WorldWideScience

Sample records for waste repository design

  1. Nuclear waste repository design and construction

    International Nuclear Information System (INIS)

    Bohlke, B.M.; Monsees, J.E.

    1987-01-01

    Extensive underground excavation will be required for construction of a mined geologic repository for nuclear waste. Hundreds of thousands of feet of drift will be required based on the conceptual layout design for each candidate nuclear waste repository. Comparison of boring and blasting excavation methods are discussed, as are special design and construction requirements (e.g., quality assurance procedures and performance assessment) for the nuclear waste repository. Comparisons are made between boring and blasting construction methods for the repository designs proposed for salt, volcanic tuff, and basalt

  2. Investigation on design of repository for radioactive waste

    International Nuclear Information System (INIS)

    Zhang Boming; Zhang Ruixue; Wang Fengying

    2010-01-01

    The scheme design of the repository for radioactive waste is introduced according to the traits of radioactive waste in Jiangsu province, such as the style of the repository, lifting facilities, the step for preventing or controlling flood, the aseismatic measure, the pollution prevention and so on. This ensured the radioactive waste and the waste radioactive sources to be stored in security, the area environment not to be polluted. It can improve the use of nuclear technology in Jiangsu province. (authors)

  3. Nuclear waste repository in basalt: preconceptual design guidelines

    International Nuclear Information System (INIS)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation

  4. Nuclear waste repository in basalt: preconceptual design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation.

  5. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  6. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  7. The design of the Bulgaria rad waste repository

    International Nuclear Information System (INIS)

    Stefonova, I.; Petrov, I.; Navarro, M.; Sanchez, M.; Medinilla, G.

    2012-01-01

    In October 2011 a consortium composed by Westinghouse Engineering Spain SAU, ENRESA and DBE Technology GmbH was awarded a contract for the design of the Bulgaria rad waste repository. The facility, inspired in the spanish centre of El Cabril owned by ENRESA, will consist of a 66 reinforced concrete cells surface repository capable of receiving 18600 already conditioned waste containers of 20 t each, during 60 years, and the related auxiliary facilities and buildings. The project, representing a challenge because of the schedule and required level of detail, goes on fulfilling main milestones and getting customer satisfaction. (Author)

  8. Designing shafts for handling high-level radioactive wastes in mined geologic repositories

    International Nuclear Information System (INIS)

    Hambley, D.F.; Morris, J.R.

    1988-01-01

    Waste package conceptual designs developed in the United States by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management are the basis for specifying the dimensions and weights of the waste package and transfer cask combinations to be hoisted in the waste handling shafts in mined geologic repositories for high-level radioactive waste. The hoist, conveyance, counterweight, and hoist ropes are then sized. Also taken into consideration are overwind and underwind arrestors and safety features required by the U.S. Nuclear Regulatory Commission. Other design features such as braking systems, chairing system design, and hoisting speed are considered in specifying waste hoisting system parameters for example repository sites

  9. Learning from nuclear waste repository design: the ground-control plan

    International Nuclear Information System (INIS)

    Schmidt, B.

    1988-01-01

    At present, under a U.S. Department of Energy program, three repositories for commercial spent fuel-in salt, tuff and basalt-are in the phase of site characterization and conceptual design, and one pilot project for defense waste in salt is under development. Because of strict quality assurance requirements throughout design and construction, and the need to predict and ascertain in advance the satisfactory performance of the underground openings, underground openings in the unusual circumstances of the repository environment have been analysed. This will lead to an improved understanding of rock behavior and improved methods of underground analysis and design. A formalized ground control plan was developed, the principles of which may be applied to other types of projects. This paper summarizes the status of underground design and construction for nuclear waste repositories and presents some details of the ground control plan and its individual elements. (author)

  10. Repository design

    Energy Technology Data Exchange (ETDEWEB)

    John, C M

    1982-01-01

    Various technical issues of radioactive waste design are addressed in this paper. Two approaches to repository design considered herein are: (1) design to minimize the disturbance of the hot rock; and (2) designs that intentionally modify the hot rock to insure better containment of the wastes. The latter designs range from construction of a highly impermeable barrier around a spherical cavern to creating a matrix of tunnels and boreholes to form a cage within which the hydraulic pressure is nearly constant. Examples of these design alternatives are described in some detail. It is concluded that proposed designs for repositories illustrate that performance criteria considered acceptable for such facilities can be met by appropriate site selection and repository engineering. With these technically feasible design concepts, it is also felt that socioeconomic and institutional issues can be better resolved. (BLM)

  11. Underground disposal of UK heat-generating wastes: repository design considerations

    International Nuclear Information System (INIS)

    Steadman, J.A.

    1993-12-01

    The report discusses the likely differences in design between a deep repository for disposal of UK heat-generating radioactive wastes and that of the planned Nirex ILW/LLW repository at Sellafield, based on a review of international published information. The main differences arise from the greater heat and radiation outputs of the waste, and in the case of intact PWR spent fuel elements, the greater length and weight of the disposal packages. Published cost estimates for other OECD countries for disposal of heat-generating wastes are considerably lower than that for the UK, partly because in most cases they are for co-disposal with a larger quantity of ILW. (author)

  12. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-02-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and ''graded approach'' philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  13. Retrievability of high-level nuclear waste from geologic repositories - Regulatory and rock mechanics/design considerations

    International Nuclear Information System (INIS)

    Tanious, N.S.; Nataraja, M.S.; Daemen, J.J.K.

    1987-01-01

    Retrievability of nuclear waste from high-level geologic repositories is one of the performance objectives identified in 10CFR60 (Code of Federal Regulations, 1985). 10CFR60.111 states that the geologic repository operations area shall be designed to preserve the option of waste retrieval. In designing the repository operations area, rock mechanics considerations play a major role especially in evaluating the feasibility of retrieval operations. This paper discusses generic considerations affecting retrievability as they relate to repository design, construction, and operation, with emphasis on regulatory and rock mechanics aspects

  14. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the first part of a report of a preliminary study for Atomic Energy of Canada Limited. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) underground layout, 2) cost estimates, 3) waste handling, 4) retrievability, decommissioning, sealing and monitoring, and 5) research and design engineering requirements. (author)

  15. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  16. A performance goal-based seismic design philosophy for waste repository facilities

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1994-01-01

    A performance goal-based seismic design philosophy, compatible with DOE's present natural phenomena hazards mitigation and open-quotes graded approachclose quotes philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed

  17. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  18. Waste package/repository impact study: Final report

    International Nuclear Information System (INIS)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs

  19. Design criteria development for the structural stability of nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Yu, T S [Daewoo Engineering Company, Sungnam (Korea, Republic of); Ko, H M [Seoul National Univ., Seoul (Korea, Republic of)

    1990-11-15

    The objective of the present project is to develop design criteria for the structural stability of rock cavity for the underground repository are defined, according to which detailed descriptions for design methodologies, design stages and stability analysis of the cavity are made. The proposed criteria can be used as a guide for the preparation of design codes which are to be established as the site condition and technical emplacement procedure are fixed. The present report first reviews basic safety requirements and criteria of the underground disposal of nuclear wastes for the establishment of design concepts and stability analysis of the rock cavity. Important factors for the design are also described by considering characteristics of the wastes and underground facilities. The present project has investigated technical aspects on the design of underground structures based on the currently established underground construction technologies, and presented a proposal for design criteria for the structural stability of the nuclear waste repository. The proposed criteria consist of general provisions, geological exploration, rock classification, design process and methods, supporting system, analyses and instrumentation.

  20. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  1. Technical conservatism in the design and analysis of a nuclear-waste repository in basalt

    International Nuclear Information System (INIS)

    Jones, K.A.

    1982-01-01

    The US Department of Energy's National Waste Terminal Storage Program has adopted a policy of technical conservatism to guide the design and analysis of geologic disposal systems for commercial high-level radioactive waste. Technical conservatism serves as the programmatic philosophy for managing uncertainty in the performance of the disposal system. The implementation of technical conservatism as applied to a nuclear waste repository in basalt is discussed. Preliminary assessments of the performance of the waste package, repository, and site subsystems are compared to key proposed regulatory criteria. The comparison shows that there are substantial safety margins in the predicted performance of the nuclear waste repository in basalt

  2. Preliminary drift design analyses for nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    Hardy, M.P.; Brechtel, C.E.; Goodrich, R.R.; Bauer, S.J.

    1990-01-01

    The Yucca Mountain Project (YMP) is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS). The proposed repository will be excavated in the Topopah Spring Member, which is a moderately fractured, unsaturated, welded tuff. Excavation stability will be required during construction, waste emplacement, retrieval (if required), and closure to ensure worker safety. The subsurface excavations will be subject to stress changes resulting from thermal expansion of the rock mass and seismic events associated with regional tectonic activity and underground nuclear explosions (UNEs). Analyses of drift stability are required to assess the acceptable waste emplacement density, to design the drift shapes and ground support systems, and to establish schedules and cost of construction. This paper outlines the proposed methodology to assess drift stability and then focuses on an example of its application to the YMP repository drifts based on preliminary site data. Because site characterization activities have not begun, the database currently lacks the extensive site-specific field and laboratory data needed to form conclusions as to the final ground support requirements. This drift design methodology will be applied and refined as more site-specific data are generated and as analytical techniques and methodologies are verified during the site characterization process

  3. Nuclear waste repository in basalt: a design description

    International Nuclear Information System (INIS)

    Ritchie, J.S.; Schmidt, B.

    1982-01-01

    The conceptual design of a nuclear waste repository in basalt is described. Nuclear waste packages are placed in holes drilled into the floor of tunnels at a depth of 3700 ft. About 100 miles of tunnels are required to receive 35,000 packages. Five shafts bring waste packages, ventilation air, excavated rock, personnel, material, and services to and from the subsurface. The most important surface facility is the waste handling building, located over the waste handling shaft, where waste is received and packaged for storage. Two independent ventilation systems are provided to avoid potential contamination of spaces that do not contain nuclear waste. Because of the high temperatures at depth, an elaborate air chilling system is provided. Because the waste packages deliver a considerable amount of heat energy to the rock mass, particular attention is paid to heat transfer and thermal stress studies. 3 references, 31 figures, 3 tables

  4. Impact of thermal constraints on the optimal design of high-level waste repositories in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Malbrain, C; Lester, R K [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Nuclear Engineering

    1982-12-01

    An approximate, semi-analytical heat conduction model for predicting the time-dependent temperature distribution in the region of a high-level waste repository has been developed. The model provides the basis for a systematic, inexpensive examination of the impact of several independent thermal design constraints on key repository design parameters and for determining the optimal set of design parameters which satisfy these constraints. Illustrative calculations have been carried out for conceptual repository designs for spent pressurized water reactor (PWR) fuel and reprocessed PWR high-level waste in salt and granite media.

  5. Design perspectives for the low and intermediate level radioactive waste repository in Korea

    International Nuclear Information System (INIS)

    Kim, Young Ki; Koh, Kwang Hoon; Lee, Sang Sun; Lee, Byung Sik; Choi, Gi Won

    2007-01-01

    The underground waste repository is located at Gyeongju and is designed for the disposal of all the Low- and Intermediate Level Radioactive Waste(LILW). It is scheduled to commence operations in the beginning of 2009. The repository, with a disposal capacity of 800,000 drums, will be constructed in granite rock near the seashore at the Gyeongju site. The repository will be designed to be constructed in phases to reach its final capacity 800,000 drums. In the first phase of construction, the repository will have a capacity to store 100,000 drums. The repository will house all LILW generated in the Republic of Korea. The first phase of the repository design consists of an assess shaft, a construction tunnel, an operating tunnel, an unloading tunnel, and six(6) silos. The silos are located at 80 to 130 meters below Mean Sea level (MSL), in bedrock. Each silo is 24.8m in diameter and 52.4m in height. The silo will be reinforced with concrete lining for rock supports which will also act aas an engineered barrier in limiting radioactive nuclide release aft closure. After serving its intended function the repository will be filled and sealed. The primary objective of filling and sealing is to prevent ground water flow into the silo through the tunnel system and to prevent inadvertent intrusion into the repository after closure

  6. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  7. Conceptual design of repository facilities

    International Nuclear Information System (INIS)

    Beale, H.; Engelmann, H.J.; Souquet, G.; Mayence, M.; Hamstra, J.

    1980-01-01

    As part of the European Economic Communities programme of research into underground disposal of radioactive wastes repository design studies have been carried out for application in salt deposits, argillaceous formations and crystalline rocks. In this paper the design aspects of repositories are reviewed and conceptual designs are presented in relation to the geological formations under consideration. Emphasis has been placed on the disposal of vitrified high level radioactive wastes although consideration has been given to other categories of radioactive waste

  8. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  9. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 10. Repository preconceptual design studies: granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 10 ''Repository Preconceptual Design Studies: Granite,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in granite. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/11, ''Drawings for Repository Preconceptual Design Studies: Granite.''

  10. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 8. Repository preconceptual design studies: salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 8 ''Repository Preconceptual Design Studies: Salt,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/9, ''Drawings for Repository Preconceptual Design Studies: Salt.''

  11. Geological disposal of high-level radioactive waste. Conceptual repository design in hard rock

    International Nuclear Information System (INIS)

    Beale, H.; Griffin, J.R.; Davies, J.W.; Burton, W.R.

    1980-01-01

    The paper gives an interim report on UK studies on possible designs for a repository for vitrified high-level radioactive waste in crystalline rock. The properties of the waste are described and general technical considerations of consequences of disposal in the rock. As an illustration, two basic designs are described associated with pre-cooling in an intermediate store. Firstly, a 'wet repository' is outlined wherein canisters are sealed up closely in boreholes in the rock in regions of low groundwater movement. Secondly, a 'dry repository' above sea level is described where emplacement in tunnels is followed by a loose backfill containing activity absorbers. A connection to deep permeable strata maintains water levels below emplacement positions. Variants on the two basic schemes (tunnel emplacement in a wet repository and in situ cooling) are also assessed. It is concluded that all designs discussed produce a size of repository feasible for construction in the UK. Further, (1) a working figure of 100 0 C per maximum rock temperature is not exceeded, (2) no insuperable engineering problems have so far been found, though rock mechanics studies are at an early stage; (3) it is not possible to discount the escape of a few long-lived 'man-made' isotopes. A minute increment to natural activity in the biosphere may occur from traces of uranium and its decay chains; (4) at this stage, all the designs are still possible candidates for the construction of a UK repository. (author)

  12. Rock support for nuclear waste repositories

    International Nuclear Information System (INIS)

    Abramson, L.W.; Schmidt, B.

    1984-01-01

    The design of rock support for underground nuclear waste repositories requires consideration of special construction and operation requirements, and of the adverse environmental conditions in which some of the support is placed. While repository layouts resemble mines, design, construction and operation are subject to quality assurance and public scrutiny similar to what is experienced for nuclear power plants. Exploration, design, construction and operation go through phases of review and licensing by government agencies as repositories evolve. This paper discusses (1) the various stages of repository development; (2) the environment that supports must be designed for; (3) the environmental effects on support materials; and (4) alternative types of repository rock support

  13. Reference Design Description for a Geologic Repository

    International Nuclear Information System (INIS)

    2000-01-01

    One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay

  14. Design, construction, operation, shutdown and surveillance of repositories for solid radioactive wastes in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    This report is a part of the IAEA publications under its Programme on Underground Disposal of Radioactive Wastes and is addressed to administrative and technical authorities and specialists who consider the shallow-ground disposal of low- and intermediate-level solid radioactive wastes of short half-lives. The report emphasizes the technological aspects, however it briefly discusses the safety philosophy and regulatory considerations too. The design, construction, operation, shutdown and surveillance of the repositories in shallow ground are considered in some detail, paying special attention to their interrelated aspects. In particular, a review is given of the following aspects: main design and construction considerations in relation to the natural features of the site; design and construction aspects during the repository development process; activities related to operational and post-operational stages of the repository; major steps in repository operation and essential activities in shutdown and operational and post-operational surveillance

  15. A conceptual subsurface facility design for a high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    McKenzie, D.G., III; Bhattacharyya, K.K.; Segrest, A.M.

    1996-01-01

    The US Department of Energy is responsible for the design, construction, operation and closure of a repository in which to permanently dispose of the nation's high level nuclear waste. In addition to the objective of safely isolating the waste inventory, the repository must provide a safe working environment for its workforce, and protect the public. The conceptual design for this facility is currently being developed. Tunnel Boring Machine will be used to excavate 228 kilometers of tunneling to construct the facility over a 30 year period. The excavation operations will be physically separated from the waste emplacement operations, and each operation will have its own dedicated ventilation system. The facility is being designed to remain open for 150 years

  16. Initial design process of the repository

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.

    2001-01-01

    The concept of the final disposal of high level wastes is to isolate the waste from the biosphere for extremely long periods of time by emplacement of wastes into deep stable geological formations. Several geological formations have been considered as candidate host environments for high level waste disposal and several techniques have been developed for repository design. In this study, interrelationships of main parameters of a general repository design have been defined and effective parameters are shown at each step. Initial design process is based on the long term stability of underground openings as disposal galleries. For this reason, this design process includes two main analyses: mechanical analysis and thermal analysis. Each of the analysis systems is directly related to each other by technical precautions. As a result of this design process, general information about the acceptable depth of the repository, layout and emplacement pattern can be taken. Final design study can be established on the result of initial design process. (author)

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses

  18. Information base for waste repository design. Volume 3. Waste/rock interactions

    International Nuclear Information System (INIS)

    Koplick, C.M.; Pentz, D.L.; Oston, S.G.; Talbot, R.

    1979-01-01

    This report describes the important effects resulting from interaction between radioactive waste and the rock in a nuclear waste repository. The state of the art in predicting waste/rock interactions is summarized. Where possible, independent numerical calculations have been performed. Recommendations are made pointing out areas which require additional research

  19. Methodology applied in Cuba for siting, designing, and building a radioactive waste repository under safety conditions

    International Nuclear Information System (INIS)

    Orbera, L.; Peralta, J.L.; Franklin, R.; Gil, R.; Chales, G.; Rodriguez, A.

    1993-01-01

    The work presents the methodology used in Cuba for siting, designing, and building a radioactive waste repository safely. This methodology covers both the technical and socio-economic factors, as well as those of design and construction so as to have a safe siting for this kind of repository under Cuba especial condition. Applying this methodology will results in a safe repository

  20. Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, Jin; Kwon, Sang Ki

    2005-01-01

    In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene and safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low and medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems and real time ventilation simulation, and fire simulation and emergency system in the repository are briefly discussed.

  1. Ventilation planning for a prospective nuclear waste repository

    International Nuclear Information System (INIS)

    Wallace, K.G. Jr.

    1987-01-01

    In 1982, the US Congress passed the Nuclear Waste Policy Act to provide for the development of underground repositories for spent nuclear fuel. This development will be managed by the United States Department of Energy. In 1986, the President selected three areas for site characterization to determine their suitability for the development of an underground repository; those sites were: (1) A site in volcanic tuff located at Yucca Mountain in Nevada, (2) a site in bedded salt located in Deaf Smith County in Texas, and (3) a site in basalt located in Hanford, Washington. At present conceptual repository designs are being developed for each site. A key element of a repository design is the underground ventilation system required to support construction, nuclear waste emplacement, and potential waste retrieval. This paper describes the preliminary ventilation systems designed for the repository in tuff. The concept provides separate ventilation systems for the construction and waste emplacement activities. The paper further describes the means by which acceptable environmental conditions will be re-established to allow re-entry into previously closed rooms for the purpose of inspection, maintenance or retrieval

  2. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 2

    International Nuclear Information System (INIS)

    1987-12-01

    Chapter 6 discusses the repository design features and operating procedures that will be used to ensure compliance with regulatory limits for preclosure releases, performance objectives for waste retrieval, and performance objectives for postclosure or long-term waste isolation. Chapter 7 discusses the analyses that were conducted in developing the repository design and the impacts of various external factors on the design of repository elements and the repository as a whole. Chapter 8 discusses the engineering design information needs that were identified during conceptual design as necessary to advance the current conceptual design to License Application Design (LAD). The quality assurance (QA) program applicable to the Architect/Engineer (A/E) activities during the repository conceptual design effort is defined in Chapter 9. 146 refs., 44 figs., 21 tabs

  3. Repository waste-handling operations, 1998

    International Nuclear Information System (INIS)

    Cottam, A.E.; Connell, L.

    1986-04-01

    The Civilian Radioactive Waste Management Program Mission Plan and the Generic Requirements for a Mined Geologic Disposal System state that beginning in 1998, commercial spent fuel not exceeding 70,000 metric tons of heavy metal, or a quantity of solidified high-level radioactive waste resulting from the reprocessing of such a quantity of spent fuel, will be shipped to a deep geologic repository for permanent storage. The development of a waste-handling system that can process 3000 metric tons of heavy metal annually will require the adoption of a fully automated approach. The safety and minimum exposure of personnel will be the prime goals of the repository waste handling system. A man-out-of-the-loop approach will be used in all operations including the receipt of spent fuel in shipping casks, the inspection and unloading of the spent fuel into automated hot-cell facilities, the disassembly of spent fuel assemblies, the consolidation of fuel rods, and the packaging of fuel rods into heavy-walled site-specific containers. These containers are designed to contain the radionuclides for up to 1000 years. The ability of a repository to handle more than 6000 pressurized water reactor spent-fuel rods per day on a production basis for approximately a 23-year period will require that a systems approach be adopted that combines space-age technology, robotics, and sophisticated automated computerized equipment. New advanced inspection techniques, maintenance by robots, and safety will be key factors in the design, construction, and licensing of a repository waste-handling facility for 1998

  4. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses.

  5. Interim performance specifications for conceptual waste-package designs for geologic isolation in salt repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The interim performance specifications and data requirements presented apply to conceptual waste package designs for all waste forms which will be isolated in salt geologic repositories. The waste package performance specifications and data requirements respond to the waste package performance criteria. Subject areas treated include: containment and controlled release, operational period safety, criticality control, identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  6. The preliminary design and feasibility study of the spent fuel and high level waste repository in the Czech Republic

    International Nuclear Information System (INIS)

    Valvoda, Z.; Holub, J.; Kucerka, M.

    1996-01-01

    In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow from NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in next period

  7. Commercial nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Hardy, M.P.; Patricio, J.G.; Heley, W.H.

    1980-06-01

    The Basalt Waste Isolation Project (BWIP) is an ongoing research and engineering effort being conducted by Rockwell Hanford Operations (Rockwell), which is under contract to the US Department of Energy. The objectives of this program are to assess the feasibility of and to provide the technology needed to design and construct a licensed commercial nuclear waste repository in the deep basalt formations underlying the Hanford Site. An extensive preconceptual design effort was undertaken during 1979 to develop a feasible concept that could serve as a reference design for both surface and underground facilities. The preconceptual design utilized existing technology to the greatest extent possible to offer a system design that could be utilized in establishing schedule and cost baseline data, recommend alternatives that require additional study, and develop basic design requirements that would allow evolution of the design process prior to the existence of legislated criteria. This paper provides a description of the concept developed for the subsurface aspects of this nuclear waste repository

  8. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs

  9. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  10. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, horizontal emplacment mode: Volume 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packaging, and other surface facility operations are described. Operations in the shafts and underground are described, including waste hoisting, transfer, and horizontal emplacement. This report specifically addresses the horizontal emplacement mode, the passive alternate design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs

  11. Viability Assessment of a Repository at Yucca Mountain. Volume 2: Preliminary Design Concept for the Repository and Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This volume describes the major design features of the Monitored Geologic Repository. This document is not intended to provide an exhaustive, detailed description of the repository design. Rather, this document summarizes the major systems and primary elements of the design that are radiologically significant, and references the specific technical documents and design analyses wherein the details can be found. Not all portions of the design are at the same level of completeness. Highest priority has been given to assigning resources to advance the design of the Monitored Geologic Repository features that are important to radiological safety and/or waste isolation and for which there is no NRC licensing precedent. Those features that are important to radiological safety and/or waste isolation, but for which there is an NRC precedent, receive second priority. Systems and features that have no impact on radiological safety or waste isolation receive the lowest priority. This prioritization process, referred to as binning, is discussed in more detail in Section 2.3. Not every subject discussed in this volume is given equal treatment with regard to the level of detail provided. For example, less detail is provided for the surface facility design than for the subsurface and waste package designs. This different level of detail is intentional. Greater detail is provided for those functions, structures, systems, and components that play key roles with regard to protecting radiological health and safety and that are not common to existing nuclear facilities already licensed by NRC. A number of radiological subjects are not addressed in the VA, (e.g., environmental qualification of equipment). Environmental qualification of equipment and other radiological safety considerations will be addressed in the LA. Non-radiological safety considerations such as silica dust control and other occupational safety considerations are considered equally important but are not addressed in

  12. Sellafield repository design concept

    International Nuclear Information System (INIS)

    1998-01-01

    Between 1989 and 1997, UK Nirex Ltd carried out a programme of investigations to evaluate the potential of a site adjacent to the BNFL Sellafield works to host a deep repository for the United Kingdom's intermediate-level and certain low-level radioactive waste. The programme of investigations was wound down following the decision in March 1997 to uphold the rejection of the Company's planning application for the Rock Characterisation Facility (RCF), an underground laboratory which would have allowed further investigations to confirm whether or not the site would be suitable. Since that time, the Company's efforts in relation to the Sellafield site have been directed towards documenting and publishing the work carried out. The design concept for a repository at Sellafield was developed in parallel with the site investigations through an iterative process as knowledge of the site and understanding of the repository system performance increased. This report documents the Sellafield repository design concept as it had been developed, from initial design considerations in 1991 up to the point when the RCF planning application was rejected. It shows, from the context of a project at that particular site, how much information and experience has been gained that will be applicable to the development of a deep waste repository at other potential sites

  13. SR 97 - Waste, repository design and sites. Background report to SR 97 SKB

    International Nuclear Information System (INIS)

    1999-10-01

    SR 97 is a comprehensive analysis of long-term safety of a deep repository for spent nuclear fuel. The repository is assumed to be designed according to the KBS-3 method. Assessments are performed in SR 97 for three fictitious sites: Aberg, Beberg and Ceberg. One premise is that data used for assessment of the fictitious sites are to be taken from sites that have previously been investigated. The spent nuclear fuel is enclosed in copper canisters with an insert of cast iron. The canisters are emplaced in bored holes in the floor of the deposition tunnels. Around each canister, bentonite blocks are stacked which, after absorbing water and swelling, will isolate the canister from groundwater, hold the canister in place and retard transport of radionuclides from the canister to the surrounding rock. The spent nuclear fuel will emit heat for a long time, due to the decay heat. The maximum permissible temperature on the canister surface has been chosen at 100 deg C. The spacing between the deposition holes and between the deposition tunnels is adjusted site-specifically to meet this requirement. The thermal properties of the rock and the buffer material are of importance for how closely the deposition holes and tunnels can be spaced. After deposition, the deposition tunnels are backfilled with a mixture of bentonite and crushed rock. SR 97 examines above all the consequences of various scenarios and the handling of various types of uncertainties. The different repository sites illustrate normal properties for Swedish bedrock which are of importance for safety. To facilitate the work, the repositories on the three sites are configured as similarly as possible, which means for example that they are located at roughly the same depth and are fitted into the bedrock in a relatively similar fashion. Apart from the siting of a repository for spent nuclear fuel, the site may need to house a separate repository for other long-lived waste. This possibility has been considered in

  14. SR 97 - Waste, repository design and sites. Background report to SR 97 SKB

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    SR 97 is a comprehensive analysis of long-term safety of a deep repository for spent nuclear fuel. The repository is assumed to be designed according to the KBS-3 method. Assessments are performed in SR 97 for three fictitious sites: Aberg, Beberg and Ceberg. One premise is that data used for assessment of the fictitious sites are to be taken from sites that have previously been investigated. The spent nuclear fuel is enclosed in copper canisters with an insert of cast iron. The canisters are emplaced in bored holes in the floor of the deposition tunnels. Around each canister, bentonite blocks are stacked which, after absorbing water and swelling, will isolate the canister from groundwater, hold the canister in place and retard transport of radionuclides from the canister to the surrounding rock. The spent nuclear fuel will emit heat fora long time, due to the decay heat. The maximum permissible temperature on the canister surface has been chosen at 100 deg C. The spacing between the deposition holes and between the deposition tunnels is adjusted site-specifically to meet this requirement. The thermal properties of the rock and the buffer material are of importance for how closely the deposition holes and tunnels can be spaced. After deposition, the deposition tunnels are backfilled with a mixture of bentonite and crushed rock. SR 97 examines above all the consequences of various scenarios and the handling of various types of uncertainties. The different repository sites illustrate normal properties for Swedish bedrock which are of importance for safety. To facilitate the work, the repositories on the three sites are configured as similarly as possible, which means for example that they are located at roughly the same depth and are fitted into the bedrock in a relatively similar fashion. Apart from the siting of a repository for spent nuclear fuel, the site may need to house a separate repository for other long-lived waste. This possibility has been considered in

  15. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, horizontal emplacement mode: Volume 2

    International Nuclear Information System (INIS)

    1987-12-01

    Chapter 6 discusses the repository design features and operating procedures that will be used to ensure compliance with regulatory limits for preclosure releases, performance objectives for waste retrieval, and performance objectives for post closure or long-term waste isolation. Chapter 7 discusses the analyses that were conducted in developing the repository design and the impacts of various external factors on the design of repository elements and the repository as a whole. These discussions are divided into preclosure design analysis, post closure design analysis, and engineering analysis of design. Also discussed are the structures, systems, and components that have been identified as important to safety and the barriers that have been, or need to be, identified as important to waste isolation. Chapter 8 discusses the engineering design information needs that were identified during conceptual design as necessary to advance the current conceptual design to Licence Application Design. These information needs should be resolved during the site characterization program or by other technology development studies. The discussion of these design issues and data needs is arranged according to the major elements of the repository. Chapter describes the quality assurance program. 146 refs., 40 figs., 22 tabs

  16. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1993-02-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This Paper describes a mathematical model design to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (author)

  17. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1992-07-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (Author)

  18. International perspective on repositories for low level waste

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva

    2011-12-01

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  19. International perspective on repositories for low level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva (SKB International AB (Sweden))

    2011-12-15

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  20. Rock mechanics methods and in situ heater tests for design of a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Board, M.P.

    1978-01-01

    Methods of integrating data from the Near-Surface Test Facility into the overall Waste Isolation Program are examined. Discussions are presented dealing primarily with the application of numerical models to the design of a waste repository. The various types of models currently available are discussed with reference to design in basalt and the breakdown of the problem of repository design is summarized. It is shown that the most efficient method for analyzing repository design is to break the problem down into several problems which are based on physical scale. These include the area directly surrounding a single waste canister (the very near field), the area including many canisters and canister emplacement rooms (the near field), and the area including the entire repository and the rock mass to the free surface (the far field). The methods by which numerical models are used for design are discussed. Flow charts are used to show the basic input data required, the calculational processes used, and the preliminary criteria for judgment of suitable repository performance. It is shown that the ultimate design of the allowable gross thermal loading density, and, thus, the layout of the underground workings is highly dependent upon the rock mass properties supplied as base line input data to the numerical models. Of the many input properties required, the thermal conductivity, the thermal expansion coefficient, and elastic moduli of the rock mass have, perhaps, the greatest effect on the calculation of induced temperatures, stresses, and displacements and, thus, repository design. To ensure that the design continues with confidence, field (in situ) values of input data must be obtained. The role of the Near-Surface Test Facility in situ testing in obtaining these basic required data is discussed

  1. Planning and Design Considerations for Geological Repository Programmes of Radioactive Waste

    International Nuclear Information System (INIS)

    2014-11-01

    Disposal in a geological repository is the generally accepted solution for the long term management of high level and/or long lived radioactive wastes, in line with the general principles defined in the IAEA Safety Fundamentals. This publication presents practical information on the way a geological repository programme for radioactive waste could be defined and planned, with special attention to all aspects having an impact on the timing. Country specific examples for repository development phases are provided, based on actual experiences from Member States

  2. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  3. Reference repository design concept for bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Martin, R.W.

    1980-01-01

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood

  4. Technical conservatisms in NWTS repository conceptual designs. National Waste Terminal Storage Repository No. 1: special study No. 4

    International Nuclear Information System (INIS)

    1980-09-01

    Prior studies have developed conceptual designs for National Waste Terminal Storage Repositories 1 and 2. Due to the considerable detail and volume of the documents describing these designs, it is often difficult to identify and comprehend the substantial conservatisms contained within them. This study identifies and explains the major technical conservatisms in these two conceptual designs in a concise and readily understandable format. The areas discussed include thermal loading of the geologic structure, rock mechanics and underground design, waste throughput capacity, hoisting systems, nuclear criticality safety, confinement of radioactive materials, occupational exposure and health physics, environmental effects, and cost estimates. Conservatisms are described in detail, quantified where possible, and compared to appropriate criteria

  5. Development of technical design for waste processing and storage facilities for Novi Han repository

    International Nuclear Information System (INIS)

    Canizares, J.; Benitez, J.C.; Asuar, O.; Yordanova, O.; Demireva, E.; Stefanova, I.

    2005-01-01

    Empresarion Agrupados Internacional S.A. (Spain) and ENPRO Consult Ltd. (Bulgaria) were awarded a contract by the Central Finance and Contracts Unit to develop the technical design of the waste processing and storage facilities at the Novi Han repository. At present conceptual design phase is finished. This conceptual design covers the definition of the basic design requirements to be applied to the installations defined above, following both European and Bulgarian legislation. In this paper the following items are considered: 1) Basic criteria for the layout and sizing of buildings; 2) Processing of radioactive waste, including: treatment and conditioning of disused sealed sources; treatment of liquid radioactive wastes; treatment of solid radioactive waste; conditioning of liquid and solid radioactive waste; 3) Control of waste packages and 4) Storage of radioactive waste, including storage facility and waste packages. An analysis of inventories of stored and estimated future wastes and its subsequent processes is also presented and the waste streams are illustrated

  6. The function of packing materials in a high-level nuclear waste repository and some candidate materials: Salt Repository Project

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Shade, J.W.

    1987-03-01

    Packing materials should be included in waste package design for a high-level nuclear waste repository in salt. A packing material barrier would increase confidence in the waste package by alleviating possible shortcomings in the present design and prolonging confinement capabilities. Packing materials have been studied for uses in other geologic repositories; appropriately chosen, they would enhance the confinement capabilities of salt repository waste packages in several ways. Benefits of packing materials include retarding or chemically modifying brines to reduce corrosion of the waste package, providing good thermal conductivity between the waste package and host rock, retarding or absorbing radionuclides, and reducing the massiveness of the waste package. These benefits are available at low percentage of total repository cost, if the packing material is properly chosen and used. Several candidate materials are being considered, including oxides, hydroxides, silicates, cement-based mixtures, and clay mixtures. 18 refs

  7. Study of nuclear waste storage capacity at Yucca mountain repository

    International Nuclear Information System (INIS)

    Zhou Wei; Apted, M.; Kessler, J.H.

    2008-01-01

    The Yucca Mountain repository is applying license for storing 70000 MTHM nuclear waste including commercial spent nuclear fuel (CSNF) and defense high-level radioactive waste (HLW). The 70000 MTHM is a legal not the technical limit. To study the technical limit, the Electric Power Research Institute (EPRI) carried out a systematic study to explore the potential impact if the repository will accept more waste. This paper describes the model and results for evaluating the spent-fuel disposal capacity for a repository at Yucca Mountain from the thermal and hydrological point of view. Two proposed alternative repository designs are analyzed, both of which would fit into the currently well-characterized site and, therefore, not necessitating any additional site characterization at Yucca Mountain. The two- and three-dimensional models for coupled thermo-hydrological analysis extends from the surface to the water table, covering all the major and subgroup rock layers of the planned repository, as well as formations above and below the repository horizon. A dual-porosity and dual-permeability approach is used to model coupled heat and mass transfer through fracture formations. The waste package heating and ventilation are all assumed to follow those of the current design. The results show that the repository is able to accommodate three times the amount of spent fuel compared to the current design, without extra spatial expansion or exceeding current thermal and hydrological constraints. (authors)

  8. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the second part of a report of a preliminary study for AECL. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) geotechnical assessment, 2) hydrogeology and waste containment, 3) thermal loading and 4) rock mechanics. (author)

  9. Reference design description for a geologic repository. Revision 02

    International Nuclear Information System (INIS)

    1999-01-01

    This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada. It describes the proposed design for a surface facility, subsurface repository, and waste packaging; it also presents the current design of the key engineering systems for the final four phases: operations, monitoring, closure, and postclosure. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. In accordance with current law, this design does not include an interim storage option. This document has six major sections. Section 1 describes the physical layout of the proposed repository. The second section describes the 4-phase evolution of the development of the proposed repository. Section 3 describes the reception of waste from offsite locations. The fourth section details the various systems that will package the waste and move it below ground as well as safety monitoring and closure. Section 5 describes the systems (both physical and analytical) that ensure continued safety after closure. The final section offers design options that may be adopted to increase the margin of safety

  10. The German quality system for waste repositories

    International Nuclear Information System (INIS)

    Beckmerhagen, I.; Berg, H.P.; Brennecke, P.

    1993-01-01

    The Bundesamt fuer Strahlenschutz (BfS)--Federal Office for Radiation protection--has to guarantee that the requirements resulting from different regulations concerning planning, design, construction, operation and decommissioning of a waste repository are fulfilled. In addition, the results of the safety assessments lead to nuclear-specific requirements on the design of the plant as well as to requirements on the radioactive waste packages intended to be disposed of. Therefore, the implementation of a quality assurance (QA) and quality control (QC) system is an essential task in order to ensure that the designed quality is achieved so that the necessary precaution against damage is taken. In this paper, a detailed description of QA and QC to be applied to the planned Konrad repository as well as the basic principles and the present status of the waste package QC are indicated and discussed

  11. Management of radioactive waste at Novi Han Repository

    International Nuclear Information System (INIS)

    Stefanova, I.G.; Mateeva, M.D.; Milanov, M.V.

    2002-01-01

    The Novi Han Repository is the only existing repository in Bulgaria for the disposal of radioactive waste from nuclear applications in industry, medicine and research. The repository was constructed in the early sixties according to the existing requirements. It was operated by the Institute for Nuclear Research and Nuclear Energy for more than thirty years without any accident or release of radioactivity to the environment, but without any investment for upgrading. As a consequence, the Bulgarian Nuclear Safety Authority temporarily stopped the operation of the repository in 1994. The measures for upgrading the Novi Han Repository, supported by the IAEA under TC Project BUL/4/005 'Increasing Safety of Novi Han Repository', are presented in this paper. They comprise: assessment of radionuclide inventory and future waste arisings, characterisation of disposal vaults, characterisation of the site, safety assessment, upgrading of the monitoring system, option study for the selection of treatment and conditioning processes and the development of a conceptual design for low and intermediate level waste processing and storage facility, immediate measures for improvement of the existing disposal vaults and infrastructure, construction of above-ground temporary storage structures, and resuming the operation of the Novi Han Repository. The necessary activities for re-licensing of the Novi Han Repository, construction of a waste processing and storage facility and a disposal facility for spent sealed sources are discussed. (author)

  12. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  13. Overview of the current CRWMS repository design

    International Nuclear Information System (INIS)

    Daniel, R.B.; Teraoka, G.M.

    1998-01-01

    This paper summarizes the current design for a potential geologic repository for spent fuels and high-level wastes at Yucca Mountain, Nevada. The objective of the paper is to present the key design features of the Mined Geologic Disposal System (MGDS) surface facilities and MGDS subsurface facilities. The paper describes the following: surface layout; waste handling operations design; subsurface design; and the underground transport and emplacement design. A more detailed presentation of key features is provided in the ''Reference design description for a geologic repository'' which is located on the YMP Homepage at www.ymp.gov

  14. Third report, development of site suitability and design performance data base for a high level nuclear waste repository

    International Nuclear Information System (INIS)

    1978-05-01

    This report presents the results of mining and geotechnical studies provided as support for the development of a technical data base suitable for the generation of a regulatory framework governing high-level nuclear waste disposal: flow path models for basalts, salt domes, and crystalline rocks; simplistic model evaluations; loss of administrative control; repository conceptual designs; repository design considerations; and design performance criteria

  15. Salt Repository Project shaft design guide: Revision 0

    International Nuclear Information System (INIS)

    1987-12-01

    The Salt Repository Project (SRP) Shaft Design Guide (SDG) and the accompanying SRP Input to Seismic Design define the basic approach for developing appropriate shaft designs for a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. The SDG is based on current mining industry standards and practices enhanced to meet the special needs of an underground nuclear waste repository. It provides a common approach for design of both the exploratory and repository shafts. The SDG defines shaft lining and material concepts and presents methods for calculating the loads and displacements that will be imposed on lining structures. It also presents the methodology and formulae for sizing lining components. The SDG directs the shaft designer to sources of geoscience and seismic design data for the Deaf Smith County, Texas repository site. In addition, the SDG describes methods for confirming shaft lining design by means of computer analysis, and it discusses performance monitoring needs that must be considered in the design. 113 refs., 18 figs., 14 tabs

  16. Application of systems engineering to determine performance requirements for repository waste packages

    International Nuclear Information System (INIS)

    Aitken, E.A.; Stimmell, G.L.

    1987-01-01

    The waste package for a nuclear waste repository in salt must contribute substantially to the performance objectives defined by the Salt Repository Project (SRP) general requirements document governing disposal of high-level waste. The waste package is one of the engineered barriers providing containment. In establishing the performance requirements for a project focused on design and fabrication of the waste package, the systems engineering methodology has been used to translate the hierarchy requirements for the repository system to specific performance requirements for design and fabrication of the waste package, a subsystem of the repository. This activity is ongoing and requires a methodology that provides traceability and is capable of iteration as baseline requirements are refined or changed. The purpose of this summary is to describe the methodology being used and the way it can be applied to similar activities in the nuclear industry

  17. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Carr, J.A.; Cunnane, J.C.

