not dedicated gas storage areas are foreseen in the repository concept, these gases might exceed the storage capacity for gases in the repository. Consequently, an outflow of gases from the repository could occur. If there are failed containers for spent fuel, radioactive gases might be released from the containers into the gas space of the backfill and subsequently transported together

  12. Appraisal of hard rock for potential underground repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1977-10-01

    The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  13. Review of the potential effects of alkaline plume migration from a cementitious repository for radioactive waste

    International Nuclear Information System (INIS)

    Savage, D.

    1997-01-01

    Extensive use of cement and concrete is envisaged in the construction of geological repositories for low and intermediate-level radioactive wastes, both for structural, and encapsulation and backfilling purposes. Saturation of these materials with groundwater may occur in the post-closure period of disposal, producing a hyperalkaline pore fluid with a pH in the range 10-13.5. These pore fluids have the potential to migrate from the repository according to local groundwater flow conditions and react chemically with the host rock. These chemical reactions may affect the rock's capacity to retard the migration of radionuclides released from the repository after the degradation of the waste packages. The effects of these chemical reactions on the behaviour of the repository rock as a barrier to waste migration need to be investigated for the purposes of assessing the safety of the repository design (so-called 'safety assessment' or 'performance assessment'). The objectives of the work reported here were to: identify those processes influencing radionuclide mobility in the geosphere which could be affected by plume migration; review literature relevant to alkali-rock reaction; contact organisations carrying out relevant research and summarise their current and future activities; and make recommendations how the effects of plume migration can be incorporated into models of repository performance assessment. (author)

  14. Safety assessment for the underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and reviewing safety assessments of underground radioactive waste repositories. It introduces and discusses in a general manner approaches and areas to be considered in making such safety assessments; its emphasis is on repositories for long-lived radioactive wastes in deep geological formations. It is hoped that this document will contribute to providing a base for a common understanding among the authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing guidance, the document is also intended to stimulate further international discussion on this subject. It is the intention of the IAEA to develop more specific reports providing examples for the application of safety analyses for underground waste disposal

  15. Safety assessment for the underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and reviewing safety assessments of underground radioactive waste repositories. It introduces and discusses in a general manner approaches and areas to be considered in making such safety assessments; its emphasis is on repositories for long-lived radioactive wastes in deep geological formations. It is hoped that this document will contribute to providing a base for a common understanding among the authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing guidance, the document is also intended to stimulate further international discussion on this subject. It is the intention of the IAEA to develop more specific reports providing examples for the application of safety analyses for underground waste disposal.

  16. Joint SKI and SSI review of SKB preliminary safety assessment of repository for long-lived low- and intermediate-level waste. Review report

    International Nuclear Information System (INIS)

    2001-03-01

    included no discussion in the safety report as to which R and D activities they intend to prioritise. According to the current SKB timetable, siting and construction of SFL 3-5 will not begin for another 30 years. However, SKI and SSI do not consider this to be a reason to postpone essential R and D work. If a complete and thorough basis is not produced for assessing the long-term safety of an SFL 3-5 repository, the risk that these waste categories will have to undergo interim storage for an indefinite period of time increases. A future siting of SFL 3-5 based on our current level of knowledge is problematic. The present safety assessment points toward a substantial site-specific effect on the repository's protective capacity that can be related primarily to the local groundwater flow rate, but also to relevant geochemical conditions. Calculated doses for cases involving consumption of drinking water give the impression that the margins are small vis-a-vis the existing requirement framework, at least based on the methods used heretofore. In their main report, SKB discuss the possibility of improving the technical barriers to increase their impact on long-term safety (thereby mitigating the impact of site-specific factors). SKI and SSI feel that this approach is reasonable from the current preliminary perspective, but not for subsequent stages. SKB should in future formulate a proposed repository design that can be considered sufficiently robust with respect to the effects of the site-specific factors and their long-term evolution. The requirements and criteria that are relevant to the siting of SFL 3-5 must be addressed therein. In addition, more in-depth studies regarding the optimum storage depth for SFL 3-5 and the importance of the interactions between SFL 2 and SFL 3-5 should be undertaken relatively soon. The importance of these issues needs to be well documented in order to provide a basis for identifying suitable rock volumes for potential siting of SFL 3-5. Once

  17. Technical, institutional and economic factors important for developing a multinational radioactive waste repository

    International Nuclear Information System (INIS)

    1998-06-01

    Countries planning and implementing nuclear energy programmes should assume responsibility for the safe management and final disposal of radioactive waste from their programmes. However, there are countries whose radioactive waste volumes do not easily justify a national repository, and/or countries which do not have the resources or favorable natural conditions for waste disposal to dedicate to a national repository project. These countries would benefit from multinational co-operation for the disposal. Interest in the concept of a multinational repository for radioactive waste has been expressed by several Member States and the waste management community in the light of the potential benefit to the partner countries from the safety, technical and economic standpoints. However, such an approach involves many political and public acceptance issues and therefore a consensus among countries or regions concerned is a prerequisite. In this context, it was deemed appropriate that the IAEA access the technical, institutional, ethical and economic factors to be taken into account in the process of such consensus building. This report is intended to provide an assessment which can serve as a general basis for establishing a waste management policy and/or further assessing specific issues such as ownership and liability, institutional aspects and problems related to long term commitments. This report is divided into five sections where the first section gives background, objectives, scope and structure of the report. Section 2 discusses multinational repository concept in terms of needs and the role of a multinational repository, interaction between host and partner countries and formulation of a multinational repository. Section 3 identifies basic issues to be considered for establishing a multinational repository, and some specific issues relating to specific waste categories. Section 4 analyses potential benefits and challenges to be addresses in establishing a

  18. The duration of the institutional controls on the low and intermediate level waste repositories

    International Nuclear Information System (INIS)

    Yang Jie; Li Yang; Liu Yafang; Lian Bing; Zhao Yangjun; Chen Hailong; Gu Zhijie

    2014-01-01

    Appropriate institutional controls are put in place prior to repository closure. Such controls can guarantee the long term safety of the repository. Today there is no clear standard on how to determine the institutional control period. This paper tries to give possible factors and activities of the institutional controls on the low and intermediate level waste repositories, and makes some suggestions on the institutional controls in our country. (authors)

  19. Chemical risks from nuclear waste repositories

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    Studies concerning the chemical risks of nuclear waste are reviewed. The radiological toxicity of the material is of primary concern but the potential nonradiological toxicity should not be overlooked as the chemotoxic substances may reach the biosphere from a nuclear waste repository. In the report is concluded that the possible chemotoxic effects of a repository for nuclear waste should be studied as a part of the formal risk assessment of the disposal concept. (author)

  20. Performance analysis for waste repositories in the nordic countries. Report for project AFA-1.2

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [VTT Energy (Finland); Broden, K. [Studsvik RadWaste AB (Sweden); Carugati, S.; Brodersen, K. [Forskningscenter Risoe (Denmark); Walderhaug, T. [Icelandic Radiation Protection Institute (Iceland); Helgason, J. [Ekra Geological Consulting (Iceland); Sneve, M.; Hornkjoel, S. [Norwegian Radiation Protection (Norway); Backe, S. [IFE (Norway)

    1997-02-01

    The Nordic Nuclear Safety Research (NKS) project (AFA-1) focused on safety in the final disposal of long-lived low and medium level radioactive waste and its sub project (AFA-1.2), where this report has been produced, is dealing with the performance analysis of the engineered barrier system (near-field) of the repositories for low-and medium level wastes. The topic intentionally excludes the discussion of the characteristics of the geological host medium. Therefore a more generic discussion of the features of performance analysis is possible independent of the fact that different host media are considered in the Nordic countries. The different waste management systems existing and planned in the Nordic countries are shortly described in the report. In the report main emphasis is paid on the general repositories. Some of the phenomena and interactions relevant for a generic type of repository are discussed as well. Among the different approaches for the development of scenarios for safety and performance analyses one particular method - the Rock Engineering System (RES) - was chosen to be demonstratively tested in a brainstorming session, where the possible interactions and their safety significance were discussed employing a simplified and generic Nordic repository system as the reference system. As an overall impression, the AFA-project group concludes that the use of the RES approach is very easy to learn even during a short discussion session. The use of different ways to indicate the safety significance of various interactions in a graphical user interface increases the clarity. Within the project a simple software application was developed employing a generally available spread sheet programme. The developed tool allows an easy opportunity to link the cell specific comments readily available for the `reader` of the obtained results. A short review of the performance analyses carried out in the Nordic countries for actual projects concerning repositories for

  1. Performance analysis for waste repositories in the nordic countries. Report for project AFA-1.2

    International Nuclear Information System (INIS)

    Vuori, S.; Broden, K.; Carugati, S.; Brodersen, K.; Walderhaug, T.; Helgason, J.; Sneve, M.; Hornkjoel, S.; Backe, S.

    1997-02-01

    The Nordic Nuclear Safety Research (NKS) project (AFA-1) focused on safety in the final disposal of long-lived low and medium level radioactive waste and its sub project (AFA-1.2), where this report has been produced, is dealing with the performance analysis of the engineered barrier system (near-field) of the repositories for low-and medium level wastes. The topic intentionally excludes the discussion of the characteristics of the geological host medium. Therefore a more generic discussion of the features of performance analysis is possible independent of the fact that different host media are considered in the Nordic countries. The different waste management systems existing and planned in the Nordic countries are shortly described in the report. In the report main emphasis is paid on the general repositories. Some of the phenomena and interactions relevant for a generic type of repository are discussed as well. Among the different approaches for the development of scenarios for safety and performance analyses one particular method - the Rock Engineering System (RES) - was chosen to be demonstratively tested in a brainstorming session, where the possible interactions and their safety significance were discussed employing a simplified and generic Nordic repository system as the reference system. As an overall impression, the AFA-project group concludes that the use of the RES approach is very easy to learn even during a short discussion session. The use of different ways to indicate the safety significance of various interactions in a graphical user interface increases the clarity. Within the project a simple software application was developed employing a generally available spread sheet programme. The developed tool allows an easy opportunity to link the cell specific comments readily available for the 'reader' of the obtained results. A short review of the performance analyses carried out in the Nordic countries for actual projects concerning repositories for

  2. The general situation of clay site for high-level waste geological disposal repository

    International Nuclear Information System (INIS)

    Wang Changxuan; Liu Xiaodong; Liu Pinghui

    2008-01-01

    Host medium is vitally important for safety of high-level radiaoactive waste (HLW) geological disposal. Clay, as host media of geological repository of HLW, has received greater attention for its inherent advantages. This paper summarizes IAEA and OECD/NEA's some safety guides on site selection and briefly introduces the process of the site selection, their studies and the characteristics of the clay formations in Switz-erland, France and Belgian. Based on these analyses, some suggestions are made to China's HLW repository clay site selection. (authors)

  3. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  4. A Study on Establishment of Buffer Zone of Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun; Park, Joo Wan; Ju, Min Su; Kim, Chang Lak; Park, Jin Baek

    2008-01-01

    A new proposed repository has a final capacity of 800,000 drums radioactive waste. Most of foreign repositories have a general practice of segregating control zones which mainly contributes to classification of degree of control, whether it is called buffer zone or not. Domestic regulatory requirements of establishment of buffer zone in a repository are not much different from those of nuclear power plants for operation period, in which satisfactory design objective or performance objective is the most important factor in determination of the buffer zone. The meaning of buffer zone after closure is a minimum requested area which can prevent inadvertent intruders from leading to non-allowable exposure during institutional control period. Safety assessment with drinking well scenario giving rise to the highest probability of exposure among the intruder's actions can verify fulfillment of the buffer zone which is determined by operational safety of the repository. At present. for the repository to be constructed in a few years, the same procedure and concept as described in this paper are applied that can satisfy regulatory requirements and radiological safety as well. However, the capacity of the repository will be stepwise extended upto 800,000 drums, consequently its layout will be varied too. Timely considerations will be necessary for current boundary of the buffer zone which has been established on the basis of 100,000 drums disposal.

  5. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  6. Requirements on waste forms for the planned Konrad repository based on criticality calculations

    International Nuclear Information System (INIS)

    Berg, H.P.

    1988-02-01

    In the framework of the safety analyses for the planned Konrad repository it has been investigated whether a criticality incident may be possible during the operational phase or in the post-operational phase. The analysis has shown that the criticality safety is ensured by limitation of a mass concentration of the fissile material in the waste form group and by determination of a maximum permissible mass of fissile material per waste package. The resulting requirements of the waste packages, including a mixture in the cross-section of an emplacement room, are explained. (orig.) [de

  7. Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1982-09-01

    In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed

  8. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  9. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  10. Aspects of operational safety and long-term structural stability of the Morsleben repository for radioactive wastes (ERAM)

    International Nuclear Information System (INIS)

    Wernicke, R.S.

    1997-01-01

    The results of safety evaluations and safety reports reveal undoubtedly, that the Morsleben final repository operations is safe and responsible. On the basis of safety-technical evaluations some need was identified for locally optimizing the repository operations and possibly also some geotechnical features of the mine. However, this does not raise safety-related questions for man and the environment. In addition to the control exercised by the supervisory body, continuing evaluations of the repository operations assure, that changes of the safety status will be recognized in a timely manner and that competent action may be taken if necessary. (orig.) [de

  11. Identification of key radionuclides in a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Barney, G.S.; Wood, B.J.

    1980-05-01

    Radionuclides were identified which appear to pose the greatest potential hazard to man during long-term storage of nuclear waste in a repository mined in the Columbia Plateau basalt formation. The criteria used to select key radionuclides were as follows: quantity of radionuclide in stored waste; biological toxicity; leach rate of the wastes into groundwater; and transport rate via groundwater flow. The waste forms were assumed to be either unreprocessed spent fuel or borosilicate glass containing reprocessed high-level waste. The nuclear waste composition was assumed to be that from a light water reactor. Radionuclides were ranked according to quantity, toxicity, and release rate from the repository. These rankings were combined to obtain a single list of key radionuclides. The ten most important radionuclides in order of decreasing hazard are: 99 Tc, 129 I, 237 Np, 226 Ra, 107 Pd, 230 Th, 210 Pb, 126 Sn, 79 Se, and 242 Pu. Safety assessment studies and the design of engineered barriers should concentrate on containment of radionuclides in this list

  12. Release consequence analysis for a hypothetical geologic radioactive waste repository in salt

    International Nuclear Information System (INIS)

    1979-08-01

    One subtask conducted under the INFCE program is to evaluate and compare the health and safety impacts of different fuel cycles in which all radioactive wastes (except those from mining and milling) are placed in a geologic repository in salt. To achieve this objective, INFCE Working Group 7 examined the radiologic dose to humans from geologic repositories containing waste arisings as defined for seven reference fuel cycles. This report examines the release consequences for a generic waste repository in bedded salt. The top of the salt formation and the top of the repository are assumed to be 250 and 600 m, respectively, below the surface. The hydrogeologic structure above the salt consists of two aquifers and two aquitards. The aquifers connect to a river 6.2 km from the repository. The regional gradient to the river is 1 m/km in all aquifers. Hydrologic, transport, and dose models were used to model two release scenarios for each fuel cycle, one without a major disturbance and one in which a major geologic perturbation breached the repository immediately after it was sealed. The purpose of the modeling was to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere, and to determine the potential dose to humans. Of the many radionuclides in the waste, only 129 I and 226 Ra arrived at the river in sufficient concentrations for a measurable dose calculation. Radionuclide concentrations in the ground water pose no threat to man because the ground water is a concentrated brine and it is diluted by a factor of 10 6 to 10 7 upon entering the river

  13. Transport of radioactive wastes to the planned final waste repository Konrad: Radiation exposure resulting from normal transport and radiological risks from transport accidents

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Gruendler, D.; Schwarz, G.

    1993-01-01

    Radiation exposures of members of critical groups of the general population and of transport personnel resulting from normal transport of radioactive wastes to the planned final waste repository Konrad have been evaluated in detail. By applying probabilistic safety assessment techniques radiological risks from transport accidents have been analysed by quantifying potential radiation exposures and contaminations of the biosphere in connection with their expected frequencies of occurrence. The Konrad transport study concentrates on the local region of the waste repository, where all transports converge. (orig.) [de

  14. Nuclear waste repository in basalt: preconceptual design guidelines

    International Nuclear Information System (INIS)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation

  15. Nuclear waste repository in basalt: preconceptual design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation.

  16. Safety in the final disposal of radioactive waste. Final report

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG)

  17. Safety in the final disposal of radioactive waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K.; Carugati, S.; Brodersen, K. [and others

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG) 33 refs.

  18. The role of organics on the safety of a radioactive waste repository

    International Nuclear Information System (INIS)

    Loon, L.R. van; Hummel, W.

    1994-01-01

    The potential effect of organics on the release of radionuclides from a low level radioactive waste repository is discussed. The development of modelling tools and the experimental procedures at PSI are especially highlighted. The 'philosophy' is demonstrated with some practical applications. (author) figs., tabs., refs

  19. Analysis of the risk assessment of a waste repository for radioactive waste from the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Weil, L.

    1984-09-01

    A review of decommissioning experiences and concepts is presented. The radioactive inventory of LWR of modern design at final shutdown is estimated on the basis of activation analysis and empirical data on contamination. In combination with existing types of waste packages and deposition techniques these results allow a prediction of the necessary repository volume for the decommissioning wastes in the Federal Republic of Germany. The essential element of this investigation is the development of a model for the quantitative analysis of the accident 'water intrusion' in the repository. Based on the fundamental chemical and physical processes governing nuclide migration a transport equation is obtained which can be restricted to one dimension due to the thickness and the low permeability of the geological layers above the repository. The radiological consequences are evaluated. The long-lived activation product Ni-59 turns out to be critical radionuclide. Despite a number of conservatisms in the model the evaluated doses are acceptable. The results clearly support the long term safety of the 'Konrad' mine as a low-level waste repository. (orig./HP) [de

  20. Morsleben repository - Interdependence of technical feasibility and functionality of geotechnical barriers and safety case development

    International Nuclear Information System (INIS)

    Wollrath, Juergen; Mauke, Ralf; Mohlfeld, Matthias; Niemeyer, Matthias; Becker, Dirk-Alexander

    2014-01-01

    Based on a selection procedure whereby ten existing mines had been taken into consideration, the Morsleben repository for radioactive waste (ERAM) was built in a former mine for potash and rock salt production. The specific concerns and objectives of a repository for radioactive waste could not be taken into account when the mine was built at the beginning of the last century. Irrespective of this, altogether about 37 000 m 3 of low-level and intermediate-level radioactive waste was stored in several areas of the mine between 1971 and 1991 and from 1994 to 1998. In the scope of the ongoing licensing procedure, the safety of the 'historically grown' repository needs to be demonstrated for the phase after it has been sealed. (authors)

  1. Methodology applied in Cuba for siting, designing, and building a radioactive waste repository under safety conditions

    International Nuclear Information System (INIS)

    Orbera, L.; Peralta, J.L.; Franklin, R.; Gil, R.; Chales, G.; Rodriguez, A.

    1993-01-01

    The work presents the methodology used in Cuba for siting, designing, and building a radioactive waste repository safely. This methodology covers both the technical and socio-economic factors, as well as those of design and construction so as to have a safe siting for this kind of repository under Cuba especial condition. Applying this methodology will results in a safe repository

  2. Planning the rad waste repository - Croatian case

    International Nuclear Information System (INIS)

    Kucar Dragicevic, S.; Subasic, D.; Lokner, V.

    1996-01-01

    Radioactive waste is generated in Croatia from various nuclear applications as well as from the Krsko NPP (Slovenian and Croatian joint venture facility). The national programme on radioactive waste management is aimed at straightening existing infrastructure, establishing new (more transparent) system of responsibilities and development of new legislation. The siting of LL/ILW repository is important segments of the whole radioactive waste management cycle. The status and efficiency of the rad waste management infrastructure in the country have the significant influence on all the activities related to the project of repository construction - from the very first phases of preliminary planning and background preparations to advanced phases of the project development. The present status of the Croatian national radioactive waste infrastructure and its influence on the repository project are presented. The role of national legislation and institutional framework are specially discussed. (author)

  3. Technical expertise on the safety of the proposed geological repository sites. Planning for geological deep repositories, step 1; Sicherheitstechnisches Gutachten zum Vorschlag geologischer Standortgebiete. Sachplan geologische Tiefenlager, Etappe 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    On October 17, 2010, on request of those Swiss government institutions responsible for the disposal of radioactive wastes, the National Co-operative for the Disposal of Radioactive Waste (NAGRA) presented its project concerning geological sites for the foreseen disposal of radioactive wastes to the Federal Authorities. According to the present disposal concept, two types of repository are foreseen: one for highly radioactive wastes (HAA) and the other for low radioactive and intermediate-level radioactive wastes (SMA). If a site fulfils the necessary conditions for both HAA as well as for SMA, a combined site for both types of waste may be chosen. As a qualified control authority in Switzerland, the Federal Nuclear Safety Inspectorate (ENSI) has to examine the quality of the NAGRA proposals from the point of view of the nuclear safety of the sites. The project for deep underground waste disposal first defines the process and the criteria according to which sites for the geological storage of all types of radioactive wastes in Switzerland have to be chosen. The choice is based on the actual knowledge of Swiss geology. After dividing the wastes into SMA and HAA, some large-scale areas are to be identified according to their suitability from the geological and tectonic points of view. NAGRA's division of waste into SMA and HAA is based on calculations of the long-term safety for a broad range of different rock types and geological situations and takes the different properties of all waste types into account. As a conclusion, a small portion of SMA has to be stored with {alpha}-toxic wastes in the HAA repository. The estimation of the total volume of wastes to be stored is based on 60 years of operation of the actual nuclear power plants, augmented with the wastes from possible replacement plants with a total power of 5 GW{sub e} during a further 60 years. The safety concept of the repository is based on passive systems using technical and natural barriers. The

  4. Transfer systems in an underground repository

    International Nuclear Information System (INIS)

    Berg, H.P.; Ehrlich, D.

    1991-01-01

    In addition to logistic problem definitions taking into account the waste types of the wastes to be disposed of and the mining conditions, transport and handling of radioactive wastes in a repository, particularly require the keeping of safety technological marginal conditions mainly resulting from the accident analyses carried out. The realization of these safety technological aspects is described taking the planned Konrad repository as an example. (author)

  5. Safety analysis of disposal of decommissioning waste from the Olkiluoto nuclear power plant - PURKU-93

    International Nuclear Information System (INIS)

    Vieno, T.; Meszaros, F.; Nordman, H.; Taivassalo, V.

    1993-12-01

    Decommissioning waste from the Olkiluoto nuclear power plant will be disposed of at the depth between 60 and 100 meters in the bedrock at the power plant site. The existing VLJ repository for low and medium level operating waste will be extended with three new silos for the decommissioning waste of the TVO I and II reactors and the spent fuel interim store at the Olkiluoto site. Besides dismantling waste also used fuel boxes, control rods and other activated metal components accumulated during the operation of the reactors will be disposed of in the repository. The safety analysis is based on the detailed decommissioning plan of the Olkiluoto power plants and the comprehensive safety analysis carried out for the Final Safety Analysis Report of the VLJ repository. (58 refs., 31 figs., 38 tabs.)

  6. Licensing information needs for a high-level waste repository

    International Nuclear Information System (INIS)

    Wright, R.J.; Greeves, J.T.; Logsdon, M.J.

    1985-01-01

    The information needs for licensing findings during the development of a repository for high-level waste (HLW) are described. In particular, attention is given to the information and needs to demonstrate, for construction authorization purposes: repository constructibility, waste retrievability, waste containment, and waste isolation

  7. Novi Han Radioactive Waste Repository post-closure safety assessment, ver.2

    International Nuclear Information System (INIS)

    Mateeva, M.

    2003-01-01

    The methodology for the post-closure safety assessment is presented. The assessment context includes regulatory framework (protection principles); scope and time frame; radiological and technical requirements; modeling etc. The description of the Novi Han disposal system contains site location. meteorological, hydrological and seismological characteristics; waste and repository description and human activities characteristics. The next step in the methodology is scenario development and justification. The systematic generation os exposure scenarios is considered as central to the post-closure safety assessment. The most important requirements for the systematic scenario generation approach are: transparency, comprehensiveness (all possible FEPs influencing the the disposal system and the radionuclide release should be considered); relevant future evolutions; identification of critical issues and investigation of the robustness of the system. For the source-pathway-receptor analysis the Process System is divided into near-field, geosphere/atmosphere and biosphere, describing the key facets controlling the potential radionuclide migration to the environment. The schematic division of the Novi Han near-field Process System into lower-level conceptual features is presented and discussed. As a result of the examinations of the FEPs three classes of scenarios are identified for the Novi Han post-closure safety assessment: Environmental evolution scenarios (geological change and climate change); future human action scenarios (human intrusion and archaeological action); Scenarios with very low probability (terrorism, crashes, explosions). The safety assessment iteration leads to identification of a modern scenario generation approach, assessment of key radionuclide releases, geological and hydrological evaluation, identification of the key parameters from sensitivity analysis etc. Examples of conceptual models are given. For the mathematical modeling the AMBER code is used

  8. Preliminary drift design analyses for nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    Hardy, M.P.; Brechtel, C.E.; Goodrich, R.R.; Bauer, S.J.

    1990-01-01

    The Yucca Mountain Project (YMP) is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS). The proposed repository will be excavated in the Topopah Spring Member, which is a moderately fractured, unsaturated, welded tuff. Excavation stability will be required during construction, waste emplacement, retrieval (if required), and closure to ensure worker safety. The subsurface excavations will be subject to stress changes resulting from thermal expansion of the rock mass and seismic events associated with regional tectonic activity and underground nuclear explosions (UNEs). Analyses of drift stability are required to assess the acceptable waste emplacement density, to design the drift shapes and ground support systems, and to establish schedules and cost of construction. This paper outlines the proposed methodology to assess drift stability and then focuses on an example of its application to the YMP repository drifts based on preliminary site data. Because site characterization activities have not begun, the database currently lacks the extensive site-specific field and laboratory data needed to form conclusions as to the final ground support requirements. This drift design methodology will be applied and refined as more site-specific data are generated and as analytical techniques and methodologies are verified during the site characterization process

  9. The safety case for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kwong, Gloria

    2014-01-01

    The concept of a 'safety case' for a deep geological repository for radioactive waste was first introduced by the NEA Expert Group on Integrated Performance Assessment (IPAG). It was further developed in the NEA report entitled Confidence in the Long-term Safety of Deep Geological Repositories (1999), and since then it has been taken up in international safety standards as promulgated by the International Atomic Energy Agency (IAEA, 2006, 2011) and more recently in recommendations by the International Commission on Radiological Protection on the application of the system of radiological protection in geological disposal (ICRP, 2013). Many national radioactive waste disposal programmes and regulatory guides are also applying this concept. The NEA has used the safety case as a guide in several international peer reviews of national repository programmes and safety documentation. In Europe, the EU Directive 2011/70/ Euratom (EU, 2011) establishes a framework to ensure responsible and safe management of spent fuel and radioactive waste by member states that, inter alia, requires a decision-making process based on safety evidence and arguments that mirror the safety case concept. In 2007, the NEA, the IAEA and the European Commission (EC) organised a symposium on Safety Cases for the Deep Disposal of Radioactive Waste: Where Do We Stand? Since this time, however, there have been some major developments in a number of national geological disposal programmes and significant experience in preparing and reviewing cases for the operational and long-term safety of proposed and operating geological repositories. A symposium on The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art was thus organised to assess developments since 2007 in the practice, understanding and roles of the safety case, as applied internationally at all stages of repository development, including the interplay of technical, regulatory and societal issues. The symposium

  10. The Konrad mine - the planned German repository for radioactive waste with negligible heat generation

    International Nuclear Information System (INIS)

    Berg, H.P.; Brennecke, P.

    1990-07-01

    This report deals with the planned Konrad repository and describes the current state of affairs. In particular, the technical concept is explained and a survey of the radioactive waste intended for disposal is given. The safety assessments which have been made, including the derivation of preliminary waste acceptance requirements, are described and the principles of the waste package control are outlined. (orig./HP) [de

  11. Modeling and Analysis on Radiological Safety Assessment of Low- and Intermediate Level Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jung, Jong Tae; Kang, Chul Hyung (and others)

    2008-04-15

    Modeling study and analysis for technical support for the safety and performance assessment of the low- and intermediate level (LILW) repository partially needed for radiological environmental impact reporting which is essential for the licenses for construction and operation of LILW has been fulfilled. Throughout this study such essential area for technical support for safety and performance assessment of the LILW repository and its licensing as gas generation and migration in and around the repository, risk analysis and environmental impact during transportation of LILW, biosphere modeling and assessment for the flux-to-dose conversion factors for human exposure as well as regional and global groundwater modeling and analysis has been carried out.

  12. Modeling and Analysis on Radiological Safety Assessment of Low- and Intermediate Level Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jung, Jong Tae; Kang, Chul Hyung

    2008-04-01

    Modeling study and analysis for technical support for the safety and performance assessment of the low- and intermediate level (LILW) repository partially needed for radiological environmental impact reporting which is essential for the licenses for construction and operation of LILW has been fulfilled. Throughout this study such essential area for technical support for safety and performance assessment of the LILW repository and its licensing as gas generation and migration in and around the repository, risk analysis and environmental impact during transportation of LILW, biosphere modeling and assessment for the flux-to-dose conversion factors for human exposure as well as regional and global groundwater modeling and analysis has been carried out

  13. Safety analysis of the transportation of radioactive waste to the Konrad final repository

    International Nuclear Information System (INIS)

    Sentuc, F.N.; Bruecher, W.

    2010-01-01

    A transport risk assessment study has been conducted for transport of radioactive waste with negligible heat-generation to the German final repository Konrad. This study is a revision of the former Konrad Transport Study performed by GRS in 1991 implementing updated waste data among other improved methods and assumptions for the purpose of a more realistic approach to risk assessment. The first part of the transport risk assessment study concerns the radiological consequences from normal (accident-free) transportation of radioactive material, i.e. the radiation exposure of transport personnel and the public. Based on the assessed detailed information on transport arrangements and on the average number and radiological characteristics of waste packages the maximum annual effective doses for the representative persons were estimated. The risk associated with transport incidents and accidents has been quantified for the area within a radius of 25 km around the repository site. The probabilistic method adopted in this study considers parameters as the frequency and severity of railway or road accidents, characteristics of radioactive waste and transport packagings and the frequency of atmospheric dispersion conditions. From a large set of parameter combinations the spectrum of potential radiological consequences and of the associated probability of occurrence was assessed. (orig.)

  14. Appraisal of hard rock for potential underground repositories of radioactive wastes. LBL-7004

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1978-01-01

    Underground burial of radioactive wastes in hard rock may be an effective and safe means of isolating them from the environment and from man. The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 km to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  15. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  16. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K.G.; Hua, F.

    2005-01-01

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure

  17. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  18. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  19. Hydrogen modelling for vitrified wastes repository

    International Nuclear Information System (INIS)

    Voinis, S.; Breton, J.

    1992-01-01

    Safety assessments for High Level Wastes (HLW) have led ANDRA (Agence Nationale pour la gestion des Dechets Radioactifs) to study the occurrence of a gas production rate in a repository. This paper deals with the description of an analytical model used for the gas production rate assessment and brings us the first results. The geometry used is restrained to a single borehole associated with a drift in a crystalline formation. Different concepts were studied in this assessment. First results have been obtained. For example, in the case of a permeable plug, the saturation time of the borehole is about 300 years. 5 refs., 5 figs

  20. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National

  1. Development of the safety assessment technology for the radioactive waste disposal

    International Nuclear Information System (INIS)

    Kim, Chang Lak; Choi, Kwang Sub; Cho, Chan Hee; Lee, Myung Chan; Kim, Jhin Wung

    1992-03-01

    The major goal of this project is to develop a source-term model for the safety assessment of a low- and intermediate-level radioactive waste repository as follows: 1) estimation of the arising of low- and intermediate-level radioactive wastes, 2) development of inventory data base, 3) development of a source-term code for shallow-land disposal, and 4) improvement of the REPS source-term code for rock cavern type disposal developed already in 1990 and conservative safety assessment for an imaginary repository. In addition, the source of C-14 in the inventory is assessed by two methods: decontamination factor and scaling factor. The source-term code for shallow-land disposal include the following submodels: surface water penetration into the repository, concrete degradation, corrosion of container drums, leaching of radionuclides from waste forms, and migration of radionuclides from engineered disposal facility is estimated by this code. (Author)

  2. Site investigations for repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository

  3. Site investigations for repositories for solid radioactive wastes in shallow ground

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report provides an overview and technical guidelines for investigations on a national level for the selection and confirmation of a repository site that will provide adequately safe performance for disposal of solid radioactive wastes that are low- or intermediate-level and short-lived. It also provides basic information on technical activities to be undertaken and on techniques that are available for such investigations in the various steps in selecting suitable sites. The report supplements the information given in Shallow Ground Disposal of Radioactive Wastes: A Guidebook, IAEA Safety Series No. 53 (1981). This report focuses mainly on different aspects of earth sciences and the various investigative techniques relative to earth sciences that may be necessary for site investigations. Some major related studies in other fields are discussed briefly. It is assumed that no previous investigations have been undertaken, and the report proceeds through area site selection to the stage when the site is confirmed as suitable for a waste repository.

