WorldWideScience

Sample records for waste repository design

  1. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE #13- WASTE PACKAGE SELF SHIELDING

    Energy Technology Data Exchange (ETDEWEB)

    J. Owen

    1999-04-09

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes.

  2. Information base for waste repository design. Volume 3. Waste/rock interactions

    Energy Technology Data Exchange (ETDEWEB)

    Koplick, C.M.; Pentz, D.L.; Oston, S.G.; Talbot, R.

    1979-01-01

    This report describes the important effects resulting from interaction between radioactive waste and the rock in a nuclear waste repository. The state of the art in predicting waste/rock interactions is summarized. Where possible, independent numerical calculations have been performed. Recommendations are made pointing out areas which require additional research.

  3. Viability Assessment of a Repository at Yucca Mountain. Volume 2: Preliminary Design Concept for the Repository and Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This volume describes the major design features of the Monitored Geologic Repository. This document is not intended to provide an exhaustive, detailed description of the repository design. Rather, this document summarizes the major systems and primary elements of the design that are radiologically significant, and references the specific technical documents and design analyses wherein the details can be found. Not all portions of the design are at the same level of completeness. Highest priority has been given to assigning resources to advance the design of the Monitored Geologic Repository features that are important to radiological safety and/or waste isolation and for which there is no NRC licensing precedent. Those features that are important to radiological safety and/or waste isolation, but for which there is an NRC precedent, receive second priority. Systems and features that have no impact on radiological safety or waste isolation receive the lowest priority. This prioritization process, referred to as binning, is discussed in more detail in Section 2.3. Not every subject discussed in this volume is given equal treatment with regard to the level of detail provided. For example, less detail is provided for the surface facility design than for the subsurface and waste package designs. This different level of detail is intentional. Greater detail is provided for those functions, structures, systems, and components that play key roles with regard to protecting radiological health and safety and that are not common to existing nuclear facilities already licensed by NRC. A number of radiological subjects are not addressed in the VA, (e.g., environmental qualification of equipment). Environmental qualification of equipment and other radiological safety considerations will be addressed in the LA. Non-radiological safety considerations such as silica dust control and other occupational safety considerations are considered equally important but are not addressed in

  4. Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design

    Science.gov (United States)

    Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.

    2013-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6352A.

  5. Design of a high-level waste repository system for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Baeza, J.L.; Boerigter, S.T.; Broadbent, G.E.; Cabello, E.D.; Duran, V.B.; Hollaway, W.R.; Karlberg, R.P.; Siegel, M.J.; Simonson, S.A.

    1988-05-12

    This report presents a conceptual design for a High Level Waste disposal system for fuel discharged by US commercial power reactors, using the Yucca Mountain repository site recently designated by federal legislation. Principal features of the resulting conceptual design include use of unit trains for periodic removal of old spent fuel from at-reactor storage facilities, buffer storage at the repository site using dual purpose transportation/storage casks, repackaging of the spent fuel from the dual purpose transportation/storage casks directly into special-alloy disposal canisters as intact fuel assemblies, without rod consolidation, emplacement into a repository of modular design, use of excavation techniques that minimize disturbance, both mechanical and chemical, to the geologic environment, a unit rail mounted vehicle for both the transportation and emplacement of the canister from the surface facilities to the underground repository, and a cost-effectiveness computer model of Yucca Mountain and an independent cost evaluation by members of the design team. 31 refs., 58 figs., 15 tabs.

  6. Design criteria development for the structural stability of nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C. H. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Yu, T. S. [Daewoo Engineering Company, Sungnam (Korea, Republic of); Ko, H. M. [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    1990-11-15

    The objective of the present project is to develop design criteria for the structural stability of rock cavity for the underground repository are defined, according to which detailed descriptions for design methodologies, design stages and stability analysis of the cavity are made. The proposed criteria can be used as a guide for the preparation of design codes which are to be established as the site condition and technical emplacement procedure are fixed. The present report first reviews basic safety requirements and criteria of the underground disposal of nuclear wastes for the establishment of design concepts and stability analysis of the rock cavity. Important factors for the design are also described by considering characteristics of the wastes and underground facilities. The present project has investigated technical aspects on the design of underground structures based on the currently established underground construction technologies, and presented a proposal for design criteria for the structural stability of the nuclear waste repository. The proposed criteria consist of general provisions, geological exploration, rock classification, design process and methods, supporting system, analyses and instrumentation.

  7. SR 97 - Waste, repository design and sites. Background report to SR 97 SKB

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    SR 97 is a comprehensive analysis of long-term safety of a deep repository for spent nuclear fuel. The repository is assumed to be designed according to the KBS-3 method. Assessments are performed in SR 97 for three fictitious sites: Aberg, Beberg and Ceberg. One premise is that data used for assessment of the fictitious sites are to be taken from sites that have previously been investigated. The spent nuclear fuel is enclosed in copper canisters with an insert of cast iron. The canisters are emplaced in bored holes in the floor of the deposition tunnels. Around each canister, bentonite blocks are stacked which, after absorbing water and swelling, will isolate the canister from groundwater, hold the canister in place and retard transport of radionuclides from the canister to the surrounding rock. The spent nuclear fuel will emit heat fora long time, due to the decay heat. The maximum permissible temperature on the canister surface has been chosen at 100 deg C. The spacing between the deposition holes and between the deposition tunnels is adjusted site-specifically to meet this requirement. The thermal properties of the rock and the buffer material are of importance for how closely the deposition holes and tunnels can be spaced. After deposition, the deposition tunnels are backfilled with a mixture of bentonite and crushed rock. SR 97 examines above all the consequences of various scenarios and the handling of various types of uncertainties. The different repository sites illustrate normal properties for Swedish bedrock which are of importance for safety. To facilitate the work, the repositories on the three sites are configured as similarly as possible, which means for example that they are located at roughly the same depth and are fitted into the bedrock in a relatively similar fashion. Apart from the siting of a repository for spent nuclear fuel, the site may need to house a separate repository for other long-lived waste. This possibility has been considered in

  8. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

  9. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  10. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  11. Hydrothermal modeling for the efficient design of thermal loading in a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won-Jin, E-mail: wjcho@kaeri.re.kr; Kim, Jin-Seop; Choi, Heui-Joo

    2014-09-15

    Highlights: • Three-dimensional hydrothermal modeling for HLW repository is performed. • The model reduces the peak temperature in the repository by about 10 °C. • Decreasing the tunnel distance is more efficient to improve the disposal density. • The EDZ surrounding the deposition hole increases the peak temperature. • The peak temperature for the double-layer repository remains below the limit. - Abstract: The thermal analysis of a geological repository for nuclear waste using the three-dimensional hydrothermal model is performed. The hydrothermal model reduces the maximum peak temperature in the repository by about 10 °C compared to the heat conduction model with constant thermal conductivities. Decreasing the tunnel distance is more efficient than decreasing the deposition hole spacing to improve the disposal density for a given thermal load. The annular excavation damaged zone surrounding the deposition hole has a considerable effect on the peak temperature. The possibility of double-layer repository is analyzed from the viewpoint of the thermal constraints of the repository. The maximum peak temperature for the double-layer repository is slightly higher than that for the single-layer repository, but remains below the temperature limit.

  12. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 10. Repository preconceptual design studies: granite

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Volume 10 ''Repository Preconceptual Design Studies: Granite,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in granite. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/11, ''Drawings for Repository Preconceptual Design Studies: Granite.''

  13. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 8. Repository preconceptual design studies: salt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Volume 8 ''Repository Preconceptual Design Studies: Salt,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/9, ''Drawings for Repository Preconceptual Design Studies: Salt.''

  14. The design of the Bulgaria rad waste repository; Diseno del centro de almacenamiento de residuos radiactivos de Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Stefonova, I.; Petrov, I.; Navarro, M.; Sanchez, M.; Medinilla, G.

    2012-11-01

    In October 2011 a consortium composed by Westinghouse Engineering Spain SAU, ENRESA and DBE Technology GmbH was awarded a contract for the design of the Bulgaria rad waste repository. The facility, inspired in the spanish centre of El Cabril owned by ENRESA, will consist of a 66 reinforced concrete cells surface repository capable of receiving 18600 already conditioned waste containers of 20 t each, during 60 years, and the related auxiliary facilities and buildings. The project, representing a challenge because of the schedule and required level of detail, goes on fulfilling main milestones and getting customer satisfaction. (Author)

  15. Slovac Republic repository of radioactive waste

    Directory of Open Access Journals (Sweden)

    M. Bartko

    2014-01-01

    Full Text Available The Slovac Republic Repository of Radioactive Waste (radwaste in place Mochovce presents a multi-barrier repository of the surface type designed as an ultimate storage of treated solid and fixed, low-and very low-level radwaste generated during the operation and decommissioning of the nuclear power plants, in research institutes, laboratories and hospitals in the Slovak Republic. The isolation of the radwaste and retardation of the radionuclides are provided by the barrier system of the repository. To assess the complete system and parts of one of the most important barriers – the multi-barrier ultimate shielding of the repository – the model of the ultimate shielding of the repository was designed. The monitoring results of the model “ in situ“ will be applicable for projecting the ultimate shielding of the repository.

  16. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 14. Repository preconceptual design studies: basalt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in basalt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/15, ''Drawings for Repository Preconceptual Design Studies: Basalt.''

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 12. Repository preconceptual design studies: shale

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in shale. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/13, ''Drawings for Repository Preconceptual Design Studies: Shale.''

  18. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 22. Nuclear considerations for repository design

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/22, ''Nuclear Considerations for Repository Design,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. Included in this volume are baseline design considerations such as characteristics of canisters, drums, casks, overpacks, and shipping containers; maximum allowable and actual decay-heat levels; and canister radiation levels. Other topics include safeguard and protection considerations; occupational radiation exposure including ALARA programs; shielding of canisters, transporters and forklift trucks; monitoring considerations; mine water treatment; canister integrity; and criticality calculations.

  19. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  20. Radioactive waste repository of Cesium of Abadia de Goias. Construction and design; Repositorio de rejeitos radioativos de cesio - Abadia de Goias. Concepcao e projeto

    Energy Technology Data Exchange (ETDEWEB)

    Tranjan Filho, Alfredo [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Alves, Antonio Sergio de Martin; Santos, Cicero Durval Pacifici dos; Passos, Erivaldo Mario dos; Coutinho, Fernando Paulo Millen [NUCLEN Engenharia e Servicos S.A., Rio de Janeiro, RJ (Brazil)

    1997-12-31

    The main criteria, the methodology, the solutions and parameters that were utilized in the design of the Intermediate and Low Level Radioactive Waste Repository of Abadia de Goias are shortly described. The various design steps are analysed from the preparation of the Safety Analysis Report to the detailing engineering tasks. The safety analysis for the constructed repository had the goal of verifying the magnitude of radioecological impacts corresponding to idealized activity release scenarios, allowing also the possible effects of human intrusion in the repository. These safety studies are intrinsically connected to computer calculations envisaged to simulate the long term performance of the repository. (author) 18 refs., 7 figs., 7 tabs.

  1. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  2. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  3. Design information verification (DIV) of closed geological repositories (SAGOR activity 3c)[Nuclear waste disposal; Security; Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Myatt, J

    1998-02-01

    Following IAEA Advisory and Consultants Group meetings in September 1988 and in May 1991 respectively an IAEA multi-national Support Programme Task was initiated to consider the 'Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories' (SAGOR). A 'Technical Coordination Committee' (TCC) was set up with invited representatives from those Member State Support Programmes wishing to be involved. The joint programme, through the TCC, was given the task of studying the safeguards requirements in: conditioning plant (where the spent fuel is prepared for transfer to the repository); operating repositories (i.e., those in which the fuel is being emplaced); closed repositories. At the first meeting of the TCC in Washington in July 1994 the UK undertook to provide a study of the Design Information Verification (DIV) required in all three areas. For this activity the requirements, techniques and procedures for the Design Information Verification (DIV) of closed repositories have been considered. In completing the study the findings reported for activities 1b/c and 2c (descriptions of a Model Repository and Potential Diversion Paths, respectively) have been used in formulating any conclusions reached. It is also debatable as to whether this activity is strictly speaking DIV or is one of surveillance. As undeclared access can only be made to the emplacement areas of the repository by altering the physical makeup of the surrounding area; i.e. physically changing the 'design' of the surrounding area, however, this is deemed to be DIV. Although the techniques used appear to be those of surveillance they are being applied in this case as the tools of DIV. As with any facility there are a number of stages in its lifetime. For the purposes of this report the operating life of a repository is defined as being the time from inception to when it is finally decommissioned and sealed with the ground surface returned to being a

  4. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  5. A probabilistic approach to rock mechanical property characterization for nuclear waste repository design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kunsoo; Gao, Hang [Columbia Univ., New York, NY (United States)

    1996-04-01

    A probabilistic approach is proposed for the characterization of host rock mechanical properties at the Yucca Mountain site. This approach helps define the probability distribution of rock properties by utilizing extreme value statistics and Monte Carlo simulation. We analyze mechanical property data of tuff obtained by the NNWSI Project to assess the utility of the methodology. The analysis indicates that laboratory measured strength and deformation data of Calico Hills and Bullfrog tuffs follow an extremal. probability distribution (the third type asymptotic distribution of the smallest values). Monte Carlo simulation is carried out to estimate rock mass deformation moduli using a one-dimensional tuff model proposed by Zimmermann and Finley. We suggest that the results of these analyses be incorporated into the repository design.

  6. Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Hambley, D.F.; Russell, J.E.; Whitfield, R.G.; McGinnis, L.D.; Harrison, W.; Jacoby, C.H.; Bump, T.R.; Mraz, D.Z.; Busch, J.S.; Fischer, L.E.