    1986-01-01

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  18. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Notz, K.J.

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will be disposed of in a geologic repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. Detailed characterizations are required for all of these potential repository wastes. These characterizations include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. This information has been extracted from primary data sources, evaluated, and assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. The Characteristics Data Base provides a standard set of self-consistent data to the various areas of responsibility including systems integration and waste stream analysis, storage, transportation, and geologic disposal. The data will be used for design studies, evaluation of alternatives, and system optimization by OCRWM and supporting contractors. 7 refs., 5 figs., 7 tabs

  19. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  20. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 22. Nuclear considerations for repository design

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/22, ''Nuclear Considerations for Repository Design,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. Included in this volume are baseline design considerations such as characteristics of canisters, drums, casks, overpacks, and shipping containers; maximum allowable and actual decay-heat levels; and canister radiation levels. Other topics include safeguard and protection considerations; occupational radiation exposure including ALARA programs; shielding of canisters, transporters and forklift trucks; monitoring considerations; mine water treatment; canister integrity; and criticality calculations

  1. Buckling design criteria for waste package disposal containers in mined salt repositories: Technical report

    International Nuclear Information System (INIS)

    Mallett, R.H.

    1986-12-01

    This report documents analytical and experimental results from a survey of the technical literature on buckling of thick-walled cylinders under external pressure. Based upon these results, a load factor is suggested for the design of waste package containers for disposal of high-level radioactive waste in repositories mined in salt formations. The load factor is defined as a ratio of buckling pressure to allowable pressure. Specifically, a load factor which ranges from 1.5 for plastic buckling to 3.0 for elastic buckling is included in a set of proposed buckling design criteria for waste disposal containers. Formulas are given for buckling design under axisymmetric conditions. Guidelines are given for detailed inelastic buckling analyses which are generally required for design of disposal containers

  2. Nuclear waste in a repository: amount as a factor in risk duration

    International Nuclear Information System (INIS)

    Zen, E.

    1980-01-01

    The relationship between the amount of nuclear waste in a nuclear repository and the safety of the repository is examined. It is shown that the amount of a given hazardous nuclide that is potentially leachable depends on the initial amount of waste in the repository and the time that has elapsed since the repository was put into operation. Nuclear repository safety can be enhanced if repositories are designed as modular units with leach-resistant watertight compartments

  3. Waste Package and Material Testing for the Proposed Yucca Mountain High Level Waste Repository

    International Nuclear Information System (INIS)

    Doering, Thomas; Pasupathi, V.

    2002-01-01

    Over the repository lifetime, the waste package containment barriers will perform various functions that will change with time. During the operational period, the barriers will function as vessels for handling, emplacement, and waste retrieval (if necessary). During the years following repository closure, the containment barriers will be relied upon to provide substantially complete containment, through 10,000 years and beyond. Following the substantially complete containment phase, the barriers and the waste package internal structures help minimize release of radionuclides by aqueous- and gaseous-phase transport. These requirements have lead to a defense-in-depth design philosophy. A multi-barrier design will result in a lower breach rate distributed over a longer period of time, thereby ensuring the regulatory requirements are met. The design of the Engineered Barrier System (EBS) has evolved. The initial waste package design was a thin walled package, 3/8 inch of stainless steel 304, that had very limited capacity, (3 PWR and 4 BWR assemblies) and performance characteristics, 300 to 1,000 years. This design required over 35,000 waste packages compared to today's design of just over 10,000 waste packages. The waste package designs are now based on a defense-in-depth/multi-barrier philosophy and have a capacity similar to the standard storage and rail transported spent nuclear fuel casks. Concurrent with the development of the design of the waste packages, a comprehensive waste package materials testing program has been undertaken to support the selection of containment barrier materials and to develop predictive models for the long-term behavior of these materials under expected repository conditions. The testing program includes both long-term and short-term tests and the results from these tests combination with the data published in the open literature are being used to develop models for predicting performance of the waste packages

  4. The use of performance assessments in Yucca Mountain repository waste package design activities

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1990-01-01

    The Yucca Mountain Project is developing performance assessment approaches as part of the evaluations of the suitability of Yucca Mountain as a repository site. Lawrence Livermore National Laboratory is developing design concepts and the scientific performance assessment methodologies and techniques used for the waste package and engineered barrier system components. This paper presents an overview of the approach under development for postclosure performance assessments that will guide the conceptual design activities and assist in the site suitability evaluations. This approach includes establishing and modeling for the long time periods required by regulations: near-field environment characteristics surrounding the emplaced wastes; container materials performance responses; and waste form properties. All technical work is being done under a fully qualified quality assurance program

  5. Development and application of a quality assurance system for waste repositories

    International Nuclear Information System (INIS)

    Beckmerhagen, I.; Berg, H.P.

    1996-01-01

    A large set of requirements are developed for the structures, systems and components of a waste repository. These requirements cover different regulations concerning planning, design, construction, operation and decommissioning of a waste repository as well as nuclear-specific requirements on the design of the plant. The implementation of a quality assurance (QA) system is an essential task in order to ensure that the requirements are fulfilled by systematic means. The QA system for the German repositories for radioactive waste is built up as a hierarchic system and described in more detail in particular covering aspects like maintenance of QA relevant systems, structures and components as well as the procedure in case of changes. For the operational phase of a repository a separate site-specific manual had to be developed. Such a manual has been elaborated for the operation of the Morsleben repository; main topics of this manual are presented

  6. General conceptual design study for a high-level radioactive waste repository in a granite formation

    International Nuclear Information System (INIS)

    1982-01-01

    The object of the general conceptual design study for a high level radioactive wastes repository in a deep lying granite formation is to ensure that technology available in 1980 is suitable for building, operating and finally closing such a repository. It is feasible to build and operate a 1000 m deep repository, located in a granite batholith, receiving 30000 AVM canisters (after 30 years surface cooling), the disposal rate being 1000 canisters per year. Cost of the operation amounts to 1,3% of the corresponding amount of electricity. The building, operating and final closing phases will take 81 years

  7. Surface-type repository for low and intermediate level radioactive waste in the Republic of Croatia

    International Nuclear Information System (INIS)

    Kucar-Dragicevic, S.; Zarkovic, V.; Subasic, D.

    1995-01-01

    The low-level intermediate-level (LL/IL) radioactive waste repository siting and construction project is one of the activities related to establishing the rad waste management system in the Republic of Croatia. The repository project design is one in an array of project activities which also include the site selection procedure and public attitude issues. The prepared design documentation gives technical, safety and financial background relevant for making a final decision on the waste disposal type, and it includes the technological, mechanical, civil and financial documentation on the preliminary/basic design level. During the last few years, the preliminary design has been prepared and safety assessment conducted for the tunnel-type LL/IL rad waste repository. As the surface-type repository is one of alternatives for final disposal the design documentation for that repository type was prepared during 1994. (author)

  8. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report

  9. Developing of Radioactive Wastes Management Safety at Baldone Repository Radons

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Abramenkova, G.; Klavins, M.

    2008-01-01

    The near surface radioactive wastes repository Radons near the Baldone city was put in operation in 1962. The safety assessment of repository was performed during 2000-2001 under the PHARE project to evaluate the recommended upgrades of repository. The outline design for new vaults and interim storage for long lived radioactive wastes was elaborated during 2003-2004 years. The Environmental Impact Assessment (EIA) for upgrade of Baldone repository was performed during 2004-2005 years. Additional evaluations of radioactive wastes management safety were performed during 2006 year by the experts of ENRESA, Spain. It was shown, that the additional efforts were spent for improving of radioactive wastes cementation in concrete containers. The results of tritium and Cs 137 leaching studies are presented and discussed. It was shown, that additives can significantly reduce the migration of radionuclides in ground water. The leaching coefficients for tritium and Cs 137 were determined to supply with the necessary data the risk assessment calculations for operation of Baldone repository R adons

  10. Waste inventory, waste characteristics and waste repositories in Japan

    International Nuclear Information System (INIS)

    Shimooka, K.

    1997-01-01

    There are two types of repositories for the low level radioactive wastes in Japan. One is a trench type repository only for concrete debris generated from the dismantling of the research reactor. According to the safety assurance system, Japan Atomic Energy Research Institute (JAERI) has disposed of the concrete debris arose from the dismantling of the Japan Power Demonstration Reactor (JPDR). The other type is the concreted pit with engineered barriers. Rokkasho Low Level Radioactive Waste Disposal Center has this type of repository mainly for the power plant wastes. Japan Nuclear Fuel Ltd. (JNFL) established by electric power companies is the operator of the LLW disposal project. JNFL began the storage operation in 1992 and buried approximately 60,000 drums there. Two hundred thousand drums of uniformly solidified, waste may be buried ultimately. 4 refs, 3 tabs

  11. Information base for waste repository design. Volume 5. Decommissioning of underground facilities. Technical report

    International Nuclear Information System (INIS)

    Giuffre, M.S.; Plum, R.L.; Koplik, C.M.; Talbot, R.

    1979-03-01

    This report is Volume 5 of a seven volume document on nuclear waste repository design issues. This report discusses the requirements for decommissioning a deep underground facility for the disposal of radioactive waste. The techniques for sealing the mined excavations are presented and an information base on potential backfill materials is provided. Possible requirements for monitoring the site are discussed. The performance requirements for backfill materials are outlined. The advantages and disadvantages of each sealing method are stated

  12. Reference Design Description for a Geologic Repository, Rev. 03, ICN 02

    International Nuclear Information System (INIS)

    Gerald Shideler

    2001-01-01

    One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay

  13. Radiological consequence analysis of a repository for radioactive waste

    International Nuclear Information System (INIS)

    Fitzpatrick, J.; Buchheim, B.; Hoop, F.J.

    1982-01-01

    One of the methods under consideration for the disposal of radioactive wastes is emplacement in a repository within deep, continental formations. This paper presents the experience gained in developing a methodology to make an assessment of the radiological consequences both for normal operation and for possible accident situations for a specific repository design in a salt dome at Gorleben in Germany , designed to accommodate all categories of radioactive waste. Radionuclide release scenarios were derived from a systematic analysis of the facility design and proposed operational procedure. Where necessary simple numerical models for such topics as direct radiation exposure from waste containers, release and transport of radionuclides, radiolysis, heat transfer, creep and impact were developed to give a first estimate of the radiological consequences due to radionuclide releases. (author)

  14. Executive-style briefings on selected repository design issues

    International Nuclear Information System (INIS)

    1978-01-01

    This document is a collection of executive-style briefings on selected repository design issues. Most of the briefings discuss differences between the US repository design bases presented in US Working Draft on Repository Physical Descriptions in a Salt Formation, prepared in support of INFCE discussions of May 1978 and the FRG-Netherlands design bases, presented in Design Study of a Radioactive Waste Repository to be Mined in a Medium-Size Salt Dome by Hamstra and Velzeboer, Netherlands Energy Research Foundation, January 1978. Advantages and disadvantages of the two sets of design bases are discussed, and the impacts of adopting either of these bases on the other's programs and positions are identified

  15. Central repository for low- and intermediate-level waste (ALMA) conceptual design, siting and safety study

    International Nuclear Information System (INIS)

    Kjellbert, N.; Haeggblom, H.; Cederstroem, M.; Lundgren, T.

    1980-07-01

    A generic design, siting and safety study of a proposed repository for low- and intermediate-level waste has been made. Special emphasis has been placed on safety characterostics. The conceptual design and the generic site, on which the study is based, are realistically chosen in accordance with present construction techniques and the existing geohydrological conditions in Sweden. (Auth.)

  16. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    International Nuclear Information System (INIS)

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document

  17. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1984-01-01

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion

  18. Reference design description for a geologic repository: Revision 01

    International Nuclear Information System (INIS)

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified

  19. Monitoring of geological repositories for high level radioactive waste

    International Nuclear Information System (INIS)

    2001-04-01

    Geological repositories for disposal of high level radioactive waste are designed to provide isolation of the waste from human environment for many thousands of years. This report discusses the possible purposes for monitoring geological repositories at the different stages of a repository programme, the use that may be made of the information obtained and the techniques that might be applied. This report focuses on the different objectives that monitoring might have at various stages of a programme, from the initiation of work on a candidate site, to the period after repository closure. Each objective may require somewhat different types of information, or may use the same information in different ways. Having evaluated monitoring requirements, the report concludes with a brief evaluation of available monitoring techniques

  20. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 12. Repository preconceptual design studies: shale

    International Nuclear Information System (INIS)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in shale. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/13, ''Drawings for Repository Preconceptual Design Studies: Shale.''

  1. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 14. Repository preconceptual design studies: basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in basalt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/15, ''Drawings for Repository Preconceptual Design Studies: Basalt.''

  2. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Volume I. Conceptual design report

    International Nuclear Information System (INIS)

    1978-12-01

    In February 1976, the Energy Research and Development Administration (ERDA), now the Department of Energy (DOE), established a National Waste Terminal Storage (NWTS) program. As a part of this program, two parallel conceptual design efforts were initiated in January 1977. One was for deep geologic storage, in domed salt, of high level waste resulting from the reprocessing of spent fuel. The other was for deep geologic storage of unreprocessed spent fuel in bedded salt. These two concepts are identified as NWTS Repository 1 and Repository 2, respectively. Repository 2 (NWTSR2) is the concept which is covered by this Conceptual Design Report. Volume I of the conceptual design report contains the following information: physical description of the report; project purpose and justification; principal safety, fire, and health hazards; environmental impact considerations; quality assurance considerations; assessment of operational interfaces; assessment of research and development interfaces; project schedule; proposed method of accomplishment; summary cost estimate; and outline specifications. The conceptual design for Repository 2 was developed in sufficient detail to permit determination of scope, engineering feasibility, schedule, and cost estimates, all of which are necessary for planning and budgeting the project

  3. Seismic design ampersand analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid open-quotes deterministicclose quotes and open-quotes probabilisticclose quotes concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  4. Seismic design and analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid ''deterministic'' and ''probabilistic'' concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  5. Overview of adaptive phased management repository design development

    International Nuclear Information System (INIS)

    Russell, S.

    2011-01-01

    The Nuclear Waste Management Organization is implementing Adaptive Phased Management, Canada's plan for long-term management of used nuclear fuel. The organization is proceeding with the process for selecting a site in partnership with an informed and willing host community to safely and securely container and isolate used nuclear fuel in a deep geological repository in a suitable rock formation. Adaptive Phased Management is the culmination of more than 30 years of research, development and demonstration of repository concepts in Canada. Adaptive Phased Management uses a phased and adaptive step-wise approach to the multi-barrier system which is consistent with the long-term waste management approaches being developed in many other countries with nuclear power programs such as Sweden, Finland, Switzerland, the United Kingdom and France. The Nuclear Waste Management Organization is examining and developing conceptual designs for a deep geological repository and associated facilities for the placement of used nuclear fuel in long-lived containers. This paper will examine two of these generic conceptual designs which have recently been refined and updated. These conceptual designs will be used to support a pre-project review of repository design and safety by the Canadian Nuclear Safety Commission. (author)

  6. The role of waste package specifications as a forerunner to ILW repository conditions for acceptance

    International Nuclear Information System (INIS)

    Barlow, S.V.; Palmer, J.D.

    1998-01-01

    In the absence of a finalized repository site, design or associated safety case, Nirex is not in a position to issue conditions for acceptance. Nirex has therefore developed a strategy which facilitates packaging of intermediate level waste by providing guidance through waste package specifications, supported by the formal assessment of specific packaging proposals on a case-by-case basis. The waste package specifications are comprehensive and cover all aspects of the waste package including dimensions and other key features, performance standards, wasteform, quality assurance, and data recording requirements. The waste package specifications will be subject to periodic review as repository design and safety cases are finalized and will progressively become site- and design-specific. The waste package specifications will eventually form the basis for conditions for acceptance. The strategy described in this paper has been successfully followed by Nirex and customers for the past ten years and has permitted wastes to be packaged for a deep repository with confidence in the absence of a finalized site and safety cases for the repository. Because the process has its basis in a generic repository concept, it remains robust, despite the increased uncertainty following the March 1997 Secretary of State's decision, as to the siting and time-scale of a deep waste repository, and continues to be an important component of the UK's waste management strategy. (author)

  7. Postclosure risks of alternative SRP nuclear waste forms in geologic repositories

    International Nuclear Information System (INIS)

    Cheung, H.; Edwards, L.; Harvey, T.; Revelli, M.

    1982-05-01

    The postclosure risk of REFERENCE and ALTERNATIVE waste forms for the defense high-level waste at the Savannah River Plant (SRP) were compared by analyses with a computer code, MISER, written to study the effects of repository features in a probabilistic framework. MISER traces radionuclide flows through a network of stream tubes from the repository to risk-sensitive points. Uncertainties in waste form, package properties, and geotechnical data are accounted for with Monte Carlo techniques. Our results show: (1) for generic layered-salt and basalt repositories, the difference in performance between the two waste forms is insignificant; (2) where the doses are sensitive to uncertainties in leaching rates, the doses are orders of magnitude below background; (3) disruptive events contribute only slightly to the risk of a layered-salt repository; (4) simple design alterations have strong effects on near field doses; (5) great care should be exercised in selecting the location at which repository risks are to be measured, calculated, or regulated

  8. Low- and intermediate-level waste repository-induced effects

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom); Savage, D. [Savage Earth Associates Ltd, Bournemouth, Dorset (United Kingdom); Senger, R. [Intera Inc., Ennetbaden (Switzerland)

    2016-10-15

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a low- and intermediate level waste (L/ILW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects arising principally from the heat generated by the waste and the setting of cement. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement caverns and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock. Deep geological repositories are designed to avoid or mitigate the impact of potentially detrimental repository-induced effects on long-term safety. For the repository under consideration in the present report, an assessment of those repository-induced effects that remain shows that detrimental chemical and mechanical impacts are largely confined to the rock adjacent to the excavations, thermal impacts are minimal and gas effects can be mitigated by appropriate design measures to reduce gas production and provide pathways for gas transport that limit gas pressure build-up (engineered gas transport system, or EGTS). Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The disposal system described in this report provides a system of passive barriers with multiple safety functions. The disposal

  9. Low- and intermediate-level waste repository-induced effects

    International Nuclear Information System (INIS)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J.; Smith, P.; Savage, D.; Senger, R.

    2016-10-01

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a low- and intermediate level waste (L/ILW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects arising principally from the heat generated by the waste and the setting of cement. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement caverns and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock. Deep geological repositories are designed to avoid or mitigate the impact of potentially detrimental repository-induced effects on long-term safety. For the repository under consideration in the present report, an assessment of those repository-induced effects that remain shows that detrimental chemical and mechanical impacts are largely confined to the rock adjacent to the excavations, thermal impacts are minimal and gas effects can be mitigated by appropriate design measures to reduce gas production and provide pathways for gas transport that limit gas pressure build-up (engineered gas transport system, or EGTS). Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The disposal system described in this report provides a system of passive barriers with multiple safety functions. The disposal

  10. Researching radioactive waste disposal. [Underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Feates, F; Keen, N [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1976-02-16

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared.

  11. Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Voegele, Michael D.

    2014-01-01

    This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding. - Highlights: • Progression of events associated with repository design to accommodate tunnel boring machine and in-drift waste package emplacement are discussed. • Change in container design from small, single-layered stainless steel vessel to large, two-layered nickel alloy vessel is discussed. • The addition of drip shield to limit the

  12. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  13. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  14. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr.; Gdowski, G.E.

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices

  15. Cost estimate of the Yucca Mountain repository based on the site characterization plan conceptual design: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Gruer, E.R.; Fowler, M.E.; Rocha, G.A.

    1987-06-01

    This report of the life-cycle costs of a mined repository in tuff is based on the site characterization conceptual design and contains estimates of two methods of waste emplacement - vertical and horizontal. The life cycle of the repository progresses from design and construction to emplacement operations that last 25 years. When emplacement has ended, a caretaker period begins and continues until 50 years from emplacement of the first waste. The life of the repository concludes with closure and decommissioning, which includes backfilling and sealing the repository, decontaminating and razing the surface facilities, restoring the land to as near its original condition as possible, and marking the site. The estimates, developed for each phase of the life cycle of the repository, are based on January 1986 constant (unescalated) dollars and include an allowance for contingency. This report mainly comprises explanations of design and operating assumptions, estimating methods, exclusions, definition of cost accounts, calculating procedures, data sources, staffing and other qualifying remarks. Cost estimates are approximations of value and should not be construed as exact. The cost and staffing detail provided in this estimate is commensurate with the detail in the conceptual design

  16. Conceptual designs for waste packages for horizontal or vertical emplacement in a repository in salt for reference in the site characterization plan

    International Nuclear Information System (INIS)

    1987-06-01

    This report includes the options of horizontal and vertical emplacement, the addition of a phased repository, an additional waste form (intact spent fuel), revised geotechnical data appropriate for the Deaf Smith County site, new corrosion data for the container, and new repository design data. The waste package consists of waste form and canister within a thick-walled, low-carbon steel container surrounded by packing. The container is a hollow cylinder with a flat head welded to each end. The design concepts for the waste container or vertical and horizontal emplacement are identical. This report discusses the results of analyses of aspects of the reference waste package concept needing changes because of new data and information believed applicable to the Deaf Smith County site. Included are waste package conceptual designs or (1) the reference defense high-level waste form from the Savannah River Plant; (2) intact spent fuel with our pressurized-water-reactor or nine boiling-water-reactor assemblies per package for emplacement during Phase 1 of repository operation; and (3) spent fuel which has been disassembled and consolidated into a segmented cylindrical canister with rods from either 12 pressurized-water-reactor or 30 boiling-water-reactor assemblies per package for emplacement during Phase 2. 30 refs., 61 figs., 30 tabs

  17. Conceptual design of the Brazilian near surface repository

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Freire, Carolina Braccini

    2013-01-01

    CNEN is presently in the planning phase of the implementation of a repository for low and intermediate level wastes. One of the present activities of this project is to define a concept for the disposal of radioactive wastes to be received. The conceptual design of the repository takes into account the quantities and characteristics of the waste, the disposal arrangement, the waste acceptance criteria, the site characteristics, the period of the facility operation and institutional control, the engineering barriers to be used, as well as the facility's operational aspects. The facility will be a near-surface repository, an internationally accepted concept and adopted for example in France (L'Aube repository) and Spain (El Cabril). An acceptable site for such a repository must have characteristics that minimize the risk of human exposure to the radiation and environmental contamination. For this, the chosen site must meet specific technical and socioeconomic requirements, such as favorable physiographic, meteorological, geotechnical and tectonic characteristics, low demographic density, absence of agricultural activities and mineral deposits and proximity to the paved road grid. In this work the technical and socioeconomic requirements necessary and sufficient for site selection are presented. Also discussed is the method for the establishment of the main features that the different facility's buildings must have. Since a specific site has not yet been selected, a simulated area with straight and parallel sides, no gradient, served by access road and having a surface sufficient to hold the disposal structures and support facilities, as well as the legal exclusion zones. The buildings were designed and positioned in order to meet the needs in terms of flow of waste, personnel, supplies and materials necessary to perform the activities within the enterprise. The methodology for compilation of information related to buildings is presented. This information will be

  18. A feasibility study for the design of a simulated radioactive waste repository facility

    International Nuclear Information System (INIS)

    1986-10-01

    The paper contains the text and references of a feasibility study for the design of a simulated radioactive waste repository facility (final report). The work was commissioned by the Department of the Environment, United Kingdom, as part of its radioactive waste management research programme. The nature of the candidate buffer materials, the factors defining their behaviour, and the nature of a buffer material selection and testing programme, are examined. A description is given of the properties and modelling of host materials. The complex interactions between host materials, and between buffer and host materials, are discussed, along with the instrumentation requirements for measuring the interactions. Finally, the temperature field around a waste package, and modelling a host continuum with a segmental block, are both investigated. (U.K.)

  19. The technical challenge of mechanized excavation for nuclear waste repositories

    International Nuclear Information System (INIS)

    Smith, A.I.

    1991-01-01

    This paper presents the historical background of the tunnel boring machine and discusses its integration into the design of a nuclear waste repository. It is essential that the designers of a project utilize the productivity of the system to their advantage. An example would be the construction of a pair of small tunnels instead of a single large diameter access ramp. The pair of tunnels would be more effective in use and less expensive to bore than the single all-purpose tunnel. The designers of an underground nuclear waste repository must recognize the capabilities of the Tunnel Boring Machine system and tailor their design to employ the technological advantages which have been made in recent years

  20. NF-PRO research on a repository for vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Sneyers, A.

    2006-01-01

    NF-PRO is a four-year (2004-2007) Integrated Project supported by funding under the Sixth Research (EURATOM) Programme of the European Commission. NF-PRO is coordinated by SCK C EN and investigates key processes in the near-field of geological repositories for the disposal of high-level vitrified waste and spent nuclear fuel. The near-field of a geological repository consists of the area surrounding the waste packages and is composed of several engineered barriers that enclose and confine the disposed waste. These barriers include the waste form, the waste canisters, backfills, seals, plugs and the part of the host rock that has been modified by the excavation of the repository. In all repository designs under investigation within EU Member States, the near-field plays an important role in ensuring the overall safety of disposal: its principal function is to retain radionuclides over extended periods of time and to minimise their release from the waste to the host rock. The main objective of NF-PRO is to integrate European research on the near field with the aim of enhancing common understanding of the long-term changes taking place in a deep repository. NF-PRO assesses how these changes affect the containment of the disposed radioactive waste. Knowledge generated by the project can be applied in waste management programmes to optimise repository designs and to make barriers functional and resource-efficient. The integration of results from detailed process studies in assessments on the overall near-field system performance is a key objective of NF-PRO. The level of integration envisaged by NF-PRO has not yet been achieved in earlier research projects supported by the European Commission. Accordingly, NF PRO represents a major step forward in the establishing of the scientific and technical basis for geological disposal and the safe management of radioactive wastes

  1. The design of the Bulgaria rad waste repository; Diseno del centro de almacenamiento de residuos radiactivos de Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Stefonova, I.; Petrov, I.; Navarro, M.; Sanchez, M.; Medinilla, G.

    2012-11-01

    In October 2011 a consortium composed by Westinghouse Engineering Spain SAU, ENRESA and DBE Technology GmbH was awarded a contract for the design of the Bulgaria rad waste repository. The facility, inspired in the spanish centre of El Cabril owned by ENRESA, will consist of a 66 reinforced concrete cells surface repository capable of receiving 18600 already conditioned waste containers of 20 t each, during 60 years, and the related auxiliary facilities and buildings. The project, representing a challenge because of the schedule and required level of detail, goes on fulfilling main milestones and getting customer satisfaction. (Author)

  2. Instrument reliability for high-level nuclear-waste-repository applications

    International Nuclear Information System (INIS)

    Rogue, F.; Binnall, E.P.; Armantrout, G.A.

    1983-01-01

    Reliable instrumentation will be needed to evaluate the characteristics of proposed high-level nuclear-wasted-repository sites and to monitor the performance of selected sites during the operational period and into repository closure. A study has been done to assess the reliability of instruments used in Department of Energy (DOE) waste repository related experiments and in other similar geological applications. The study included experiences with geotechnical, hydrological, geochemical, environmental, and radiological instrumentation and associated data acquisition equipment. Though this paper includes some findings on the reliability of instruments in each of these categories, the emphasis is on experiences with geotechnical instrumentation in hostile repository-type environments. We review the failure modes, rates, and mechanisms, along with manufacturers modifications and design changes to enhance and improve instrument performance; and include recommendations on areas where further improvements are needed

  3. National radioactive waste repository draft EIS. 2 volumes

    International Nuclear Information System (INIS)

    2002-01-01

    Most Australians benefit either directly or indirectly from the medical, industrial and scientific use of radioactive materials. This use produces a small amount of radioactive waste, including low level and short-lived intermediate level radioactive waste such as lightly contaminated soil, plastic, paper, laboratory equipment, smoke detectors, exit signs and gauges.This waste is temporarily stored at more than 100 urban and rural locations around Australia, much of it in buildings that were neither designed nor located for the long-term storage of radioactive material and that are nearing or have reached capacity. Storage locations include hospitals, research institutions, and industry and government stores. Storing such waste in many locations in non-purpose built facilities potentially poses greater risk to the environment and people than disposing of the material in a national, purpose-built repository where the material can be safely managed and monitored. The objectives of the national repository are to: 1. strengthen Australia's radioactive waste management arrangements by promoting the safe and environmentally sound management of low level and short-lived intermediate level radioactive waste 2. provide safe containment of these wastes until the radioactivity has decayed to background levels. To meet these objectives, it is proposed to construct a national near-surface repository at either the preferred site on the Woomera Prohibited Area (WPA) or either of the two nearby alternative sites. The facility is not intended for the disposal of radioactive ores from mining. A national store for long-lived intermediate level waste will not be co-located with the national repository, and would be subject to a separate environmental assessment process.One preferred and two alternative sites have been selected for the national repository, following an extensive site selection process. All three sites are located in northern South Australia in a region known as central

  4. Waste package for a repository located in salt

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.

    1983-01-01

    This paper describes the current status of the waste package designs for salt repositories. The status of the supporting studies of environment definition, corrosion of containment materials, and leaching of waste forms is also presented. Emphasis is on the results obtained in FY 83 and the planned effort in FY 84. 8 references, 3 figures, 1 table

  5. General conceptual design study for a high level radioactive waste repository in a granite formation. Volume 1

    International Nuclear Information System (INIS)

    1982-01-01

    The object of the general conceptual design study for a repository for disposal of radioactive waste in a granite formation is to ensure that the technology available in 1980 is suitable for the construction of such a repository. The recommended techniques and equipment are suitable for construction of a repository, located at a depth of 1000 metres in a granite batholith, with a capacity of 30,000 AVM canisters, cooled for 30 years on the surface, at a rate of 1,000 canisters per year. The structure consists of six access shafts of 4 and 5 metres diameter, drilled from the surface by the big-hole method, serving a network of 82 parallel galleries, 2,300 metres long, mined by conventional blasting. Shafts 100 metres deep are drilled in the floor of each gallery (74 shafts per gallery), each shaft accommodating five canisters. This represents an aggregate gallery length of 200 kilometres and an aggregate shaft length of 600 kilometres. The cost of the operation is 1.3% of the cost (ex-works) of the energy produced by the power stations generating the waste. Construction, operation and final abandonment will take 81 years. The sensitivity study of the design showed, by varying certain parameters, that location of the repository at a depth of 500 metres is not recommended and that the area covered by the repository of 4 km 2 is halved if the canisters are first cooled for 100 years

  6. Salt repository design approach

    International Nuclear Information System (INIS)

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure

  7. Classifying decommissioning wastes for allocation to appropriate final repositories

    International Nuclear Information System (INIS)

    Alder, J.C.; Tunaboylu, K.

    1982-01-01

    For the safe disposal of radioactive wastes in different repositories, it is of advantage to classify them in well-defined conditioned categories, appropriate for final disposal. These categories, the so-called waste sorts are characterized by similar radionuclide distribution, similar nuclide-specific activity concentrations and similar waste matrix. A methodology is presented for classifying decommissioning wastes and is applied to the decommissioning wastes arising from a Swiss program of 6 GWe. The amounts and nuclide-specific activity inventories of the decommissioning waste sorts have been estimated. A first allocation into two different repository types has been performed. Such a classification enables one to define the source parameters for repository safety analysis and allows one to allocate the different waste categories into appropriate final repositories. This work presents a first iteration to determine which waste sorts belong to which repository type. The characteristics of waste sorts have to be better defined and the protective strength of the repository barriers has to be optimized. 7 references, 2 figures, 4 tables

  8. Chemical risks from nuclear waste repositories

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    Studies concerning the chemical risks of nuclear waste are reviewed. The radiological toxicity of the material is of primary concern but the potential nonradiological toxicity should not be overlooked as the chemotoxic substances may reach the biosphere from a nuclear waste repository. In the report is concluded that the possible chemotoxic effects of a repository for nuclear waste should be studied as a part of the formal risk assessment of the disposal concept. (author)

  9. Impact of retrievability of repository design

    International Nuclear Information System (INIS)

    Heijdra, J.J.; Gaag, J. v.d.; Prij, J.

    1995-01-01

    In this paper the impact of the retrievability on the design of the repository will be handled. Retrievability of radioactive waste from a repository in geological formations has received increasing attention during recent years. It is obvious that this retrievability will have consequences in terms of mining engineering, safety and cost. The purpose of the present study is to evaluate cost consequences by comparing two extreme options for retrievable storage. (author). 6 refs., 3 figs

  10. High-level waste repository-induced effects

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom); Savage, D. [Savage Earth Associates Ltd, Bournemouth, Dorset (United Kingdom); Senger, R. [Intera Inc., Ennetbaden (Switzerland)

    2016-10-15

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a high-level waste (HLW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects on the host rock and engineered barriers arising principally from the heat generated by the waste. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement rooms and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock, with a focus on chemical effects of the waste and engineered materials on the host rock. The assessment of the repository-induced effects shows that detrimental chemical and mechanical impacts are largely confined to the rock immediately adjacent to the excavations, thermal impacts are controllable by limiting the heat load and gas effects are limited by ensuring acceptably low gas production rates and by the natural tendency of the gas to escape along the excavations and the excavation damaged zone (EDZ) rather than through the undisturbed rock. Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The SF/HLW emplacement rooms (emplacement drifts) are designed, constructed, operated and finally backfilled in such a way that formation of excavation damaged zones is limited. Specifically this is achieved

  11. High-level waste repository-induced effects

    International Nuclear Information System (INIS)

    Leupin, O.X.; Marschall, P.; Johnson, L.; Cloet, V.; Schneider, J.; Smith, P.; Savage, D.; Senger, R.

    2016-10-01

    This status report aims at describing and assessing the interactions of the radioactive waste emplaced in a high-level waste (HLW) repository with the engineered materials and the Opalinus Clay host rock. The Opalinus Clay has a thickness of about 100 m in the proposed siting regions. Among other things the results are used to steer the RD and D programme of NAGRA. The repository-induced effects considered in this report are of the following broad types: - Thermal effects: i.e. effects on the host rock and engineered barriers arising principally from the heat generated by the waste. - Rock-mechanical effects: i.e. effects arising from the mechanical disturbance to the rock caused by the excavation of the emplacement rooms and other underground structures. - Hydraulic and gas-related effects: i.e. the effects of repository resaturation and of gas generation, e.g. due to the corrosion of metals within the repository, on the host rock and engineered barriers. - Chemical effects: i.e. chemical interactions between the waste, the engineered materials and the host rock, with a focus on chemical effects of the waste and engineered materials on the host rock. The assessment of the repository-induced effects shows that detrimental chemical and mechanical impacts are largely confined to the rock immediately adjacent to the excavations, thermal impacts are controllable by limiting the heat load and gas effects are limited by ensuring acceptably low gas production rates and by the natural tendency of the gas to escape along the excavations and the excavation damaged zone (EDZ) rather than through the undisturbed rock. Specific measures that are part of the current reference design are discussed in relation to their significance with respect to repository-induced effects. The SF/HLW emplacement rooms (emplacement drifts) are designed, constructed, operated and finally backfilled in such a way that formation of excavation damaged zones is limited. Specifically this is achieved

  12. Further design work on a repository in a salt dome

    International Nuclear Information System (INIS)

    Hamstra, J.; Janssen, L.G.L.

    1985-01-01

    The report presents the cost estimate and the work plan for the construction of a repository, to be mined in a medium-size salt dome for the simultaneous disposal of different categories of solid radioactive wastes. The repository is designed for all categories of waste from 40 years of operation of 25 nuclear power stations of 1000 MWe each, including the decommissioning waste from these stations as well as all the radioactive wastes from the hospitals and laboratories during a hundred-year period. The cost estimate includes preparation of a site, the construction, operation and abandonment of that repository. Moreover, an outline has been presented for a future updating and optimization study of the concept

  13. Structural considerations in the design of a repository to store radioactive waste in basalt formations

    International Nuclear Information System (INIS)

    Deju, R.A.; Board, M.P.; Gephart, R.E.; Myers, C.W.

    1978-01-01

    The Columbia River Basalt is being studied as a potential site for a spent fuel repository for the United States of America. To accomplish this end, a design study and environmental feasibility studies are being conducted to assess the feasibility of building tunnels at depths of approximately 1,000 meters to store the spent fuel. Of prime consideration is the design of the tunnels in such a way that the overall underground structure can withstand the thermal loading effect resulting from dissipation of heat released from the spent fuel canisters as the radioactive material decays. This paper discusses structural design considerations needed to construct such a repository subject to the loading conditions and safety considerations that must be applied to guaranteeing that the waste emplaced in these tunnels will remain isolated from mankind for long geologic periods of time

  14. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  15. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  16. Siting, design and construction of a deep geological repository for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1990-06-01

    The main objective of this document is to summarize the basic principles and approaches to siting, design and construction of a deep geological repository for disposal of high level and alpha bearing radioactive wastes, as commonly agreed upon by Member States. This report is addressed to decision makers and technical managers as well as to specialists planning for siting, design and construction of geological repositories for disposal of high level and alpha bearing wastes. This document is intended to provide Member States of the IAEA with a summary outline for the responsible implementing organizations to use for siting, designing and constructing confinement systems for high level and alpha bearing radioactive waste in accordance with the protection objectives set by national regulating authorities or derived from safety fundamentals and standards of the IAEA. The protection objectives will be achieved by the isolation of the radionuclides from the environment by a repository system, which consists of a series of man made and natural safety barriers. Engineered barriers are used to enhance natural geological containment in a variety of ways. They must complement the natural barriers to provide adequate safety and necessary redundancy to the barrier system to ensure that safety standards are met. Because of the long timescales involved and the important role of the natural barrier formed by the host rock, the site selection process is a key activity in the repository design and development programme. The choice of the site, the investigation of its geological setting, the exploration of the regional hydrogeological setting and the primary underground excavations are all considered to be part of the siting process. 16 refs

  17. Constructibility issues associated with a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Turner, D.A.

    1981-01-01

    This report contains the text and slide reproductions of a speech on nuclear waste disposal in basalt. The presentation addresses the layout of repository access shafts and subsurface facilities resulting from the conceptual design of a nuclear repository in basalt. The constructibility issues that must be resolved prior to construction are described

  18. Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock

    Science.gov (United States)

    Hadgu, T.; Gomez, S. P.; Matteo, E. N.

    2017-12-01

    Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  19. Underground excavation methods for a high-level waste repository

    International Nuclear Information System (INIS)

    Peshel, J.; Gupta, D.; Nataraja, M.

    1990-01-01

    This paper reports on rock excavation methods for a High-Level Waste repository that should be selected to limit the potential for creating preferential pathways for groundwater to travel to the waste packages or for radionuclides to migrate to the accessible environment. The use of water and other foreign substances should be controlled so that the repository performance is not compromised. The excavated openings should remain stable so that operations can be carried out safely and the retrievability option maintained. As per the current conceptual designs presented by the Department of Energy, the exploratory shaft facility becomes a part of the repository if the Yucca Mountain site is found suitable for repository development. Therefore, the methods of constructing the underground openings should be compatible with the performance requirements for the repository. Also, the degree of damage to the rock surrounding the openings and the extent of the damage zone should not preclude adequate site characterization. The ESf construction and operation should be compatible with the site data gathering activities, such as geological, thermomechanical, hydrological and geochemical testing

  20. Repository simulation model: Final report

    International Nuclear Information System (INIS)

    1988-03-01

    This report documents the application of computer simulation for the design analysis of the nuclear waste repository's waste handling and packaging operations. The Salt Repository Simulation Model was used to evaluate design alternatives during the conceptual design phase of the Salt Repository Project. Code development and verification was performed by the Office of Nuclear Waste Isolation (ONWL). The focus of this report is to relate the experience gained during the development and application of the Salt Repository Simulation Model to future repository design phases. Design of the repository's waste handling and packaging systems will require sophisticated analysis tools to evaluate complex operational and logistical design alternatives. Selection of these design alternatives in the Advanced Conceptual Design (ACD) and License Application Design (LAD) phases must be supported by analysis to demonstrate that the repository design will cost effectively meet DOE's mandated emplacement schedule and that uncertainties in the performance of the repository's systems have been objectively evaluated. Computer simulation of repository operations will provide future repository designers with data and insights that no other analytical form of analysis can provide. 6 refs., 10 figs

  1. Conceptual design of the Brazilian near surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Rogerio P.; Freire, Carolina Braccini, E-mail: mourao@cdtn.br, E-mail: cbf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/UFMG-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    CNEN is presently in the planning phase of the implementation of a repository for low and intermediate level wastes. One of the present activities of this project is to define a concept for the disposal of radioactive wastes to be received. The conceptual design of the repository takes into account the quantities and characteristics of the waste, the disposal arrangement, the waste acceptance criteria, the site characteristics, the period of the facility operation and institutional control, the engineering barriers to be used, as well as the facility's operational aspects. The facility will be a near-surface repository, an internationally accepted concept and adopted for example in France (L'Aube repository) and Spain (El Cabril). An acceptable site for such a repository must have characteristics that minimize the risk of human exposure to the radiation and environmental contamination. For this, the chosen site must meet specific technical and socioeconomic requirements, such as favorable physiographic, meteorological, geotechnical and tectonic characteristics, low demographic density, absence of agricultural activities and mineral deposits and proximity to the paved road grid. In this work the technical and socioeconomic requirements necessary and sufficient for site selection are presented. Also discussed is the method for the establishment of the main features that the different facility's buildings must have. Since a specific site has not yet been selected, a simulated area with straight and parallel sides, no gradient, served by access road and having a surface sufficient to hold the disposal structures and support facilities, as well as the legal exclusion zones. The buildings were designed and positioned in order to meet the needs in terms of flow of waste, personnel, supplies and materials necessary to perform the activities within the enterprise. The methodology for compilation of information related to buildings is presented. This

  2. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

  3. WASTE PACKAGE TRANSPORTER DESIGN

    International Nuclear Information System (INIS)

    Weddle, D.C.; Novotny, R.; Cron, J.