  4. Hydrothermal conditions around a radioactive waste repository

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1981-12-01

    Numerical solutions for the hydrothermal conditions around a hard rock repository for nuclear fuel waste are presented. The objective of the present investigation is to illustrate in principle the effect of heat released from a hypothetical radioactive waste repository with regard to anisotropy in the rock permeability. Permeability and porosity are assumed to be constant or to decrease exponentially with depth. The hypothetical repository is situated below a horizontal ground surface or below the crest of a hill, and it is assumed that the water table follows the topography. Major interest in the analysis is directed towards the influence of anisotropy in the permeability on the flow patterns and travel times for water particles, being traced from the repository to the ground surface. The presented results show that anisotropy in the permeability may have a significant influence on the flow conditions around the repository and subsequently also on the travel times from the repository. (Authors)

  5. Making the Postclosure Safety Case for the Proposed Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    P. Swift; A.V. Luik

    2006-08-28

    The International Atomic Energy Agency (IAEA), in its advisory standard for geological repositories promulgated jointly with the Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development, explicitly distinguishes between the concepts of a safety case and a safety assessment. As defined in the advisory standard, the safety case is a broader set of arguments that provide confidence and substantiate the formal analyses of system safety made through the process of safety assessment. Although the IAEAYs definitions include both preclosure (i.e., operational) safety and post-closure performance in the overall safety assessment and safety case, the emphasis in here is on long-term performance after waste has been emplaced and the repository has been closed. This distinction between pre- and postclosure aspects of the repository is consistent with the U.S. regulatory framework defined by the U.S. Environmental Protection Agency (Chapter 40 of the Code of Federal Regulations, Part 197, or 40 CFR 197) [2] and implemented by the U.S. Nuclear Regulatory Commission (Chapter 10 of the Code of Federal Regulations, Part 63, or 10 CFR 63) [3]. The separation of the pre- and postclosure safety cases is also consistent with the way in which the U.S. Department of Energy has assigned responsibilities for developing the safety case. Bechtel SAIC Company is the Management and Operating contractor responsible for the design and operation of the Yucca Mountain facility and is therefore responsible for the preparation of the preclosure aspects of the safety case. Sandia National Laboratories has lead responsibility for scientific work evaluating post-closure performance, and therefore is responsible for developing the post-closure aspects of the safety case. In the context of the IAEA definitions, both preclosure and postclosure safety, including safety assessment and the safety case, will be documented in the license application being prepared for the

  6. Making the Postclosure Safety Case for the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    P. Swift; A.V. Luik

    2006-01-01

    The International Atomic Energy Agency (IAEA), in its advisory standard for geological repositories promulgated jointly with the Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development, explicitly distinguishes between the concepts of a safety case and a safety assessment. As defined in the advisory standard, the safety case is a broader set of arguments that provide confidence and substantiate the formal analyses of system safety made through the process of safety assessment. Although the IAEAYs definitions include both preclosure (i.e., operational) safety and post-closure performance in the overall safety assessment and safety case, the emphasis in here is on long-term performance after waste has been emplaced and the repository has been closed. This distinction between pre- and postclosure aspects of the repository is consistent with the U.S. regulatory framework defined by the U.S. Environmental Protection Agency (Chapter 40 of the Code of Federal Regulations, Part 197, or 40 CFR 197) [2] and implemented by the U.S. Nuclear Regulatory Commission (Chapter 10 of the Code of Federal Regulations, Part 63, or 10 CFR 63) [3]. The separation of the pre- and postclosure safety cases is also consistent with the way in which the U.S. Department of Energy has assigned responsibilities for developing the safety case. Bechtel SAIC Company is the Management and Operating contractor responsible for the design and operation of the Yucca Mountain facility and is therefore responsible for the preparation of the preclosure aspects of the safety case. Sandia National Laboratories has lead responsibility for scientific work evaluating post-closure performance, and therefore is responsible for developing the post-closure aspects of the safety case. In the context of the IAEA definitions, both preclosure and postclosure safety, including safety assessment and the safety case, will be documented in the license application being prepared for the

  7. Melodie: A global risk assessment model for radioactive waste repositories

    International Nuclear Information System (INIS)

    Lewi, J.; Assouline, M.; Bareau, J.; Raimbault, P.

    1987-03-01

    The Institute of Protection and Nuclear Safety (IPSN), which is part of the French Atomic Energy Commission (C.E.A.) develops since 1984 in collaboration with different groups inside and outside the C.E.A. a computer model for risk assessment of nuclear waste repositories in deep geological formations. The main characteristics of the submodels, the data processing structure and some examples of applications are presented

  8. Workshop on Regulatory Review and Safety Assessment Issues in Repository Licensing

    International Nuclear Information System (INIS)

    Wilmot, Roger D.

    2011-02-01

    The workshop described here was organised to address more general issues regarding regulatory review of SKB's safety assessment and overall review strategy. The objectives of the workshop were: - to learn from other programmes' experiences on planning and review of a license application for a nuclear waste repository, - to offer newly employed SSM staff an opportunity to learn more about selected safety assessment issues, and - to identify and document recommendations and ideas for SSM's further planning of the licensing review

  9. Colloids in the mortar backfill of a cementitious repository for radioactive waste

    International Nuclear Information System (INIS)

    Wieland, E.; Spieler, P.

    1999-01-01

    Colloids are present in groundwater aquifers and water-permeable engineered barrier systems and may facilitate the migration of radionuclides. A careful evaluation of colloid concentrations is required to assess the potential effect of colloids on nuclide migration and, consequently, on the safety of a repository for radioactive waste. A highly permeable mortar is foreseen to be used as backfill for the engineered barrier of the Swiss repository for low- and intermediate-level waste (L/ILW). The backfill is considered to be a chemical environment with a potential for colloid generation and, due to its high porosity, for colloid mobility. In this contribution a novel in-house built particle counting device is described, and measurements of colloid concentrations in the pore water of backfill mortar are presented. (author)

  10. Modelling of far-field gas migration from a deep radioactive waste repository

    International Nuclear Information System (INIS)

    Rodwell, W.R.; Nash, P.J.

    1992-01-01

    In assessing the post-closure safety of a deep radioactive waste repository, it is necessary to show that gas generated within the repository can migrate away, through the far-field geology, without affecting repository safety. This paper discusses the contribution of various mechanisms to gas migration through the far field; for example, diffusion of dissolved gas versus gas-phase movement, and bubble flow versus formation of a connected gas stream. It outlines different approaches to modelling gas movement from a repository, with simple semi-analytical models furnishing physical insights into the factors controlling gas migration in the absence of directly applicable experimental data, and more comprehensive numerical computations allowing the exploration of more detailed behaviour when appropriate data is obtained. If gas can induce groundwater movement, this could accelerate the transport of water-borne contaminants. Processes by which this could occur are noted, and the current status of work on possible effects of gas migration on groundwater movement in fractured hard rocks is indicated. 14 refs., 4 figs

  11. Fuzzy distributions in probabilistic environmental impact assessment: application to a high-level waste repository

    International Nuclear Information System (INIS)

    Datta, D.; Joshi, M.L.

    2006-01-01

    Environmental modeling with a satisfaction levels of the end user in relation to a defined parameter coupled with imprecision that stems from the field data is a key issue. In the context of this issue success of possibility theory based on fuzzy sets has high visibility in comparison with conventional probability theory. Environmental impact assessments of a high level waste repository is focused using the new approach because the problems under consideration includes a number of qualitative uncertainties at different levels, apart from being quite complex; decision-maker's need to have a transparent assessment result that will enable him to understand underlying assumptions and to judge resulting doses. Fuzzy distributions have been tried to resolve the issues related to the safety of environment from the waste repository. Paper describes the details of fuzzy distribution, fuzzy logic and its possible application to deal the qualitative and quantitative uncertainty in connection with waste repository. (author)

  12. Interim performance specifications for conceptual waste-package designs for geologic isolation in salt repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The interim performance specifications and data requirements presented apply to conceptual waste package designs for all waste forms which will be isolated in salt geologic repositories. The waste package performance specifications and data requirements respond to the waste package performance criteria. Subject areas treated include: containment and controlled release, operational period safety, criticality control, identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  13. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Notz, K.J.

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will be disposed of in a geologic repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. Detailed characterizations are required for all of these potential repository wastes. These characterizations include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. This information has been extracted from primary data sources, evaluated, and assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. The Characteristics Data Base provides a standard set of self-consistent data to the various areas of responsibility including systems integration and waste stream analysis, storage, transportation, and geologic disposal. The data will be used for design studies, evaluation of alternatives, and system optimization by OCRWM and supporting contractors. 7 refs., 5 figs., 7 tabs

  14. Ventilation planning for a prospective nuclear waste repository

    International Nuclear Information System (INIS)

    Wallace, K.G. Jr.

    1987-01-01

    In 1982, the US Congress passed the Nuclear Waste Policy Act to provide for the development of underground repositories for spent nuclear fuel. This development will be managed by the United States Department of Energy. In 1986, the President selected three areas for site characterization to determine their suitability for the development of an underground repository; those sites were: (1) A site in volcanic tuff located at Yucca Mountain in Nevada, (2) a site in bedded salt located in Deaf Smith County in Texas, and (3) a site in basalt located in Hanford, Washington. At present conceptual repository designs are being developed for each site. A key element of a repository design is the underground ventilation system required to support construction, nuclear waste emplacement, and potential waste retrieval. This paper describes the preliminary ventilation systems designed for the repository in tuff. The concept provides separate ventilation systems for the construction and waste emplacement activities. The paper further describes the means by which acceptable environmental conditions will be re-established to allow re-entry into previously closed rooms for the purpose of inspection, maintenance or retrieval

  15. Investigation on design of repository for radioactive waste

    International Nuclear Information System (INIS)

    Zhang Boming; Zhang Ruixue; Wang Fengying

    2010-01-01

    The scheme design of the repository for radioactive waste is introduced according to the traits of radioactive waste in Jiangsu province, such as the style of the repository, lifting facilities, the step for preventing or controlling flood, the aseismatic measure, the pollution prevention and so on. This ensured the radioactive waste and the waste radioactive sources to be stored in security, the area environment not to be polluted. It can improve the use of nuclear technology in Jiangsu province. (authors)

  16. Considerations on pressure build-up in deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Beer, Hans-Frieder

    2015-01-01

    Gas formation caused by corrosion of metals is a pivotal point with respect to the safety analysis of deep geological repositories. Solid corrosion products are formed unavoidably during the gas formation. The volumes of these solid corrosion products are multiples of the original waste volume. These solid corrosion products are chemically extremely stable and result in a pressure increase inside the repository. This pressure is considerably higher than that of the overlaying rock. The question that arises is, why this aspect is not considered in the consulted documents.

  17. Rock support for nuclear waste repositories

    International Nuclear Information System (INIS)

    Abramson, L.W.; Schmidt, B.

    1984-01-01

    The design of rock support for underground nuclear waste repositories requires consideration of special construction and operation requirements, and of the adverse environmental conditions in which some of the support is placed. While repository layouts resemble mines, design, construction and operation are subject to quality assurance and public scrutiny similar to what is experienced for nuclear power plants. Exploration, design, construction and operation go through phases of review and licensing by government agencies as repositories evolve. This paper discusses (1) the various stages of repository development; (2) the environment that supports must be designed for; (3) the environmental effects on support materials; and (4) alternative types of repository rock support

  18. Proceedings of the workshop on radionuclide release scenarios for geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The safety of radioactive waste disposal in geological formations cannot be verified experimentally. Safety analysis provides the only means to ensure that all risks associated with the waste repositories are acceptably low. The definition of radionuclide release scenarios, as discussed in these proceeedings, is the first step in the safety analysis of waste repositories.

  19. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  20. Kriging analysis for a candidate nuclear waste repository

    International Nuclear Information System (INIS)

    Devary, J.L.

    1983-08-01

    An important aspect of ensuring the safety of a geologic nuclear waste repository involves the study of ground-water flow at the proposed site. Geohydrologic site characterization involves the evaluation of potentiometric (head) data from confined aquifers. Geostatistical techniques (kriging) are applied to head measurements from the Permian System, a geologic formation being considered by the Department of Energy for nuclear waste disposal. The kriging analysis investigates the adequacy of the data base, provides methods for data screening, and determines optimal locations for additional data collection. This presentation illustrates the development of a generalized covariance and the production of potentiometric contour maps and error maps. The advantages of kriging over traditional least squares regression analysis are also discussed. 17 references

  1. Design, construction, operation, shutdown and surveillance of repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a part of the IAEA publications under its Programme on Underground Disposal of Radioactive Wastes and is addressed to administrative and technical authorities and specialists who consider the shallow-ground disposal of low- and intermediate-level solid radioactive wastes of short half-lives. The report emphasizes the technological aspects, however it briefly discusses the safety philosophy and regulatory considerations too. The design, construction, operation, shutdown and surveillance of the repositories in shallow ground are considered in some detail, paying special attention to their interrelated aspects. In particular, a review is given of the following aspects: main design and construction considerations in relation to the natural features of the site; design and construction aspects during the repository development process; activities related to operational and post-operational stages of the repository; major steps in repository operation and essential activities in shutdown and operational and post-operational surveillance

  2. Is Croatia Going to Build a Radioactive Waste Repository?

    International Nuclear Information System (INIS)

    Knapp, Alemka; Levanat, Ivica; Saponja-Milutinovc, Diana

    2014-01-01

    Site selection process for low and intermediate level radioactive waste repository in Croatia was ended in 1999, nominating Trgovska gora as the potential macrolocation for the facility. Feasibility of the Trgovska gora disposal project was analyzed in a number of studies prepared by APO Ltd. from the mid-nineties up to 2003. An affirmative, though preliminary and largely generic safety assessment was completed. Specific microlocations were selected and analyzed based on literature data (garnished with low-resolution digital satellite pictures), and the best microlocation was tentatively narrowed down to Pavlovo brdo. After 2003, no further activities related to the repository project were undertaken for nearly ten years, until in its public procurement plan for 2013 the Croatian Fund for financing the NPP Krsko decommissioning and waste disposal dedicated over half a million euro to continuation of the project. In general, safe radioactive waste disposal pre-requires establishment of a complex national framework with appropriate functionality and competence; with such a framework established, decisive first steps towards building a repository are to identify potentially suitable locations and to ensure local community consent and cooperation. The rest should mainly be routine. But in Croatia, both lack of proper framework and the project history of indecisiveness may adversely affect further developments. Trgovska gora was designated as the potential location in the national land use plan only after three other potential locations had been dismissed by political decisions based on the largely assumed adverse attitudes of local communities. Repository project now appears to depend on cooperation of a single local community hosting the only potential site. The site has never been visited by any repository project participants, nor has the local community ever been officially contacted in an open and straightforward way, despite the 20-year old history of the project

  3. Politics and technology in repository siting: military versus commercial nuclear wastes at WIPP 1972-1985

    International Nuclear Information System (INIS)

    Downey, G.L.

    1985-01-01

    During the 1970s, attempts by the federal government to develop a comprehensive system for disposing of nuclear wastes in geologic repositories were plagued by two related political problems; (1) whether or not military and commercial wastes should be buried together in the same repository, and (2) how to define the host state's role in the repository siting mechanism. This article explains why these two problems were connected by showing how they proved to be of decisive importance in the development of the Waste Isolation Pilot Plant (WIPP) project in Carlsbad, New Mexico. Although WIPP was initially conceived as a wholly military facility, The Department of Energy triggered a three-year dispute over the project's scope by proposing in 1978 to include commercial wastes in the repository. The key issue in the dispute concerned the political legitimacy of decision-making mechanisms for repository siting, which depend upon the extent to which they both adequately represent the interests of affected groups and meet an indistinct technical/political criterion of acceptable safety. DOE's ill-fated proposal to mix military and commercial disposal at WIPP demonstrated that the two rely on somewhat different conditions for their legitimacy. The agency overlapped the legitimate authorities of the federal and state governments and gave itself the hopeless task of negotiating a new boundary between them. 50 references, 3 figures

  4. Durability of cemented waste in repository and under simulated conditions

    International Nuclear Information System (INIS)

    Dragolici, F.; Nicu, M.; Lungu, L.; Turcanu, C.; Rotarescu, Gh.

    2000-01-01

    The Romanian Radioactive Waste National Repository for low level and intermediate level radioactive waste was built in Baita - Bihor county, in an extinct uranium exploitation. The site is at 840 m above sea level and the host rock is crystalline with a low porosity, a good chemical homogeneity and impermeability, keeping these qualities over a considerable horizontal and vertical spans. To obtain the experimental data necessary for the waste form and package characterization together with the back-filling material behaviour in the repository environment, a medium term research programme (1996 - 2010) was implemented. The purpose of this experimental programme is to obtain a part of the data base necessary for the approach of medium and long term assessment of the safety and performance of Baita - Bihor Repository. The programme will provide: a deeper knowledge of the chemical species and reaction mechanisms, the structure, properties and performances of the final products. For safety reasons the behaviour of waste package, which is a main barrier, must be properly known in terms of long term durability in real repository conditions. Characterization of the behaviour includes many interactions between the waste package itself and the surrounding near field conditions such as mineralogy, hydrogeology and groundwater chemistry. To obtain a more deeper knowledge of the species and physical-chemical reactions participating in the matrix formation, as well as their future behaviour during the disposal period, a thorough XRD study started in 1998. For Romanian Radioactive Waste National Repository (DNDR) Baita - Bihor the following steps are planned for the conditioned waste matrix characterization in simulated and real conditions: - preparation and characterization of normal reference matrices based on different cement formulations; - preparation of reference simulated sludge cemented matrices containing iron hydroxide and iron phosphate; - selection of real and

  5. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1993-02-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This Paper describes a mathematical model design to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (author)

  6. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1992-07-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (Author)

  7. Technical position on items and activities in the high-level waste geologic repository program subject to quality assurance requirements

    International Nuclear Information System (INIS)

    Duncan, A.B.; Bilhorn, S.G.; Kennedy, J.E.

    1988-04-01

    This document provides guidance on how to identify items and activities subject to Quality Assurance in the high-level nuclear waste repository program for pre-closure and post-closure phases of the repository. In the pre-closure phase, structures, systems and components essential to the prevention or mitigation of an accident that could result in an off-site radiation dose of 0.5rem or greater are termed ''important to safety''. In the post-closure phase, the barriers which are relied on to meet the containment and isolation requirements are defined as ''important to waste isolation''. These structures, systems, components, and barriers, and the activities related to their characterization, design, construction, and operation are required to meet quality assurance (QA) criteria to provide confidence in the performance of the geologic repository. The list of structures, systems, and components important to safety and engineered barriers important to waste isolation is referred to as the ''Q-List'' and lies within the scope of the QA program. 10 refs

  8. OPG's deep geologic repository for low and intermediate level waste - recent progress

    International Nuclear Information System (INIS)

    King, F.K.

    2006-01-01

    This paper provides a status report on Canada's first project to build a permanent repository for the long-term management of radioactive waste. Ontario Power Generation has initiated a project to construct a deep geologic repository for low- and intermediate-level waste at the Bruce Nuclear Site, at a depth in the range of 600 to 800 m in an Ordovician-age argillaceous limestone formation. The project is currently undergoing an Environmental Assessment and consulting companies in the areas of environmental assessment, geoscientific site characterization, engineering and safety assessment have been hired and technical studies are underway. Seismic surveys and borehole drilling will be initiated in the fall of 2006. The next major milestone for the project is the submission of the Environmental Assessment report, currently scheduled for December 2008. (author)

  9. Probabilistic safety considerations for the final disposal of radioactive waste

    International Nuclear Information System (INIS)

    Berg, H.P.; Gruendler, D.; Wurtinger, W.

    1992-01-01

    In order to demonstrate the safety-related balanced concept of the plant design with respect to the operational phase, probabilistic safety considerations were made for the planned German repository for radioactive wastes, the Konrad repository. These considerations are described with respect to the handling and transfer system in the above-ground and underground facility. The operational sequences and the features of a repository are similar to those of conventional transportation and loading facilities and mining techniques. Hence, failure sequences and probability data were derived from these conventional areas. Incidents taken into consideration are e. g. collision of vehicles, fires, drop of waste packages due to failures of lifting equipment. The statistical data used were made available by authorities, insurance companies, and expert organizations. These data have been converted into probability data which were used for the determination of the frequencies for all radiologically relevant incidents. (author)

  10. Summary of four release consequence analyses for hypothetical nuclear waste repositories in salt and granite

    International Nuclear Information System (INIS)

    Cole, C.R.; Bond, F.W.

    1980-12-01

    Release consequence methology developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) program has now been applied to four hypothetical repository sites. This paper summarizes the results of these four studies in order to demonstrate that the far-field methodology developed under the AEGIS program offers a practical approach to the post-closure safety assessment of nuclear waste repositories sited in deep continental geologic formations. The four studies are briefly described and compared according to the following general categories: physical description of the repository (size, inventory, emplacement depth); geologic and hydrologic description of the site and the conceptual hydrologic model for the site; description of release scenario; hydrologic model implementation and results; engineered barriers and leach rate modeling; transport model implementation and results; and dose model implementation and results. These studies indicate the following: numerical modeling is a practical approach to post-closure safety assessment analysis for nuclear waste repositories; near-field modeling capability needs improvement to permit assessment of the consequences of human intrusion and pumping well scenarios; engineered barrier systems can be useful in mitigating consequences for postulated release scenarios that short-circuit the geohydrologic system; geohydrologic systems separating a repository from the natural biosphere discharge sites act to mitigate the consequences of postulated breaches in containment; and engineered barriers of types other than the containment or absorptive type may be useful

  11. Safety issues in established predisposal waste management practices

    International Nuclear Information System (INIS)

    Thomas, W.

    2000-01-01

    Radioactive wastes generated at various stages in the nuclear fuel cycle vary considerably in relation to volume, physical and chemical properties, and radioactivity. The management of these wastes prior to disposal has to be adapted to these conditions, which calls for suitable characterization and minimization, collection, interim storage and conditioning of the wastes. Experience gained over decades shows that current predisposal waste management practices are well advanced. Whereas problems related to inadequate waste management practices in the past have been encountered at several sites and need ongoing remedial actions, modern practices have good safety records. Considerable development and improvement of waste management practices have been achieved and as a consequence of delays in implementing repositories in several countries they remain important tasks. Decommissioning and dismantling of nuclear facilities also have to be taken into account. In most cases, these activities can be performed using existing technical means and practices. No significant safety concerns have been found for the long term storage of spent fuel and vitrified waste. Dry storage has reached technical maturity and appears to be attractive, especially for aged fuel. It has, however, to be stressed that long term storage is not the ultimate solution. Continued efforts to implement repositories are mandatory in order to maintain a credible and responsible strategy for waste management. (author)

  12. Considering timescales in the post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2009-01-01

    A key challenge in the development of safety cases for the deep geological disposal of radioactive waste is handling the long time frame over which the radioactive waste remains hazardous. The intrinsic hazard of the waste decreases with time, but some hazard remains for extremely long periods. Safety cases for geological disposal typically address performance and protection for thousands to millions of years into the future. Over such periods, a wide range of events and processes operating over many different timescales may impact on a repository and its environment. Uncertainties in the predictability of such factors increase with time, making it increasingly difficult to provide definite assurances of a repository's performance and the protection it may provide over longer timescales. Timescales, the level of protection and the assurance of safety are all linked. Approaches to handling timescales for the geological disposal of radioactive waste are influenced by ethical principles, the evolution of the hazard over time, uncertainties in the evolution of the disposal system (and how these uncertainties themselves evolve) and the stability and predictability of the geological environment. Conversely, the approach to handling timescales can affect aspects of repository planning and implementation including regulatory requirements, siting decisions, repository design, the development and presentation of safety cases and the planning of pre- and post-closure institutional controls such as monitoring requirements. This is an area still under discussion among NEA member countries. This report reviews the current status and ongoing discussions of this issue. (author)

  13. Radioactive waste disposal: Recommendations for a repository site selection

    International Nuclear Information System (INIS)

    Cadelli, N.; Orlowski, S.

    1992-01-01

    This report is a guidebook on recommendations for site selection of radioactive waste repository, based on a consensus in european community. This report describes particularly selection criteria and recommendations for radioactive waste disposal in underground or ground repositories. 14 refs

  14. Numerical method for analysis of temperature rises and thermal stresses around high level radioactive waste repository in granite

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1982-01-01

    The disposal of high-level radioactive waste should result in temperature rises and thermal stresses which change the hydraulic conductivity of the rock around the repository. For safety analysis on disposal of high-level radioactive waste into hard rock, it is necessary to find the temperature rises and thermal stresses distributions around the repository. In this paper, these distribution changes are analyzed by the use of the finite difference method. In advance of numerical analysis, it is required to simplify the shapes and properties of the repository and the rock. Several kinds of numerical models are prepared, and the results of this analysis are examined. And, the waste disposal methods are discussed from the stand-points of the temperature rise and thermal stress analysis. (author)

  15. Review of computer models used for post closure safety assessment of nuclear waste repositories in the FRG

    International Nuclear Information System (INIS)

    Bogorinski, P.; Baltes, B.; Martens, K.H.

    1987-01-01

    In the FRG, disposal of nuclear wastes takes place in deep geologic formations. For longterm safety assessment of such a repository, groundwater transport provides a release scenario for the radionuclides to the biosphere. GRs reviewed a methodology that was implemented by the research group of PSE to simulate migration of radionuclides in the geosphere. The examination included the applicability of theoretical models, numerical experiments, comparison to results of diverse computer codes as well as experience from international intercomparison studies. The review concluded that the hydrological model may be applied to full extent unless density effects have to be considered whereas there are some restrictions in the use of the nuclide transport model

  16. Workshop on Regulatory Review and Safety Assessment Issues in Repository Licensing

    Energy Technology Data Exchange (ETDEWEB)

    Wilmot, Roger D. (Galson Sciences Limited (United Kingdom))

    2011-02-15

    The workshop described here was organised to address more general issues regarding regulatory review of SKB's safety assessment and overall review strategy. The objectives of the workshop were: - to learn from other programmes' experiences on planning and review of a license application for a nuclear waste repository, - to offer newly employed SSM staff an opportunity to learn more about selected safety assessment issues, and - to identify and document recommendations and ideas for SSM's further planning of the licensing review

  17. Impact of transporting defense high-level waste to a geologic repository

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options

  18. Design criteria development for the structural stability of nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Yu, T S [Daewoo Engineering Company, Sungnam (Korea, Republic of); Ko, H M [Seoul National Univ., Seoul (Korea, Republic of)

    1990-11-15

    The objective of the present project is to develop design criteria for the structural stability of rock cavity for the underground repository are defined, according to which detailed descriptions for design methodologies, design stages and stability analysis of the cavity are made. The proposed criteria can be used as a guide for the preparation of design codes which are to be established as the site condition and technical emplacement procedure are fixed. The present report first reviews basic safety requirements and criteria of the underground disposal of nuclear wastes for the establishment of design concepts and stability analysis of the rock cavity. Important factors for the design are also described by considering characteristics of the wastes and underground facilities. The present project has investigated technical aspects on the design of underground structures based on the currently established underground construction technologies, and presented a proposal for design criteria for the structural stability of the nuclear waste repository. The proposed criteria consist of general provisions, geological exploration, rock classification, design process and methods, supporting system, analyses and instrumentation.

  19. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations

  20. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  1. Project Guarantee 1985. Repository for low- and intermediate-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A constructional engineering project study aimed at clarification of the feasibility of a repository for low- and intermediate-level radioactive waste (type B repository) has been carried out; the study is based on a model data-set derived from the geological, rock mechanical and topographical characterictics of one of Nagra's planned exploration areas. Final storage is effected in subterranean rock caverns accessed by horizontal tunnel. The reception area also is sited below the surface. Storage is conceived in such a way that, after closure of the repository, maintenance and supervision can be dispensed with and a guarantee of high long-term safety can nevertheless be provided. The envisaged repository consists of an entry tunnel for road vehicles and a reception area with a series of caverns for receiving waste, for additional technical facilities and for the production of the concrete back-fill material. The connecting tunnel is serviced by a tunnel railway and the actual repository area consists of several storage caverns. The repository is intended to accomodate a total of 200'000 m3 of solidified low- and intermediate-level waste. Valanginian marl is assumed as the host rock, although it would also be basically possible to house the proposed installations in other host rocks. The excavated material will total around 1'000'000 m3. The construction time for the whole installation is estimated as about 7 years and a working team of around 30 people will be required for the estimated 60-year operational duration. The project described in the present report justifies the conclusion that construction of a repository for low-and intermediate-level radioactive waste is feasible with present-day technology. This conclusion takes into consideration quantitative and operational constraints as well as geological and hydrogeological data relevant to constructional engineering. The latter are derived from a model data-set based on a specific locality

  2. Topical session proceedings of the 4. IGSC meeting on: the potential impacts on repository safety from potential partitioning and transmutation programme

    International Nuclear Information System (INIS)

    Wollrath, Juergen; Voinis, Sylvie; Hadermann, Joerg; Van Luik, Abraham E.

    2003-01-01

    The bulk of radioactive waste results mainly from energy production in nuclear power plants. At present, this waste is safely stored near reactor sites, in dedicated storage facilities, and low-level wastes in some countries are disposed of in near surface disposal facilities. The stored wastes are accumulating, and the generally agreed-to solution is to dispose of vitrified waste or spent fuel in deep geological disposal facilities. The main concern in the disposal of radioactive waste is related to long-lived radionuclides - some of them will remain hazardous for tens of thousands of years and longer. To demonstrate the safety of geological disposal of radioactive waste a safety case has to be developed for a specific concept of disposal at a given site. This safety case is a collection of arguments at a given stage of repository development in support of the long-term safety of the repository. The safety case comprises the findings of a safety assessment and a statement of confidence in these findings. The type of waste to be disposed of is an important component of the disposal concept. At present, novel fuel cycles are under investigation at national and international levels including research in partitioning and transmutation (P and T) technologies. Comprehensive projects are carried out in OECD countries, notably France, Japan and the USA. Within the Nuclear Fission Safety programme the European Commission (EC) is supporting several projects and it is anticipated that the contribution of the EC will increase within the 6. Framework Programme. In addition the Nuclear Energy Agency has recently published a report comparing fuel cycles for accelerator driven systems and fast reactors. By using P and T it might be possible to reduce the long-lived component of the radioactive waste, thus easing the waste management problem. A safety case for a repository for wastes from P and T fuel cycles would be different from a safety case that deals with spent fuel and

  3. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  4. The role of weapons production and military waste in the repository selection process

    International Nuclear Information System (INIS)

    Nelson, D.; Hope, J.; Power, W.; Hunter, T.

    1987-01-01

    The decision to commingle defense waste with commercial waste in the nuclear waste repository program has many impacts on that program. There will be more waste to place in the two repositories authorized under the Nuclear Waste Policy Act, more transport miles to get the waste to a repository, and more costs associated with environmental and socio-economic impact mitigation. This paper explores the links between weapons production and military waste, and the repository selection process. The paper first describes the importance of state, tribe and public participation to the acceptance of a repository site selection. The paper then examines the various estimates of amounts of existing and future military nuclear wastes, and how these estimates affect repository siting decisions. The final section addresses the public policy questions which surround this issue. Repository siting may be jeopardized unless there is open public discussion about existing radioactive contamination at military production sites and about future nuclear weapons production. Cost-sharing is considered within this context

  5. Different types of radioactive waste repositories, each suited for a given type of radioactive waste - 59293

    International Nuclear Information System (INIS)

    Voinis, Sylvie; Boissier, Fabrice; Griffault, Lise; Maillard, Jean Louis; Dutzer, Michel

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The aim of this article is to present how Andra implements a dedicated solution per waste category. It relies on response to a series of questions concerning the appropriate waste disposal system such as: What type of radiological inventory is involved? What are the half-lives of the radionuclides and the associated timescales concerned for achieving the fundamental protection objective? In that respect, Andra has developed and has implemented methods for all disposal facilities in order to reach common objectives: The immediate and long term protections of human beings and the environment constitute the fundamental objectives of all radioactive-waste disposal facilities. In order to achieve those protections, disposal facilities must be safe. Thus, Andra safety encompasses all design, implementation and operational measures for preventing risks of all kind internal, external during operation and after closure in consistency with defense in depth principles taken into account the peculiarity of waste disposal facilities: (i) balancing operational safety and post-closure safety, (ii) management of nuclear risks in underground repository for some of them, (iii) management of scientific understanding and related uncertainties, and (iv) management of long or very long- timescales. The presentation will illustrate Andra's approach that has or will be conducted and will focus on communalities or peculiarities according to the type of waste and related disposal options regarding the following iterative steps: regulatory safety rules, input data, scenarios, safety assessments. (authors)

  6. The value and need for long term conservation of information regarding nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Eng, T. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Jensen, M. [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1993-12-31

    An important question in safety assessment of all repositories where toxic waste is disposed is how long should information be available to society about the repository and its content? Future societies right to knowledge must be considered and actions must already today be taken to ensure that proper information conservation, transfer and retrieval are provided. Collection of relevant information must be planned for at the research, construction and the operational phase of a repository. One of the main areas for information conservation and transfer is to mitigate future human intrusion. A system for best possible mitigation of human intrusion should with the present knowledge comprise the following parts: (a) development of planning procedures for long-term conservation of gathered information (present and future national and international archives, markers etc.); (b) continuous follow up of the state-of-the-art of information media; (c) preparations for national rules and regulations on nuclear waste information; (d) participation in international cooperation on issues concerning nuclear waste information keeping, transfer and retrieval.

  7. National radioactive waste repository draft EIS. 2 volumes

    International Nuclear Information System (INIS)

    2002-01-01

    Most Australians benefit either directly or indirectly from the medical, industrial and scientific use of radioactive materials. This use produces a small amount of radioactive waste, including low level and short-lived intermediate level radioactive waste such as lightly contaminated soil, plastic, paper, laboratory equipment, smoke detectors, exit signs and gauges.This waste is temporarily stored at more than 100 urban and rural locations around Australia, much of it in buildings that were neither designed nor located for the long-term storage of radioactive material and that are nearing or have reached capacity. Storage locations include hospitals, research institutions, and industry and government stores. Storing such waste in many locations in non-purpose built facilities potentially poses greater risk to the environment and people than disposing of the material in a national, purpose-built repository where the material can be safely managed and monitored. The objectives of the national repository are to: 1. strengthen Australia's radioactive waste management arrangements by promoting the safe and environmentally sound management of low level and short-lived intermediate level radioactive waste 2. provide safe containment of these wastes until the radioactivity has decayed to background levels. To meet these objectives, it is proposed to construct a national near-surface repository at either the preferred site on the Woomera Prohibited Area (WPA) or either of the two nearby alternative sites. The facility is not intended for the disposal of radioactive ores from mining. A national store for long-lived intermediate level waste will not be co-located with the national repository, and would be subject to a separate environmental assessment process.One preferred and two alternative sites have been selected for the national repository, following an extensive site selection process. All three sites are located in northern South Australia in a region known as central

  8. Potential host media for a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Hustrulid, W

    1982-01-01

    Earlier studies of burial of radioactive wastes in geologic repositories had concentrated on salt formations for well-publicized reasons. However, under the Carter administration, significant changes were made in the US nuclear waste management program. Changes which were made were: (1) expansion of the number of rock types under consideration; (2) adoption of the multiple-barrier approach to waste containment; (3) additional requirements for waste retrieval; and (4) new criteria proposed by the Nuclear Regulatory Commission for the isolation of high-level waste in geologic repositories. Results of the studies of different types of rocks as repository sites are summarized herein. It is concluded that each generic rock type has certain advantages and disadvantages when considered from various aspects of the waste disposal problem and that characteristics of rocks are so varied that a most favorable or least favorable rock type cannot be easily identified. This lack of definitive characteristics of rocks makes site selection and good engineering barriers very important for containment of the wastes. (BLM)

  9. Barriers of repository under the conditions of underground isolation of heat releasing radioactive waste in permafrost

    International Nuclear Information System (INIS)

    Kazakov, A.N.; Fedorovich, L.N.