    1987-02-01

    Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres Unit 4 Salt and maximize far-field geologic integrity during retrieval because by definition the far field will be unaffected by thermal and stress perturbations caused by remining; give greater emphasis to want objectives regarding cost and use of present technology; delete the following statements from pages 1-1 and 1-2 of the draft position paper: ''No thought or study was given to the impacts of this configuration (vertical emplacement) on repository construction or short and long-term performance of the site'' and ''Subsequent salt repository designs adopted the vertical emplacement configuration as the accepted method without further evaluation.''; delete App. E and lines 8-17 of page 1-4 of the draft position paper because they are inappropriate; adopt a formal decision-analysis procedure for the 17 identified emplacement modes; revise App. F of the impact study to more accurately reflect current technology; consider designing the underground layout to take advantage of stress-relief techniques; consider eliminating reference to fuel assemblies <10 yr ''out-of-reactor''; model the temperature distribution, assuming that the repository is constructed in an infinitely large salt body; state that the results of creep analyses must be considered tentative until they can be validated by in situ measurements; and reevaluate the peak radial stresses on the waste package so that the calculated stress conditions more closely approximate expected in situ conditions.

  7. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  8. Design information verification (DIV) of operating geological repositories (SAGOR activity 3b)[Nuclear waste disposal; Security; Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Myatt, J

    1998-02-01

    Following IAEA Advisory and Consultants Group meetings in September 1988 and in May 1991 respectively an IAEA multi-national Support Programme Task was initiated to consider the 'Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories' (SAGOR). A 'Technical Coordination Committee' (TCC) was set up with invited representatives from those Member State Support Programmes wishing to be involved. The joint programme, through the TCC, was given the task of studying the safeguards requirements in: conditioning plant (where the spent fuel is prepared for transfer to the repository); operating repositories (i.e. those in which the fuel is being emplaced); closed repositories. At the first meeting of the TCC in Washington in July 1994 the UK undertook to provide a study of the Design Information Verification (DIV) required in all three areas. For this activity the requirements, techniques and procedures for the Design Information Verification (DIV) of operating repositories have been considered. In completing the study the findings reported for activities 1b and 2b (descriptions of a Model Repository and Potential Diversion Paths, respectively) have been used in formulating any conclusions reached. As with any facility there are a number of stages in its lifetime. For the purposes of this report the operating life of a repository is deemed to extend from its inception to when it is finally closed and the ground surface returned to being a green field. Areas where repositories differ from other safeguarded activities are highlighted in the model facility described in SAGOR activity 1b/c. Their impact makes it inevitable that DIV will play a key role in safeguarding an operational repository. They include: continual expansion during its operational life (the only current possible exception is that being proposed in Finland), flexible design during construction as geological features may be exposed which require that the

  9. International perspective on repositories for low level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva (SKB International AB (Sweden))

    2011-12-15

    Nuclear energy production gives rise to different types of radioactive waste. The use of nuclear isotopes within the research, industry and medical sectors also generates radioactive waste. To protect man and the environment from radiation the waste is isolated and contained by deposition in repositories. These repositories may have various designs regarding location, barriers etc depending on the potential danger of the waste. In Sweden, low- and intermediate level waste (LILW) is disposed of in the SFR repository in Forsmark. The repository is located 60 metres down into the bedrock under the bottom of the sea and covered by 6 metres of water. It is planned to extend SFR to accommodate decommissioning waste from the dismantling of the Swedish nuclear power facilities and also for the additional operation waste caused by the planned prolonged operation time. When planning the extension consultations will be carried out with the host municipality, authorities, organisations and general public. In planning the extension, SKB has performed a worldwide compilation of how other countries have, or plan to, handle the final disposal of similar wastes. The aim of this report is to give a brief description of LILW repositories worldwide; including general brief descriptions of many facilities, descriptions of the waste and the barriers as well as safety assessments for a few chosen repositories which represent different designs. The latter is performed, where possible, to compare certain features against the Swedish SFR. To provide a background and context to this study, international organisations and conventions are also presented along with internationally accepted principles regarding the management of radioactive waste. Similar to SFR, suitable locations for the repositories have, in many countries, been found at sites that already have, or used to have nuclear activities, such as reactor sites. Abandoned and disused mines, such as the salt mines in Germany, also

  10. Technical basis for performance goals, design requirements, and material recommendations for the NNWSI [Nevada Nuclear Waste Storage Investigations] Repository Sealing Program

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A.; Kelsall, P.C.; Case, J.B.; Meyer, D.

    1987-09-01

    The objectives are to develop performance goals, to assess the need for seals, to define design requirements, and to recommend potential sealing materials for the sealing system. Performance goals are the allowable amounts of water that can enter the waste disposal areas directly from the rock mass above the repository and indirectly from shafts and ramps connecting to the underground facility. These goals are developed using a numerical model that calculates radionuclide releases. To determine the need for sealing, estimates of water flow into shafts, ramps, and the underground facility under anticipated conditions are developed and are compared with the performance goals. It is concluded that limited sealing measures, such as emplacement of shaft fill, are sufficient to properly isolate the radioactive waste in the repository. A broad range of sealing design options and associated hydrologic design requirements are proposed to provide a greater degree of assurance that the hydrologic performance goals can be met even if unanticipated hydrologic flows enter the waste disposal areas. The hydrologic design requirements are specific, hydraulic conductivity values selected for specific, seal design options to achieve the performance goals. Using these hydrologic design requirements and additional design requirements, preferred materials are identified for continued design and laboratory analyses. In arriving at these preferred materials, results from previous laboratory testing are briefly discussed. 96 refs., 48 figs., 28 tabs.

  11. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Randle

    2000-01-07

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and

  12. Siting Patterns of Nuclear Waste Repositories.

    Science.gov (United States)

    Solomon, Barry D.; Shelley, Fred M.

    1988-01-01

    Provides an inventory of international radioactive waste-management policies and repository siting decisions for North America, Central and South America, Europe, Asia, and Africa. This discussion stresses the important role of demographic, geologic, and political factors in siting decisions. (Author/BSR)

  13. Design information verification (DIV) of conditioning plant for geological repositories (SAGOR activity 3a)[Nuclear waste disposal; Security; Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Myatt, J

    1998-02-01

    Following IAEA Advisory and Consultants Group meetings in September 1988 and in May 1991 respectively an IAEA multi-national Support Programme Task was initiated to consider the 'Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories' (SAGOR). A Technical Coordination Committee (TCC) was set up with invited representatives from those Member State Support Programmes wishing to be involved. The joint programme, through the TCC, was given the task of studying the safeguards requirements in: conditioning plant (where the spent fuel is prepared for transfer to the repository); operating repositories (i.e. those in which the fuel is being emplaced); closed repositories. At the first meeting of the TCC in Washington in July 1994 the UK undertook to provide a study of the Design Information Verification (DIV) required in all three areas. For this activity the requirements, techniques and procedures for the Design Information Verification (DIV) of conditioning plant have been considered. In completing the study the findings reported for Activities 1a and 2a (descriptions of a Model Facility and Potential Diversion Paths, respectively) have been used in formulating any conclusions reached. The findings of Activity 1a show that a conditioning plant will be far simpler in concept than is a reprocessing plant. From this it must be concluded that DIV is unlikely to present any significant problems; experience based on reprocessing plant shows that it can be done both efficiently and effectively using proven techniques. In section 3.2, however, a number of valuable techniques which are currently being developed are also described. These have potential for effecting better DIV and could provide further evidence that the declared designs are (or are not) being fully complied with. More general DIV requirements are described in section 4. Like the detailed considerations mentioned above, these are no different from those already being applied

  14. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  15. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  16. Characteristics of potential repository wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.

  17. The study on safety facility criteria for radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Choi, M. H.; Han, S. H. and others [Dongbang Electron Industry Corporation, (Korea, Republic of)

    1992-12-15

    The radioactive waste repository are necessary to install the engineered safety systems to secure the safety for operation of the repository in the event of fire and earthquake. Since the development of safety facility criteria requires a thorough understanding about the characteristics of the engineered safety systems, we should investigate by means of literature survey and visit SKB. In particular, definition, composition of the systems, functional requirement of the systems, engineered safety systems of foreign countries, system design, operation and maintenance requirement should be investigated : fire protection system, ventilation system, drainage system, I and C system, electric system, radiation monitoring system. This proposed criteria consist of purpose, scope of application, ventilation system, fire protection system, drainage system, electric system and this proposed criteria can be applied as a basic reference for the final criteria.

  18. Locating a Radioactive Waste Repository in the Ring of Fire

    Science.gov (United States)

    Apted, Mick; Berryman, Kelvin; Chapman, Neil; Cloos, Mark; Connor, Chuck; Kitayama, Kazumi; Sparks, Steve; Tsuchi, Hiroyuki

    2004-11-01

    The scientific, technical, and sociopolitical challenges of finding a secure site for a geological repository for radioactive wastes have created a long and stony path for many countries. Japan carried out many years of research and development before taking its first steps in site selection. The Nuclear Waste Management Organization of Japan (NUMO) began looking for a high-level waste repository site (HLW, vitrified residue from reprocessing power reactor fuel) 2 years ago. Over the next 10-20 years, NUMO hopes to find a site to dispose of ~20,000 tons of HLW in a robustly engineered repository constructed at a depth of several hundred meters.

  19. Repository surface design site layout analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montalvo, H.R.

    1998-02-27

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond.

  20. Environmental Degradation of Materials for Nuclear Waste Repositories Engineered Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-12-24

    Several countries are considering geological repositories for the storage of nuclear waste. Most of the environments for these repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, copper, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  1. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Rebak

    2006-08-28

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  2. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-06-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  3. Web-based tribology design repository system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tribology design is one of the most important parts of mechanical product design as thestrength design. Unfortunately, because tribology design knowledge is often m ulti-disciplinary,complicated and piecemeal, it is therefore difficult for a mechanical designer to capture the neededtribology design knowledge. The concept of tribology design repository is proposed in this paper totry to address this problem. This paper presents an object-oriented knowledge representation lan-guage based on the modeling of tribology design component and it makes the complicated tribol-ogy knowledge represented has such advantages as inheritance, encapsulation, and consistency.A web-based triblogy design repository is then established and it enables the edition, retrieve,sharing and reuse of corporate tribology design knowledge in the repository from the Internet.

  4. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  5. Public concerns and choices regarding nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, W.L.; Nealey, S.M.

    1981-06-01

    Survey research on nuclear power issues conducted in the late 1970's has determined that nuclear waste management is now considered to be one of the most important nuclear power issues both by the US public and by key leadership groups. The purpose of this research was to determine the importance placed on specific issues associated with high-level waste disposal. In addition, policy option choices were asked regarding the siting of both low-level and high-level nuclear waste repositories. A purposive sampling strategy was used to select six groups of respondents. Averaged across the six respondent groups, the leakage of liquid wastes from storage tanks was seen as the most important high-level waste issue. There was also general agreement that the issue regarding water entering the final repository and carrying radioactive wastes away was second in importance. Overall, the third most important issue was the corrosion of the metal containers used in the high-level waste repository. There was general agreement among groups that the fourth most important issue was reducing safety to cut costs. The fifth most important issue was radioactive waste transportation accidents. Overall, the issues ranked sixth and seventh were, respectively, workers' safety and earthquakes damaging the repository and releasing radioactivity. The eighth most important issue, overall, was regarding explosions in the repository from too much radioactivity, which is something that is not possible. There was general agreement across all six respondent groups that the two least important issues involved people accidentally digging into the site and the issue that the repository might cost too much and would therefore raise electricity bills. These data indicate that the concerns of nuclear waste technologists and other public groups do not always overlap.

  6. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  7. Final repository for Denmark's low- and intermediate level radioactive waste

    Science.gov (United States)

    Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.

    2012-12-01

    Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Risø should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Risø, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.

  8. Archaeological data as a basis for repository marker design

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, M.F.

    1982-10-01

    This report concerns the development of a marking system for a nuclear waste repository which is very likely to survive for 10,000 years. In order to provide a background on the subject, and for the preliminary design presented in this report, a discussion is presented about the issues involved in human interference with the repository system and the communication of information. A separate chapter summarizes six ancient man-made monuments including: materials, effects of associated textual information on our understanding of the monument, and other features of the ancient monument relevant to marking a repository site. The information presented in the two chapters is used to provide the basis and rationale for a preliminary marker system design presented in a final chapter. 86 refs., 22 figs., 1 tab.

  9. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A. [Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.

  10. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  11. GIS for the needs of the Radioactive Waste Repository Authority

    Directory of Open Access Journals (Sweden)

    Jitka Mikšová

    2007-06-01

    Full Text Available The Radioactive Waste Repository Authority (RAWRA is a state organisation responsible for the management of activities related to the disposal of all existing and future radioactive waste and spent nuclear fuel classed as a waste in Czech Republic. Worldwide, a deep geological repository is considered the highest degree of safety for a nuclear waste disposal. Such a repository has to be built in a stable geological environment ensuring the isolation of the stored radioactive waste from the surrounding environment for a long period of time. The selection of suitable site for the deep geological repository construction is a complicated and long term process. Considering this fact and also in respect to an assumed volume of varied datasets the GIS RAWRA was established to ensure convenient management and availability of data containing spatial information.The system is based on ESRI (ArcInfo including extensions, ArcSDE, ArcIMS, Leica Geosystems (Image Analysis and Microsoft software (MS SQL Server. Resulting datasets from six recommended potentially suitable sites for the location of a geological repository have been incorporated into the geodatabase to date. The necessary analysis was made using ESRI software tools and, in addition, custom applications were developed including the metadata editor, etc. This analysis was carried out with respect to existing geological and non-geological criteria defined for a nuclear waste repository. Finally, all six investigated sites with a total area of 240 km2 were reduced in area, each of them resulting in an area of approximately 10km2 for further detailed characterisation.

  12. Expected brine movement at potential nuclear waste repository salt sites

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  13. Reliable predictions of waste performance in a geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T.H.; Chambre, P.L.