    1998-01-01

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''

  4. Operational procedures for receiving, packaging, emplacing, and retrieving high-level and transuranic waste in a geologic repository in TUFF

    International Nuclear Information System (INIS)

    Dennis, A.W.; Mulkin, R.

    1984-01-01

    The Nevada Nuclear Waste Storage Investigations Project, directed by the Nevada Operations Office of the Department of Energy, is currently developing conceptual designs for a commercial nuclear waste repository. In this paper, the preliminary repository operating plans are identified and the proposed repository waste inventory is discussed. The receipt rates for truck and rail car shipments of waste are determined as are the required repository waste emplacement rates

  5. Performance analysis of conceptual waste package designs in salt repositories

    International Nuclear Information System (INIS)

    Jansen, G. Jr.; Raines, G.E.; Kircher, J.F.

    1984-01-01

    A performance analysis of commercial high-level waste and spent fuel conceptual package designs in reference repositories in three salt formations was conducted with the WAPPA waste package code. Expected conditions for temperature, stress, brine composition, radiation level, and brine flow rate were used as boundary conditions to compute expected corrosion of a thick-walled overpack of 1025 wrought steel. In all salt formations corrosion by low Mg salt-dissolution brines typical of intrusion scenarios was too slow to cause the package to fail for thousands of years after burial. In high Mg brines judged typical of thermally migrating brines in bedded salt formations, corrosion rates which would otherwise have caused the packages to fail within a few hundred years were limited by brine availability. All of the brine reaching the package was consumed by reaction with the iron in the overpack, thus preventing further corrosion. Uniform brine distribution over the package surface was an important factor in predicting long package lifetimes for the high Mg brines. 14 references, 15 figures

  6. Design of repository sealing systems - 1981

    International Nuclear Information System (INIS)

    Ellison, R.D.; Shukla, D.K.; Kelsall, P.C.; D'Appolonia Consulting Engineers, Albuquerque, NM)

    1982-01-01

    Isolating nuclear waste in geologic repositories will require the sealing of penetrations such as access shafts and tunnels, disposal rooms, and exploration boreholes. This paper discusses seal designs developed for a repository in bedded salt referenced to the stratigraphy of southeastern New Mexico. Designs are based on a multiple component concept whereby individual components are designed for a specific function and location. For a repository in salt the major function of the seals is to exclude groundwater inflow. Two main types of component are included for this purpose: (1) bulk-heads are dense concrete structures keyed into the walls of the penetration and are intended to reduce flow at the interface between the seal and the salt; (2) backfills are granular materials compacted in place in the penetration. In the repository the major backfill material is crushed salt, which is expected to consolidate and recrystallize as the rooms close in response to salt creep. Densely compacted clays will be used as backfill in the shafts closer to potential sources of water inflow. 22 references, 10 figures, 1 table

  7. Emplacement and retrieval equipment design considerations for a repository in salt

    International Nuclear Information System (INIS)

    Nair, B.R.; Bahorich, R.J.

    1987-01-01

    The current design concept for the disposal of nuclear high level waste packages in a repository in salt is based on the emplacement of individual packages in vertical boreholes in the underground mine floor. A key requirement is that the waste packages be capable of being retrieved during the last 26 years of the 76-year repository operating period. The unique design considerations relating to the retrieval of waste packages emplaced in bedded salt are presented in this paper. The information is based on the experience developed during the design of vertical emplacement and retrieval equipment in support of the Sandia Defense High Level Waste experiments at the Waste Isolation Pilot Plant. Also included are the impact of retrievability on the design of the equipment, the special salt cutting technology that was developed for this application, and a description of the equipment

  8. Methods of calculating the post-closure performance of high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. (ed.)

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  9. Methods of calculating the post-closure performance of high-level waste repositories

    International Nuclear Information System (INIS)

    Ross, B.

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs

  10. Multi criteria decision analysis on a waste repository in Mol

    International Nuclear Information System (INIS)

    Carle, B.

    2005-01-01

    In Belgium, the management of radioactive waste is taken care of by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials. Local partnerships with stakeholders from municipalities in existing nuclear zones were setup to facilitate the dialogue between the repository designers and the local community. Since the establishment of the partnership in Mol, MONA in February 2000, all aspects of a possible near-surface or a deep geological repository are discussed in 4 working groups by around 50 volunteer members. The outcome of the discussions in the partnership can be a shared project, supported by both local stakeholders and ONDRAF/NIRAS, in which the specifications and the conditions needed for establishing a repository in Mol are elaborated. MONA asked the Decision Strategy Research Department of SCK-CEN to organise a Multi Criteria Analysis (MCA) in the context of the deciding between a surface and a deep repository for low level radioactive waste. The objective of the multi criteria analysis is to support a number of representatives of the various working groups within MONA in their selection between two acceptable options for a repository of low level radioactive waste on the territory of Mol. The options are the surface repository developed by the working groups of MONA, and a deep repository in the clay layers underneath the nuclear site of Mol. This study should facilitate the selection between both options, or in case this appears to be difficult, at least to get a well-structured overview of all factors (criteria) of importance to the judgement, and to get insight into the degree in which the various criteria contribute to the selection

  11. Planning the rad waste repository - Croatian case

    International Nuclear Information System (INIS)

    Kucar Dragicevic, S.; Subasic, D.; Lokner, V.

    1996-01-01

    Radioactive waste is generated in Croatia from various nuclear applications as well as from the Krsko NPP (Slovenian and Croatian joint venture facility). The national programme on radioactive waste management is aimed at straightening existing infrastructure, establishing new (more transparent) system of responsibilities and development of new legislation. The siting of LL/ILW repository is important segments of the whole radioactive waste management cycle. The status and efficiency of the rad waste management infrastructure in the country have the significant influence on all the activities related to the project of repository construction - from the very first phases of preliminary planning and background preparations to advanced phases of the project development. The present status of the Croatian national radioactive waste infrastructure and its influence on the repository project are presented. The role of national legislation and institutional framework are specially discussed. (author)

  12. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2003-01-01

    The Australian Government is committed to establishing two purpose-built facilities for the management of Australia's radioactive waste; the national repository for disposal of low level and short-lived intermediate level ('low level') waste, and the national store for storage of long-lived intermediate level ('intermediate level') waste. It is strongly in the interests of public security and safety to secure radioactive waste by disposal or storage in facilities specially designed for this purpose. The current arrangements where waste is stored under ad hoc arrangements at hundreds of sites around Australia does not represent international best practice in radioactive waste management. Environmental approval has been obtained for the national repository to be located at Site 40a, 20 km east of Woomera in South Australia, and licences are currently being sought from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) to site, construct and operate the facility. The national repository may be operating in 2004 subject to obtaining the required licences. The national store will be located on Australian Government land and house intermediate level waste produced by Australian Government departments and agencies. The national store will not be located in South Australia. Short-listing of potentially suitable sites is expected to be completed soon

  13. Fair rules for siting a high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Easterling, D.

    1992-01-01

    Geologic repositories are designed to resolve the ever-growing problem of high-level nuclear waste, but these facilities invite intense local opposition due to the perceived severity of the risks and the possibility of stigma effects. This analysis examines whether the perceived fairness of the siting process affects local residents' support for hosting a repository. In particular, a survey of 1,001 Nevada residents is used to test the hypothesis that an individual's willingness to accept a local repository will increase if he or she is convinced that this is the safest disposal option available. A logistic analysis indicates that beliefs regarding relative suitability have an independent effect on the acceptability of a local repository (i.e., Yucca Mountain). The article then considers the question of how to implement an optimizing strategy for siting facilities, comparing an idealized strategy against the original Nuclear Waste Policy Act (NWPA) of 1982 and the Amendments Act of 1987. Although choosing the safest site seems as if it could enhance public acceptance of the repository program, there is currently little prospect of identifying the best option to the high-level waste problem and, as a results, little chance of gaining the public support that is necessary to promote a successful siting outcome. 81 refs., 1 fig., 5 tabs

  14. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  15. Licensing information needs for a high-level waste repository

    International Nuclear Information System (INIS)

    Wright, R.J.; Greeves, J.T.; Logsdon, M.J.

    1985-01-01

    The information needs for licensing findings during the development of a repository for high-level waste (HLW) are described. In particular, attention is given to the information and needs to demonstrate, for construction authorization purposes: repository constructibility, waste retrievability, waste containment, and waste isolation

  16. Long-Term Safety Analysis of Baldone Radioactive Waste Repository and Updating of Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2001-12-01

    The main objective of the project was to provide advice to the Latvian authorities on the safety enhancements and waste acceptance criteria for near surface radioactive waste disposal facilities of the Baldone repository. The project included the following main activities: Analysis of the current status of the management of radioactive waste in Latvia in general and, at the Baldone repository in particular Development of the short and long-term safety analysis of the Baldone repository, including: the planned increasing of capacity for disposal and long term storage, the radiological analysis for the post-closure period Development of the Environment Impact Statement, for the new foreseen installations, considering the non radiological components Proposal of recommendations for future updating of radioactive waste acceptance criteria Proposal of recommendations for safety upgrades to the facility. The work programme has been developed in phases and main tasks as follows. Phase 0: Project inception, Phase 1: Establishment of current status, plans and practices (Legislation, regulation and standards, Radioactive waste management, Waste acceptance criteria), Phase 2: Development of future strategies for long-term safety management and recommendations for safety enhancements. The project team found the general approach use at the installation, the basic design and the operating practices appropriate to international standards. Nevertheless, a number of items subject to potential improvements were also identified. These upgrading recommendations deal with general aspects of the management (mainly storage versus disposal of long-lived sources), site and environmental surveillance, packaging (qualification of containers, waste characterization requirements), the design of an engineered cap and strategies for capping. (author)

  17. Summary report of first and foreign high-level waste repository concepts

    International Nuclear Information System (INIS)

    Hanke, P.M.

    1987-01-01

    Reference repository concepts designs adopted by domestic and foreign waste disposal programs are reviewed. Designs fall into three basic categories: deep borehole from the surface; disposal in boreholes drilled from underground excavations; and disposal in horizontal tunnels or drifts. The repository concepts developed in Sweden, Switzerland, Finland, Canada, France, Japan, United Kingdom, Belgium, Italy, Holland, Denmark, West Germany and the United States are described. 140 refs., 315 figs., 19 tabs

  18. Considerations for developing seismic design criteria for nuclear waste storage repositories

    International Nuclear Information System (INIS)

    Owen, G.N.; Yanev, P.I.; Scholl, R.E.

    1980-04-01

    The function of seismic design criteria is to reduce the potential for hazards that may arise during various stages of the repository life. During the operational phase, the major concern is with the possible effects of earthquakes on surface facilities, underground facilities, and equipment. During the decommissioned phase, the major concern is with the potential effects of earthquakes on the geologic formation, which may result in a reduction in isolation capacity. Existing standards and guides or criteria used for the static and seismic design of licensed nuclear facilities were reviewed and evaluated for their applicability to repository design. This report is directed mainly toward the development of seismic design criteria for the underground structures of repositories. An initial step in the development of seismic design criteria for the underground structures of repositories is the development of performance criteria, or minimum standards of acceptable behavior. A number of possible damage modes are identified for the operating phase of the repository; however, no damage modes are foreseen that would perturb the long-term function of the repository, except for the possibility of increased permeability within the rock mass. Subsequent steps in formulating acceptable seismic design criteria for the underground structures involve the quantification of the design process. The report discusses the necessity of specifying the form of ground motion that would be needed for seismic analysis and the procedures that may be used for making ground motion predictions. Further discussions outline what is needed for analysis, including rock properties, failure criteria, modeling techniques, seismic hardening criteria for the host rock mass, and probabilistic considerations

  19. Building on existing institutions to perpetuate knowledge of waste repositories

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1982-08-01

    Purpose of this report is to examine the function of several existing institutions and to show how they could be effectively used to transmit information about waste repositories for long times into the future. Scope of this report is limited to a discussion of four institutional approaches to the dissemination and retention of information: Widely distributed maps, the marker system of the National Geodetic Survey, the archiving of documents, and one-call systems designed to protect underground utility installations from inadvertent damage by the public. Each of these approaches is discussed in an independent section that describes the background of the institutional approach, discusses methods for applying it to waste repositories, and assesses its potential value. The sole intent of this report is to present supporting data for future decisions about the kinds of communication measures that should be implemented to advise future generations about the locations and hazards of waste repositories

  20. Limits on the thermal energy release from radioactive wastes in a mined geologic repository

    International Nuclear Information System (INIS)

    Scott, J.A.

    1983-03-01

    The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300 0 C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed

  1. Public concerns and choices regarding nuclear-waste repositories

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1981-06-01

    Survey research on nuclear power issues conducted in the late 1970's has determined that nuclear waste management is now considered to be one of the most important nuclear power issues both by the US public and by key leadership groups. The purpose of this research was to determine the importance placed on specific issues associated with high-level waste disposal. In addition, policy option choices were asked regarding the siting of both low-level and high-level nuclear waste repositories. A purposive sampling strategy was used to select six groups of respondents. Averaged across the six respondent groups, the leakage of liquid wastes from storage tanks was seen as the most important high-level waste issue. There was also general agreement that the issue regarding water entering the final repository and carrying radioactive wastes away was second in importance. Overall, the third most important issue was the corrosion of the metal containers used in the high-level waste repository. There was general agreement among groups that the fourth most important issue was reducing safety to cut costs. The fifth most important issue was radioactive waste transportation accidents. Overall, the issues ranked sixth and seventh were, respectively, workers' safety and earthquakes damaging the repository and releasing radioactivity. The eighth most important issue, overall, was regarding explosions in the repository from too much radioactivity, which is something that is not possible. There was general agreement across all six respondent groups that the two least important issues involved people accidentally digging into the site and the issue that the repository might cost too much and would therefore raise electricity bills. These data indicate that the concerns of nuclear waste technologists and other public groups do not always overlap

  2. Numerical modeling of the geomechanical response of a rock mass to a radioactive waste repository

    International Nuclear Information System (INIS)

    Hardy, M.P.; St John, C.M.; Hocking, G.

    1979-06-01

    Geotechnical numerical models capable of predicting the thermomechanical response and groundwater movements around an underground radioactive waste repository are vital to the success of the nuclear waste disposal program. In the absence of directly related engineering experience, the design, risk assessment, and licensing procedures of a repository will be reliant on predictions made using such models. This paper reviews models being used to assist in repository design and summarizes the results of a recent parametric study of underground disposal in basaltic rocks. On the basis of preliminary site data, it is concluded that the allowable areal density of heat-generating waste will be controlled by the stability of placement rooms and the boreholes in which waste canisters are placed. Regional effects including thermally induced upward groundwater flow, appear to present less severe problems

  3. Rock mass modification around a nuclear waste repository in welded tuff

    International Nuclear Information System (INIS)

    Mack, M.G.; Brandshaug, T.; Brady, B.H.

    1989-08-01

    This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab

  4. The influence of waste treatment, conditioning and packaging on design for disposal

    International Nuclear Information System (INIS)

    Tufton, E.P.S.; Whipp, H.G.; Putte, D.V.

    1990-01-01

    The design of a repository for low and intermediate level waste will always have a number of targets; safety, capacity, cost and ease of operation being prominent. Achieving the targets requires a total design of the waste management system, which ranges from treatment of the raw waste form at the source of arising to design for post-closure performance of the repository. In working on repository designs and their safety assessments, the authors have found that different waste forms have significant influences on the repository and this paper is concerned with those influences. 1 ref

  5. System analysis methods for geological repository of high level radioactive waste in granite

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju; Li Yunfeng; Jin Yuanxin; Zhao Honggang

    2009-01-01

    Taking Beishan granite site as an example, this paper proposes the conceptual and structural design of repository for high level radioactive waste at first. Then the function, structure, environment and evolution of the repository are described by the methodology of system analysis. Based on these designs and descriptions, a calculation model for the repository is developed with software GoldSim. At last, this calculation model is applied to emulate the space-time distribution of repository radiotoxicity, to analyze the sensitivity of parameters in the model, to optimize the design parameters, and to predict and assess the repository performance. The results of this study can provide technical supports for resources allocation and coordination of R and D projects. (authors)

  6. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  7. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  8. ERG review of containment failure probability and repository functional design criteria

    International Nuclear Information System (INIS)

    Gopal, S.

    1986-06-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The June 1984 meeting of the ERG considered two topics: (1) statistical probability for containment of nuclides within the waste package and (2) repository design criteria. This report documents the ERG's comments and recommendations on these two subjects and the ONWI response to the specific points raised by ERG

  9. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    International Nuclear Information System (INIS)

    Apps, J.A.

    1995-01-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100 degrees C and could reach 250 degrees C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields

  10. Types of safety assessments of near surface repository for radioactive waste

    International Nuclear Information System (INIS)

    Mateeva, M.

    2004-01-01

    The purpose of this article is to presents the classification of different types safety assessments of near surface repository for low and intermediate level radioactive waste substantiated with results of safety assessments generated in Bulgaria. The different approach of safety assessments applied for old existing repository as well as for site selection for construction new repository is outlined. The regulatory requirements in Bulgaria define three main types of assessments: Safety assessment; Technical substation of repository safety; Assessment of repository influence on environment that is in form of report prepared from the Ministry of environment and waters on the base of results obtained in two first types of assessments. Additionally first type is subdivided in three categories - preliminary safety assessment, safety assessment and post closure safety assessment, which are generated using deterministic approach. The technical substation of repository safety is generated using probabilistic approach. Safety assessment results that are presented here are based on evaluation of existing old repository type 'Radon' in Novi Han and real site selection procedure for new near surface repository for low and intermediate level radioactive waste from nuclear power station in Kozloduy. The important role of safety assessment for improvement the repository safety as well as for repository licensing, correct site selection and right choice of engineer barriers and repository design is discussed using generated results. (author)

  11. Alternative configurations for the waste-handling building at the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1990-08-01

    Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared

  12. Schematic designs for penetration seals for a reference repository in bedded salt

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Case, J.B.; Meyer, D.; Coons, W.E.

    1982-11-01

    The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the straitigraphy of southeastern New Mexico. The designs are presented for extensive peer review and will be updated as site-specific conceptual designs when a site for a repository in salt has been selected. The principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate as the repository rooms creep close to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For southeastern New Mexico salt, analyses indicate that this process will require approximately 1000 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 400 years for a seal located in an access tunnel within the repository. Bulkheads composed of contrete or salt bricks are also included in the seal system as components which will have low permeability during the period required for salt consolidation

  13. Uncertainties in sealing a nuclear waste repository in partially saturated tuff

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Fernandez, J.A.; Hinkebein, T.E.

    1989-01-01

    Sealing a nuclear waste repository in partially saturated tuff presents unique challenges to assuring performance of sealing components. Design and performance of components for sealing shafts, ramps, drifts, and exploratory boreholes depend on specific features of both the repository design and the site; of particular importance is the hydrologic environment in the unsaturated zone, including the role of fracture flow. Repository design features important to sealing of a repository include the size and location of shaft and ramp accesses, excavation methods, and the underground layout features such as grade (drainage direction) and location relative to geologic structure. Uncertainties about seal components relate to the postclosure environment for the seals, the emplacement methods, the material properties, and the potential performance of the components. An approach has been developed to reduce uncertainties and to increase confidence in seal performance; it includes gathering extensive site characterization data, establishing conservative design requirements, testing seal components in laboratory and field environments, and refining designs of both the seals and the repository before seals are installed. 9 refs., 5 figs., 2 tabs

  14. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  15. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    International Nuclear Information System (INIS)

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules

  16. Hydrothermal conditions around a radioactive waste repository

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1981-12-01

    Numerical solutions for the hydrothermal conditions around a hard rock repository for nuclear fuel waste are presented. The objective of the present investigation is to illustrate in principle the effect of heat released from a hypothetical radioactive waste repository with regard to anisotropy in the rock permeability. Permeability and porosity are assumed to be constant or to decrease exponentially with depth. The hypothetical repository is situated below a horizontal ground surface or below the crest of a hill, and it is assumed that the water table follows the topography. Major interest in the analysis is directed towards the influence of anisotropy in the permeability on the flow patterns and travel times for water particles, being traced from the repository to the ground surface. The presented results show that anisotropy in the permeability may have a significant influence on the flow conditions around the repository and subsequently also on the travel times from the repository. (Authors)

  17. Underground repository for radioactive wastes

    International Nuclear Information System (INIS)

    Cassibba, R.O.

    1989-01-01

    In the feasibility study for an underground repository in Argentina, the conceptual basis for the final disposal of high activity nuclear waste was set, as well as the biosphere isolation, according to the multiple barrier concept or to the engineering barrier system. As design limit, the container shall act as an engineering barrier, granting the isolation of the radionuclides for approximately 1000 years. The container for reprocessed and vitrified wastes shall have three metallic layers: a stainless steel inner layer, an external one of a metal to be selected and a thick intermediate lead layer preselected due to its good radiological protection and corrosion resistance. Therefore, the study of the lead corrosion behaviour in simulated media of an underground repository becomes necessary. Relevant parameters of the repository system such as temperature, pressure, water flux, variation in salt concentrations and oxidants supply shall be considered. At the same time, a study is necessary on the galvanic effect of lead coupled with different candidate metals for external layer of the container in the same experimental conditions. Also temporal evaluation about the engineering barrier system efficiency is presented in this thesis. It was considered the extrapolated results of corrosion rates and literature data about the other engineering barriers. Taking into account that corrosion is of a generalized type, the integrity of the lead shall be maintained for more than 1000 years and according to temporal evaluation, the multiple barrier concept shall retard the radionuclide dispersion to the biosphere for a period of time between 10 4 and 10 6 years. (Author) [es

  18. Radioactive waste repository of high ecological safety

    International Nuclear Information System (INIS)

    Sobolev, I.; Barinov, A.; Prozorov, L.

    2000-01-01

    With the purpose to construct a radioactive waste repository of high ecological safety and reliable containment, MosNPO 'Radon' specialists have developed an advanced type repository - large diameter well (LBD) one. A project is started for the development of a technology for LDW repository construction and pilot operation of the new repository for 25-30 years. The 2 LDW repositories constructed at the 'Radon' site and the developed monitoring system are described

  19. A logistic and cost model for the transport of radioactive waste to a repository

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Gray, I.L.S.; Manville, W.D.

    1997-01-01

    UK Nirex Ltd is planning a deep repository for intermediate level radioactive waste, and also some low level waste. Part of this work is to develop a transport system to bring the packaged waste to the repository from nuclear industry sites across the United Kingdom. To assess the logistics and costs of this transport system and to provide inputs to the repository specification and design, Nirex has commissioned the development of a flexible computer model which can be used on a desktop PC. The requirements for the LOGCOST model are explained, and the solutions adopted, and then examples shown of the graphical and tabular outputs that LOGCOST can provide. (Author)

  20. Coupled thermo–hydro–mechanical processes for the Dutch radioactive waste repository

    NARCIS (Netherlands)

    Buragohain, P.; Vardon, P.J.; Hicks, M.A.; Vardon, P.J.; Bykov, D.

    2016-01-01

    Disposal of spent nuclear fuel and long lived radioactive waste in deep clay geological formations is one of the promising options worldwide. In this concept of the geological disposal system, the Boom Clay is considered as a potential host rock when designing a generic waste repository in the

  1. Sealing a nuclear waste repository in Columbia river basalt: preliminary results

    International Nuclear Information System (INIS)

    Hodges, F.N.

    1980-01-01

    The long containment time required of repositories for nuclear waste (10 4 to 10 6 years) requires that materials used for repository seals be stable in the geologic environment of the repository and of proven longevity. A list of candidate materials for sealing a repository in Columbia River Basalts has been prepared and refined through laboratory testing. The most feasible techniques for emplacing preferred plug materials have been identified and the resultant plugs have been evaluated on the basis of design functions. Preconceptual designs for tunnel, shaft, and borehole seals consist of multiple zone plugs with each zone fulfilling one or more design functions. Zones of disturbed rock around tunnels and shafts, resulting from excavation and subsequent stress release, are zones of higher permeability and of possible fluid migration. In preliminary designs the disturbed zones are blocked by cut-off collars filled with low permeability materials

  2. Evaluation of alternative spent fuel waste package concepts for a repository in Basalt

    International Nuclear Information System (INIS)

    Hall, G.V.B.; Nair, B.R.

    1986-01-01

    The United States government has established a program for the disposal of spent nuclear fuel and high-level radioactive waste. The Nuclear Waste Policy Act (NWPA) of 1982 requires the first nuclear waste repository to begin receiving high-level radioactive waste in 1998. One of the potentially acceptable sites currently being evaluated is the Hanford Site in the Pasco Basin in the state of Washington where the host rock is basalt. Under the direction of the United States Department of Energy (DOE), Rockwell International's Rockwell Hanford Operations (RHO) has initiated the Basalt Waste Isolation Project (BWIP). The BWIP must design waste packages for emplacement in the repository. As part of the BWIP waste package development program, several alternative designs were considered for the disposal of spent nuclear fuel. This paper describes the concepts that were evaluated, the criteria that was developed for judging their relative merits, and the methodology that was employed. The results of the evaluation show that a Pipe-In-Tunnel design, which uses a long carbon steel pipe for the containment barrier for multiple packages of consolidated spent fuel, has the highest rating. Other designs which had high ratings are also discussed

  3. 500 year concrete for a radioactive waste repository

    International Nuclear Information System (INIS)

    Philipose, K.E.

    1988-03-01

    The IRUS (Intrusion resistant underground structure) repository planned at Chalk River for the belowground disposal of low level radioactive waste relies on the durability of concrete for the required 500 year service life. A research program for the IRUS repository to design a durable concrete and also to predict its longevity under the repository environment is in progress. The methodology involves the identification of major degradation agents, and the assessment of the rate of diffusion of corrosive ions and/or the rate of advancement of the reaction front into the concrete. Accelerated test methods are being used on laboratory specimens in conjunction with extrapolation procedures to predict long-term durability from short-term data. The inherent limitations are also examined

  4. Flammable gas production in Land 2 and Land 3/4 radioactive waste repositories

    International Nuclear Information System (INIS)

    1988-02-01

    Geological, radiolytic and microbiological sources of gas are considered in relation to Land 2 and Land 3/4 type radioactive waste repositories. Geological sources are potentially the most troublesome and it is concluded that site investigation work should be designed to detect gas trap structures, reservoir lithologies or source rocks. Known source and reservoir lithologies should not be considered as suitable for the siting of waste repositories. Radiolytic and microbiological sources will depend on waste characteristics. A detailed review of the literature on radiolytic gas generation is presented and conclusions from this work indicate that water in waste and matrix should be kept to a minimum. Similarly, the level of radioactivity stored in each waste container should be kept to the minimum compatible with the storage design. Microbiological gas sources will be reduced by maintaining the cellulose content of the waste at a minimum. It is suggested that the removal of organics from the waste stream would be beneficial in terms of potential gas production. (author)

  5. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  6. Appraisal of hard rock for potential underground repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1977-10-01

    The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  7. Design process for a repository - KBS-3 case

    International Nuclear Information System (INIS)

    Svemar, C.

    1995-01-01

    This paper deals with the design process for the Swedish (generic) repository design KBS-3. The repository may have a spiral access ramp, access shafts, or straight access ramps. Galleries lead from a central service area to a small spent fuel storage area, a larger main spent fuel storage area, and a disposal area for other nuclear waste. This, or any, design has to be planned through three stages of layout and design, viz. feasibility study, preliminary planning, and architectural design, followed by detailed planning, and then planning of excavation and construction. Decisions on final design have to wait until construction is imminent, and all the rock data are available. This means that different sections of the repository may be at different planning stages at any one time. In the last stage, the plan of the disposal holes depends on detailed coring results, because a hole will not be bored where there is a fracture. 3 refs., 1 tab., 3 figs

  8. Experience from developed and licensing an underground repository for low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Ebel, K.; Richter, D.

    1988-01-01

    In the German Democratic Republic an abandoned salt mine was selected and reconstructed to serve as a central repository for low and intermediate level wastes from nuclear power plants and radioisotope production and application from all over the country. The decision to establish such a repository was based on safety and technical-economic studies performed in the 1960s. The repository is owned by the main waste producer, the nuclear plant utility. It was designed, constructed and commissioned during 1972-1978. The licensing steps included a site licence (1972), a construction licence (1974), a comissioning licence and a continuous operation licence (1979). The paper reviews the overall choice of the disposal option, the responsibilities in radioactive waste management, the licensing and surveillance activities, the methods for transport and disposal, and the waste acceptance criteria established for the repository. (author)

  9. Groundwater-stream-simulation experiments for the evaluation of the safety of proposed nuclear waste repositories

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1981-01-01

    A bench-scale experimental design which integrates repository components to simulate a groundwater stream infiltrating a breached repository is described in this paper. An experiment performed with a nuclear waste solid and one rock core is briefly summarized. The nuclear waste solid consists of borosilicate glass containing formulated nuclear waste and is the source of the leached radionuclides. The rock core used is of granite and serves as the adsorption medium for the leached radionuclides

  10. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  11. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  12. Site investigations, design, construction, operation, shutdown and surveillance of repositories for low- and intermediate-level radioactive wastes in rock cavities

    International Nuclear Information System (INIS)

    1984-01-01

    The report provides an overview and technical guidelines for considerations and for activities to be undertaken for safety assessment, site investigations, design, construction, operation, shutdown and surveillance of repositories for the disposal of low- and intermediate-level radioactive wastes in rock cavities. A generalized sequence of investigations is introduced which proceeds through region and site selection to the stage where the site is confirmed by detailed geoscientific investigations as being suitable for a waste repository. The different procedures and somewhat specific investigative needs with respect to existing mines are dealt with separately. General design, as well as specific requirements with respect to the different stages of design and construction, are dealt with. A review of activities related to the operational and post-operational stages of repositories in rock cavities is presented. The report describes in general terms the procedures related to different stages of disposal operation; also the conditions for shutdown together with essential shutdown and sealing activities and the related safety assessment requirements. Guidance is also given on the surveillance programme which will allow for inspection, testing, maintenance and security of a disposal facility during the operational phase, as well as for the post-operational stage for periods determined as necessary by the national authorities

  13. Repository simulation tests

    International Nuclear Information System (INIS)

    Wicks, G.G.; Bibler, N.E.; Jantzen, C.M.; Plodinec, M.J.

    1984-01-01

    The repository simulation experiments described in this paper are designed to assess the performance of SRP waste glass under the most realistic repository conditions that can be obtained in the laboratory. These tests simulate the repository environment as closely as possible and introduce systematically the variability of the geology, groundwater chemistry, and waste package components during the leaching of the waste glass. The tests evaluate waste form performance under site-specific conditions, which differ for each of the geologic repositories under consideration. Data from these experiments will aid in the development of a realistic source term that can describe the release of radionuclides from SRP waste glass as a component of proposed waste packages. Hence, this information can be useful to optimize waste package design for SRP waste glass and to provide data for predicting long-term performance and subsequent conformance to regulations. The repository simulation tests also help to bridge the gap in interpreting results derived from tests performed under the control of the laboratory to the uncertainity and variability of field tests. In these experiments, site-specific repository components and conditions are emphasized and only the site specific materials contact the waste forms. An important feature of these tests is that both actual and simulated waste glasses are tested identically. 7 figures, 2 tables

  14. Radioactive waste repository of Cesium of Abadia de Goias. Construction and design; Repositorio de rejeitos radioativos de cesio - Abadia de Goias. Concepcao e projeto

    Energy Technology Data Exchange (ETDEWEB)

    Tranjan Filho, Alfredo [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Alves, Antonio Sergio de Martin; Santos, Cicero Durval Pacifici dos; Passos, Erivaldo Mario dos; Coutinho, Fernando Paulo Millen [NUCLEN Engenharia e Servicos S.A., Rio de Janeiro, RJ (Brazil)

    1997-12-31

    The main criteria, the methodology, the solutions and parameters that were utilized in the design of the Intermediate and Low Level Radioactive Waste Repository of Abadia de Goias are shortly described. The various design steps are analysed from the preparation of the Safety Analysis Report to the detailing engineering tasks. The safety analysis for the constructed repository had the goal of verifying the magnitude of radioecological impacts corresponding to idealized activity release scenarios, allowing also the possible effects of human intrusion in the repository. These safety studies are intrinsically connected to computer calculations envisaged to simulate the long term performance of the repository. (author) 18 refs., 7 figs., 7 tabs.

  15. Status of technologies related to the isolation of radioactive wastes in geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    Irish, E R [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Safety and Environmental Protection; Cooley, C R [Department of Energy, Washington, DC (USA). Office of Nuclear Waste Management

    1980-09-01

    The authors present an overview of the status of technologies relevant to the isolation of radioactive wastes in geologic repositories. In addition to summarizing scientific and technical work on waste forms and packages, the: a) importance of the systems viewpoint, b) importance of modeling, c) need for site-specific investigations, d) consideration of future sub-surface human activities and e) prospects for successful isolation are discussed. It is concluded that successful isolation of radioactive wastes from the biosphere appears technically feasible for periods of thousands of years provided that the systems view is used in repository siting and design.

  16. Radioactive waste disposal: Recommendations for a repository site selection

    International Nuclear Information System (INIS)

    Cadelli, N.; Orlowski, S.

    1992-01-01

    This report is a guidebook on recommendations for site selection of radioactive waste repository, based on a consensus in european community. This report describes particularly selection criteria and recommendations for radioactive waste disposal in underground or ground repositories. 14 refs

  17. Schematic designs for penetration seals for a repository in the Paradox Basin

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Meyer, D.; Case, J.B.; Coons, W.E.

    1985-12-01

    The isolation of radioactive wastes in geologic repositories requires that human-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the stratigraphy of the Paradox Basin. The designs are presented for extensive peer review and will be updated as conceptual designs if the Paraodx Basin is selected as a candidate repository site. The principal components used in the shaft seal system are concrete bulkheads interspersed with highly compacted bentonite-rich earth fill. In the repository-level tunnels and rooms, the principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate in response to closure of the repository rooms, to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For Paradox Basin Cycle 6 salt, analyses indictate that this process will require approximately 300 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 140 years for a seal located in a main passageway within the repository. These analyses are based on uncertain laboratory data regarding intact salt creep rates and crushed salt consolidation characteristics, and must be regarded as preliminary

  18. Hydrothermal modeling for the efficient design of thermal loading in a nuclear waste repository

    International Nuclear Information System (INIS)

    Cho, Won-Jin; Kim, Jin-Seop; Choi, Heui-Joo

    2014-01-01

    Highlights: • Three-dimensional hydrothermal modeling for HLW repository is performed. • The model reduces the peak temperature in the repository by about 10 °C. • Decreasing the tunnel distance is more efficient to improve the disposal density. • The EDZ surrounding the deposition hole increases the peak temperature. • The peak temperature for the double-layer repository remains below the limit. - Abstract: The thermal analysis of a geological repository for nuclear waste using the three-dimensional hydrothermal model is performed. The hydrothermal model reduces the maximum peak temperature in the repository by about 10 °C compared to the heat conduction model with constant thermal conductivities. Decreasing the tunnel distance is more efficient than decreasing the deposition hole spacing to improve the disposal density for a given thermal load. The annular excavation damaged zone surrounding the deposition hole has a considerable effect on the peak temperature. The possibility of double-layer repository is analyzed from the viewpoint of the thermal constraints of the repository. The maximum peak temperature for the double-layer repository is slightly higher than that for the single-layer repository, but remains below the temperature limit

  19. Impact of transporting defense high-level waste to a geologic repository

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options

  20. A review of construction techniques available for surface and underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Godfrey, D.G.; Davies, I.L.; MacKenzie, R.D.

    1985-01-01

    In terms of engineering requirements the construction of surface or indeed underground radioactive waste repositories is not unduly difficult. The civil engineering techniques likely to be required have generally been carried out previously, albeit not in the context of radioactive waste repositories in this country. The emphasis will have to be very much on the quality of construction. This paper emphasises the need for quality construction and describes the techniques likely to be used in the construction of repositories. Reference is made to the materials likely to be used in the construction of repositories and also to the need for being able to convince the designers, regulating authorities and the general public that the materials used will indeed last for the required time. Brief reference is made at the end of the paper to the civil engineering parameters requiring consideration in the location of repository siting. (author)

  1. Influence of Groundwater Flow Rate on Nuclide Releases from Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2011-01-01

    Since the early 2000s several template programs for the safety assessment of a high-level radioactive waste repository as well as a low- and intermediate level radioactive waste repository systems have been developed by utilizing GoldSim and AMBER at KAERI. Very recently, another template program for a conceptual hybrid-typed repository system, called 'A-KRS' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from pyroprocessing of PWR nuclear spent fuels has been developed and are to be disposed of by separate disposal strategies. The A-KRS is considered to be constructed at two different depths in geological media: 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and 500m depth, believed to be in the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of waste package and canister. To quantify a nuclide release and transport through the possible various pathways especially in the near-fields of the A-KRS repository system, some illustrative evaluations have been made through the study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  2. A transport logistic and cost model for use in repository design specification

    International Nuclear Information System (INIS)

    Gray, L.S.; Manville, W.D.

    1998-01-01

    UK Nirex Ltd (Nirex) is responsible for developing a deep repository for the disposal of the United Kingdom's intermediate level waste and some low level waste. It also needs to be able to predict the total cost of the transport operations, and to compute the costs attributable to different combinations of sites and types of waste packages. This paper draws on work carried out as part of the assessment of Sellafield as a potential repository site, but will also show that many aspects of the transport system are independent of the actual repository location. To analyze the effects of all these possible scenarios and proposed operating practices on the costs and logistics of radioactive waste transport, Nirex commissioned the development of a flexible computer model from a software developer with the appropriate expertise. This paper describes how the LOGCOST model has been used to provide the information required for the repository design specification, and how it can readily be adapted to different potential repository locations and to changing requirements. In conclusion, it can be said that LOGCOST is a very effective transport and logistics model based on the Excel spread-sheet. The examples given have shown how LOGCOST can provide detailed predictions of radioactive waste transport costs, and how LOGCOST can be readily adapted to a new repository site or any other focal point for a transport network. (O.M.)

  3. The role of weapons production and military waste in the repository selection process

    International Nuclear Information System (INIS)

    Nelson, D.; Hope, J.; Power, W.; Hunter, T.

    1987-01-01

    The decision to commingle defense waste with commercial waste in the nuclear waste repository program has many impacts on that program. There will be more waste to place in the two repositories authorized under the Nuclear Waste Policy Act, more transport miles to get the waste to a repository, and more costs associated with environmental and socio-economic impact mitigation. This paper explores the links between weapons production and military waste, and the repository selection process. The paper first describes the importance of state, tribe and public participation to the acceptance of a repository site selection. The paper then examines the various estimates of amounts of existing and future military nuclear wastes, and how these estimates affect repository siting decisions. The final section addresses the public policy questions which surround this issue. Repository siting may be jeopardized unless there is open public discussion about existing radioactive contamination at military production sites and about future nuclear weapons production. Cost-sharing is considered within this context

  4. Potential host media for a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Hustrulid, W

    1982-01-01

    Earlier studies of burial of radioactive wastes in geologic repositories had concentrated on salt formations for well-publicized reasons. However, under the Carter administration, significant changes were made in the US nuclear waste management program. Changes which were made were: (1) expansion of the number of rock types under consideration; (2) adoption of the multiple-barrier approach to waste containment; (3) additional requirements for waste retrieval; and (4) new criteria proposed by the Nuclear Regulatory Commission for the isolation of high-level waste in geologic repositories. Results of the studies of different types of rocks as repository sites are summarized herein. It is concluded that each generic rock type has certain advantages and disadvantages when considered from various aspects of the waste disposal problem and that characteristics of rocks are so varied that a most favorable or least favorable rock type cannot be easily identified. This lack of definitive characteristics of rocks makes site selection and good engineering barriers very important for containment of the wastes. (BLM)

  5. Architecture Design Issues of a Reversible Deep Geological Repository for HL and IL/LL Waste

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.; Londe, L.; Poisson, J.B. [Andra (France)

    2009-06-15

    In accordance with the Planning Act of 28 June 2006, the French National Radioactive Waste Management Agency (Agence nationale pour la gestion des dechets radioactifs - ANDRA) is currently investigating the possibility of disposing of high-level (HL) and intermediate-level long-lived (IL/LL) radioactive waste in a deep geological formation. The waste inventory intended for geological disposal is significant and represents approximately 80,000 m{sup 3} of primary waste. The required drifts and cells for such disposal are developing in a long and complex network, with plans calling for a total of about 300 km of drifts to be opened over the next century. This paper describes various issues relating to the architecture design and the way they are integrated. Long-term safety is at the basis of the major principles not only for dividing the different waste categories into separate disposal areas, but also for identifying the relevant constraints involving the topology of the network (fragmentation of disposal areas into modules, dead-end architecture) and the orientation of certain structures. In the case of exothermal waste, since the control over the phenomenological evolution also leads to selecting a thermal criterion in the geological layer in contact with the waste, there is an impact on the density of the repository and, consequently, on its architecture. Operational security and safety issues are reflected in ventilation needs and in personnel-evacuation requirements in case of fire, both of which require additional intersections and drifts. The section of drifts is also conditioned often by those security aspects. Nuclear zoning may also induce requirements for special structures having a potential impact on the architecture. Operation, taken into its broader sense encompassing construction and nuclear activities, imposes its own share of constraints quite independently from any security or safety considerations. Impacted areas include structure slopes, the

  6. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  7. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  8. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the third part of a report of a preliminary study for AECL. It summarizes the topics considered in reports AECL-6188-1 and AECL-6188-2 as requirements for an undergpound repository for disposal of wastes produced by the Canadian Nuclear Fuel Program. (author)

  9. Operational experience from SFR - Final repository for low- and intermediate level waste in Sweden

    International Nuclear Information System (INIS)

    Skogsberg, Marie; Ingvarsson, Roger

    2006-01-01

    SFR, the Swedish Final Repository for Radioactive Waste, has been in operation since April 1988. It was designed for short lived LLW/ILW from the operation and maintenance of all Swedish Nuclear Power Plants. The first stage was constructed for 63 000 m 3 which was assumed to give a margin and flexibility for the preliminary operational period. Today this volume represents the whole prediction of operational waste. Until the end of 2005 SFR has received 30 930 m 3 waste. In average it has been 2-3 derivations per year at the repository. The most derivations happened in the years 1993-1995, and that was also the years when the repository received the most volume of waste. The most of the derivations those years was related to the waste packages. The dose rate to the personal has always been very low in the latest years the collective dose has been under 0,1 mmanSv/year. (author)

  10. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE NO.13 - WASTE PACKAGE SELF SHIELDING

    International Nuclear Information System (INIS)

    Owen, J.