    1995-01-01

    The main positions and the leading principle of the ensuring of the environmental safety of the method of the underground isolation of radioactive waste in permafrost rock are presented in this work and it is shown here the peculiarities in realization of the principle of the multibarrier protection. It is substantiated here the principle of the optimal time of the capacity for work of the repository's engineered barriers. The possibility of the exclusion of the radionuclides migration beyond the working volume of the repository during the time of the potential danger of radioactive waste is also substantiated in these papers

  10. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the third part of a report of a preliminary study for AECL. It summarizes the topics considered in reports AECL-6188-1 and AECL-6188-2 as requirements for an undergpound repository for disposal of wastes produced by the Canadian Nuclear Fuel Program. (author)

  11. A Generic Safety Assessment Model for a Trench Type LILW Repository

    International Nuclear Information System (INIS)

    Lee, Youn-Myoung; Choi, Hee-Joo

    2015-01-01

    This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various normal circumstances, disruptive events, and scenarios that can occur after a failure of waste packages with associated uncertainty. Despite the conceptual design of a trench type LILW repository system, all parameter values associated with the repository system were assumed for the time being, and the generic model developed through this study should be helpful because the evaluation of such releases is very important. A simple and effective model for a safety assessment of a conceptual trench repository system, in which an LILW that arises from a nuclear power plant and other sources, has been developed. The computer program based on this model has also been developed as a GoldSim template using the commercial GoldSim development tool

  12. A Generic Safety Assessment Model for a Trench Type LILW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn-Myoung; Choi, Hee-Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various normal circumstances, disruptive events, and scenarios that can occur after a failure of waste packages with associated uncertainty. Despite the conceptual design of a trench type LILW repository system, all parameter values associated with the repository system were assumed for the time being, and the generic model developed through this study should be helpful because the evaluation of such releases is very important. A simple and effective model for a safety assessment of a conceptual trench repository system, in which an LILW that arises from a nuclear power plant and other sources, has been developed. The computer program based on this model has also been developed as a GoldSim template using the commercial GoldSim development tool.

  13. Investigation on long-term safety aspects of a radioactive waste repository in a diagenic clay formation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Gazul, R. [DBE Technology GmbH, Peine (Germany); Fluegge, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Braunschweig (Germany); and others

    2017-03-28

    The report presents the sealing concept developed for a Russian near surface low/intermediate level (LILW) waste repository at the ''radon site'' in the lower Cambrian ''blue clay'' formation. The radioactive wastes will be transported to the repository through a tunnel that will connect the underground disposal areas with the surface facilities. Two ventilation shafts for fresh and exhaust air will also connect the underground facilities with the surface. Specific characteristics of the flow regime in the studied area have been simulated. For the construction of a potential repository site it is necessary to know the possible contaminant transport paths to the surface and the biosphere. Due to the lack of sufficient data the calculation can only indicate tendencies that can trigger future explorations. Simulations of the radionuclide (C-14, Cl-36, Se-79, I-129) release from the repository in the liquid phase show a similar behavior as for other repositories in clay. Probabilistic simulations show a large variation of obtained results as a result of the parameter uncertainty.

  14. Workshops for state review of site suitability criteria for high-level radioactive waste repositories: analysis and recommendations

    International Nuclear Information System (INIS)

    1978-02-01

    The purpose of this report is to present the views and recommendations of invited State officials and legislators participating in a workshop concerned with preliminary site suitability criteria for high level radioactive waste repositories. The workshops were open to the public and were conducted by the U. S. Nuclear Regulatory Commission (NRC) during September 1977 in three regional locations across the United States. This contractor report is the second of two reports and consolidates the discussion by State officials on the role of a State in siting a repository, NRC's waste management program, the transportation of high level wastes, the number and location of repositories and concerns with the socio-economic impacts of siting a repository in a community. The recommendations to the NRC can be categorized into four areas. These were: (1) general recommendations, (2) procedural recommendations, (3) recommendations for improving communications, and (4) specific recommendations on the preliminary siting criteria. The recommendations emphasized the need for early State involvement in the siting process, the need for an impacted State to assess repository operations, the need for early solution of waste transportation concerns, and the requirement that any repository developed insure the protection of the public health and safety as its most important characteristic. Other participant recommendations are included in the body of the report

  15. 18th GRS experts' meeting 1994. Seminar B: Safety of facilities and waste management. Technical papers

    International Nuclear Information System (INIS)

    1994-01-01

    The six papers deal with the scanning, recording and assessment of long-standing soil pollution emanating from mining activities in Saxonia, Sachsen-Anhalt and Thuringia, the computation of radioactivity levels of structural core components destined for ultimate disposal, and with safety aspects and safety criteria applied to waste repositories in Germany and abroad. Nuclide transport models used for providing evidence of safe radiological containment of waste repositories are presented and discussed. (DG) [de

  16. Acceptability of a low and intermediate level radioactive waste repository

    International Nuclear Information System (INIS)

    Zeleznik, N.; Polic, M.

    2000-01-01

    Siting of a radioactive waste repository, even for the waste of low and intermediate level (LILW) radioactivity, presents a great problem in almost every country that produces such waste. The main problem is not a technical one, but socio-psychological, namely the acceptability of this kind of repository. In general, people are opposed to any such kind of facility in their vicinity (NIMBY). In this study we try to establish the factors that influence people's behavior regarding the construction of a radioactive waste repository in their local community, with the use of Ajzen's model of planned behavior. Two different scenarios about the construction of a radioactive waste repository in their community, together with a set of questions were presented to participants from different schools. Data from the survey were analysed by multivariate methods, and a model of relevant behaviour was proposed. From the results it can be seen that different approaches to local community participation in site selection process slightly influence people's attitudes towards the LILW repository, while significant differences in answers were found in the responses which depend on participants' knowledge. Therefore the RAO Agency will further intensify preparation of the relevant communication plan and start with its implementation to support LILW repository site selection process, which will also include educational programme. (author)

  17. Analysis on one underground nuclear waste repository rock mass in USA

    International Nuclear Information System (INIS)

    Ha Qiuling; Zhang Tiantian

    2012-01-01

    When analyzing the rock mass of a underground nuclear waste repository, the current studies are all based on the loading mechanical condition, and the unloading damage of rock mass is unconsidered. According to the different mechanical condition of actual engineering rock mass of loading and unloading, this paper implements a comprehensive analysis on the rock mass deformation of underground nuclear waste repository through the combination of present loading and unloading rock mass mechanics. It is found that the results of comprehensive analysis and actual measured data on the rock mass deformation of underground nuclear waste repository are basically the same, which provide supporting data for the underground nuclear waste repository. (authors)

  18. CONSIDERATIONS ON SOILS ISOLATIVE PROPERTIES FOR SITING OF A NEW NEAR-SURFACE RADIOACTIVE WASTE REPOSITORY IN POLAND IN THE LIGHT OF THE LONG TERM SAFETY

    Directory of Open Access Journals (Sweden)

    Monika Skrzeczkowska

    2012-07-01

    Full Text Available The paper presents a brief description of the occurrence of favorable isolative conditions for new surface radioactive waste repository in Poland. Selected soils may be used as a natural bottom layer or engineering barrier in multi-barrier system of RW repository. Currently, there is no regulation establishing standards for the bottom isolation, and the only quantifiable parameter with regard to water permeability is given for the repository objects, which in their case has to be lower than 10-9 m/s. For the purposes of this paper, treating on providing suitable bottom isolation for the new repository, this parameter has been transferred onto the consideration for soils suitability with a statement that it shall not be lower than the one given for the infrastructure. Submitted information should be taken into consideration by updating the information for the siting process according to IAEA Safety Standards.

  19. Safety analysis in subsurface repositories

    International Nuclear Information System (INIS)

    1985-06-01

    The development of mathematical models to represent the repository-geosphere-biosphere system, and the development of a structure for data acquisition, processing, and use to analyse the safety of subsurface repositories, are presented. To study the behavior of radionuclides in geosphere a laboratory to determine the hydrodynamic dispersion coefficient was constructed. (M.C.K.) [pt

  20. Radioactive waste management in France: safety demonstration fundamentals.

    Science.gov (United States)

    Ouzounian, G; Voinis, S; Boissier, F

    2012-01-01

    The main challenge in development of the safety case for deep geological disposal is associated with the long periods of time over which high- and intermediate-level long-lived wastes remain hazardous. A wide range of events and processes may occur over hundreds of thousands of years. These events and processes are characterised by specific timescales. For example, the timescale for heat generation is much shorter than any geological timescale. Therefore, to reach a high level of reliability in the safety case, it is essential to have a thorough understanding of the sequence of events and processes likely to occur over the lifetime of the repository. It then becomes possible to assess the capability of the repository to fulfil its safety functions. However, due to the long periods of time and the complexity of the events and processes likely to occur, uncertainties related to all processes, data, and models need to be understood and addressed. Assessment is required over the lifetime of the radionuclides contained in the radioactive waste. Copyright © 2012. Published by Elsevier Ltd.

  1. The function of packing materials in a high-level nuclear waste repository and some candidate materials: Salt Repository Project

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Shade, J.W.

    1987-03-01

    Packing materials should be included in waste package design for a high-level nuclear waste repository in salt. A packing material barrier would increase confidence in the waste package by alleviating possible shortcomings in the present design and prolonging confinement capabilities. Packing materials have been studied for uses in other geologic repositories; appropriately chosen, they would enhance the confinement capabilities of salt repository waste packages in several ways. Benefits of packing materials include retarding or chemically modifying brines to reduce corrosion of the waste package, providing good thermal conductivity between the waste package and host rock, retarding or absorbing radionuclides, and reducing the massiveness of the waste package. These benefits are available at low percentage of total repository cost, if the packing material is properly chosen and used. Several candidate materials are being considered, including oxides, hydroxides, silicates, cement-based mixtures, and clay mixtures. 18 refs

  2. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  3. Geological safety aspects of nuclear waste disposalin in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, L; Hakkarainen, V; Kaija, J; Kuivamaki, A; Lindberg, A; Paananen, M; Paulamaki, S; Ruskeeniemi, T

    2011-07-01

    The management of nuclear waste from Finnish power companies is based on the final geological disposal of encapsulated spent fuel at a depth of several hundreds of metres in the crystalline bedrock. Permission for the licence requires that the safety of disposal is demonstrated in a safety case showing that processes, events and future scenarios possibly affecting the performance of the deep repository are appropriately understood. Many of the safety-related issues are geological in nature. The Precambrian bedrock of Finland has a long history, even if compared with the time span considered for nuclear waste disposal, but the northern location calls for a detailed study of the processes related to Quaternary glaciations. This was manifested in an extensive international permafrost study in northern Canada, coordinated by GTK. Hydrogeology and the common existence of saline waters deep in the bedrock have also been targets of extensive studies, because water chemistry affects the chemical stability of the repository near-field, as well as radionuclide transport. The Palmottu natural analogue study was one of the international high-priority natural analogue studies in which transport phenomena were explored in a natural geological system. Currently, deep biosphere processes are being investigated in support of the safety of nuclear waste disposal. (orig.)

  4. Review. Deep repository for spent nuclear fuel SR 97 - Post-closure safety

    International Nuclear Information System (INIS)

    Stephansson, Ove

    2000-01-01

    SKB states that the chosen scenarios provide good coverage of future evolutionary pathways for the deep repository. This is not the case. SKB has not made full use of the established interaction matrices and the new method of THMC diagrams to generate the relevant and important scenarios and to construct the important pathways of variables and processes, either in the established interaction matrices and the presented THMC diagrams. Hence, SKB is demonstrating in SR 97 that they lack a well thought through, sound and solid method to select and evaluate scenarios for the purpose of demonstrating the safety of a deep repository for spent nuclear fuel. The evolution of the system is presented for the components of the repository system (fuel, canister, buffer/backfill, geosphere) and the effects of four different scenarios, but time only enters into the system for discrete events or processes, e.g. description of the relative radiotoxicity and heat decay of the fuel, temperature distribution, iron exchange process, pH in buffer, redox capacity and radionuclear release at the three sites. There is a lack of method and way of describing the evolution of the complete repository system, including the major scenarios, as a function of time. It is essential that SKB is able to: - consider the full range of potential scenarios, - grade the scenarios according to their significance for repository design and performance and safety assessment, - consider whether simple engineering actions could be taken to inhibit the development of adverse scenarios. This cannot be done with the system presented in SR 97, and so SKB do not have a full predictive capability - which is required for the engineering design of such an important and costly structure as a repository. Geoscientific investigation material for three selected sites are presented by SKB in the technical report dealing with waste, repository design and sites. Here a general overview is missing of the geological and rock

  5. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    International Nuclear Information System (INIS)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste

  6. Assessments of the thermal evolution for a radioactive waste final repository using analytical methods

    International Nuclear Information System (INIS)

    Radut, A. C.; Roman, M. R.; Florea, S.; Ionescu, D. V.; Olteanu, G.; Valeca, S.

    2016-01-01

    In the designing process for a radioactive final repository concept, the temperature evolution over time is a significant issue for the stability and long-term safety of entire emplacement. In particular, the maximum value of temperature in the whole structure, during time, must not exceed a certain safety value which depends, beside other criteria, on the bulk material of the repository. A computer code TEMPROC, based on analytical model for the transient thermal heat conduction, described in this paper, was developed inside ''Fuel Performance''Department from ICN Pitesti, in order to evaluate the waste repository's temperature distribution. The program was developed under ''Microsoft FORTRAN Power Station''platform that provides IMSL subroutines library support for numeric algorithm. So the program is relative small, with a good calculus speed. The numerical results obtained with TEMPROC computer code, have been acceptably compared with similar existing data from scientific literature [1]. (authors)

  7. Scientific basis for a safety case of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas [and others

    2012-11-15

    : - The current state-of-the-art in long-term safety assessment has been evaluated within a sub project of the Integration Group for the safety case (IGSC) of OECD/NEA. GRS has strongly contributed to this project called Methods for Safety Assessments (MeSA), by leading working groups and with contributions to selected chapters of the NEA state-of-the-art report. - As an outcome of the MeSA project it was decided to compile the status in the OECD member countries on the use of indicators complementary to dose and risk in the safety case. GRS played a leading role in drafting and finalizing a state-of-the-art report on indicators. Further the applicability of a specific set of indicators previously proposed in Germany was tested and evaluated for repositories in clay and rock salt formations. - GRS is involved in several international working groups to follow the state-of-the-art at the international level as well as to introduce results from German R and D into the international discussion. Important working groups are the Radioactive Waste Management Committee (RWMC) of OECD/NEA with the Integration Group for the Safety Case, its subgroups Clay Club and Salt Club and correlated projects like the NEA sorption project. - The current literature dealing with the role of microbial processes related to repositories in clay formations has been compiled. The potential negative and positive impact of microbes on the long-term integrity of the repository system in clay has been qualitatively evaluated. - Radionuclide inventories of CSD-V containers received from reprocessing in LA Hague have been evaluated and an updated data set for long-term safety assessment is proposed. - The non-isothermal re-saturation of bentonite is investigated by specific laboratory experiments accompanied by modelling with the code VIPER. In addition the model was applied to lab and field experiments provided by the EBS task force and all results have been discussed in this international working group

  8. Scientific basis for a safety case of deep geological repositories

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas

    2012-11-01

    : - The current state-of-the-art in long-term safety assessment has been evaluated within a sub project of the Integration Group for the safety case (IGSC) of OECD/NEA. GRS has strongly contributed to this project called Methods for Safety Assessments (MeSA), by leading working groups and with contributions to selected chapters of the NEA state-of-the-art report. - As an outcome of the MeSA project it was decided to compile the status in the OECD member countries on the use of indicators complementary to dose and risk in the safety case. GRS played a leading role in drafting and finalizing a state-of-the-art report on indicators. Further the applicability of a specific set of indicators previously proposed in Germany was tested and evaluated for repositories in clay and rock salt formations. - GRS is involved in several international working groups to follow the state-of-the-art at the international level as well as to introduce results from German R and D into the international discussion. Important working groups are the Radioactive Waste Management Committee (RWMC) of OECD/NEA with the Integration Group for the Safety Case, its subgroups Clay Club and Salt Club and correlated projects like the NEA sorption project. - The current literature dealing with the role of microbial processes related to repositories in clay formations has been compiled. The potential negative and positive impact of microbes on the long-term integrity of the repository system in clay has been qualitatively evaluated. - Radionuclide inventories of CSD-V containers received from reprocessing in LA Hague have been evaluated and an updated data set for long-term safety assessment is proposed. - The non-isothermal re-saturation of bentonite is investigated by specific laboratory experiments accompanied by modelling with the code VIPER. In addition the model was applied to lab and field experiments provided by the EBS task force and all results have been discussed in this international working group

  9. Studies relating to human intrusion into a repository. Report pertaining to work package 11. Preliminary safety case of the Gorleben site (VSG)

    Energy Technology Data Exchange (ETDEWEB)

    Beuth, Thomas; Buhmann, Dieter; Fischer-Appelt, Klaus; Moenig, Joerg; Ruebel, Andre; Wolf, Jens [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Bollingerfehr, Wilhelm; Filbert, Wolfgang [DBE Technology GmbH, Peine (Germany); Charlier, Frank [international nuclear safety engineering gmbh (nse), Aachen (Germany); Baltes, Bruno

    2014-10-15

    The question of the long-term safety of a repository system is inseparably linked with the intensive technical examination of the possible future evolution of the site and the repository system e. g. as a result of climatic, geologic, waste-related and repository-related processes. Here, the possible evolutions to be considered are those that have the potential to have a negative impact on the intended, furthest-possible, immediate, and lasting isolation of the radioactive waste in a defined area around the underground workings of the repository mine in salt rock, which is referred to as the containment-providing rock zone (CPRZ).

  10. Parameters and criteria influencing the selection of waste emplacement configurations in mined geologic repositories

    International Nuclear Information System (INIS)

    Bechthold, W.; Closs, K.D.; Papp, R.

    1988-01-01

    Reference concepts for repositories in deep geological formations have been developed in several countries. For these concepts, emplacement configurations vary within a wide range that comprises drift emplacement of unshielded or self-shielded packages and horizontal or vertical borehole emplacement. This is caused by different parameters, criteria, and criteria weighting factors. Examples for parameters are the country's nuclear power program and waste management policy, its geological situation, and safety requirements, examples for criteria and repository area requirements, expenditures of mining and drilling, and efforts for emplacement and, if required, retrieval. Due to the variety of these factors and their ranking in different countries, requirements for a safe, dependable and cost-effective disposal of radioactive waste can be met in various ways

  11. Researching radioactive waste disposal. [Underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Feates, F; Keen, N [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1976-02-16

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared.

  12. Future extension of the Swedish repository for low and intermediate level waste (SFR)

    International Nuclear Information System (INIS)

    Carlsson, Jan

    2006-01-01

    The existing Swedish repository for low and intermediate level waste (SFR) is licensed for disposal of short-lived waste originated from operation and maintenance of Swedish nuclear power plants. The repository is foreseen to be extended to accommodate short-lived waste from the future decommissioning of the Nuclear Power Plants. Long-lived waste from operation, maintenance and eventually decommissioning will be stored some years before disposal in a geological repository. This repository can be build either as a further extension of the SFR facility or as a separate repository. This paper discusses the strategy of a step-wise extended repository where the extensions are performed during operation of the existing parts of the repository. It describes the process for licensing new parts of the repository (and re-license of the existing parts). (author)

  13. Perspectives on radioactive waste repository monitoring. Confirmation, compliance, confidence building, and societal vigilance

    Energy Technology Data Exchange (ETDEWEB)

    Bergmans, Anne [Antwerp Univ. (Belgium). Research Group Society and Environment; Elam, Mark [Gothenburg Univ. (Sweden); Simmons, Peter [East Anglia Univ., Norwich (United Kingdom); Sundqvist, Goeran [Oslo Univ. (Norway)

    2012-12-15

    Monitoring is now widely seen as a necessary part of programmes for the geological disposal of radioactive waste. However, we find different perspectives on the nature and role of monitoring. Among technical experts it is viewed firstly as a matter of performance confirmation, a tool for validating the safety case underlying repository construction. Among concerned citizens we find a view of monitoring as enabling the critical scrutiny of safety, an instrument for acknowledging uncertainties and detecting emergent problems in a repository. After outlining differing views on questions of whether, why, what, where and for how long to monitor we discuss monitoring in light of constant vigilance as a technical and moral principle of nuclear safety. We suggest that ''how much monitoring'' and ''how should it be organised'' are societal questions and as such need to be broadly discussed.

  14. An assessment of the radiological impact of human intrusion at the UK Low Level Waste Repository (LLWR) - 59356

    International Nuclear Information System (INIS)

    Hicks, Tim; Baldwin, Tamara; Cummings, Richard; Sumerling, Trevor

    2012-01-01

    The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste (LLW) to the Environment Agency on the 1 May 2011. The Environmental Safety Case (ESC) presents a complete case for the environmental safety of the Low Level Waste Repository (LLWR) both during operations and in the long term (Cummings et al, in these proceedings). This includes an assessment of the long-term radiological safety of the facility, including an assessment of the potential consequences of human intrusion at the site. The human intrusion assessment is based on a cautiously realistic approach in defining intrusion cases and parameter values. A range of possible human intrusion events was considered based on present-day technologies and credible future uses of the site. This process resulted in the identification of geotechnical investigations, a housing development and a smallholding as requiring quantitative assessment. A particular feature of the site is that, because of its proximity to the coast and in view of expected global sea-level rise, it is vulnerable to coastal erosion. During such erosion, wastes and engineered barrier materials will be exposed, and could become targets for investigation or recovery. Therefore, human intrusion events have been included that are associated with such activities. A radiological assessment model has been developed to analyse the impacts of potential human intrusion at the site. A key feature of the model is the representation of the spatial layout of the disposal site, including the engineered cap design and the large-scale spatial heterogeneity of radionuclide concentrations within the repository. The model has been used to calculate the radiation dose to intruders and to others following intrusion at different times and at different locations across the site, for the each of the selected intrusion events, considering all relevant exposure modes. Potential doses due to radon and its daughters in

  15. Safety and performance indicators for the assessment of long-term safety of deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hugi, M.; Schneider, J.W.; Dorp, F. van; Zuidema, P.

    2005-01-01

    The evaluation of the ability to isolate radioactive waste and the assessment of the long-term safety of a deep geological repository is usually done in terms of the calculated dose and/or risk for an average individual of the population which is potentially most affected by the potential impacts of the repository. At present, various countries and international organisations are developing so-called complementary indicators to supplement such calculations. These indicators are called ''safety indicators'' if they refer to the safety of the whole repository system; if they address the isolation capability of individual system components or the whole system from a more technical perspective, they are called ''performance indicators''. The need for complementary indicators follows from the long time frames which characterise the safety assessment of a geological repository, and the corresponding uncertainty of the calculated radiation dose. The main reason for these uncertainties is associated with the uncertain long-term prognosis of the surface environment and the related human behaviour. (orig.)

  16. The Pangea concept for an international radioactive waste repository

    International Nuclear Information System (INIS)

    Kurzeme, M.

    1999-01-01

    Pangea Resources Australia Pty. Ltd. is engaged in a study to investigate the feasibility of constructing and operating an international radioactive waste repository in Australia. Western Australia in particular has a unique combination of geology, topography and climate which makes it eminently suitable for a deep geological repository for the safe and permanent disposal of radioactive waste. Australia also has the political, social, legal and financial systems, together with the technical capability to make it acceptable as a host nation for an international repository. This paper reviews the origins of the Pangea concept, describes the high isolation approach to site selection, the Pangea integrated waste management system, together with its potential economic impact on Australia

  17. Radiosensitivity of microorganisms isolated from radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, Lajos

    2001-01-01

    Bacteria are much more diverse in comparison with plants and animals. Among the huge diversity of bacteria there are microorganisms capable to grow at or adapt to extreme conditions. Some bacteria grow at temperature above 100 deg. C, other thrive in high salinity such as 20-30% NaCl, still others can live at pH lower than 2 or pH higher than 10 or exhibit high radioresistance. Due to accelerated disarmament and nuclear energy activities, large quantities of radioactive waste and nuclear fuel are being placed in storage areas. The awareness the microbial activity could potentially effect the performance of a system for geological disposal of radioactive waste gained acceptance in the early to middle 1980s, and as a result many countries considering developing programmes to study and quantify microbial effects in terms of their own particular disposal concept. A new research programme was launched in 1995, sponsored by the NATO Scientific Affairs Division, for studying microbiologically influenced corrosion (MIC) in radioactive waste repositories and spent fuel storage area. Our programme concerns several major items that may have an influence on the mobility of radionuclides in direct and indirect ways thereby being important for the safety analysis. They are uptake and transport of radionuclides by microorganisms, diversity and distribution of subterranean bacteria in typical repository environments, environmental limitation and bacterial activity, effect of bacterial activity on the mobility of radionuclides, microbial gas production and consumption, bacterial recombination of hydrogen and oxygen from radiolysis, and microbially induced corrosion of waste canister. The Permian Boda Claystone Formation in the Mecsek Hill area is being considered for high level waste disposal. Groundwater, technical water, rock and surface samples were collected aseptically from different depths. The quantitative and qualitative analysis of aerobic and anaerobe isolates were

  18. Developing design premises for a KBS-3V repository based on results from the safety assessment - 16027

    International Nuclear Information System (INIS)

    Andersson, Johan; Hedin, Allan

    2009-01-01

    As a part of the planned license application for a final repository for spent nuclear fuel the Swedish Nuclear Fuel and Waste Management Co. (SKB), has developed design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel. The purpose is to provide requirements from a long term safety aspect, to form the basis for the development of the reference design of the repository and to justify that design. Design premises typically concern specification on what mechanical loads the barriers must withstand, restrictions on the composition of barrier materials or acceptance criteria for the various underground excavations. These design constraints, if all fulfilled by the actual design, should form a good basis for demonstrating repository safety. The justification for these design premises is derived from SKB's most recent safety assessment SR-Can complemented by a few additional analyses. Some of the design premises may be modified in future stages of SKB's program, as a result of analyses based on more detailed site data and a more developed understanding of processes of importance for long-term safety. (authors)

  19. Safety and performance assessment of geologic disposal systems for nuclear wastes

    International Nuclear Information System (INIS)

    Peltonen, E.

    1987-01-01

    This thesis presents a methodology for the safety and performance assesment of final disposal of nuclear wastes into crystalline bedrock. The applicability of radiation protection objectives is discussed, as well as the goals of the assessment in the various repository system development phases. Due consideration is given to the description of the pertinent analysis methods and to the comprehensive model system. The methodology has been applied to assess the acceptability of the basic disposal concepts and to study the possibilities for the optimization of protection. Furthermore, performance of different components in the multiple barrier disposal systems is estimated. The waste types dealt with are low- and intermediate-level waste as well as high-level spent nuclear fuel from a nuclear power plant. In addition, an option of high-level vitrified waste from reprocessing of spent fuel is taken into account. On the basis of the various analyses carried out it can be concluded that the disposal of different nuclear wastes in the Finnish bedrock in properly designed repositories meets the radiation protection objectives with good confidence. In addition, the studies indicate that the safety margins are considerable. This is due to the fact that the overall performance of the multiple barrier disposal systems analysed is not sensitive to possible unfavourable changes in barrier properties. From the optimization of protection point of view it can be concluded that there is no need to develop more effective repository designs than those analysed in this thesis. In fact, the results indicate that the most sophisticated designs have already gone beyond an optimal level of safety

  20. Development of Spherical Near Field Model for Geological Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, S. Y.; Lee, K. J.; Chang, S. H.; Lee, K. J.; Chang, S. H.

    2012-01-01

    Modeling for geological radioactive waste repository can be divided into 3 parts. They are near field modeling related to engineered barrier, far field modeling related to natural barrier and biosphere modeling. In order to make the general application for safety assessment of geological waste repository, spherical geometry near field model has been developed. This model can be used quite extensively when users calculate equivalent spherical geometry for specific engineered barrier like equivalent waste radius, equivalent barrier radius and etc. Only diffusion was considered for general purpose but advection part can be updated. Goldsim and Goldsim Radionuclide Transport (RT) module were chosen and used as developing tool for the flexible modeling. Developer can freely make their own model with developer friendly graphic interface by using Goldsim. Furthermore, model with user friendly graphic interface can be developed by using Goldsim Dashboard Authoring module. The model has been validated by comparing the result with that of another model, inserting similar inputs and conditions. The model has been proved to be reasonably operating from the comparison result by validation process. Cylindrical model can be developed as a further work based on the knowledge and experience from this research

  1. Development of Spherical Near Field Model for Geological Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Lee, K. J.; Chang, S. H. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, K. J.; Chang, S. H. [Khalifa Univ. of Science/Technology and Research, Abu Dhabi (United Arab Emirates)

    2012-03-15

    Modeling for geological radioactive waste repository can be divided into 3 parts. They are near field modeling related to engineered barrier, far field modeling related to natural barrier and biosphere modeling. In order to make the general application for safety assessment of geological waste repository, spherical geometry near field model has been developed. This model can be used quite extensively when users calculate equivalent spherical geometry for specific engineered barrier like equivalent waste radius, equivalent barrier radius and etc. Only diffusion was considered for general purpose but advection part can be updated. Goldsim and Goldsim Radionuclide Transport (RT) module were chosen and used as developing tool for the flexible modeling. Developer can freely make their own model with developer friendly graphic interface by using Goldsim. Furthermore, model with user friendly graphic interface can be developed by using Goldsim Dashboard Authoring module. The model has been validated by comparing the result with that of another model, inserting similar inputs and conditions. The model has been proved to be reasonably operating from the comparison result by validation process. Cylindrical model can be developed as a further work based on the knowledge and experience from this research.

  2. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  3. Environmental issues of repository licensing: an evaluation of a hypothetical high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Owen, J.L.; McGinnis, J.T.; Harper, C.M.; Battelle Columbus Labs., OH)

    1982-01-01

    This paper presents results of an environmental assessment conducted under the direction of the Office of Nuclear Waste Isolation as part of the National Waste Terminal Storage program. The study defined a range of potential environmental effects of constructing, operating, decommissioning, and long-term isolation of a nuclear waste repository. The analytical methodology used to determine potential environmental effects required definition of a hypothetical environmental setting and repository. Potentially applicable regulatory requirements were identified and were used as guidelines to evaluate permitting feasibility. The environmental effects of repository development were analyzed for the two major time periods of concern: short term (the period of construction, operation, and decommissioning) and long term (the isolation period after decommissioning). As a result of this analysis, major environmental uncertainties and issues were identified. 11 references, 5 figures

  4. Study of nuclear waste storage capacity at Yucca mountain repository

    International Nuclear Information System (INIS)

    Zhou Wei; Apted, M.; Kessler, J.H.

    2008-01-01

    The Yucca Mountain repository is applying license for storing 70000 MTHM nuclear waste including commercial spent nuclear fuel (CSNF) and defense high-level radioactive waste (HLW). The 70000 MTHM is a legal not the technical limit. To study the technical limit, the Electric Power Research Institute (EPRI) carried out a systematic study to explore the potential impact if the repository will accept more waste. This paper describes the model and results for evaluating the spent-fuel disposal capacity for a repository at Yucca Mountain from the thermal and hydrological point of view. Two proposed alternative repository designs are analyzed, both of which would fit into the currently well-characterized site and, therefore, not necessitating any additional site characterization at Yucca Mountain. The two- and three-dimensional models for coupled thermo-hydrological analysis extends from the surface to the water table, covering all the major and subgroup rock layers of the planned repository, as well as formations above and below the repository horizon. A dual-porosity and dual-permeability approach is used to model coupled heat and mass transfer through fracture formations. The waste package heating and ventilation are all assumed to follow those of the current design. The results show that the repository is able to accommodate three times the amount of spent fuel compared to the current design, without extra spatial expansion or exceeding current thermal and hydrological constraints. (authors)

  5. Reliability and safety program plan outline for the operational phase of a waste isolation facility

    International Nuclear Information System (INIS)

    Ammer, H.G.; Wood, D.E.

    1977-01-01

    A Reliability and Safety Program plan outline has been prepared for the operational phase of a Waste Isolation Facility. The program includes major functions of risk assessment, technical support activities, quality assurance, operational safety, configuration monitoring, reliability analysis and support and coordination meetings. Detailed activity or task descriptions are included for each function. Activities are time-phased and presented in the PERT format for scheduling and interactions. Task descriptions include manloading, travel, and computer time estimates to provide data for future costing. The program outlined here will be used to provide guidance from a reliability and safety standpoint to design, procurement, construction, and operation of repositories for nuclear waste. These repositories are to be constructed under the National Waste Terminal Storage program under the direction of the Office of Waste Isolation, Union Carbide Corp. Nuclear Division

  6. Morsleben repository for radioactive waste (ERAM). Operational safety, radiation protection and environmental monitoring. Release: December 2009

    International Nuclear Information System (INIS)

    2010-01-01

    The report overviews the monitoring activities of the Federal Office for Radiation Protection at the Morsleben repository for radioactive waste (ERAM), focussing the ERAM inventory of radioactive waste and the measures and results of geomechanical and hydrogeological monitoring, operational radiation protection, the monitoring of discharges of radioactive substances, environmental monitoring, and the dose levels expected from discharges of radioactive substances. (orig.)

  7. An assessment of the radiological impact of coastal erosion of the UK Low-Level Waste Repository - 59137

    International Nuclear Information System (INIS)

    Sumerling, Trevor; Shevelan, John; Cummings, Richard; Fish, Paul; Towler, George; Penfold, James

    2012-01-01

    The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste to our regulator, the Environment Agency, on the 1 May 2011. This includes assessments of the long-term radiological safety of past and future disposals. A particular feature of the Low Level Waste Repository (LLWR) is that, because of its proximity to the coast, the site is vulnerable to coastal erosion. Our present understanding is that the site will be eroded on a timescale of a few hundred to a few thousand years, with consequent disruption of the repository, and dispersal of the wastes. We have undertaken a programme of scientific research and monitoring to characterise the evolution and function of the current coastal system that provides a basis for forecasting its future evolution. This has included modelling of contemporary hydrodynamics, geo-morphological mapping, repeat LiDAR and aerial photographic surveys to detect patterns and rates of change, coastal inspections and reconstructions of post-glacial (i.e. last 15, 000 years) sea levels and sediment budgets. Estimates of future sea-level rise have been derived from international sources and consideration given to the impact of such on the local coastline. Two alternative models of coastal recession have then been applied, one empirical and one physical-process based, taking account of the composition of Quaternary-age sediments between the coast and the site and uncertainties in future local sea level change. Comparison of the ranges of calculated times to site contact with sea-level rise indicate that the repository is most likely to be disrupted by undercutting of the engineered vaults and of the trenches. A novel and flexible radiological assessment model has been developed to analyse the impacts of the erosion of the repository and subsequent dispersal of wastes. The model represents the spatial layout of the site and distribution of radionuclides within the repository and is able to take

  8. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  9. Evaluation of radionuclide releases from underground waste repositories using the method of status vectors

    International Nuclear Information System (INIS)

    Zappe, D.