    1985-08-01

    Establishing reliable estimates of long-term performance of a waste repository requires emphasis upon valid theories to predict performance. Predicting rates that radionuclides are released from waste packages cannot rest upon empirical extrapolations of laboratory leach data. Reliable predictions can be based on simple bounding theoretical models, such as solubility-limited bulk-flow, if the assumed parameters are reliably known or defensibly conservative. Wherever possible, performance analysis should proceed beyond simple bounding calculations to obtain more realistic - and usually more favorable - estimates of expected performance. Desire for greater realism must be balanced against increasing uncertainties in prediction and loss of reliability. Theoretical predictions of release rate based on mass-transfer analysis are bounding and the theory can be verified. Postulated repository analogues to simulate laboratory leach experiments introduce arbitrary and fictitious repository parameters and are shown not to agree with well-established theory. 34 refs., 3 figs., 2 tabs.

  14. Expected near-field thermal environments in a sequentially loaded spent-fuel or high-level waste repository in salt

    Energy Technology Data Exchange (ETDEWEB)

    Rickertsen, L.D.; Arbital, J.G.; Claiborne, H.C.

    1982-01-01

    This report describes the effect of realistic waste emplacement schedules on repository thermal environments. Virtually all estimates to date have been based on instantaneous loading of wastes having uniform properties throughout the repository. However, more realistic scenarios involving sequential emplacement of wastes reflect the gradual filling of the repository over its lifetime. These cases provide temperatures that can be less extreme than with the simple approximation. At isolated locations in the repository, the temperatures approach the instantaneous-loading limit. However, for most of the repository, temperature rises in the near-field are 10 to 40 years behind the conservative estimates depending on the waste type and the location in the repository. Results are presented for both spent-fuel and high-level reprocessing waste repositories in salt, for a regional repository concept, and for a single national repository concept. The national repository is filled sooner and therefore more closely approximates the instantaneously loaded repository. However, temperatures in the near-field are still 20/sup 0/C or more below the values in the simple model for 40 years after startup of repository emplacement operations. The results suggest that current repository design concepts based on the instantaneous-loading predictions are very conservative. Therefore, experiments to monitor temperatures in a test and evaluation facility, for example, will need to take into account the reduced temperatures in order to provide data used in predicting repository performance.

  15. Site suitability criteria for solidified high level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-03-07

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized. (JRD)

  16. Review of the potential effects of alkaline plume migration from a cementitious repository for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.

    1997-09-01

    Extensive use of cement and concrete is envisaged in the construction of geological repositories for low and intermediate-level radioactive wastes, both for structural, and encapsulation and backfilling purposes. Saturation of these materials with groundwater may occur in the post-closure period of disposal, producing a hyperalkaline pore fluid with a pH in the range 10-13.5. These pore fluids have the potential to migrate from the repository according to local groundwater flow conditions and react chemically with the host rock. These chemical reactions may affect the rock`s capacity to retard the migration of radionuclides released from the repository after the degradation of the waste packages. The effects of these chemical reactions on the behaviour of the repository rock as a barrier to waste migration need to be investigated for the purposes of assessing the safety of the repository design (so-called `safety assessment` or `performance assessment`). The objectives of the work reported here were to: identify those processes influencing radionuclide mobility in the geosphere which could be affected by plume migration; review literature relevant to alkali-rock reaction; contact organisations carrying out relevant research and summarise their current and future activities; and make recommendations how the effects of plume migration can be incorporated into models of repository performance assessment. (author).

  17. Characteristics of potential repository wastes. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This document, and its associated appendices and microcomputer (PC) data bases, constitutes the reference OCRWM data base of physical and radiological characteristics data of radioactive wastes. This Characteristics Data Base (CDB) system includes data on spent nuclear fuel and high-level waste (HLW), which clearly require geologic disposal, and other wastes which may require long-term isolation, such as sealed radioisotope sources. The data base system was developed for OCRWM by the CDB Project at Oak Ridge National Laboratory. Various principal or official sources of these data provided primary information to the CDB Project which then used the ORIGEN2 computer code to calculate radiological properties. The data have been qualified by an OCRWM-sponsored peer review as suitable for quality-affecting work meeting the requirements of OCRWM`s Quality Assurance Program. The wastes characterized in this report include: light-water reactor (LWR) spent fuel and immobilized HLW.

  18. Generic repository design concepts and thermal analysis (FY11).

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the

  19. Methods of calculating the post-closure performance of high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. (ed.)

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  20. THE USE OF PETROPHYSICAL DATA FOR THE PERMEABILITY ASSESSMENT OF AN UNDERGROUND NUCLEAR WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    Domagoj Vulin

    2012-07-01

    Full Text Available Nuclear waste repositories should be designed in order to mantain the waste for several thousand years. Although the waste is stored in tanks that can persist the most extreme conditions, it is necessary to ensure that gases that can come into existence nearby the storage tank will not spread far from the repository well. Technology that was developed by petroleum exploration and production industry is at sofisticated enough to determine all geological and petrophysical aspects of the waste disposal. The main task is to determine if there is possibility of leakage pathways in the repository rock. That requires exploration in order to define geological model, by utilisation of well logging, 3D and 4D seismic measurements. Petrophysical measurements give data required for well-log calibration and input data for reservoir flow calculations and simulations. Well testing of pressure changes can give validation of lab data, and can be use din order to correct input data for flow calculations. Because of semi-empirical nature of the measured data interpretation, some testing and calculation methods should be slightly modified for nuclear waste repository (the paper is published in Croatian.

  1. Thermal calculations pertaining to a proposed Yucca Mountain nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.L.; Montan, D.N.

    1990-02-01

    In support to the Yucca Mountain Project waste package and repository design efforts, LLNL conducted heat-transfer modeling of the volcanic tuff in the repository. The analyses quantify: the thermal response of a finite size, uniformly loaded repository where each panel of emplacement drifts contains the same type of heat source the response given a realistic waste stream inventory to show the effect of inter-panel variations; and the intra-panel response for various realistic distributions of sources within the panel. The calculations, using the PLUS family of computer codes, are based on a linear superposition, in time and in space, of the analytic solution of individual, constant output point sources located in an infinite, isotropic, and homogeneous medium with constant thermal properties. 8 refs., 22 figs., 3 tabs.

  2. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.

  3. Current developments in container design testing for the Konrad repository

    Energy Technology Data Exchange (ETDEWEB)

    Voelzke, Holger; Nieslony, Gregor; Noack, Volker; Hagenow, Peter; Kovacs, Oliver [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2012-05-15

    In 2002, the Konrad repository was licensed as a repository for radioactive waste generating no heat. That permit subsequently became the object of litigation and was confirmed by a court of last resort as late as in 2007. The Federal Office of Radiation Protection (BfS) then started planning and converting the former iron ore mine into a repository. The licensed repository volume is 303,000 m{sup 3} based on estimates of expected waste arisings. The mine proper would offer a much larger volume. However, cask emplacement can be started only after completion of the repository which, according to the present status, will not be before the end of this decade. Nevertheless, there is great interest even now in conditioning and packaging for repository storage of the radioactive waste planned for Konrad, which also requires casks type tested by the Federal Institute of Materials Testing (BAM) and approved by the BfS. The key items in the license for the repository are comprehensive requirements to be met by waste forms and casks. As far as continuous revision of repository requirements and consideration of materials hazardous to water are concerned, it is assumed that the key requirements applying to type tests of casks with respect to waste forms and casks will be affected by this either not at all or only very slightly. (orig.)

  4. Can clays ensure nuclear waste repositories?

    Science.gov (United States)

    Zaoui, A; Sekkal, W

    2015-03-06

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation.

  5. Can Indigenous and Introduced Bacteria Affect the Performance of an Engineered Barrier System in the Designated Yucca Mountain Nuclear Waste Repository?

    Science.gov (United States)

    Martin, S.; Dias, V.; Carrillo, C.; van Buuren, N.; Horn, J.

    2002-12-01

    The U.S. Department of Energy has been tasked with establishing a high level nuclear waste repository at Yucca Mountain, NV and assessing the effects of long-term storage of the waste. Studies are being performed to identify the role of microorganisms, both indigenous and introduced during the construction phase, to waste package material corrosion. Some microorganisms produce by-products that may be deleterious to waste package materials, such as bacteria that produce hydrogen and mineral acids, or reduce sulfate, and fungi that produce organic acids. Long-term and accelerated tests in continuous flow reactors were conducted to assess the biogenic effects on waste package materials, and batch tests were implemented to identify corrosion products and biochemical changes to ground water chemistry. Surfacial and gravimetric analyses of the metal samples coupled with water chemistry analysis allow us to determine the overall contribution that organisms may make to waste package corrosion. Metal samples were periodically removed from the reactors and examined with scanning electron and atomic force microscopy. Effluent samples were also collected and analyzed using inductively coupled plasma spectroscopy-mass spectrometry and ion chromatography. Sterile controls were run in parallel to understand abiotic contributions to metals corrosion. In addition, we have characterized the microbial community at Yucca Mountain in order to define the physiological potential of the organisms extant at the site and evaluate the conditions required for growth (we have determined that water availability will be the major limiting factor). Analysis of the fluids from batch tests containing the Alloy 22 (Ni-Cr-Mo alloy) metal suggest the solubilization of Mo, albeit in very low concentrations. Because we did not observe the solubilization of other metal components, it is unclear whether selective solubilization or dealloying is occurring. Endpoint analysis of precipitated particles in the

  6. Limits on the thermal energy release from radioactive wastes in a mined geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.A.

    1983-03-01

    The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300/sup 0/C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed.

  7. Schematic designs for penetration seals for a repository in the Paradox Basin

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, P.C.; Meyer, D.; Case, J.B.; Coons, W.E.

    1985-12-01

    The isolation of radioactive wastes in geologic repositories requires that human-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the stratigraphy of the Paradox Basin. The designs are presented for extensive peer review and will be updated as conceptual designs if the Paraodx Basin is selected as a candidate repository site. The principal components used in the shaft seal system are concrete bulkheads interspersed with highly compacted bentonite-rich earth fill. In the repository-level tunnels and rooms, the principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate in response to closure of the repository rooms, to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For Paradox Basin Cycle 6 salt, analyses indictate that this process will require approximately 300 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 140 years for a seal located in a main passageway within the repository. These analyses are based on uncertain laboratory data regarding intact salt creep rates and crushed salt consolidation characteristics, and must be regarded as preliminary.

  8. Schematic designs for penetration seals for a repository in the Permian Basin. [Deaf Smith County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, P.C.; Case, J.B.; Coons, W.E.; Franzone, J.G.; Meyer, D.

    1985-12-01

    The isolation of radioactive wastes in geologic repositories requires that human-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the stratigraphy of the Permian Basin. The designs are presented for extensive peer review and will be updated as conceptual designs if the Permian Basin is selected as a candidate repository site. The principal material used in the seal system in the repository-level rooms and tunnels is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate in response to closure of the repository rooms, to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For Permian Basin Unit 4 salt, analyses indicate that this process will require approximately 700 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 200 years for a seal located in a main passageway within the repository. These analyses are based on uncertain laboratory data regarding intact salt creep rates and crushed salt consolidation characteristics, and must be regarded as preliminary. Bulkheads composed of concrete, as well as bentonite-rich earth fill, are also included in the seal system as components which will have low permeability during the period required for salt consolidation.

  9. On-line remote monitoring of radioactive waste repositories

    Directory of Open Access Journals (Sweden)

    Calì Claudio

    2014-01-01

    Full Text Available A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy. Such a development is currently under way, with the installation foreseen within 2014.

  10. Summary report of first and foreign high-level waste repository concepts; Technical report, working draft 001

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, P.M.

    1987-11-04

    Reference repository concepts designs adopted by domestic and foreign waste disposal programs are reviewed. Designs fall into three basic categories: deep borehole from the surface; disposal in boreholes drilled from underground excavations; and disposal in horizontal tunnels or drifts. The repository concepts developed in Sweden, Switzerland, Finland, Canada, France, Japan, United Kingdom, Belgium, Italy, Holland, Denmark, West Germany and the United States are described. 140 refs., 315 figs., 19 tabs.

  11. Simulated geophysical monitoring of radioactive waste repository barriers

    Science.gov (United States)

    Biryukov, Anton

    Estimation of attenuation of the elastic waves in clays and high clay-content rocks is important for the quality of geophysical methods relying on processing the recorded waveforms. Time-lapse imaging is planned to be employed for monitoring of the condition of high-radioactive waste repositories. Engineers can analyze and optimize configuration of the monitoring system using numerical modelling tools. The reliability of modeling requires proper calibration. The purpose of this thesis is threefold: (i) propose a calibration methodology for the wave propagation tools based on the experimental data, (ii) estimate the attenuation in bentonite as a function of temperature and water content, and (iii) investigate the feasibility of active sonic monitoring of the engineered barriers. The results suggest that pronounced inelastic behavior of bentonite has to be taken into account in geophysical modeling and analysis. The repository--scale models confirm that active sonic monitoring is capable of depicting physical changes in the bentonite barrier.

  12. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  13. Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.

    1982-09-01

    In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed.

  14. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  15. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie A. [Washington State Univ., Pullman, WA (United States); Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  16. Review of important rock mechanics studies required for underground high level nuclear waste repository program

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J

    2007-01-15

    Disposal concept adapting room and pillar method, which is a confirmed technique in mining and tunnel construction for long time, has advantages at cost, safety, technical feasibility, flexibility, and international cooperation point of views. Then the important rock mechanics principals and in situ and laboratory tests for understanding the behavior of rock, buffer, and backfill as well as their interactions will be reviewed. The accurate understanding of them is important for developing a safe disposal concept and successful operation of underground repository for permanent disposal of radioactive wastes. First of all, In this study, current status of rock mechanics studies for HLW disposal in foreign countries such as Sweden, USA, Canada, Finland, Japan, and France were reviewed. After then the in situ and laboratory tests for site characterization were summarized. Furthermore, rock mechanics studies required during the whole procedure for the disposal project from repository design to the final closure will be reviewed systematically. This study will help for developing a disposal system including site selection, repository design, operation, maintenance, and closure of a repository in deep underground rock. By introducing the required rock mechanics tests at different stages, it would be helpful from the planning stage to the operation stage of a radioactive waste disposal project.