    1999-01-01

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes

  11. Acceptability of a low and intermediate level radioactive waste repository

    International Nuclear Information System (INIS)

    Zeleznik, N.; Polic, M.

    2000-01-01

    Siting of a radioactive waste repository, even for the waste of low and intermediate level (LILW) radioactivity, presents a great problem in almost every country that produces such waste. The main problem is not a technical one, but socio-psychological, namely the acceptability of this kind of repository. In general, people are opposed to any such kind of facility in their vicinity (NIMBY). In this study we try to establish the factors that influence people's behavior regarding the construction of a radioactive waste repository in their local community, with the use of Ajzen's model of planned behavior. Two different scenarios about the construction of a radioactive waste repository in their community, together with a set of questions were presented to participants from different schools. Data from the survey were analysed by multivariate methods, and a model of relevant behaviour was proposed. From the results it can be seen that different approaches to local community participation in site selection process slightly influence people's attitudes towards the LILW repository, while significant differences in answers were found in the responses which depend on participants' knowledge. Therefore the RAO Agency will further intensify preparation of the relevant communication plan and start with its implementation to support LILW repository site selection process, which will also include educational programme. (author)

  12. Analysis on one underground nuclear waste repository rock mass in USA

    International Nuclear Information System (INIS)

    Ha Qiuling; Zhang Tiantian

    2012-01-01

    When analyzing the rock mass of a underground nuclear waste repository, the current studies are all based on the loading mechanical condition, and the unloading damage of rock mass is unconsidered. According to the different mechanical condition of actual engineering rock mass of loading and unloading, this paper implements a comprehensive analysis on the rock mass deformation of underground nuclear waste repository through the combination of present loading and unloading rock mass mechanics. It is found that the results of comprehensive analysis and actual measured data on the rock mass deformation of underground nuclear waste repository are basically the same, which provide supporting data for the underground nuclear waste repository. (authors)

  13. Staff Technical Position on consideration of fault displacement hazards in geologic repository design

    International Nuclear Information System (INIS)

    McConnell, K.I.; Lee, M.P.

    1994-09-01

    Nuclear Regulatory Commission regulations for the disposal of spent nuclear fuel and high-level radioactive waste in a geologic repository recognize that fault displacement is a potentially adverse condition. However, they do not prohibit designing the geologic repository against the effects of such a potentially adverse condition. This Staff Technical Position recognizes the acceptability of designing the geologic repository to take into account the attendant effects (e.g., displacement) of faults of regulatory concern and expresses the staff's views on what is needed from the US Department of Energy if it chooses to locate structures, systems, and components important to safety or important to waste isolation in areas that contain faults of regulatory concern

  14. Identification of key radionuclides in a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Barney, G.S.; Wood, B.J.

    1980-05-01

    Radionuclides were identified which appear to pose the greatest potential hazard to man during long-term storage of nuclear waste in a repository mined in the Columbia Plateau basalt formation. The criteria used to select key radionuclides were as follows: quantity of radionuclide in stored waste; biological toxicity; leach rate of the wastes into groundwater; and transport rate via groundwater flow. The waste forms were assumed to be either unreprocessed spent fuel or borosilicate glass containing reprocessed high-level waste. The nuclear waste composition was assumed to be that from a light water reactor. Radionuclides were ranked according to quantity, toxicity, and release rate from the repository. These rankings were combined to obtain a single list of key radionuclides. The ten most important radionuclides in order of decreasing hazard are: 99 Tc, 129 I, 237 Np, 226 Ra, 107 Pd, 230 Th, 210 Pb, 126 Sn, 79 Se, and 242 Pu. Safety assessment studies and the design of engineered barriers should concentrate on containment of radionuclides in this list

  15. Release consequence analysis for a hypothetical geologic radioactive waste repository in hard rock

    International Nuclear Information System (INIS)

    1979-12-01

    This report makes an evaluation of the long-term behaviour of the wastes placed in a hard rock repository. Impacts were analyzed for the seven reference fuel cycles of WG 7. The reference repository for this study is for granitic rock or gneiss as the host rock. The descriptions of waste packages and repository facilities used in this study represent only one of many possible designs based on the multiple barriers concept. The repository's size is based on a nuclear economy producing 100 gigawatts of electricity per year for 1 year. The objective of the modeling efforts presented in this study is to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere and thus determine an estimate of the potential dose to humans so that the release consequence impacts of the various fuel cycles can be compared. Currently available hydrologic, leach, transport, and dose models were used in this study

  16. Uncertainty: a discriminator for above and below boiling repository design decisions

    International Nuclear Information System (INIS)

    Wilder, D G; Lin, W; Buscheck, T A; Wolery, T J; Francis, N D

    2000-01-01

    The US nuclear waste disposal program is evaluating the Yucca Mountain (YM) site for possible disposal of nuclear waste. Radioactive decay of the waste, particularly spent fuel, generates sufficient heat to significantly raise repository temperatures. Environmental conditions in the repository system evolve in response to this heat. The amount of temperature increase, and thus environmental changes, depends on repository design and operations. Because the evolving environment cannot be directly measured until after waste is emplaced, licensing decisions must be based upon model and analytical projections of the environmental conditions. These analyses have inherent uncertainties. There is concern that elevated temperatures increase uncertainty, because most chemical reaction rates increase with temperature and boiling introduces additional complexity of vapor phase reactions and transport. This concern was expressed by the NWTRB, particularly for above boiling temperatures. They state that ''the cooler the repository, the lower the uncertainty about heat-driven water migration and the better the performance of waste package materials. Above this temperature, technical uncertainties tend to be significantly higher than those associated with below-boiling conditions.'' (Cohon 1999). However, not all uncertainties are reduced by lower temperatures, indeed some may even be increased. This paper addresses impacts of temperatures on uncertainties

  17. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Svinicki, K.

    1996-01-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository

  18. Establishing managerial requirements for low-and intermediate-level waste repository

    International Nuclear Information System (INIS)

    Chung, C. W.; Lee, Y. K.; Kim, H. T.; Park, W. J.; Suk, T. W.; Park, S. H.

    2004-01-01

    This paper reviews basic considerations for establishing managerial requirements on the domestic low-and intermediate-level radioactive waste repository and presents the corresponding draft requirements. The draft emphasizes their close linking with the related regulations, standards and safety assessment for the repository. It also proposes a desirable direction towards harmonizing together with the existing waste acceptance requirements for the repository

  19. Estimates of secondary waste production from operations at a proespective geologic repository in tuff

    International Nuclear Information System (INIS)

    Engelhard, M.P.; Jardine, L.J.

    1985-01-01

    In this paper, a method is outlined for estimating the volumes of solid and liquid radioactive wastes produced during the operation of a repository in tuff. Volume estimates were also developed based on a preliminary conceptual facility design. Based on a disposal rate of 3000 MTU/y of commercial spent fuel, the waste estimates ranged from 793 to 2464 m 3 /y of uncompacted solids and from 80,431 to 128,690 L/y of liquids, depending on the specific set of facility features assumed. The estimates of waste quantities were most dependent on variations in the ratio of truck to rail cask shipments received. The quantities of waste generated on site decreased as this ratio decreased. Although there are large uncertainties in the current estimates caused by the preliminary nature of the facility designs and the limited amount of engineering detail completed, the methodology can be used to refine estimates as the repository design progresses

  20. Waste package/engineered barrier system design concepts for the direct disposal of spent fuel in the potential United States' repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Harrison, D.J.

    1993-01-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package development program is to design a waste package and associated engineered barrier system (EBS) that meets the applicable regulatory requirements for safe disposal of spent nuclear fuel and solidified high-level waste (HLW) in a geologic repository. Attainment of this goal relies on a multi-barrier approach, the unsaturated nature of the Yucca Mountain site, consideration of technical alternatives, and sufficient resolution of technical and regulatory uncertainties. To accomplish this, an iterative system engineering approach will be used. The NWPA of 1982 limits the content of the first US repository to 70,000 metric tons of heavy metal (MTHM). The DOE Mission Plan describes the implementation of the provisions of the NWPA for the waste management system. The Draft 1988 approach will involve selecting candidate designs, evaluating them against performance requirements, and then selecting one or two preferred designs for further detailed evaluation and final design. The reference design of the waste package described in the YMP Site Characterization Plan is a thin-walled, vertical borehole-emplaced waste package with an air gap between the package and the rock wall. The reference design appeared to meet the design requirement. However, the degree of uncertainty was large. This uncertainty led to considering several more-robust design concepts during the Advanced Conceptual Design phase of the program that include small, drift-emplaced packages and higher capacity, drift-emplaced packages, both partially and totally self-shielded. Metallic as well as ceramic materials are being considered

  1. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    International Nuclear Information System (INIS)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste

  2. Salt Repository Project waste emplacement mode decision paper: Revison 1

    International Nuclear Information System (INIS)

    1987-08-01

    This paper provides a recommendation as to the mode of waste emplacement to be used as the current basis for site characterization activity for the Deaf Smith County, Texas, high level nuclear waste repository site. It also presents a plan for implementing the recommendation so as to provide a high level of confidence in the project's success. Since evaluations of high-level waste disposal in geologic repositories began in the 1950s, most studies emplacement in salt formations employed the vertical orientation for emplacing waste packages in boreholes in the floor of the underground facility. This orientation was used in trials at Project Salt Vault in the 1960s. The Waste Isolation Pilot Plant (WIPP) has recently settled on a combination of vertical and horizontal modes for various waste types. This paper analyzes the information available and develops a project position upon which to base current site characterization activities. The position recommended is that the SRP should continue to use the vertical waste emplacement mode as the reference design and to carry the horizontal mode as a ''passive'' alternative. This position was developed based upon the conclusions of a decision analysis, risk assessment, and cost/schedule impact assessment. 52 refs., 6 figs., 1 tab

  3. Analysis of the risk assessment of a waste repository for radioactive waste from the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Weil, L.

    1984-09-01

    A review of decommissioning experiences and concepts is presented. The radioactive inventory of LWR of modern design at final shutdown is estimated on the basis of activation analysis and empirical data on contamination. In combination with existing types of waste packages and deposition techniques these results allow a prediction of the necessary repository volume for the decommissioning wastes in the Federal Republic of Germany. The essential element of this investigation is the development of a model for the quantitative analysis of the accident 'water intrusion' in the repository. Based on the fundamental chemical and physical processes governing nuclide migration a transport equation is obtained which can be restricted to one dimension due to the thickness and the low permeability of the geological layers above the repository. The radiological consequences are evaluated. The long-lived activation product Ni-59 turns out to be critical radionuclide. Despite a number of conservatisms in the model the evaluated doses are acceptable. The results clearly support the long term safety of the 'Konrad' mine as a low-level waste repository. (orig./HP) [de

  4. Relationship of engineering geology to conceptual repository design in the Gibson Dome area, Utah

    International Nuclear Information System (INIS)

    Helgerson, R.; Henderson, N.

    1984-01-01

    The Paradox Basin in Southeastern Utah is being investigated as a potential site for development of a high-level nuclear waste repository. Geologic considerations are key areas of concern and influence repository design from a number of aspects: depth to the host rock, thickness of the host rock, and hydrologic conditions surrounding the proposed repository are of primary concern. Surface and subsurface investigations have provided data on these key geologic factors for input to the repository design. A repository design concept, based on the surface and subsurface geologic investigations conducted at Gibson Dome, was synthesized to provide needed information on technical feasibility and cost for repository siting decision purposes. Significant features of the surface and subsurface repository facilities are presented. 5 references, 4 figures

  5. Future extension of the Swedish repository for low and intermediate level waste (SFR)

    International Nuclear Information System (INIS)

    Carlsson, Jan

    2006-01-01

    The existing Swedish repository for low and intermediate level waste (SFR) is licensed for disposal of short-lived waste originated from operation and maintenance of Swedish nuclear power plants. The repository is foreseen to be extended to accommodate short-lived waste from the future decommissioning of the Nuclear Power Plants. Long-lived waste from operation, maintenance and eventually decommissioning will be stored some years before disposal in a geological repository. This repository can be build either as a further extension of the SFR facility or as a separate repository. This paper discusses the strategy of a step-wise extended repository where the extensions are performed during operation of the existing parts of the repository. It describes the process for licensing new parts of the repository (and re-license of the existing parts). (author)

  6. The Pangea concept for an international radioactive waste repository

    International Nuclear Information System (INIS)

    Kurzeme, M.

    1999-01-01

    Pangea Resources Australia Pty. Ltd. is engaged in a study to investigate the feasibility of constructing and operating an international radioactive waste repository in Australia. Western Australia in particular has a unique combination of geology, topography and climate which makes it eminently suitable for a deep geological repository for the safe and permanent disposal of radioactive waste. Australia also has the political, social, legal and financial systems, together with the technical capability to make it acceptable as a host nation for an international repository. This paper reviews the origins of the Pangea concept, describes the high isolation approach to site selection, the Pangea integrated waste management system, together with its potential economic impact on Australia

  7. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  8. Waste package designs for disposal of high-level waste in salt formations

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.; Carr, J.A.

    1984-01-01

    In the United States of America the selected method for disposal of radioactive waste is mined repositories located in suitable geohydrological settings. Currently four types of host rocks are under consideration: tuff, basalt, crystalline rock and salt. Development of waste package designs for incorporation in mined salt repositories is discussed. The three pertinent high-level waste forms are: spent fuel, as disassembled and close-packed fuel pins in a mild steel canister; commercial high-level waste (CHLW), as borosilicate glass in stainless-steel canisters; defence high-level waste (DHLW), as borosilicate glass in stainless-steel canisters. The canisters are production and handling items only. They have no planned long-term isolation function. Each waste form requires a different approach in package design. However, the general geometry and the materials of the three designs are identical. The selected waste package design is an overpack of low carbon steel with a welded closure. This container surrounds the waste forms. Studies to better define brine quantity and composition, radiation effects on the salt and brines, long-term corrosion behaviour of the low carbon steel, and the leaching behaviour of the spent fuel and borosilicate glass waste forms are continuing. (author)

  9. Appraisal of hard rock for potential underground repositories of radioactive wastes. LBL-7004

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1978-01-01

    Underground burial of radioactive wastes in hard rock may be an effective and safe means of isolating them from the environment and from man. The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 km to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  10. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  11. Environmental issues of repository licensing: an evaluation of a hypothetical high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Owen, J.L.; McGinnis, J.T.; Harper, C.M.; Battelle Columbus Labs., OH)

    1982-01-01

    This paper presents results of an environmental assessment conducted under the direction of the Office of Nuclear Waste Isolation as part of the National Waste Terminal Storage program. The study defined a range of potential environmental effects of constructing, operating, decommissioning, and long-term isolation of a nuclear waste repository. The analytical methodology used to determine potential environmental effects required definition of a hypothetical environmental setting and repository. Potentially applicable regulatory requirements were identified and were used as guidelines to evaluate permitting feasibility. The environmental effects of repository development were analyzed for the two major time periods of concern: short term (the period of construction, operation, and decommissioning) and long term (the isolation period after decommissioning). As a result of this analysis, major environmental uncertainties and issues were identified. 11 references, 5 figures

  12. GIS for the needs of the Radioactive Waste Repository Authority

    Directory of Open Access Journals (Sweden)

    Jitka Mikšová

    2007-06-01

    Full Text Available The Radioactive Waste Repository Authority (RAWRA is a state organisation responsible for the management of activities related to the disposal of all existing and future radioactive waste and spent nuclear fuel classed as a waste in Czech Republic. Worldwide, a deep geological repository is considered the highest degree of safety for a nuclear waste disposal. Such a repository has to be built in a stable geological environment ensuring the isolation of the stored radioactive waste from the surrounding environment for a long period of time. The selection of suitable site for the deep geological repository construction is a complicated and long term process. Considering this fact and also in respect to an assumed volume of varied datasets the GIS RAWRA was established to ensure convenient management and availability of data containing spatial information.The system is based on ESRI (ArcInfo including extensions, ArcSDE, ArcIMS, Leica Geosystems (Image Analysis and Microsoft software (MS SQL Server. Resulting datasets from six recommended potentially suitable sites for the location of a geological repository have been incorporated into the geodatabase to date. The necessary analysis was made using ESRI software tools and, in addition, custom applications were developed including the metadata editor, etc. This analysis was carried out with respect to existing geological and non-geological criteria defined for a nuclear waste repository. Finally, all six investigated sites with a total area of 240 km2 were reduced in area, each of them resulting in an area of approximately 10km2 for further detailed characterisation.

  13. Practical aspects of heat transfer in radioactive-waste repository design

    International Nuclear Information System (INIS)

    Deane, J.S.; Hollis, A.A.

    1979-01-01

    An assessment has been made of the effect on temperature rises of the practical features associated with the disposal of high-level radioactive wastes in a repository constructed within a granite formation. Encapsulation, the use of a backfill material, and reduction in the axial spacing between blocks to 8m will have little effect on temperature rises. On the other hand thermal conductivity does have a marked effect on the temperature rises in the granite, and there is clear need for the measurement of granite thermal conductivity at selected sites. (author)

  14. Nuclear waste. DOE has terminated research evaluating crystalline rock for a repository

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Weigel, Dwayne E.; Price, Vincent P.

    1989-05-01

    We found that DOE terminated funding of research projects specifically designed to evaluate the suitability of crystalline rock for a repository. DOE continued other research efforts involving crystalline rock because they will provide information that it considers useful for evaluating the suitability of Yucca Mountain, Nevada, for a potential repository. Such research activities are not prohibited by the amendments. In January 1988, DOE began evaluating both its domestic and international research programs to ensure their compliance with the 1987 amendments. Several DOE offices and contractors were involved in the evaluation. DOE officials believe that the evaluation effectively brought the Office of Civilian Radioactive Waste Management activities into compliance with the amendments while maintaining useful international relations of continuing benefit to the nuclear waste program in general and to DOE's investigation of the Yucca Mountain site in particular. (The 1987 amendments designated Yucca Mountain as the only site that DOE is to investigate for a potential repository.) The approach and results of DOE's evaluation are discussed. Our review of DOE documents indicates that, by June 22, 1988, DOE completed its evaluation of ongoing crystalline rock research projects to ensure compliance with the 1987 amendments, terminated those research activities it identified as being specifically designed to evaluate the suitability of crystalline rock for a repository, continued some research activities involving crystalline rock because these activities would benefit the investigation and development of the Yucca Mountain repository site, and redirected some research activities so that they would contribute to investigating and developing the Yucca Mountain site

  15. Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc., report and position paper concerning waste emplacement mode and its effect on repository conceptual design

    International Nuclear Information System (INIS)

    Hambley, D.F.; Russell, J.E.; Whitfield, R.G.

    1987-02-01

    Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres Unit 4 Salt and maximize far-field geologic integrity during retrieval because by definition the far field will be unaffected by thermal and stress perturbations caused by remining; give greater emphasis to want objectives regarding cost and use of present technology; delete the following statements from pages 1-1 and 1-2 of the draft position paper: ''No thought or study was given to the impacts of this configuration [vertical emplacement] on repository construction or short and long-term performance of the site'' and ''Subsequent salt repository designs adopted the vertical emplacement configuration as the accepted method without further evaluation.''; delete App. E and lines 8-17 of page 1-4 of the draft position paper because they are inappropriate; adopt a formal decision-analysis procedure for the 17 identified emplacement modes; revise App. F of the impact study to more accurately reflect current technology; consider designing the underground layout to take advantage of stress-relief techniques; consider eliminating reference to fuel assemblies <10 yr ''out-of-reactor''; model the temperature distribution, assuming that the repository is constructed in an infinitely large salt body; state that the results of creep analyses must be considered tentative until they can be validated by in situ measurements; and reevaluate the peak radial stresses on the waste package so that the calculated stress conditions more closely approximate expected in situ conditions

  16. Review of Y/OWI/TM-36: repository design performance in salt, granite, shale or basalt

    International Nuclear Information System (INIS)

    Talbot, R.; Nair, O.B.

    1979-09-01

    As part of the ongoing work by the Lawrence Livermore Laboratory to evaluate repository design performance, this memorandum presents a review of the preconceptual repository design described in Y/OWI/TM-36, Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, April 1978. The purpose of this review is: to assess the adequacy of the design procedures and assumptions; to identify inappropriate or unsubstantiated design issues; to identify areas where additional numerical analyses may be required; and to develop data for inclusion in a reference repository design. The preconceptual repository design is presented in the form of 23 volumes of data base, analyses, and design layouts for four rock types: bedded salt, shale, granite and basalt. This memorandum reviews all four repository designs

  17. Radioactive Waste Repositories and Incentives to Local Communities

    International Nuclear Information System (INIS)

    Knapp, A.; Medakovic, S.

    2008-01-01

    Public acceptance of radioactive waste (RW) repository depends on various and often community-specific factors. Although radiological risk from a properly constructed low and intermediate level waste (LILW) repository is practically negligible, routine safety considerations will favor low populated areas and therefore probably underdeveloped communities. Repository acceptance in such communities is more likely to be facilitated by prospective benefits to local economy, such as infrastructure development and increased employment, as well as by dedicated financial incentives to the community. Direct financial compensation to the local community for acceptance of the repository has been considered in some documents in countries experienced in RW management, but it has not become a widely accepted practice. In Croatia, a possibility for such compensation is mentioned in the land use plan in conjunction with the prospective RW repository site. In Slovenia, the government has already specified the annual amount of 2.33 million euro as a compensation for 'limited land use' to be shared by local communities in the vicinity of the planned LILW repository during its operation. Applicability of the Slovenian compensations to the prospective joint Slovenian-Croatian repository is not yet clear, at least in the aspect of joint funding. The joint Slovenian-Croatian Decommissioning and LILW and SF management program for NPP Krsko from 2004 did conservatively include the compensations into the repository cost estimates, but that might not be retained in subsequent revisions of the Program. According to the agreement between governments of Slovenia and Croatia on the Nuclear power plant Krsko, Croatian side has no obligations to participate in 'public expenditures' introduced after the agreement, as would be the case of community compensations for LILW repository in Slovenia. Before further decisions on joint NPP Krsko waste management are made, including the issue of LILW

  18. Archaeological data as a basis for repository marker design

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1982-10-01

    This report concerns the development of a marking system for a nuclear waste repository which is very likely to survive for 10,000 years. In order to provide a background on the subject, and for the preliminary design presented in this report, a discussion is presented about the issues involved in human interference with the repository system and the communication of information. A separate chapter summarizes six ancient man-made monuments including: materials, effects of associated textual information on our understanding of the monument, and other features of the ancient monument relevant to marking a repository site. The information presented in the two chapters is used to provide the basis and rationale for a preliminary marker system design presented in a final chapter. 86 refs., 22 figs., 1 tab

  19. Archaeological data as a basis for repository marker design

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, M.F.

    1982-10-01

    This report concerns the development of a marking system for a nuclear waste repository which is very likely to survive for 10,000 years. In order to provide a background on the subject, and for the preliminary design presented in this report, a discussion is presented about the issues involved in human interference with the repository system and the communication of information. A separate chapter summarizes six ancient man-made monuments including: materials, effects of associated textual information on our understanding of the monument, and other features of the ancient monument relevant to marking a repository site. The information presented in the two chapters is used to provide the basis and rationale for a preliminary marker system design presented in a final chapter. 86 refs., 22 figs., 1 tab.

  20. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-01-01

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used

  1. Workshop on rock mechanics issues in repository design and performance assessment

    International Nuclear Information System (INIS)

    1996-04-01

    The Center for Nuclear Waste Regulatory Analyses organized and hosted a workshop on ''Rock Mechanics Issues in Repository Design and Performance Assessment'' on behalf its sponsor the U.S. Nuclear Regulatory Commission (NRC). This workshop was held on September 19- 20, 1994 at the Holiday Inn Crowne Plaza, Rockville, Maryland. The objectives of the workshop were to stimulate exchange of technical information among parties actively investigating rock mechanics issues relevant to the proposed high-level waste repository at Yucca Mountain and identify/confirm rock mechanics issues important to repository design and performance assessment The workshop contained three technical sessions and two panel discussions. The participants included technical and research staffs representing the NRC and the Department of Energy and their contractors, as well as researchers from the academic, commercial, and international technical communities. These proceedings include most of the technical papers presented in the technical sessions and the transcripts for the two panel discussions

  2. Qualifying concrete for a low-level waste repository

    International Nuclear Information System (INIS)

    Philipose, K.E.

    1990-06-01

    A waste repository for the belowground disposal of low-level radioactive waste, labelled IRUS (Intrusion Resistant Underground Structure), is planned at Chalk River Nuclear Laboratories. It relies greatly on the durability of concrete for a minimum of 500 years of service life. A research program based on laboratory testing to design a durable concrete and predict its useful engineered service life is in progress. Durability of concrete depends on its resistance of deterioration from both internal and external causes. Since the rate of degradation depends to a major extent on the rate of ingress of aggressive ions into concrete, laboratory testing is in progress to establish the diffusion rates of ions, especially chlorides, sulphate and carbonate ions. A total of 1000 concrete specimens and 500 paste specimens are being exposed at 22 and 45 degrees C to twenty-five different combinations of corrosive agents, including CO 2 . Procedures to measure the ionic profile and to determine the factors controlling diffusion of ions in the various concretes have been developed. The paper presents the initial results from the research program and the longevity predictions to qualify concretes for the IRUS waste repository, based on twelve months of diffusion testing on laboratory specimens

  3. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  4. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K.G.; Hua, F.

    2005-01-01

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure

  5. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  6. Pre-treatment of bituminized NPP wastes for disposal in near-surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Vanessa Mota; Tello, Clédola Cássia Oliveira de, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. The Brazilian repository is being planned to be a near-surface one. In Brazil the low and intermediate level radioactive wastes are immobilized using cement and bitumen for Angra 1 and Angra 2 NPP, respectively. The main problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degradation in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70 - 90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to find solutions for the storage in surface repository of bituminized radioactive waste products, making them compatible with the acceptance criteria of cemented waste products. It was also performed a modeling with the results obtained in the leaching test using the ALT program and defined the transport model of the cesium leachate element and it was verified that in the early times the leaching was governed by the diffusion model and later by the partition model. The results obtained in this study can be used in the evaluation of performance of repositories. (author)

  7. Pre-treatment of bituminized NPP wastes for disposal in near-surface repository

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Clédola Cássia Oliveira de

    2017-01-01

    The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. The Brazilian repository is being planned to be a near-surface one. In Brazil the low and intermediate level radioactive wastes are immobilized using cement and bitumen for Angra 1 and Angra 2 NPP, respectively. The main problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degradation in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70 - 90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to find solutions for the storage in surface repository of bituminized radioactive waste products, making them compatible with the acceptance criteria of cemented waste products. It was also performed a modeling with the results obtained in the leaching test using the ALT program and defined the transport model of the cesium leachate element and it was verified that in the early times the leaching was governed by the diffusion model and later by the partition model. The results obtained in this study can be used in the evaluation of performance of repositories. (author)

  8. Project Guarantee 1985. Repository for high-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An engineering project study aimed at demonstrating the feasibility of constructing a deep repository for high-level waste (Type C repository) has been carried out; the study is based on a model data-set representing typical geological and rock mechanical conditions as found outside the so-called Permocarboniferous basin in the regions under investigation by Nagra in Cantons Aargau, Schaffhausen, Solothurn and Zuerich. The repository is intended for disposal of high-level waste and any intermediate-level waste from re-processing in which the concentration of long-lived alpha-emitters exceeds the permissible limits set for a Type B repository. Final disposal of high-level waste is in subterranean, horizontally mined tunnels and of intermediate-level waste in underground vertical silos. The repository is intended to accomodate a total of around 6'000 HWL-cylinders (gross volume of around 1'200 m3) and around 10'000 m3 of intermediate-level waste. The total excavated volume is around 1'100'000 m3 and a construction time for the whole repository (up to the beginning of emplacement) of around 15 years is expected. For the estimated 50-year emplacement operations, a working team of around 60 people will be needed and a team of around 160 for the simultaneous tunnelling operations and auxiliary work. The project described in the present report permits the conclusion that construction of a repository for high-level radioactive waste and, if necessary, spent fuel-rods is feasible with present-day technology

  9. Containment barrier metals for high-level waste packages in a Tuff repository

    International Nuclear Information System (INIS)

    Russell, E.W.; McCright, R.D.; O'Neal, W.C.

    1983-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package project is part of the US Department of Energy's Civilian Radioactive Waste Management (CRWM) Program. The NNWSI project is working towards the development of multibarriered packages for the disposal of spent fuel and high-level waste in tuff in the unsaturated zone at Yucca Mountain at the Nevada Test Site (NTS). The final engineered barrier system design may be composed of a waste form, canister, overpack, borehole liner, packing, and the near field host rock, or some combination thereof. Lawrence Livermore National Laboratory's (LLNL) role is to design, model, and test the waste package subsystem for the tuff repository. At the present stage of development of the nuclear waste management program at LLNL, the detailed requirements for the waste package design are not yet firmly established. In spite of these uncertainties as to the detailed package requirements, we have begun the conceptual design stage. By conceptual design, we mean design based on our best assessment of present and future regulatory requirements. We anticipate that changes will occur as the detailed requirements for waste package design are finalized. 17 references, 4 figures, 10 tables

  10. Containment barrier metals for high-level waste packages in a Tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.W.; McCright, R.D.; O`Neal, W.C.

    1983-10-12

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package project is part of the US Department of Energy`s Civilian Radioactive Waste Management (CRWM) Program. The NNWSI project is working towards the development of multibarriered packages for the disposal of spent fuel and high-level waste in tuff in the unsaturated zone at Yucca Mountain at the Nevada Test Site (NTS). The final engineered barrier system design may be composed of a waste form, canister, overpack, borehole liner, packing, and the near field host rock, or some combination thereof. Lawrence Livermore National Laboratory`s (LLNL) role is to design, model, and test the waste package subsystem for the tuff repository. At the present stage of development of the nuclear waste management program at LLNL, the detailed requirements for the waste package design are not yet firmly established. In spite of these uncertainties as to the detailed package requirements, we have begun the conceptual design stage. By conceptual design, we mean design based on our best assessment of present and future regulatory requirements. We anticipate that changes will occur as the detailed requirements for waste package design are finalized. 17 references, 4 figures, 10 tables.

  11. Deep repositories for waste central to uranium debate

    International Nuclear Information System (INIS)

    Kannegieter, T.

    1991-01-01

    While no deep repositories for high level wastes (HLW) have yet been constructed it is shown that technology to safely entomb the wastes for tens of thousands of years already exists. The borosilicate glass (vitrification) developed in France has been accepted by all countries who are reprocessing. Meanwhile, the Australian Synroc has not yet been put into service. Synroc developers at the Australian Nuclear Science and Technology Organization believe it will be the second generation waste form. The advantages and disadvantages of both technologies are briefly discussed as well as some of the regulatory, political, legal and technical conflicts surrounding the issue of HLW repositories. 1 tab., ills

  12. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    Science.gov (United States)

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  13. Global nuclear waste repository proposal highlights Australia's nuclear energy vacuum

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  14. Post-closure resaturation of a deep radioactive waste repository

    International Nuclear Information System (INIS)

    Cox, I.C.S.; Rodwell, W.R.

    1989-03-01

    The post-closure resaturation of a deep radioactive waste repository has been modelled for a number of generic disposal concepts. A combination of numerical ground water flow simulations and analytical calculations has been used to investigate the variation of repository fluid pressure and degree of water saturation with time, and to determine the factors influencing resaturation times. The host rock permeability was found to be the most important determining factor. For geological environments regarded as likely for a waste repository, resaturation is predicted to be a short term process compared with gas generation and contaminant migration timescales. (author)

  15. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    1991-02-01

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  16. A THM stress-strain framework for modelling the performance of argillaceous materials in deep repositories for radioactive waste

    International Nuclear Information System (INIS)

    Laloui, L.; Francois, B.

    2007-01-01

    In the scenarios for deep, geological nuclear-waste repositories, clayey soils will be hydrated, heated, cooled and dried. The numerical modelling of these mechanical processes is a key issue. Performance assessment of deep repositories for heat-generating radioactive waste would benefit from improvements in mechanical stress-strain constitutive modelling of the coupled thermo-hydro-mechanical behaviour. The presented framework allows progress in understanding the most involved phenomena relevant to nuclear-waste repositories and their coupled nature. It could be used both in the design and in the performance assessment of repositories. It may be applied to disposal in clay formations and to hard-rock repositories where artificially compacted clay is to be used as buffer and backfill. Such a constitutive framework may help in understanding some unexplained or controversial behaviours and in defining experimental programmes to answer key questions. (author)

  17. Waste package transfer, emplacement and retrievability in the French deep geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Alain; Delort, Daniel; Herve, Jean Francois; Bosgiraud, Jean Michel; Guenin, Jean Jacques [Technical Department ANDRA (France)

    2009-06-15

    Safe, reliable and reversible handling of waste is a significant issue related to the design and safety assessment of deep geological repository in France. The first step taken was to study various waste handling solutions. ANDRA also decided to fabricate and demonstrate industrial scale handling equipment for HLW (since 2003) and for ILW-LL wastes (since 2008). We will review the main equipment developed for the transfer process in the repository, for both types of waste, and underline the benefits of developing industrial demonstrators within the framework of international cooperation agreements. Waste retrieval capability will be simultaneously examined. Two types of waste have to be handled underground in Andra's repository. The HLW disposal package for vitrified waste is a 2 ton carbon steel cylindrical canister with a diameter of 600 mm. The weight of ILW-LL concrete disposal packages range from a minimum of 6 tonnes to over 20 tonnes, and their volume from approximately 5 to 10 m3. The underground transfer to the disposal drift requires moving the disposal package within a shielded transfer cask placed on a trailer. Transfer cask design has evolved since 2005, due to optimisation studies and as a result of industrial feedback from SKB. For HLW handling equipment two design options have been studied. In the first solution (Andra's Dossier 2005), the waste package are emplaced, one at a time, in the disposal drift by a pushing robot. Successive steps in design and proto-typing have lead to improve the design of the equipment and to gain confidence. Recently a fully integrated process has been successfully demonstrated, at full scale, (in a 100 m long mock up drift) as part of the EC funded ESDRED Project. This demonstrator is now on display in Andra's Technology Centre at Saudron, near the Bure Underground Laboratory. The second disposal option which has been investigated is based on a concept of utilising an external apparatus to push a row of

  18. Is Croatia Going to Build a Radioactive Waste Repository?

    International Nuclear Information System (INIS)

    Knapp, Alemka; Levanat, Ivica; Saponja-Milutinovc, Diana

    2014-01-01

    Site selection process for low and intermediate level radioactive waste repository in Croatia was ended in 1999, nominating Trgovska gora as the potential macrolocation for the facility. Feasibility of the Trgovska gora disposal project was analyzed in a number of studies prepared by APO Ltd. from the mid-nineties up to 2003. An affirmative, though preliminary and largely generic safety assessment was completed. Specific microlocations were selected and analyzed based on literature data (garnished with low-resolution digital satellite pictures), and the best microlocation was tentatively narrowed down to Pavlovo brdo. After 2003, no further activities related to the repository project were undertaken for nearly ten years, until in its public procurement plan for 2013 the Croatian Fund for financing the NPP Krsko decommissioning and waste disposal dedicated over half a million euro to continuation of the project. In general, safe radioactive waste disposal pre-requires establishment of a complex national framework with appropriate functionality and competence; with such a framework established, decisive first steps towards building a repository are to identify potentially suitable locations and to ensure local community consent and cooperation. The rest should mainly be routine. But in Croatia, both lack of proper framework and the project history of indecisiveness may adversely affect further developments. Trgovska gora was designated as the potential location in the national land use plan only after three other potential locations had been dismissed by political decisions based on the largely assumed adverse attitudes of local communities. Repository project now appears to depend on cooperation of a single local community hosting the only potential site. The site has never been visited by any repository project participants, nor has the local community ever been officially contacted in an open and straightforward way, despite the 20-year old history of the project

  19. Expected environment for waste packages in a salt repository

    International Nuclear Information System (INIS)

    Pederson, L.R.; Clark, D.E.; Hodges, F.N.; McVay, G.L.; Rai, D.

    1983-01-01

    This paper discusses results of recent efforts to define the very near-field (within approximately 2 m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and standard brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported. 38 references, 3 figures, 2 tables

  20. Nuclear waste repository simulation experiments

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1986-12-01

    This document is the third joint annual report on the Cooperative German-American 'Brine Migration Tests' that are in progress at the Asse salt mine in the Federal Republic of Germany (FRG). This Government supported mine serves as an underground test facility for research and development (R and D)-work in the field of nuclear waste repository research and simulation experiments. The tests are designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. This document covers the following sections: Issues and test objectives: This section presents issues that are investigated by the Brine Migration Test, and the test objectives derived from these issues; test site: This section describes the test site location and geology in the Asse mine; test description: A description of the test configuration, procedures, equipment, and instrumentation is given in this section; actual test chronology: The actual history of the test, in terms of the dates at which major activities occured, is presented in this section. Test results: This section presents the test results observed to data and the planned future work that is needed to complete the test; conclusions and recommendations: This section summarizes the conclusions derived to date regarding the Brine Migration Test. Additional work that would be useful to resolve the issues is discussed. (orig.)

  1. Repository thermal response: A preliminary evaluation of the effects of modeled waste stream resolution

    International Nuclear Information System (INIS)

    Ryder, E.E.; Dunn, E.

    1995-09-01

    One of the primary factors that influences our predictions of host-rock thermal response within a high level waste repository is how the waste stream's represented in the models. In the context of thermal modeling, waste stream refers to an itemized listing of the type (pressurized-water or boiling-water reactor), age, burnup, and enrichment of the spent nuclear fuel assemblies entering the repository over the 25-year emplacement phase. The effect of package-by-package variations in spent fuel characteristics on predicted repository thermal response is the focus of this report. A three-year portion of the emplacement period was modeled using three approaches to waste stream resolution. The first assumes that each package type emplaced in a given year is adequately represented by average characteristics. For comparison, two models that explicitly account for each waste package's individual characteristics were run; the first assuming a random selection of packages and the second an ordered approach aimed at locating the higher power output packages toward the center of the emplacement area. Results indicate that the explicit representation of packages results in hot and cold spots that could have performance assessment and design implications. Furthermore, questions are raised regarding the representativeness of average characteristics with respect to integrated energy output and the possible implications of a mass-based repository loading approach

  2. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    Howell, R.E.; Olsen, D.

    1982-12-01

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed

  3. A Probabilistic Consideration on Nuclide Releases from a Pyro-processed Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jeong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Very recently, a GoldSim template program, GSTSPA, for a safety assessment of a conceptual hybrid-typed repository system, called 'A-KRS,' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyroprocessing of PWR nuclear spent fuels, has been developed and is to be disposed of by 'separate disposal' strategies. The A-KRS is considered to be constructed at two different depths in geological media: at a 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and at a 500m depth, believed to be the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for a probabilistic total system performance assessment (TSPA) which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of a waste package and canister with associated uncertainty. To quantify the nuclide release and transport through the various possible pathways in the near- and far-fields of the A-KRS repository system under a normal groundwater flow scenario, some illustrative evaluations have been made through this study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  4. A Probabilistic Consideration on Nuclide Releases from a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    Very recently, a GoldSim template program, GSTSPA, for a safety assessment of a conceptual hybrid-typed repository system, called 'A-KRS,' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyroprocessing of PWR nuclear spent fuels, has been developed and is to be disposed of by 'separate disposal' strategies. The A-KRS is considered to be constructed at two different depths in geological media: at a 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and at a 500m depth, believed to be the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for a probabilistic total system performance assessment (TSPA) which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of a waste package and canister with associated uncertainty. To quantify the nuclide release and transport through the various possible pathways in the near- and far-fields of the A-KRS repository system under a normal groundwater flow scenario, some illustrative evaluations have been made through this study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  5. Repository documentation rethought. A comprehensive approach from untreated waste to waste packages for final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton Philipp; Schubert, Johannes [VPC GmbH, Dresden (Germany)

    2017-11-15

    The German Act on Reorganization of Responsibility for Nuclear Disposal (Entsorgungsuebergangsgesetz (EntsorgUebG)) adopted in June 2017 provides the energy utilities with the new option of transferring responsibility for their waste packages to the Federal Government. This is conditional on the waste packages being approved for delivery to the Konrad final repository. A comprehensive approach starts with the dismantling of nuclear facilities and extends from waste disposal and packaging planning to final repository documentation. Waste package quality control measures are planned and implemented as early as in the process qualification stage so that the production of waste packages that are suitable for final deposition can be ensured. Optimization of cask and loading configuration can save container and repository volume. Workflow planning also saves time, expenditure and exposure time for personnel at the facilities. VPC has evaluated this experience and developed it into a comprehensive approach.