    1983-01-01

    For safety analyses of underground repositories for radioactive wastes various possible release scenarios have to be defind and anticipated consequences to be calculated and compared. Normally only the main exposure pathways (i.e. the critical pathways) of the radionuclides disposed of in the repository are calculated using deterministic methods and varying the parameters. It is proposed to evaluate all the individual pathways including those differing considerably from the critical pathway by forming weighted averages of their consequences. This offers the possibility of including, without any restriction, in the evaluation of the repository the various possible events and processes that influence the function of barriers for the retention of radionuclides. Various states (scenarios) of a repository in a salt formation, which might occur in the course of time have been used as an example. The consequences related to these states and the probabilities of their occurrence or the scenario weights form the components of 'status vectors'. For low- and intermediate-level wastes the overall consequences obtained from these calculations are negligibly small, for high-level wastes they are about 3 x 10 - 5 Sv a - 1 /GW a. These values are reached if at least a part of the barriers is effective. Variations of the weighting factors for the states and their influence on the overall consequences are given. (author)

  10. Information base for waste repository design. Volume 3. Waste/rock interactions

    International Nuclear Information System (INIS)

    Koplick, C.M.; Pentz, D.L.; Oston, S.G.; Talbot, R.

    1979-01-01

    This report describes the important effects resulting from interaction between radioactive waste and the rock in a nuclear waste repository. The state of the art in predicting waste/rock interactions is summarized. Where possible, independent numerical calculations have been performed. Recommendations are made pointing out areas which require additional research

  11. Engineering studies: high-level radioactive waste repositories task 3 - review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The report reviews proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository with particular reference to: waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development. In carrying out this programme due attention was given to work already carried out both in the U.K. and overseas and where appropriate comparisons with this work have been made to substantiate and explain the observations made in this report. The examination and use of this previous work however has been confined to those proposals which were considered capable of meeting the basic design criterion for a U.K. based repository, that the maximum temperature achieved by the host rock should not exceed 100/sup 0/C.

  12. Siting, design and construction of a deep geological repository for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1990-06-01

    The main objective of this document is to summarize the basic principles and approaches to siting, design and construction of a deep geological repository for disposal of high level and alpha bearing radioactive wastes, as commonly agreed upon by Member States. This report is addressed to decision makers and technical managers as well as to specialists planning for siting, design and construction of geological repositories for disposal of high level and alpha bearing wastes. This document is intended to provide Member States of the IAEA with a summary outline for the responsible implementing organizations to use for siting, designing and constructing confinement systems for high level and alpha bearing radioactive waste in accordance with the protection objectives set by national regulating authorities or derived from safety fundamentals and standards of the IAEA. The protection objectives will be achieved by the isolation of the radionuclides from the environment by a repository system, which consists of a series of man made and natural safety barriers. Engineered barriers are used to enhance natural geological containment in a variety of ways. They must complement the natural barriers to provide adequate safety and necessary redundancy to the barrier system to ensure that safety standards are met. Because of the long timescales involved and the important role of the natural barrier formed by the host rock, the site selection process is a key activity in the repository design and development programme. The choice of the site, the investigation of its geological setting, the exploration of the regional hydrogeological setting and the primary underground excavations are all considered to be part of the siting process. 16 refs

  13. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    International Nuclear Information System (INIS)

    Swanson, Juliet S.; Cherkouk, Andrea; Arnold, Thuro; Meleshyn, Artur; Reed, Donald T.

    2016-01-01

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and ''repository microbiology'' related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that will most likely underscore the conservative value of that case.

  14. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Juliet S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Meleshyn, Artur [Gesellschaft fur Anlagen und Reaktorsicherheit, Braunschweig (Germany); Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and “repository microbiology” related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that will most likely underscore the conservative value of that case.

  15. Safety case for license application for a final repository: The French example

    International Nuclear Information System (INIS)

    Boissier, Fabrice; Voinis, Sylvie

    2014-01-01

    The reversible repository in a deep geological formation is the French reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste (HLW and ILW). Twenty years of R and D work and conceptual and basic studies since the first French Act of 1991 led, in particular, to a feasibility demonstration in 2005. According to the French Act on Radioactive Waste of 28 of June 2006, Andra shall design a reversible repository in order to apply for license in 2015. In response to this demand, Andra developed the industrial project known as 'Cigeo', a reversible geological disposal facility for HLW and ILW located in Meuse/Haute-Marne. Two years before applying for authorisation, Andra's project is now focusing on three main targets: developing Cigeo's industrial design, preparing the authorisation process through increased exchanges with stakeholders and the preparation of a safety case to support authorisation application. The latter draws on the previous safety cases of 2005 and 2009, which give a sound basis to assess Cigeo's safety, both for the operational and post-closure periods. In this new stage of the project, the challenging issues for the preparation of the safety case are the following: - to identify the various regulatory frameworks (nuclear and non-nuclear) and guides applicable to the facility; - to ensure that the industrial design complies in particular with the safety requirements as presented in the safety case and its supporting safety assessment; - to identify crucial inputs (R and D, tests,...) needed to support the authorisation application, in particular, to bring convincing arguments to assess the technical feasibility of the design and when appropriate its ability to meet the safety requirements; - to ensure that all the requirements from previous regulatory and peer reviews (national and international?) are taken into account. (authors)

  16. Joint SKI and SSI review of SKB preliminary safety assessment of repository for long-lived low- and intermediate-level waste. Review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    that SKB have included no discussion in the safety report as to which R and D activities they intend to prioritise. According to the current SKB timetable, siting and construction of SFL 3-5 will not begin for another 30 years. However, SKI and SSI do not consider this to be a reason to postpone essential R and D work. If a complete and thorough basis is not produced for assessing the long-term safety of an SFL 3-5 repository, the risk that these waste categories will have to undergo interim storage for an indefinite period of time increases. A future siting of SFL 3-5 based on our current level of knowledge is problematic. The present safety assessment points toward a substantial site-specific effect on the repository's protective capacity that can be related primarily to the local groundwater flow rate, but also to relevant geochemical conditions. Calculated doses for cases involving consumption of drinking water give the impression that the margins are small vis-a-vis the existing requirement framework, at least based on the methods used heretofore. In their main report, SKB discuss the possibility of improving the technical barriers to increase their impact on long-term safety (thereby mitigating the impact of site-specific factors). SKI and SSI feel that this approach is reasonable from the current preliminary perspective, but not for subsequent stages. SKB should in future formulate a proposed repository design that can be considered sufficiently robust with respect to the effects of the site-specific factors and their long-term evolution. The requirements and criteria that are relevant to the siting of SFL 3-5 must be addressed therein. In addition, more in-depth studies regarding the optimum storage depth for SFL 3-5 and the importance of the interactions between SFL 2 and SFL 3-5 should be undertaken relatively soon. The importance of these issues needs to be well documented in order to provide a basis for identifying suitable rock volumes for potential

  17. Radioactive waste repository of Cesium of Abadia de Goias. Construction and design; Repositorio de rejeitos radioativos de cesio - Abadia de Goias. Concepcao e projeto

    Energy Technology Data Exchange (ETDEWEB)

    Tranjan Filho, Alfredo [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Alves, Antonio Sergio de Martin; Santos, Cicero Durval Pacifici dos; Passos, Erivaldo Mario dos; Coutinho, Fernando Paulo Millen [NUCLEN Engenharia e Servicos S.A., Rio de Janeiro, RJ (Brazil)

    1997-12-31

    The main criteria, the methodology, the solutions and parameters that were utilized in the design of the Intermediate and Low Level Radioactive Waste Repository of Abadia de Goias are shortly described. The various design steps are analysed from the preparation of the Safety Analysis Report to the detailing engineering tasks. The safety analysis for the constructed repository had the goal of verifying the magnitude of radioecological impacts corresponding to idealized activity release scenarios, allowing also the possible effects of human intrusion in the repository. These safety studies are intrinsically connected to computer calculations envisaged to simulate the long term performance of the repository. (author) 18 refs., 7 figs., 7 tabs.

  18. Postclosure risks of alternative SRP nuclear waste forms in geologic repositories

    International Nuclear Information System (INIS)

    Cheung, H.; Edwards, L.; Harvey, T.; Revelli, M.

    1982-05-01

    The postclosure risk of REFERENCE and ALTERNATIVE waste forms for the defense high-level waste at the Savannah River Plant (SRP) were compared by analyses with a computer code, MISER, written to study the effects of repository features in a probabilistic framework. MISER traces radionuclide flows through a network of stream tubes from the repository to risk-sensitive points. Uncertainties in waste form, package properties, and geotechnical data are accounted for with Monte Carlo techniques. Our results show: (1) for generic layered-salt and basalt repositories, the difference in performance between the two waste forms is insignificant; (2) where the doses are sensitive to uncertainties in leaching rates, the doses are orders of magnitude below background; (3) disruptive events contribute only slightly to the risk of a layered-salt repository; (4) simple design alterations have strong effects on near field doses; (5) great care should be exercised in selecting the location at which repository risks are to be measured, calculated, or regulated

  19. Technical conservatisms in NWTS repository conceptual designs. National Waste Terminal Storage Repository No. 1: special study No. 4

    International Nuclear Information System (INIS)

    1980-09-01

    Prior studies have developed conceptual designs for National Waste Terminal Storage Repositories 1 and 2. Due to the considerable detail and volume of the documents describing these designs, it is often difficult to identify and comprehend the substantial conservatisms contained within them. This study identifies and explains the major technical conservatisms in these two conceptual designs in a concise and readily understandable format. The areas discussed include thermal loading of the geologic structure, rock mechanics and underground design, waste throughput capacity, hoisting systems, nuclear criticality safety, confinement of radioactive materials, occupational exposure and health physics, environmental effects, and cost estimates. Conservatisms are described in detail, quantified where possible, and compared to appropriate criteria

  20. Uncertainty management in radioactive waste repository site assessment

    International Nuclear Information System (INIS)

    Baldwin, J.f.; Martin, T.P.; Tocatlidou

    1994-01-01

    The problem of performance assessment of a site to serve as a repository for the final disposal of radioactive waste involves different types of uncertainties. Their main sources include the large temporal and spatial considerations over which safety of the system has to be ensured, our inability to completely understand and describe a very complex structure such as the repository system, lack of precision in the measured information etc. These issues underlie most of the problems faced when rigid probabilistic approaches are used. Nevertheless a framework is needed, that would allow for an optimal aggregation of the available knowledge and an efficient management of the various types of uncertainty involved. In this work a knowledge-based modelling of the repository selection process is proposed that through a consequence analysis, evaluates the potential impact that hypothetical scenarios will have on a candidate site. The model is organised around a hierarchical structure, relating the scenarios with the possible events and processes that characterise them, and the site parameters. The scheme provides for both crisp and fuzzy parameter values and uses fuzzy semantic unification and evidential support logic reference mechanisms. It is implemented using the artificial intelligence language FRIL and the interaction with the user is performed through a windows interface

  1. Studies of mechanisms and processes of relevance to the safety of nuclear waste repositories, as carried out prior to, during and after flovelling of the Hope potash salt mine

    International Nuclear Information System (INIS)

    1985-01-01

    Studies on the effects of a hypothetical accident involving water or brine intrusion into a waste repository in a salt mine are of special importance within the framework of safety assessments of salt formations as candidate sites for nuclear waste repositories. The measuring activities under review include the following: Physicochemical measurements for determining dissolution and recipitation of salts, transport mechanisms, temperature curves, natural build-up and efficiency of geochemical barriers in the brine. Geochemical measurements for obtaining information on the rock deformation prior to, during, and after flovelling. Geophysical measurements of microseismic behaviour of rock masses prior to, during, and after flovelling. Examination of an artificial barrier structure for the testing and assessment of technical barriers and their efficiency. (orig./HP) [de

  2. Upgrading of radon's type near surface repository in Latvia

    International Nuclear Information System (INIS)

    Abramenkovs, A.

    2006-01-01

    In 1959, the Soviet government decided to construct the near surface radioactive wastes repository 'Radons' near the Baldone city. It was put in operation in 1962. The changes in the development of the repository were induced by the necessarily to upgrade it for disposal of radioactive wastes from the decommissioning of the Salaspils Research Reactor (SRR). The safety assessment of repository was performed during 2000-2001 under the PHARE project for necessary upgrades of repository. The outline design for new vaults and interim storage for long lived radioactive wastes was elaborated during 2003-2004 years. The Environmental Impact Assessment (EIA) for upgrade of Baldone repository was performed during 2004-2005 years. It was found, that additional efforts must be devoted for solution of social aspects o for successful operation and upgrade of repository. It was shown by EIA, that the local population has a negative opinion against the upgrade of repository in Latvia. The main recommendations for upgrades were connected with increasing the safety of repository, increasing of PR activities for education of society and developing of compensation mechanism for local municipality. (author)

  3. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  4. Reassessment of the Goiânia radioactive waste repository in Brazil using HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    Pontedeiro Elizabeth M.

    2018-06-01

    Full Text Available In September 1987 an accident occurred with a cesium chloride (CsCl teletherapy source taken from a cancer therapy institute in Goiânia, Brazil. Misuse of the abandoned source caused widespread contamination of radioactive material (about 50 TBq of 137Cs in the town of Goiânia. Decontamination of affected areas did lead to about 3,500 m3 of solid radioactive wastes, which were disposed in two near-surface repositories built in concrete in 1995. This paper documents a safety assessment of one of the low-level radioactive waste deposits containing 137Cs over a time period of 600 years. Using HYDRUS-1D, we first obtained estimates of water infiltrating through the soil cover on top of the repository into and through the waste and its concrete liners and the underlying vadose zone towards groundwater. Calculations accounted for local precipitation and evapotranspiration rates, including root water uptake by the grass cover, as well as for the effects of concrete degradation on the hydraulic properties of the concrete liners. We next simulated long-term water fluxes and 137Cs transport from the repository towards groundwater. Simulations accounted for the effects of 137Cs sorption and radioactive decay on radionuclide transport from the waste to groundwater, thus permitting an evaluation of potential consequences to the environment and long-term exposure to the public. Consistent with previous assessments, our calculations indicate that very little if any radioactive material will reach the water table during the lifespan of the repository, also when accounting for preferential flow through the waste.

  5. Pre-treatment of bituminized NPP wastes for disposal in near-surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Vanessa Mota; Tello, Clédola Cássia Oliveira de, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. The Brazilian repository is being planned to be a near-surface one. In Brazil the low and intermediate level radioactive wastes are immobilized using cement and bitumen for Angra 1 and Angra 2 NPP, respectively. The main problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degradation in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70 - 90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to find solutions for the storage in surface repository of bituminized radioactive waste products, making them compatible with the acceptance criteria of cemented waste products. It was also performed a modeling with the results obtained in the leaching test using the ALT program and defined the transport model of the cesium leachate element and it was verified that in the early times the leaching was governed by the diffusion model and later by the partition model. The results obtained in this study can be used in the evaluation of performance of repositories. (author)

  6. Pre-treatment of bituminized NPP wastes for disposal in near-surface repository

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Clédola Cássia Oliveira de

    2017-01-01

    The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. The Brazilian repository is being planned to be a near-surface one. In Brazil the low and intermediate level radioactive wastes are immobilized using cement and bitumen for Angra 1 and Angra 2 NPP, respectively. The main problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degradation in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70 - 90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to find solutions for the storage in surface repository of bituminized radioactive waste products, making them compatible with the acceptance criteria of cemented waste products. It was also performed a modeling with the results obtained in the leaching test using the ALT program and defined the transport model of the cesium leachate element and it was verified that in the early times the leaching was governed by the diffusion model and later by the partition model. The results obtained in this study can be used in the evaluation of performance of repositories. (author)

  7. Project Guarantee 1985. Repository for high-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An engineering project study aimed at demonstrating the feasibility of constructing a deep repository for high-level waste (Type C repository) has been carried out; the study is based on a model data-set representing typical geological and rock mechanical conditions as found outside the so-called Permocarboniferous basin in the regions under investigation by Nagra in Cantons Aargau, Schaffhausen, Solothurn and Zuerich. The repository is intended for disposal of high-level waste and any intermediate-level waste from re-processing in which the concentration of long-lived alpha-emitters exceeds the permissible limits set for a Type B repository. Final disposal of high-level waste is in subterranean, horizontally mined tunnels and of intermediate-level waste in underground vertical silos. The repository is intended to accomodate a total of around 6'000 HWL-cylinders (gross volume of around 1'200 m3) and around 10'000 m3 of intermediate-level waste. The total excavated volume is around 1'100'000 m3 and a construction time for the whole repository (up to the beginning of emplacement) of around 15 years is expected. For the estimated 50-year emplacement operations, a working team of around 60 people will be needed and a team of around 160 for the simultaneous tunnelling operations and auxiliary work. The project described in the present report permits the conclusion that construction of a repository for high-level radioactive waste and, if necessary, spent fuel-rods is feasible with present-day technology

  8. Application of systems engineering to determine performance requirements for repository waste packages

    International Nuclear Information System (INIS)

    Aitken, E.A.; Stimmell, G.L.

    1987-01-01

    The waste package for a nuclear waste repository in salt must contribute substantially to the performance objectives defined by the Salt Repository Project (SRP) general requirements document governing disposal of high-level waste. The waste package is one of the engineered barriers providing containment. In establishing the performance requirements for a project focused on design and fabrication of the waste package, the systems engineering methodology has been used to translate the hierarchy requirements for the repository system to specific performance requirements for design and fabrication of the waste package, a subsystem of the repository. This activity is ongoing and requires a methodology that provides traceability and is capable of iteration as baseline requirements are refined or changed. The purpose of this summary is to describe the methodology being used and the way it can be applied to similar activities in the nuclear industry

  9. Commercial nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Hardy, M.P.; Patricio, J.G.; Heley, W.H.

    1980-06-01

    The Basalt Waste Isolation Project (BWIP) is an ongoing research and engineering effort being conducted by Rockwell Hanford Operations (Rockwell), which is under contract to the US Department of Energy. The objectives of this program are to assess the feasibility of and to provide the technology needed to design and construct a licensed commercial nuclear waste repository in the deep basalt formations underlying the Hanford Site. An extensive preconceptual design effort was undertaken during 1979 to develop a feasible concept that could serve as a reference design for both surface and underground facilities. The preconceptual design utilized existing technology to the greatest extent possible to offer a system design that could be utilized in establishing schedule and cost baseline data, recommend alternatives that require additional study, and develop basic design requirements that would allow evolution of the design process prior to the existence of legislated criteria. This paper provides a description of the concept developed for the subsurface aspects of this nuclear waste repository

  10. Deep repositories for waste central to uranium debate

    International Nuclear Information System (INIS)

    Kannegieter, T.

    1991-01-01

    While no deep repositories for high level wastes (HLW) have yet been constructed it is shown that technology to safely entomb the wastes for tens of thousands of years already exists. The borosilicate glass (vitrification) developed in France has been accepted by all countries who are reprocessing. Meanwhile, the Australian Synroc has not yet been put into service. Synroc developers at the Australian Nuclear Science and Technology Organization believe it will be the second generation waste form. The advantages and disadvantages of both technologies are briefly discussed as well as some of the regulatory, political, legal and technical conflicts surrounding the issue of HLW repositories. 1 tab., ills

  11. Monitoring of geological repositories for high level radioactive waste

    International Nuclear Information System (INIS)

    2001-04-01

    Geological repositories for disposal of high level radioactive waste are designed to provide isolation of the waste from human environment for many thousands of years. This report discusses the possible purposes for monitoring geological repositories at the different stages of a repository programme, the use that may be made of the information obtained and the techniques that might be applied. This report focuses on the different objectives that monitoring might have at various stages of a programme, from the initiation of work on a candidate site, to the period after repository closure. Each objective may require somewhat different types of information, or may use the same information in different ways. Having evaluated monitoring requirements, the report concludes with a brief evaluation of available monitoring techniques

  12. Use of Groundwater Lifetime Expectancy for the Performance Assessment of Deep Geologic Radioactive Waste Repositories.

    Science.gov (United States)

    Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.

    2005-12-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.

  13. Conceptualization and software development of a simulation environment for probalistic safety assessment of radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ghofrani, Javad

    2016-05-26

    Uncertainty and sensitivity analysis of complex simulation models are prominent issues, both in scientific research and education. ReSUS (Repository Simulation, Uncertainty propagation and Sensitivity analysis) is an integrated platform to perform such analysis with numerical models that simulate the THMC (Thermal Hydraulical Mechanical and Chemical) coupled processes via different programs, in particular in the context of safety assessments for radioactive waste repositories. This thesis presents the idea behind the software platform ReSUS and its working mechanisms. Apart from the idea and the working mechanisms, the thesis describes applications related to the safety assessment of radioactive waste disposal systems. In this thesis, previous simulation tools (including the preceding version of ReSUS) are analyzed in order to provide a comprehensive view of the state of the art. In comparison to this state, a more sophisticated software tool is developed here, which provides features which are not offered by previous simulation tools. To achieve this objective, the software platform ReSUS provides a framework for handling probabilistic data uncertainties using deterministic external simulation tools, thus enhancing uncertainty and sensitivity analysis. This platform performs probabilistic simulations of various models, in particular THMC coupled processes, using stand-alone deterministic simulation software tools. The complete software development process of the ReSUS Platform is discussed in this thesis. ReSUS components are developed as libraries, which are capable of being linked to other code implementations. In addition, ASCII template files are used as means for uncertainty propagation into the input files of deterministic simulation tools. The embedded input sampler and analysis tools allow for sensitivity analysis in several kinds of simulation designs. The novelty of the ReSUS platform consists in the flexibility to assign external stand-alone software

  14. Conceptualization and software development of a simulation environment for probalistic safety assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    Ghofrani, Javad

    2016-01-01

    Uncertainty and sensitivity analysis of complex simulation models are prominent issues, both in scientific research and education. ReSUS (Repository Simulation, Uncertainty propagation and Sensitivity analysis) is an integrated platform to perform such analysis with numerical models that simulate the THMC (Thermal Hydraulical Mechanical and Chemical) coupled processes via different programs, in particular in the context of safety assessments for radioactive waste repositories. This thesis presents the idea behind the software platform ReSUS and its working mechanisms. Apart from the idea and the working mechanisms, the thesis describes applications related to the safety assessment of radioactive waste disposal systems. In this thesis, previous simulation tools (including the preceding version of ReSUS) are analyzed in order to provide a comprehensive view of the state of the art. In comparison to this state, a more sophisticated software tool is developed here, which provides features which are not offered by previous simulation tools. To achieve this objective, the software platform ReSUS provides a framework for handling probabilistic data uncertainties using deterministic external simulation tools, thus enhancing uncertainty and sensitivity analysis. This platform performs probabilistic simulations of various models, in particular THMC coupled processes, using stand-alone deterministic simulation software tools. The complete software development process of the ReSUS Platform is discussed in this thesis. ReSUS components are developed as libraries, which are capable of being linked to other code implementations. In addition, ASCII template files are used as means for uncertainty propagation into the input files of deterministic simulation tools. The embedded input sampler and analysis tools allow for sensitivity analysis in several kinds of simulation designs. The novelty of the ReSUS platform consists in the flexibility to assign external stand-alone software

  15. Global nuclear waste repository proposal highlights Australia's nuclear energy vacuum

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  16. Post-closure resaturation of a deep radioactive waste repository

    International Nuclear Information System (INIS)

    Cox, I.C.S.; Rodwell, W.R.

    1989-03-01

    The post-closure resaturation of a deep radioactive waste repository has been modelled for a number of generic disposal concepts. A combination of numerical ground water flow simulations and analytical calculations has been used to investigate the variation of repository fluid pressure and degree of water saturation with time, and to determine the factors influencing resaturation times. The host rock permeability was found to be the most important determining factor. For geological environments regarded as likely for a waste repository, resaturation is predicted to be a short term process compared with gas generation and contaminant migration timescales. (author)

  17. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    1991-02-01

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  18. Reference design description for a geologic repository. Revision 02

    International Nuclear Information System (INIS)

    1999-01-01

    This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada. It describes the proposed design for a surface facility, subsurface repository, and waste packaging; it also presents the current design of the key engineering systems for the final four phases: operations, monitoring, closure, and postclosure. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. In accordance with current law, this design does not include an interim storage option. This document has six major sections. Section 1 describes the physical layout of the proposed repository. The second section describes the 4-phase evolution of the development of the proposed repository. Section 3 describes the reception of waste from offsite locations. The fourth section details the various systems that will package the waste and move it below ground as well as safety monitoring and closure. Section 5 describes the systems (both physical and analytical) that ensure continued safety after closure. The final section offers design options that may be adopted to increase the margin of safety

  19. A new integrated approach to demonstrate the safe disposal of high-level radioactive waste and spent nuclear fuel in a geological repository

    International Nuclear Information System (INIS)

    Mueller-Hoeppe, N.; Krone, J.; Niehues, N.; Raitz von Frentz, R.

    2000-01-01

    Multi-barrier systems are accepted as the basic approach for long term environmental safe isolation of radioactive waste in geological repositories. Assessing the performance of natural and engineered barriers is one of the major difficulties in producing evidence of environmental safety for any radioactive waste disposal facility, due to the enormous complexity of scenarios and uncertainties to be considered. This paper outlines a new methodological approach originally developed basically for a repository in salt, but that can be transferred with minor modifications to any other host rock formation. The approach is based on the integration of following elements: (1) Implementation of a simple method and efficient criteria to assess and prove the tightness of geological and engineered barriers; (2) Using the method of Partial Safety Factors in order to assess barrier performance at certain reasonable level of confidence; (3) Integration of a diverse geochemical barrier in the near field of waste emplacement limiting systematically the radiological consequences from any radionuclide release in safety investigations and (4) Risk based approach for the assessment of radionuclide releases. Indicative calculations performed with extremely conservative assumptions allowed to exclude any radiological health consequences from a HLW repository in salt to a reference person with a safety level of 99,9999% per year. (author)

  20. Dealing with uncertainties in the safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2002-01-01

    Confidence in the safety assessment of a possible project of radioactive waste geological repository will only be obtained if the development of the project is closely guided by transparent safety strategies, acknowledging uncertainties and striving for limiting their effects. This paper highlights some sources of uncertainties, external or internal to the project, which are of particular importance for safety. It suggests safety strategies adapted to the uncertainties considered. The case of a possible repository project in the Callovo-Oxfordian clay layer of the French Bure site is examined from that point of view. The German project at Gorleben and the Swedish KBS-3 project are also briefly examined. (author)

  1. Low- and Intermediate Level Radioactive Waste Disposal Environmental and Safety Assessment Activities in Slovenia

    International Nuclear Information System (INIS)

    Marc, D.; Loose, A.; Urbanc, J.

    1998-01-01

    The protection of the environment is one of the main concerns in the management of radioactive waste, especially in repository planning. In different stages of repository lifetime the environmental assessment has different functions: it can be used as a decision making process and as a planning, communication and management tool. Safety assessment as a procedure for evaluating the performance of a disposal system, and its potential radiological impact on human health and environment, is also required. Following the international recommendations and Slovene legislation, a presentation is given of the role and importance of the environmental and safety assessment activities in the early stages following concept development and site selection for a low- and intermediate level radioactive waste (LILW) repository in Slovenia. As a case study, a short overview is also given of the preliminary safety assessment that has been carried out in the analysis of possibilities for long-lived LILW disposal in Slovenia. (author)

  2. A Conceptual Modeling for a GoldSim Program for Safety Assessment of an LILW Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Lee, Sung Ho

    2009-12-01

    Modeling study and development of a total system performance assessment (TSPA) program, by which an assessment of safety and performance for a low- and intermediate-level radioactive waste disposal repository with normal or abnormal nuclide release cases associated with the various FEPs involved in the performance of the proposed repository could be made has been carrying out by utilizing GoldSim under contract with KRMC. The report deals with a detailed conceptual modeling scheme by which a GoldSim program modules, all of which are integrated into a TSPA program as well as the input data set currently available. In-depth system models that are conceptually and rather practically described and then ready for implementing into a GoldSim program are introduced with plenty of illustrative conceptual models and sketches. The GoldSim program that will be finally developed through this project is expected to be successfully applied to the post closure safety assessment required both for the LILW repository and pyro processed repository by the regulatory body with both increased practicality and much reduced uncertainty

  3. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  4. Co-operation between Slovenia and Croatia in the low- and intermediate level radioactive waste repository project

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Subasic, D.; Zeleznik, N.; Mele, I.; Tomse, P.

    2001-01-01

    The paper describes the LILW repository project development in Slovenia and Croatia from the viewpoint of co-operation of national agencies for radioactive waste management - ARAO in Slovenia and APO in Croatia. The project performance, as well as the co-operation itself, are based on the fact that NPP Krsko, sited in Slovenia, is the joint venture facility of both countries, which are consequently obliged to find a proper solution for final disposal of operational and decommissioning radioactive waste generated by the plant. The main aspects of the project development in both countries, such as LILW repository site selection and characterisation, development of repository conceptual design, performance assessment/safety analysis procedures and public participation, are presented in the paper. Based on separate descriptions of the project development in Slovenia and Croatia respectively, the main aspects of co-operation between ARAO and APO are elaborated.(author)

  5. Findings by the Commission Evaluating Nuclear Safety and Repository Research in Germany

    International Nuclear Information System (INIS)

    Sandtner, W.; Closs, K.D.

    2000-01-01

    The Commission Evaluating Nuclear Safety and Repository Research in Germany, which had been appointed by the German Federal Ministry of Economics on September 24, 1999, submitted its report. Here is the gist of the Commission's findings: Irrespective of the criteria established with the political decision to terminate the use of nuclear power in Germany, competence in nuclear safety must be maintained over the next few decades. Only in this way can the government perform its duty and make provisions for the future, and can the safety of nuclear facilities and waste management pathways be ensured in accordance with the international state of the art. In view of the considerable reduction in funding in recent years and also in future, measures must be taken to ensure that further decreases in-roject funding and institutionalized government financing are excluded so as to avoid further declines in terms of manpower and competence in this field. Reactor safety and repository research must be financed at a level allowing the federal government to discharge its legal duties. The full report by the Commission, with its annexes, is available on the GRS web site (http://www.grs.de) as a PDF file. (orig.) [de

  6. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    Howell, R.E.; Olsen, D.

    1982-12-01

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed

  7. Monitoring a repository for high-level radioactive waste in Germany. Possibilities and limits

    International Nuclear Information System (INIS)

    Jobmann, M.; Haverkamp, B.; Eilers, G.

    2011-01-01

    Pursuant to the new BMU safety requirements of September 2010 imposed upon the final storage of radioactive waste generating heat, the operator of a repository in Germany must establish a monitoring program which furnishes relevant measured information during the operations phase and for a defined period of time after closure of the repository. Within the framework of a feasibility study, an assessment basis was established to show in what format information about the status of a closed repository mine could be obtained technically without impairing the safety of barriers, for instance, by cable ducts. As a conceptual design basis, processes and measured quantities relevant to monitoring were attributed to the components of the current safety demonstration concept. For one model variant, monitoring possibilities of these processes were shown on the basis of monitoring modules. Some first experiments are being carried out in European underground laboratories about the use of wireless transmission systems in the repository area. On the basis of those activities, experiments could also be designed in the German exploratory mine of Gorleben in order to examine to what extent information obtained by monitoring could be transmitted in a wireless mode in rock salt formations. As far as the autonomous supply of electricity to measurement systems is concerned, which must be guaranteed on a long-term basis, there is now a possibility of using thermoelectric isotope generators or betavoltaic batteries. (orig.)

  8. Basic consideration on safety of facilities for final disposal of radioactive wastes, in particular for wastes stored in Abadia de Goias

    International Nuclear Information System (INIS)

    Xavier, A.M.; Mezrahi, A.; Heilbron Filho, P.F.L.

    1991-01-01

    The aim of this work is to contribute to the best understanding of aspects related to the safety criteria applied to repositories for radioactive wastes, in particular for wastes from the radiological accident occured in Goiania (Brazil) in September, 1987. (E.O.)

  9. SKB's safety case for a final repository license application

    International Nuclear Information System (INIS)

    Hedin, Allan; Andersson, Johan

    2014-01-01

    The safety assessment SR-Site is a main component in SKB's license application, submitted in March 2011, to construct and operate a final repository for spent nuclear fuel at Forsmark in the municipality of Oesthammar, Sweden. Its role in the application is to demonstrate long-term safety for a repository at Forsmark. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. The principal regulatory acceptance criterion, issued by the Swedish Radiation Safety Authority (SSM), requires that the annual risk of harmful effects after closure not exceed 10 -6 for a representative individual in the group exposed to the greatest risk. SSM's regulations also imply that the assessment time for a repository of this type is one million years after closure. The licence applied for is one in a stepwise series of permits, each requiring a safety report. The next step concerns a permit to start excavation of the repository and requires a preliminary safety assessment report (PSAR) covering both operational and post-closure safety. Later steps include permission to commence trial operation, to commence regular operation and to close the final repository. (authors)

  10. Final storage of radioactive waste in Germany. Waste arisings and availability of a repository as seen by an electricity utility

    International Nuclear Information System (INIS)

    Broeskamp, H.; Brammer, K.J.; Graf, R.

    2004-01-01

    The management of waste arising in the operation of nuclear power plants has been taken into account since the beginnings of the peaceful uses of nuclear power in Germany. As early as in 1957, a memorandum of the German Advisory Committee on Atomic Energy contains a reference to the need for safe disposal of radioactive waste. Legislation adopted the suggestion and laid down some provisions on the safe utilization of radioactive materials as early as in the Atomic Energy Act of December 23, 1959. In connection with the nuclear waste management center, the Federal Republic also looked for a suitable site for a repository. After thorough site selection proceedings by the federal government and the state of Lower Saxony, the Lower Saxony state government in 1977 defined Gorleben as the site. The decision has been preceded by a three-stage selection process in which more than 140 sites had been investigated. Exploration of the Gorleben site began in 1979 and was interrupted on October 1, 2000 to clarify conceptual and safety-related doubts of the federal government. The German Federal Ministry for the Environment (BMU) seeks to make a repository (for high-level waste) available in 2030. Technically, it is still possible to commission a repository for waste generating heat at Gorleben after 2025 if the salt dome is found to be suitable after speedy conclusion of the exploration work. Reference is made to foreseeable problem areas. Another project pursued by the federal government is the use of the Konrad mine as a repository for low and medium-level radioactive waste. After well over twenty years, the plans approval decision was made in May 2002 and is at present the subject of litigation. On the basis of the data presented about the expected arisings of waste generating no heat in combination with the possible start of emplacement in Konrad in 2013, detailed results are presented. (orig.) [de

  11. Repository documentation rethought. A comprehensive approach from untreated waste to waste packages for final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton Philipp; Schubert, Johannes [VPC GmbH, Dresden (Germany)

    2017-11-15

    The German Act on Reorganization of Responsibility for Nuclear Disposal (Entsorgungsuebergangsgesetz (EntsorgUebG)) adopted in June 2017 provides the energy utilities with the new option of transferring responsibility for their waste packages to the Federal Government. This is conditional on the waste packages being approved for delivery to the Konrad final repository. A comprehensive approach starts with the dismantling of nuclear facilities and extends from waste disposal and packaging planning to final repository documentation. Waste package quality control measures are planned and implemented as early as in the process qualification stage so that the production of waste packages that are suitable for final deposition can be ensured. Optimization of cask and loading configuration can save container and repository volume. Workflow planning also saves time, expenditure and exposure time for personnel at the facilities. VPC has evaluated this experience and developed it into a comprehensive approach.