  17. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    1999-12-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk.

  18. Fabrication and closure development of nuclear waste containers for storage at the Yucca Mountain, Nevada repository

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.W.; Nelson, T.A. [Lawrence Livermore National Lab., CA (USA); Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O. [Babcock and Wilcox Co., New Orleans, LA (USA)

    1989-04-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock & Wilcox (B & W) is involved with the YMP as a subcontractor to LLNL. B & W`s role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 1 fig., 7 tabs.

  19. Schematic designs for penetration seals for a reference repository in bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, P.C.; Case, J.B.; Meyer, D.; Coons, W.E.

    1982-11-01

    The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the straitigraphy of southeastern New Mexico. The designs are presented for extensive peer review and will be updated as site-specific conceptual designs when a site for a repository in salt has been selected. The principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate as the repository rooms creep close to the degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For southeastern New Mexico salt, analyses indicate that this process will require approximately 1000 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 400 years for a seal located in an access tunnel within the repository. Bulkheads composed of contrete or salt bricks are also included in the seal system as components which will have low permeability during the period required for salt consolidation.

  20. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  1. Transient boundary conditions in the frame of THM-processes at nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Schanz Tom

    2016-01-01

    Full Text Available In nuclear waste repositories, initially unsaturated buffer is subjected to constant heat emitted by waste canister in conjunction with peripheral hydration through water from host rock. The transient hydration process can be potraied as transformation of initial heterogeneity towards homogeneity as final stage. In this context, this paper addresses the key issue of hydro mechanical behaviour of compacted buffer in context of clay microstructure and its evolution under repository relevant loading paths and material heterogeneity. This paper also introduces a unique column experiment facility available at Ruhr Universität Bochum, Germany. The facility has been designed as a forerunner of field scale testing program to simulate the transient hydration process of compacted buffer as per German reference disposal concept. The device is unique in terms of having proficiency to capture the transient material response under various possible repository relevant loading paths with higher precision level by monitor the key parameters like temperature, total suction, water content and axial & radial swelling pressure at three different sections along the length of compacted soil sample. In general, a larger spectrum of loading paths/scenarios, which may arise in the nuclear repository, can be covered precisely with existing device.

  2. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  3. The challenge of long-term participatory repository governance. Lessons learned for high level radioactive waste and spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Landstroem, Catharina [East Anglia Univ., Norwich (United Kingdom). School of Environmental Sciences; Barbier, Jan-Willem [Antwerp Univ. (Belgium)

    2012-12-15

    Voluntaristic siting procedures for deep geological repositories are becoming increasingly common; they reconfigure the relationship of repositories and society in ways that have implications for the long-term governance of these facilities. This paper identifies three challenges emerging in relation to this question: principles of monitoring, repository content, and facility closure. This paper discusses them in a comparison with similar challenges being addressed in Belgian partnerships founded to facilitate the siting and design of a low- and intermediate level short lived waste repository. The empirical exploration confirms the importance of securing stakeholder engagement throughout the repository lifecycle, for which there is a need to develop knowledge about how to encourage long-term democratic governance systems.

  4. Numerical modeling of rock stresses within a basaltic nuclear waste repository. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, M.P.; Hocking, G.

    1978-10-01

    The modeling undertaken during this project incorporated a wide range of problems that impact the design of the waste repository. Interaction of groundwater, heat and stress were considered on a regional scale, whereas on the room and canister scale thermo-mechanical analyses were undertaken. In the Phase II report, preliminary guidelines for waste densities were established based primarily on short-term stress criteria required to maintain stability during the retrievability period. Additional analyses are required to evaluate the effect of joints, borehole linings, room support and ventilation on these preliminary waste loading densities. The regional analyses did not indicate any adverse effect that could control the allowable waste loading densities. However, further refinements of geologic structure, hydrologic models, seismicity and possible induced seismicity are required before firm estimates of the loading densities can be made.

  5. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste.

  6. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  7. Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    Science.gov (United States)

    Whitney, John W.; O'Leary, Dennis W.

    1993-01-01

    Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.

  8. Design and production of the KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Moren, Lena

    2010-12-15

    The report contains the common basis for a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report presents the role of the Production reports within the safety report and their common purposes and objectives. An important part of the report is to present the background and sources to the principles to be applied in the design, the functions of the KBS-3 repository and the barrier functions the engineered barriers and rock. Further, the methodology to substantiate detailed design premises for the engineered barriers, underground openings and other parts of the KBS-3 repository is presented. The report also gives an overview of the KBS-3 system and its facilities and the production lines for the spent fuel, the engineered barriers and underground openings. Finally, an introduction to quality management, safety classification and their application is given

  9. Design aspects of the alpha repository. II. Conceptual layouts of underground storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Grams, W.H.

    1975-06-30

    Five conceptual repository layouts are presented: linear repository, 1 panel; bow tie repository, 2 panels; maltese cross repository, 4 panels; snowflake repository; 5 panels, and sash window repository, 8 panels. The layouts are compared with respect to excavation requirements, haulage distances, ventilation flow path designs, and safety features. (LK)

  10. Database modeling and environmental information for a radioactive waste repository site

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. M.; Rhee, C. G.; Park, J. B.; Lee, H. J.; Kim, Chang Lak [Korea Hydro and Nuclear Power Co., Ltd., Taejon (Korea, Republic of)

    2004-06-01

    For the safe management of nuclear facilities, including a radioactive waste repository, data about the facility site and the surrounding environment must be collected and managed systematically. This is particularly true for a radwaste repository, which has to be institutionally controlled for a long period after closure. The objectives of this study are (1) to establish a systematical management plan for information about a radwaste repository site and its environment, and (2) to design a database management program for this information, based on the Relative DataBase Management System (RDBMS). The spatial data are designed by the geo database, which is a new object, based on the RDBMS, to manage spatial information related to the database. To meet this requirement, a new program called 'Site Information and Total Environmental data management System (SITES)' is being developed. The scope that produced from the first step of the present study for development of the SITES is introduced. The database is designed to combine spatial and attribute data, and is designed for the establishment of the Geographic Information System (GIS). The hardware and software systems are designed with consideration given to the total data management of the items within the radioactive environment.

  11. Repository Sealing Program Plan: repository in salt

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, P.C.; Coons, W.E.; Meyer, D.

    1983-01-01

    The isolation of nuclear wastes in deep, mined repositories will require the sealing of all penetrations such as shafts, tunnels, or boreholes into or nearby the repository. This Repository Sealing Program Plan describes the technical programs required to complete seal designs for a repository in salt prior to license application in 1988. The plan examines the current schematic seal designs for a repository in salt and identifies seven major technical programs which are required to advance the designs to the status required for licensing: (1) update designs to incorporate site-specific geologic and hydrologic characteristics; (2) reference designs to site-specific repository designs; (3) develop site-specific performance requirements; (4) salt consolidation testing and modeling; (5) materials development; (6) design analyses; (7) verification testing. Scedules for each of these programs are keyed to governing seal design and ONWI milestones. Conceptual seal designs will be completed in FY 84 and preliminary seal designs in FY 87.

  12. Analysis of stresses on the 1st phase support of the monitoring drifts of the radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Hatala Jozef

    1999-09-01

    Full Text Available In the paper, the stability analysis of the radioactive waste repository monitoring drifts’ support by means of the numerical modelling - finite element method is described. The aim of this analysis was to judge to what extent the designed 1st phase support’s parameters correspond with the geomechanical conditions determined by the engineering-geological survey.

  13. Schematic designs for penetration seals for a repository in Richton Dome. [Richton Dome

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, P.C.; Case, J.B.; Meyer, D.; Franzone, J.G.; Coons, W.E.

    1985-12-01

    The isolation of radioactive wastes in geologic repositories requires that human-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in dome salt referenced to the geology of the Richton Dome in Mississippi. The designs are presented for extensive peer review and will be updated as conceptual designs if the Richton Dome is selected as a candidate repository site. The principal components of the seal system are concrete bulkheads and dense earth backfill placed in salt and anhydrite horizons in the shafts and in the tunnels in the shaft pillar. Crushed salt backfill is placed throughout the disposal areas. Close to the waste, this backfill should consolidate in response to closure of the rooms, resulting in effective encapsulation of the waste within a period of about 1000 years. Analyses based on a limited amount of laboratory testing indicate that consolidation rates will be relatively slow at locations further removed from the waste. Rates of consolidation are slow because of the slow-creeping properties of the Richton Dome salt and because of the relatively shallow (1900 feet) repository depth.

  14. Radionuclide transport behavior in a generic geological radioactive waste repository.

    Science.gov (United States)

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  15. Modeling Hydrogen-Induced Cracking of Titanium Alloys in Nuclear Waste Repository Environments

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-09-08

    This paper reviews the current understanding of hydrogen-induced cracking (HIC) of Ti Grade 7 and other relevant titanium alloys within the context of the current waste package design for the repository environmental conditions anticipated within the Yucca Mountain repository. The review concentrates on corrosion processes possible in the aqueous environments expected within this site. A brief background discussion of the relevant properties of titanium alloys, the hydrogen absorption process, and the properties of passive film on titanium alloys is presented as the basis for the subsequent discussion of model developments. The key corrosion processes that could occur are addressed individually. Subsequently, the expected corrosion performance of these alloys under the specific environmental conditions anticipated at Yucca Mountain is considered. It can be concluded that, based on the conservative modeling approaches adopted, hydrogen-induced cracking of titanium alloys will not occur under nuclear waste repository conditions since there will not be sufficient hydrogen in the alloy after 10,000 years of emplacement.

  16. Garnet nuclear waste forms – Solubility at repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, F.A., E-mail: floriec@lanl.gov [EES-14, Los Alamos National Laboratory, NM 87545 (United States); Scott, B.L. [MPA-MSID, Los Alamos National Laboratory, NM 87545 (United States); Xu, H. [EES-14, Los Alamos National Laboratory, NM 87545 (United States); Feller, R.K. [Effect Materials Research Group, BASF Corporation, 500 White Plains Road, Tarrytown, NY 10591 (United States)

    2014-01-15

    Highlights: • Rare-earth elements are a significant waste stream produced by nuclear fuel cycles. • Suitability of garnets as potential waste forms. • Single-crystal X-ray structural refinements for grossular, LuAG and YAG. • Garnets have low solubility, flexible crystal structure to take on large cations. • Demonstrate garnets are potentially robust waste forms for radioactive REE. -- Abstract: Radioactive rare-earth elements (REEs) constitute a significant waste stream produced from modified open and full nuclear fuel cycles. Immobilization of these REE radionuclides is thus important for sustainable nuclear energy growth. In this work, we investigated the suitability of garnets as potential waste forms for REEs by measuring their aqueous stability at repository conditions. Three garnet samples, including one natural grossular (Ca{sub 3}Al{sub 2}Si{sub 3}O{sub 12}) and two synthetic phases (LuAG – Lu{sub 3}Al{sub 5}O{sub 12} and YAG – Y{sub 3}Al{sub 5}O{sub 12}), were studied. Single-crystal X-ray structural refinements show that the unit-cell volumes increase from 1657.19 Å{sup 3} for grossular to 1679.8 Å{sup 3} for LuAG and to 1721.7 Å{sup 3} for YAG. This trend is due to increases in ionic radii in both the 8-coordinated X (from Ca to Lu to Y) and 4-coordinated Z (from Si to Al) cations. Hydrothermal experiments of the three samples were performed at 200 °C and 150 bar for 4 weeks using water and brine solutions to evaluate their solubility. The natural grossular sample exhibited Al leach rates ranging from 2.5 × 10{sup −4} to 6.43 × 10{sup −5} g/L·day and Ca leach rates from 1.39 × 10{sup −3} to 4.57 × 10{sup −3} g/L·day, indicating incongruent nature of the cation dissolution. The LuAG sample exhibited Lu leach rates of 3.73 × 10{sup −4} to 2.19 × 10{sup −4} g/L·day, and the YAG sample had Y leach rates of 1.29 × 10{sup −4} to 5.64 × 10{sup −5} g/L·day. Although these samples are generally more soluble in

  17. Space Telecommunications Radio System (STRS) Application Repository Design and Analysis

    Science.gov (United States)

    Handler, Louis M.

    2013-01-01

    The Space Telecommunications Radio System (STRS) Application Repository Design and Analysis document describes the STRS application repository for software-defined radio (SDR) applications intended to be compliant to the STRS Architecture Standard. The document provides information about the submission of artifacts to the STRS application repository, to provide information to the potential users of that information, and for the systems engineer to understand the requirements, concepts, and approach to the STRS application repository. The STRS application repository is intended to capture knowledge, documents, and other artifacts for each waveform application or other application outside of its project so that when the project ends, the knowledge is retained. The document describes the transmission of technology from mission to mission capturing lessons learned that are used for continuous improvement across projects and supporting NASA Procedural Requirements (NPRs) for performing software engineering projects and NASAs release process.