  6. Old waste products - new requirements. Preparations for the later repository

    International Nuclear Information System (INIS)

    Graf, A.; Merx, H.

    2003-01-01

    For more than 30 years now, the Hauptabteilung Dekontaminationsbetriebe (HDB, Central Decontamination Department) of the Forschungszentrum Karlsruhe has been engaged in the management of radioactive wastes produced by the operation and decommissioning of research reactors and institutes of the Research Center, the Karlsruhe reprocessing plant, the European Institute for Transuranium Elements, and the Baden-Wuerttemberg state collection center. For this purpose, the wastes delivered to HDB have been conditioned at various facilities according to the requirements specified. These conditioning requirements, however, have changed in the course of time. In the past, only minimum declaration and conditioning requirements had to be fulfilled for the ASSE repository storage facility. Since 1994, the KONRAD repository storage conditions have been adopted. They comprise a variety of quality criteria. Judging from today, duration of interim storage until transfer to a repository storage facility will take another 30 years at least. In addition to the documentary qualification of the waste products, it is therefore required to take measures to ensure long-term safety of both the waste packages and their storage. This is why the HDB, in agreement with the supervisory authority, i.e. the Federal Radiation Protection Authority, and its experts, has decided to put the waste products into KONRAD containers in certified compliance with the repository storage conditions and to backfill these containers with concrete in accordance with approved procedures. Thus, waste packages suited for repository storage will be produced and corrosion processes and the possible release of radioactivity will be prevented. (orig.)

  7. Old waste products - new requirements. Preparations for the later repository

    Energy Technology Data Exchange (ETDEWEB)

    Graf, A.; Merx, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Hauptabteilung Dekontaminationsbetriebe

    2003-07-01

    For more than 30 years now, the Hauptabteilung Dekontaminationsbetriebe (HDB, Central Decontamination Department) of the Forschungszentrum Karlsruhe has been engaged in the management of radioactive wastes produced by the operation and decommissioning of research reactors and institutes of the Research Center, the Karlsruhe reprocessing plant, the European Institute for Transuranium Elements, and the Baden-Wuerttemberg state collection center. For this purpose, the wastes delivered to HDB have been conditioned at various facilities according to the requirements specified. These conditioning requirements, however, have changed in the course of time. In the past, only minimum declaration and conditioning requirements had to be fulfilled for the ASSE repository storage facility. Since 1994, the KONRAD repository storage conditions have been adopted. They comprise a variety of quality criteria. Judging from today, duration of interim storage until transfer to a repository storage facility will take another 30 years at least. In addition to the documentary qualification of the waste products, it is therefore required to take measures to ensure long-term safety of both the waste packages and their storage. This is why the HDB, in agreement with the supervisory authority, i.e. the Federal Radiation Protection Authority, and its experts, has decided to put the waste products into KONRAD containers in certified compliance with the repository storage conditions and to backfill these containers with concrete in accordance with approved procedures. Thus, waste packages suited for repository storage will be produced and corrosion processes and the possible release of radioactivity will be prevented. (orig.)

  8. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Zhou Hongwei; Jiang Pengfei; Yang Chunhe

    2008-01-01

    High-level radioactive wastes (HLW) repository is a special deep underground engineering, and in the stages of site selection, designing, constructing ,the stability evaluation, lots of important rock mechanics problems need to be resolved. During the decay of nuclear waste, enormous thermal energy was released and temperature variation caused dynamic distribution of stress and deformation field of surrounding rock of repository. BeiShan region of Gansu province was selected to be the repository field in the future, it is of practical significance to do research on granite in this region. Based on the concept model of HLW repository, this thesis calculates temperature field, stress field and deformation field of HLW repository surrounding rock under the condition of TM coupled with applying the finite difference FLAC 3D . From this study, thermo-mechanical characteristic of granite is obtained primarily under given canister heat source and given decay law function. And these results show that the reasonable space between disposal hole is 8 m-12 m, and the peak temperature of the canister surface is 130 ℃, the centerline temperature between pits is about 40 ℃ which is maintained for about hundreds of years under given heating output at -500 m depth. (authors)

  9. Radioactive waste transport to a Nirex deep repository

    International Nuclear Information System (INIS)

    Bennett, D.; Appleton, P.R.; Eastman, C.R.

    1989-01-01

    Nirex is addressing the transport of radioactive wastes, repository construction materials, personnel and spoil as part of their development of a deep repository. An integrated transport system will be developed for wastes which may involve, road, rail and sea transport. The possible application and the scale of operation of the transport system is described. Environmental impact assessments will be carried out, and the proposed approach to these is described. A methodology for the assessment of transport safety has been established and the results of a preliminary assessment are given. (author)

  10. Thermal analysis of a heat generating waste repository on the seabed

    International Nuclear Information System (INIS)

    Maynard, M.J.; Butler, T.P.; Firmin, G.H.

    1987-02-01

    The time dependent thermal behaviour of a repository containing heat generating waste has been investigated during loading, transport, and subsequent emplacement on the seabed. Variations of less than 1 0 C in the sealed repository water temperature were calculated to be sufficient to create adequate water circulation. Conservative 1-D analyses were used to estimate a maximum repository water temperature of 256 0 C, occuring about 3 years after emplacement. The temperature distributions within the heat generating waste canisters and grouted titanium tubes have been calculated using 2-D axisymmetric finite element models. Peak temperatures at the waste centre-line were found to be approx. 40 0 C above the repository water temperature. The sensitivity of the results to assumed thermal parameters and to the effect of sediment accumulation have been considered. The possibility and consequences of steam formation within a vented repository have been discussed. (author)

  11. Repository Waste Package Transporter Shielding Weight Optimization

    International Nuclear Information System (INIS)

    C.E. Sanders; Shiaw-Der Su

    2005-01-01

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight

  12. Workshop on rock mechanics issues in repository design and performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Center for Nuclear Waste Regulatory Analyses organized and hosted a workshop on ``Rock Mechanics Issues in Repository Design and Performance Assessment`` on behalf its sponsor the U.S. Nuclear Regulatory Commission (NRC). This workshop was held on September 19- 20, 1994 at the Holiday Inn Crowne Plaza, Rockville, Maryland. The objectives of the workshop were to stimulate exchange of technical information among parties actively investigating rock mechanics issues relevant to the proposed high-level waste repository at Yucca Mountain and identify/confirm rock mechanics issues important to repository design and performance assessment The workshop contained three technical sessions and two panel discussions. The participants included technical and research staffs representing the NRC and the Department of Energy and their contractors, as well as researchers from the academic, commercial, and international technical communities. These proceedings include most of the technical papers presented in the technical sessions and the transcripts for the two panel discussions. Selected papers have been indexed separately for inclusion the Energy Science and Technology Database.

  13. Naval Waste Package Design Report

    International Nuclear Information System (INIS)

    M.M. Lewis

    2004-01-01

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository

  14. Waste package reference conceptual designs for a repository in salt

    International Nuclear Information System (INIS)

    1986-02-01

    This report provides the reference conceptual waste package designs for the Office of Nuclear Waste Isolation to baseline these designs, thereby establishing the configuration and interface controls necessary, within the Civilian Radioactive Waste Management Program, formerly the National Waste Terminal Storage Program, to proceed in an orderly manner with preliminary design. Included are designs for the current reference defense high-level waste form from the Savannah River Plant, an optimized commercial high-level waste form, and spent fuel which has been disassembled and compacted into a circular bundle containing either 12 pressurized-water reactor or 30 boiling-water reactor assemblies. For compacted spent fuel, it appears economically attractive to standardize the waste package diameter for all fuel types. The reference waste packages consist of the containerized waste form, a low carbon steel overpack, and, after emplacement, a cover of salt. The overpack is a hollow cylinder with a flat head welded to each end. Its design thickness is the sum of the structural thickness required to resist the 15.4-MPa lithostatic pressure plus the corrosion allowance necessary to assure the required structural thickness will exist through the 1000-year containment period. Based on available data and completed analyses, the reference concepts described in this report satisfy all requirements of the US Department of Energy and the US Nuclear Regulatory Commission with reasonable assurance. In addition, sufficient design maturity exists to form a basis for preliminary design; these concepts can be brought under configuration control to serve as reference package designs. Development programs are identified that will be required to support these designs during the licensing process. 19 refs., 37 figs., 31 tabs

  15. Developing multinational radioactive waste repositories: Infrastructural framework and scenarios of cooperation

    International Nuclear Information System (INIS)

    2004-10-01

    Currently the management of radioactive wastes centres on national strategies for collection, treatment, interim storage and disposal. This tendency to focus exclusively on national strategies reflects the fact that radioactive waste is a sensitive political issue, making cooperation among countries difficult. It is consistent with the accepted principle that a country that enjoys the benefit of nuclear energy, or the utilization of nuclear technology, should also take full responsibility for managing the generated radioactive waste. However, there are countries whose radioactive waste volumes do not easily justify a national repository, and/or countries that do not have the resources or favourable natural conditions for waste disposal to dedicate to a national repository project or would prefer to collaborate in shared initiatives because of their economic advantages. In such cases it may be appropriate for these countries to engage in a multinational collaborative effort to ensure that they have access to a common repository, in order that they can fulfil their responsibilities for their managing wastes safely. In response to requests from several Member States expressing an interest in multinational disposal options, the IAEA produced in 1998 a TECDOC outlining the important factors to be taken into account in the process of realizing such options. These factors include for example, technical (safety), institutional (legal, safeguards), economic (financial) socio-political (public acceptance) and ethical considerations. The present report reviews the work done in the previous study, taking into account developments since its publication as well as current activities in the field of multinational repositories. The report attempts to define the concepts involved in the creation of multinational repositories, to explore the likely scenarios, to examine the conditions for successful implementation, and to point out the benefits and challenges inherent to

  16. Thermomechanical analyses of conceptual repository designs for the Paradox and Permian Basins

    International Nuclear Information System (INIS)

    Loken, M.C.; Callahan, G.D.; Svalstad, D.K.; Wagner, R.A.

    1987-11-01

    The potential repositories are designed to accommodate all waste forms emplaced at various thermal loadings; specifically, commercial high-level waste (30 W/m 2 ), spent fuel (15 W/m 2 ), defense high-level waste (20 W/m 2 ), and remote-handled and contact-handled transuranic nonheat-generating waste. The study evaluates the design parameters, primarily thermal loading, based on a comparison of calculable thermomechanical parameters with prescribed performance constraints. This evaluation was accomplished by numerical simulation using finite element techniques of the canister, disposal room, and repository regions of each potential site. Important thermal and thermomechanical results were compared with their prescribed constraint or limit value. All of the performance constraints were satisfied at the Davis Canyon site in the Paradox Basin for commercial high-level waste, spent fuel, and defense high-level waste at areal thermal loadings of 20 W/m 2 , 15 W/m 2 , and 20 W/m 2 , respectively. Similarly, for the Deaf Smith County site in the Permian Basin, commercial high-level waste, spent fuel, and defense high-level waste thermal loadings of 13.5 W/m 2 , 8.5 W/m 2 , and 6.0 W/m 2 , respectively, satisfied all of the performance constraints. 89 refs., 64 figs., 22 tabs

  17. Stream-simulation experiments for waste-repository investigations

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1980-01-01

    The potential for radionuclide migration by groundwater flow from a breached-water repository depends on the leaching process and on chemical changes that might occur as the radionuclide moves away from the repository. Therefore, migration involves the interactions of leached species with (1) the waste and canister, (2) the engineered barrier, and (3) the geologic materials surrounding the repository. Rather than attempt to synthesize each species and study it individually, another approach is to integrate all species and interactions using stream-simulation experiments. Interactions identified in these studies can then be investigated in detail in simpler experiments

  18. Reconstruction and modernization of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Kolev, I.; Dralchev, D.; Spasov, P.; Jordanov, M.

    2000-01-01

    This report presents briefly the most important issues of the study performed by EQE - Bulgaria. The objectives of the study are the development of conceptual solutions for construction of the following facilities in the Novi Han radioactive waste repository: an operational storage for unconditioned high level spent sources; new temporary buildings over the existing radioactive waste storage facilities; a rain-water draining system ect. The study also includes the engineering solutions for conservation of the existing facilities, currently full with high level spent sources. A 'Program for reconstruction and modernization' has been created, including the analysis of some regulation aspects concerning this program implementation. In conclusions the engineering problems of Novi Han repository are clear and appropriate solutions are available. They can be implemented in both cases of 'small' or 'large' reconstruction. The reconstruction project anyway should start with the construction of a new site infrastructure. Reconstruction and modernization of Novi Han radioactive waste repository is the only way to improve the management and safety of radioactive waste from medicine, industry and scientific research in Bulgaria

  19. RIP Input Tables From WAPDEG for LA Design Selection: Repository Horizon Elevation - 2-Level AML 50% and Near Maximum

    International Nuclear Information System (INIS)

    B.E. Bullard

    1999-01-01

    The purpose of this calculation is to document the WAPDEG version 3.09 (CRWMS M and O 1998b). Software Routine Report for WAPDEG (Version 3.09) simulations used to analyze waste package degradation and failure under the repository exposure conditions characterized by a two-tier thermal loading repository design. Also documented is the post-processing of these results into tables of waste-package-degradation-time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) computer program. Specifically, the WAPDEG simulations discussed in this calculation correspond to waste package emplacement conditions (repository environment and design) as defined in the Total System Performance Assessment-Viability Assessment (CRWMS M and O 1998a). Total System Performance Assessment-Viability Assessment (TSPA-VA) Analyses Technical Basis Document--Chapter 5, Waste Package Degradation Modeling And Abstraction, pp. 5-27 to 5-29, with the exception that a two-tier thermal loading design feature as specified in the License Application Design Selection (LADS) study was analyzed. The particular design feature evaluated in this report is a modification of the repository horizon elevation and layout within the Topopah Springs Member of Yucca Mountain. Specifically, the modification consists of adding a second level, 50-m above the base case repository layout. Two options were considered, representing two variations in thermal loading. In Design Feature 25e (designated DF25e), each level has an Areal Mass Loading (AML) of 42.5 MTU/acre (i.e., half the VA base case). In Design Feature 25f (designated DF25), each level has an AML of 64MTU/acre. As a result of the change in waste package placement relative to the TSPA-VA base-case design, different temperature and relative humidity time histories at the waste package surface are calculated (input to the WAPDEG simulations), and consequently

  20. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    C.J. Fernado

    1998-01-01

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I andC) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I andC and will typically be integrated over a data communication network. The subsurface I andC systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures

  1. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  2. The Hidden Risk Decisions in Waste Repository Regulation

    International Nuclear Information System (INIS)

    Frishman, Steve

    2001-01-01

    The move toward risk-informed, performance-based regulation of activities involving radioactive materials is becoming wide spread and broadly applied. While this approach may have some merit in specific applications in which there is a considerable body of experience, its strict application in regulation of geologic repositories for highly radioactive wastes may not be appropriate for this unproven and socially controversial technology. The U.S. Nuclear Regulatory Commission describes risk-informed, performance-based regulation as 'an approach in which risk insights, engineering analysis and judgement (eg. defense in depth), and performance history are used to (1) focus attention on the most important activities, (2) establish objective criteria based upon risk insights for evaluating performance, (3) develop measurable or calculable parameters for monitoring system and licensee performance, and (4) focus on the results as the primary basis for regulatory decision-making.' Both the risk-informed and performance-based elements of the approach are problematic when considering regulation of geologic repositories for highly radioactive wastes - an activity yet to be accomplished by any nation. In investigating potential sites for geologic repositories there will always be residual uncertainty in understanding the natural system and the events and processes that affect it. The more complex the natural system, the greater will be the uncertainty in both the data and the models used to describe the characteristics of the site's natural barriers, and the events and processes that could affect repository waste isolation. The engineered barriers also are subject to uncertainties that are important to the repository system. These uncertainties translate themselves into a range of probabilities that certain events or processes, detrimental to waste isolation, will occur. The uncertainties also translate to a range of consequences and magnitudes of consequences, should the

  3. Stabilities of nuclear waste forms and their geochemical interactions in repositories

    International Nuclear Information System (INIS)

    White, W.B.

    1980-01-01

    The stabilities of high-level nuclear waste forms in a repository environment are briefly discussed. The advantages and disadvantages of such waste forms as borosilicate glass, supercalcine ceramics, and synthetic minerals are presented in context with the different rock types which have been proposed as possible host rocks for repositories. It is concluded that the growing geochemical evidence favors the use of a silicate rock repository because of the effectiveness of aluminosilicate rocks as chemical barriers for most radionuclides

  4. Preliminary post-closure safety assessment of repository concepts for low level radioactive waste at the Bruce Site, Ontario

    International Nuclear Information System (INIS)

    Little, R.H.; Penfold, J.S.S.; Egan, M.J.; Leung, H.

    2005-01-01

    The preliminary post-closure safety assessment of permanent repository concepts for low-level radioactive waste (LLW) at the Ontario Power Generation (OPG) Bruce Site is described. The study considered the disposal of both short and long-lived LLW. Four geotechnically feasible repository concepts were considered (two near-surface and two deep repositories). An approach consistent with best international practice was used to provide a reasoned and comprehensive analysis of post-closure impacts of the repository concepts. The results demonstrated that the deep repository concepts in shale and in limestone, and the surface repository concept on sand should meet radiological protection criteria. For the surface repository concept on glacial till, it appears that increased engineering such as grouting of waste and voids should be considered to meet the relevant dose constraint. Should the project to develop a permanent repository for LLW proceed, it is expected that this preliminary safety assessment would need to be updated to take account of future site-specific investigations and design updates. (author)

  5. Supply-side approach to nuclear waste repositories

    International Nuclear Information System (INIS)

    Harmon, L.H.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) was signed into law on January 7, 1983. Its purpose was to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Its goal is to have the first waste repository operational by 1998. It is believed by many that this goal cannot possibly be met. The Act is exceedingly complex with something in it for everybody. There are serious impediments to the program - not the least of which is legislation itself. The process will cost tens of billions of dollars and, even if it does succeed, will take many years to accomplish. This paper proposes a method for getting there in 7 years while saving billions of dollars. It is a summary of a more extensive research effort by the author while attending the Industrial College of the Armed Forces

  6. Monitored retrievable storage (MRS) facility and salt repository integration: Engineering study report

    International Nuclear Information System (INIS)

    1987-07-01

    This MRS Facility and Salt Repository Integration Study evaluates the impacts of an integrated MRS/Salt Repository Waste Management System on the Salt Repository Surface facilities' design, operations, cost, and schedule. Eight separate cases were studied ranging from a two phase repository design with no MRS facility to a design in which the repository only received package waste from the MRS facility for emplacement. The addition of the MRS facility to the Waste Management System significantly reduced the capital cost of the salt repository. All but one of the cases studied were capable of meeting the waste acceptance data. The reduction in the size and complexity of the Salt Repository waste handling building with the integration of the MRS facility reduces the design and operating staff requirements. 7 refs., 35 figs., 43 tabs

  7. Global nuclear waste repository proposal highlights Australia`s nuclear energy vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-06-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  8. Review of the potential effects of alkaline plume migration from a cementitious repository for radioactive waste

    International Nuclear Information System (INIS)

    Savage, D.

    1997-01-01

    Extensive use of cement and concrete is envisaged in the construction of geological repositories for low and intermediate-level radioactive wastes, both for structural, and encapsulation and backfilling purposes. Saturation of these materials with groundwater may occur in the post-closure period of disposal, producing a hyperalkaline pore fluid with a pH in the range 10-13.5. These pore fluids have the potential to migrate from the repository according to local groundwater flow conditions and react chemically with the host rock. These chemical reactions may affect the rock's capacity to retard the migration of radionuclides released from the repository after the degradation of the waste packages. The effects of these chemical reactions on the behaviour of the repository rock as a barrier to waste migration need to be investigated for the purposes of assessing the safety of the repository design (so-called 'safety assessment' or 'performance assessment'). The objectives of the work reported here were to: identify those processes influencing radionuclide mobility in the geosphere which could be affected by plume migration; review literature relevant to alkali-rock reaction; contact organisations carrying out relevant research and summarise their current and future activities; and make recommendations how the effects of plume migration can be incorporated into models of repository performance assessment. (author)

  9. Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1982-09-01

    In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed

  10. Integrated management system for radioactive waste repositories (SGI3R)

    International Nuclear Information System (INIS)

    Silva, Fabio; Tello, Cledola Cassia Oliveira de

    2009-01-01

    The implantation of a repository for radioactive wastes is a multidisciplinary project that needs specialists of different areas of knowledge, interaction with public and private institutions, data and information related to radioactive wastes, geology, technology etc. All the activities must be in accordance with norms, requirements and procedures, including national and international legislation. The maintenance of the waste inventory records is an important regulatory requirement and must be available even after the closure of the repository. CDTN - Center of Nuclear Technology Development - is coordinating the Project for the construction of the national repository to dispose the low -and intermediate-level wastes. In order to consolidate all information that will come from this Project, it is being developed and implanted in CDTN a manager system of database, called Integrated Management System for Radioactive Waste Repositories (SGI3R), which will also manage all data from previous work carried out in Brazil and around the world about this subject. The proposal is to build a structure of modules, having as base eight modules: inventory, site selection, types of repository, technology, partners, legislation, communication and documents. The SGI3R running comprises the data processing (inclusion, update and exclusion), integration, standardization, and consistency among the processes. The SGI3R will give support to the stages of this Project, which will allow the preservation of all the available information, preventing duplication of efforts and additional costs, improving, in this way, the Project planning and execution. Additionally the SGI3R will make possible the information access to all stakeholders. (author)

  11. Buoyancy flow in fractures intersecting a nuclear waste repository

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.

    1980-07-01

    The thermally induced buoyancy flow in fractured rocks around a nuclear waste repository is of major concern in the evaluation of the regional, long-term impact of nuclear waste disposal in geological formation. In this study, buoyancy flow and the development of convective cells are calculated in vertical fractures passing through or positioned near a repository. Interaction between buoyancy flow and regional hydraulic gradient is studied as a function of time, and the interference of intersecting fractures with each other is also discussed

  12. Project Guarantee 1985. Radioactive wastes: Properties and allocation to final repository types

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An overview of waste-specific data, as input into constructional engineering studies and safety analyses of Project Guarantee, is presented which describes the activity inventory of the radioactive waste to be disposed of, classified according to origin, the quantitative spezifications of the waste, the concept of classifying waste into appropriate categories, grouping into major categories and distribution of these between the different repository types, and finally, control measures which ensure observance of the specifications of the waste to be disposed of. It is expedient, for conceptional considerations and for the operational phase of the repository, to split the waste up into several suitably specified waste categories according to the practical aspects of origin and conditioning. This can be done in such a way that the waste within a specific category is sufficiently homogeneous with regard to its radiological properties and chemical composition for the requirements of safety analysis. The present volume contains base-data for around 30 waste types. Two waste types are documented with more detailed data as an example of the practicability of the comprehensive waste characterisation contained in reference report NTB 84-47. It is shown that waste-specific data which go into safety analysis and constructional engineering project studies are available in an appropriate degree of detail. The method of distributing the waste between repositories with differing degrees of protection and procedures for controlling adherence to admission specifications are developed and documented. It can be ensured that no waste with an impermissibly high radiotoxicity level will later be emplaced in a repository for low- and intermediate-level waste

  13. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    R.B. Rebak

    2006-01-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking

  14. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  15. Deep geologic repository for low and intermediate radioactive level waste in Canada

    International Nuclear Information System (INIS)

    Liu Jianqin; Li Honghui; Sun Qinghong; Yang Zhongtian

    2012-01-01

    Ontario Power Generation (OPG) is undergoing a project for the long-term management of low and intermediate level waste (LILW)-a deep geologic repository (DGR) project for low and intermediate level waste. The waste source term disposed, geologic setting, repository layout and operation, and safety assessment are discussed. It is expected to provide reference for disposal of low and intermediate level waste that contain the higher concentration of long-lived radionuclides in China. (authors)

  16. Waste package materials testing for a salt repository: 1983 status summary report

    International Nuclear Information System (INIS)

    Moak, D.P.

    1986-09-01

    The United States plans to safely dispose of nuclear waste in deep, stable geologic formations. As part of these plans, the US Department of Energy is sponsoring research on the designing and testing of waste packages and waste package materials. This fiscal year 1983 status report summarizes recent results of waste package materials testing in a salt environment. The results from these tests will be used by waste package designers and performance assessment experts. Release characteristics data are available on two waste forms (spent fuel and waste-containing glass) that were exposed to leaching tests at various radiation levels, temperatures, pH, glass surface area to solution volume ratios, and brine solutions simulating expected salt repository conditions. Candidate materials tested for corrosion resistance and other properties include iron alloys; TI-CODE 12, the most promising titanium alloy for containment; and nickel alloys. In component interaction testing, synergistic effects have not ruled out any candidate material. 21 refs., 37 figs., 15 tabs

  17. Recommendations: Procedure to develop a preliminary safety report as part of the radioactive waste repository construction licensing process

    International Nuclear Information System (INIS)

    2003-01-01

    The structure of a preliminary safety report for the title purpose should be as follows: A. Textual part: 1. General (Introduction, Basic information about the construction, Timetable); 2. Site information (Siting, Geography and demography, Meteorology and climatic situation, Hydrology, Geology and hydrogeology); 3. Repository design description (Basic function and performance requirements, Design, Auxiliary systems, Fire prevention/protection, Emergency plans); 4. Operation of the repository (Waste acceptance and inspection, Waste handling and interim storage, Waste disposal, Operating monitoring), 5. Health and environmental impact assessment (Radionuclide inventory, Radionuclide transport paths and mechanisms of release into the environment, Radionuclide release in normal and emergency situations, Radiation protection - health impact assessment and regulatory compliance, Draft operating limits and conditions, Proposed ways of assuring physical protection, Uncertainty assessment), 6. Safe repository shutdown/decommissioning concept, 7 Quality assurance assessment, 8. List of selected equipment. B. Annexes: Maps, Drawings, Diagrams, Miscellaneous; C. Documentation: Previous safety report amendments, Protocols, Miscellaneous. (P.A.)

  18. Special features of nuclear waste repository ventilation system VIS-A-VIS experiences at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Sethi, S.C.

    1991-01-01

    The paper presents an analysis and discussion of the underground ventilation system at the Waste Isolation Pilot Plant (WIPP). Particular emphasis is placed on specific repository-related requirements and the gradual evolution of engineering designs relative to the WIPP Project scope. The ventilation system for a nuclear waste facility similar to WIPP is designed to provide a suitable environment for personnel and equipment during normal activities. It is also designed to provide confinement and channeling of potential airborne radioactive material in the event of an accidental release. It is desirable to identify and design all parallel activities and the required process equipment prior to completion of the repository mine final design. Such factors as ventilation requirements, drift sizes, bulkhead sizes, and placement are dependent on these items. Mine creep closure properties must be factored into the mine and ventilation equipment design considerations. Effects of natural ventilation pressures deserve due consideration in the design. Mine ventilation requirements are dominated by the diesel equipment to be operated in the underground horizon. WIPP engineers have also found it extremely desirable to have automated real-time monitoring and control for the underground ventilation air. Final testing and balancing of the ventilation system is an extremely important startup requirement. 3 refs., 2 figs

  19. Climate Considerations in Long-Term Safety Assessments for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove; Brandefelt, Jenny; Claesson Liljedahl, Lillemor [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)], E-mail: jens-ove.naslund@skb.se

    2013-05-15

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  20. Coupled thermo-hydro-mechanical processes associated with a radioactive waste repository

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1988-01-01

    The performance assessment of a nuclear waste geologic repository presents a scientific and technical problem of a scope far beyond the evaluation of most civil and geologic constructions. First performance prediction must be made for tens of thousands of years, and a secondly, in calculating potential leakage rates from a repository to the biosphere the authors must determine not only the mean or average travel time but also the shorter travel times of low concentrations. These two criteria demand an understanding of all significant physical and chemical processes likely to occur around a nuclear waste repository. In particular, processes coupling thermal transfer fluid flow, mechanical deformation and chemical reactors, which may be slow in a laboratory time scale, may become very important. This paper gives a general survey on the subject, with specific examples of a number of relevant coupled thermo-hydro-mechanical processes associated with nuclear waste repository

  1. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    1999-12-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk.

  2. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    International Nuclear Information System (INIS)

    Eriksson, Leif G.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk

  3. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    International Nuclear Information System (INIS)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories

  4. Technical, institutional and economic factors important for developing a multinational radioactive waste repository

    International Nuclear Information System (INIS)

    1998-06-01

    Countries planning and implementing nuclear energy programmes should assume responsibility for the safe management and final disposal of radioactive waste from their programmes. However, there are countries whose radioactive waste volumes do not easily justify a national repository, and/or countries which do not have the resources or favorable natural conditions for waste disposal to dedicate to a national repository project. These countries would benefit from multinational co-operation for the disposal. Interest in the concept of a multinational repository for radioactive waste has been expressed by several Member States and the waste management community in the light of the potential benefit to the partner countries from the safety, technical and economic standpoints. However, such an approach involves many political and public acceptance issues and therefore a consensus among countries or regions concerned is a prerequisite. In this context, it was deemed appropriate that the IAEA access the technical, institutional, ethical and economic factors to be taken into account in the process of such consensus building. This report is intended to provide an assessment which can serve as a general basis for establishing a waste management policy and/or further assessing specific issues such as ownership and liability, institutional aspects and problems related to long term commitments. This report is divided into five sections where the first section gives background, objectives, scope and structure of the report. Section 2 discusses multinational repository concept in terms of needs and the role of a multinational repository, interaction between host and partner countries and formulation of a multinational repository. Section 3 identifies basic issues to be considered for establishing a multinational repository, and some specific issues relating to specific waste categories. Section 4 analyses potential benefits and challenges to be addresses in establishing a

  5. Design analysis of engineered alternatives for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Myers, J.; Djordjevic, S.; Adams, M.; Spangler, L.; Valdez, J.; Vetter, D.; Drez, P.

    1991-01-01

    The effectiveness of several engineered alternatives, designed to enhance the performance of the Waste Isolation Pilot Plant (WIPP), were evaluated relative to the performance of the baseline design. This evaluation was performed using a computer program referred to as the Design Analysis Model which couples salt creep closure, brine inflow, gas generation and dissipation to realistically simulate these interrelated processes over a 10,000 year period following the decommissioning of the repository. Analyses of the baseline design and nine alternative designs were performed for the undisturbed repository conditions, as well as three human intrusion events. Improvements in repository performance of up to four orders of magnitude were predicted for various engineered alternative waste forms. 6 refs., 8 figs., 1 tab

  6. A Deterministic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae; Choi, Jong Won

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called 'A-KRS', in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

  7. Transient boundary conditions in the frame of THM-processes at nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Schanz Tom

    2016-01-01

    Full Text Available In nuclear waste repositories, initially unsaturated buffer is subjected to constant heat emitted by waste canister in conjunction with peripheral hydration through water from host rock. The transient hydration process can be potraied as transformation of initial heterogeneity towards homogeneity as final stage. In this context, this paper addresses the key issue of hydro mechanical behaviour of compacted buffer in context of clay microstructure and its evolution under repository relevant loading paths and material heterogeneity. This paper also introduces a unique column experiment facility available at Ruhr Universität Bochum, Germany. The facility has been designed as a forerunner of field scale testing program to simulate the transient hydration process of compacted buffer as per German reference disposal concept. The device is unique in terms of having proficiency to capture the transient material response under various possible repository relevant loading paths with higher precision level by monitor the key parameters like temperature, total suction, water content and axial & radial swelling pressure at three different sections along the length of compacted soil sample. In general, a larger spectrum of loading paths/scenarios, which may arise in the nuclear repository, can be covered precisely with existing device.

  8. Low and intermediate level waste repositories: public involvement aspects

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Mourao, Rogerio P.; Fleming, Peter M.; Soares, Wellington A.; Braga, Leticia T.P.; Santos, Rosana A.M.

    2009-01-01

    The nuclear energy acceptance creates several problems, and one of the most important is the disposal of the radioactive waste. International experiences show that not only environmental, radiological and technical questions have to be analyzed, but the public opinion about the project must be considered. The objective of this article is to summarize some public involvement aspects associated with low and intermediate level waste repositories. Experiences from USA, Canada, South Africa, Ukraine and other countries are studied and show the importance of the population in the site selection process for a repository. (author)

  9. Swiss plans for deep geological repositories for radioactive wastes - Basics for communication at the localities affected

    International Nuclear Information System (INIS)

    Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the concept of how information concerning deep geological repositories for radioactive wastes should be presented and communicated to those in the areas which have been designated as potential sites for the repositories. Communication basics based on scientific knowledge in this area are discussed. The importance of a concept for general communication and risk-communication as a particular challenge are discussed. Trust and transparency are quoted as being indispensable in this connection. Ways of dealing with various target audiences and the media are examined. The report is concluded with a check-list that deals with important questions arising from the process of communicating information on deep geological repositories for radioactive wastes

  10. High level nuclear waste repository in salt: Sealing systems status and planning report: Draft report

    International Nuclear Information System (INIS)

    1985-09-01

    This report documents the initial conceptual design studies for a repository sealing system for a high-level nuclear waste repository in salt. The first step in the initial design studies was to review the current design level, termed schematic designs. This review identified practicality of construction and development of a design methodology as two key issues for the conceptual design. These two issues were then investigated during the initial design studies for seal system materials, seal placement, backfill emplacement, and a testing and monitoring plan. The results of these studies have been used to develop a program plan for completion of the sealing system conceptual design. 60 refs., 26 figs., 18 tabs

  11. Reinforced concrete in the intermediable-level nuclear waste repository

    International Nuclear Information System (INIS)

    Duffo, Gustavo

    2009-01-01

    The National Atomic Energy Commission (CNEA) is responsible for developing the nuclear waste disposal management programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers and the model foresees a period of 300 years of institutional post-closure control. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facility integrity. This work presents laboratory investigations performed on the corrosion susceptibility of steel rebars embedded in two different types of high performance reinforced concretes, recently developed by the National Institute of Industrial Technology (Argentine). Concretes were made with cement with Blast Furnace Slag (CAH) and Silica Fume cement (CAH + SF). The aim of this work is to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. Besides, the diffusion coefficients of aggressive species, such as chloride and carbon dioxide, were also determined. On the other hand, data obtained with corrosion sensors embedded in a vault prototype is also included. These sensors allow on-line measurements of several parameters related to the corrosion process such as rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity; chloride concentration and internal concrete temperature. All the information obtained from both, laboratory tests and sensors will be used for the final design of the container in order to achieve a service life more or equal than the foreseen durability for this type of

  12. Extreme scenarios for nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M J [Harvard Univ., Cambridge, MA (USA). Div. of Applied Sciences; Crouch, E [Harvard Univ., Cambridge, MA (USA). Energy and Environmental Policy Center

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km/sup 2/ of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the waste are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  13. Improvement of storage conditions and closure of the radioactive waste repository - Rozan

    International Nuclear Information System (INIS)

    Dutton, L.M.C.; Pacey, N.R.; Buckley, M.J.; Thomson, J.G.; Miller, W.; Barraclough, I.; Tomczak, W.; Mitrega, J.; Smietanski, L.

    2005-01-01

    The Rozan repository is a near-surface repository on the site of an ex-military fort, operated by Radioactive Waste Management Plant (RWMP). Solid or encapsulated waste is consigned to the repository. Low- and medium-activity waste produced in Poland is collected, processed, solidified and prepared for disposal at the Swierk facility. The waste is currently stored or disposed of within the fort structures, these have robust concrete walls, that provide both shielding and containment. The project, funded by the European Commission through the Phare Programme, aimed to improve the storage conditions and determine a strategy for closure achieving two key results; Stakeholder agreement to a strategy for the management and closure of the repository, and; Approval by the National Atomic Energy Agency of the safety case for the selected strategy. The strategy was selected using a multi-criteria analysis methodology at workshops that involved experts, regulators and other stakeholders. The selected strategy proposed that the waste in Facilities 3A and 8 should be left in situ and these facilities should continue to operate until the repository is closed. The waste in Rooms K7 to K9 of Facility 1 and in Facilities 2 and 3 should be retrieved, assayed, treated and packaged prior to redisposal. The short-lived waste that is retrieved from Rooms K7 to K9 of Facility 1 and Facilities 2 and 3 should be emplaced in Facility 8 subject to acceptance by the NAEA of the dose of 0.3mSv/y that might occur at long times in the future from a very unlikely scenario. When operations at the repository end, Facilities 3A and 8 should be covered with a multi-layer cap. Following selection of the strategy, assessment work was undertaken to support the production of the suite of safety cases. (author)

  14. Optimized application of systems engineering to nuclear waste repository projects

    International Nuclear Information System (INIS)

    Miskimin, P.A.; Shepard, M.

    1986-01-01

    The purpose of this presentation is to describe a fully optimized application of systems engineering methods and philosophy to the management of a large nuclear waste repository project. Knowledge gained from actual experience with the use of the systems approach on two repository projects is incorporated in the material presented. The projects are currently evaluating the isolation performance of different geologic settings and are in different phases of maturity. Systems engineering methods were applied by the principal author at the Waste Isolation Pilot Plant (WIPP) in the form of a functional analysis. At the Basalt Waste Isolation Project (BWIP), the authors assisted the intergrating contractor with the development and application of systems engineering methods. Based on this experience and that acquired from other waste management projects, an optimized plan for applying systems engineering techniques was developed. The plan encompasses the following aspects: project organization, developing and defining requirements, assigning work responsibilities, evaluating system performance, quality assurance, controlling changes, enhancing licensability, optimizing project performance, and addressing regulatory issues. This information is presented in the form of a roadmap for the practical application of system engineering principles to a nuclear waste repository project

  15. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  16. Climate considerations in long-term safety assessments for nuclear waste repositories.

    Science.gov (United States)

    Näslund, Jens-Ove; Brandefelt, Jenny; Liljedahl, Lillemor Claesson

    2013-05-01

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  17. MRS/IS facility co-located with a repository: preconceptual design and life-cycle cost estimates

    International Nuclear Information System (INIS)

    Smith, R.I.; Nesbitt, J.F.

    1982-11-01

    A program is described to examine the various alternatives for monitored retrievable storage (MRS) and interim storage (IS) of spent nuclear fuel, solidified high-level waste (HLW), and transuranic (TRU) waste until appropriate geologic repository/repositories are available. The objectives of this study are: (1) to develop a preconceptual design for an MRS/IS facility that would become the principal surface facility for a deep geologic repository when the repository is opened, (2) to examine various issues such as transportation of wastes, licensing of the facility, and environmental concerns associated with operation of such a facility, and (3) to estimate the life cycle costs of the facility when operated in response to a set of scenarios which define the quantities and types of waste requiring storage in specific time periods, which generally span the years from 1990 until 2016. The life cycle costs estimated in this study include: the capital expenditures for structures, casks and/or drywells, storage areas and pads, and transfer equipment; the cost of staff labor, supplies, and services; and the incremental cost of transporting the waste materials from the site of origin to the MRS/IS facility. Three scenarios are examined to develop estimates of life cycle costs of the MRS/IS facility. In the first scenario, HLW canisters are stored, starting in 1990, until the co-located repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at various intervals. In the second scenario, spent fuel is stored, starting in 1990, because the reprocessing plants are delayed in starting operations by 10 years, but no HLW is stored because the repositories open on schedule. In the third scenario, HLW is stored, starting in 1990, because the repositories are delayed 10 years, but the reprocessing plants open on schedule

  18. Effects of resource activities upon repository siting and waste containment with reference to bedded salt

    International Nuclear Information System (INIS)

    Ashby, J.; Rowe, J.

    1980-02-01

    The primary consideration for the suitability of a nuclear waste repository site is the overall ability of the repository to safely contain radioactive waste. This report is a discussion of the past, present, and future effects of resource activities on waste containment. Past and present resource activities which provide release pathways (i.e., leaky boreholes, adjacent mines) will receive initial evaluation during the early stages of any repository site study. However, other resource activities which may have subtle effects on containment (e.g., long-term pumping causing increased groundwater gradients, invasion of saline water causing lower retardation) and all potential future resource activities must also be considered during the site evaluation process. Resource activities will affect both the siting and the designing of repositories. Ideally, sites should be located in areas of low resource activity and low potential for future activity, and repository design should seek to eliminate or minimize the adverse effects of any resource activity. Buffer zones should be created to provide areas in which resource activities that might adversely affect containment can be restricted or curtailed. This could mean removing large areas of land from resource development. The impact of these frozen assets should be assessed in terms of their economic value and of their effect upon resource reserves. This step could require a major effort in data acquisition and analysis followed by extensive numerical modeling of regional fluid flow and mass transport. Numerical models should be used to assess the effects of resource activity upon containment and should include the cumulative effects of different resource activities. Analysis by other methods is probably not possible except for relatively simple cases

  19. Safety analysis methodologies for radioactive waste repositories in shallow ground

    International Nuclear Information System (INIS)

    1984-01-01

    The report is part of the IAEA Safety Series and is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of shallow ground radioactive waste repositories. It discusses approaches that are applicable for safety analysis of a shallow ground repository. The methodologies, analysis techniques and models described are pertinent to the task of predicting the long-term performance of a shallow ground disposal system. They may be used during the processes of selection, confirmation and licensing of new sites and disposal systems or to evaluate the long-term consequences in the post-sealing phase of existing operating or inactive sites. The analysis may point out need for remedial action, or provide information to be used in deciding on the duration of surveillance. Safety analysis both general in nature and specific to a certain repository, site or design concept, are discussed, with emphasis on deterministic and probabilistic studies

  20. Basic repository environmental assessment design basis, Richton Dome site

    International Nuclear Information System (INIS)

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Gulf Interior Region at Richton Dome in Perry County, Mississippi. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7,020 canisters of defense high-level reprocessing waste and associated quantities of remote-and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1,000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $4.49 billion. Costs include those for the WHPF, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively easy access to the site. Construction would require an estimated 6.25 years. Engineering factors and costs are not strongly influenced by environmental considerations. 52 refs., 24 figs., 20 tabs

  1. Basic repository environmental assessment design basis, Davis Canyon site

    International Nuclear Information System (INIS)

    1984-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Davis Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7,020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1,000-year-life carbon-steel waste packages in a collected waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.49 billion. Costs include those for the collocated WHPF, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 50 refs., 24 figs., 20 tabs

  2. Basic repository environmental assessment design basis, Lavender Canyon site

    International Nuclear Information System (INIS)

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs

  3. Preliminary waste acceptance requirements - Konrad repository project

    International Nuclear Information System (INIS)

    Brennecke, P.W.; Warnecke, E.H.