  12. Geo-scientific Information in the Radioactive Waste Management Safety Case Main Messages from the AMIGO Project

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is associated with all phases of the nuclear fuel cycle as well as the use of radioactive materials in medicine, research and industry. For the most hazardous and long-lived waste, the solution being investigated worldwide is disposal in engineered repositories deep underground. The importance of geo-scientific information in selecting a site for geological disposal has long been recognised, but there has been growing acknowledgement of the broader role of this information in assessing and documenting the safety of disposal. The OECD/NEA Approaches and Methods for Integrating Geological Information in the Safety Case (AMIGO) project has demonstrated that geological data and understanding serve numerous roles in safety cases. The project, which ran from 2002 to 2008, underscored the importance of integrating geo-scientific information in the development of a disposal safety case and increasingly in the overall process of repository development, including, for example, siting decisions and ensuring the practical feasibility of repository layout and engineering. (authors)

  13. A GoldSim modeling approach to safety assessment of an LILW repository system

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jongtae; Choi, Jongwon

    2011-01-01

    A program for the safety assessment and performance evaluation of a low- and intermediate level waste (LILW) repository system has been developed by utilizing GoldSim. By utilizing this nuclide transport in the near- and far-field of a repository as well as a transport through a biosphere under various natural and manmade disruptive events affecting a nuclide release are modeled and evaluated. To demonstrate its usability, some illustrative cases under the selected scenarios including the influence of degradation of manmade barriers, pumping well drilling, and the natural disruptive events such as a sudden formation of preferential flow pathway have been investigated and illustrated for a hypothetical LILW repository. Even though all the parameter values applied to a hypothetical repository are assumed without any real base, the illustrative cases could be informative especially when seeing the result of the probabilistic calculation or sensitivity studies with various scenarios that possibly happen for nuclide release and further transport. (author)

  14. Development and application of a quality assurance system for waste repositories

    International Nuclear Information System (INIS)

    Beckmerhagen, I.; Berg, H.P.

    1996-01-01

    A large set of requirements are developed for the structures, systems and components of a waste repository. These requirements cover different regulations concerning planning, design, construction, operation and decommissioning of a waste repository as well as nuclear-specific requirements on the design of the plant. The implementation of a quality assurance (QA) system is an essential task in order to ensure that the requirements are fulfilled by systematic means. The QA system for the German repositories for radioactive waste is built up as a hierarchic system and described in more detail in particular covering aspects like maintenance of QA relevant systems, structures and components as well as the procedure in case of changes. For the operational phase of a repository a separate site-specific manual had to be developed. Such a manual has been elaborated for the operation of the Morsleben repository; main topics of this manual are presented

  15. Thermal analysis of a heat generating waste repository on the seabed

    International Nuclear Information System (INIS)

    Maynard, M.J.; Butler, T.P.; Firmin, G.H.

    1987-02-01

    The time dependent thermal behaviour of a repository containing heat generating waste has been investigated during loading, transport, and subsequent emplacement on the seabed. Variations of less than 1 0 C in the sealed repository water temperature were calculated to be sufficient to create adequate water circulation. Conservative 1-D analyses were used to estimate a maximum repository water temperature of 256 0 C, occuring about 3 years after emplacement. The temperature distributions within the heat generating waste canisters and grouted titanium tubes have been calculated using 2-D axisymmetric finite element models. Peak temperatures at the waste centre-line were found to be approx. 40 0 C above the repository water temperature. The sensitivity of the results to assumed thermal parameters and to the effect of sediment accumulation have been considered. The possibility and consequences of steam formation within a vented repository have been discussed. (author)

  16. Conceptual waste package interim product specifications and data requirements for disposal of glass commercial high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-10-01

    The conceptual waste package interim product specifications and data requirements presented are applicable to the reference glass composition described in PNL-3838 and carbon steel canister described in ONWI-438. They provide preliminary numerical values for the commercial high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses and regulatory requirements become available. 13 references, 1 figure

  17. Operational safety analysis status of Novi Han repository

    International Nuclear Information System (INIS)

    Boiadjiev, A.

    2000-01-01

    This article presents the status of the safety studies and activities related to Novi Han repository. The case of this facility is such that no clear boundary exists between post-closure safety assessment and operational safety assessment. The major findings of these activities are given. The Safety Analysis Report (SAR) for Novi Han repository is developed by Risk Engineering Ltd. under a contract with the Committee on the Use of Atomic Energy for Peaceful Purposes. The general structure and main conclusions and recommendations of the SAR are presented. (author)

  18. Methodology and applicability of a safety and demonstration concept for a HAW final repository on clays. Safety concept and verification strategy

    International Nuclear Information System (INIS)

    Ruebel, Andre; Meleshyn, Artur

    2014-08-01

    The report describes the site independent frame for a safety concept and verification strategy for a final repository for heat generating wastes in clay rock. In the safety concept planning specifications and technical measures are summarized that are supposed to allow a safe inclusion of radionuclides in the host rock. The verification strategy defines the systematic procedures for the development of fundamentals and scenarios as basis for the demonstration of the safety case and to allow the prognosis of appropriateness. The report includes the boundary conditions, the safety concept for the post-closure phase and the verification strategy for the post-closure phase.

  19. Spent fuel and high level waste: Chemical durability and performance under simulated repository conditions. Results of a coordinated research project 1998-2004

    International Nuclear Information System (INIS)

    2007-10-01

    This publication contains the results of an IAEA Coordinated Research Project (CRP). It provides a basis for understanding the potential interactions of waste form and repository environment, which is necessary for the development of the design and safety case for deep disposal. Types of high level waste matrices investigated include spent fuel, glasses and ceramics. Of particular interest are the experimental results pertaining to ceramic forms such as SYNROC. This publication also outlines important areas for future work, namely, standardized, collaborative experimental protocols for package-release studies, structured development and calibration of predictive models linking the performance of packaged waste and the repository environment, and studies of the long term behaviour of the wastes, including active waste samples

  20. Earthquakes - a danger to deep-lying repositories?

    International Nuclear Information System (INIS)

    2012-03-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed

  1. Concentration Limits in the Cement Based Swiss Repository for Long-lived, Intermediate-level Radioactive Wastes (LMA)

    International Nuclear Information System (INIS)

    Berner, Urs

    1999-12-01

    The Swiss repository concept for long-lived, intermediate-level radioactive wastes (LMA), in Swiss terminology) foresees cylindrical concrete silos surrounded by a ring of granulated bentonite to deposit the waste. As one of the possible options and similar to the repository for high level wastes, the silos will be located in a deep crystalline host rock. Solidified with concrete in steel drums, the waste is stacked into a silo and the silo is then backfilled with a porous mortar. To characterize the release of radionuclides from the repository, the safety assessment considers first the dissolution into the pore water of the concrete, and then diffusion through the outer bentonite ring into the deep crystalline groundwater. For 19 safety relevant radionuclides (isotopes of U, Th, Pa, Np, Pu, Am, Ni, Zr, Mo, Nb, Se, Sr, Ra, Tc, Sn, I, C, Cs, Cl) the report recommends maximum elemental concentrations to be expected in the cement pore water of the particularly considered repository. These limits will form the parameter base for subsequent release model chains. Concentration limits in a geochemical environment are usually obtained from thermodynamic equilibrium calculations performed with geochemical speciation codes. However, earlier studies revealed that this procedure does not always lead to reliable results. Main reasons for this are the complexity of the systems considered, as well as the lacking completeness of, and the uncertainty associated with the thermodynamic data. To improve the recommended maximum concentrations for a distinct repository design, this work includes additional design- and system-dependent criteria. The following processes, inventories and properties are considered in particular: a) recent experimental investigations, particularly from cement systems, b) thermodynamic model calculations when reliable data are available, c) total inventories of radionuclides, d) sorption- and co-precipitation processes, e) dilution with stable isotopes, f

  2. Attitudes and opposition in siting a high level nuclear waste repository

    International Nuclear Information System (INIS)

    Sjoeberg, L.; Viklund, M.; Truedsson, J.

    1998-09-01

    In Sweden, the Swedish Nuclear Fuel and Waste Management Company (SKB) handles all issues concerning nuclear waste, including the siting process, in which the final outcome is intended to be a repository for high level nuclear waste placed deep down in bedrock. The main objective of the siting process is to find a host community fulfilling two important conditions: the safety demands have been met and agreements with the municipality can be accomplished. Only in such municipalities, so-called feasibility studies will be conducted. After conducting general studies in the whole country, SKB, in October 1992, sent letters with information about the intended feasibility studies to all Swedish municipalities. As a result, feasibility studies are or have been considered - and in some cases also been conducted - in eleven Swedish municipalities up until 1998. These are the municipalities where the attitudes and opposition towards a feasibility study, and possibly a final repository, are studied. The discussion can be divided into three main parts: Management of the siting process; Inherent 'chaotic' processes and/or factors and risk perception. It is argued that two important problems could have been avoided at least partly: The citizens in many municipalities were uncertain of the relationship between a feasibility study and a final repository, and in many municipalities the citizens were afraid that the Government could overrule the municipal veto. Because of these fears, a common argument among the opponents of a feasibility study was: 'to be sure of not receiving a final repository, we say no to a feasibility study'. Some inherent factors, more or less prevalent in the municipalities as well as in society in general, may also partly explain the outcome of the siting process. The municipalities in which the debate has been heated, and where public support has been more difficult to reach, share some common characteristics. Esp. in the municipalities in the north of

  3. Attitudes and opposition in siting a high level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, L.; Viklund, M.; Truedsson, J

    1998-09-01

    In Sweden, the Swedish Nuclear Fuel and Waste Management Company (SKB) handles all issues concerning nuclear waste, including the siting process, in which the final outcome is intended to be a repository for high level nuclear waste placed deep down in bedrock. The main objective of the siting process is to find a host community fulfilling two important conditions: the safety demands have been met and agreements with the municipality can be accomplished. Only in such municipalities, so-called feasibility studies will be conducted. After conducting general studies in the whole country, SKB, in October 1992, sent letters with information about the intended feasibility studies to all Swedish municipalities. As a result, feasibility studies are or have been considered - and in some cases also been conducted - in eleven Swedish municipalities up until 1998. These are the municipalities where the attitudes and opposition towards a feasibility study, and possibly a final repository, are studied. The discussion can be divided into three main parts: Management of the siting process; Inherent `chaotic` processes and/or factors and risk perception. It is argued that two important problems could have been avoided at least partly: The citizens in many municipalities were uncertain of the relationship between a feasibility study and a final repository, and in many municipalities the citizens were afraid that the Government could overrule the municipal veto. Because of these fears, a common argument among the opponents of a feasibility study was: `to be sure of not receiving a final repository, we say no to a feasibility study`. Some inherent factors, more or less prevalent in the municipalities as well as in society in general, may also partly explain the outcome of the siting process. The municipalities in which the debate has been heated, and where public support has been more difficult to reach, share some common characteristics. Esp. in the municipalities in the north of

  4. Instrument reliability for high-level nuclear-waste-repository applications

    International Nuclear Information System (INIS)

    Rogue, F.; Binnall, E.P.; Armantrout, G.A.

    1983-01-01

    Reliable instrumentation will be needed to evaluate the characteristics of proposed high-level nuclear-wasted-repository sites and to monitor the performance of selected sites during the operational period and into repository closure. A study has been done to assess the reliability of instruments used in Department of Energy (DOE) waste repository related experiments and in other similar geological applications. The study included experiences with geotechnical, hydrological, geochemical, environmental, and radiological instrumentation and associated data acquisition equipment. Though this paper includes some findings on the reliability of instruments in each of these categories, the emphasis is on experiences with geotechnical instrumentation in hostile repository-type environments. We review the failure modes, rates, and mechanisms, along with manufacturers modifications and design changes to enhance and improve instrument performance; and include recommendations on areas where further improvements are needed

  5. Informing future societies about nuclear waste repositories

    International Nuclear Information System (INIS)

    Jensen, M.

    1994-01-01

    In 1990 a working group of the NKS (the Nordic nuclear safety program) was formed and give the task of established a basis for a common Nordic view of the need for information conservation for nuclear waste repositories. The Group investigated what tipy of information should be conserved; in what form the information should be kept; the quality of the information; and the problems of future retrieval of information, including retrieval after very long periods of time. Topics covered include the following: scientific aspects including social context of scientific solutions; information management; systems for conservation and retrieval of information including the problems of prediction; archives, markers, archives vs. markers, and continuing processes in society; Archive media including paper documents, microfilm, digital media, media lifetimes; and finally conclusions and recommendations

  6. Multi criteria decision analysis on a waste repository in Mol

    International Nuclear Information System (INIS)

    Carle, B.

    2005-01-01

    In Belgium, the management of radioactive waste is taken care of by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials. Local partnerships with stakeholders from municipalities in existing nuclear zones were setup to facilitate the dialogue between the repository designers and the local community. Since the establishment of the partnership in Mol, MONA in February 2000, all aspects of a possible near-surface or a deep geological repository are discussed in 4 working groups by around 50 volunteer members. The outcome of the discussions in the partnership can be a shared project, supported by both local stakeholders and ONDRAF/NIRAS, in which the specifications and the conditions needed for establishing a repository in Mol are elaborated. MONA asked the Decision Strategy Research Department of SCK-CEN to organise a Multi Criteria Analysis (MCA) in the context of the deciding between a surface and a deep repository for low level radioactive waste. The objective of the multi criteria analysis is to support a number of representatives of the various working groups within MONA in their selection between two acceptable options for a repository of low level radioactive waste on the territory of Mol. The options are the surface repository developed by the working groups of MONA, and a deep repository in the clay layers underneath the nuclear site of Mol. This study should facilitate the selection between both options, or in case this appears to be difficult, at least to get a well-structured overview of all factors (criteria) of importance to the judgement, and to get insight into the degree in which the various criteria contribute to the selection

  7. Requirements on radioactive waste for disposal (waste acceptance requirements as of February 2017). Konrad repository; Anforderungen an endzulagernde radioaktive Abfaelle (Endlagerungsbedingungen, Stand: Februar 2017). Endlager Konrad

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, Karin; Moeller, Kai (eds.)

    2017-02-10

    The Bundesamt fuer Strahlenschutz (BfS - Federal Office for Radiation Protection) has established waste acceptance requirements for the Konrad repository. These requirements were developed on the basis of the results of a site-specific safety assessment. They include general requirements on waste packages and specific requirements on waste forms and packagings as well as limitations for activities of individual radionuclides and limitations to masses of non-radioactive harmful substances. Requirements on documentation and delivery of waste packages were additionally included.

  8. Stream-simulation experiments for waste-repository investigations

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1980-01-01

    The potential for radionuclide migration by groundwater flow from a breached-water repository depends on the leaching process and on chemical changes that might occur as the radionuclide moves away from the repository. Therefore, migration involves the interactions of leached species with (1) the waste and canister, (2) the engineered barrier, and (3) the geologic materials surrounding the repository. Rather than attempt to synthesize each species and study it individually, another approach is to integrate all species and interactions using stream-simulation experiments. Interactions identified in these studies can then be investigated in detail in simpler experiments

  9. Surface facilities for geological deep repositories - Measures against dangers during construction and operation

    International Nuclear Information System (INIS)

    2013-09-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the measures that are to be taken to address the dangers encountered during the construction and operation of deep geological repositories for nuclear wastes. Firstly, the operation of such repositories during the emplacement of nuclear wastes is discussed and examples of possible repositories for fuel rods and highly-radioactive waste are presented. Various emission-protection issues and safety measures to be taken during construction of such repositories are looked at as is the protection of ground water. Safety considerations during the operational phase are discussed, including inclusion methods used for the wastes and radiation protection. The handling of radioactive wastes, the recognition of dangers and measures to be taken to counteract them are discussed. Various possible accidents are looked at

  10. The Hidden Risk Decisions in Waste Repository Regulation

    International Nuclear Information System (INIS)

    Frishman, Steve

    2001-01-01

    The move toward risk-informed, performance-based regulation of activities involving radioactive materials is becoming wide spread and broadly applied. While this approach may have some merit in specific applications in which there is a considerable body of experience, its strict application in regulation of geologic repositories for highly radioactive wastes may not be appropriate for this unproven and socially controversial technology. The U.S. Nuclear Regulatory Commission describes risk-informed, performance-based regulation as 'an approach in which risk insights, engineering analysis and judgement (eg. defense in depth), and performance history are used to (1) focus attention on the most important activities, (2) establish objective criteria based upon risk insights for evaluating performance, (3) develop measurable or calculable parameters for monitoring system and licensee performance, and (4) focus on the results as the primary basis for regulatory decision-making.' Both the risk-informed and performance-based elements of the approach are problematic when considering regulation of geologic repositories for highly radioactive wastes - an activity yet to be accomplished by any nation. In investigating potential sites for geologic repositories there will always be residual uncertainty in understanding the natural system and the events and processes that affect it. The more complex the natural system, the greater will be the uncertainty in both the data and the models used to describe the characteristics of the site's natural barriers, and the events and processes that could affect repository waste isolation. The engineered barriers also are subject to uncertainties that are important to the repository system. These uncertainties translate themselves into a range of probabilities that certain events or processes, detrimental to waste isolation, will occur. The uncertainties also translate to a range of consequences and magnitudes of consequences, should the

  11. Stabilities of nuclear waste forms and their geochemical interactions in repositories

    International Nuclear Information System (INIS)

    White, W.B.

    1980-01-01

    The stabilities of high-level nuclear waste forms in a repository environment are briefly discussed. The advantages and disadvantages of such waste forms as borosilicate glass, supercalcine ceramics, and synthetic minerals are presented in context with the different rock types which have been proposed as possible host rocks for repositories. It is concluded that the growing geochemical evidence favors the use of a silicate rock repository because of the effectiveness of aluminosilicate rocks as chemical barriers for most radionuclides

  12. Supply-side approach to nuclear waste repositories

    International Nuclear Information System (INIS)

    Harmon, L.H.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) was signed into law on January 7, 1983. Its purpose was to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Its goal is to have the first waste repository operational by 1998. It is believed by many that this goal cannot possibly be met. The Act is exceedingly complex with something in it for everybody. There are serious impediments to the program - not the least of which is legislation itself. The process will cost tens of billions of dollars and, even if it does succeed, will take many years to accomplish. This paper proposes a method for getting there in 7 years while saving billions of dollars. It is a summary of a more extensive research effort by the author while attending the Industrial College of the Armed Forces

  13. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, horizontal emplacement mode: Volume 2

    International Nuclear Information System (INIS)

    1987-12-01

    Chapter 6 discusses the repository design features and operating procedures that will be used to ensure compliance with regulatory limits for preclosure releases, performance objectives for waste retrieval, and performance objectives for post closure or long-term waste isolation. Chapter 7 discusses the analyses that were conducted in developing the repository design and the impacts of various external factors on the design of repository elements and the repository as a whole. These discussions are divided into preclosure design analysis, post closure design analysis, and engineering analysis of design. Also discussed are the structures, systems, and components that have been identified as important to safety and the barriers that have been, or need to be, identified as important to waste isolation. Chapter 8 discusses the engineering design information needs that were identified during conceptual design as necessary to advance the current conceptual design to Licence Application Design. These information needs should be resolved during the site characterization program or by other technology development studies. The discussion of these design issues and data needs is arranged according to the major elements of the repository. Chapter describes the quality assurance program. 146 refs., 40 figs., 22 tabs

  14. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    Science.gov (United States)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  15. The design of the Bulgaria rad waste repository

    International Nuclear Information System (INIS)

    Stefonova, I.; Petrov, I.; Navarro, M.; Sanchez, M.; Medinilla, G.

    2012-01-01

    In October 2011 a consortium composed by Westinghouse Engineering Spain SAU, ENRESA and DBE Technology GmbH was awarded a contract for the design of the Bulgaria rad waste repository. The facility, inspired in the spanish centre of El Cabril owned by ENRESA, will consist of a 66 reinforced concrete cells surface repository capable of receiving 18600 already conditioned waste containers of 20 t each, during 60 years, and the related auxiliary facilities and buildings. The project, representing a challenge because of the schedule and required level of detail, goes on fulfilling main milestones and getting customer satisfaction. (Author)

  16. Global nuclear waste repository proposal highlights Australia`s nuclear energy vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-06-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  17. Integrated management system for radioactive waste repositories (SGI3R)

    International Nuclear Information System (INIS)

    Silva, Fabio; Tello, Cledola Cassia Oliveira de

    2009-01-01

    The implantation of a repository for radioactive wastes is a multidisciplinary project that needs specialists of different areas of knowledge, interaction with public and private institutions, data and information related to radioactive wastes, geology, technology etc. All the activities must be in accordance with norms, requirements and procedures, including national and international legislation. The maintenance of the waste inventory records is an important regulatory requirement and must be available even after the closure of the repository. CDTN - Center of Nuclear Technology Development - is coordinating the Project for the construction of the national repository to dispose the low -and intermediate-level wastes. In order to consolidate all information that will come from this Project, it is being developed and implanted in CDTN a manager system of database, called Integrated Management System for Radioactive Waste Repositories (SGI3R), which will also manage all data from previous work carried out in Brazil and around the world about this subject. The proposal is to build a structure of modules, having as base eight modules: inventory, site selection, types of repository, technology, partners, legislation, communication and documents. The SGI3R running comprises the data processing (inclusion, update and exclusion), integration, standardization, and consistency among the processes. The SGI3R will give support to the stages of this Project, which will allow the preservation of all the available information, preventing duplication of efforts and additional costs, improving, in this way, the Project planning and execution. Additionally the SGI3R will make possible the information access to all stakeholders. (author)

  18. Waste package transfer, emplacement and retrievability in the French deep geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Alain; Delort, Daniel; Herve, Jean Francois; Bosgiraud, Jean Michel; Guenin, Jean Jacques [Technical Department ANDRA (France)

    2009-06-15

    Safe, reliable and reversible handling of waste is a significant issue related to the design and safety assessment of deep geological repository in France. The first step taken was to study various waste handling solutions. ANDRA also decided to fabricate and demonstrate industrial scale handling equipment for HLW (since 2003) and for ILW-LL wastes (since 2008). We will review the main equipment developed for the transfer process in the repository, for both types of waste, and underline the benefits of developing industrial demonstrators within the framework of international cooperation agreements. Waste retrieval capability will be simultaneously examined. Two types of waste have to be handled underground in Andra's repository. The HLW disposal package for vitrified waste is a 2 ton carbon steel cylindrical canister with a diameter of 600 mm. The weight of ILW-LL concrete disposal packages range from a minimum of 6 tonnes to over 20 tonnes, and their volume from approximately 5 to 10 m3. The underground transfer to the disposal drift requires moving the disposal package within a shielded transfer cask placed on a trailer. Transfer cask design has evolved since 2005, due to optimisation studies and as a result of industrial feedback from SKB. For HLW handling equipment two design options have been studied. In the first solution (Andra's Dossier 2005), the waste package are emplaced, one at a time, in the disposal drift by a pushing robot. Successive steps in design and proto-typing have lead to improve the design of the equipment and to gain confidence. Recently a fully integrated process has been successfully demonstrated, at full scale, (in a 100 m long mock up drift) as part of the EC funded ESDRED Project. This demonstrator is now on display in Andra's Technology Centre at Saudron, near the Bure Underground Laboratory. The second disposal option which has been investigated is based on a concept of utilising an external apparatus to push a row of

  19. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  20. Buoyancy flow in fractures intersecting a nuclear waste repository

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.

    1980-07-01

    The thermally induced buoyancy flow in fractured rocks around a nuclear waste repository is of major concern in the evaluation of the regional, long-term impact of nuclear waste disposal in geological formation. In this study, buoyancy flow and the development of convective cells are calculated in vertical fractures passing through or positioned near a repository. Interaction between buoyancy flow and regional hydraulic gradient is studied as a function of time, and the interference of intersecting fractures with each other is also discussed

  1. Underground excavation methods for a high-level waste repository

    International Nuclear Information System (INIS)

    Peshel, J.; Gupta, D.; Nataraja, M.

    1990-01-01

    This paper reports on rock excavation methods for a High-Level Waste repository that should be selected to limit the potential for creating preferential pathways for groundwater to travel to the waste packages or for radionuclides to migrate to the accessible environment. The use of water and other foreign substances should be controlled so that the repository performance is not compromised. The excavated openings should remain stable so that operations can be carried out safely and the retrievability option maintained. As per the current conceptual designs presented by the Department of Energy, the exploratory shaft facility becomes a part of the repository if the Yucca Mountain site is found suitable for repository development. Therefore, the methods of constructing the underground openings should be compatible with the performance requirements for the repository. Also, the degree of damage to the rock surrounding the openings and the extent of the damage zone should not preclude adequate site characterization. The ESf construction and operation should be compatible with the site data gathering activities, such as geological, thermomechanical, hydrological and geochemical testing

  2. Safety and cost evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Korhonen, R.

    1989-11-01

    The report introduces the results of the nuclear waste management safety and cost evaluation research carried out in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1984-1988. The emphasis is on the description of the state-of-art of performance and cost evaluation methods. The report describes VTT's most important assessment models. Development, verification and validation of the models has largely taken place within international projects, including the Stripa, HYDROCOIN, INTRACOIN, INTRAVAL, PSACOIN and BIOMOVS projects. Furthermore, VTT's other laboratories are participating in the Natural Analogue Working Group,k the CHEMVAL project and the CoCo group. Resent safety analyses carried out in the Nuclear Engineering Laboratory include a concept feasibility study of spent fuel disposal, safety analyses for the Preliminary Safety Analysis Reports (PSAR's) of the repositories to be constructed for low and medium level operational reactor waste at the Olkiluoto and Loviisa power plants as well as safety analyses of disposal of decommissioning wastes. Appendix 1 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail

  3. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 3; the groundwater pathway

    International Nuclear Information System (INIS)

    Baker, A.; Chambers, A.; Jackson, C.

    1997-01-01

    United Kingdom Nirex Limited ('Nirex') is responsible for providing and managing facilities for the safe disposal of intermediate and certain low-level radioactive waste (ILW and LLW respectively). Government policy is that the preferred disposal route for such wastes is a deep geological repository. The repository concept aims to use a combination of natural and engineered barriers to achieve the necessary degree of long-term isolation and containment of the radioactive wastes. Since 1987, Nirex has carried out an extensive technical programme directed at the science of safe disposal. The work comprises a research programme into the long-term performance of waste forms and the engineered and natural barriers, including the characterisation of candidate geological settings to assess their suitability to host a deep waste repository ('DWR'). Between mid-1991 and March 1997 the geological characterisation programme was concentrated on establishing the suitability, or otherwise, of a candidate site at Sellafield, West Cumbria. In July 1994, as part of a detailed site investigation programme, Nirex applied for planning permission to develop an underground Rock Characterisation Facility (RCF) at Longlands Farm near Sellafield. This application was rejected by the planning authority and Nirex's appeal against that decision led to a local planning inquiry which ran from September 1995 until February 1996. In line with the Inspector's Report, in March 1997 the Nirex appeal was dismissed by the Secretary of State for the Environment. The Company's response to that decision, and its readiness to contribute to the new government's review of the way forward, are described in the Nirex Annual Report for 1996-97. This report - Nirex 97 - is founded on the understanding developed through the Nirex technical programme. It reports the outcome of an assessment of the post-closure safety performance, over hundreds of thousands of years, of a repository system located in a potential

  4. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    R.B. Rebak

    2006-01-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking

  5. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  6. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  7. Long term behaviour of low and intermediate level waste packages under repository conditions. Results of a co-ordinated research project 1997-2002

    International Nuclear Information System (INIS)

    2004-06-01

    The development and application of approaches and technologies that provide long term safety is an essential issue in the disposal of radioactive waste. For low and intermediate level radioactive waste, engineered barriers play an important role in the overall safety and performance of near surface repositories. Thus, developing a strong technical basis for understanding the behaviour and performance of engineered barriers is an important consideration in the development and establishment of near surface repositories for radioactive waste. In 1993, a Co-ordinated Research Project (CRP) on Performance of Engineered Barrier Materials in Near Surface Disposal Facilities for Radioactive Waste was initiated by the IAEA with the twin goals of addressing some of the gaps in the database on radionuclide isolation and long term performance of a wide variety of materials and components that constitute the engineered barriers system (IAEA-TECDOC-1255 (2001)). However, during the course of the CRP, it was realized that that the scope of the CRP did not include studies of the behaviour of waste packages over time. Given that a waste package represents an important component of the overall near surface disposal system and the fact that many Member States have active R and D programmes related to waste package testing and evaluation, a new CRP was launched, in 1997, on Long Term Behaviour of Low and Intermediate Level Waste Packages Under Repository Conditions. The CRP was intended to promote research activities on the subject area in Member States, share information on the topic among the participating countries, and contribute to advancing technologies for near surface disposal of radioactive waste. Thus, this CRP complements the afore mentioned CRP on studies of engineered barriers. With the active participation and valuable contributions from twenty scientists and engineers from Argentina, Canada, Czech Republic, Egypt, Finland, India, Republic of Korea, Norway, Romania

  8. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J

    2007-01-15

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project.

  9. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2007-01-01

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project

  10. Discussions about safety criteria and guidelines for radioactive waste management.

    Science.gov (United States)

    Yamamoto, Masafumi

    2011-07-01

    In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.

  11. Guidelines for the operation and closure of deep geological repositories for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1991-10-01

    The operation and closure of a deep geological repository for the disposal of high level and alpha bearing wastes is a long term project involving many disciplines. This unique combination of nuclear operations in a deep underground location will require careful planning by the operating organization. The basic purpose of the operation stage of the deep repository is to ensure the safe disposal of the radioactive wastes. The purpose of the closure stage is to ensure that the wastes are safely isolated from the biosphere, and that the surface region can be returned to normal use. During these two stages of operation and closure, it is essential that both workers and the public are safely protected from radiation hazards, and that workers are protected from the hazards of working underground. For these periods of the repository, it is essential to carry out monitoring for purposes of radiological protection, and to continue testing and investigations to provide data for repository performance confirmation and for final safety assessment. Over the lengthy stages of operation and closure, there will be substantial feedback of experience and generation of site data. These will lead both to improved quality of operation and a better understanding of the site characteristics, thereby enhancing the confidence in the ability of the repository system to isolate the waste and protect future generations. 15 refs

  12. High-level waste repository-induced effects

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom); Savage, D. [Savage Earth Associates Ltd, Bournemouth, Dorset (United Kingdom); Senger, R. [Intera Inc., Ennetbaden (Switzerland)

    2016-10-15

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a high-level waste (HLW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects on the host rock and engineered barriers arising principally from the heat generated by the waste. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement rooms and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock, with a focus on chemical effects of the waste and engineered materials on the host rock. The assessment of the repository-induced effects shows that detrimental chemical and mechanical impacts are largely confined to the rock immediately adjacent to the excavations, thermal impacts are controllable by limiting the heat load and gas effects are limited by ensuring acceptably low gas production rates and by the natural tendency of the gas to escape along the excavations and the excavation damaged zone (EDZ) rather than through the undisturbed rock. Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The SF/HLW emplacement rooms (emplacement drifts) are designed, constructed, operated and finally backfilled in such a way that formation of excavation damaged zones is limited. Specifically this is achieved

  13. High-level waste repository-induced effects

    International Nuclear Information System (INIS)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J.; Smith, P.; Savage, D.; Senger, R.

    2016-10-01

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a high-level waste (HLW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects on the host rock and engineered barriers arising principally from the heat generated by the waste. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement rooms and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock, with a focus on chemical effects of the waste and engineered materials on the host rock. The assessment of the repository-induced effects shows that detrimental chemical and mechanical impacts are largely confined to the rock immediately adjacent to the excavations, thermal impacts are controllable by limiting the heat load and gas effects are limited by ensuring acceptably low gas production rates and by the natural tendency of the gas to escape along the excavations and the excavation damaged zone (EDZ) rather than through the undisturbed rock. Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The SF/HLW emplacement rooms (emplacement drifts) are designed, constructed, operated and finally backfilled in such a way that formation of excavation damaged zones is limited. Specifically this is achieved

  14. Coupled thermo-hydro-mechanical processes associated with a radioactive waste repository

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1988-01-01

    The performance assessment of a nuclear waste geologic repository presents a scientific and technical problem of a scope far beyond the evaluation of most civil and geologic constructions. First performance prediction must be made for tens of thousands of years, and a secondly, in calculating potential leakage rates from a repository to the biosphere the authors must determine not only the mean or average travel time but also the shorter travel times of low concentrations. These two criteria demand an understanding of all significant physical and chemical processes likely to occur around a nuclear waste repository. In particular, processes coupling thermal transfer fluid flow, mechanical deformation and chemical reactors, which may be slow in a laboratory time scale, may become very important. This paper gives a general survey on the subject, with specific examples of a number of relevant coupled thermo-hydro-mechanical processes associated with nuclear waste repository

  15. Rock mass modification around a nuclear waste repository in welded tuff

    International Nuclear Information System (INIS)

    Mack, M.G.; Brandshaug, T.; Brady, B.H.

    1989-08-01

    This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab

  16. Fair rules for siting a high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Easterling, D.

    1992-01-01

    Geologic repositories are designed to resolve the ever-growing problem of high-level nuclear waste, but these facilities invite intense local opposition due to the perceived severity of the risks and the possibility of stigma effects. This analysis examines whether the perceived fairness of the siting process affects local residents' support for hosting a repository. In particular, a survey of 1,001 Nevada residents is used to test the hypothesis that an individual's willingness to accept a local repository will increase if he or she is convinced that this is the safest disposal option available. A logistic analysis indicates that beliefs regarding relative suitability have an independent effect on the acceptability of a local repository (i.e., Yucca Mountain). The article then considers the question of how to implement an optimizing strategy for siting facilities, comparing an idealized strategy against the original Nuclear Waste Policy Act (NWPA) of 1982 and the Amendments Act of 1987. Although choosing the safest site seems as if it could enhance public acceptance of the repository program, there is currently little prospect of identifying the best option to the high-level waste problem and, as a results, little chance of gaining the public support that is necessary to promote a successful siting outcome. 81 refs., 1 fig., 5 tabs

  17. Low and intermediate level waste repositories: public involvement aspects

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Mourao, Rogerio P.; Fleming, Peter M.; Soares, Wellington A.; Braga, Leticia T.P.; Santos, Rosana A.M.