  18. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  19. Preliminary safety evaluation of an aircraft impact on a near-surface radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, R.; Forasassi, G.; Pugliese, G. [Department of Industrial and Civil Engineering (DICI), University of Pisa, Pisa (Italy)

    2013-07-01

    The aircraft impact accident has become very significant in the design of a nuclear facilities, particularly, after the tragic September 2001 event, that raised the public concern about the potential damaging effects that the impact of a large civilian airplane could bring in safety relevant structures. The aim of this study is therefore to preliminarily evaluate the global response and the structural effects induced by the impact of a military or commercial airplane (actually considered as a 'beyond design basis' event) into a near surface radioactive waste (RWs) disposal facility. The safety evaluation was carried out according to the International safety and design guidelines and in agreement with the stress tests requirements for the security track. To achieve the purpose, a lay out and a scheme of a possible near surface repository, like for example those of the El Cabril one, were taken into account. In order to preliminarily perform a reliable analysis of such a large-scale structure and to determine the structural effects induced by such a types of impulsive loads, a realistic, but still operable, numerical model with suitable materials characteristics was implemented by means of FEM codes. In the carried out structural analyses, the RWs repository was considered a 'robust' target, due to its thicker walls and main constitutive materials (steel and reinforced concrete). In addition to adequately represent the dynamic response of repository under crashing, relevant physical phenomena (i.e. penetration, spalling, etc.) were simulated and analysed. The preliminary assessment of the effects induced by the dynamic/impulsive loads allowed generally to verify the residual strength capability of the repository considered. The obtained preliminary results highlighted a remarkable potential to withstand the impact of military/large commercial aircraft, even in presence of ongoing concrete progressive failure (some penetration and spalling of the

  20. Attenuation of elastic waves in bentonite and monitoring of radioactive waste repositories

    Science.gov (United States)

    Biryukov, A.; Tisato, N.; Grasselli, G.

    2016-04-01

    Deep geological repositories, isolated from the geosphere by an engineered bentonite barrier, are currently considered the safest solution for high-level radioactive waste (HLRW) disposal. As the physical conditions and properties of the bentonite barrier are anticipated to change with time, seismic tomography was suggested as a viable technique to monitor the physical state and integrity of the barrier and to timely detect any unforeseen failure. To do so, the seismic monitoring system needs to be optimized, and this can be achieved by conducting numerical simulations of wave propagation in the repository geometry. Previous studies treated bentonite as an elastic medium, whereas recent experimental investigations indicate its pronounced viscoelastic behaviour. The aims of this contribution are (i) to numerically estimate the effective attenuation of bentonite as a function of temperature T and water content Wc, so that synthetic data can accurately reproduce experimental traces and (ii) assess the feasibility and limitation of the HLRW repository monitoring by simulating the propagation of sonic waves in a realistic repository geometry. A finite difference method was utilized to simulate the wave propagation in experimental and repository setups. First, the input of the viscoelastic model was varied to achieve a match between experimental and numerical traces. The routine was repeated for several values of Wc and T, so that quality factors Qp(Wc, T) and Qs(Wc, T) were obtained. Then, the full-scale monitoring procedure was simulated for six scenarios, representing the evolution of bentonite's physical state. The estimated Qp and Qs exhibited a minimum at Wc = 20 per cent and higher sensitivity to Wc, rather than T, suggesting that pronounced inelasticity of the clay has to be taken into account in geophysical modelling and analysis. The repository-model traces confirm that active seismic monitoring is, in principle, capable of depicting physical changes in the

  1. A metadata-driven approach to data repository design.

    Science.gov (United States)

    Harvey, Matthew J; McLean, Andrew; Rzepa, Henry S

    2017-01-01

    The design and use of a metadata-driven data repository for research data management is described. Metadata is collected automatically during the submission process whenever possible and is registered with DataCite in accordance with their current metadata schema, in exchange for a persistent digital object identifier. Two examples of data preview are illustrated, including the demonstration of a method for integration with commercial software that confers rich domain-specific data analytics without introducing customisation into the repository itself.

  2. Development of database systems for safety of repositories for disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hun; Han, Jeong Sang; Shin, Hyeon Jun; Ham, Sang Won; Kim, Hye Seong [Yonsei Univ., Seoul (Korea, Republic of)

    1999-03-15

    In the study, GSIS os developed for the maximizing effectiveness of the database system. For this purpose, the spatial relation of data from various fields that are constructed in the database which was developed for the site selection and management of repository for radioactive waste disposal. By constructing the integration system that can link attribute and spatial data, it is possible to evaluate the safety of repository effectively and economically. The suitability of integrating database and GSIS is examined by constructing the database in the test district where the site characteristics are similar to that of repository for radioactive waste disposal.

  3. Role of natural analogs in performance assessment of nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, B.; Wittmeyer, G.W. [Center for Nuclear Waste Regulatory Analysis, San Antonio, TX (United States)

    1995-09-01

    Mathematical models of the flow of water and transport of radionuclides in porous media will be used to assess the ability of deep geologic repositories to safely contain nuclear waste. These models must, in some sense, be validated to ensure that they adequately describe the physical processes occurring within the repository and its geologic setting. Inasmuch as the spatial and temporal scales over which these models must be applied in performance assessment are very large, validation of these models against laboratory and small-scale field experiments may be considered inadequate. Natural analogs may provide validation data that are representative of physico-chemical processes that occur over spatial and temporal scales as large or larger than those relevant to repository design. The authors discuss the manner in which natural analog data may be used to increase confidence in performance assessment models and conclude that, while these data may be suitable for testing the basic laws governing flow and transport, there is insufficient control of boundary and initial conditions and forcing functions to permit quantitative validation of complex, spatially distributed flow and transport models. The authors also express their opinion that, for collecting adequate data from natural analogs, resources will have to be devoted to them that are much larger than are devoted to them at present.

  4. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository.

    Science.gov (United States)

    Yang, Changbing; Samper, Javier; Molinero, Jorge; Bonilla, Mercedes

    2007-08-15

    Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Aspö underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.

  5. Science Is the First Step to Siting Nuclear Waste Repositories

    Science.gov (United States)

    Neuzil, C. E.

    2014-02-01

    As Shaw [2014] notes, U.S. research on shale as a repository host was halted before expending anything close to the effort devoted to studying crystalline rock, salt, and—most notably—tuff at Yucca Mountain. The new political reality regarding Yucca Mountain may allow reconsideration of the decision to abandon research on shale as a repository host.

  6. Climate considerations in long-term safety assessments for nuclear waste repositories.

    Science.gov (United States)

    Näslund, Jens-Ove; Brandefelt, Jenny; Liljedahl, Lillemor Claesson

    2013-05-01

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  7. Climate Considerations in Long-Term Safety Assessments for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove; Brandefelt, Jenny; Claesson Liljedahl, Lillemor [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)], E-mail: jens-ove.naslund@skb.se

    2013-05-15

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  8. Concentration Limits in the Cement Based Swiss Repository for Long-lived, Intermediate-level Radioactive Wastes (LMA)

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Urs

    1999-12-01

    The Swiss repository concept for long-lived, intermediate-level radioactive wastes (LMA), in Swiss terminology) foresees cylindrical concrete silos surrounded by a ring of granulated bentonite to deposit the waste. As one of the possible options and similar to the repository for high level wastes, the silos will be located in a deep crystalline host rock. Solidified with concrete in steel drums, the waste is stacked into a silo and the silo is then backfilled with a porous mortar. To characterize the release of radionuclides from the repository, the safety assessment considers first the dissolution into the pore water of the concrete, and then diffusion through the outer bentonite ring into the deep crystalline groundwater. For 19 safety relevant radionuclides (isotopes of U, Th, Pa, Np, Pu, Am, Ni, Zr, Mo, Nb, Se, Sr, Ra, Tc, Sn, I, C, Cs, Cl) the report recommends maximum elemental concentrations to be expected in the cement pore water of the particularly considered repository. These limits will form the parameter base for subsequent release model chains. Concentration limits in a geochemical environment are usually obtained from thermodynamic equilibrium calculations performed with geochemical speciation codes. However, earlier studies revealed that this procedure does not always lead to reliable results. Main reasons for this are the complexity of the systems considered, as well as the lacking completeness of, and the uncertainty associated with the thermodynamic data. To improve the recommended maximum concentrations for a distinct repository design, this work includes additional design- and system-dependent criteria. The following processes, inventories and properties are considered in particular: a) recent experimental investigations, particularly from cement systems, b) thermodynamic model calculations when reliable data are available, c) total inventories of radionuclides, d) sorption- and co-precipitation processes, e) dilution with stable isotopes, f

  9. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Holt

    2006-03-13

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other

  10. Geological criteria for site selection of an LILW radioactive waste repository in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Aurelio, Mario; Taguibao, Kristine Joy [National Institute of Geological Sciences, University of the Philippines, Quezon City (Philippines); Vargas, Edmundo; Palattao, Maria Visitacion; Reyes, Rolando; Nohay, Carl; Singayan, Alfonso [Philippine Nuclear Research Institute, Department of Science and Technology, Quezon City (Philippines)

    2013-07-01

    In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its location along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)

  11. Functions of an engineered barrier system for a nuclear waste repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Coons, W.E.; Moore, E.L.; Smith, M.J.; Kaser, J.D.

    1980-01-01

    Defined in this document are the functions of components selected for an engineered barrier system for a nuclear waste repository in basalt. The definitions provide a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five-component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed in terms of effective operation throughout the course of repository history, recognizing that the emplacement environment changes with time. While components of the system are mutually supporting, redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The operating philosophy of the conceptual engineered barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed. A method for system validation and qualification is also included which considers performance criteria proposed by external agencies in conjunction with site-specific models and risk assessment to define acceptable levels of system performance.

  12. Overweight truck shipments to nuclear waste repositories: legal, political, administrative and operational considerations

    Energy Technology Data Exchange (ETDEWEB)

    1986-03-01

    This report, prepared for the Chicago Operations Office and the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), identifies and analyzes legal, political, administrative, and operational issues that could affect an OCRWM decision to develop an overweight truck cask fleet for the commercial nuclear waste repository program. It also provides information required by DOE on vehicle size-and-weight administration and regulation, pertinent to nuclear waste shipments. Current legal-weight truck casks have a payload of one pressurized-water reactor spent fuel element or two boiling-water reactor spent fuel elements (1 PWR/2 BWR). For the requirements of the 1960s and 1970s, casks were designed with massive shielding to accommodate 6-month-old spent fuel; the gross vehicle weight was limited to 73,280 pounds. Spent fuel to be moved in the 1990s will have aged five years or more. Gross vehicle weight limitation for the Interstate highway system has been increased to 80,000 pounds. These changes allow the design of 25-ton legal-weight truck casks with payloads of 2 PWR/5 BWR. These changes may also allow the development of a 40-ton overweight truck cask with a payload of 4 PWR/10 BWR. Such overweight casks will result in significantly fewer highway shipments compared with legal-weight casks, with potential reductions in transport-related repository risks and costs. These advantages must be weighed against a number of institutional issues surrounding such overweight shipments before a substantial commitment is made to develop an overweight truck cask fleet. This report discusses these issues in detail and provides recommended actions to DOE.

  13. MRS/IS facility co-located with a repository: preconceptual design and life-cycle cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Nesbitt, J.F.

    1982-11-01

    A program is described to examine the various alternatives for monitored retrievable storage (MRS) and interim storage (IS) of spent nuclear fuel, solidified high-level waste (HLW), and transuranic (TRU) waste until appropriate geologic repository/repositories are available. The objectives of this study are: (1) to develop a preconceptual design for an MRS/IS facility that would become the principal surface facility for a deep geologic repository when the repository is opened, (2) to examine various issues such as transportation of wastes, licensing of the facility, and environmental concerns associated with operation of such a facility, and (3) to estimate the life cycle costs of the facility when operated in response to a set of scenarios which define the quantities and types of waste requiring storage in specific time periods, which generally span the years from 1990 until 2016. The life cycle costs estimated in this study include: the capital expenditures for structures, casks and/or drywells, storage areas and pads, and transfer equipment; the cost of staff labor, supplies, and services; and the incremental cost of transporting the waste materials from the site of origin to the MRS/IS facility. Three scenarios are examined to develop estimates of life cycle costs of the MRS/IS facility. In the first scenario, HLW canisters are stored, starting in 1990, until the co-located repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at various intervals. In the second scenario, spent fuel is stored, starting in 1990, because the reprocessing plants are delayed in starting operations by 10 years, but no HLW is stored because the repositories open on schedule. In the third scenario, HLW is stored, starting in 1990, because the repositories are delayed 10 years, but the reprocessing plants open on schedule.

  14. Microbial corrosion of metallic materials in a deep nuclear-waste repository

    Directory of Open Access Journals (Sweden)

    Stoulil J.

    2016-06-01

    Full Text Available The study summarises current knowledge on microbial corrosion in a deep nuclear-waste repository. The first part evaluates the general impact of microbial activity on corrosion mechanisms. Especially, the impact of microbial metabolism on the environment and the impact of biofilms on the surface of structure materials were evaluated. The next part focuses on microbial corrosion in a deep nuclear-waste repository. The study aims to suggest the development of the repository environment and in that respect the viability of bacteria, depending on the probable conditions of the environment, such as humidity of bentonite, pressure in compact bentonite, the impact of ionizing radiation, etc. The last part is aimed at possible techniques for microbial corrosion mechanism monitoring in the conditions of a deep repository. Namely, electrochemical and microscopic techniques were discussed.

  15. Seismic Response of a Deep Underground Geologic Repository for Nuclear Waste at the Waste Isolation Pilot Plant in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, P.E.

    1998-11-02

    The Waste Isolation Pilot Plant (WIPP) is a deep underground nuclear waste repository certified by the U.S. Environmental Protection Agency ,(EPA) to store transuranic defense-related waste contaminated by small amounts of radioactive materials. Located at a depth of about 655 meters below the surface, the facility is sited in southeastern New Mexico, about 40 Department of Energy underground facilities, waste disposal. kilometers east of the city of Carlsbad, New Mexico. The U.S. (DOE) managed the design and construction of the surface and and remains responsible for operation and closure following The managing and operating contractor for the DOE at the WIPP, Westinghouse Electric Corporation, maintains two rechmiant seismic monitoring systems located at the surface and in the underground. This report discusses two earthquakes detected by the seismic monitoring system, one a duratior magnitude 5.0 (Md) event located approximately 60 km east-southeast of the facility, and another a body-wave magnitude 5.6 (rob) event that occurred approximately 260 kilometers to the south-southeast.