    1991-01-01

    In Germany, the planned Konrad repository is proposed for the disposal of all types of radioactive wastes whose thermal influence upon the host rock is negligible. The Bundesamt fuer Strahlenschutz has established Preliminary Waste Acceptance Requirements (as of April 1990) for this facility. The respective requirements were developed on the basis of the results of site-specific safety assessments. They include general requirements on the waste packages to be disposed of as well as more specific requirements on the waste forms, the packaging and the radionuclide inventory per waste package. In addition, the delivery of waste packages was regulated. An outline of the structure and the elements of the Preliminary Waste Acceptance Requirements of April 1990 is given including comments on their legal status. (Author)

  4. Repository-analog experiments of nuclear waste leaching and migration

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    The potential for radionuclide migration from a breached nuclear-waste repository depends on the leaching and subsequent interaction of the leached radionuclides with materials in the groundwater flow path. An attempt is made to consider all interactions using experiments that integrate repository materials. Results of a repository-analog experiment using borosilicate glass, fissured granite, and flowing water suggest: (1) plutonium was immobile possibly because of its low solubility; (2) caesium migrated down slowly because of sorption; and (3) neptunium remained oxidized even in water of low oxidation potential. By summing the effects of all interactions, not just sorption, the repository-analog experiment produced radionuclide migration that could be expected from a breached repository. (author)

  5. Conceptual design of radioactive waste repositories in geological formations. Report on a Workshop organized by the Commission of the European Communities in the frame of its R and D programme on radioactive waste management and storage at Brussels, February 13 and 14, 1979. [Clays, granites, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Haytink, B [comp.

    1980-01-01

    Under the R and D programme on radioactive waste management and storage (indirect action 1975-1979) of the Commission of the European Communities, the Commission participates in design studies of waste repositories in different geological formations undertaken in various Member States. In order to achieve an exchange of available information and to discuss technical solutions the Commission organised a workshop which was attended by experts of all the organisations involved in these studies under the Community programme. From the presentations, summarized in this report, it appeared that design and feasibility studies of waste repositories in clay, salt and granite formations are in good progress. It may be concluded that such repositories can be realized with techniques available at present, however experimental facilities are needed to demonstrate the validity of the theoretical studies.

  6. Preclosure analysis of conceptual waste package designs for a nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Gregg, D.W.; Hockman, J.N.; Russell, E.W.; Stein, W.

    1984-01-01

    This report discusses the selection and analysis of conceptual waste package developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for possible disposal of high-level nuclear waste at a candidate site at Yucca Mountain, Nevada. The design requirements that the waste package must conform to are listed, as are several desirable design considerations. Illustrations of the reference and alternative designs are shown. Four austenitic stainless steels (316L SS, 321 SS, 304L SS and Incoloy 825 high nickel alloy) have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and ecnonmic analyses supporting the selection of the conceptual waste package designs is included. Postclosure containment and release rates are not analyzed in this report

  7. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J

    2007-01-15

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project.

  8. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2007-01-01

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project

  9. Barriers to migration of radionuclides from radioactive waste repositories

    International Nuclear Information System (INIS)

    Stefanova, I.

    1999-01-01

    Natural inorganic sorbents are known as effective barriers that reduce the migration of radionuclides from radioactive waste repositories and contaminated sites. They could be used as buffer, backfill and sealing materials in the repository and their presence in the host rock and the surrounding geological formations increases the retention properties of the strata. Natural occurring minerals from local origin are used in the study - zeolites (clinoptilolite and mordenite), celadonite and loess. Sorption of wide range of radionuclides is studies. Batch capacity is determined. Sorption of radionuclides from simulated natural solution is studied. Distribution coefficients are calculated from sorption isotherms. Desorption in presence of different natural solutions is studied. Sorption properties are compared. It is shown that clinoptilolite acts as effective barrier against migration of radionuclides from repositories. The presence of celadonite in the clinoptilolite rock increases the retention of polyvalent ions. The retention of radionuclides on loess samples fulfils the requirements for host media for repository for low and intermediate level waste. A method for construction of additional barrier to the existing in the country disposal vault for spent sealed sources is proposed

  10. Natural analogues, paradigm for manmade repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Pavelescu, M.; Pavelescu, A.

    2004-01-01

    Natural analogues are given by nature. They show the results of natural processes which have lasted thousands or millions of years. They provide an excellent example of what could happen in an underground site, offering in the same time the opportunity to test by observation and measurement, many of the geochemical processes that are expected to influence in a realistic and appropriate way, the predicted reliability of the radioactive waste repository over long periods of geological time. The natural analogue studies attempt to understand the multiprocessing complexity of the natural system, which contrasts with the limitations of the laboratory experiments and bring arguments to overcome the difficult time scale issue. By this the natural analogues are a useful paradigm for manmade repository for radioactive wastes. The paper discusses the implicit link in the public mind between natural analogues and manmade waste repository with an accent of the positive impact on public acceptance. It is also discussed the decisive qualities of the natural analogues concerning providing valid long term data and increasing the confidence of the public for manmade repositories. The debate is conducting in terms of sustainable development, having at base high-level principles in order to protect humans and their environment, both now and in the future, from potential hazards arising from such wastes. Safe radwaste management involves the application of technology and resources in a regulated manner so that the public, workers and the environment are protected in accordance with the accepted national and international standards. There are at least seven high-level principles which are mentioned in the paper. It is presented the general concept of the deep geological repository, very important for an acceptable solution for the management of nuclear waste, what is a prerequisite for a renewal of nuclear power. Further are introduced natural and archaeological (manufactured) analogue

  11. Extreme scenarios for nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M J; Crouch, E

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km2 of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the water are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  12. Conceptual designs of automated systems for underground emplacement and retrieval of nuclear waste

    International Nuclear Information System (INIS)

    Slocum, A.H.; Hou, W.M.; Park, K.; Hochmuth, C.; Thurston, D.C.

    1987-01-01

    Current designs of underground nuclear waste repositories have not adequately addressed the possibility of automated, unmanned emplacement and retrieval. This report will present design methodologies for development of an automated system for underground emplacement of nuclear waste. By scaling generic issues to different repositories, it is shown that a two vehicle automated waste emplacement/retrieval system can be designed to operate in a fail-safe mode. Evaluation of cost at this time is not possible. Significant gains in worker safety, however, can be realized by minimizing the possibility of human exposure

  13. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  14. Concentration Limits in the Cement Based Swiss Repository for Long-lived, Intermediate-level Radioactive Wastes (LMA)

    International Nuclear Information System (INIS)

    Berner, Urs

    1999-12-01

    The Swiss repository concept for long-lived, intermediate-level radioactive wastes (LMA), in Swiss terminology) foresees cylindrical concrete silos surrounded by a ring of granulated bentonite to deposit the waste. As one of the possible options and similar to the repository for high level wastes, the silos will be located in a deep crystalline host rock. Solidified with concrete in steel drums, the waste is stacked into a silo and the silo is then backfilled with a porous mortar. To characterize the release of radionuclides from the repository, the safety assessment considers first the dissolution into the pore water of the concrete, and then diffusion through the outer bentonite ring into the deep crystalline groundwater. For 19 safety relevant radionuclides (isotopes of U, Th, Pa, Np, Pu, Am, Ni, Zr, Mo, Nb, Se, Sr, Ra, Tc, Sn, I, C, Cs, Cl) the report recommends maximum elemental concentrations to be expected in the cement pore water of the particularly considered repository. These limits will form the parameter base for subsequent release model chains. Concentration limits in a geochemical environment are usually obtained from thermodynamic equilibrium calculations performed with geochemical speciation codes. However, earlier studies revealed that this procedure does not always lead to reliable results. Main reasons for this are the complexity of the systems considered, as well as the lacking completeness of, and the uncertainty associated with the thermodynamic data. To improve the recommended maximum concentrations for a distinct repository design, this work includes additional design- and system-dependent criteria. The following processes, inventories and properties are considered in particular: a) recent experimental investigations, particularly from cement systems, b) thermodynamic model calculations when reliable data are available, c) total inventories of radionuclides, d) sorption- and co-precipitation processes, e) dilution with stable isotopes, f

  15. Geological repository layout for radioactive high level long lived waste in argillite

    International Nuclear Information System (INIS)

    Gaussen, JL

    2006-01-01

    In the framework of the 1991 French radioactive waste act, ANDRA has studied the feasibility of a geological repository in the argillite layer of the Bure site for high level long lived waste. This presentation is focussed on the underground facilities which constitute the specific component of this project. The preliminary underground layout which has been elaborated is based on four categories of data: - the waste characteristics and inventory; - the geological properties of the host argillite; - the long term performance objectives of the repository; - the specifications in terms of operation and reversibility. The underground facilities consist of two types of works: the access works (shafts and drifts) and the disposal cells. The function of the access works is to permit the implementation of two concurrent activities: the nuclear operations (transfer and emplacement of the disposal packages into the disposal cells) and the construction of the next disposal cells. The design of the drifts network which matches up to this function is also influenced by two other specifications: the minimization of the drift dimensions in order to limit their influence on the integrity of the geological formation and the necessity of a safe ventilation in case of fire. The resulting layout is a network of 4 parallel drifts (2 of them being dedicated to the operation, the other two being dedicated to the construction activities). The average diameter of these access drifts is 7 meters. The link between the surface and the underground is ensured by 4 shafts. The most important function of the disposal cells is to contribute to the long term performance of the repository. In this regard, the thermal and geotechnical considerations play an important role. The B wastes (intermediate level wastes) are not (or not very) exothermic. Consequently, the design of their disposal cells result mainly from geotechnical considerations. The disposal packages (made of concrete) are piled up in

  16. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  17. Retrieval effects on ventilation and cooling requirements for a nuclear waste repository

    International Nuclear Information System (INIS)

    Hambley, D.F.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the regulations promulgated in Title 10, Part 60 of the Code of Federal Regulations (10CFR60) by the US Nuclear Regulatory Commission (NRC) for an underground repository for spent fuel and high level nuclear waste (HLW) require that it is possible to retrieve waste, for whatever reason, from such a facility for a period of 50 years from initial storage or until the completion of the performance confirmation period, whichever comes first. This paper considers the effects that the retrievability option mandates on ventilation and cooling systems required for normal repository operations. An example is given for a hypothetical repository in salt. 18 refs., 1 tab

  18. A Careful Blasting Technique During Construction of underground Openings for Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Ester, Z.; Vrkljan, D.

    1998-01-01

    Underground nuclear waste repositories are constructed in natural rock formations, with heterogenous compound and structure, and should be accommodated in design and construction according to rock conditions. The quality insurance of underground repository, during and after construction, is most demanding in view of contour and category of excavation. the technology of drilling and blasting, regarding the mechanical excavation, is accommodated in sense of response to cross section magnitude of underground openings, the rock conditions and category, the support performance and other design demands. The high level rock damage around underground openings, that is in opposition with reaching quality insurance. Conventional construction technology can be successful by implementation of controlled blasting technique avoiding extensive rock weakness. (author)

  19. Some concepts of model uncertainty for performance assessments of nuclear waste repositories

    International Nuclear Information System (INIS)

    Eisenberg, N.A.; Sagar, B.; Wittmeyer, G.W.

    1994-01-01

    Models of the performance of nuclear waste repositories will be central to making regulatory decisions regarding the safety of such facilities. The conceptual model of repository performance is represented by mathematical relationships, which are usually implemented as one or more computer codes. A geologic system may allow many conceptual models, which are consistent with the observations. These conceptual models may or may not have the same mathematical representation. Experiences in modeling the performance of a waste repository representation. Experiences in modeling the performance of a waste repository (which is, in part, a geologic system), show that this non-uniqueness of conceptual models is a significant source of model uncertainty. At the same time, each conceptual model has its own set of parameters and usually, it is not be possible to completely separate model uncertainty from parameter uncertainty for the repository system. Issues related to the origin of model uncertainty, its relation to parameter uncertainty, and its incorporation in safety assessments are discussed from a broad regulatory perspective. An extended example in which these issues are explored numerically is also provided

  20. Basic repository environment assessment design basis, Cypress Creek Dome Site

    International Nuclear Information System (INIS)

    1988-03-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Gulf Interior Region at Cypress Creek Cone, Mississippi. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $4.66 billion. Costs include those for the collocated WHPF, engineering, and contingency, but exclude waste from assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relatively easy access to the site. Construction would require an estimated 7 years. Engineering factors and costs are not strongly influenced by environmental considerations. 53 refs., 24 figs., 10 tabs

  1. Microbial corrosion of metallic materials in a deep nuclear-waste repository

    Directory of Open Access Journals (Sweden)

    Stoulil J.

    2016-06-01

    Full Text Available The study summarises current knowledge on microbial corrosion in a deep nuclear-waste repository. The first part evaluates the general impact of microbial activity on corrosion mechanisms. Especially, the impact of microbial metabolism on the environment and the impact of biofilms on the surface of structure materials were evaluated. The next part focuses on microbial corrosion in a deep nuclear-waste repository. The study aims to suggest the development of the repository environment and in that respect the viability of bacteria, depending on the probable conditions of the environment, such as humidity of bentonite, pressure in compact bentonite, the impact of ionizing radiation, etc. The last part is aimed at possible techniques for microbial corrosion mechanism monitoring in the conditions of a deep repository. Namely, electrochemical and microscopic techniques were discussed.

  2. Geotechnical instrumentation for repository shafts

    International Nuclear Information System (INIS)

    Lentell, R.L.; Byrne, J.

    1993-01-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts

  3. Importance of creep failure of hard rock in the near field of a nuclear-waste repository

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1981-01-01

    Potential damage resulting from slow creep deformation intuitively seems unlikely for a high-level nuclear waste repository excavated in hard rock. However, recent experimental and modeling results indicate that the processes of time-dependent microcracking and water-induced stress corrosion can lead to significant reductions in strength and alteration of other key rock properties in the near-field region of a repository. We review the small data base supporting these conclusions and stress the need for an extensive laboratory program to obtain the new data that will be required for design of a repository

  4. Importance of creep failure of hard rock in the near field of a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Blacic, J D [Los Alamos National Laboratory, NM, (USA)

    1982-12-31

    Potential damage resulting from slow creep deformation intuitively seems unlikely for a high-level nuclear waste repository excavated in hard rock. However, recent experimental and modeling results indicate that the processes of time-dependent microcracking and water-induced stress corrosion can lead to significant reductions in strength and alteration of other key rock properties in the near-field region of a repository. We review the small data base supporting these conclusions and stress the need for an extensive laboratory program to obtain the new data that will be required for design of a repository.

  5. International high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Lin, W.

    1996-01-01

    Although nuclear technologies benefit everyone, the associated nuclear wastes are a widespread and rapidly growing problem. Nuclear power plants are in operation in 25 countries, and are under construction in others. Developing countries are hungry for electricity to promote economic growth; industrialized countries are eager to export nuclear technologies and equipment. These two ingredients, combined with the rapid shrinkage of worldwide fossil fuel reserves, will increase the utilization of nuclear power. All countries utilizing nuclear power produce at least a few tens of tons of spent fuel per year. That spent fuel (and reprocessing products, if any) constitutes high-level nuclear waste. Toxicity, long half-life, and immunity to chemical degradation make such waste an almost permanent threat to human beings. This report discusses the advantages of utilizing repositories for disposal of nuclear wastes

  6. Waste-rock interactions in the immediate repository

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1977-01-01

    The high level wastes (HLW's) to be placed underground in rock formations will contain significant amounts of radioactive decay heat for the first hundred-or-so years of isolation. Several physical-chemical changes analogous to natural geochemical processes can occur during this ''thermal period.'' The waste canister can act as a heat source and cause changes in the mineralogy and properties of the surrounding rocks. Geochemically, this is ''contact metamorphism.'' In the event that the canister is corroded and breached, chemical reactions can occur between the HLW, the surrounding rock and possibly the remains of the canister. In a dry repository which has not been backfilled (and thus pressurized) these interactions could be slow at best and with rates decreasing rapidly as the HLW cools. However, significant interactions can occur in years, months or even days under hydrothermal conditions. These conditions could be created by the combination of HLW heat, overburden pressure and water mobilized from the rocks or derived from groundwater intrusion. At the end of the thermal period these interaction products would constitute the actual HLW form (or ''source term'') subject to the low temperature leaching and migration processes under investigation in other laboratories. It is quite possible that these interaction product waste forms will have superior properties compared to the original HLW. Experimental programs initiated at Penn State during the last year aim at determining the nature of any chemical or mineralogical changes in, or interactions between, HLW solids and host rocks under various repository ambients. The accompanying figures describe the simulated HLW forms and the experimental approach and techniques. Studies with basalts as the repository rock are supported by Rockwell Hanford Operations and with shales by the Office of Waste Isolation

  7. Hanford Waste Vitrification Plant Project advanced conceptual design summary report

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1988-11-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize Hanford defense liquid high-level waste in borosilicate glass in preparation for shipment to a geologic repository. The shipment of the waste to the repository will satisfy an objective in the President's Defense Waste Management Plan. The glass product will be cast into stainless steel canisters, which will be sealed and stored at Hanford until they are shipped. This document summarizes work performed during the Advance Conceptual Design (ACD) of the HWVP. In the Reference Conceptual Design phase, which preceded the ACD, a number of design issues were identified with the potential to improve cost effectiveness, safety, constructibility, and operability. The ACD addressed and evaluated these design issues. Implementation of recommendations derived from ACD work will occur in subsequent design phases. The next design phase is preliminary design which will be followed by detailed design and construction. Net potential cost improvements of more than $36.9M were identified along with improvements in safety, constructibility, and operability. No negative schedule impacts will result from implementation of the improvements. 11 refs., 5 figs., 3 tabs

  8. 75 FR 8701 - Notice of Settlement Agreement Pertaining to Construction of a Waste Repository on the Settlors...

    Science.gov (United States)

    2010-02-25

    ... Construction of a Waste Repository on the Settlors' Property Pursuant to the Comprehensive Environmental... a Settlement Agreement pertaining to Construction of a Waste Repository on Settlor's Property... waste repository on the property by resolving, liability the settling party might otherwise incur under...

  9. Effects of silica redistribution on performance of high-level nuclear waste repositories in saturated geologic formations

    International Nuclear Information System (INIS)

    Verma, A.; Pruess, K.

    1985-11-01

    Evaluation of the thermohydrological conditions near high-level waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock do not change in response to the thermal, mechanical or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in thermally driven flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, a repository-wide thermal convection problem, and different pore models were employed for the permeable medium (fractures with uniform or non-uniform cross sections). We find that silica redistribution generally has insignificant effects on host rock and canister temperatures, pore pressures, or flow velocites

  10. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  11. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed

  12. Training courses on integrated safety assessment modelling for waste repositories

    International Nuclear Information System (INIS)

    Mallants, D.

    2007-01-01

    Near-surface or deep repositories of radioactive waste are being developed and evaluated all over the world. Also, existing repositories for low- and intermediate-level waste often need to be re-evaluated to extend their license or to obtain permission for final closure. The evaluation encompasses both a technical feasibility as well as a safety analysis. The long term safety is usually demonstrated by means of performance or safety assessment. For this purpose computer models are used that calculate the migration of radionuclides from the conditioned radioactive waste, through engineered barriers to the environment (groundwater, surface water, and biosphere). Integrated safety assessment modelling addresses all relevant radionuclide pathways from source to receptor (man), using in combination various computer codes in which the most relevant physical, chemical, mechanical, or even microbiological processes are mathematically described. SCK-CEN organizes training courses in Integrated safety assessment modelling that are intended for individuals who have either a controlling or supervising role within the national radwaste agencies or regulating authorities, or for technical experts that carry out the actual post-closure safety assessment for an existing or new repository. Courses are organised by the Department of Waste and Disposal

  13. Reliable predictions of waste performance in a geologic repository

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.

    1985-08-01

    Establishing reliable estimates of long-term performance of a waste repository requires emphasis upon valid theories to predict performance. Predicting rates that radionuclides are released from waste packages cannot rest upon empirical extrapolations of laboratory leach data. Reliable predictions can be based on simple bounding theoretical models, such as solubility-limited bulk-flow, if the assumed parameters are reliably known or defensibly conservative. Wherever possible, performance analysis should proceed beyond simple bounding calculations to obtain more realistic - and usually more favorable - estimates of expected performance. Desire for greater realism must be balanced against increasing uncertainties in prediction and loss of reliability. Theoretical predictions of release rate based on mass-transfer analysis are bounding and the theory can be verified. Postulated repository analogues to simulate laboratory leach experiments introduce arbitrary and fictitious repository parameters and are shown not to agree with well-established theory. 34 refs., 3 figs., 2 tabs

  14. Long-term durability experiments with concrete-based waste packages in simulated repository conditions

    International Nuclear Information System (INIS)

    Ipatti, A.

    1993-03-01

    Two extensive experiments on long-term durability of waste packages in simulated repository conditions are described. The first one is a 'half-scale experiment' comprising radioactive waste product and half-scale concrete containers in site specific groundwater conditions. The second one is 'full-scale experiment' including simulated inactive waste product and full-scale concrete container stored in slowly flowing fresh water. The scope of the experiments is to demonstrate long-term behaviour of the designed waste packages in contact with moderately concrete aggressive groundwater, and to evaluate the possible interactions between the waste product, concrete container and ground water. As the waste packages are made of high-quality concrete, provisions have been made to continue the experiments for several years

  15. Information about activity, status and radiation conditions of Republic radioactive waste repository

    International Nuclear Information System (INIS)

    Saidumarov, P.

    2000-01-01

    All radioactive wastes in the Republic of Uzbekistan are stored in the Republic Radioactive Waste Repository in Parkent district of Tashkent region. In the facility there are 2 tanks for solid radioactive waste, each of 800 m 3 , one of them is full, second is in operation; 2 tanks for liquid radioactive waste each tank of 200 m 3 , both of them are empty; 6 storages, each of 3 m 3 all of them are empty; 3 storages for spent radioactive sources, one of them is full, 2 of them are in operation; 4 storages for high level radioactive waste, each storage of 3.5 m 3 , one of them is in operation, 3 are empty; one sealed storage containing 135 m 3 of concrete blocks with waste from electronic industry. According to conclusions of a few competent examinations RRWR does not cause damage to the environment. Geographic location and technical conditions of the repository are satisfactory. Low deposition of underground water (62 m) excludes penetration of radioisotopes. There were no radiation accidents during the repository operation

  16. Decompression of magma into repository tunnels

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    It is nontrivial to find and design safe repository sites for nuclear waste. It appears common sense to drill tunnels as repository sites in a mountain in remote and relatively dry regions. However, erosion of the waste canisters by naturally abundant chemicals in the mountains water cycle remains a

  17. Engineering studies: high-level radioactive waste repositories task 3 - review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The report reviews proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository with particular reference to: waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development. In carrying out this programme due attention was given to work already carried out both in the U.K. and overseas and where appropriate comparisons with this work have been made to substantiate and explain the observations made in this report. The examination and use of this previous work however has been confined to those proposals which were considered capable of meeting the basic design criterion for a U.K. based repository, that the maximum temperature achieved by the host rock should not exceed 100/sup 0/C.

  18. The study on safety facility criteria for radioactive waste repository

    International Nuclear Information System (INIS)

    Lee, S. H.; Choi, M. H.; Han, S. H. and others

    1992-12-01

    The radioactive waste repository are necessary to install the engineered safety systems to secure the safety for operation of the repository in the event of fire and earthquake. Since the development of safety facility criteria requires a thorough understanding about the characteristics of the engineered safety systems, we should investigate by means of literature survey and visit SKB. In particular, definition, composition of the systems, functional requirement of the systems, engineered safety systems of foreign countries, system design, operation and maintenance requirement should be investigated : fire protection system, ventilation system, drainage system, I and C system, electric system, radiation monitoring system. This proposed criteria consist of purpose, scope of application, ventilation system, fire protection system, drainage system, electric system and this proposed criteria can be applied as a basic reference for the final criteria

  19. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  20. Modelling approach to LILW-SL repository safety evaluation for different waste packing options

    International Nuclear Information System (INIS)

    Perko, Janez; Mallants, Dirk; Volckaert, Geert; Towler, George; Egan, Mike; Virsek, Sandi; Hertl, Bojan

    2007-01-01

    The key objective of the work described here was to support the identification of a preferred disposal concept and packaging option for low and short-lived intermediate level waste (LILW-SL). The emphasis of the assessment, conducted on behalf of the Slovenian radioactive waste management agency (ARAO), was the consideration of several waste treatment and packaging options in an attempt to identify optimised containment characteristics that would result in safe disposal, taking into account the cost-benefit of alternative safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes, including drums with unconditioned ion exchange resins in over-packed tube type containers (TTCs). For decommissioning wastes, the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers (HIC). In relation to operational wastes, three main options were foreseen. The first is over-packing of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralization, and cementation of the dry resins into drums grouted into high integrity containers and the third is direct disposal of TTCs into high integrity containers without additional treatment. The long-term safety of radioactive waste repositories is usually demonstrated with the support of a safety assessment. This normally includes modelling of radionuclide release from a multi-barrier near-surface or deep repository to the geosphere and biosphere. For the current work, performance assessment models were developed for each combination of siting option, repository design and waste packaging option. Modelling of releases from the engineered containment system (the 'near-field') was undertaken using the AMBER code. Detailed unsaturated water flow modelling was undertaken using the

  1. Scientific, institutional, regulatory, political, and public acceptance of the waste isolation pilot plant transuranic waste repository

    International Nuclear Information System (INIS)

    Eriksson, L.G.

    2000-01-01

    The recent successful certification and opening of a first-of-a-kind, deep geological repository for safe disposal of long-lived, transuranic radioactive waste (TRUW) at the Waste Isolation Pilot Plant (WIPP) site, New Mexico, United States of America (USA), embody both long-standing local and wide-spread, gradually achieved, scientific, institutional, regulatory, political, and public acceptance. The related historical background and development are outlined and the main contributors to the successful siting, certification, and acceptance of the WIPP TRUW repository, which may also serve as a model to success for other radioactive waste disposal programs, are described. (author)

  2. Geotechnical materials considerations for conceptual repository design in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Versluis, W.S.; Balderman, M.A.

    1984-01-01

    The Palo Duro Basin is only one of numerous potential repository locations for placement of a nuclear waste repository. Conceptual designs in the Palo Duro Basin involve considerations of the character and properties of the geologic materials found on several sites throughout the Basin. The first consideration presented includes current basin exploration results and interpretations of engineering properties for the basin geologic sequences. The next consideration presented includes identification of the characteristics of rock taken from the geologic sequence of interest through laboratory and field testing. Values for materials properties of representative samples are obtained for input into modeling of the material response to repository placement. Conceptual designs which respond to these geotechnical considerations are discussed. 4 references, 4 figures, 4 tables

  3. Generic repository design concepts and thermal analysis (FY11)

    International Nuclear Information System (INIS)

    Howard, Robert; Dupont, Mark; Blink, James A.; Fratoni, Massimiliano; Greenberg, Harris; Carter, Joe; Hardin, Ernest L.; Sutton, Mark A.

    2011-01-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R and D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of

  4. Generic repository design concepts and thermal analysis (FY11).

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the

  5. Annotated outline for the SCP conceptual design report: Office of Geologic Repositories

    International Nuclear Information System (INIS)

    1987-06-01

    The Nuclear Waste Policy Act of 1982 (NWPA) requires that site characterization plans (SCPs) be submitted to the Nuclear Regulatory Commission (NRC), affected States and Indian tribes, and the general public for review and comment prior to the sinking of shafts at a candidate repository site. The SCP is also required by the NRC licensing procedures for the disposal of high-level waste. An Annotated Outline (AO) for Site Characterization Plans (OGR/B-5) has been prepared to provide DOE's standard format and guidance for preparation of SCPs. Consistent with the AO for SCPs. Chapter 6 of the SCP is to provide the requirements and references the media-specific design data base, describe the current design concepts, and discuss design information needs. In order to develop this design information, the Office of Geologic Repositories program is planning a SCP conceptual design phase as part of the overall repository design process. This phase is the first step in the design process, and the result and design can be expected to change as the program moves through the site characterization phase. The Annotated Outline which follows provides the standard format and guidance for the preparation of the SCP Conceptual Design Reports. It is considered to meet the intent of NRC's proposed Generic Technical Position philosophy contained therein. The SCP Conceptual Design Report will be the primary basis for preparation of Chapter 6 of the SCP and will be stand-alone reference document for the SCP. Appendix 1 to this Annotated Outline provides a correlation between Chapter 6 of the SCP and SCP Conceptual Design Report for the information purposes

  6. Scientific basis for long-term prediction of waste-form performance under repository conditions

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1982-10-01

    This paper presents an overview of the fundamental principles involved in predicting long-term performance of waste forms by the as-low-as-reasonably-achievable approach. Repository conditions which make up the waste-form environment, the aging of the waste form, the important radionuclides in the waste form, the chemistry of repository fluids, and multicomponent interactions testing were considered in order to describe these principles. The need for confidence limits on the prediction of waste-form performance and ways of achieving a definition of the confidence limits are discussed

  7. Release consequence analysis for a hypothetical geologic radioactive waste repository in salt

    International Nuclear Information System (INIS)

    1979-08-01

    One subtask conducted under the INFCE program is to evaluate and compare the health and safety impacts of different fuel cycles in which all radioactive wastes (except those from mining and milling) are placed in a geologic repository in salt. To achieve this objective, INFCE Working Group 7 examined the radiologic dose to humans from geologic repositories containing waste arisings as defined for seven reference fuel cycles. This report examines the release consequences for a generic waste repository in bedded salt. The top of the salt formation and the top of the repository are assumed to be 250 and 600 m, respectively, below the surface. The hydrogeologic structure above the salt consists of two aquifers and two aquitards. The aquifers connect to a river 6.2 km from the repository. The regional gradient to the river is 1 m/km in all aquifers. Hydrologic, transport, and dose models were used to model two release scenarios for each fuel cycle, one without a major disturbance and one in which a major geologic perturbation breached the repository immediately after it was sealed. The purpose of the modeling was to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere, and to determine the potential dose to humans. Of the many radionuclides in the waste, only 129 I and 226 Ra arrived at the river in sufficient concentrations for a measurable dose calculation. Radionuclide concentrations in the ground water pose no threat to man because the ground water is a concentrated brine and it is diluted by a factor of 10 6 to 10 7 upon entering the river

  8. Computer enhanced release scenario analysis for a nuclear waste repository

    International Nuclear Information System (INIS)

    Stottlemyre, J.A.; Petrie, G.M.; Mullen, M.F.

    1979-01-01

    An interactive (user-oriented) computer tool is being developed at PNL to assist in the analysis of release scenarios for long-term safety assessment of a continental geologic nuclear waste repository. Emphasis is on characterizing the various ways the geologic and hydrologic system surrounding a repository might vary over the 10 6 to 10 7 years subsequent to final closure of the cavern. The potential disruptive phenomena are categorized as natural geologic and man-caused and tend to be synergistic in nature. The computer tool is designed to permit simulation of the system response as a function of the ongoing disruptive phenomena and time. It is designed to be operated in a determinatic manner, i.e., user selection of the desired scenarios and associated rate, magnitude, and lag time data; or in a stochastic mode. The stochastic mode involves establishing distributions for individual phenomena occurrence probabilities, rates, magnitudes, and phase relationships. A Monte-Carlo technique is then employed to generate a multitude of disruptive event scenarios, scan for breaches of the repository isolation, and develop input to the release consequence analysis task. To date, only a simplified one-dimensional version of the code has been completed. Significant modification and development is required to expand its dimensionality and apply the tool to any specific site

  9. Performance analysis of a repository for low and intermediate level reactor waste

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.; Vuori, S.; Peltonen, E.

    1987-01-01

    In Finland, utilities producing nuclear energy are responsible for the management of the radioactive waste, including final disposal. As regards low and intermediate level waste, the approach has been adopted to employ the power plant sites for locations of repositories. The repositories will be excavated at the depth of about 50 to 125 m in the bedrock of the two Finnish nuclear power plant sites, Loviisa and Olkiluoto. The performance analysis presented in this paper has been carried out for the Preliminary Safety Analysis Report (PSAR) of the Olkiluoto repository. A flexible model has been developed to estimate the release of radionuclides from waste packages and their subsequent transport through the engineered barriers in the repository. Gradual degradation of the engineered barriers is accounted for by altering parameters at fixed time points. Safety margins of the disposal concept have been evaluated by including disturbed evolution scenarios in the analysis. 13 references, 10 figures, 2 tables

  10. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP

    International Nuclear Information System (INIS)

    1996-10-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes

  11. Overview of the United States' nuclear waste repository programme

    International Nuclear Information System (INIS)

    Surles, T.G.

    2002-01-01

    Regardless of the future of civilian or defense-based nuclear materials, the United States will be responsible for a vast array of these materials for generations to come. The cornerstone programme for the disposal of waste materials is the Yucca Mountain Programme. Based on the Nuclear Waste Policy Act of 1982, as amended in 1987, it has been the United States' policy to develop a geological repository for the permanent disposal of radioactive waste materials. This presentation will discuss the process and strategy leading to the present and will include the scientific and management activities required to support the recent Viability Assessment. Also to be discussed are the timeline and milestones leading to the opening of the repository. The focus will be on the scientific and engineering studies required for a successful Site Recommendation, and then for a similarly successful License Application. Both of these activities will require considerable management efforts in addressing legal and regulatory issues. Finally, the presentation will discuss projections for the future operation of the facility, including emplacement projections, coupled with the required locations of nuclear materials. Additional scientific research and engineering studies will also be conducted to determine the longer-term viability of the facility, which is designed, by policy, for permanent storage. Retrievability is currently not an option, although access to the facility will be maintained for several decades. The focus of the discussion will be on the scientific and engineering advances made on understanding the natural systems for preventing migration of radionuclides, coupled with new developments in engineered systems in areas such as cask cladding, drip shields, and related materials engineering developments. The coupling of engineered and natural systems is designed to offer safety factors that are several orders of magnitude greater than what is estimated to be necessary

  12. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  13. Repository surface design site layout analysis

    International Nuclear Information System (INIS)

    Montalvo, H.R.

    1998-01-01

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond

  14. A Study on Establishment of Buffer Zone of Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun; Park, Joo Wan; Ju, Min Su; Kim, Chang Lak; Park, Jin Baek

    2008-01-01

    A new proposed repository has a final capacity of 800,000 drums radioactive waste. Most of foreign repositories have a general practice of segregating control zones which mainly contributes to classification of degree of control, whether it is called buffer zone or not. Domestic regulatory requirements of establishment of buffer zone in a repository are not much different from those of nuclear power plants for operation period, in which satisfactory design objective or performance objective is the most important factor in determination of the buffer zone. The meaning of buffer zone after closure is a minimum requested area which can prevent inadvertent intruders from leading to non-allowable exposure during institutional control period. Safety assessment with drinking well scenario giving rise to the highest probability of exposure among the intruder's actions can verify fulfillment of the buffer zone which is determined by operational safety of the repository. At present. for the repository to be constructed in a few years, the same procedure and concept as described in this paper are applied that can satisfy regulatory requirements and radiological safety as well. However, the capacity of the repository will be stepwise extended upto 800,000 drums, consequently its layout will be varied too. Timely considerations will be necessary for current boundary of the buffer zone which has been established on the basis of 100,000 drums disposal.

  15. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  16. Bituminous and asphaltic membranes for radioactive waste repositories on land

    International Nuclear Information System (INIS)

    1988-03-01

    The aim of the study has been to identify, within generic designs for waste facilities, areas where bituminous materials might be incorporated as a barrier. The report is presented in three sections: Part I - The properties of bitumen are described, with particular reference to the long-term behaviour of the material. The durability of bitumen is discussed, including aspects such as ageing, microbial degradation, chemical resistance and radiation resistance. Part II -The use of bituminous materials in hydraulic engineering is outlined. Much of this section of the report concentrates on the use of bituminous materials in embankment dams and reservoir construction. A review of material technology and construction techniques is presented and a detailed assessment made of the performance of the materials in service. Part III - Generic trench type radioactive waste repository designs incorporating bituminous materials are presented. Material and construction specifications for the designs are detailed, and a performance assessment presented. (author)

  17. Nuclear safety requirements for upgrading the National Repository for Radioactive Wastes-Baita Bihor

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Necula, Daniela

    2000-01-01

    The upgrading project of National Repository for Radioactive Wastes-Baita Bihor is based on the integrated concept of nuclear safety. Its ingredients are the following: A. The principles of nuclear safety regarding the management of radioactive wastes and radioprotection; B. Safety objectives for final disposal of low- and intermediate-level radioactive wastes; C. Safety criteria for final disposal of low- and intermediate-level radioactive wastes; D. Assessment of safety criteria fulfillment for final disposal of low- and intermediate-level radioactive wastes. Concerning the nuclear safety in radioactive waste management the following issues are considered: population health protection, preventing transfrontier contamination, future generation radiation protection, national legislation, control of radioactive waste production, interplay between radioactive waste production and management, radioactive waste repository safety. The safety criteria of final disposal of low- and intermediate-level radioactive wastes are discussed by taking into account the geological and hydrogeological configuration, the physico-chemical and geochemical characteristics, the tectonics and seismicity conditions, extreme climatic potential events at the mine location. Concerning the requirements upon the repository, the following aspects are analyzed: the impact on environment, the safety system reliability, the criticality control, the filling composition to prevent radioactive leakage, the repository final sealing, the surveillance. Concerning the radioactive waste, specific criteria taken into account are the radionuclide content, the chemical composition and stability, waste material endurance to heat and radiation. The waste packaging criteria discussed are the mechanical endurance, materials toughness and types as related to deterioration caused by handling, transportation, storing or accidents. Fulfillment of safety criteria is assessed by scenarios analyses and analyses of

  18. Application of sulfur concrete for solidification of radioactive wastes and building of repositories

    International Nuclear Information System (INIS)

    Cholerzynski, A.; Tomczak, W.; Switalski, J.

    2000-01-01

    The application of sulfur concrete as solidification material for radioactive wastes and as building material used in repositories have been presented. Their high shear strength, low level of leaching, and high radiation resistance decide of positive recommendation of such material for wide use in radioactive waste treatment processes and repositories building

  19. Geochemical performance of earthen and cementitious sealing materials for radioactive waste repositories

    International Nuclear Information System (INIS)

    Melchoir, D.; Glazier, R.; Marton, R.

    1988-01-01

    Earthen and cementitious materials are proposed as part of the sealing system for radioactive waste repositories. Compacted clay-bearing earthen materials could be used in sealing shafts and shaft entryways; and in the waste emplacement boundary areas in some repository designs. Earthen material mixtures are being considered because they can be engineered and emplaced to achieve low permeabilities, appropriate swelling characteristics, and adequate strength with little tendency to degrade during changing environmental conditions. The proposed earthen sealing materials include sodium and calcium mont-morillonites, illites, and mixtures with graded aggregates of sand. To assess the relative advantages and disadvantages of various pure and mixed materials, important geochemical processes (e.g., ion-exchange, phase transformation, dissolution, and precipitation of secondary minerals) need to be evaluated. These processes could impact seal integrity by changing permeability and/or mineral swell potential. Hydrous calcium-silicate-based cementitious materials such as grouts or concrete might also be used in some proposed sealing systems

  20. Long-term stability of the near-field about high-level radioactive waste repository in thermo-hydro-mechanical coupling action condition

    International Nuclear Information System (INIS)

    Liu Yuemiao; Wang Ju; Ke Dan; Cai Meifeng

    2008-01-01

    It is a long-term process for the high-level radioactive waste repository, from opening, construction to end of its service. The long-term stability of the near-field is the key issue for the design of HLW repository because the opening and heat generated from the HLW. Through a nationwide investigation, Beishan area, a Gobi desert in Gansu province, is considered as a suitable candidate and GMZ bentonite deposit which located in Xinghe County, Inner Mongolia has been proposed for the supplier of buffer/backfill material for HLW geological repository in China. According to the R and D guide of high-level radioactive waste disposal in China, the 3D model of HLW repository with high-level radioactive waste, canister and buffer/backfill material is established using FLAC3D. To take into account in situ stress, geothermal gradient, groundwater, thermal relief of HLW and swelling pressure of buffer/backfill material, the evolution of temperature, stress and displacement of HLW repository under thermo-mechanical coupling, hydro-mechanical coupling and thermo-hydro-mechanical coupling conditions was analyzed respectively. The long-term stability of HLW repository in Beishan area was studied. (authors)

  1. Preliminary waste acceptance requirements for the planned Konrad repository

    International Nuclear Information System (INIS)

    Warnecke, E.; Brennecke, P.

    1987-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) has established Preliminary Waste Acceptance Requirements for the planned Konrad repository. These requirements were developed, in accordance with the Safety Criteria of the Reactor Safety Commission, with the help of a site specific safety assessment; they are under the reservation of the plan approval procedure, which is still in progress. In developing waste acceptance requirements, the PTB fulfills one of its duties as the institute responsible for waste disposal and gives guidelines for waste conditioning to waste producers and conditioners. (orig.) [de

  2. A Probabilistic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.

  3. Analysis of the geological stability of a hypothetical radioactive waste repository in a bedded salt formation

    International Nuclear Information System (INIS)

    Tierney, M.S.; Lusso, F.; Shaw, H.R.