    2009-01-01

    The nuclear energy acceptance creates several problems, and one of the most important is the disposal of the radioactive waste. International experiences show that not only environmental, radiological and technical questions have to be analyzed, but the public opinion about the project must be considered. The objective of this article is to summarize some public involvement aspects associated with low and intermediate level waste repositories. Experiences from USA, Canada, South Africa, Ukraine and other countries are studied and show the importance of the population in the site selection process for a repository. (author)

  18. Safety Report within the licence application for the siting of a radioactive waste repository/disposal facility

    International Nuclear Information System (INIS)

    Horyna, J.; Sinaglova, R.

    2004-01-01

    The initial safety specification report, which is submitted to the licensing authority as one of the application documents, is the basic document assessing the planned repository/disposal facility with respect to the suitability of the chosen site for this purpose. The following topics are covered: General information; Description and evidence of suitability of the site chosen; Description and tentative assessment of the repository/disposal facility design; Tentative assessment of impacts of running the facility on the employees, general public and environment (radionuclide inventory, transport routes, radionuclide release in normal, abnormal and emergency situations); Proposed concept of repository/disposal facility shutdown; and Assessment of quality assurance in the site selection, in preparatory work for the construction of the facility and in the subsequent stages. (P.A.)

  19. Review. Deep repository for spent nuclear fuel SR 97 - Post-closure safety

    Energy Technology Data Exchange (ETDEWEB)

    Stephansson, Ove [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Civil and Environmental Engineering

    2000-12-01

    SKB states that the chosen scenarios provide good coverage of future evolutionary pathways for the deep repository. This is not the case. SKB has not made full use of the established interaction matrices and the new method of THMC diagrams to generate the relevant and important scenarios and to construct the important pathways of variables and processes, either in the established interaction matrices and the presented THMC diagrams. Hence, SKB is demonstrating in SR 97 that they lack a well thought through, sound and solid method to select and evaluate scenarios for the purpose of demonstrating the safety of a deep repository for spent nuclear fuel. The evolution of the system is presented for the components of the repository system (fuel, canister, buffer/backfill, geosphere) and the effects of four different scenarios, but time only enters into the system for discrete events or processes, e.g. description of the relative radiotoxicity and heat decay of the fuel, temperature distribution, iron exchange process, pH in buffer, redox capacity and radionuclear release at the three sites. There is a lack of method and way of describing the evolution of the complete repository system, including the major scenarios, as a function of time. It is essential that SKB is able to: - consider the full range of potential scenarios, - grade the scenarios according to their significance for repository design and performance and safety assessment, - consider whether simple engineering actions could be taken to inhibit the development of adverse scenarios. This cannot be done with the system presented in SR 97, and so SKB do not have a full predictive capability - which is required for the engineering design of such an important and costly structure as a repository. Geoscientific investigation material for three selected sites are presented by SKB in the technical report dealing with waste, repository design and sites. Here a general overview is missing of the geological and rock

  20. Plan for safety case of spent fuel repository at Olkiluoto

    International Nuclear Information System (INIS)

    Vieno, T.; Ikonen, A.T.K.

    2005-02-01

    Posiva aims to present the Safety Case supporting the construction license application of the spent fuel repository at Olkiluoto by 2012. An outline and preliminary assessments will be presented in 2009. Interim reporting and an update of the Safety Case plan will be presented in 2006, as required by the authorities. The KBS-3 disposal concept aims at long-term isolation and containment of spent fuel assemblies in durable copper-iron canisters emplaced in a repository to be constructed at a depth between 400 and 600 metres in crystalline bedrock. By 2012, studies on the KBS-3 disposal concept and site investigations at Olkiluoto will have been continued over about thirty years. The construction of an underground rock characterisation facility (called ONKALO) was started in June 2004. The investigations are carried out in close cooperation with the Swedish SKB developing and assessing the same disposal concept at candidate sites, resembling Olkiluoto, at the other side of the Baltic Sea. A safety case is the synthesis of evidence, analyses and arguments that quantify and substantiate the safety, and the level of expert confidence in the safety, of a planned repository. Posiva's Safety Case will be organised in a portfolio including ten main reports, which will be periodically updated according the overall schedule presented in the plan. The Site report describing the present state and past evolution of the Olkiluoto site, as well as the disturbances caused by the construction of ONKALO and the first stage of the repository, forms the geoscientific basis of the Safety Case. The engineering basis is provided by the reports on the Characteristics of spent fuel, Canister design, and Repository design. The Process report containing descriptions and analyses of features, events and processes potentially affecting the disposal system, and the report on the Evolution of site and repository form the scientific basis of the Safety Case. The latter report will describe and

  1. Site selection process for radioactive waste repository (radioactive facility) in Cuba as a fundamental safety criteria

    International Nuclear Information System (INIS)

    Vital, Jose Luis Peralta; Castillo, Reinaldo Gil; Chales Suarez, Gustavo; Rodriguez Reyes, Aymee

    1999-01-01

    The paper show the process of search carried out for the selection of the safest site in the National territory, in order to sitting the Facility (Repository) that will disposal the low and intermediate level radioactive wastes, as well as the possible Storage Facility for nuclear spent Fuel (radioactive wastes of high activity). We summarize the obtained Methodology and the Criterions of exclusion adopted for the development of the Process of site selection, as well as the current condition of the researches that will permit the obtaining of the nominative objectives. (author)

  2. Archaeological and natural analogs for the safety assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    Evstatiev, D.; Gergova, D.; Vachev, B.

    2004-01-01

    The safety assessment of surface repositories for low and intermediate level radioactive wastes (LILW) is based on scenarios assuming that water infiltration through the protective embankment increases with time, starting from 10% in the beginning and reaching 100% of the precipitation sum after 200-300 years. It is considered that this embankment will be destroyed by the atmospheric factors during the next centuries and that further on the concrete containers and repository chambers might fall apart, resulting finally in collapse of the protective barriers and exposing LILW to the direct impact of precipitation. These assumptions are rather conservative and for this reason the geological and anthropogenic analogs are of special interest as examples providing information about the real role of protective barriers of LILW repositories as well as about real migration processes occurring in the geoenvironment. Bulgaria could make a contribution to these investigations, since its territory is rich in ancient and medieval structures, tumuli from Thracian times and Old Bulgarian fortification banks, Roman and Medieval fortresses that might be regarded as analogs of the protective barriers of LILW repositories. A project will be launched in 2005 with objectives focused on this problem. The present report makes an analysis of the available information and states the tasks of the project. The ancient worldwide embankment practices in Egypt, China, Great Britain, Scythia, Thrace, Macedonia and other countries is briefly described. The Thracian tumuli in Bulgaria that reach the number of about 60 000 and the age of 2500 years. Their maximum height is 30 m, but the average height is between 7 and 10m. Their slope inclination is between 22 0 and 30 0 . Stone tombs had been found in some of the tumuli with excellently preserved frescoes, bas-reliefs and other articles of Thracian material culture. The horizontal thin layers of crushed limestone situated on top of the tombs

  3. Geological disposal of nuclear waste: II. From laboratory data to the safety analysis – Addressing societal concerns

    International Nuclear Information System (INIS)

    Grambow, Bernd; Bretesché, Sophie

    2014-01-01

    Highlights: • Models for repository safety can only partly be validated. • Long term risks need to be translated in the context of societal temporalities. • Social sciences need to be more strongly involved into safety assessment. - Abstract: After more than 30 years of international research and development, there is a broad technical consensus that geologic disposal of highly-radioactive waste will provide for the safety of humankind and the environment, now, and far into the future. Safety analyses have demonstrated that the risk, as measured by exposure to radiation, will be of little consequence. Still, there is not yet an operating geologic repository for highly-radioactive waste, and there remains substantial public concern about the long-term safety of geologic disposal. In these two linked papers, we argue for a stronger connection between the scientific data (paper I, Grambow et al., 2014) and the safety analysis, particularly in the context of societal expectations (paper II). In this paper (II), we assess the meaning of the technical results and derived models (paper I) for the determination of the long-term safety of a repository. We consider issues of model validity and their credibility in the context of a much broader historical, epistemological and societal context. Safety analysis is treated in its social and temporal dimensions. This perspective provides new insights into the societal dimension of scenarios and risk analysis. Surprisingly, there is certainly no direct link between increased scientific understanding and a public position for or against different strategies of nuclear waste disposal. This is not due to the public being poorly informed, but rather due to cultural cognition of expertise and historical and cultural perception of hazards to regions selected to host a geologic repository. The societal and cultural dimension does not diminish the role of science, as scientific results become even more important in distinguishing

  4. Extreme scenarios for nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M J [Harvard Univ., Cambridge, MA (USA). Div. of Applied Sciences; Crouch, E [Harvard Univ., Cambridge, MA (USA). Energy and Environmental Policy Center

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km/sup 2/ of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the waste are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  5. Optimized application of systems engineering to nuclear waste repository projects

    International Nuclear Information System (INIS)

    Miskimin, P.A.; Shepard, M.

    1986-01-01

    The purpose of this presentation is to describe a fully optimized application of systems engineering methods and philosophy to the management of a large nuclear waste repository project. Knowledge gained from actual experience with the use of the systems approach on two repository projects is incorporated in the material presented. The projects are currently evaluating the isolation performance of different geologic settings and are in different phases of maturity. Systems engineering methods were applied by the principal author at the Waste Isolation Pilot Plant (WIPP) in the form of a functional analysis. At the Basalt Waste Isolation Project (BWIP), the authors assisted the intergrating contractor with the development and application of systems engineering methods. Based on this experience and that acquired from other waste management projects, an optimized plan for applying systems engineering techniques was developed. The plan encompasses the following aspects: project organization, developing and defining requirements, assigning work responsibilities, evaluating system performance, quality assurance, controlling changes, enhancing licensability, optimizing project performance, and addressing regulatory issues. This information is presented in the form of a roadmap for the practical application of system engineering principles to a nuclear waste repository project

  6. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs

  7. Peer review for high-level nuclear waste repositories: Generic technical position

    International Nuclear Information System (INIS)

    Altman, W.D.; Donnelly, J.P.; Kennedy, J.E.

    1988-02-01

    This document provides guidance on the use of the peer review process in the high-level nuclear waste repository program. The applicant must demonstrate in the license application that the applicable health, safety, and environmental regulations in 10 CFR Part 60 have been met. Confidence in the data used to support the license application is obtained through a quality assurance (AQ) program. Peer reviews may be used as part of the QA actions necessary to provide adequate confidence in the work being reviewed. Because of several unique conditions inherent to the geologic repository program, expert judgment will need to be utilized in assessing the adequacy of work. Peer reviews are a mechanism by which these judgments may be made. This document provides guidance on areas where a peer review is appropriate, the acceptability of peers, and the conduct and documentation of a peer review

  8. Specification of safety requirements for waste packages with respect to practicable quality control measures

    International Nuclear Information System (INIS)

    Gruendler, D.; Wurtinger, W.

    1987-01-01

    Waste packages for disposal in a repository in the Federal Republic of Germany have to meet safety requirements derived from site specific safety analyses. The examination of the waste packages with regard to compliance with these requirements is the main objective of quality control measures. With respect to quality control the requirements have to be specified in a way that practicable control measures can be applied. This is dealt with for the quality control of the activity inventory and the quality control of the waste form. The paper discusses the determination of the activity of hard-to-measure radionuclides and the specification of safety related requirements for the waste form and the packaging using typical examples

  9. Safety assessment and geosphere transport methodology for the geologic isolation of nuclear waste materials

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Stottlemyre, J.A.; Raymond, J.R.

    1977-01-01

    As part of the National Waste Terminal Storage Program in the United States, the Waste Isolation Safety Assessment Program (WISAP) is underway to develop and demonstrate the methods and obtain the data necessary to assess the safety of geologic isolation repositories and to communicate the assessment results to the public. This paper reviews past analysis efforts, discusses the WISAP technical approach to the problem, and points out areas where work is needed

  10. Low and medium level radioactive waste repository: risk perception

    International Nuclear Information System (INIS)

    Aquino, Afonso Rodrigues de; Bueno, Lilian de Oliveira; Vieira, Martha Marques Ferreira; Fonseca, Edvaldo Roberto Paiva da; Bellintani, Sandra Aparecida

    2009-01-01

    This paper focuses on the risk perception associated to the installation of low and intermediate level radioactive waste (LLRW and ILRW) disposal facilities. The purpose is to give support for the implementation of a repository in Brazil. Public acceptance results from a long term work and trust is vital for the process as it takes long to be conquered but might be shortly lost. Therefore, it is essential to care about the way each step is conducted. The knowledge about the system and the risks, the comprehension about these risks, the commitment with safety, adequate support systems for the project (legislation, involved institutions) and the excellence as a goal to be reached are extremely important parameters. The involvement of all interested parties in the decision-making process is condition for a successful and publicly acceptable implementation of such project. The steps for public acceptance of a repository are summarized as follow: Risk perception: to verify how the local population understand and feel the installation of a repository in the region. Media observatory: to continuously follow the news reaching the region where the repository will be installed, including different media. Local population social/economical/cultural profile identification: to determine the local population social/economical/cultural profile; to conduct a survey to know their expectations, allowing the proposal of compensation and incentives to fully account for their expectations. Finally, the philosophy governing this Project is: on doubt, the public must be heard and only after this public hearing the policies concerning the project shall be formulated. (author)

  11. Low and medium level radioactive waste repository: risk perception

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Afonso Rodrigues de; Bueno, Lilian de Oliveira; Vieira, Martha Marques Ferreira; Fonseca, Edvaldo Roberto Paiva da; Bellintani, Sandra Aparecida [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: araquino@ipen.br, e-mail: lbueno@ipen.br, e-mail: mmvieira@ipen.br, e-mail: efonseca@ipen.br, e-mail: sbellint@ipen.br

    2009-07-01

    This paper focuses on the risk perception associated to the installation of low and intermediate level radioactive waste (LLRW and ILRW) disposal facilities. The purpose is to give support for the implementation of a repository in Brazil. Public acceptance results from a long term work and trust is vital for the process as it takes long to be conquered but might be shortly lost. Therefore, it is essential to care about the way each step is conducted. The knowledge about the system and the risks, the comprehension about these risks, the commitment with safety, adequate support systems for the project (legislation, involved institutions) and the excellence as a goal to be reached are extremely important parameters. The involvement of all interested parties in the decision-making process is condition for a successful and publicly acceptable implementation of such project. The steps for public acceptance of a repository are summarized as follow: Risk perception: to verify how the local population understand and feel the installation of a repository in the region. Media observatory: to continuously follow the news reaching the region where the repository will be installed, including different media. Local population social/economical/cultural profile identification: to determine the local population social/economical/cultural profile; to conduct a survey to know their expectations, allowing the proposal of compensation and incentives to fully account for their expectations. Finally, the philosophy governing this Project is: on doubt, the public must be heard and only after this public hearing the policies concerning the project shall be formulated. (author)

  12. Underground repository for radioactive wastes

    International Nuclear Information System (INIS)

    Cassibba, R.O.

    1989-01-01

    In the feasibility study for an underground repository in Argentina, the conceptual basis for the final disposal of high activity nuclear waste was set, as well as the biosphere isolation, according to the multiple barrier concept or to the engineering barrier system. As design limit, the container shall act as an engineering barrier, granting the isolation of the radionuclides for approximately 1000 years. The container for reprocessed and vitrified wastes shall have three metallic layers: a stainless steel inner layer, an external one of a metal to be selected and a thick intermediate lead layer preselected due to its good radiological protection and corrosion resistance. Therefore, the study of the lead corrosion behaviour in simulated media of an underground repository becomes necessary. Relevant parameters of the repository system such as temperature, pressure, water flux, variation in salt concentrations and oxidants supply shall be considered. At the same time, a study is necessary on the galvanic effect of lead coupled with different candidate metals for external layer of the container in the same experimental conditions. Also temporal evaluation about the engineering barrier system efficiency is presented in this thesis. It was considered the extrapolated results of corrosion rates and literature data about the other engineering barriers. Taking into account that corrosion is of a generalized type, the integrity of the lead shall be maintained for more than 1000 years and according to temporal evaluation, the multiple barrier concept shall retard the radionuclide dispersion to the biosphere for a period of time between 10 4 and 10 6 years. (Author) [es

  13. Use of safety analysis to site comfirmation procedure in case of hard rock repository

    International Nuclear Information System (INIS)

    Peltonen, E.K.

    1984-02-01

    The role of safety analysis in a confirmation procedure of a candidate disposal site of radioactive wastes is discussed. Items dealt with include principle reasons and practical goals of the use of safety analysis, methodology of safety analysis and assessment, as well as usefulness and adequacy of the present safety analysis. Safety analysis is a tool, which enables one to estimate quantitatively the possible radiological impacts from the disposal. The results can be compared with the criteria and the suitability conclusions drawn. Because of its systems analytical nature safety analysis is an effective method to reveal, what are the most important factors of the disposal system and the most critical site characteristics inside the lumped parameters often provided by the experimental site investigation methods. Furthermore it gives information on the accuracy needs of different site properties. This can be utilized to judge whether the quality and quantity of the measurements for the characterization are sufficient as well as to guide the further site investigations. A more practical discussion regarding the applicability of the use of safety analysis is presented by an example concerning the assessment of a Finnish candidate site for low- and intermediate-level radioactive waste repository. (author)

  14. Review on technical issues influencing the performance of chemical barriers of TRU waste repository

    International Nuclear Information System (INIS)

    Fujita, Tomonari; Sugiyama, Daisuke; Tsukamoto, Masaki; Yokoyama, Hayaichi

    1997-01-01

    Studies of technical issues influencing the performance assessment of TRU waste disposal which is occurred from the nuclear fuel reprocessing were reviewed in related to the development of safety analysis method. Especially, the chemical containment was investigated as a key barrier to radionuclide migration. TRU waste including long-lived radionuclides need long-term performance assessment which could be assumed only by the chemical barrier. The description of technical issues concerned with the performance of TRU waste repository has been divided into the following categories: long-term degradation of cementitious materials as engineered barrier for radionuclide migration, effect of colloids, organic macromolecules and organic degradation products on chemical behavior of radionuclides, gas generation by corrosion of metallic wastes, and effects of microbial activity. Preliminary performance assessment indicated that important factors affecting performance of chemical barriers in near-field were the distribution coefficient and the solubility of radionuclides in near-field groundwater. Therefore, it was identified that key issues associated with performance of chemical barrier were evaluation of (a) the long-term change of distribution coefficient of cementitious material through the degradation under repository condition and (b) chemical speciation change of radionuclides such as increase of solubility by the presence of colloidal-size materials. (author)

  15. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  16. Current status of geotechnical research on the long-term safety of permanent repositories for nuclear waste

    International Nuclear Information System (INIS)

    Langer, M.

    1988-01-01

    The planned permanent underground repository for non-heat-generating wastes in the former Konrad iron-ore mine is now in the final stages of the plan approval procedures. The deadline for the final stages of the plan approval procedures for the Gorleben salt dome is approaching. It is time to give an account of what has been accomplished in the geotechnical field. The BGR has developed a complex geotechnical stability analysis that takes into account the requirements of permanent storage and the objectives required for the protection of the biosphere. This stability analysis is based on the following considerations: Owing to the complexity of the boundary conditions, a cavity intended for a permanent repository can be demonstrated to be safe only by a combination of studies and simulations. These studies must integrate engineering geology, geotechnics, rock mechanics, statics, monitoring of the conditions in the repository, and mining expertise. (orig.) With 27 figs

  17. Repository-analog experiments of nuclear waste leaching and migration

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    The potential for radionuclide migration from a breached nuclear-waste repository depends on the leaching and subsequent interaction of the leached radionuclides with materials in the groundwater flow path. An attempt is made to consider all interactions using experiments that integrate repository materials. Results of a repository-analog experiment using borosilicate glass, fissured granite, and flowing water suggest: (1) plutonium was immobile possibly because of its low solubility; (2) caesium migrated down slowly because of sorption; and (3) neptunium remained oxidized even in water of low oxidation potential. By summing the effects of all interactions, not just sorption, the repository-analog experiment produced radionuclide migration that could be expected from a breached repository. (author)

  18. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  19. Computer enhanced release scenario analysis for a nuclear waste repository

    International Nuclear Information System (INIS)

    Stottlemyre, J.A.; Petrie, G.M.; Mullen, M.F.

    1979-01-01

    An interactive (user-oriented) computer tool is being developed at PNL to assist in the analysis of release scenarios for long-term safety assessment of a continental geologic nuclear waste repository. Emphasis is on characterizing the various ways the geologic and hydrologic system surrounding a repository might vary over the 10 6 to 10 7 years subsequent to final closure of the cavern. The potential disruptive phenomena are categorized as natural geologic and man-caused and tend to be synergistic in nature. The computer tool is designed to permit simulation of the system response as a function of the ongoing disruptive phenomena and time. It is designed to be operated in a determinatic manner, i.e., user selection of the desired scenarios and associated rate, magnitude, and lag time data; or in a stochastic mode. The stochastic mode involves establishing distributions for individual phenomena occurrence probabilities, rates, magnitudes, and phase relationships. A Monte-Carlo technique is then employed to generate a multitude of disruptive event scenarios, scan for breaches of the repository isolation, and develop input to the release consequence analysis task. To date, only a simplified one-dimensional version of the code has been completed. Significant modification and development is required to expand its dimensionality and apply the tool to any specific site

  20. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Staudt, C.; Semiochkina, N.; Kaiser, J.C.; Pröhl, G.

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. - Highlights: ► We model Biosphere Dose Conversion Factors for a representative group exposed to radionuclides from a waste repository. ► The BDCF are modeled for different soil types. ► One model is used for the assessment of the influence of climate change during the disposal time frame.

  1. Literature study on the state-of-the-art for the marking of deep geological repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Buser, M.

    2010-05-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) summarises the results of a literature study on the marking of repositories for radioactive wastes. Knowledge gained and ideas discussed in Switzerland on the subject are collated and discussed. Various associated topics such as safety, risk and marking technologies are examined. 28 topics in six thematic blocks are presented and discussed. Not only marking concepts are discussed, but also questions on human and society-related factors, traditionalising information transfer and susceptibility to wrong interpretation are examined. The author is of the opinion that no reusable materials be used either in the repositories themselves or for their marking in order to help prevent future generations coming into contact with the dangerous wastes

  2. Barriers to migration of radionuclides from radioactive waste repositories

    International Nuclear Information System (INIS)

    Stefanova, I.

    1999-01-01

    Natural inorganic sorbents are known as effective barriers that reduce the migration of radionuclides from radioactive waste repositories and contaminated sites. They could be used as buffer, backfill and sealing materials in the repository and their presence in the host rock and the surrounding geological formations increases the retention properties of the strata. Natural occurring minerals from local origin are used in the study - zeolites (clinoptilolite and mordenite), celadonite and loess. Sorption of wide range of radionuclides is studies. Batch capacity is determined. Sorption of radionuclides from simulated natural solution is studied. Distribution coefficients are calculated from sorption isotherms. Desorption in presence of different natural solutions is studied. Sorption properties are compared. It is shown that clinoptilolite acts as effective barrier against migration of radionuclides from repositories. The presence of celadonite in the clinoptilolite rock increases the retention of polyvalent ions. The retention of radionuclides on loess samples fulfils the requirements for host media for repository for low and intermediate level waste. A method for construction of additional barrier to the existing in the country disposal vault for spent sealed sources is proposed

  3. Underground disposal of UK heat-generating wastes: repository design considerations

    International Nuclear Information System (INIS)

    Steadman, J.A.

    1993-12-01

    The report discusses the likely differences in design between a deep repository for disposal of UK heat-generating radioactive wastes and that of the planned Nirex ILW/LLW repository at Sellafield, based on a review of international published information. The main differences arise from the greater heat and radiation outputs of the waste, and in the case of intact PWR spent fuel elements, the greater length and weight of the disposal packages. Published cost estimates for other OECD countries for disposal of heat-generating wastes are considerably lower than that for the UK, partly because in most cases they are for co-disposal with a larger quantity of ILW. (author)

  4. Evaluation of geological documents available for provisional safety analyses of potential sites for nuclear waste repositories - Are additional geological investigations needed?

    International Nuclear Information System (INIS)

    2010-10-01

    The procedure for selecting repository sites for all categories of radioactive waste in Switzerland is defined in the conceptual part of the Sectoral Plan for Deep Geological Repositories, which foresees a selection of sites in three stages. In Stage I, Nagra proposed geological siting regions based on criteria relating to safety and engineering feasibility. The Swiss Government (the Federal Council) is expected to decide on the siting proposals in 2011. The objective of Stage 2 is to prepare proposals for the location of the surface facilities within the planning perimeters defined by the Federal Council in its decision on Stage 1 and to identify potential sites. Nagra also has to carry out a provisional safety analysis for each site and a safety-based comparison of the sites. Based on this, and taking into account the results of the socio-economic-ecological impact studies, Nagra then has to propose at least two sites for each repository type to be carried through to Stage 3. The proposed sites will then be investigated in more detail in Stage 3 to ensure that the selection of the sites for the General Licence Applications is well founded. In order to realise the objectives of the upcoming Stage 2, the state of knowledge of the geological conditions at the sites has to be sufficient to perform the provisional safety analyses. Therefore, in preparation for Stage 2, the conceptual part of the Sectoral Plan requires Nagra to clarify the need for additional investigations aimed at providing input for the provisional safety analyses. The purpose of the present report is to document Nagra's technical-scientific assessment of this need. The focus is on evaluating the geological information based on processes and parameters that are relevant for safety and engineering feasibility. In evaluating the state of knowledge the key question is whether additional information could lead to a different decision regarding the selection of the sites to be carried through to Stage 3

  5. Extreme scenarios for nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M J; Crouch, E

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km2 of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the water are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  6. Waste Package and Material Testing for the Proposed Yucca Mountain High Level Waste Repository

    International Nuclear Information System (INIS)

    Doering, Thomas; Pasupathi, V.

    2002-01-01

    Over the repository lifetime, the waste package containment barriers will perform various functions that will change with time. During the operational period, the barriers will function as vessels for handling, emplacement, and waste retrieval (if necessary). During the years following repository closure, the containment barriers will be relied upon to provide substantially complete containment, through 10,000 years and beyond. Following the substantially complete containment phase, the barriers and the waste package internal structures help minimize release of radionuclides by aqueous- and gaseous-phase transport. These requirements have lead to a defense-in-depth design philosophy. A multi-barrier design will result in a lower breach rate distributed over a longer period of time, thereby ensuring the regulatory requirements are met. The design of the Engineered Barrier System (EBS) has evolved. The initial waste package design was a thin walled package, 3/8 inch of stainless steel 304, that had very limited capacity, (3 PWR and 4 BWR assemblies) and performance characteristics, 300 to 1,000 years. This design required over 35,000 waste packages compared to today's design of just over 10,000 waste packages. The waste package designs are now based on a defense-in-depth/multi-barrier philosophy and have a capacity similar to the standard storage and rail transported spent nuclear fuel casks. Concurrent with the development of the design of the waste packages, a comprehensive waste package materials testing program has been undertaken to support the selection of containment barrier materials and to develop predictive models for the long-term behavior of these materials under expected repository conditions. The testing program includes both long-term and short-term tests and the results from these tests combination with the data published in the open literature are being used to develop models for predicting performance of the waste packages

  7. Review of the sorption of radionuclides on the bedrock of Haestholmen and on construction and backfill materials of a final repository for reactor wastes

    International Nuclear Information System (INIS)

    Kulmala, S.; Hakanen, M.

    1992-10-01

    Imatran Voima Oy (IVO) has plans to build a final repository for reactor wastes in the bedrock of the nuclear power plant site at Haestholmen, Loviisa. This report summarizes the sorption studies of radionuclides in Finnish bedrock performed at the Department of Radiochemistry, University of Helsinki. The values of mass distribution ratios, K d , and surface distribution ratios, K a ; of carbon, calsium, Zirconium, niobium, cobalt, nickel, strontium, cesium, uranium, plutonium, americium, thorium, chlorine, iodine and technetium are surveyed. Special attention is paid to the sorption data for construction and backfill materials of rector waste repository and the bedrock of Haestholmen. Safety assessment of a repository includes calculations of migration of the waste element in construction materials and backfill in the nearfield and in bedrock. Retardation by sorption of waste nuclides compared to groundwater flow is described by using distribution ratios between solid materials and water. (orig.)

  8. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  9. Building on existing institutions to perpetuate knowledge of waste repositories

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1982-08-01

    Purpose of this report is to examine the function of several existing institutions and to show how they could be effectively used to transmit information about waste repositories for long times into the future. Scope of this report is limited to a discussion of four institutional approaches to the dissemination and retention of information: Widely distributed maps, the marker system of the National Geodetic Survey, the archiving of documents, and one-call systems designed to protect underground utility installations from inadvertent damage by the public. Each of these approaches is discussed in an independent section that describes the background of the institutional approach, discusses methods for applying it to waste repositories, and assesses its potential value. The sole intent of this report is to present supporting data for future decisions about the kinds of communication measures that should be implemented to advise future generations about the locations and hazards of waste repositories

  10. Waste package for a repository located in salt

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.

    1983-01-01

    This paper describes the current status of the waste package designs for salt repositories. The status of the supporting studies of environment definition, corrosion of containment materials, and leaching of waste forms is also presented. Emphasis is on the results obtained in FY 83 and the planned effort in FY 84. 8 references, 3 figures, 1 table

  11. VerSi - A Methodology for a Comparison of Potential Repository Sites

    International Nuclear Information System (INIS)

    Hund, Wilhelm

    2010-09-01

    In the year 2000 the moratorium on the exploration of the Gorleben salt dome as a potential repository for all kinds of radioactive waste became effective as a result of the consensus agreement between the Federal Government and the utilities about phasing out nuclear energy in Germany. All exploration activities were interrupted for at maximum ten years to clarify conceptual and safety relevant questions. A new set of safety requirements for the final disposal of heat-generating radioactive waste in deep geological formations was established in July 2009 by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). As the BMU intended to carry out a comparison of potential repository sites it was necessary to initiate the development of a methodology for the identification of the site with the highest level of safety. A comparison of different repository sites requires a tool ensuring most confident and objective criteria for the comparison, whereas up to present long-term safety analyses were focused on confirming the suitability of sites by meeting the protection objectives by the measures of dose and risk. Within the 2006 established project VerSi a methodology for comparing different sites in different host rocks will be developed on the basis of long-term safety analyses taking into account geoscientific databases, inventory of radioactive waste, waste containers, corresponding disposal concepts and the feasibility of appropriate backfilling and closure concepts. The development of the method is aiming at providing measures other than dose and risk for the evaluation of the level of safety. For testing the tools a HLW-repository hosted in a salt dome (Gorleben) will be compared with a generic HLW-repository in consolidated clay as a host rock. As until now in Germany no clay stone site has been investigated for hosting a HLW repository, the required data are transferred from international research projects and repository concepts

  12. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  13. Retrieval effects on ventilation and cooling requirements for a nuclear waste repository

    International Nuclear Information System (INIS)

    Hambley, D.F.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the regulations promulgated in Title 10, Part 60 of the Code of Federal Regulations (10CFR60) by the US Nuclear Regulatory Commission (NRC) for an underground repository for spent fuel and high level nuclear waste (HLW) require that it is possible to retrieve waste, for whatever reason, from such a facility for a period of 50 years from initial storage or until the completion of the performance confirmation period, whichever comes first. This paper considers the effects that the retrievability option mandates on ventilation and cooling systems required for normal repository operations. An example is given for a hypothetical repository in salt. 18 refs., 1 tab

  14. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  15. Radiological consequence analysis of a repository for radioactive waste

    International Nuclear Information System (INIS)

    Fitzpatrick, J.; Buchheim, B.; Hoop, F.J.

    1982-01-01

    One of the methods under consideration for the disposal of radioactive wastes is emplacement in a repository within deep, continental formations. This paper presents the experience gained in developing a methodology to make an assessment of the radiological consequences both for normal operation and for possible accident situations for a specific repository design in a salt dome at Gorleben in Germany , designed to accommodate all categories of radioactive waste. Radionuclide release scenarios were derived from a systematic analysis of the facility design and proposed operational procedure. Where necessary simple numerical models for such topics as direct radiation exposure from waste containers, release and transport of radionuclides, radiolysis, heat transfer, creep and impact were developed to give a first estimate of the radiological consequences due to radionuclide releases. (author)

  16. Microbial corrosion of metallic materials in a deep nuclear-waste repository

    Directory of Open Access Journals (Sweden)

    Stoulil J.

    2016-06-01

    Full Text Available The study summarises current knowledge on microbial corrosion in a deep nuclear-waste repository. The first part evaluates the general impact of microbial activity on corrosion mechanisms. Especially, the impact of microbial metabolism on the environment and the impact of biofilms on the surface of structure materials were evaluated. The next part focuses on microbial corrosion in a deep nuclear-waste repository. The study aims to suggest the development of the repository environment and in that respect the viability of bacteria, depending on the probable conditions of the environment, such as humidity of bentonite, pressure in compact bentonite, the impact of ionizing radiation, etc. The last part is aimed at possible techniques for microbial corrosion mechanism monitoring in the conditions of a deep repository. Namely, electrochemical and microscopic techniques were discussed.

  17. International high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Lin, W.

    1996-01-01

    Although nuclear technologies benefit everyone, the associated nuclear wastes are a widespread and rapidly growing problem. Nuclear power plants are in operation in 25 countries, and are under construction in others. Developing countries are hungry for electricity to promote economic growth; industrialized countries are eager to export nuclear technologies and equipment. These two ingredients, combined with the rapid shrinkage of worldwide fossil fuel reserves, will increase the utilization of nuclear power. All countries utilizing nuclear power produce at least a few tens of tons of spent fuel per year. That spent fuel (and reprocessing products, if any) constitutes high-level nuclear waste. Toxicity, long half-life, and immunity to chemical degradation make such waste an almost permanent threat to human beings. This report discusses the advantages of utilizing repositories for disposal of nuclear wastes

  18. Waste-rock interactions in the immediate repository

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1977-01-01

    The high level wastes (HLW's) to be placed underground in rock formations will contain significant amounts of radioactive decay heat for the first hundred-or-so years of isolation. Several physical-chemical changes analogous to natural geochemical processes can occur during this ''thermal period.'' The waste canister can act as a heat source and cause changes in the mineralogy and properties of the surrounding rocks. Geochemically, this is ''contact metamorphism.'' In the event that the canister is corroded and breached, chemical reactions can occur between the HLW, the surrounding rock and possibly the remains of the canister. In a dry repository which has not been backfilled (and thus pressurized) these interactions could be slow at best and with rates decreasing rapidly as the HLW cools. However, significant interactions can occur in years, months or even days under hydrothermal conditions. These conditions could be created by the combination of HLW heat, overburden pressure and water mobilized from the rocks or derived from groundwater intrusion. At the end of the thermal period these interaction products would constitute the actual HLW form (or ''source term'') subject to the low temperature leaching and migration processes under investigation in other laboratories. It is quite possible that these interaction product waste forms will have superior properties compared to the original HLW. Experimental programs initiated at Penn State during the last year aim at determining the nature of any chemical or mineralogical changes in, or interactions between, HLW solids and host rocks under various repository ambients. The accompanying figures describe the simulated HLW forms and the experimental approach and techniques. Studies with basalts as the repository rock are supported by Rockwell Hanford Operations and with shales by the Office of Waste Isolation

  19. Overview of the United States' nuclear waste repository programme

    International Nuclear Information System (INIS)

    Surles, T.G.