  16. Fault Frictional Stability in a Nuclear Waste Repository

    Science.gov (United States)

    Orellana, Felipe; Violay, Marie; Scuderi, Marco; Collettini, Cristiano

    2016-04-01

    Exploitation of underground resources induces hydro-mechanical and chemical perturbations in the rock mass. In response to such disturbances, seismic events might occur, affecting the safety of the whole engineering system. The Mont Terri Rock Laboratory is an underground infrastructure devoted to the study of geological disposal of nuclear waste in Switzerland. At the site, it is intersected by large fault zones of about 0.8 - 3 m in thickness and the host rock formation is a shale rock named Opalinus Clay (OPA). The mineralogy of OPA includes a high content of phyllosilicates (50%), quartz (25%), calcite (15%), and smaller proportions of siderite and pyrite. OPA is a stiff, low permeable rock (2×10-18 m2), and its mechanical behaviour is strongly affected by the anisotropy induced by bedding planes. The evaluation of fault stability and associated fault slip behaviour (i.e. seismic vs. aseismic) is a major issue in order to ensure the long-term safety and operation of the repository. Consequently, experiments devoted to understand the frictional behaviour of OPA have been performed in the biaxial apparatus "BRAVA", recently developed at INGV. Simulated fault gouge obtained from intact OPA samples, were deformed at different normal stresses (from 4 to 30 MPa), under dry and fluid-saturated conditions. To estimate the frictional stability, the velocity-dependence of friction was evaluated during velocity steps tests (1-300 μm/s). Slide-hold-slide tests were performed (1-3000 s) to measure the amount of frictional healing. The collected data were subsequently modelled with the Ruina's slip dependent formulation of the rate and state friction constitutive equations. To understand the deformation mechanism, the microstructures of the sheared gouge were analysed. At 7 MPa normal stress and under dry conditions, the friction coefficient decreased from a peak value of μpeak,dry = 0.57 to μss,dry = 0.50. Under fluid-saturated conditions and same normal stress, the

  17. Development of site suitability criteria for the high level waste repository for Lawrence Livermore Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    Results of our mining, geological and geotechnical studies provided in support of the development of site suitability criteria for the high level waste repository are presented. The primary purpose of the work was the identification and development of appropriate geotechnical descriptors and coefficients required for the Site Suitability Repository Model. This model was developed by The Analytic Sciences Corporation (TASC) of Reading, Massachusetts and is not described in this report.

  18. Total system evaluation of gas generation and migration in the radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K.; Fujiwara, A.; Tokuyama, S.; Adachi, T.; Saeki, T. [Radioactive Waste Management Funding and Research Center, Tokyo (Japan); Vomvoris, S. [NAGRA, Baden (Switzerland); Fukudome, K. [Kobe Steel Ltd. (Japan); Shimmura, A. [Obayashi Corp., Shinagawa Intercity Tower, Minato-ku (Japan)

    2001-07-01

    The carbon steel used in the nuclear waste repository under reductive condition reacts with ground water and generates hydrogen gas. It might accumulate and degrade performance of the Engineered Barrier System (EBS). It is highly important to evaluate the influence of gas generation and migration under the repository-like environment. Therefore, the Gas Generation Test is performed in Gas Evaluation Facility (GEF) in Japan and the Gas Migration Test (GMT) is performed in Nagra Grimsel Test Site (GTS) in Switzerland. (author)

  19. Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steininger, Walter [Karisruhe Inst. of Technology (Germany); Bollingerfehr, Willhelm [DBE TECHNOLOGY GmbH (Germany)

    2017-01-01

    The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy´s Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandum of Understanding executed between the United States and Germany in 2011. The US/German workshops´ results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.

  20. Present state of the art in the development of a geological radioactive waste repository in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Shestopalov, V.M.; Rudenko, Yu.F; Boguslavskyy, A.S.; Shybetskyy, Yu.A. [Radio-Environmental Center, National Academy of Sciences of Ukraine, 55b O.Gonchara St., Kyiv 01054 (Ukraine); Brewitz, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS, mbH, Schwertnergasse 1, 50667 Koeln (Germany)

    2005-07-01

    The prospects and advantages of the Chernobyl Exclusion zone (ChEZ) for geological repository allocation are considered. The initial data for analysis are: governmental policy, strategy and current practice of spent fuel, high-level and long-lived waste management as well as geological, hydrogeological, economical and social-demographic conditions of ChEZ. The conclusion about suitability of ChEZ geological and hydrogeological conditions for geological repository allocation has been made. High promise of borehole-type repository is shown. (authors)

  1. Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories

    Science.gov (United States)

    Rodríguez, Martín A.

    2014-03-01

    Metallic engineered barriers must provide a period of absolute containment to high-level radioactive waste in geological repositories. Candidate materials include copper alloys, carbon steels, stainless steels, nickel alloys, and titanium alloys. The national programs of nuclear waste management have to identify and assess the anticipated degradation modes of the selected materials in the corresponding repository environment, which evolves in time. Commonly assessed degradation modes include general corrosion, localized corrosion, stress-corrosion cracking, hydrogen-assisted cracking, and microbiologically influenced corrosion. Laboratory testing and modeling in metallurgical and environmental conditions of similar and higher aggressiveness than those expected in service conditions are used to evaluate the corrosion resistance of the materials. This review focuses on the anticipated degradation modes of the selected or reference materials as corrosion-resistant barriers in nuclear repositories. These degradation modes depend not only on the selected alloy but also on the near-field environment. The evolution of the near-field environment varies for saturated and unsaturated repositories considering backfilled and unbackfilled conditions. In saturated repositories, localized corrosion and stress-corrosion cracking may occur in the initial aerobic stage, while general corrosion and hydrogen-assisted cracking are the main degradation modes in the anaerobic stage. Unsaturated repositories would provide an oxidizing environment during the entire repository lifetime. Microbiologically influenced corrosion may be avoided or minimized by selecting an appropriate backfill material. Radiation effects are negligible provided that a thick-walled container or an inner shielding container is used.

  2. Coupled THMC models for bentonite in clay repository for nuclear waste

    Science.gov (United States)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  3. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  4. Potential Biogenic Corrosion of Alloy 22, A Candidate Nuclear Waste Packaging Materials, Under Simulated Repository Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Martin, S.I.; Rivera, A.J.; Bedrossian, P.J.; Lian, T.

    2000-01-12

    The U.S. Department of Energy has been charged with assessing the suitability of a geologic nuclear waste repository at Yucca Mountain (YM), NV. Microorganisms, both those endogenous to the repository site and those introduced as a result of construction and operational activities, may contribute to the corrosion of metal nuclear waste packaging and thereby decrease their useful lifetime as barrier materials. Evaluation of potential Microbiological Influenced Corrosion (MIC) on candidate waste package materials was undertaken reactor systems incorporating the primary elements of the repository: YM rock (either non-sterile or presterilized), material coupons, and a continual feed of simulated YM groundwater. Periodically, both aqueous reactor efflux and material coupons were analyzed for chemical and surfacial characterization. Alloy 22 coupons exposed for a year at room temperature in reactors containing non-sterile YM rock demonstrated accretion of chromium oxide and silaceous scales, with what appear to be underlying areas of corrosion.

  5. Review of geotechnical measurement techniques for a nuclear waste repository in bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report presents a description of geotechnical measurement techniques that can provide the data necessary for safe development - i.e., location, design, construction, operation, decommissioning and abandonment - of a radioactive waste repository in bedded salt. Geotechnical data obtained by a diversity of measurement techniques are required during all phases of respository evolution. The techniques discussed in this report are grouped in the following categories: geologic, geophysical and geodetic; rock mechanics; hydrologic, hydrogeologic and water quality; and thermal. The major contribution of the report is the presentation of extensive tables that provide a review of available measurement techniques for each of these categories. The techniques are also discussed in the text to the extent necessary to describe the measurements and associated instruments, and to evaluate the applicability or limitations of the method. More detailed discussions of thermal phenomena, creep laws and geophysical methods are contained in the appendices; references to detailed explanations of measurement techniques and instrumentation are inluded throughout the report.

  6. An ultrasonic tool for examining the excavation damaged zone around radioactive waste repositories - The OMNIBUS project

    Energy Technology Data Exchange (ETDEWEB)

    Pettitt, W.S. [Applied Seismology Consultants LTD, 10 Belmont, Shropshire, UK-S41 ITE Shrewsbury (United Kingdom); Collins, D.S.; Hildyard, M.W.; Young, R.P. [Department of Earth Sciences, Liverpool University, 4 Brownlow street, UK-0 L69 3GP Liverpool (United Kingdom); Balland, C.; Bigarre, P. [Institut National de l' Environnement Industriel et des risques, INERIS, Parc Technologique ALATA, BP 2, 60550 Verneuil-en-Halatte (France)

    2004-07-01

    This paper describes current results from the OMNIBUS project, a study funded by the EC as part of the fifth framework EURATOM programme. The objective of the project is to develop ultrasonic monitoring tools and associated technologies for investigating the rock barrier in both potential and operational underground nuclear waste repositories. A complete data acquisition tool has been developed and has been successfully tested during an in situ experiment aimed at studying an argillaceous rock layer. The tool includes an integrated hardware and software package specifically designed for monitoring an argillaceous rock mass. Numerical models are being used to provide a sensitivity analysis of ultrasonic wave propagation to variations in stress, crack population and fluid content. Through this approach we aim to improve our understanding of how ultrasonic data can be interpreted in terms of useful engineering rock-mass properties. Data from laboratory and in situ experiments will be used to develop and test the strategy. (authors)

  7. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  8. Modelling and Numerical Simulation of Gas Migration in a Nuclear Waste Repository

    CERN Document Server

    Bourgeat, Alain; Smai, Farid

    2010-01-01

    We present a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological radioactive waste repository. This model includes capillary effects and the gas diffusivity. The choice of the main variables in this model, Total or Dissolved Hydrogen Mass Concentration and Liquid Pressure, leads to a unique and consistent formulation of the gas phase appearance and disappearance. After introducing this model, we show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different situations typical of underground radioactive waste repository.

  9. Seismic considerations in sealing a potential high-level radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Richardson, A.M.; Lin, Ming [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

    1992-07-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system.

  10. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  11. Debate heats up over potential Interim Nuclear Waste Repository, as studies of Yucca Mountain continue

    Science.gov (United States)

    Showstack, Randy

    With spent nuclear fuel piling up at power plants around the United States, and with a potential permanent nuclear waste repository at Nevada's Yucca Mountain not scheduled to accept waste until 11 years from now in the year 2010, the nuclear energy industry and many members of Congress have renewed their push to establish an interim repository at the adjacent Nevada Test Site of nuclear bombs.At a sometimes contentious March 12 hearing to consider the Nuclear Waste Policy Act of 1999 (House Resolution 45) that would require an interim facility to begin accepting waste in 2003, bill cosponsor Rep. Jim Barton (R-Tex.) told Energy Secretary Bill Richardson that he preferred that Congress and the Clinton Administration negotiate rather than fight over the measure.

  12. Source terms for analysis of accidents at a high level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Mubayi, V.; Davis, R.E.; Youngblood, R.

    1989-01-01

    This paper describes an approach to identifying source terms from possible accidents during the preclosure phase of a high-level nuclear waste repository. A review of the literature on repository safety analyses indicated that source term estimation is in a preliminary stage, largely based on judgement-based scoping analyses. The approach developed here was to partition the accident space into domains defined by certain threshold values of temperature and impact energy density which may arise in potential accidents and specify release fractions of various radionuclides, present in the waste form, in each domain. Along with a more quantitative understanding of accident phenomenology, this approach should help in achieving a clearer perspective on scenarios important to preclosure safety assessments of geologic repositories. 18 refs., 3 tabs.

  13. Workshop on rock mechanics issues in repository design and performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Center for Nuclear Waste Regulatory Analyses organized and hosted a workshop on ``Rock Mechanics Issues in Repository Design and Performance Assessment`` on behalf its sponsor the U.S. Nuclear Regulatory Commission (NRC). This workshop was held on September 19- 20, 1994 at the Holiday Inn Crowne Plaza, Rockville, Maryland. The objectives of the workshop were to stimulate exchange of technical information among parties actively investigating rock mechanics issues relevant to the proposed high-level waste repository at Yucca Mountain and identify/confirm rock mechanics issues important to repository design and performance assessment The workshop contained three technical sessions and two panel discussions. The participants included technical and research staffs representing the NRC and the Department of Energy and their contractors, as well as researchers from the academic, commercial, and international technical communities. These proceedings include most of the technical papers presented in the technical sessions and the transcripts for the two panel discussions. Selected papers have been indexed separately for inclusion the Energy Science and Technology Database.

  14. Microbiology of formation waters from the deep repository of liquid radioactive wastes Severnyi.

    Science.gov (United States)

    Nazina, Tamara N; Kosareva, Inessa M; Petrunyaka, Vladimir V; Savushkina, Margarita K; Kudriavtsev, Evgeniy G; Lebedev, Valeriy A; Ahunov, Viktor D; Revenko, Yuriy A; Khafizov, Robert R; Osipov, George A; Belyaev, Sergey S; Ivanov, Mikhail V

    2004-07-01

    The presence, diversity, and geochemical activity of microorganisms in the Severnyi repository of liquid radioactive wastes were studied. Cultivable anaerobic denitrifiers, fermenters, sulfate-reducers, and methanogens were found in water samples from a depth of 162-405 m below sea level. Subsurface microorganisms produced methane from [2-(14)C]acetate and [(14)C]CO(2), formed hydrogen sulfide from Na(2) (35)SO(4), and reduced nitrate to dinitrogen in medium with acetate. The cell numbers of all studied groups of microorganisms and rates of anaerobic processes were higher in the zone of dispersion of radioactive wastes. Microbial communities present in the repository were able to utilise a wide range of organic and inorganic compounds and components of waste (acetate, nitrate, and sulfate) both aerobically and anaerobically. Bacterial production of gases may result in a local increase of the pressure in the repository and consequent discharge of wastes onto the surface. Microorganisms can indirectly decrease the mobility of radionuclides due to consumption of oxygen and production of sulfide, which favours deposition of metals. These results show the necessity of long-term microbiological and radiochemical monitoring of the repository.