    1978-01-01

    This document reports on the development of mathematical models used in preliminary studies of the long-term safety of radioactive wastes deeply buried in bedded salt formations. Two analytical approaches to estimating the geological stability of a waste repository in bedded salt are described: (a) use of probabilistic models to estimate the a priori likelihoods of release of radionuclides from the repository through certain idealized natural and anthropogenic causes, and (b) a numerical simulation of certain feedback effects of emplacement of waste materials upon ground-water access to the repository's host rocks. These models are applied to an idealized waste repository for the sake of illustration

  4. Geochemical modeling of the nuclear-waste repository system. A status report

    International Nuclear Information System (INIS)

    Deutsch, W.J.

    1980-12-01

    The primary objective of the geochemical modeling task is to develop an understanding of the waste-repository geochemical system and provide a valuable tool for estimating future states of that system. There currently exists a variety of computer codes which can be used in geochemical modeling studies. Some available codes contain the framework for simulating a natural chemical system and estimating, within limits, the response of that system to environmental changes. By data-base enhancement and code development, this modeling technique can be even more usefully applied to a nuclear-waste repository. In particular, thermodynamic data on elements not presently in the data base but identified as being of particular hazard in the waste-repository system, need to be incorporated into the code to estimate the near-field as well as the far-field reactions during a hypothetical breach. A reaction-path-simulation code, which estimates the products of specific rock/water reactions, has been tested using basalt and ground water. Results show that the mass-transfer capabilities of the code will be useful in chemical-evolution studies and scenario analyses. The purpose of this report is to explain the status of geochemical modeling as it currently applies to the chemical system of a hypothetical nuclear-waste repository in basalt and to present the plan proposed for further developmet and application

  5. MAJOR REPOSITORY DESIGN ISSUES

    International Nuclear Information System (INIS)

    JACK N. BAILEY, DWAYNE CHESTNUT, JAMES COMPTON AND RICHARD D. SNELL

    1997-01-01

    The Yucca Mountain Project is focused on producing a four-part viability assessment in late FY98. Its four components (design, performance assessment, cost estimate, and licensing development plan) must be consistent. As a tool to compare design and performance assessment options, a series of repository pictures were developed for the sequential time phases of a repository. The boundaries of the time phases correspond to evolution in the engineered barrier system (EBS)

  6. Radioactive wastes repository in Temascalapa, State of Mexico, public opinion. Determination of health effects

    International Nuclear Information System (INIS)

    Solis Tinoco, E.

    1998-01-01

    Nuclear waste usually concerns public about the impact on public health and the environment. In Mexico, such interest exists, particularly in the Temascalapa Municipality, Mexico where a low level waste repository recognized by the IAEA, has been functioning since 1972. Maquixco repository is located at 42 Kilometers northeast of Mexico City. Although the environmental radiological monitoring records have demonstrated negligible impact on the environment, in 1998 an unusual public polemic on radioactive health effects appeared among Temascalapa residents. This paper presents a research performed during 1998 with the participation of the National Nuclear Research Institute of Mexico and the National Autonomous University of Mexico. The research design allowed the involvement of local authorities, as a way of stimulate public participation. The research was performed in nine locations of the Temascalapa Municipality, it was focused on public polemics, associated to Maquixco repository as well as trying to identify demographic factors that exert influence on public attitudes. There are also presented the results of personal dosimetry analysis performed on a four hundred residents sample of this Municipality. (Author)

  7. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  8. On the Durability of Nuclear Waste Forms from the Perspective of Long-Term Geologic Repository Performance

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2013-12-01

    Full Text Available High solid/water ratios and slow water percolation cause the water in a repository to quickly (on a repository time scale reach radionuclide solubility controlled by the equilibrium with alteration products; the total release of radionuclides then becomes insensitive to the dissolution rates of primary waste forms. It is therefore suggested that future waste form development be focused on conditioning waste forms or repository environments to minimize radionuclide solubility, rather than on marginally improving the durability of primary waste forms.

  9. Preliminary safety analysis of the Baita Bihor radioactive waste repository, Romania

    International Nuclear Information System (INIS)

    Little, Richard; Bond, Alex; Watson, Sarah; Dragolici, Felicia; Matyasi, Ludovic; Matyasi, Sandor; Naum, Mihaela; Niculae, Ortenzia; Thorne, Mike

    2007-01-01

    A project funded under the European Commission's Phare Programme 2002 has undertaken an in-depth analysis of the operational and post-closure safety of the Baita Bihor repository. The repository has accepted low- and some intermediate-level radioactive waste from industry, medical establishments and research activities since 1985 and the current estimate is that disposals might continue for around another 20 to 35 years. The analysis of the operational and post-closure safety of the Baita Bihor repository was carried out in two iterations, with the second iteration resulting in reduced uncertainties, largely as a result taking into account new information on the hydrology and hydrogeology of the area, collected as part of the project. Impacts were evaluated for the maximum potential inventory that might be available for disposal to Baita Bihor for a number of operational and postclosure scenarios and associated conceptual models. The results showed that calculated impacts were below the relevant regulatory criteria. In light of the assessment, a number of recommendations relating to repository operation, optimisation of repository engineering and waste disposals, and environmental monitoring were made. (authors)

  10. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  11. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008

    International Nuclear Information System (INIS)

    2008-11-01

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  12. Co-operation between Slovenia and Croatia in the low- and intermediate level radioactive waste repository project

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Subasic, D.; Zeleznik, N.; Mele, I.; Tomse, P.

    2001-01-01

    The paper describes the LILW repository project development in Slovenia and Croatia from the viewpoint of co-operation of national agencies for radioactive waste management - ARAO in Slovenia and APO in Croatia. The project performance, as well as the co-operation itself, are based on the fact that NPP Krsko, sited in Slovenia, is the joint venture facility of both countries, which are consequently obliged to find a proper solution for final disposal of operational and decommissioning radioactive waste generated by the plant. The main aspects of the project development in both countries, such as LILW repository site selection and characterisation, development of repository conceptual design, performance assessment/safety analysis procedures and public participation, are presented in the paper. Based on separate descriptions of the project development in Slovenia and Croatia respectively, the main aspects of co-operation between ARAO and APO are elaborated.(author)

  13. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National

  14. Site characterization plan: Conceptual design report, Volume 2: Chapters 4-9: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    This document presents a description of a prospective geologic repository for high-level radioactive waste to support the development of the Site Characterization Plan for the Yucca Mountain site. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases (site and properties of the waste package), design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. 147 refs., 145 figs., 83 tabs

  15. Nuclear waste repository siting and locational conflict analysis: A contextual approach

    International Nuclear Information System (INIS)

    Murauskas, G.T.

    1989-01-01

    This study develops and evaluates an alternative framework that is based on contextual variables. The premise is that differences in attitudes and perceptions regarding the local siting of nuclear wastes and differences in attitudes regarding siting decision-making procedures are influenced by local political, economic, and cultural variables. This framework articulates the nature of conflict in terms of the incongruence between the use-value individuals ascribe to their present situation and the anticipated exchange-value individuals associate with the local siting of a nuclear waste repository. In order to evaluate this conceptual framework a survey was conducted of residents in four communities representing distinct societal contexts: Richton, Mississippi; Peterborough, New Hampshire; Richland, Washington; and Antigo/Waupaca, Wisconsin. Data analyses indicate substantial differences in economic expectations associated with the local siting of a high-level nuclear waste repository and in perception regarding the impacts such a repository might have on the environment, local agriculture, personal health and safety, and the quality of life

  16. Impact of partitioning and transmutation on repository design

    International Nuclear Information System (INIS)

    Carter, D. 'Buzz' Savage

    2004-01-01

    The U.S. Department of Energy's Advanced Fuel Cycle Initiative (AFCI) program is investigating spent nuclear fuel treatment technologies that have the potential to improve the performance of the proposed geologic repository at Yucca Mountain. Separating actinides and selected fission products from spent fuel, storing some of them as low level waste and transmuting them in thermal and/or fast reactors has the potential to reduce the volume, short and long-term heat load and radiotoxicity of the high level waste destined for the repository, effectively increasing its capacity by a factor of 50 or more above the current legislative limit. (author)

  17. Siting high-level nuclear waste repositories: A progress report for Rhode Island

    International Nuclear Information System (INIS)

    Frohlich, R.K.; Vild, B.F.

    1986-03-01

    In this booklet, we will not try to argue the pros and cons of nuclear power or weapons production. We will focus instead on the issue of nuclear waste disposal. With the passage of the Nuclear Waste Policy Act (NWPA) of 1982, the US Congress and the President charged federal and state regulators with the responsibility of settling that issue by the end of this century - with extensive public involvement. This booklet, now in its second printing, is designed to explain the nature of ''high-level'' nuclear waste, the essential criteria for its safe and permanent disposal, and Rhode Island's participation in the federal repository program. It has been funded from a USDOE grant derived from a utility-financed Nuclear Waste Fund established under the NWPA. 17 refs., 10 figs., 2 tabs

  18. Basic repository environmental assessment design basis: Deaf Smith County site

    International Nuclear Information System (INIS)

    1988-03-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Palo Duro Basin in Deaf Smith County, Texas. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7,020 canisters of defense high-level reprocessing waste and associated quantities or remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $4.64 billion. Costs include those for the collocate WHPF, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region, the relatively easy access to the site, and the relatively weak nature of the salt at this site. Construction would require an estimated 7 to 7.5 years. Engineering factors and costs are not strongly influenced by environmental considerations. 62 refs., 24 figs., 20 tabs

  19. Technology overview of mined repositories

    International Nuclear Information System (INIS)

    Gimera, R.; Thirumalai, K.

    1982-01-01

    Mined repositories present an environmentally viable option for permanent disposal of nuclear waste. This paper reviews the state-of-the-art mining technologies and identifies technological issues and developments necessary to mine a repository in basalt. The thermal loading, isolation, and retrieval requirements of a repository present unique technological challenges unknown to conventional mining practice. The technology issues and developments required in the areas of excavation, roof and ground support, equipment development, instrumentation development, and sealing are presented. Performance assessment methods must be developed to evaluate the adequacies of technologies developed to design, construct, operate, and decommission a repository. A stepwise test-and-development approach is used in the Basalt Waste Isolation Project to develop cost-effective technologies for a repository

  20. Enlargement of the Baldone near-surface radioactive waste repository

    International Nuclear Information System (INIS)

    Dreimanis, A.

    2007-01-01

    A unified analysis of the enlargement of the Baldone near-surface radioactive waste (RW) repository RADONS considers the interplay of the existing engineering, safety and infrastructure premises, with the foreseen newly socio-technical features. This enlargement consists in construction of two additional RW disposal vaults and in building a long-term storage facility for spent sealed sources at the RADONS territory. Our approach is based on consecutive analysis of following basic elements: - the origin of enlargement - the RADONS safety analysis and a set of optimal socio-technical solutions of Salaspils research reactor decommissioning waste management; - the enlargement - a keystone of the national RW management concept, including the long-term approach; - the enlargement concept - the result of international co-operation and obligations; - arrangement optimization of new disposal and storage space; - environmental impact assessment for the repository enlargement - the update of socio-technical studies. The study of the public opinion revealed: negative attitude to repository enlargement is caused mainly due to missing information on radiation level and on the RADONS previous operations. These results indicate: basic measures to improve the public attitude to repository enlargement: the safety upgrade, public education and compensation mechanisms. A detailed stakeholders engagement and public education plan is elaborated. (author)

  1. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Rozental, J.J.; Tranjan Filho, A.

    2001-01-01

    As it is well known, an accident with a teletherapy source made of 137 CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10 3 m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10 3 m 3 of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10 5 m 2 . The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The problem of a fixed, or near

  2. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  3. The challenge of long-term participatory repository governance. Lessons learned for high level radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Landstroem, Catharina

    2012-01-01

    Voluntaristic siting procedures for deep geological repositories are becoming increasingly common; they reconfigure the relationship of repositories and society in ways that have implications for the long-term governance of these facilities. This paper identifies three challenges emerging in relation to this question: principles of monitoring, repository content, and facility closure. This paper discusses them in a comparison with similar challenges being addressed in Belgian partnerships founded to facilitate the siting and design of a low- and intermediate level short lived waste repository. The empirical exploration confirms the importance of securing stakeholder engagement throughout the repository lifecycle, for which there is a need to develop knowledge about how to encourage long-term democratic governance systems.

  4. Evaluation of iron-base materials for waste package containers in a salt repository

    International Nuclear Information System (INIS)

    Westerman, R.E.; Nelson, J.L.; Kuhn, W.L.; Basham, S.G.; Moak, D.A.; Pitman, S.G.

    1983-11-01

    Design studies for high-level nuclear waste packages for salt repositories have identified low-carbon steel as a candidate material for containers. Among the requirements are strength, corrosion resistance, and fabricability. The studies of the corrosion resistance and structural stability of iron-base materials (particularly low-carbon steel) are treated in this paper. The materials have been exposed in brines that are characteristic of the potential sites for salt repositories. The effects of temperature, radiation level, oxygen level and other parameters are under investigation. The initial development of corrosion models for these environments is presented with discussion of the key mechanisms under consideration. 6 references, 5 figures

  5. The environmental constraint needs for design improvements to the Saligny I/LLW-repository near Cernavoda NPP

    International Nuclear Information System (INIS)

    Barariu, Gheorghe

    2007-01-01

    The paper presents the new perspectives on the development of the L/ILW Final Repository Project which will be built near Cernavoda NPP. The Repository is designed to satisfy the main performance objectives in accordance to IAEA recommendation. Starting in October 1996, Romania became a country with an operating nuclear power plant. Reactor 2 reached the criticality on May 6, 2007 and it will be put in commercial operation in September 2007. The Ministry of Economy and Finance has decided to proceed with the commissioning of Units 3 and 4 of Cernavoda NPP till 2014. The Strategy for radioactive waste management was elaborated by National Agency for Radioactive Waste (ANDRAD), the jurisdictional authority for definitive disposal and the coordination of nuclear spent fuel and radioactive waste management (Order 844/2004) with attributions established by Governmental Decision (GO) 31/2006. The Strategy specifies the commissioning of the Saligny L/IL Radwaste Repository near Cernavoda NPP in 2014. When designing the L/IL Radwaste Repository, the following prerequisites have been taken into account: 1) Cernavoda NPP will be equipped with 4 Candu 6 units. 2) National Legislation in radwaste management will be reviewed and/or completed to harmonize with UE standards 3) The selected site is now in process of confirmation after a comprehensive set of interdisciplinary investigations. (author)

  6. Neotectonic movement feature in preselection area for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Huang Xianfang; Gao Yang; He Jianguo; Li Jianzhong; Gao Honglei; Xu Guoqing

    2010-01-01

    Neotectonic activity intensity is an important criteria for evaluating high level radioactive waste repository. The guiding ideology, methods and application of neotectonic study are elaborated in the paper. According to comparison research between the south and north part of east Tianshan area, the south part of east Tianshan is regarded as relative stable or relative weak in neotectonic movement in Neogene period and was selected as preselection area for high level radioactive waste repository. (authors)

  7. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    Science.gov (United States)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  8. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    International Nuclear Information System (INIS)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.; Ryan, Joseph V.

    2015-01-01

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  9. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie A. [Washington State Univ., Pullman, WA (United States); Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  10. Radioactive waste. Policy and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L E.J. [UKAEA, Harwell. Atomic Energy Research Establishment

    1979-01-01

    The subject is covered in sections as follows: general introduction (volume of waste arising from 1 GW/(e) energy per year); characteristics of highly active waste (output of some important fission products from an AGR, decay of activity with time for PWR and CFR wastes, toxic potential versus time for magnox and fast reactor wastes, toxic potential of unreprocessed magnox fuel); general principles of waste disposal (incorporation of waste into solid matrices, glass containers); design of stores and repositories (heat dissipation, siting and design, packing materials, size of repositories); the geologic barrier (location of repositories, safety analysis of repositories); the option of ocean disposal; status of work and present programme (vitrification, repository siting and design); conclusions.

  11. Rock quality designation of the hydraulic properties in the near field of a final repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Carlsson, Hans; Carlsson, Leif; Pusch, Roland

    1989-06-01

    Quality assurance of a final repository for spent nuclear fuel requires detailed information on the characteristics of the rock, backfill, canisters and the waste itself. Furthermore, and of fundamental importance, is the knowledge of the behaviour of the integrated system of the waste and the different barriers. The in-situ characteristics of the rock must therefore be assessed and their influence on and interactions with the remaining barriers must be predicted and verified. A rock quality designation process of the hydraulic properties in the near-field is out-lined both for the KBS-3 system as well as for the WP-cave system. The process, once updated and approved, will be included in a Quality Assurance Program for the final repository for spent nuclear fuel. Some of the available methods for the near-field designation process are presented as well as techniques that need further development or are not developed at all. Finally, a presentation is given of a generic designation process of the KBS-3 and WP-cave repository systems in the previously investigated area in Central Sweden, where the final repository for reactor waste, SFR, is located. Geological and hydrogeological data are here at hand and it is therefore possible to carry out a simulation of how the designation process would be accomplished. (authors) (72 figs., 12 tabs., 43 refs.)

  12. Repository Surface Design Engineering Files Report Rev 00 ICN 1

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of the Repository Surface Design Engineering Files Report Supplement [herein known as the Engineering Files (EF)] is to provide the surface design data needed by the Environmental Impact Statement (EIS) contractor to prepare the EIS and evaluate options and alternatives. This document is based on the Repository Surface Design Engineering Files Report, Revision 03 (CRWMS M and O 1999f) (EF Rev 03). Where facility and system designs have been changed for the Site Recommendation (SR) effort they are described in this report. EIS information provided in this report includes the following: (1) Description of program phases; there are no changes that impact this report. (2) A description of the major design requirements and assumptions that drive the surface facilities reference design is provided herein (Section 2.2), including the surface design resulting from recommendations regarding Enhanced Design Alternative (EDA) II, as discussed in the License Application Design Section Report (CRWMS M and O 1999d), and changes to the waste stream. See Section 2, Table 2-2, for the SR waste stream. (3) The major design requirements and assumptions that drive the surface facilities reference design are by reference to EF Rev 03; there are no changes that impact this report. (4) Description of the reference design concept and existing site conditions is by reference to EF Rev 03 (including Table 4-1, which is not included in this supplement); there are no changes that impact this report. (5) Description of alternative design cases is by reference to EF Rev 03; there are no changes that impact this report. (6) Description of optional inventory modules is by reference to EF Rev 03; there are no changes that impact this report. (7) Tabular summary level engineering values (i.e., staffing, wastes, emissions, resources, and land use) for the reference design and the alternative design cases that address construction, emplacement operations, caretaker operations, and

  13. Hydrological and thermal issues concerning a nuclear waste repository in fractured rocks

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1991-12-01

    The characterization of the ambient conditions of a potential site and the assessment of the perturbations induced by a nuclear waste repository require hydrological and thermal investigations of the geological formations at different spatial and temporal scales. For high-level wastes, the near-field impacts depend on the heat power of waste packages and the far-field long-term perturbations depend on the cumulative heat released by the emplaced wastes. Surface interim storage of wastes for several decades could lower the near-field impacts but would have relatively small long-term effects if spent fuels were the waste forms for the repository. One major uncertainty in the assessment of repository impacts is from the variation of hydrological properties in heterogeneous media, including the effects of fractures as high-permeability flow paths for containment migration. Under stress, a natural fracture cannot be represented by the parallel plate model. The rock surface roughness, the contact area, and the saturation state in the rock matrix could significantly change the fracture flow. In recent years, the concern of fast flow through fractures in saturated media has extended to the unsaturated zones. The interactions at different scales between fractures and matrix, between fractured matrix unites and porous units, and between formations and faults are discussed

  14. Supplemental technical information in support of Y/OWI/TM--44. Volume 15. Drawings for repository preconceptual design studies: basalt

    International Nuclear Information System (INIS)

    1978-04-01

    Volume 15 contains the drawings of a preconceptual design for a nuclear waste repository in basalt. Three fuel cycles are considered: fuel recycle, throwaway cycle, and uranium recycle with plutonium in the high-level wastes

  15. Implementation of technical conservatism in the development of nuclear waste repositories

    International Nuclear Information System (INIS)

    1981-03-01

    The Department of Energy (DOE) waste management program is committed to assuring the safe disposal of radioactive waste. It is recognized that long-term disposal concepts will contain inherent uncertainties in predictive techniques and scientific information. Accordingly, conservative approaches ae being followed to enhance levels of confidence that the disposal system will perform in such a manner that the established performance requirements will be met. Limiting values of critical parameters will be established for each site based on its inherent characteristics prior to beginning site development. The performance limits will be established for each geometric region of the repository system and be applied simultaneously to assure that no single limit is violated over the repository life cycle. A site-specific set of specifications will be determined when the site is fully characterized, establishing a conservative design basis to increase confidence in safe system performance. The implementation of the NWTS program policy on technical conservatism, as discussed in this document, takes two forms--(1) conservatism in the conduct of the program and (2) conservatism in the performance of the disposal system. The first is achieved by a stepwise approach to system development and operation, the systems viewpoint, the retrievability requirement, and the extensive use of peer reviews throughout the conduct of the program. The second is achieved by the proper selection and application of conservative design and operational limits

  16. Waste repository planned for Bruce Site

    International Nuclear Information System (INIS)

    King, F.

    2004-01-01

    Ontario Power Generation (OPG) and Kincardine, the municipality nearest the Bruce site, have agreed in principal to the construction of a deep geologic repository for low and medium level radioactive waste on the site. The two parties signed the 'Kincardine Hosting Agreement' on October 13, 2004 to proceed with planning, seek regulatory approval and further public consultation of the proposed project. A construction Licence is not expected before 2013. (author)

  17. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P.

    2015-01-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  18. Topographical survey and soil characterization of a candidate site for Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Peconick, Diva Godoi de O.; Mourao, Rogerio P., E-mail: godiva@cdtn.br, E-mail: mouraor@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Brazil has already initiated the establishment of a national near-surface repository for the low- and intermediate short-lived radioactive wastes generated within its territory. With two nuclear power plants in operation and a third one under construction, five active nuclear research institutes and another one planned for the intermediate future, operational constraints and social pressure built up for a disposal solution for such a waste category. The Brazilian Nuclear Commission CNEN was tasked at designing, building and commissioning this repository, which implies, among other activities, finding a suitable place for the facility. After an initial technical desk job, a federal land, not far from the NPPs, was appointed and in situ studies for the site characterization were started. This paper describes the topographical survey and soil drilling campaign carried out for the initial evaluation of the feasibility of the site vis-a-vis the applicable national regulations for site selection and disposal facilities licensing. (author)

  19. Law no. 10.308 of 20th November, 2001 on radioactive waste repositories siting, construction, licensing, operation, inspection, costs, indemnity, civil liability and guarantees concerning to the radioactive wastes repositories and other provisions

    International Nuclear Information System (INIS)

    2001-01-01

    This Act was published on November 20, 2001 and set forth regulations on the final disposal of radioactive wastes produced in Brazil, including siting, construction, licensing, operation, inspection, costs, indemnities, civil liability and guarantees concerning to the radioactive wastes repositories. This act allows for installation and operation of initial, intermediary and final repositories in accordance with the criteria established by the Brazilian Nuclear Energy National Commission - CNEN. The person or organization granted with CNEN authorization for operation of the initial repositories shall be liable for personal, patrimony and environmental radiological damages. The civil liability of CNEN is concerned to the radioactive waste intermediary and final disposals and transportation

  20. Conceptual waste package interim product specifications and data requirements for disposal of glass commercial high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-10-01

    The conceptual waste package interim product specifications and data requirements presented are applicable to the reference glass composition described in PNL-3838 and carbon steel canister described in ONWI-438. They provide preliminary numerical values for the commercial high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses and regulatory requirements become available. 13 references, 1 figure

  1. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2001-01-01

    Over the last few years, significant progress has been made towards siting national, purpose-built facilities for Australian radioactive waste. In 2001, after an eight year search, a preferred site and two alternatives were identified in central-north South Australia for a near-surface repository for Australian low level (low level and short-lived intermediate level) radioactive waste. Site 52a at Everts Field West on the Woomera Prohibited Area was selected as the preferred site as it performs best against the selection criteria, particularly with respect to geology, ground water, transport and security. Two alternative sites, Site 45a and Site 40a, east of the Woomera-Roxby Downs Road, were also found to be highly suitable for the siting of the national repository. A project has commenced to site a national store for intermediate (long-lived intermediate level) radioactive waste on Commonwealth land for waste produced by Commonwealth agencies. Public input has been sought on relevant selection criteria

  2. Devising a groundwater monitoring strategy for a geologic repository for radioactive waste

    International Nuclear Information System (INIS)

    Leonhart, L.S.; DeLuca, F.A.; Sheahan, N.T.; West, L.M.

    1981-01-01

    This paper represents a topical treatment of the subject of groundwater monitoring as it relates to the particular needs of high-level nuclear waste disposal facilities using the Basalt Waste Isolation Project (BWIP) as a specific reference. While the involvement with management of high-level radioactive wastes and the design and operation of repository facilities is presently parochial to the federal government and certain prime contractors, it is believed that the technical aspects involved with this groundwater monitoring example provide an interesting comparison with those encountered at near-surface and underground-injection, hazardous waste disposal operations. In particular, the integration of several program facets ranging from baselining parameters to validation of predictive models into a comprehensive strategy may be of interest. It is hoped that this type of conceptual exchange will be beneficial to all concerned

  3. Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.; Favale, A.; Myers, T. [Grumman Aerospace Corporation, Bethpage, NY (United States)] [and others

    1995-10-01

    This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

  4. Repository design sensitivity study: Engineering study report

    International Nuclear Information System (INIS)

    1987-01-01

    A preliminary sensitivity study of the salt repository design has been performed to identify critical site and design parameters to help guide future site characterization and design optimization activities. The study considered the SCP-conceptual design at the Deaf Smith County site in Texas with the horizontal waste package emplacement mode as the base case. Relative to this base case, parameter variations were compared. Limited studies were performed which considered the vertical emplacement mode geometry. The report presents the reference data base and design parameters on which the study was based (including the range of parameters that might be expected). Detailed descriptions of the numerical modeling methods and assumptions are included for the thermal, thermomechanical and hydrogeological analyses. The impacts of parameter variations on the sensitivity of the rock mass response are discussed. Recommendations are provided to help guide site characterization activities and advanced conceptual design optimization activities. 47 refs., 119 refs., 22 tabs

  5. Shale as a radioactive waste repository: the importance of vermiculite

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S; Roy, D M; Pennsylvania State Univ., University Park; USA). Materials Research Labs.)

    1979-01-01

    Cesium sorption and fixation properties of thirty shale minerals and shales were investigated in search of a criterion for the suitability of shales for a radioactive waste repository. Shales and illites containing vermiculite fixed the largest proportion of total Cs sorbed (up to 91%) against displacement with 0.1 N KCl. For example, a slate sample fixed 33% of the total Cs sorbed while its weathered counterpart in which chlorite had altered to vermiculite fixed 89% of the total Cs sorbed. Since Cs is one of the most soluble and hazardous radioactive ions, its containment is of great importance in safe radioactive waste disposal. Presence of vermiculite in a shale body may therefore, serve as one criterion in the selection of a suitable shale for radioactive waste disposal if and when shales in geologically stable areas are selected for repositories.

  6. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  7. Waste Package Design Methodology Report

    International Nuclear Information System (INIS)

    D.A. Brownson

    2001-01-01

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report

  8. Development of database systems for safety of repositories for disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hun; Han, Jeong Sang; Shin, Hyeon Jun; Ham, Sang Won; Kim, Hye Seong [Yonsei Univ., Seoul (Korea, Republic of)

    1999-03-15

    In the study, GSIS os developed for the maximizing effectiveness of the database system. For this purpose, the spatial relation of data from various fields that are constructed in the database which was developed for the site selection and management of repository for radioactive waste disposal. By constructing the integration system that can link attribute and spatial data, it is possible to evaluate the safety of repository effectively and economically. The suitability of integrating database and GSIS is examined by constructing the database in the test district where the site characteristics are similar to that of repository for radioactive waste disposal.

  9. Spent fuel and high level waste: Chemical durability and performance under simulated repository conditions. Results of a coordinated research project 1998-2004

    International Nuclear Information System (INIS)

    2007-10-01

    This publication contains the results of an IAEA Coordinated Research Project (CRP). It provides a basis for understanding the potential interactions of waste form and repository environment, which is necessary for the development of the design and safety case for deep disposal. Types of high level waste matrices investigated include spent fuel, glasses and ceramics. Of particular interest are the experimental results pertaining to ceramic forms such as SYNROC. This publication also outlines important areas for future work, namely, standardized, collaborative experimental protocols for package-release studies, structured development and calibration of predictive models linking the performance of packaged waste and the repository environment, and studies of the long term behaviour of the wastes, including active waste samples

  10. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations

  11. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  12. Technical position on items and activities in the high-level waste geologic repository program subject to quality assurance requirements

    International Nuclear Information System (INIS)

    Duncan, A.B.; Bilhorn, S.G.; Kennedy, J.E.

    1988-04-01

    This document provides guidance on how to identify items and activities subject to Quality Assurance in the high-level nuclear waste repository program for pre-closure and post-closure phases of the repository. In the pre-closure phase, structures, systems and components essential to the prevention or mitigation of an accident that could result in an off-site radiation dose of 0.5rem or greater are termed ''important to safety''. In the post-closure phase, the barriers which are relied on to meet the containment and isolation requirements are defined as ''important to waste isolation''. These structures, systems, components, and barriers, and the activities related to their characterization, design, construction, and operation are required to meet quality assurance (QA) criteria to provide confidence in the performance of the geologic repository. The list of structures, systems, and components important to safety and engineered barriers important to waste isolation is referred to as the ''Q-List'' and lies within the scope of the QA program. 10 refs

  13. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  14. LIFE Materials: Fuel Cycle and Repository Volume 11

    International Nuclear Information System (INIS)

    Shaw, H.; Blink, J.A.

    2008-01-01

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  15. Radioactive waste repositories in hard rock aquifers--hydrodynamic aspects

    International Nuclear Information System (INIS)

    Thunvik, R.; Braester, C.

    1984-01-01

    A mathematical model for mass and heat flow and a computer program have been developed to demonstrate the effect of heat released from a hypothetical radioactive waste repository on the groundwater flow regime. The model, based on the continuum approach, conceptualizes the fracture pattern and the solid blocks as two overlapping continua and consists of a set of coupled nonlinear partial differential equations. The general form of the model is three-dimensional and can treat the fluid and rock either as two separate media with a quasi-steady exchange of heat between them or as a single equivalent medium with instantaneous thermal equilibrium. Numerical solutions have been obtained by the Galerkin finite element method. Examples have been presented for topographically different locations of the repository: below a horizontal ground surface, below a hill crest, below a hillside, and close to major fractures. The effects of constant permeability and porosity or downward decreasing with depth as well as the effect of anisotropic permeability have been investigated. Solutions include the velocity field, path lines, and traveling times of water particles passing the repository and the temperature distribution. The examples have been worked out for a two-dimensional flow domain, assuming that instantaneous thermal equilibrium takes place. This assumption was found to be justified by the relatively low flow velocities that occurred in the examples. Except for the location close to a major draining fracture, heat released from the radioactive waste repository may have a significant influence on the flow regime around the repository

  16. Considerations for reduction of gas generation in a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Son, Jung Kwon; Lee, Myung Chan; Song, Myung Jae

    1997-01-01

    In a low-level radioactive waste repository, H 2 , CO 2 , and CH 4 will be generated principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H 2 is the principal gas generated within the radioactive waste cavern. The generation rates of CO 2 and CH 4 are likely to be insignificant by comparison with H 2 . Therefore, an effective way to decrease gas generation in a radioactive waste repository seems to be to reduce metal content since the generation rate of H 2 is most sensitive to the concentration of steel

  17. Testing of high-level waste forms under repository conditions

    International Nuclear Information System (INIS)

    Mc Menamin, T.

    1989-01-01

    The workshop on testing of high-level waste forms under repository conditions was held on 17 to 21 October 1988 in Cadarache, France, and sponsored by the Commission of the European Communities (CEC), the Commissariat a l'energie atomique (CEA) and the Savannah River Laboratory (US DOE). Participants included representatives from Australia, Belgium, Denmark, France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, The United Kingdom and the United States. The first part of the conference featured a workshop on in situ testing of simulated nuclear waste forms and proposed package components, with an emphasis on the materials interface interactions tests (MIIT). MIIT is a sevent-part programme that involves field testing of 15 glass and waste form systems supplied by seven countries, along with potential canister and overpack materials as well as geologic samples, in the salt geology at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, USA. This effort is still in progress and these proceedings document studies and findings obtained thus far. The second part of the meeting emphasized multinational experimental studies and results derived from repository systems simulation tests (RSST), which were performed in granite, clay and salt environments

  18. Material control and accountability procedures for a waste isolation repository

    International Nuclear Information System (INIS)

    Jenkins, J.D.; Allen, E.J.; Blakeman, E.D.

    1978-05-01

    The material control and accountability needs of a waste isolation repository are examined. Three levels of control are discussed: (1) item identification and control, (2) tamper indication, and (3) quantitative material assay. A summary of waste characteristics is presented and, based on these, plus a consideration of the accessibility of the various types of waste, material control by item identification and accountability (where the individual waste container is the basic unit) is recommended. Tamper indicating procedures are also recommended for the intermediate and low level waste categories

  19. Repository development status in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Beceiro, Alvaro; Zuloaga, Pablo [ENRESA (Spain)

    2009-06-15

    The paper describes the status of repository development for the different waste categories. Low and Intermediate Waste Disposal facility of El Cabril was commissioned in 1992 and is in normal operation. The major modifications and activities during the last years are the adaptation to waste streams not initially foreseen such as some decommissioning waste or waste from steel industry, and the improvement of its performance assessment, supported by a R and D and refined models. As part of this facility, a new disposal facility specifically intended for very low activity waste has been constructed and commissioned in July 2008. Its design is based on the European Directive for hazardous waste disposal. National policy for Nuclear Spent Fuel and High-Level waste is focused on the development of a centralized storage facility of the vault type, whose site location would be selected through a volunteering process. Meanwhile, with the aim of solving specific problems, three individual storage facilities are in different status at reactor sites. Research on final solution, including some repository aspects as well as separation and transmutation are being carried out in accordance to ENRESA's R and D program. ENRESA has developed conceptual designs for non site specific repositories, both in granite and clay, and has carried out their corresponding performance assessment exercises. (authors)

  20. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Cowart, C.G.; Notz, K.J.

    1992-10-01

    This report presents the results of a fully documented peer review of DOE/RW-0184, Rev. 1, ''Characteristics of Potential Repository Wastes''. The peer review was chaired and administered by oak Ridge National Laboratory (ORNL) for the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) and was conducted in accordance with OCRWM QA procedure QAAP 3.3 ''Peer Review'' for the purpose of quailing the document for use in OCRWM quality-affecting work. The peer reviewers selected represent a wide range of experience and knowledge particularly suitable for evaluating the subject matter. A total of 596 formal comments were documented by the seven peer review panels, and all were successfully resolved. The peers reached the conclusion that DOE/RW-0184, Rev. 1, is quality determined and suitable for use in quality-affecting work

  1. Disruption scenarios for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ross, B.

    1986-01-01

    A high-level waste repository located in unsaturated welded tuff at Yucca Mountain, Nevada, would rely on six different, although not entirely independent, barriers to prevent escape of radioactivity. These barriers are the waste canister, fuel cladding, slow dissolution of the spent fuel itself, and slow movement of released contaminants in three different hydrogeologic units: the unsaturated Topopah Spring welded tuff unit, the unsaturated Calico Hills nonwelded tuff unit, and the saturated tuff aquifer. Fifty-eight processes and events that might affect such a repository were reviewed. Eighty-three different sequences were identified by which these processes and events could lead to failure of one or more barriers. Sequences which had similar consequences were grouped, yielding 17 categories. The repository system has considerable redundancy; most of the more likely disruptions affect only one or a few barriers. Occurrence of more than one disruption is needed before such disruptions would cause release of radioactivity. Future studies of repository performance must assess the likelihood and consequences of multiple-disruption scenarios to evaluate how well the repository meets performance standards

  2. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Paschoa, A.S. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil); Rozental, J.J. [Ministry of Environment (Israel); Tranjan Filho, A. [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2001-07-01

    As it is well known, an accident with a teletherapy source made of {sup 137}CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10{sup 3} m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10{sup 3} m{sup 3} of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10{sup 5} m{sup 2}. The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The

  3. Double Diffusive Natural Convection in a Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun

    2006-01-01

    In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport

  4. Salt Repository Project transportation system interface requirements: Transportation system/repository receiving facility interface requirements

    International Nuclear Information System (INIS)

    Smith, L.A.; Insalaco, J.W.; Trainer, T.A.

    1988-01-01

    This report is a preliminary review of the interface between the transportation system and the repository receiving facility for a nuclear waste mined geologic disposal system in salt. Criteria for generic cask and facility designs are developed. These criteria are derived by examining the interfaces that occur as a result of the operations needed to receive nuclear waste at a repository. These criteria provide the basis for design of a safe, operable, practical nuclear waste receiving facility. The processing functions required to move the shipping unit from the gate into the unloading area and back to the gate for dispatch are described. Criteria for a generic receiving facility are discussed but no specific facility design is presented or evaluated. The criteria are stated in general terms to allow application to a wide variety of cask and facility designs. 9 refs., 6 figs., 4 tabs

  5. Risk analysis of radioactive waste repository based on the time dependent hazard rate

    International Nuclear Information System (INIS)

    Chang, S.H.; Cho, W.J.

    1984-01-01

    For the probabilistic risk analysis of the radioactive high level waste repository, the simplified method based on the time dependent hazard rate is proposed. The obtained results are compared with those from the time independent hazard rate. The estimation of the failure probability of the waste repository through this method gives more conservative results, especially when the half-life of nuclide is larger and retardation factors of nuclide is smaller. (Auth.)

  6. Numerical modeling of rock stresses within a basaltic nuclear waste repository. Final report

    International Nuclear Information System (INIS)

    Hardy, M.P.; Hocking, G.

    1978-01-01

    The modeling undertaken during this project incorporated a wide range of problems that impact the design of the waste repository. Interaction of groundwater, heat and stress were considered on a regional scale, whereas on the room and canister scale thermo-mechanical analyses were undertaken. In the Phase II report, preliminary guidelines for waste densities were established based primarily on short-term stress criteria required to maintain stability during the retrievability period. Additional analyses are required to evaluate the effect of joints, borehole linings, room support and ventilation on these preliminary waste loading densities. The regional analyses did not indicate any adverse effect that could control the allowable waste loading densities. However, further refinements of geologic structure, hydrologic models, seismicity and possible induced seismicity are required before firm estimates of the loading densities can be made

  7. High level radioactive waste repositories. Task 3. Review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A review is presented of proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository appropriate to the U.K. context, with particular reference to waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development.

  8. Safety assessment of geologic repositories for nuclear waste

    International Nuclear Information System (INIS)

    Bartlett, J.W.; Burkholder, H.C.; Winegardner, W.K.

    1977-01-01

    Consideration of geologic isolation for final disposition of radioactive wastes has led to the need for evaluation of the safety of the concept. Such evaluations require consideration of factors not encountered in conventional risk analysis: consequences at times and places far removed from the repository site; indirect, complex, and alternative pathways between the waste and the point of potential consequences; a highly limited data base; and limited opportunity for experimental verification of results. R and D programs to provide technical safety evaluations are under way. Three methods are being considered for the probabilistic aspects of the evaluations: fault tree analysis, repository simulation analysis, and system stability analysis. Nuclide transport models, currently in a relatively advanced state of development, are used to evaluate consequences of postulated loss of geologic isolation. This paper outlines the safety assessment methods, unique features of the assessment problem that affect selection of methods and reliability of results, and available results. It also discusses potential directions for future work

  9. Site characterization information needs for a high-level waste geologic repository

    International Nuclear Information System (INIS)

    Gupta, D.C.; Nataraja, M.S.; Justus, P.S.

    1987-01-01

    At each of the three candidate sites recommended for site characterization for High-Level Waste Geologic Repository development, the DOE has proposed to conduct both surface-based testing and in situ exploration and testing at the depths that wastes would be emplaced. The basic information needs and consequently the planned surface-based and in situ testing program will be governed to a large extent by the amount of credit taken for individual components of the geologic repository in meeting the performance objectives and siting criteria. Therefore, identified information to be acquired from site characterization activities should be commensurate with DOE's assigned performance goals for the repository system components on a site-specific basis. Because of the uncertainties that are likely to be associated with initial assignment of performance goals, the information needs should be both reasonably and conservatively identified

  10. Siting, design and construction of underground repositories for radioactive wastes

    International Nuclear Information System (INIS)

    1986-01-01

    The objectives of the Symposium were to provide a forum for exchange of information internationally on the various scientific, technological, engineering and safety bases for the siting, design and construction of underground repositories, and to highlight current important issues and identify possible approaches. Forty-nine papers were presented, covering general approaches and regulatory aspects, disposal in shallow ground and rock cavities, disposal in deep geological formations and safety assessments related to the subject of the Symposium. Separate abstracts were prepared for each of these papers

  11. The status of radioactive waste repository development in the United States - December 2011

    International Nuclear Information System (INIS)

    Hill, David R.