    2002-01-01

    Regardless of the future of civilian or defense-based nuclear materials, the United States will be responsible for a vast array of these materials for generations to come. The cornerstone programme for the disposal of waste materials is the Yucca Mountain Programme. Based on the Nuclear Waste Policy Act of 1982, as amended in 1987, it has been the United States' policy to develop a geological repository for the permanent disposal of radioactive waste materials. This presentation will discuss the process and strategy leading to the present and will include the scientific and management activities required to support the recent Viability Assessment. Also to be discussed are the timeline and milestones leading to the opening of the repository. The focus will be on the scientific and engineering studies required for a successful Site Recommendation, and then for a similarly successful License Application. Both of these activities will require considerable management efforts in addressing legal and regulatory issues. Finally, the presentation will discuss projections for the future operation of the facility, including emplacement projections, coupled with the required locations of nuclear materials. Additional scientific research and engineering studies will also be conducted to determine the longer-term viability of the facility, which is designed, by policy, for permanent storage. Retrievability is currently not an option, although access to the facility will be maintained for several decades. The focus of the discussion will be on the scientific and engineering advances made on understanding the natural systems for preventing migration of radionuclides, coupled with new developments in engineered systems in areas such as cask cladding, drip shields, and related materials engineering developments. The coupling of engineered and natural systems is designed to offer safety factors that are several orders of magnitude greater than what is estimated to be necessary

  20. Probabilistic modelling of gas generation in nuclear waste repositories under consideration of new studies performed at the WIPP

    International Nuclear Information System (INIS)

    Niemeyer, M.; Wilhelm, S.; Poppei, J.

    2012-01-01

    Document available in extended abstract form only. The inventory of a nuclear waste repository includes significant amounts of metal and organic matter. Under the prevailing conditions in a repository in a salt formation in contact with water, these materials tend to react and transform under significant gas production. This increases the pressure and potentially leads to an enhanced transport of radio nuclides. Therefore, these phenomena need to be understood and characterized in detail for the assessment of the safety of the repository A modelling code, GASGEN, developed by AF-Consult Switzerland Ltd to predict the evolution of gas production by microbial processes and anaerobic corrosion of metal, was applied at two locations of repositories in salt rock in Germany. Therein, the microbial decomposition of organic waste components is modelled by the sub-processes of denitrification, reduction of sulphates, fermentation and methano-genesis. The models differentiate between highly degradable cellulose and materials of lesser degradability, such as polymers. Gas production through anaerobic corrosion of metal is mainly due to the iron content of the waste. In addition, the precipitation of carbonate from alkaline materials in the inventory (e.g. cement) is considered. The inventories of contained waste, which determine the amount of gas that can be produced, are subject to uncertainties. The rates of the various reactions also depend on numerous factors and are therefore variable. In order to cover this variability, gas production is modelled probabilistically. In this way the behaviour of the gas generation can be estimated together with its bandwidth Figure 1. In addition to the produced amounts of gas, the model calculations also consider the potential of acidification of the fluid enclosed in the repository chambers and the effect of a changing pH-level on the rate of corrosion. Based on results, the effect of a pH-dependent corrosion rate is illustrated and the

  1. 75 FR 8701 - Notice of Settlement Agreement Pertaining to Construction of a Waste Repository on the Settlors...

    Science.gov (United States)

    2010-02-25

    ... Construction of a Waste Repository on the Settlors' Property Pursuant to the Comprehensive Environmental... a Settlement Agreement pertaining to Construction of a Waste Repository on Settlor's Property... waste repository on the property by resolving, liability the settling party might otherwise incur under...

  2. Methods of calculating the post-closure performance of high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. (ed.)

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  3. Methods of calculating the post-closure performance of high-level waste repositories

    International Nuclear Information System (INIS)

    Ross, B.

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs

  4. Reliable predictions of waste performance in a geologic repository

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.

    1985-08-01

    Establishing reliable estimates of long-term performance of a waste repository requires emphasis upon valid theories to predict performance. Predicting rates that radionuclides are released from waste packages cannot rest upon empirical extrapolations of laboratory leach data. Reliable predictions can be based on simple bounding theoretical models, such as solubility-limited bulk-flow, if the assumed parameters are reliably known or defensibly conservative. Wherever possible, performance analysis should proceed beyond simple bounding calculations to obtain more realistic - and usually more favorable - estimates of expected performance. Desire for greater realism must be balanced against increasing uncertainties in prediction and loss of reliability. Theoretical predictions of release rate based on mass-transfer analysis are bounding and the theory can be verified. Postulated repository analogues to simulate laboratory leach experiments introduce arbitrary and fictitious repository parameters and are shown not to agree with well-established theory. 34 refs., 3 figs., 2 tabs

  5. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    This paper discusses the development and safety evaluation of a nuclear waste geologic repository. Scientific understanding dependent upon information from a number of geoscience disciplines is described. A discussion is given on the dynamic use of the information through the different stages. The authors point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure

  6. Natural Elemental Concentrations and Fluxes: Their Use as Indicators of Repository Safety

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bill; Lind, Andy; Savage, Dave; Maul, Philip; Robinson, Peter [EnvirosQuantisci, Melton Mowbray (United Kingdom)

    2002-03-01

    The calculated post-closure performance of a radioactive waste repository is generally quantified in terms of radiological dose or risk to humans, with safety being determined by whether the calculated exposure values are consistent with predetermined target criteria which are deemed to represent acceptable radiological hazards. Despite their general acceptance, however, dose and risk are not perfect measures of repository safety because, in order to calculate them, gross assumptions must be made for future human behaviour patterns. Such predictions clearly become increasingly uncertain as forecasts are made further into the future. As a consequence, there has been a growing interest in developing other ways of assessing repository safety which do not require assumptions to be made for future human behaviour. One proposed assessment method is to use the distributions of naturally-occurring chemical species in the environment, expressed either as concentrations or fluxes of elements, radionuclides or radioactivity, as natural safety indicators which may be compared with the PA predictions of repository releases. Numerous comparisons are possible between the repository and natural systems. The primary objective is to use the natural system to provide context to the hazard presented by the repository releases. Put simply, if it can be demonstrated that the flux to the biosphere from the repository is not significant compared with the natural flux from the geosphere, then its radiological significance should not be of great or priority concern. Natural safety indicators may be quantified on a site specific basis, using information derived from a repository site characterisation programme, and can be compared to the outputs from the associated site specific PAs. Such calculations and comparisons may be very detailed and might examine, for example, the spatial and temporal variations in the distributions and fluxes of naturally-occurring chemical species arising from

  7. Information about activity, status and radiation conditions of Republic radioactive waste repository

    International Nuclear Information System (INIS)

    Saidumarov, P.

    2000-01-01

    All radioactive wastes in the Republic of Uzbekistan are stored in the Republic Radioactive Waste Repository in Parkent district of Tashkent region. In the facility there are 2 tanks for solid radioactive waste, each of 800 m 3 , one of them is full, second is in operation; 2 tanks for liquid radioactive waste each tank of 200 m 3 , both of them are empty; 6 storages, each of 3 m 3 all of them are empty; 3 storages for spent radioactive sources, one of them is full, 2 of them are in operation; 4 storages for high level radioactive waste, each storage of 3.5 m 3 , one of them is in operation, 3 are empty; one sealed storage containing 135 m 3 of concrete blocks with waste from electronic industry. According to conclusions of a few competent examinations RRWR does not cause damage to the environment. Geographic location and technical conditions of the repository are satisfactory. Low deposition of underground water (62 m) excludes penetration of radioisotopes. There were no radiation accidents during the repository operation

  8. The Finnish Experience with the Construction of Onkalo. Licensing of a repository for nuclear waste in Finland

    International Nuclear Information System (INIS)

    Avolahti, Jaana

    2014-01-01

    Pursuant to the Nuclear Energy Act (990/1987), a license holder whose operations result, or have resulted, in the generation of nuclear waste must perform all measures included in the management of nuclear waste and preparation thereof and bear all the costs of nuclear waste management. Under law, spent nuclear fuel is regarded as nuclear waste. According to the amendment made to the Nuclear Energy Act in 1994, nuclear waste generated in Finland must be handled, stored and permanently disposed of in Finland. Nuclear waste generated elsewhere may not be handled, stored and permanently disposed of in Finland. The Finnish nuclear legislation defines spent fuel as nuclear waste and requires that it has to be disposed of in the Finnish bedrock. Over 30 years of systematic R and D has been carried out to develop the repository concept, site selection, technologies, safety assessment and the regulatory approach. Activities are based on the Finnish Government's long term strategies since 1983. The stepwise development and future plans for disposal are presented in Table 1. The licensing procedure for a disposal facility has several steps that are similar to all nuclear facilities in Finland and are defined in Nuclear Energy Act (990/1987) and Decree (161/1988). These licensing steps are: - Decision in Principle (DiP); - Construction License; - Operational License. An Environmental Impact Assessment (EIA) shall be conducted prior to the first authorization step of a major nuclear waste facility. The EIA procedure for the final disposal of spent nuclear fuel from three units of the Olkiluoto nuclear power plant and two units of the Loviisa nuclear power plant was carried out in 1998-1999 and extended to one more unit at Olkiluoto in 2008- 2009. Pursuant to the Nuclear Energy Act, before making the DiP the Government shall ascertain whether the municipality planned as the location of the nuclear facility is in favour of the facility, and ensure that no facts indicating a

  9. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  10. Laymen's demand on an understandable safety analysis for a nuclear waste repository. A communication challenge

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, T L; Thunberg, A M [KASAM - Swedish National Council for Nuclear Waste (Sweden)

    1999-12-01

    This paper is a summary in English of some impressions from a seminar 'Safety Analysis of the Final Disposal of Nuclear Waste. An issue for specialists only or for all of us?' The seminar was held in Swedish and was arranged by KASAM in Nykoeping, Sweden in November 1997. A report in Swedish from the seminar has been published. The seminar was arranged in response to a request from representatives from some of the municipalities concerned by the feasibility studies, which are part of the siting process. They had noticed that it is very hard for people without specialist competence to get an understanding of the safety issues based on the available information. There is a need for a presentation of the safety analysis, which is adopted not only for the need of the safety authorities, which have their own expertise, but also for the need of laymen who are involved in issues about the design, siting and safety of a final repository. Therefore, the seminar was mainly intended for representatives for the citizens (i.e. politicians) from the municipalities involved in the ongoing feasibility studies in Sweden. Some representatives from different environmental organisations opposing final disposal were also invited as well as representatives from the nuclear industry and from the concerned Swedish authorities. The seminar was structured in four sessions The handling of risk in the modern society - risk assessment and risk comparisons; The safety analysis and its role for the citizens; What can actually happen - in our own time and in the future?; Group discussions. In order to give a realistic picture of the intense debate, which at least in some of the municipalities had been very apparent, the organisers had chosen to make SKB and Greenpeace main actors at the seminar, such as they appeared in connection with campaign before the referendum at Malaa. Parts of the seminar were arranged like a hearing, led by a science journalist. The intention with this paper is not to

  11. Laymen's demand on an understandable safety analysis for a nuclear waste repository. A communication challenge

    International Nuclear Information System (INIS)

    Andersson, T.L.; Thunberg, A.M.

    1999-01-01

    This paper is a summary in English of some impressions from a seminar 'Safety Analysis of the Final Disposal of Nuclear Waste. An issue for specialists only or for all of us?' The seminar was held in Swedish and was arranged by KASAM in Nykoeping, Sweden in November 1997. A report in Swedish from the seminar has been published. The seminar was arranged in response to a request from representatives from some of the municipalities concerned by the feasibility studies, which are part of the siting process. They had noticed that it is very hard for people without specialist competence to get an understanding of the safety issues based on the available information. There is a need for a presentation of the safety analysis, which is adopted not only for the need of the safety authorities, which have their own expertise, but also for the need of laymen who are involved in issues about the design, siting and safety of a final repository. Therefore, the seminar was mainly intended for representatives for the citizens (i.e. politicians) from the municipalities involved in the ongoing feasibility studies in Sweden. Some representatives from different environmental organisations opposing final disposal were also invited as well as representatives from the nuclear industry and from the concerned Swedish authorities. The seminar was structured in four sessions The handling of risk in the modern society - risk assessment and risk comparisons; The safety analysis and its role for the citizens; What can actually happen - in our own time and in the future?; Group discussions. In order to give a realistic picture of the intense debate, which at least in some of the municipalities had been very apparent, the organisers had chosen to make SKB and Greenpeace main actors at the seminar, such as they appeared in connection with campaign before the referendum at Malaa. Parts of the seminar were arranged like a hearing, led by a science journalist. The intention with this paper is not to

  12. Scientific, institutional, regulatory, political, and public acceptance of the waste isolation pilot plant transuranic waste repository

    International Nuclear Information System (INIS)

    Eriksson, L.G.

    2000-01-01

    The recent successful certification and opening of a first-of-a-kind, deep geological repository for safe disposal of long-lived, transuranic radioactive waste (TRUW) at the Waste Isolation Pilot Plant (WIPP) site, New Mexico, United States of America (USA), embody both long-standing local and wide-spread, gradually achieved, scientific, institutional, regulatory, political, and public acceptance. The related historical background and development are outlined and the main contributors to the successful siting, certification, and acceptance of the WIPP TRUW repository, which may also serve as a model to success for other radioactive waste disposal programs, are described. (author)

  13. Scientific basis for long-term prediction of waste-form performance under repository conditions

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1982-10-01

    This paper presents an overview of the fundamental principles involved in predicting long-term performance of waste forms by the as-low-as-reasonably-achievable approach. Repository conditions which make up the waste-form environment, the aging of the waste form, the important radionuclides in the waste form, the chemistry of repository fluids, and multicomponent interactions testing were considered in order to describe these principles. The need for confidence limits on the prediction of waste-form performance and ways of achieving a definition of the confidence limits are discussed

  14. Cementitious Materials in Safety Cases for Geological Repositories for Radioactive Waste: Role, Evolution and Interactions. A Workshop organised by the OECD/NEA Integration Group for the Safety Case and hosted by ONDRAF/NIRAS. Cementitious materials in safety cases for radioactive waste: role, evolution and interactions

    International Nuclear Information System (INIS)

    2012-01-01

    The OECD Nuclear Energy Agency (NEA) Integration Group for the Safety Case (IGSC) organised a workshop to assess current understanding on the use of cementitious materials in radioactive waste disposal. The workshop was hosted by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Ondraf/Niras), in Brussels, Belgium on 17-19 November 2009. The workshop brought together a wide range of people involved in supporting safety case development and having an interest in cementitious materials: namely, cement and concrete experts, repository designers, scientists, safety assessors, disposal programme managers and regulators. The workshop was designed primarily to consider issues relevant to the post-closure safety of radioactive waste disposal, but also addressed some related operational issues, such as cementitious barrier emplacement. Where relevant, information on cementitious materials from analogous natural and anthropogenic systems was also considered. This report provides a synthesis of the workshop, and summarises its main results and findings. The structure of this report follows the workshop agenda: - Section 2 summarises plenary and working group discussions on the uses, functions and evolution of cementitious materials in geological disposal, and highlights key aspects and discussions points. - Section 3 summarises plenary and working group discussions on interactions of cementitious materials with other disposal system components, and highlights key aspects and discussions points. - Section 4 summarises the workshop session on the integration of issues related to cementitious materials using the safety case. - Section 5 presents the main conclusions from the workshop. - Section 6 contains a list of references. - Appendix A presents the workshop agenda. - Appendix B contains the abstracts and, where provided, technical papers supporting oral presentations at the workshop. - Appendix C contains the abstracts and, where provided, technical

  15. Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock

    Science.gov (United States)

    Hadgu, T.; Gomez, S. P.; Matteo, E. N.

    2017-12-01

    Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  16. An approach for acquiring data for description of diffusion in safety assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    Vokal, A.; Vopalka, D.; Vecernik, P.; Institute of Chemical Technology in Prague, Prague

    2010-01-01

    Repositories for radioactive wastes are sited in the environment with very low permeability. One of the most important processes leading to the release of radionuclides to the environment is therefore diffusion of radionuclides in both natural and engineered barriers. Data for its description are crucial for the results of safety assessment of these repositories. They are obtained usually by comparison of the results of laboratory diffusion experiments with analytical and/or numerical solution of the diffusion equation with specified initial and boundary conditions. Results of the through-diffusion experiments are obviously evaluated by the 'time-lag' method that needs for most of sorbing species unfortunately very long time of the experiment duration. In this paper a modified approach is proposed for the evaluation of diffusion data for safety assessment, which decreases the influence of propagation uncertainties using incorrect data and reduces time for acquiring data for safety assessment. This approach consist in the following steps: (i) experimental measurement of material diffusion parameters under various conditions using non-sorbing tritiated water or chlorine for which it is easy to reach conditions under which the 'time-lag' method of evaluation of the result of the through-diffusion experiment is applicable - this step provides well established diffusion characteristics of materials for neutral species and anions, then (ii) to evaluate sorption isotherms for sorbing radionuclides from batch experiments under conditions corresponding to composition of material pore water, (iii) to assess the values of effective and apparent diffusion coefficients for sorbing radionuclides from well-defined diffusion coefficients of species in free water and (iv) to verify the obtained results using relatively short-term diffusion experiments with sorbing radionuclides, which will be evaluated using the time dependent decrease of the concentration in the input reservoir of

  17. Site selection for deep geologic repositories - Consequences for society, economy and environment

    International Nuclear Information System (INIS)

    2010-03-01

    In a few years, Switzerland will make the decision regarding site selection for geological underground repositories for the storage of radioactive wastes. Besides the safety issue, many citizens are interested in how such a repository will affect environment, economy and society in the selected site's region. This brochure summarizes the results of many studies on the socio-economic impacts of nuclear waste repositories. Radioactive wastes must be stored in such a way that mankind and environment are safely protected for a long period of time. How this goal may be achieved, is already known: geologic deep repositories warrant long-term safety. For the oncoming years in Switzerland the question is where the repository will be built. The search for an appropriate site for a repository in the proposed regions will launch discussions. Within the participative framework the regions may bring their requests. The demonstration of the safety of potential repository sites has the highest priority in the selection process. In the third procedural step additional rock investigations will be made. The socio-economic studies and the experience with existing plants show that radioactive waste management plants can be built and operated in good agreement with environmental requirements. The radioactive wastes in a deep underground repository are stored many hundred meters below the Earth's surface. There, they are isolated from our vital space. Technical barriers and the surrounding dense rock confinement prevent the release of radioactive materials into the environment. A deep repository has positive consequences for the regional economy. It increases trade and value creation and creates work places. The socio-economic impacts practically extend over one century, but strongly vary with time; they are the largest during the building period. High life quality and a positive population development in the selected site region are compatible with a deep repository. A fair and

  18. Application of sulfur concrete for solidification of radioactive wastes and building of repositories

    International Nuclear Information System (INIS)

    Cholerzynski, A.; Tomczak, W.; Switalski, J.

    2000-01-01

    The application of sulfur concrete as solidification material for radioactive wastes and as building material used in repositories have been presented. Their high shear strength, low level of leaching, and high radiation resistance decide of positive recommendation of such material for wide use in radioactive waste treatment processes and repositories building

  19. Nuclear Waste State of the Art Report 2010 - challenges for the final repository programme

    International Nuclear Information System (INIS)

    2010-01-01

    In this year's report the Council calls for that SKB makes more studies of how the copper corrosion affects the long-term safety. SKB is criticized for not sufficiently set clear requirements for the bentonite clay, which should surround the copper canisters. Internationally possibility to take back spent fuel from the repository is one highly topical issue. Retrieval of waste for transmutation and future reuse of spent nuclear fuel should be discussed also in Sweden. It is estimated that SKB submit an application within one year to dispose of spent nuclear fuel in the 500 meter deep repository in the bedrock at Oesthammar. The mountain is the natural barrier between the nuclear fuel and the environment, and in addition to this, spent fuel is surrounded by two technical barriers: copper canisters and bentonite clay. The corrosion resistance of the copper canisters has recently been challenged by research from the Royal Institute of Technology, and this has created uncertainty over copper canister as a suitable barrier. The Council believes that SKB should actively contribute to investigate the issue of corrosion of copper in pure, oxygen-free water in a scientifically unassailable way, and that its potential effect is determined. Bentonite clay is the subject of intensive development work in SKB's new bentonite-laboratory, but the Council believes that SKB must set clearer requirements for bentonite clay quality, particularly with regard to thresholds for the contaminants that may occur. The question of what is possible and desirable in order retrieve the spent fuel from the repository is international discussed. Retrievability before closure is part of the safety requirements and is not controversial. Retrievability after sealing on the other hand, is both a controversial and complex issue, especially from a civil law perspective. New technology can make high-level waste as an interesting energy source, or use of the Partitioning and Transmutation can make the

  20. Monitoring of IL/HL, LL waste repository in a clay formation: objectives, technical know-how, implementation strategy

    International Nuclear Information System (INIS)

    Grevoz, Arnaud; Mayer, Stefan; Dubois, Jean-Philippe

    2005-01-01

    implementation into long-term evolution models. This type of surveillance should not be considered as a way to compensate for the lack of knowledge at a previous stage. Indeed, enough confidence in models and parameters contributing to a safety case will have been acquired, for instance in a URL, prior to authorisation and operation of a repository. Such prior knowledge, however, cannot be tested on the full pre-closure time scale or length scale of a repository. The observation of host rock and repository component evolution provides information to stakeholders throughout the pre closure period. Such added knowledge may contribute to improve stakeholder confidence in the process. It is taken into account to support the decisions pertaining to a step-wise, reversible repository management. For example, it may support a decision for disposal cell closure, it allows evaluating the feasibility of waste retrieval at successive stages of a stepwise closure, and it may contribute to update the design of disposal cells or access drifts yet to be built. Monitoring activities are subject to repository-specific constraints such as: materials must not interfere with operational safety; material must not reduce long term safety significantly; materials must operate under expected environmental conditions. The establishment of monitoring activities will draw on similarities with other systems that are subject to monitoring activities (e.g. monitoring of concrete and clayey structures in dams, steel structures in pipelines, railway tunnels, etc.). The key lessons from those activities point to the importance of the correct interpretation of measurements and the need for redundancy, as well as for pre-testing and careful installation of monitoring equipment. The selection criteria for adequate monitoring methods include safety, robustness and ease of integration in an automatic data acquisition network. Andra outlined a potential and preliminary monitoring strategy, as part of a repository

  1. Safety and performance indicators for repositories in salt and clay formations

    International Nuclear Information System (INIS)

    Wolf, Jens; Ruebel, Andre; Noseck, Ulrich; Becker, Dirk

    2008-07-01

    The GRS (Gesellschaft fuer Reaktorsicherheit) study aims to the identification of suitable indicators for repositories in salt and clay formation. It is not intended to compare the two formations with respect to the safe disposal of radioactive waste. A first set of safety and performance indicators for both host rocks has been derived on the basis of results of the SPIN project. Reference values for the safety indicators have been determined. The suitability of the indicators and their significance for different time frames Is demonstrated by means of deterministic model calculations and external parameter variations of previous studies. The safety indicators considered in the report are the effective dose rate (Sv/a), the radiotoxicity concentration in the biosphere water (Sv/m 3 ) and the radiotoxicity flux from the geosphere (overlying rock) (Sv/a). The performance indicators considered in the study are the radiotoxicity inventory in different compartments (S), radiotoxicity fluxes from compartments and the integrated radiotoxicity fluxes from compartments (Sv).

  2. Engineering solution for the backfilling and sealing of radioactive waste repositories

    International Nuclear Information System (INIS)

    Jorda, M.; Gouvenot, D.; Bonne, A.; Lees, T.P.; Schmidt, M.

    1990-01-01

    To ensure the safety of radioactive waste deep disposal, backfilling and sealing materials (engineered barriers) have to be used to fill residual voids. For granite medium, stress is put on emplacement techniques for cement- and clay-based materials, including in-situ validation. For clay medium, mined repository and deep boreholes drilled from the surface are considered. In the case of the first solution, the thermomechanical behaviour of a clay backfill is studied. In the same way, backfill made of excavated crushed salt is considered and thermomechanical properties evaluated by means of laboratory tests and in-situ experiments. Finally, basic works on quality assurance procedures and historic concretes behaviour are reported

  3. Operational safety and radiation protection considerations in designing an HLW repository in Germany

    International Nuclear Information System (INIS)

    Filbert, W.; Kreienmeyer, M.; Poehler, M.; Niehues, N.

    2008-01-01

    In Germany the reference concept for disposal of heat generating radioactive waste considers emplacing canisters with vitrified waste in deep vertical boreholes drilled from the drifts of a repository mine in salt at a depth of 870 m. Spent fuel is to be disposed of in self-shielding POLLUX casks in horizontal drifts. An optimized disposal concept anticipates emplacing unshielded canisters with vitrified HLW and canisters containing the fuel rods of 3 PWR or 9 BWR fuel assemblies in boreholes with a diameter of 60 cm and a depth of up to 300 m.. In all cases the void space between POLLUX cask and drifts and canisters and borehole wall will be backfilled with crushed salt. (1) Operational Safety: Based on a detailed description of all underground disposal operation steps, the possible impacts on the disposal operations were analysed and the need for further studies determined. The disposal operation steps comprise e.g. rail bound transport from the shaft to the emplacement drift and emplacement process itself. As possible impacts the following occurrences were considered: ventilation failure, power supply failure, rock mechanics impact including cross-section convergence, irregular floor uplift and rock fall, brine and natural gas intrusion, derailing of transport carts and finally internal fire. (2) Radiation Protection: According to the German Atomic Energy Act (AtG), the design, construction and operation of a nuclear site like a final repository has to be licensed by the responsible authority. The Radiological Protection Ordinance and further guidelines i.e. concerning the emission and immission of released radioactive nuclides or the risk analysis of possible failure, build the basis for the licensing procedures. To ensure adequate protection against undue radiation exposure the repository is divided into different radiological protection areas. Generally, the handling of shielded waste packages above und under ground (including all the pathway of transport and

  4. Safety functions and safety function indicators - key elements in SKB'S methodology for assessing long-term safety of a KBS-3 repository

    International Nuclear Information System (INIS)

    Hedin, A.

    2008-01-01

    The application of so called safety function indicators in SKB safety assessment of a KBS-3 repository for spent nuclear fuel is presented. Isolation and retardation are the two main safety functions of the KBS-3 concept. In order to quantitatively evaluate safety on a sub-system level, these functions need to be differentiated, associated with quantitative measures and, where possible, with quantitative criteria relating to the fulfillment of the safety functions. A safety function is defined as a role through which a repository component contributes to safety. A safety function indicator is a measurable or calculable property of a repository component that allows quantitative evaluation of a safety function. A safety function indicator criterion is a quantitative limit such that if the criterion is fulfilled, the corresponding safety function is upheld. The safety functions and their associated indicators and criteria developed for the KBS-3 repository are primarily related to the isolating potential and to physical states of the canister and the clay buffer surrounding the canister. They are thus not directly related to release rates of radionuclides. The paper also describes how the concepts introduced i) aid in focussing the assessment on critical, safety related issues, ii) provide a framework for the accounting of safety throughout the different time frames of the assessment and iii) provide key information in the selection of scenarios for the safety assessment. (author)

  5. Operational procedures for receiving, packaging, emplacing, and retrieving high-level and transuranic waste in a geologic repository in TUFF

    International Nuclear Information System (INIS)

    Dennis, A.W.; Mulkin, R.

    1984-01-01

    The Nevada Nuclear Waste Storage Investigations Project, directed by the Nevada Operations Office of the Department of Energy, is currently developing conceptual designs for a commercial nuclear waste repository. In this paper, the preliminary repository operating plans are identified and the proposed repository waste inventory is discussed. The receipt rates for truck and rail car shipments of waste are determined as are the required repository waste emplacement rates

  6. Siting regions for deep geological repositories. Nagra’s proposals for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the selection of sites for deep geological repositories for nuclear wastes in Switzerland. The procedure proposed for the selection process is explained. The four sites for possible repositories of high-level radioactive waste as well as for low and intermediate-level wastes are described and rated with respect to the various safety factors involved. The reasons for the long-term safety measures proposed and the geological barriers involved are discussed. The four proposals for depository sites are looked at in more detail. The paper is well illustrated with several diagrams and tables

  7. Constructibility issues associated with a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Turner, D.A.

    1981-01-01

    This report contains the text and slide reproductions of a speech on nuclear waste disposal in basalt. The presentation addresses the layout of repository access shafts and subsurface facilities resulting from the conceptual design of a nuclear repository in basalt. The constructibility issues that must be resolved prior to construction are described

  8. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    International Nuclear Information System (INIS)

    Apps, J.A.

    1995-01-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100 degrees C and could reach 250 degrees C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields

  9. Geochemical modeling of the nuclear-waste repository system. A status report

    International Nuclear Information System (INIS)

    Deutsch, W.J.

    1980-12-01

    The primary objective of the geochemical modeling task is to develop an understanding of the waste-repository geochemical system and provide a valuable tool for estimating future states of that system. There currently exists a variety of computer codes which can be used in geochemical modeling studies. Some available codes contain the framework for simulating a natural chemical system and estimating, within limits, the response of that system to environmental changes. By data-base enhancement and code development, this modeling technique can be even more usefully applied to a nuclear-waste repository. In particular, thermodynamic data on elements not presently in the data base but identified as being of particular hazard in the waste-repository system, need to be incorporated into the code to estimate the near-field as well as the far-field reactions during a hypothetical breach. A reaction-path-simulation code, which estimates the products of specific rock/water reactions, has been tested using basalt and ground water. Results show that the mass-transfer capabilities of the code will be useful in chemical-evolution studies and scenario analyses. The purpose of this report is to explain the status of geochemical modeling as it currently applies to the chemical system of a hypothetical nuclear-waste repository in basalt and to present the plan proposed for further developmet and application

  10. An innovative 3-D numerical modelling procedure for simulating repository-scale excavations in rock - SAFETI

    Energy Technology Data Exchange (ETDEWEB)

    Young, R. P.; Collins, D.; Hazzard, J.; Heath, A. [Department of Earth Sciences, Liverpool University, 4 Brownlow street, UK-0 L69 3GP Liverpool (United Kingdom); Pettitt, W.; Baker, C. [Applied Seismology Consultants LTD, 10 Belmont, Shropshire, UK-S41 ITE Shrewsbury (United Kingdom); Billaux, D.; Cundall, P.; Potyondy, D.; Dedecker, F. [Itasca Consultants S.A., Centre Scientifique A. Moiroux, 64, chemin des Mouilles, F69130 Ecully (France); Svemar, C. [Svensk Karnbranslemantering AB, SKB, Aspo Hard Rock Laboratory, PL 300, S-57295 Figeholm (Sweden); Lebon, P. [ANDRA, Parc de la Croix Blanche, 7, rue Jean Monnet, F-92298 Chatenay-Malabry (France)

    2004-07-01

    This paper presents current results from work performed within the European Commission project SAFETI. The main objective of SAFETI is to develop and test an innovative 3D numerical modelling procedure that will enable the 3-D simulation of nuclear waste repositories in rock. The modelling code is called AC/DC (Adaptive Continuum/ Dis-Continuum) and is partially based on Itasca Consulting Group's Particle Flow Code (PFC). Results are presented from the laboratory validation study where algorithms and procedures have been developed and tested to allow accurate 'Models for Rock' to be produced. Preliminary results are also presented on the use of AC/DC with parallel processors and adaptive logic. During the final year of the project a detailed model of the Prototype Repository Experiment at SKB's Hard Rock Laboratory will be produced using up to 128 processors on the parallel super computing facility at Liverpool University. (authors)

  11. The procedure of alternative site selection within the report of the study group on the radioactive waste final repository selection process (AKEnd)

    International Nuclear Information System (INIS)

    Brenner, M.

    2005-01-01

    The paper discusses the results of the report of the study group on the radioactive waste final repository selection process with respect to the alternative site selection procedure. Key points of the report are the long-term safety, the alternativity of sites and the concept of one repository. The critique on this report is focussed on the topics site selection and licensing procedures, civil participation, the factor time and the question of cost

  12. Safety of radioactive waste management. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2000-01-01

    The principal objective of the Conference was to enable members of the scientific community and representatives of facilities which produce radioactive waste, of bodies responsible for radioactive waste management, of nuclear regulatory bodies and of public interest groups, among others, to engage in an open dialogue. The open dialogue which took place may, by providing policy and decision makers with a basis for political action, prove to be an important step in the search for the international consensus so essential in the area of radioactive waste management. The relevant policies and activities of the IAEA, the European Commission, the OECD Nuclear Energy Agency and the World Health Organization were presented. The evolution, under the aegis of the IAEA, of a de facto international radiation and nuclear safety regime was noted. In the area of radioactive waste safety, this regime consists of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, the body of international waste safety standards established by the IAEA and other international organizations, and the IAEA's mechanisms for providing for the application of those standards. The topics covered by the Conference were: Current international co-operative efforts; Recommendations from the International Commission on Radiological Protection; Recommendations from the International Nuclear Safety Advisory Group; Conclusions and recommendations of the International Symposium on the Restoration of Environments with Radioactive Residues; Siting of radioactive waste management facilities; Participation of interested parties; Legislative and general radiation safety aspects; Removal of material from regulatory control (exclusion, exemption and clearance); Predisposal management (dilution, recycling, transmutation, etc.); Near surface disposal; Residues from the mining and processing of radioactive ores; Long term institutional control; Geological disposal

  13. Gas generation and release from the VLJ repository

    International Nuclear Information System (INIS)

    Vieno, T.; Valkiainen, M.