  15. On the Durability of Nuclear Waste Forms from the Perspective of Long-Term Geologic Repository Performance

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2013-12-01

    Full Text Available High solid/water ratios and slow water percolation cause the water in a repository to quickly (on a repository time scale reach radionuclide solubility controlled by the equilibrium with alteration products; the total release of radionuclides then becomes insensitive to the dissolution rates of primary waste forms. It is therefore suggested that future waste form development be focused on conditioning waste forms or repository environments to minimize radionuclide solubility, rather than on marginally improving the durability of primary waste forms.

  16. Systems study of the feasibility of high-level nuclear-waste fractionation for thermal stress control in a geologic repository: main report

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

    1983-06-01

    This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. System costs are developed for a broad range of conditions comparing the Cs/Sr fractionation concept with disposal of 10-year-old vitrified HLW and vitrified HLW aged to achieve (through decay) the same heat output as the fractionated high-level waste (FHLW). All comparisons are based on a 50,000 metric ton equivalent (MTE) system. The FHLW and the Cs/Sr waste are both disposed of as vitrified waste but emplaced in separate areas of a basalt repository. The FHLW is emplaced in high-integrity packages at relatively high waste loading but low heat loading, while the Cs/Sr waste is emplaced in minimum-integrity packages at relatively high heat loading in a separate region of the repository. System cost comparisons are based on minimum cost combinations of canister diameter, waste concentration, and canister spacing in a basalt repository. The effects on both long- and near-term safety considerations are also addressed. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However, there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. 37 figures, 58 tables.

  17. Container Approval for the Disposal of Radioactive Waste with Negligible Heat Generation in the German Konrad Repository - 12148

    Energy Technology Data Exchange (ETDEWEB)

    Voelzke, Holger; Nieslony, Gregor; Ellouz, Manel; Noack, Volker; Hagenow, Peter; Kovacs, Oliver; Hoerning, Tony [BAM Federal Institute for Materials Research and Testing, 12200 Berlin (Germany)

    2012-07-01

    Since the license for the Konrad repository was finally confirmed by legal decision in 2007, the Federal Institute for Radiation Protection (BfS) has been performing further planning and preparation work to prepare the repository for operation. Waste conditioning and packaging has been continued by different waste producers as the nuclear industry and federal research institutes on the basis of the official disposal requirements. The necessary prerequisites for this are approved containers as well as certified waste conditioning and packaging procedures. The Federal Institute for Materials Research and Testing (BAM) is responsible for container design testing and evaluation of quality assurance measures on behalf of BfS under consideration of the Konrad disposal requirements. Besides assessing the container handling stability (stacking tests, handling loads), design testing procedures are performed that include fire tests (800 deg. C, 1 hour) and drop tests from different heights and drop orientations. This paper presents the current state of BAM design testing experiences about relevant container types (box shaped, cylindrical) made of steel sheets, ductile cast iron or concrete. It explains usual testing and evaluation methods which range from experimental testing to analytical and numerical calculations. Another focus has been laid on already existing containers and packages. The question arises as to how they can be evaluated properly especially with respect to lack of completeness of safety assessment and fabrication documentation. At present BAM works on numerous applications for container design testing for the Konrad repository. Some licensing procedures were successfully finished in the past and BfS certified several container types like steel sheet, concrete until cast iron containers which are now available for waste packaging for final disposal. However, large quantities of radioactive wastes had been placed into interim storage using containers which

  18. Summary of four release consequence analyses for hypothetical nuclear waste repositories in salt and granite

    Energy Technology Data Exchange (ETDEWEB)

    Cole, C.R.; Bond, F.W.

    1980-12-01

    Release consequence methology developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) program has now been applied to four hypothetical repository sites. This paper summarizes the results of these four studies in order to demonstrate that the far-field methodology developed under the AEGIS program offers a practical approach to the post-closure safety assessment of nuclear waste repositories sited in deep continental geologic formations. The four studies are briefly described and compared according to the following general categories: physical description of the repository (size, inventory, emplacement depth); geologic and hydrologic description of the site and the conceptual hydrologic model for the site; description of release scenario; hydrologic model implementation and results; engineered barriers and leach rate modeling; transport model implementation and results; and dose model implementation and results. These studies indicate the following: numerical modeling is a practical approach to post-closure safety assessment analysis for nuclear waste repositories; near-field modeling capability needs improvement to permit assessment of the consequences of human intrusion and pumping well scenarios; engineered barrier systems can be useful in mitigating consequences for postulated release scenarios that short-circuit the geohydrologic system; geohydrologic systems separating a repository from the natural biosphere discharge sites act to mitigate the consequences of postulated breaches in containment; and engineered barriers of types other than the containment or absorptive type may be useful.

  19. SPRAYED CLAY TECHNOLOGY FOR THE DEEP REPOSITORY OF HIGH-LEVEL RADIOACTIVE WASTE

    Directory of Open Access Journals (Sweden)

    Lucie Hausmannová

    2012-07-01

    Full Text Available The sealing barrier will play very important role in the Czech disposal concept of high level radioactive waste. It follows Swedish SKB3 design where granitic rock environment will host the repository. Swelling clay based materials as the most favorable for sealing purposes were selected. Such clays must fulfill certain requirements (e.g. on swelling properties, hydraulic conductivity or plasticity and must be stable for thousands of years. Better sealing behavior is obtained when the clay is compacted. Technology of the seal construction can vary according to its target dry density. Very high dry density is needed for buffer (sealing around entire canister with radioactive waste. Less strict requirements are on material backfilling the access galleries. It allows compaction to lower dry density than in case of buffer. One of potential technology for backfilling is to compact clay layers in most of the gallery profile by common compaction machines (rollers etc. and to spray clay into the uppermost part afterwards. The paper introduces the research works on sprayed clay technology performed at the Centre of Experimental Geotechnics of the Czech Technical University in Prague. Large scale in situ demonstration of filling of short drift in the Josef Gallery is also mentioned.

  20. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  1. 10 CFR 60.131 - General design criteria for the geologic repository operations area.

    Science.gov (United States)

    2010-01-01

    ... Repository Operations Area § 60.131 General design criteria for the geologic repository operations area. (a... 10 Energy 2 2010-01-01 2010-01-01 false General design criteria for the geologic repository operations area. 60.131 Section 60.131 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF...

  2. Public acceptance for centralized storage and repositories of low-level waste session (Panel)

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H.R.

    1995-12-31

    Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance, and lessons learned in each country. The audience is invited to participate in the discussion.

  3. Spatial patterns of radiological dose from wells drilled near nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-31

    This report describes methodology for assessing the spatial patterns of radiological dose to man from wells drilled near nuclear waste repositories. Descriptions of the various categories of water wells and a model of a typical aquifer are presented. The equation governing the one-dimensional flow of waste in groundwater through porous media to a well is discussed. This is followed by development of a method for constructing lines of constant dose from a well located randomly in the plane of the aquifer. An area of hazard, in which the dose to man from a well exceeds a given statuatory or recommended limit, is then defined within this dose pattern. This technique is then used to compute dose and hazard profiles for wells adjacent to a repository located in either impermeable or permeable bedded salt. The repository and geologic parameters employed in this example are taken from a Lawrence Livermore Laboratory report for which this report serves as a supporting document. Scenarios with impermeable salt involve waste entering the repository through the shaft/tunnel fracture zone and exiting through a single additional flaw (borehole). Permeable-salt scenarios involve waste escaping from the repsitory through a borehole and via interstitial flow. Calculations are performed assuming both a single-layer (sandstone) aquifer and a double-layer (sandstone/shale) aquifer in the strate overlying the repository. Results indicate a time-varying area of hazard from well drilling, whose size depends on the permeability of the salt, the regional hydrology, and the surface ecosystem assumed in the potential hazard calculations.

  4. Performance analysis for waste repositories in the nordic countries. Report for project AFA-1.2

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [VTT Energy (Finland); Broden, K. [Studsvik RadWaste AB (Sweden); Carugati, S.; Brodersen, K. [Forskningscenter Risoe (Denmark); Walderhaug, T. [Icelandic Radiation Protection Institute (Iceland); Helgason, J. [Ekra Geological Consulting (Iceland); Sneve, M.; Hornkjoel, S. [Norwegian Radiation Protection (Norway); Backe, S. [IFE (Norway)

    1997-02-01

    The Nordic Nuclear Safety Research (NKS) project (AFA-1) focused on safety in the final disposal of long-lived low and medium level radioactive waste and its sub project (AFA-1.2), where this report has been produced, is dealing with the performance analysis of the engineered barrier system (near-field) of the repositories for low-and medium level wastes. The topic intentionally excludes the discussion of the characteristics of the geological host medium. Therefore a more generic discussion of the features of performance analysis is possible independent of the fact that different host media are considered in the Nordic countries. The different waste management systems existing and planned in the Nordic countries are shortly described in the report. In the report main emphasis is paid on the general repositories. Some of the phenomena and interactions relevant for a generic type of repository are discussed as well. Among the different approaches for the development of scenarios for safety and performance analyses one particular method - the Rock Engineering System (RES) - was chosen to be demonstratively tested in a brainstorming session, where the possible interactions and their safety significance were discussed employing a simplified and generic Nordic repository system as the reference system. As an overall impression, the AFA-project group concludes that the use of the RES approach is very easy to learn even during a short discussion session. The use of different ways to indicate the safety significance of various interactions in a graphical user interface increases the clarity. Within the project a simple software application was developed employing a generally available spread sheet programme. The developed tool allows an easy opportunity to link the cell specific comments readily available for the `reader` of the obtained results. A short review of the performance analyses carried out in the Nordic countries for actual projects concerning repositories for

  5. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Paschoa, A.S. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil); Rozental, J.J. [Ministry of Environment (Israel); Tranjan Filho, A. [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2001-07-01

    As it is well known, an accident with a teletherapy source made of {sup 137}CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10{sup 3} m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10{sup 3} m{sup 3} of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10{sup 5} m{sup 2}. The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The

  6. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Paschoa, A.S. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil); Rozental, J.J. [Ministry of Environment (Israel); Tranjan Filho, A. [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2001-07-01

    As it is well known, an accident with a teletherapy source made of {sup 137}CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10{sup 3} m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10{sup 3} m{sup 3} of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10{sup 5} m{sup 2}. The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The

  7. Preliminary review of Precambrian Shield rocks for potential waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Yardley, D.H.; Goldich, S.S.

    1975-11-01

    This review of the Canadian Shield is primarily concerned with the part (such as in the Lake Superior region) that is seismically the least active of the North American continent. The crystalline metamorphic and igneous rocks of the more stable elements of the shield provide excellent possibilities for dry excavations suitable for long-term storage of radioactive waste materials. (DLC)

  8. Health cost of a nuclear waste repository, WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Kula, E. [Univ. of Ulster, Jordanstown (United Kingdom)

    1996-01-01

    The Waste Isolation Pilot Plant (WIPP), the United States of America`s first nuclear waste dumping site, has over the years generated a great deal of concern and controversy. The most sensitive aspect of this project is that it may impose serious health risks on future generations. The first leg of this project is about to be completed and at the time of writing the Department of Energy is planning to perform experiments with a small quantity of waste for operational demonstrations. If everything goes well, then towards the end of this decade large quantities of wastes will be transported to the site for disposal. This article reconsiders the health cost of this project from an economic perspective in light of recent developments in the field of social discounting. As in earlier studies, two cases of health risks are considered: total cancer and genetic deformity over a one million year cutoff period. The analysis shows that whereas ordinary discounting method wipes out the future health detriments, expressed in monetary terms, the modified discounting criterion retains a substantial proportion of such costs in economic analysis. 18 refs., 1 fig., 1 tab.

  9. Health Cost of a Nuclear Waste Repository, WIPP

    Science.gov (United States)

    Kula, Erhun

    1996-01-01

    The Waste Isolation Pilot Plant (WIPP), the United States of America’s first nuclear waste dumping site, has over the years generated a great deal of concern and controversy. The most sensitive aspect of this project is that it may impose serious health risks on future generations. The first leg of this project is about to be completed and at the time of writing the Department of Energy is planning to perform experiments with a small quantity of waste for operational demonstrations. If everything goes well, then towards the end of this decade large quantities of wastes will be transported to the site for disposal. This article reconsiders the health cost of this project from an economic perspective in light of recent developments in the field of social discounting. As in earlier studies, two cases of health risks are considered: total cancer and genetic deformity over a one million year cutoff period. The analysis shows that whereas ordinary discounting method wipes out the future health detriments, expressed in monetary terms, the modified discounting criterion retains a substantial proportion of such costs in economic analysis.

  10. Framework for evaluating the utility of incentive systems for radioactive waste repository siting

    Science.gov (United States)

    Carnes, S. A.; Soderstrom, J.; Sorensen, J.; Peelle, E.; Reed, J. H.; Bjornstad, D. J.; Copenhaver, E. D.

    The importance of social and institutional issues in siting radioactive waste repositories has been recognized in recent years. Within this set of issues, the siting of repositories over the objections of members of potential host communities is viewed as especially problematic. Incentives to potential host communities have been suggested as a means of increasing local support for and offsetting local opposition to such facilities. Incentives are classified according to their function as mitigation, compensation or reward. Analysis of results of a 1980 survey (conducted by John Kelly, Complex Systems Group, University of New Hampshire) of 420 rural Wisconsin residents indicates that incentives may achieve the purpose of increasing support for and decreasing opposition to accepting a repository. Criteria for evaluating the utility of incentives are identified. It is suggested that meaningful evaluations of incentives can only be performed by members of potential host communities.