    2012-01-01

    The current state of affairs concerning development in the United States of a permanent repository for disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) is, in a word, uncertain. The President of the United States has asserted that he believes licensing and development of the Yucca Mountain repository should be abandoned, while other important parties believe licensing and development should continue. And not surprisingly, there is a disagreement as to what the law requires and whether the licensing process for the Yucca Mountain repository can be terminated at this point, even if the President would like for that to happen. The future of Yucca Mountain, and the future of radioactive waste disposal in the United States generally, currently are pending before the US Court of Appeals for the District of Columbia Circuit, and eventually the Supreme Court of the United States may decide some of the important legal issues concerning Yucca Mountain's future. The November 2012 US elections also likely will have a significant impact on future radioactive waste repository development

  12. Radiosensitivity of microorganisms isolated from radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, Lajos

    2001-01-01

    Bacteria are much more diverse in comparison with plants and animals. Among the huge diversity of bacteria there are microorganisms capable to grow at or adapt to extreme conditions. Some bacteria grow at temperature above 100 deg. C, other thrive in high salinity such as 20-30% NaCl, still others can live at pH lower than 2 or pH higher than 10 or exhibit high radioresistance. Due to accelerated disarmament and nuclear energy activities, large quantities of radioactive waste and nuclear fuel are being placed in storage areas. The awareness the microbial activity could potentially effect the performance of a system for geological disposal of radioactive waste gained acceptance in the early to middle 1980s, and as a result many countries considering developing programmes to study and quantify microbial effects in terms of their own particular disposal concept. A new research programme was launched in 1995, sponsored by the NATO Scientific Affairs Division, for studying microbiologically influenced corrosion (MIC) in radioactive waste repositories and spent fuel storage area. Our programme concerns several major items that may have an influence on the mobility of radionuclides in direct and indirect ways thereby being important for the safety analysis. They are uptake and transport of radionuclides by microorganisms, diversity and distribution of subterranean bacteria in typical repository environments, environmental limitation and bacterial activity, effect of bacterial activity on the mobility of radionuclides, microbial gas production and consumption, bacterial recombination of hydrogen and oxygen from radiolysis, and microbially induced corrosion of waste canister. The Permian Boda Claystone Formation in the Mecsek Hill area is being considered for high level waste disposal. Groundwater, technical water, rock and surface samples were collected aseptically from different depths. The quantitative and qualitative analysis of aerobic and anaerobe isolates were

  13. On ocean island geological repository - a second-generation option for disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1993-01-01

    The concept of an ocean subseabed geological high-level waste repository with access via an ocean island is discussed. The technical advantages include, in addition to geologic waste isolation, geographical isolation, near-zero groundwater flow through the disposal site, and near-infinite ocean dilution as a backup in the event of a failure of the repository geological waste isolation system. The institutional advantages may include reduced siting problems and the potential of creating an international waste repository. Establishment of a repository accepting wastes from many countries would allow cost sharing, aid international nonproliferation goals, and ensure proper disposal of spent fuel from developing countries. Major uncertainties that are identified in this concept are the uncertainties in rock conditions at waste disposal depths, costs, and ill-defined institutional issues

  14. Integrity of radioactive waste packages at the Yucca mountain repository

    International Nuclear Information System (INIS)

    Sandquist, G.; Biaglow, A.; Huber, M.; Jagmin, C.

    2004-01-01

    Several of the important physical and chemical processes that impact the integrity of the radioactive waste packages planned for disposal at the proposed Repository at Yucca Mountain are examined. These processes are described by the aerodynamic, thermodynamic, and chemical interactions associated with the waste packages. The effects of chemical corrosion, mechanical erosion, temperature distributions throughout the repository environs, interactions of air, water, and solid particles, and radiological and biological influences are addressed. Materials will be exposed to at least 3 conditions threatening the integrity of the waste package: 1) accumulated dust and particles on the package surface and suspended in the air, 2) chemical reactions from deposits on the waste package infrastructure materials and tight contact areas, and crevices, and 3) environmental factors affecting chemical reactions such as moisture, pH, Eh, and radiolysis. All 3 of these conditions can combine and produce damaging impacts upon the thin protective layer on the alloy surface of the waste package. There are certain benefits from the low-temperature operating mode with ambient temperature below 85 Celsius degrees, but the materials could be subjected to a maximum temperature of 180 Celsius degrees which might introduce stress corrosion cracking and high temperature effects

  15. Source terms for analysis of accidents at a high level waste repository

    International Nuclear Information System (INIS)

    Mubayi, V.; Davis, R.E.; Youngblood, R.

    1989-01-01

    This paper describes an approach to identifying source terms from possible accidents during the preclosure phase of a high-level nuclear waste repository. A review of the literature on repository safety analyses indicated that source term estimation is in a preliminary stage, largely based on judgement-based scoping analyses. The approach developed here was to partition the accident space into domains defined by certain threshold values of temperature and impact energy density which may arise in potential accidents and specify release fractions of various radionuclides, present in the waste form, in each domain. Along with a more quantitative understanding of accident phenomenology, this approach should help in achieving a clearer perspective on scenarios important to preclosure safety assessments of geologic repositories. 18 refs., 3 tabs

  16. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  17. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    MacDougall, H.R.; Scully, L.W.; Tillerson, J.R.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O

  18. Design and construction issues associated with sealing of a repository in salt

    International Nuclear Information System (INIS)

    Cook, R.

    1991-01-01

    The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels and boreholes are adequately sealed. This paper presents the current design and construction issues for sealing a repository in salt and outlines some proposed solutions. The sealing components include shaft seals, tunnel seals, panel seals, and disposal room backfill. The performance requirements and construction constraints determine the types of materials selected and their necessary properties. The current issues of interest include: (1) selection of materials for rigid bulkheads used to promote recovery of the disturbed zone permeability; (2) the selection of bulkhead geometry to cutoff flow through more permeable zones, or zones where recovery of the backfill properties occurs more slowly or not at all; and (3) the interaction of fluids with hazardous wastes with brine and, subsequently, with seal materials that might affect seal material longevity. 19 refs., 5 figs., 1 tab

  19. Mapping and monitoring nuclear waste repositories with subsurface electrical resistivity arrays

    International Nuclear Information System (INIS)

    Asch, T.; Morrison, H.F.

    1987-01-01

    The siting and future integrity of nuclear waste repositories is critically dependent on the local ground water regime. Electrical methods seem particularly promising in mapping and monitoring this regime since the electrical conductivity of rocks depends almost entirely on the fluid saturation, salinity and distribution. The most important recent developments in resistivity include the use of numerical modeling and resistivity mapping using subsurface electrodes. The latter yields far greater accuracy and resolution than can be obtained with surface arrays. To illustrate the power of subsurface-surface arrays the authors studied an idealized two dimensional model of a nuclear repository. Since they are interested in emphasizing the anomaly caused by the repository, or subsequent changes over time in its vicinity, the authors discovered that it is very useful to express the apparent resistivity results as percentage differences from either the background (for surface arrays) or from the apparent resistivities observed at a particular depth of the current source (for subsurface arrays). Percent differencing with respect to data at the repository depth dramatically reduce near-surface and topographic effects that usually confound quantitative interpretation of surface surveys. Thus, dc resistivity appears to have great potential for nuclear waste repository mapping and monitoring

  20. Design and Analysis of a Shaft Seal System for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hansen, F.D.; Knowles, M.K.

    1999-01-01

    This special issue of Reliability Engineering and System Safety presents a wide range of analyses pertaining to performance of the first EPA-certified nuclear waste repository, called the Waste Isolation Pilot Plant (WIPP). Licensing of the first such repository has involved unprecedented analysis accompanied by an equivalent peer review and public scmtiny. As a deep geologic repository, isolation of the repository from the biosphere requires implementation of unique seal systems. This paper describes the shall sealing system, which is designed to'mit fluid transport through the four existing shafts. The design approach applies redundancy to fictional elements and specifies multiple, common, low-permeability materials to ensure reliable performance. The system comprises 13 elements that completely fill the shafts with engineered materials possessing high density and low permeability. Laboratory and field measurements of component properties and performance provide the basis for the design and related evaluations. Hydrologic, mechanical, thermal, and physical features of the system are evaluated in a series of calculations. These sophisticated calculations indicate that the design effectively limits transport of fluids within the shafts, thereby limiting transport of waste material to regulatory boundaries. Additionally, the use or adaptation of existing technologies for seal construction combined with the use of available common materials assures that the design can be constructed

  1. Status of the implementation of Brazilian National Repository

    International Nuclear Information System (INIS)

    Tello, Cledola Cassia Oliveira de

    2015-01-01

    In Brazil, the use of nuclear energy and radioisotopes is increasing and it already justifies the construction of a national repository for radioactive wastes of low and intermediate-level. The Brazilian National Commission for Nuclear Energy (CNEN) is legally responsible for designing and constructing intermediate and final storages for radioactive wastes generated in all Country, in accordance to Federal Law No. 10308. Additionally, the Brazilian Environmental Regulator (IBAMA) lately is imposing to the implementation of new nuclear installations (e.g. Angra 3 NPP and Brazilian Multipurpose Reactor) that the National Repository should be in construction, before the start-up of those ones. In November 2009, the RBMN Project Charter was signed. The RBMN Project aims at the implantation of a National Repository to dispose the radioactive wastes of low- and intermediate-level. Some aspects about the Repository construction are very challenging, mainly due to the licensing process, which will be made for two different regulatory bodies, nuclear and environmental. The main achievements obtained till now are the establishment of the current Brazilian radioactive waste inventory, the conceptual design and the selection of candidate sites for the repository. The current status of the Project is summarized. (author)

  2. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-care vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  3. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-car vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  4. Tunnel Boring Machine for nuclear waste repository research project

    International Nuclear Information System (INIS)

    Janzon, H.A.

    1994-01-01

    A description is presented of a Tunnel Boring Machine and its intended use on a research project underway in Sweden for demonstrating and testing methods for rock investigation at a suitable depth for a deep repository for nuclear waste

  5. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  6. Durability of cemented waste in repository and under simulated conditions

    International Nuclear Information System (INIS)

    Dragolici, F.; Nicu, M.; Lungu, L.; Turcanu, C.; Rotarescu, Gh.

    2000-01-01

    The Romanian Radioactive Waste National Repository for low level and intermediate level radioactive waste was built in Baita - Bihor county, in an extinct uranium exploitation. The site is at 840 m above sea level and the host rock is crystalline with a low porosity, a good chemical homogeneity and impermeability, keeping these qualities over a considerable horizontal and vertical spans. To obtain the experimental data necessary for the waste form and package characterization together with the back-filling material behaviour in the repository environment, a medium term research programme (1996 - 2010) was implemented. The purpose of this experimental programme is to obtain a part of the data base necessary for the approach of medium and long term assessment of the safety and performance of Baita - Bihor Repository. The programme will provide: a deeper knowledge of the chemical species and reaction mechanisms, the structure, properties and performances of the final products. For safety reasons the behaviour of waste package, which is a main barrier, must be properly known in terms of long term durability in real repository conditions. Characterization of the behaviour includes many interactions between the waste package itself and the surrounding near field conditions such as mineralogy, hydrogeology and groundwater chemistry. To obtain a more deeper knowledge of the species and physical-chemical reactions participating in the matrix formation, as well as their future behaviour during the disposal period, a thorough XRD study started in 1998. For Romanian Radioactive Waste National Repository (DNDR) Baita - Bihor the following steps are planned for the conditioned waste matrix characterization in simulated and real conditions: - preparation and characterization of normal reference matrices based on different cement formulations; - preparation of reference simulated sludge cemented matrices containing iron hydroxide and iron phosphate; - selection of real and

  7. Development of the design and reliability analysis of a seabed repository system

    International Nuclear Information System (INIS)

    1987-06-01

    This study examines the seabed repository scheme proposed in 1979 for the long term disposal of heat generating radio-active waste and develops it to a standard sufficient to compare its reliability with the drilled emplacement and penetrator schemes. The reinforced concrete repositories contain 324 waste canisters and weigh 982 tonnes fully loaded in water. The repositories are transported up to 6000 km to the disposal area by a special purpose ship and lowered 5.5 km to the seabed on six braided nylon ropes by traction winches. Reliability of the seabed repository system, measured in terms of accidents per year involving loss of one or more canisters, was comparable with the other systems. (author)

  8. Environmental monitoring and radiation protection programs of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Christoskova, M.; Kostova, M.; Sheherov, L.; Bekiarov, P.; Iovtchev, M.

    2000-01-01

    The system for monitoring and control as an important part of the safety management of the Novi Han Radioactive Waste Repository contains two independent programs: environmental monitoring of the site (controlled area), the restricted access area and the surveillance area (supervised area) of the repository and radiation protection program including personal dosimetric control and indoor dosimetric control of workplaces in the buildings of the repository. The main activities related to the programs implementation are presented

  9. Transferring knowledge about high-level waste repositories: An ethical consideration

    International Nuclear Information System (INIS)

    Berndes, S.; Kornwachs, K.

    1996-01-01

    The purpose of this paper is to present requirements to Information and Documentation Systems for high-level waste repositories from an ethical point of view. A structured synopsis of ethical arguments used by experts from Europe and America is presented. On the one hand the review suggests to reinforce the obligation to transfer knowledge about high level waste repositories. This obligation is reduced on the other hand by the objection that ethical obligations are dependent on the difference between our and future civilizations. This reflection results in proposing a list of well-balanced ethical arguments. Then a method is presented which shows how scenarios of possible future civilizations for different time horizons and related ethical arguments are used to justify requirements to the Information and Documentation System

  10. Project Guarantee 1985. Final repository for low- and intermediate-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The safety barrier system for the type B repository for low- and intermediate-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). In the case of low- and intermediate-level waste the technical safety barrier system comprises: waste solidification matrix (cement, bitumen and resin), immobilisation of the waste packages in containers using liquid cement, concrete repository containers, backfilling of remaining vacant storage space with special concrete, concrete lining of the repository caverns, sealing of access tunnels on final closure of the repository. Natural geological safety barriers - host rock and overlying formations - have the following important functions. Because of its stability, the host rock in the repository zone protects the technical safety barrier system from destruction caused by climatic effects and erosion for a sufficient length of time. It also provides for low water flow and favourable chemistry (reducing conditions)

  11. Geoscience data base handbook for modeling a nuclear waste repository. Volume 1

    International Nuclear Information System (INIS)

    Isherwood, D.

    1979-12-01

    This handbook contains reference information on parameters that should be considered in analyzing or modeling a proposed nuclear waste repository site. Only those parameters and values that best represent the natural environment are included. Rare extremes are avoided. Where laboratory and field data are inadequate, theoretical treatments and informed engineering judgements are presented. Volume 1 contains a data base on salt as a repository medium. Chapters on the geology of bedded and dome salt, the geomechanics of salt, hydrology, geochemistry, natural and man-made features, and seismology provide compiled data and related information useful for studying a proposed repository in salt. These and other data will be needed to derive generic deep geologic modeling parameters and will also serve as background for the verification of source data that may be presented in licensing applications for nuclear waste repositories. Volume 2 is the result of a scoping study for a data base on the geology, geomechanics, and hydrology of shale, granite, and basalt as alternative repository media. Except for the geomechanics of shale, most of the sections contain relatively complete compilations of the available data, as well as discussions of the properties that are unique to each rock type

  12. A geologic scenario for catastrophic failure of the Yucca Mountain Nuclear Waste Repository, Nevada

    International Nuclear Information System (INIS)

    McMackin, M.R.

    1993-01-01

    A plausible combination of geologic factors leading to failure can be hypothesized for the Yucca Mountain Nuclear Waste Repository. The scenarios is constructed using elementary fault mechanics combined with geologic observations of exhumed faults and published information describing the repository site. The proposed repository site is located in the Basin and Range Province, a region of active crustal deformation demonstrated by widespread seismicity. The Yucca Mountain area has been characterized as tectonically quiet, which in the context of active crustal deformation may indicate the accumulation of the stresses approaching the levels required for fault slip, essentially stick-slip faulting. Simultaneously, dissolution of carbonate rocks in underlying karst aquifers is lowering the bulk strength of the rock that supports the repository site. Rising levels of hydrostatic stress concurrent with a climatically-driven rise in the water table could trigger faulting by decreasing the effective normal stress that currently retards fault slip. Water expelled from collapsing caverns in the underlying carbonate aquifer could migrate upward with sufficient pressure to open existing fractures or create new fractures by hydrofracturing. Water migrating through fractures could reach the repository in sufficient volume to react with heated rock and waste perhaps creating steam explosions that would further enhance fracture permeability. Closure of conduits in the underlying carbonate aquifer could lead to the elevation of the saturated zone above the level of the repository resulting in sustained saturation of radioactive waste in the repository and contamination of through-flowing groundwater

  13. Field instrumentation and testing needs for a high level waste repository

    International Nuclear Information System (INIS)

    Marti, J.; Maini, T.

    1981-03-01

    A review has been conducted of the testing and measurement needs posed by a deep geologic High Level Waste (HLW) repository in crystalline or argillaceous rocks. Siting, design, construction, operation and decommissioning of the repository have been covered, together with the planning of a Test and Demonstration Facility. Instruments and methods available have been critically assessed in their ability to fulfil the aforementioned testing and monitoring programmes. Special attention has been paid to the relation of measurements to the data needs and to the tests likely to generate such data. This assessment has concentrated on measurements of absolute rock stresses, monitoring of changes in rock stress, evaluation of the rock mass deformability, measurement of relative displacements and determination of the hydrogeologic parameters of the rock mass. Other measurements have been studied with a lesser degree of attention. The overall conclusion is that, from the instrumentation and testing points of view, present plans for a test and demonstration facility in the early nineties and a repository soon after 2000 are indeed feasible. Specific conclusions on the state-of-the-art and development needs are presented in the report. (author)

  14. Project Guarantee 1985. Repository for low- and intermediate-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A constructional engineering project study aimed at clarification of the feasibility of a repository for low- and intermediate-level radioactive waste (type B repository) has been carried out; the study is based on a model data-set derived from the geological, rock mechanical and topographical characterictics of one of Nagra's planned exploration areas. Final storage is effected in subterranean rock caverns accessed by horizontal tunnel. The reception area also is sited below the surface. Storage is conceived in such a way that, after closure of the repository, maintenance and supervision can be dispensed with and a guarantee of high long-term safety can nevertheless be provided. The envisaged repository consists of an entry tunnel for road vehicles and a reception area with a series of caverns for receiving waste, for additional technical facilities and for the production of the concrete back-fill material. The connecting tunnel is serviced by a tunnel railway and the actual repository area consists of several storage caverns. The repository is intended to accomodate a total of 200'000 m3 of solidified low- and intermediate-level waste. Valanginian marl is assumed as the host rock, although it would also be basically possible to house the proposed installations in other host rocks. The excavated material will total around 1'000'000 m3. The construction time for the whole installation is estimated as about 7 years and a working team of around 30 people will be required for the estimated 60-year operational duration. The project described in the present report justifies the conclusion that construction of a repository for low-and intermediate-level radioactive waste is feasible with present-day technology. This conclusion takes into consideration quantitative and operational constraints as well as geological and hydrogeological data relevant to constructional engineering. The latter are derived from a model data-set based on a specific locality

  15. NWTS conceptual reference repository description (CRRD). Volume 1. Summary

    International Nuclear Information System (INIS)

    1981-05-01

    This report is a Conceptual Reference Repository Description (CRRD) for the terminal storage of spent, unreprocessed fuel assemblies and low-level transuranic waste. It is based on the following three previously prepared conceptual design reports: National Waste Terminal Storage in a Bedded Salt Formation for Spent Unreprocessed Fuel (NWTS-R2), prepared by Kaiser Engineers; National Waste Terminal Storage Repository Number 1 (NWTS-R1), prepared by Stearns-Roger; Spent Fuel Receiving and Packaging Facility Conceptual Design, prepared by Rockwell Hanford Operations and Kaiser Engineers. The CRRD is not itself a conceptual design report, but combines the key features of the above three reports into a description of a reference repository. This description is to be used as a basis for the preparation of a preliminary information report for the repositories. The CRRD discusses from a conceptual engineering standpoint the structures, systems, equipment, and operations necessary to (1) receive unreprocessed spent fuel assemblies via standard shipping casks, (2) offload these assemblies, (3) place the assemblies in canisters, (4) transport the canisters to underground storage locations in the salt dome, and (5) place these canisters in terminal storage. The CRRD also elaborates on the concepts for the retrieval and recovery of the spent fuel after burial; describes the development of the shafts and the underground areas,as well as the supporting operational utility and administrative features of the repository; and discusses the impacts on the reference repository of (1) changes in the waste package concept, (2) dry receiving and dry temporary storage of waste, (3) terminal storage of reprocessing waste, and (4) alternative underground development schemes

  16. Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories. An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions

    International Nuclear Information System (INIS)

    Swanson, J.S.; Reed, D.T.; Cherkouk, A.; Arnold, T.; Meleshyn, A.; Patterson, Russ

    2018-01-01

    For the past several decades, the Nuclear Energy Agency Salt Club has been supporting and overseeing the characterisation of rock salt as a potential host rock for deep geological repositories. This extensive evaluation of deep geological settings is aimed at determining - through a multidisciplinary approach - whether specific sites are suitable for radioactive waste disposal. Studying the microbiology of granite, basalt, tuff, and clay formations in both Europe and the United States has been an important part of this investigation, and much has been learnt about the potential influence of microorganisms on repository performance, as well as about deep subsurface microbiology in general. Some uncertainty remains, however, around the effects of microorganisms on salt-based repository performance. Using available information on the microbial ecology of hyper-saline environments, the bioenergetics of survival under high ionic strength conditions and studies related to repository microbiology, this report summarises the potential role of microorganisms in salt-based radioactive waste repositories

  17. Preliminary thermal/thermomechanical analyses of the Site Characterization Plan's Conceptual Design for a repository containing horizontally emplaced waste packages at the Deaf Smith County site

    International Nuclear Information System (INIS)

    Ghantous, N.Y.; Raines, G.E.

    1987-10-01

    This report presents thermal/thermomechanical analyses of the Site Characterization Plan Conceptual Design for horizontal package emplacement at the Deaf Smith County site, Texas. The repository was divided into three geometric regions. Then two-dimensional finite-element models were set up to approximate the three-dimensional nature of each region. Thermal and quasistatic thermomechanical finite-element analyses were performed to evaluate the thermal/thermomechanical responses of the three regions. The exponential-time creep law was used to represent the creep behavior of salt rock. The repository design was evaluated by comparing the thermal/thermomechanical responses obtained for the three regions with interim performance constraints. The preliminary results show that all the performance constraints are met except for those of the waste package. The following factors were considered in interpreting these results: (1) the qualitative description of the analytical responses; (2) the limitations of the analyses; and (3) either the conclusions based on overall evaluation of limitations and analytical results or the conclusions based on the fact that the repository design may be evaluated only after further analyses. Furthermore, a parametric analysis was performed to estimate the effect of material parameters on the predicted thermal/thermomechanical response. 23 refs., 34 figs., 9 tabs

  18. Gas cooled reactor decommissioning. Packaging of waste for disposal in the United Kingdom deep repository

    International Nuclear Information System (INIS)

    Barlow, S.V.; Wisbey, S.J.; Wood, P.

    1998-01-01

    United Kingdom Nirex Limited has been established to develop and operate a deep underground repository for the disposal of the UK's intermediate and certain low level radioactive waste. The UK has a significant Gas Cooled Reactor (GCR) programme, including both Magnox and AGR (Advanced Gas-cooled Reactor) capacity, amounting to 26 Magnox reactors, 15 AGR reactors as well as research and prototype reactor units such as the Windscale AGR and the Windscale Piles. Some of these units are already undergoing decommissioning and Nirex has estimated that some 15,000 m 3 (conditioned volume) will come forward for disposal from GCR decommissioning before 2060. This volume does not include final stage (Stage 3) decommissioning arisings from commercial reactors since the generating utilities in the UK are proposing to adopt a deferred safe store strategy for these units. Intermediate level wastes arising from GCR decommissioning needs to be packaged in a form suitable for on-site interim storage and eventual deep disposal in the planned repository. In the absence of Conditions for Acceptance for a repository in the UK, the dimensions, key features and minimum performance requirements for waste packages are defined in Waste Package Specifications. These form the basis for all assessments of the suitability of wastes for disposal, including GCR wastes. This paper will describe the nature and characteristics of GCR decommissioning wastes which are intended for disposal in a UK repository. The Nirex Waste Package Specifications and the key technical issues, which have been identified when considering GCR decommissioning waste against the performance requirements within the specifications, are discussed. (author)

  19. Draft environmental impact statement. High-level waste repository site suitability criteria

    International Nuclear Information System (INIS)

    1978-01-01

    The purpose of HLWRSSC is to present guidelines which will help in the development of safe waste management schemes. Current regulations require solidification of all high-level waste within 5 years of their generation and transfer to a Federal waste repository within 10 years. Development of the proposed HLWRSSC is part of the overall NRC program to close the ''back end'' of the commercial LWR fuel cycle. In this document, the need for the HLWRSSC is reviewed, and the national energy policy, the need for electrical energy, and the nuclear fuel cycle are discussed. Considerations for HLWRSSC are presented, including the nature of the repository, important site-related factors, and radiological risk assessment methodology. Radiological and nonradiological environment impacts associated with the HLWRSSC are defined. Alternatives to the criteria are presented, and the cost-benefit-risk evaluation is reviewed

  20. Chemotoxic materials in a final repository for high-level radioactive wastes. CHEMOTOX concept for defence in depth concerning ground water protection from chemotoxic materials in a final high-level waste repository

    International Nuclear Information System (INIS)

    Alt, Stefan; Sailer, Michael; Schmidt, Gerhard; Herbert, Horst-Juergen; Krone, Juergen; Tholen, Marion

    2009-01-01

    The disposal of high-level radioactive wastes in a final repository includes chemotoxic materials. The chemotoxic materials are either part of the radioactive material or part of the packaging material, or the structures within the repository. In the frame of the licensing procedure it has to be demonstrated that no hazardous pollution of the ground water or other disadvantageous changes can occur. The report describes the common project of the Oeko-Institut e.V., the DBE Technology GmbH and the GRS mbH concerning the possible demonstration of a systematic protection of the groundwater against chemotoxic materials in case of a final high-level-radioactive waste repository in the host materials salt and clay stone.

  1. The use of uranium fluxes as safety indicators of radioactive waste repositories

    International Nuclear Information System (INIS)

    Miller, W.M.; Hooker, P.J.

    2002-01-01

    Natural analogues based on uranium deposits are commonly used to represent the long-term behaviour of radioactive waste repositories or the processes that influence their radioactive contents. The geochemical dispersion of naturally occurring uranium can also be used to model natural radioactivity fluxes in the vicinity of a planned repository. These fluxes can be estimated for erosional and groundwater discharge processes and compared with calculated future fluxes of radioactivity that would be released from a repository. The methodology is outlined and the benefits of the approach for supporting the derivation of a safety case for a repository are indicated. (author)

  2. Effective summary evaluators for deep nuclear waste repositories: geohydrologic response function

    International Nuclear Information System (INIS)

    Nelson, R.W.; Dove, F.H.

    1981-03-01

    Useful insight has been gained over the past four years as hydrologic system modeling has been applied to evaluate hypothetical, waste-repository sites in various geologic media. The Geohydrologic Response Functions, described in this paper, are shown to: blend extensive results of technical analysis into simple summary relationships, and to potentially help the public and decision makers to evaluate the magnitude of any loss in repository integrity

  3. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  4. Workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories, July 27-28, 1977

    International Nuclear Information System (INIS)

    Jacobson, J.J.

    1977-01-01

    The workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories brought together experts in the geosciences to identify and evaluate potentially disruptive events and processes and to contribute ideas on how to extrapolate data from the past into the next one million years. The analysis is to be used to model a repository in geologic media for long-term safety assessments of nuclear waste storage. The workshop included invited presentations on the following items: an overview of the Waste Isolation Safety Assessment Program (WISAP), simulation techniques, subjective probabilities and methodology of obtaining data, similar modeling efforts at Lawrence Livermore and Sandia Laboratories, and geologic processes or events

  5. NAGRA - Long-term safety - The main task of deep repositories for radioactive wastes

    International Nuclear Information System (INIS)

    2015-10-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the necessity for the safe disposal of radioactive wastes in Switzerland and discusses the requirements placed on such long-term waste depositories The effects of ionizing radiation on people and the protection provided by the deep repositories are examined. The construction of such deep repositories is looked at, as are the developments expected in the depositories over thousands of years. A comparison with natural occurrences is made and lessons to be learned from nature are discussed. Ideas for the marking of the depository sites are presented. A glossary of relevant terms completes the report

  6. Refinancing of the search for a repository and of the repository for heat generating radioactive Waste. Pt. 2

    International Nuclear Information System (INIS)

    Moench, Christoph

    2013-01-01

    Part I of this article, which appeared in the preceding issue, described in general terms the background to the search for a disposal site and the result of the exploration to date of the repository, which would appear to be suitable from a mining standpoint according to the present knowledge. According to the rules in effect up to now, the exploration and construction would be financed by advance payments on the contributions of the waste producing companies, in particular the utility companies. The working draft of an 'Act on the search for and selection of a site for a repository for heat generating radioactive waste' (Gesetz zur Suche und Auswahl eines Standortes fuer ein Endlager fuer waermeentwickelnde radioaktive Abfaelle) from autumn 2012 provides for a new version of section 21b Atomic Energy Act, under which the costs for 'carrying out a repository selection procedure pursuant to the Repository Selection Act (Standort-auswahlgesetz)' would be allocated to the future users of the repository who are obliged to make contributions as a 'necessary expense'. Part II evaluates this provision of the working draft on the basis of the financial constitutional law. A comparison of sites is not a measure that could be allocated to the future users of the repository who are obliged to make contributions as a 'necessary expense'. Moreover, there is a lack of responsibility for the financing and of a legally relevant advantage that would be conferred by a cumulative alternative repository search for the later users of the repository who are obliged to provide the pre-financing. The costs can therefore not be allocated to the later users as either a contribution or a special charge, not even by way of an association with mandatory membership (Zwangsverband). They must be borne by the state. Consequently, the allocation stipulated by provision would constitute an impermissible charge under financial constitutional law. (orig.)

  7. Problem trap final repository. Social challenges concerning nuclear waste

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim

    2016-01-01

    How is it possible that there is still no final storage facility in the entire world for highly radioactive waste from nuclear power stations? How is it possible that electricity has been generated by industrial-scale nuclear installations for decades without the issue of the disposal of nuclear waste having been resolved? The events in Chernobyl in 1986 and Fukushima in 2011 have made it blatantly obvious how risky this technology is and how important it is to keep humans and the environment at a safe distance from radioactivity. This anthology examines the technological, political, social and economic dimensions of the permanent disposal of nuclear waste. It provides an insight into the emergence of the problem and the people involved and their interests. It describes and analyses the changes that are taking place in Germany (for instance, in relation to the government's commission on nuclear repositories) and other countries with regard to how they handle nuclear waste. The book deals with both questions related to socio-technical aspects of the permanent disposal of nuclear waste and calls for the democratic need for participation and new ways of doing so, without which the search for a permanent disposal site will not bear fruit. This anthology presents a comprehensive discussion of the disposal of nuclear waste and the search for a permanent repository for it. Not only will students and teachers find it extremely useful, but so will any readers who are interested in its subject matter and wish to gain a more in-depth insight into it.

  8. Assessments of the thermal evolution for a radioactive waste final repository using analytical methods

    International Nuclear Information System (INIS)

    Radut, A. C.; Roman, M. R.; Florea, S.; Ionescu, D. V.; Olteanu, G.; Valeca, S.

    2016-01-01

    In the designing process for a radioactive final repository concept, the temperature evolution over time is a significant issue for the stability and long-term safety of entire emplacement. In particular, the maximum value of temperature in the whole structure, during time, must not exceed a certain safety value which depends, beside other criteria, on the bulk material of the repository. A computer code TEMPROC, based on analytical model for the transient thermal heat conduction, described in this paper, was developed inside ''Fuel Performance''Department from ICN Pitesti, in order to evaluate the waste repository's temperature distribution. The program was developed under ''Microsoft FORTRAN Power Station''platform that provides IMSL subroutines library support for numeric algorithm. So the program is relative small, with a good calculus speed. The numerical results obtained with TEMPROC computer code, have been acceptably compared with similar existing data from scientific literature [1]. (authors)

  9. Application of geostatistical methods to long-term safety analyses for radioactive waste repositories

    International Nuclear Information System (INIS)

    Roehlig, K.J.

    2001-01-01

    Long-term safety analyses are an important part of the design and optimisation process as well as of the licensing procedure for final repositories for radioactive waste in deep geological formations. For selected scenarios describing possible evolutions of the repository system in the post-closure phase, quantitative consequence analyses are performed. Due to the complexity of the phenomena of concern and the large timeframes under consideration, several types of uncertainties have to be taken into account. The modelling work for the far-field (geosphere) surrounding or overlaying the repository is based on model calculations concerning the groundwater movement and the resulting migration of radionuclides which possibly will be released from the repository. In contrast to engineered systems, the geosphere shows a strong spatial variability of facies, materials and material properties. The paper presented here describes the first steps towards a quantitative approach for an uncertainty assessment taking into account this variability. Due to the availability of a large amount of data and information of several types, the Gorleben site (Germany) has been used for a case study in order to demonstrate the method. (orig.)

  10. Developing design premises for a KBS-3V repository based on results from the safety assessment - 16027

    International Nuclear Information System (INIS)

    Andersson, Johan; Hedin, Allan

    2009-01-01

    As a part of the planned license application for a final repository for spent nuclear fuel the Swedish Nuclear Fuel and Waste Management Co. (SKB), has developed design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel. The purpose is to provide requirements from a long term safety aspect, to form the basis for the development of the reference design of the repository and to justify that design. Design premises typically concern specification on what mechanical loads the barriers must withstand, restrictions on the composition of barrier materials or acceptance criteria for the various underground excavations. These design constraints, if all fulfilled by the actual design, should form a good basis for demonstrating repository safety. The justification for these design premises is derived from SKB's most recent safety assessment SR-Can complemented by a few additional analyses. Some of the design premises may be modified in future stages of SKB's program, as a result of analyses based on more detailed site data and a more developed understanding of processes of importance for long-term safety. (authors)

  11. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Michael B. Heiser; Clark B. Millet

    2005-01-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 x 10-ft) and Concept B (2 x 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 x 17.5-ft) canister (also called the ''super canister''), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine ''as-is'' would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years

  12. Chemical conditions in the repository for low- and intermediate-level reactor waste

    International Nuclear Information System (INIS)

    Snellman, M.; Uotila, H.

    1984-01-01

    The chemical conditions in the proposed repositories for low- and intermediate-level reactor waste at Haestholmen (IVO) and Olkiluoto (TVO) have been discussed with respect to materials introduced into the repository, their possible long-term changes and interaction with groundwater flowing into the repository. The main possible groundwater-rock interactions have been discussed, as well as the role of micro-organisms, organic acids and colloids in the estimation of the barrier integrity. Experimental and theoretical studies have been performed on the basis of the natural groundwater compositions expected at the repository sites. Main emphasis is put on the chemical parameters which might influence the integrity of the different barriers in the repository as well as on the parameters which might effect the release and transport of radionuclides from the repository

  13. Definition of the waste package environment for a repository located in salt

    International Nuclear Information System (INIS)

    Clark, D.E.; Bradley, D.J.

    1983-01-01

    The expected environmental conditions for emplaced waste packages in a salt repository are simulated in the materials testing program to evaluate performance. Synthetic brines, based on the analyses of actual brines (both intrusion and inclusion), are used for corrosion and leach testing. Elevated temperatures (to 150 0 C) and radiation fields of up to 10 3 rad/h are employed as conservative conditions to bracket expected performance and provide data for worst case scenarios. Obtaining a precise definition of the waste package environment in a salt repository and its change with time is closely tied to detailed site characterization of the candidate salt repository horizon. It is expected that field testing can augment some of the materials testing currently under way and can provide increased confidence in the predicted site-specific near-field conditions. 17 references, 5 figures, 1 table

  14. Report on the evaluation under the Act No 24/2006 of Coll. Environmental Impact Assessment Law Extension of National Radioactive Waste Repository in Mochovce for disposal low-level radioactive waste and construction of very low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Hanusik, V.; Moravek, J.; Kusovska, Z.

    2011-01-01

    The report elaborated assessment of the environmental impact of extension of the National Radioactive Waste Repository in Mochovce for disposal of low and intermediate level radioactive wastes. Within this repository also the premises for very low level radioactive waste deposition should be built. The assessment report was prepared according to the Act no. 24/2006 Coll, as amended 'On the assessment of environmental impacts' Annex No. 11 upon The scope of assessment issued by the competent authority on the basis of assessment of Intent for this action. The report was prepared in VUJE, Inc. Trnava for Nuclear and Decommissioning Company, Inc. Bratislava (JAVYS).

  15. Geographical information system (GIS) suitability analysis of radioactive waste repository site in Pahang, Malaysia

    International Nuclear Information System (INIS)

    Faizal Azrin Abd Razalim; Noraini Surip; Ahmad Hasnulhadi; Nazran Harun; Nurul Nadia Abd Malek; Roziah Che Musa

    2010-01-01

    The aim of this project is to identify a suitable site for radioactive waste repository in Pahang using remote sensing and geographical information system (GIS) technologies. There are ten parameters considered in the analysis, which divided into Selection Criteria and Exclusion Criteria. The Selection Criteria parameters consists of land use, rainfall, lineament, slope, groundwater potential and elevation while Exclusion Criteria parameters consist of urban, protected land and island. Furthermore, all parameters were integrated, given weight age and ranked for site selection evaluation in GIS environment. At the first place, about twelve sites have been identified as suitable sites for radioactive waste repository throughout the study area. These sites were further analysed by ground checking on the physical setting including geological, drainage, and population density in order to finalise three most suitable sites for radioactive waste repository. (author)

  16. Systems study of the feasibility of high-level nuclear waste fractionation for thermal stress control in a geologic repository: appendices

    International Nuclear Information System (INIS)

    McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

    1983-06-01

    This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. Volume II contains appendices for: (1) thermal analysis supplement; (2) fractionation process experimental results supplement; (3) cost analysis supplement; and (4) radiological risk analysis supplement

  17. Judicial progress in Germany's nuclear waste disposal policy the Konrad repository decisions of 26 march 2007

    International Nuclear Information System (INIS)

    Kuhne, G.

    2007-01-01

    Its exists three final repository sites in Germany, an overview of the status of these sites is necessary to understand concretely the situation. Morsleben, is actually the only final repository for low and medium level radioactive waste. Gorleben is the site of a salt dome which is under exploration as an eventual repository for high level radioactive waste but the study is under a decree of exploration moratorium of at least three years, in order to allow for investigation into conceptual and safety issues. The Konrad ore mine is the site under preparation for a final repository for low and medium level radioactive waste. The present article will briefly address three aspects of the court reasoning: the legal character of the plan approval notice (act of discretion or strict execution of laws), the necessity of planning and safety aspects. (N.C.)

  18. Politics and technology in repository siting: military versus commercial nuclear wastes at WIPP 1972-1985

    International Nuclear Information System (INIS)

    Downey, G.L.

    1985-01-01

    During the 1970s, attempts by the federal government to develop a comprehensive system for disposing of nuclear wastes in geologic repositories were plagued by two related political problems; (1) whether or not military and commercial wastes should be buried together in the same repository, and (2) how to define the host state's role in the repository siting mechanism. This article explains why these two problems were connected by showing how they proved to be of decisive importance in the development of the Waste Isolation Pilot Plant (WIPP) project in Carlsbad, New Mexico. Although WIPP was initially conceived as a wholly military facility, The Department of Energy triggered a three-year dispute over the project's scope by proposing in 1978 to include commercial wastes in the repository. The key issue in the dispute concerned the political legitimacy of decision-making mechanisms for repository siting, which depend upon the extent to which they both adequately represent the interests of affected groups and meet an indistinct technical/political criterion of acceptable safety. DOE's ill-fated proposal to mix military and commercial disposal at WIPP demonstrated that the two rely on somewhat different conditions for their legitimacy. The agency overlapped the legitimate authorities of the federal and state governments and gave itself the hopeless task of negotiating a new boundary between them. 50 references, 3 figures

  19. National radioactive waste repository site selection study. Phase 2. A report on public comment

    International Nuclear Information System (INIS)

    1995-11-01

    Agreement was reached in principle between State/Territory and the Commonwealth of Australia Governments that a suitable site for a radioactive wastes repository must be found. The discussion papers resulting from the Phase 1 and Phase 2 of the site selection study were released for public comment. The national repository will be for disposal of low level and short-lived intermediate level radioactive wastes streaming from the medical, research and industrial use of radioisotopes in Australia. The purpose of this report is to summarise and respond in general terms to comment received on the discussion paper -Phase 2 of the study. Forty five submissions were received. Of these: 18 supported the Phase 2 study approach and the concept of a national repository; 13 did not state a clear position but either requested more information or provided constructive comment on the siting process; 7 supported the site selection approach and the repository concept but suggested that the repository should not be sited in a particular area; 3 opposed the siting of the repository in their vicinity but not necessarily the repository concept and site selection approach; 4 opposed the concept of a national repository. This compares with 124 submissions on Phase 1 of the study, of which 57 opposed the national repository concept (52 of these were from letters elicited by Greenpeace) and 48 supported the establishment of a national repository and the site selection approach proposed. 3 figs

  20. Draft Technical Position Subtask 1.1: waste package performance after repository closure. Volume 1

    International Nuclear Information System (INIS)

    Davis, M.S.; Schweitzer, D.G.

    1983-08-01

    This document provides guidance to the DOE on the issues and information necessary for the NRC to evaluate waste package performance after repository closure. Minimal performance objectives of the waste package are required by proposed 10 CFR 60. This Draft Technical Position describes the various options available to the DOE for compliance and discusses advantages and disadvantages of various choices. Examples are discussed dealing with demonstrability, predictability and reasonable assurance. The types of performance are considered. The document summarizes presently identified high priority issues needed to evaluate waste package performance after repository closure. 20 references, 7 tables