    1992-01-01

    The VLJ repository is an underground disposal facility located at the Olkiluoto nuclear power plant site on the west coast of Finland. The repository will house low (LLW) and intermediate level radioactive wastes (MLW) from the TVO I and TVO II BWR's and the spent fuel interim store at Olkiluoto. The disposal rooms have been excavated at a depth of 60... 100 meters in the crystalline bedrock. They consist of two rock silos - one for the LLW and the other for MLW. Low level waste is usually packed in steel drums and steel boxes. Medium level wastes consists of bituminized resins in steel drums. Wastes packages are emplaced in concrete boxes before transportation into the repository. Low level wastes are emplaced in the shotcreted rock silo where no backfilling will used. For medium level wastes, a separate silo of reinforced concrete has been constructed inside the rock silo. No backfilling will be used inside the concrete silo and an opening will be made in the lid of the concrete silo for gas release. The microbial degradation of low level wastes is the principle gas generation process in the repository. The gas transport though the bedrock covering the repository is evaluated with the help of ground water flow study. It is recommended that the shotcrete lining on the ceiling of the repository cavern is partly removed before the final sealing of the repository. Provided that dissipation of gases from the disposal cavern into the rock can been assured, the overall effects of gas generation on the long-term safety of the repository are insignificant. 10 refs., 6 figs

  14. On the Durability of Nuclear Waste Forms from the Perspective of Long-Term Geologic Repository Performance

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2013-12-01

    Full Text Available High solid/water ratios and slow water percolation cause the water in a repository to quickly (on a repository time scale reach radionuclide solubility controlled by the equilibrium with alteration products; the total release of radionuclides then becomes insensitive to the dissolution rates of primary waste forms. It is therefore suggested that future waste form development be focused on conditioning waste forms or repository environments to minimize radionuclide solubility, rather than on marginally improving the durability of primary waste forms.

  15. Radioactive waste. Policy and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L E.J. [UKAEA, Harwell. Atomic Energy Research Establishment

    1979-01-01

    The subject is covered in sections as follows: general introduction (volume of waste arising from 1 GW/(e) energy per year); characteristics of highly active waste (output of some important fission products from an AGR, decay of activity with time for PWR and CFR wastes, toxic potential versus time for magnox and fast reactor wastes, toxic potential of unreprocessed magnox fuel); general principles of waste disposal (incorporation of waste into solid matrices, glass containers); design of stores and repositories (heat dissipation, siting and design, packing materials, size of repositories); the geologic barrier (location of repositories, safety analysis of repositories); the option of ocean disposal; status of work and present programme (vitrification, repository siting and design); conclusions.

  16. Architecture Design Issues of a Reversible Deep Geological Repository for HL and IL/LL Waste

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.; Londe, L.; Poisson, J.B. [Andra (France)

    2009-06-15

    In accordance with the Planning Act of 28 June 2006, the French National Radioactive Waste Management Agency (Agence nationale pour la gestion des dechets radioactifs - ANDRA) is currently investigating the possibility of disposing of high-level (HL) and intermediate-level long-lived (IL/LL) radioactive waste in a deep geological formation. The waste inventory intended for geological disposal is significant and represents approximately 80,000 m{sup 3} of primary waste. The required drifts and cells for such disposal are developing in a long and complex network, with plans calling for a total of about 300 km of drifts to be opened over the next century. This paper describes various issues relating to the architecture design and the way they are integrated. Long-term safety is at the basis of the major principles not only for dividing the different waste categories into separate disposal areas, but also for identifying the relevant constraints involving the topology of the network (fragmentation of disposal areas into modules, dead-end architecture) and the orientation of certain structures. In the case of exothermal waste, since the control over the phenomenological evolution also leads to selecting a thermal criterion in the geological layer in contact with the waste, there is an impact on the density of the repository and, consequently, on its architecture. Operational security and safety issues are reflected in ventilation needs and in personnel-evacuation requirements in case of fire, both of which require additional intersections and drifts. The section of drifts is also conditioned often by those security aspects. Nuclear zoning may also induce requirements for special structures having a potential impact on the architecture. Operation, taken into its broader sense encompassing construction and nuclear activities, imposes its own share of constraints quite independently from any security or safety considerations. Impacted areas include structure slopes, the

  17. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008

    International Nuclear Information System (INIS)

    2008-11-01

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  18. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Volume I. Conceptual design report

    International Nuclear Information System (INIS)

    1978-12-01

    In February 1976, the Energy Research and Development Administration (ERDA), now the Department of Energy (DOE), established a National Waste Terminal Storage (NWTS) program. As a part of this program, two parallel conceptual design efforts were initiated in January 1977. One was for deep geologic storage, in domed salt, of high level waste resulting from the reprocessing of spent fuel. The other was for deep geologic storage of unreprocessed spent fuel in bedded salt. These two concepts are identified as NWTS Repository 1 and Repository 2, respectively. Repository 2 (NWTSR2) is the concept which is covered by this Conceptual Design Report. Volume I of the conceptual design report contains the following information: physical description of the report; project purpose and justification; principal safety, fire, and health hazards; environmental impact considerations; quality assurance considerations; assessment of operational interfaces; assessment of research and development interfaces; project schedule; proposed method of accomplishment; summary cost estimate; and outline specifications. The conceptual design for Repository 2 was developed in sufficient detail to permit determination of scope, engineering feasibility, schedule, and cost estimates, all of which are necessary for planning and budgeting the project

  19. Radiation doses from the transport of radioactive waste to a future repository in Denmark. A model study

    International Nuclear Information System (INIS)

    2011-05-01

    The radiation doses modelled for transport of radioactive waste to a future repository in Denmark, demonstrates that the risk associated with road and sea transport should not limit the future selection of a location of the repository. From a safety perspective both road and sea transport seem to be feasible modes of transport. Although the modelling in most cases is performed conservatively, the modelled doses suggest that both transport methods can be carried out well within the national dose limits. Additionally, the dose levels associated with the modelled accident scenarios are low and the scenarios are thus found to be acceptable taken the related probabilities into account. (LN)

  20. Radiation doses from the transport of radioactive waste to a future repository in Denmark. A model study

    Energy Technology Data Exchange (ETDEWEB)

    2011-05-15

    The radiation doses modelled for transport of radioactive waste to a future repository in Denmark, demonstrates that the risk associated with road and sea transport should not limit the future selection of a location of the repository. From a safety perspective both road and sea transport seem to be feasible modes of transport. Although the modelling in most cases is performed conservatively, the modelled doses suggest that both transport methods can be carried out well within the national dose limits. Additionally, the dose levels associated with the modelled accident scenarios are low and the scenarios are thus found to be acceptable taken the related probabilities into account. (LN)

  1. Regulatory status on the safety assessment of a HLW repository in other countries

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Hwang, Yong Soo

    2008-12-01

    To construct a HLW repository, it is essential to meet the requirements on the regulation for a deep geological disposal. Even if the construction of a HLW repository is determined positively, technical standards which assert the performance of a repository will be needed. Among various technical standards, safety assessment based on the repository evolution in the future will play an important role in the licensing process. The foreign countries' technical standards on the safety assessment of a HLW repository may be an indicator to carry out the R and D activities on geological disposal effectively. In this report, assessment period, limit of radiation dose and uncertainty related to the safety assessment are investigated and analyzed in detail. Especially, the technical reviews of USA regulation bodies seems to be reasonable in the point of the intrinsic attribute of safety assessment

  2. International Conference on Geological Repositories 2016. Conference Synthesis, 7-9 December 2016, Paris, France

    International Nuclear Information System (INIS)

    Walke, Russell; Kwong, Gloria; )

    2017-01-01

    Worldwide consensus exists within the international community that geological repositories can provide the necessary long-term safety and security to isolate long-lived radioactive waste from the human environment over long timescales. Such repositories are also feasible to construct using current technologies. However, proving the technical merits and safety of repositories, while satisfying societal and political requirements, has been a challenge in many countries. Building upon the success of previous conferences held in Denver (1999), Stockholm (2003), Berne (2007) and Toronto (2012), the ICGR 2016 brought together high-level decision makers from regulatory and local government bodies, waste management organisations and public stakeholder communities to review current perspectives of geological repository development. This publication provides a synthesis of the 2016 conference on continued engagement and safe implementation of repositories, which was designed to promote information and experience sharing, particularly in the development of polices and regulatory frameworks. Repository safety, and the planning and implementation of repository programs with societal involvement, as well as ongoing work within different international organisations, were also addressed at the conference. (authors)

  3. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  4. Site investigations, design, construction, operation, shutdown and surveillance of repositories for low- and intermediate-level radioactive wastes in rock cavities

    International Nuclear Information System (INIS)

    1984-01-01

    The report provides an overview and technical guidelines for considerations and for activities to be undertaken for safety assessment, site investigations, design, construction, operation, shutdown and surveillance of repositories for the disposal of low- and intermediate-level radioactive wastes in rock cavities. A generalized sequence of investigations is introduced which proceeds through region and site selection to the stage where the site is confirmed by detailed geoscientific investigations as being suitable for a waste repository. The different procedures and somewhat specific investigative needs with respect to existing mines are dealt with separately. General design, as well as specific requirements with respect to the different stages of design and construction, are dealt with. A review of activities related to the operational and post-operational stages of repositories in rock cavities is presented. The report describes in general terms the procedures related to different stages of disposal operation; also the conditions for shutdown together with essential shutdown and sealing activities and the related safety assessment requirements. Guidance is also given on the surveillance programme which will allow for inspection, testing, maintenance and security of a disposal facility during the operational phase, as well as for the post-operational stage for periods determined as necessary by the national authorities

  5. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  6. 500 year concrete for a radioactive waste repository

    International Nuclear Information System (INIS)

    Philipose, K.E.

    1988-03-01

    The IRUS (Intrusion resistant underground structure) repository planned at Chalk River for the belowground disposal of low level radioactive waste relies on the durability of concrete for the required 500 year service life. A research program for the IRUS repository to design a durable concrete and also to predict its longevity under the repository environment is in progress. The methodology involves the identification of major degradation agents, and the assessment of the rate of diffusion of corrosive ions and/or the rate of advancement of the reaction front into the concrete. Accelerated test methods are being used on laboratory specimens in conjunction with extrapolation procedures to predict long-term durability from short-term data. The inherent limitations are also examined

  7. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Rozental, J.J.; Tranjan Filho, A.

    2001-01-01

    As it is well known, an accident with a teletherapy source made of 137 CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10 3 m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10 3 m 3 of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10 5 m 2 . The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The problem of a fixed, or near

  8. Contributions to safety assessment of the radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Ionescu, Alice; Deaconu, Viorel

    2003-01-01

    The paper presents the progress in the frame of the safety assessments related to the potential near-surface Romanian National Repository, as well as to the geological repository in salt rock for CANDU spent fuel. The safety assessment of the near-surface repository follows the ISAM methodology. The repository design consists of a vault, in which the wastes resulted from the operation and decommissioning of the CANDU reactor from Cernavoda Nuclear Power Plant (CNPP) are disposed off. The repository is located nearby the CNPP. A layered unsaturated zone overlying a variable thickness confined aquifer, which consists of barremian limestones, characterizes the site. The interface with biosphere is considered to be the Danube-Black Sea Channel. The paper summarizes the results of the post-closure safety assessment for the design scenario and the prediction of the radionuclide release in the liquid phase. As to the final disposal of the CANDU spent fuel from the CNPP, we assumed that the repository is built in a salt dome. Romania has important salt formations, some of them being potentially suitable for hosting a repository. Up to now there are no detailed characterization studies of such formations in Romania, from the point of view of the suitability as a repository site. Therefore, generic data for hydrogeological characterization of the site have been used, coming from the Gorleben site in Germany. The spent fuel containers are disposed off in galleries, somewhere 500 m bellow the cap rock of the salt dome. The temporal loading scheme of the repository is based on a sequential filing of the disposal fields, with a delay of 10 years between filling of two neighbouring disposal areas. The disposal fields are accessed via a shaft. After filling of a disposal gallery, the remaining space is backfilled with salt powder and the gallery is sealed with compacted salt bricks. The access galleries are also backfilled and sealed. Only the reference scenario is considered, in

  9. Natural Elemental Concentrations and Fluxes: Their Use as Indicators of Repository Safety

    International Nuclear Information System (INIS)

    Miller, Bill; Lind, Andy; Savage, Dave; Maul, Philip; Robinson, Peter

    2002-03-01

    The calculated post-closure performance of a radioactive waste repository is generally quantified in terms of radiological dose or risk to humans, with safety being determined by whether the calculated exposure values are consistent with predetermined target criteria which are deemed to represent acceptable radiological hazards. Despite their general acceptance, however, dose and risk are not perfect measures of repository safety because, in order to calculate them, gross assumptions must be made for future human behaviour patterns. Such predictions clearly become increasingly uncertain as forecasts are made further into the future. As a consequence, there has been a growing interest in developing other ways of assessing repository safety which do not require assumptions to be made for future human behaviour. One proposed assessment method is to use the distributions of naturally-occurring chemical species in the environment, expressed either as concentrations or fluxes of elements, radionuclides or radioactivity, as natural safety indicators which may be compared with the PA predictions of repository releases. Numerous comparisons are possible between the repository and natural systems. The primary objective is to use the natural system to provide context to the hazard presented by the repository releases. Put simply, if it can be demonstrated that the flux to the biosphere from the repository is not significant compared with the natural flux from the geosphere, then its radiological significance should not be of great or priority concern. Natural safety indicators may be quantified on a site specific basis, using information derived from a repository site characterisation programme, and can be compared to the outputs from the associated site specific PAs. Such calculations and comparisons may be very detailed and might examine, for example, the spatial and temporal variations in the distributions and fluxes of naturally-occurring chemical species arising from

  10. Neotectonic movement feature in preselection area for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Huang Xianfang; Gao Yang; He Jianguo; Li Jianzhong; Gao Honglei; Xu Guoqing

    2010-01-01

    Neotectonic activity intensity is an important criteria for evaluating high level radioactive waste repository. The guiding ideology, methods and application of neotectonic study are elaborated in the paper. According to comparison research between the south and north part of east Tianshan area, the south part of east Tianshan is regarded as relative stable or relative weak in neotectonic movement in Neogene period and was selected as preselection area for high level radioactive waste repository. (authors)

  11. Sugeno integral ranking of release scenarios in a low and intermediate waste repository

    International Nuclear Information System (INIS)

    Kim, S. Ho; Kim, Tae Woon; Ha, Jae Joo

    2004-01-01

    In the present study, a multi criteria decision-making (MCDM) problem of ranking of important radionuclide release scenarios in a low and intermediate radioactive waste repository is to treat on the basis of λ-fuzzy measures and Sugeno integral. Ranking of important scenarios can lead to the provision of more effective safety measure in a design stage of the repository. The ranking is determined by a relative degree of appropriateness of scenario alternatives. To demonstrate a validation of the proposed approach to ranking of release scenarios, results of the previous AHP study are used and compared with them of the present SIAHP approach. Since the AHP approach uses importance weight based on additive probability measures, the interaction among criteria is ignored. The comparison of scenarios ranking obtained from these two approaches enables us to figure out the effect of different models for interaction among criteria

  12. Learning from nuclear waste repository design: the ground-control plan

    International Nuclear Information System (INIS)

    Schmidt, B.

    1988-01-01

    At present, under a U.S. Department of Energy program, three repositories for commercial spent fuel-in salt, tuff and basalt-are in the phase of site characterization and conceptual design, and one pilot project for defense waste in salt is under development. Because of strict quality assurance requirements throughout design and construction, and the need to predict and ascertain in advance the satisfactory performance of the underground openings, underground openings in the unusual circumstances of the repository environment have been analysed. This will lead to an improved understanding of rock behavior and improved methods of underground analysis and design. A formalized ground control plan was developed, the principles of which may be applied to other types of projects. This paper summarizes the status of underground design and construction for nuclear waste repositories and presents some details of the ground control plan and its individual elements. (author)

  13. Waste isolation safety assessment program

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.

    1979-05-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE), through the National Waste Terminal Storage (NWTS) Program, is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Among the analyses required for isolation system evaluation is the detailed assessment of the post-closure performance of nuclear waste repositories in geologic formations. This assessment is essential, since it is concerned with aspects of the nuclear power program which previously have not been addressed. Specifically, the nature of the isolation systems (e.g., involving breach scenarios and transport through the geosphere), and the time-scales necessary for isolation, dictate the development, demonstration and application of novel assessment capabilities. The assessment methodology needs to be thorough, flexible, objective, and scientifically defensible. Further, the data utilized must be accurate, documented, reproducible, and based on sound scientific principles

  14. Spent fuel and high level waste: Chemical durability and performance under simulated repository conditions. Results of a coordinated research project 1998-2004. Part 1: Contributions by participants in the co-ordinated research project on chemical durability and performance assessment under simulated repository conditions

    International Nuclear Information System (INIS)

    2007-07-01

    This publication contains the results of an IAEA Coordinated Research Project (CRP). It provides a basis for understanding the potential interactions of waste form and repository environment, which is necessary for the development of the design and safety case for deep disposal. Types of high level waste matrices investigated include spent fuel, glasses and ceramics. Of particular interest are the experimental results pertaining to ceramic forms such as SYNROC. This publication also outlines important areas for future work, namely, standardized, collaborative experimental protocols for package-release studies, structured development and calibration of predictive models linking the performance of packaged waste and the repository environment, and studies of the long term behaviour of the wastes, including active waste samples. It comprises 15 contributions of the participants on the Coordinated Research Project which are indexed individually.

  15. Alternative configurations for the waste-handling building at the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1990-08-01

    Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared

  16. A logistic and cost model for the transport of radioactive waste to a repository

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Gray, I.L.S.; Manville, W.D.

    1997-01-01

    UK Nirex Ltd is planning a deep repository for intermediate level radioactive waste, and also some low level waste. Part of this work is to develop a transport system to bring the packaged waste to the repository from nuclear industry sites across the United Kingdom. To assess the logistics and costs of this transport system and to provide inputs to the repository specification and design, Nirex has commissioned the development of a flexible computer model which can be used on a desktop PC. The requirements for the LOGCOST model are explained, and the solutions adopted, and then examples shown of the graphical and tabular outputs that LOGCOST can provide. (Author)

  17. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  18. Reference repository design concept for bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Martin, R.W.

    1980-01-01

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood

  19. Reference Design Description for a Geologic Repository

    International Nuclear Information System (INIS)

    2000-01-01

    One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay

  20. Overview of adaptive phased management repository design development

    International Nuclear Information System (INIS)

    Russell, S.

    2011-01-01

    The Nuclear Waste Management Organization is implementing Adaptive Phased Management, Canada's plan for long-term management of used nuclear fuel. The organization is proceeding with the process for selecting a site in partnership with an informed and willing host community to safely and securely container and isolate used nuclear fuel in a deep geological repository in a suitable rock formation. Adaptive Phased Management is the culmination of more than 30 years of research, development and demonstration of repository concepts in Canada. Adaptive Phased Management uses a phased and adaptive step-wise approach to the multi-barrier system which is consistent with the long-term waste management approaches being developed in many other countries with nuclear power programs such as Sweden, Finland, Switzerland, the United Kingdom and France. The Nuclear Waste Management Organization is examining and developing conceptual designs for a deep geological repository and associated facilities for the placement of used nuclear fuel in long-lived containers. This paper will examine two of these generic conceptual designs which have recently been refined and updated. These conceptual designs will be used to support a pre-project review of repository design and safety by the Canadian Nuclear Safety Commission. (author)

  1. Hydrological and thermal issues concerning a nuclear waste repository in fractured rocks

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1991-12-01

    The characterization of the ambient conditions of a potential site and the assessment of the perturbations induced by a nuclear waste repository require hydrological and thermal investigations of the geological formations at different spatial and temporal scales. For high-level wastes, the near-field impacts depend on the heat power of waste packages and the far-field long-term perturbations depend on the cumulative heat released by the emplaced wastes. Surface interim storage of wastes for several decades could lower the near-field impacts but would have relatively small long-term effects if spent fuels were the waste forms for the repository. One major uncertainty in the assessment of repository impacts is from the variation of hydrological properties in heterogeneous media, including the effects of fractures as high-permeability flow paths for containment migration. Under stress, a natural fracture cannot be represented by the parallel plate model. The rock surface roughness, the contact area, and the saturation state in the rock matrix could significantly change the fracture flow. In recent years, the concern of fast flow through fractures in saturated media has extended to the unsaturated zones. The interactions at different scales between fractures and matrix, between fractured matrix unites and porous units, and between formations and faults are discussed

  2. Developing international safety standards for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.

    2001-01-01

    In the context of the International Atomic Energy Agency's (IAEA) programme to create a corpus of internationally accepted Radioactive Waste Safety Standards (RADWASS), focus is currently being placed on establishing standards for the 'geological disposal of radioactive waste'. This is a challenging task and to help the standards development process there is a need to stimulate discussion of some of the associated scientific and technical issues. A number of position papers developed in recent years by a subgroup of the Waste Safety Standards Committee (WASSC), the subgroup on Principles and Criteria for Radioactive Waste Disposal, address many of the relevant issues. These include a common safety based framework for radioactive waste disposal, appropriate time frames for safety assessment, different possible indicators of long-term safety, the safety implications of reversibility and retrievability, the assessment of possible human intrusion into the repository, the role and limitations of institutional control, establishing reference critical groups and biospheres for long-term assessment, and what is meant by 'compliance' with the standards. These papers will be discussed at a Specialists Meeting to be held at the IAEA in June 2001 as a means of establishing the extent to which they enjoy the general support of experts. In order to broaden that consensus, the conclusions reached at the Specialists Meeting on the issues listed above will be presented and discussed with participants at a number of international meetings. Later this year, a draft safety standard on the geological disposal of radioactive waste which takes account of the consensus positions reached through the various consultations will be submitted for the consideration of Waste Safety Standards Committee (WASSC), the officially approved body within the IAEA for the review and approval of waste safety standards. The Committee is made up of government appointed radioactive waste regulators

  3. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  4. Waste repository planned for Bruce Site

    International Nuclear Information System (INIS)

    King, F.

    2004-01-01

    Ontario Power Generation (OPG) and Kincardine, the municipality nearest the Bruce site, have agreed in principal to the construction of a deep geologic repository for low and medium level radioactive waste on the site. The two parties signed the 'Kincardine Hosting Agreement' on October 13, 2004 to proceed with planning, seek regulatory approval and further public consultation of the proposed project. A construction Licence is not expected before 2013. (author)

  5. Law no. 10.308 of 20th November, 2001 on radioactive waste repositories siting, construction, licensing, operation, inspection, costs, indemnity, civil liability and guarantees concerning to the radioactive wastes repositories and other provisions

    International Nuclear Information System (INIS)

    2001-01-01

    This Act was published on November 20, 2001 and set forth regulations on the final disposal of radioactive wastes produced in Brazil, including siting, construction, licensing, operation, inspection, costs, indemnities, civil liability and guarantees concerning to the radioactive wastes repositories. This act allows for installation and operation of initial, intermediary and final repositories in accordance with the criteria established by the Brazilian Nuclear Energy National Commission - CNEN. The person or organization granted with CNEN authorization for operation of the initial repositories shall be liable for personal, patrimony and environmental radiological damages. The civil liability of CNEN is concerned to the radioactive waste intermediary and final disposals and transportation

  6. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2001-01-01

    Over the last few years, significant progress has been made towards siting national, purpose-built facilities for Australian radioactive waste. In 2001, after an eight year search, a preferred site and two alternatives were identified in central-north South Australia for a near-surface repository for Australian low level (low level and short-lived intermediate level) radioactive waste. Site 52a at Everts Field West on the Woomera Prohibited Area was selected as the preferred site as it performs best against the selection criteria, particularly with respect to geology, ground water, transport and security. Two alternative sites, Site 45a and Site 40a, east of the Woomera-Roxby Downs Road, were also found to be highly suitable for the siting of the national repository. A project has commenced to site a national store for intermediate (long-lived intermediate level) radioactive waste on Commonwealth land for waste produced by Commonwealth agencies. Public input has been sought on relevant selection criteria

  7. Earthquakes - a danger to deep-lying repositories?; erdbeben: eine gefahr fuer tiefenlager?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed.

  8. Consideration of timescales in post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2006-11-01

    A key challenge in the development of safety cases for geological repositories is associated with the long periods of time over which radioactive wastes that are disposed of in repositories remain hazardous. Over such periods, a wide range of events and processes characterised by many different timescales acts on a repository and its environment. These events and processes, their attendant uncertainties, and their possible impacts on repository evolution and performance must be identified, assessed and communicated in a safety case. The handling of issues related to timescales was discussed at an OECD/NEA workshop held in Paris in 2002 and a short report providing an account of the lessons learnt and issues raised at the workshop, was published in 2004. There is, however, an evolving understanding regarding the nature of the issues related to timescales and how they should be addressed, which provides the motivation for the present report. The report is based on the analysis of the responses to a questionnaire received from twenty-four organisations, representing both implementers and regulators from thirteen OECD member countries, as well as discussions that took place in several later meetings. The report is aimed at interested parties that already have some detailed background knowledge of safety assessment methodologies and safety cases, including safety assessment practitioners and regulators, project managers and scientific specialists in relevant disciplines. Its aims are: - to review the current status and ongoing discussions on the handling of issues related to timescales in the deep geological disposal of long-lived radioactive waste; - to highlight areas of consensus and points of difference between national programmes; and - to determine if there is room for further improvement in methodologies to handle these issues in safety assessment and in building and presenting safety cases. The handling of issues related to timescales in safety cases is affected

  9. Retrievability of high-level nuclear waste from geologic repositories - Regulatory and rock mechanics/design considerations

    International Nuclear Information System (INIS)

    Tanious, N.S.; Nataraja, M.S.; Daemen, J.J.K.

    1987-01-01

    Retrievability of nuclear waste from high-level geologic repositories is one of the performance objectives identified in 10CFR60 (Code of Federal Regulations, 1985). 10CFR60.111 states that the geologic repository operations area shall be designed to preserve the option of waste retrieval. In designing the repository operations area, rock mechanics considerations play a major role especially in evaluating the feasibility of retrieval operations. This paper discusses generic considerations affecting retrievability as they relate to repository design, construction, and operation, with emphasis on regulatory and rock mechanics aspects

  10. Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.; Favale, A.; Myers, T. [Grumman Aerospace Corporation, Bethpage, NY (United States)] [and others

    1995-10-01

    This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

  11. Shale as a radioactive waste repository: the importance of vermiculite

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S; Roy, D M; Pennsylvania State Univ., University Park; USA). Materials Research Labs.)

    1979-01-01

    Cesium sorption and fixation properties of thirty shale minerals and shales were investigated in search of a criterion for the suitability of shales for a radioactive waste repository. Shales and illites containing vermiculite fixed the largest proportion of total Cs sorbed (up to 91%) against displacement with 0.1 N KCl. For example, a slate sample fixed 33% of the total Cs sorbed while its weathered counterpart in which chlorite had altered to vermiculite fixed 89% of the total Cs sorbed. Since Cs is one of the most soluble and hazardous radioactive ions, its containment is of great importance in safe radioactive waste disposal. Presence of vermiculite in a shale body may therefore, serve as one criterion in the selection of a suitable shale for radioactive waste disposal if and when shales in geologically stable areas are selected for repositories.

  12. Deep repository for long-lived low- and intermediate-level waste in Sweden (SFL 3-5): An international peer review of SKB 's preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, N. [QuantiSci Ltd, Melton Mowbray (United Kingdom); Apted, M. [Monitor Scientific, Denver, CO (United States); Glasser, F. [Univ. of Aberdeen (United Kingdom). Dept. of Chemistry; Kessler, J. [EPRI, Inc., Palo Alto, CA (United States); Voss, C. [US Geological Survey, Reston, VA (United States)

    2000-10-01

    The SKB safety assessment of the SFL 3-5 repository (the planned deep repository for long-lived low- and intermediate level waste) can be read in two contexts: as a preliminary evaluation of the performance and design options for a repository that will not be required for perhaps forty years; or as an evaluation of a repository that might need to be sited together with the SFL 2 spent fuel repository, and whose nature and performance might thus need to be understood to a level that can be used to make wider programmatic decisions during the next five years. These two 'assessment contexts' are quite different, and an overarching issue is the fact that it was not clear to the review team which view to take. Apparently, SKB would tend towards the first context. However, it is not at all apparent to the reviewers why the second context should not be the predominant driver in the near future. The review team notes that the SFL 3-5 repository, as modelled by SKB, gives rise to potentially perceptible radionuclide releases to the environment on a timescale of hundreds of years after closure. This is in contrast to the SR 97 assessment for the SFL 2 spent fuel repository, which base scenario predicts no releases over a million year timescale. It is clear that according to SKB's SR97 and SFL3-5 analyses, for co-located facilities, it is this repository that has the potential for real radiological impacts in the immediate future. An initial recommendation from the review, is that SKB and the regulatory authorities consider which context is appropriate to the current status of the Swedish programme. This is important, because an overall impression of the reviewers is that the analysis would not be 'fit for purpose' if it were needed to assist with decision-making by SKB or the regulatory agencies. There are too many unanswered questions, and the overall impression of the safety concept is one of some fragility. Because there is no real design basis

  13. A conceptual frame for the development of models for the prediction of the local effects of a high level waste repository

    International Nuclear Information System (INIS)

    Palacios, Elias; Ferreri, J.C.

    1985-01-01

    Safety analyses assocciated with the elimination of radioactive wastes in rock masses assume, in all cases, the existance of wastes which will corrode the waste canisters producing the liberation of radionuclides in the rocky and their ultimate migration towards the biosphere. A conceptual discussion is presented which allows the specification to be met by the models for the prediction of the effects of the emplacement of a high level waste repository located at a depth of 500 m in a granitic rock. Furthermore, the radionuclides giving the largest contribution to the radiological impact are identified. (Author) [es

  14. Salt Repository Project waste emplacement mode decision paper: Revison 1

    International Nuclear Information System (INIS)

    1987-08-01

    This paper provides a recommendation as to the mode of waste emplacement to be used as the current basis for site characterization activity for the Deaf Smith County, Texas, high level nuclear waste repository site. It also presents a plan for implementing the recommendation so as to provide a high level of confidence in the project's success. Since evaluations of high-level waste disposal in geologic repositories began in the 1950s, most studies emplacement in salt formations employed the vertical orientation for emplacing waste packages in boreholes in the floor of the underground facility. This orientation was used in trials at Project Salt Vault in the 1960s. The Waste Isolation Pilot Plant (WIPP) has recently settled on a combination of vertical and horizontal modes for various waste types. This paper analyzes the information available and develops a project position upon which to base current site characterization activities. The position recommended is that the SRP should continue to use the vertical waste emplacement mode as the reference design and to carry the horizontal mode as a ''passive'' alternative. This position was developed based upon the conclusions of a decision analysis, risk assessment, and cost/schedule impact assessment. 52 refs., 6 figs., 1 tab

  15. The influence of waste treatment, conditioning and packaging on design for disposal

    International Nuclear Information System (INIS)

    Tufton, E.P.S.; Whipp, H.G.; Putte, D.V.

    1990-01-01

    The design of a repository for low and intermediate level waste will always have a number of targets; safety, capacity, cost and ease of operation being prominent. Achieving the targets requires a total design of the waste management system, which ranges from treatment of the raw waste form at the source of arising to design for post-closure performance of the repository. In working on repository designs and their safety assessments, the authors have found that different waste forms have significant influences on the repository and this paper is concerned with those influences. 1 ref

  16. Development of safety-relevant components for the transport and handling of final storage casks for waste from decommissioning

    International Nuclear Information System (INIS)

    Bruening, D.; Geiser, H.; Kloeckner, F.; Rittscher, D.; Schlesinger, H.J.

    1992-10-01

    The aim of the study was the development, construction and testing of a transportation system that is able to transport cylindrical waste containers as well as containers from the deliverer to the 'KONRAD' final repository. A transport palette has been developed that can carry two cylindrical waste containers with type B requirement or classification II. An Open-All-Container for the transport of palettes and 'KONRAD' containers has been developed. A storage of cylindrical waste containers and containers in the final repository is possible with the newly developed transportation system. Safety specifications of the transportation system have been passed successfully. (orig.). 30 refs., 8 tabs., 74 figs [de

  17. Radioactive waste repositories in hard rock aquifers--hydrodynamic aspects

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1984-01-01

    A mathematical model for mass and heat flow and a computer program have been developed to demonstrate the effect of heat released from a hypothetical radioactive waste repository on the groundwater flow regime. The model, based on the continuum approach, conceptualizes the fracture pattern and the solid blocks as two overlapping continua and consists of a set of coupled nonlinear partial differential equations. The general form of the model is three-dimensional and can treat the fluid and rock either as two separate media with a quasi-steady exchange of heat between them or as a single equivalent medium with instantaneous thermal equilibrium. Numerical solutions have been obtained by the Galerkin finite element method. Examples have been presented for topographically different locations of the repository: below a horizontal ground surface, below a hill crest, below a hillside, and close to major fractures. The effects of constant permeability and porosity or downward decreasing with depth as well as the effect of anisotropic permeability have been investigated. Solutions include the velocity field, path lines, and traveling times of water particles passing the repository and the temperature distribution. The examples have been worked out for a two-dimensional flow domain, assuming that instantaneous thermal equilibrium takes place. This assumption was found to be justified by the relatively low flow velocities that occurred in the examples. Except for the location close to a major draining fracture, heat released from the radioactive waste repository may have a significant influence on the flow regime around the repository

  18. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang

    1994-01-01

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP)

  19. Considerations for reduction of gas generation in a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Son, Jung Kwon; Lee, Myung Chan; Song, Myung Jae

    1997-01-01

    In a low-level radioactive waste repository, H 2 , CO 2 , and CH 4 will be generated principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H 2 is the principal gas generated within the radioactive waste cavern. The generation rates of CO 2 and CH 4 are likely to be insignificant by comparison with H 2 . Therefore, an effective way to decrease gas generation in a radioactive waste repository seems to be to reduce metal content since the generation rate of H 2 is most sensitive to the concentration of steel

  20. Nuclear waste repository in basalt: a design description

    International Nuclear Information System (INIS)

    Ritchie, J.S.; Schmidt, B.

    1982-01-01

    The conceptual design of a nuclear waste repository in basalt is described. Nuclear waste packages are placed in holes drilled into the floor of tunnels at a depth of 3700 ft. About 100 miles of tunnels are required to receive 35,000 packages. Five shafts bring waste packages, ventilation air, excavated rock, personnel, material, and services to and from the subsurface. The most important surface facility is the waste handling building, located over the waste handling shaft, where waste is received and packaged for storage. Two independent ventilation systems are provided to avoid potential contamination of spaces that do not contain nuclear waste. Because of the high temperatures at depth, an elaborate air chilling system is provided. Because the waste packages deliver a considerable amount of heat energy to the rock mass, particular attention is paid to heat transfer and thermal stress studies. 3 references, 31 figures, 3 tables