  11. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  12. Effects of silica redistribution on performance of high-level nuclear waste repositories in saturated geologic formations

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.; Pruess, K.

    1985-11-01

    Evaluation of the thermohydrological conditions near high-level waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock do not change in response to the thermal, mechanical or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in thermally driven flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, a repository-wide thermal convection problem, and different pore models were employed for the permeable medium (fractures with uniform or non-uniform cross sections). We find that silica redistribution generally has insignificant effects on host rock and canister temperatures, pore pressures, or flow velocites.

  13. Nye County Nuclear Waste Repository Project Office independent scientific investigations program annual report, May 1997--April 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This annual summary report, prepared by the Nye County Nuclear Waste Repository Project Office (NWRPO), summarizes the activities that were performed during the period from May 1, 1997 to April 30, 1998. These activities were conducted in support of the Independent Scientific Investigation Program (ISIP) of Nye County at the Yucca Mountain Site (YMS). The Nye County NWRPO is responsible for protecting the health and safety of the Nye County residents. NWRPO`s on-site representative is responsible for designing and implementing the Independent Scientific Investigation Program (ISIP). Major objectives of the ISIP include: Investigating key issues related to conceptual design and performance of the repository that can have major impact on human health, safety, and the environment; identifying areas not being addressed adequately by the Department of Energy (DOE). Nye County has identified several key scientific issues of concern that may affect repository design and performance which were not being adequately addressed by DOE. Nye County has been conducting its own independent study to evaluate the significance of these issues. This report summarizes the results of monitoring from two boreholes and the Exploratory Studies Facility (ESF) tunnel that have been instrumented by Nye County since March and April of 1995. The preliminary data and interpretations presented in this report do not constitute and should not be considered as the official position of Nye County. The ISIP presently includes borehole and tunnel instrumentation, monitoring, data analysis, and numerical modeling activities to address the concerns of Nye County.

  14. Site characterization and related activities at the potential high-level radioactive waste repository site at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gertz, C.P.; Nelson, R.M. Jr.; Blanchard, M.B. [Department of Energy, Las Vegas, NV (United States); Cloke, P.L. [Science Applications International Corp., Las Vegas, NV (United States)

    1994-12-31

    The Yucca Mountain Site Characterization Project (YMP) involves a complex set of activities and issues. These include the Exploratory Studies Facility (ESF), site characterization surface-based testing, performance assessment, public outreach and information services, conceptual design of a potential repository, compliance with regulations, environmental issues, transportation of nuclear wastes, and systems engineering. Integration among the scientific and technical activities requires constant attention to keep work focused on determining the suitability of the site and on avoiding irretrievable loss of data. All activities must be conducted with due regard to quality assurance and safety and health. This paper provides a brief summary of the status of these activities as of December, 1993.

  15. Preliminary analysis of potential chemical environments inside failed waste containers at the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Colten-Bradley, V. [Nuclear Regulatory Commission, Rockville, MD (United States); Walton, J.C. [Univ. of Texas, El Paso, TX (United States)

    1994-12-31

    Prediction of radionuclide release rates for high-level waste requires estimates of the rates of waste form alteration and formation of secondary minerals inside the failed canister. Unsaturated repository sites may promote development of a variety of chemical environments related to two phase (liquid/vapor) transport and temperature gradients caused by radiogenic decay. A mass balance (shell balance) approach is used to estimate the effects of dripping water, evaporation, and condensation on the waste canister and the presence of saline water inside the failed waste canister. The simplified calculations predict large variability of water chemistry over spatial scales of a few centimeters. The effects of the predicted aqueous chemistry on waste form alteration, secondary mineral formation, and radionuclide solubility are examined.

  16. Environmental impact of radionuclide migration in groundwater from a low-intermediate level radioactive waste repository

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The radionuclide migration from a certain Chinese repository withlow-intermediate level radioactive solid waste is studied. The migration in groundwater is analyzed and computed in detail. Under presumption of normal releasing, or the bottom of the repository has been marinated for one month with precipitation reaching 600 mm once and a 6m aerated zone exists, a prediction for 7 radionuclides is conducted. It shows that the aerated zone is the primary barrier for migration. The migration for radionuclides 60Co, 137Cs, 90Sr, 63Ni, etc. will be retarded in it within 500 years. The concentration of 239Pu will be decreased by amount of 6 order. Only 3H and 14C can migrate through the aerated zone. The radionuclides that go through the aerated zone and enter the aquifer will exist in spring, stream and sea. Based on this, the intake dose by residents in different age group resulting from drinking contaminated spring water, eating seafood is calculated. The results showed that the impact of the repository to the key resident group is lower than the limit in national repository regulation standard. This complies with the repository management target.

  17. Mechanisms governing the direct removal of wastes from the Waste Isolation Pilot Plant repository caused by exploratory drilling

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, J.W. [New Mexico Engineering Research Inst., Albuquerque, NM (United States)

    1992-12-01

    Two processes are identified that can influence the quantity of wastes brought to the ground surface when a waste disposal room of the Waste Isolation Pilot Plant is inadvertently penetrated by an exploratory borehole. The first mechanism is due to the erosion of the borehole wall adjacent to the waste caused by the flowing drilling fluid (mud); a quantitative computational model based upon the flow characteristics of the drilling fluid (laminar or turbulent) and other drilling parameters is developed and example results shown. The second mechanism concerns the motion of the waste and borehole spall caused by the flow of waste-generated gas to the borehole. Some of the available literature concerning this process is discussed, and a number of elastic and elastic-plastic finite-difference and finite-element calculations are described that confirm the potential importance of this process in directly removing wastes from the repository to the ground surface. Based upon the amount of analysis performed to date, it is concluded that it is not unreasonable to expect that volumes of waste several times greater than that resulting from direct cutting of a gauge borehole could eventually reach the ground surface. No definitive quantitative model for waste removal as a result of the second mechanism is presented; it is concluded that decomposed waste constitutive data must be developed and additional experiments performed to assess further the full significance of this latter mechanism.

  18. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as {sup 36}Cl and {sup 93}Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon.

  19. Implications of environmental program planning for siting a nuclear waste repository at Yucca Mountain, Nevada, USA

    Science.gov (United States)

    Malone, Charles R.

    1990-01-01

    The US Department of Energy (DOE) plans to conduct site characterization studies at Yucca Mountain, Nevada, to determine if the location is a suitable site for a nuclear waste repository. In lieu of traditional environmental review in accordance with the National Environmental Policy Act of 1969, the DOE is relying on an environmental assessment (EA) mandated by the Nuclear Waste Policy Act of 1982 as the cornerstone of its environmental program for the Yucca Mountain Project. Because of statutory restrictions, the EA is not based on comprehensive baseline information. Neither does it address fundamentals of environmental analysis such as ecological integrity and assessment of cumulative impacts. Consequently, the present environmental program for Yucca Mountain reflects decisions made without complete information and integrated environmental review. The shortcomings of the program risk compromising the natural integrity of Yucca Mountain and invalidating future assessment of the ability of a nuclear waste repository located at the site to protect the environment. Significant improvements are needed in the repository siting program before it can serve as a model of how society can evaluate the long-term environmental consequences of advanced technologies, as has been suggested.

  20. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia

  1. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution. [JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    St. John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.

  2. Update of structural models at SFR nuclear waste repository, Forsmark, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Axelsson, C.L.; Maersk Hansen, L. [Golder Associates AB (Sweden)

    1997-12-01

    The final repository for low and medium-level waste, SFR, is located below the Baltic, off Forsmark. A number off various geo-scientific investigations have been performed and used to design a conceptual model of the fracture system, to be used in hydraulic modeling for a performance assessment study of the SFR facility in 1987. An updated study was reported in 1993. No formal basic revision of the original conceptual model of the fracture system around SFR has so far been made. During review, uncertainties in the model of the fracture system were found. The previous local structure model is reviewed and an alternative model is presented together with evidence for the new interpretation. The model is based on review of geophysical data, geological mapping, corelogs, hydraulic testing, water inflow etc. The fact that two different models can result from the same data represent an interpretation uncertainty which can not be resolved without more data and basic interpretations of such data. Further refinement of the structure model could only be motivated in case the two different models discussed here would lead to significantly different consequences 20 refs, 24 figs, 16 tabs

  3. Proceedings of the 5th US/German Workshop on Salt Repository Research Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leigh, Christi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Walter [Karlsruhe Inst. of Technology (KIT) (Germany); Bollingerfehr, Wilhelm [DBE Technology, Peine (Germany); Von Berlepsche, Thilo [DBE Technology, Peine (Germany)

    2015-01-01

    The 5th US/German Workshop on Salt Repository Research, Design, and Operation was held in Santa Fe New Mexico September 8-10, 2014. The forty seven registered participants were equally divided between the United States (US) and Germany, with one participant from The Netherlands. The agenda for the 2014 workshop was under development immediately upon finishing the 4th Workshop. Ongoing, fundamental topics such as thermomechanical behavior of salt, plugging and sealing, the safety case, and performance assessment continue to advance the basis for disposal of heat-generating nuclear waste in salt formations. The utility of a salt underground research laboratory (URL) remains an intriguing concept engendering discussion of testing protocol. By far the most interest in this years’ workshop pertained to operational safety. Given events at the Waste Isolation Pilot Plant (WIPP), this discussion took on a new sense of relevance and urgency.

  4. Site suitability criteria for solidified high level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.; Isherwood, D.; Towse, D.F.; Dayem, N.L.

    1979-04-03

    The NRC is developing a framework of regulations, criteria, and standards. Lawrence Livermore Laboratory provides broad technical support to the NRC for developing this regulatory framework, part of which involves site suitability criteria for solidified high-level wastes (SHLW). Both the regulatory framework and the technical base on which it rests have evolved in time. This document is the second report of the technical support project. It was issued as a draft working paper for a programmatic review held at LLL from August 16 to 18, 1977. It was printed and distributed solely as a briefing document on preliminary methodology and initial findings for the purpose of critical review by those in attendance. These briefing documents are being reprinted now in their original formats as UCID-series reports for the sake of the historical record. Analysis results have evolved as both the models and data base have changed. As a result, the methodology, models, and data base in this document are severely outmoded.

  5. Deep repository. Underground design premises. Edition D1/1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    This report proposes design premises and methodology for application in the preliminary design of underground excavations within the framework of SKB's site investigations. The design premises and supporting instructions for rock mechanical and hydrogeological analyses are a result of planning work carried out between the autumn of 2002 and the spring of 2003. Other overall planning has also been done at the same time for the Deep Repository Project. The first draft underwent revision following a seminar on 30 June 2003 primarily with respect to structure and coordination aspects within the project, as well as certain factual questions. That version served as a basis for an application exercise based on site descriptive model version 1.1 Forsmark. The purpose of the application exercise was to: Test relevant portions of the proposed methodology for rock engineering for the initial site investigations (ISI); Evaluate the application of preliminary design requirements; Identify and develop proposals for collaboration between design and site and site modelling units for the best possible feedback in future work, especially iterations for meeting the needs of design; Identify and develop proposals for collaboration between safety assessment and design for realistic proposals for site adaptation. The design application exercise was evaluated at the end of 2003 and its results serve as an important basis for revisions. The update was commenced with a workshop in February 2004, where the goals were established.

  6. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  7. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    Science.gov (United States)

    Pang, Bo; Becker, Frank

    2016-06-24

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding.

  8. Geochemistry of Salado Formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    Energy Technology Data Exchange (ETDEWEB)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogenous with respect to composition, but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs.

  9. Decompression of magma into repository tunnels

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    It is nontrivial to find and design safe repository sites for nuclear waste. It appears common sense to drill tunnels as repository sites in a mountain in remote and relatively dry regions. However, erosion of the waste canisters by naturally abundant chemicals in the mountains water cycle remains a

  10. Stability of ceramic waste forms in potential repository environments: a review

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, R. J.; Palmer, R. A.

    1982-03-31

    Most scenarios for geologic disposal of high-level nuclear waste include the eventual intrusion of groundwater into the repository. Reactions in the system and eventual release of the radionuclides, if any, will be controlled by the chemistry of the groundwater, the surrounding rock, the waste form, and any engineered barrier materials that are present, as well as by the temperature and pressure of the system. This report is a compilation and evaluation of the work completed to date on interactions within the waste-form/host-rock/groundwater system at various points in its lifetime. General results from leaching experiments are presented as a basis for comparison. The factors involved in studying the complete system are discussed so that future research may avoid some of the oversights of past research. Although relatively little hard data on prototype waste-form/repository-system interactions exist at this time, the available data and their implications are discussed. Sorption studies and models for predicting radionuclide migration are also presented, again with a study of the factors involved.

  11. Malaysian alternative to international reference bentonite buffer in underground nuclear waste repository

    Science.gov (United States)

    Tadza, Mohd Yuhyi Mohd; Azmi, Nor Syafiqah Mohd; Mustapha, Roslanzairi; Desa, Nor Dalilah; Samuding, Kamarudin

    2017-01-01

    The performance of bentonite as buffer material in underground nuclear waste repository has been extensively being investigated all over the world. Over the years, almost exclusively, naturally occurring Wyoming sodium based bentonite (MX80) was tested as a reference buffer material. Other alternatives such as calcium and mixed based bentonites from all over the world were also examined for this specific application in respective countries. In Malaysia, the potential of naturally occurring bentonites have not clearly documented and may be considered for the application of buffer material in underground nuclear waste repository. In the context of underground radioactive waste storage, bentonite from Sabah volcanic formation, namely Andrassy bentonite was characterized in the laboratory and compared with MX80 and Deponit Ca-N bentonites. The geotechnical properties such as Atterberg limits, particle size distribution, specific gravity, cation exchange capacity, specific surface area and swelling potential were carefully determined. In addition, the water retention characteristics were established using a chilled-mirror dew-point potentiometer. Test results indicated that the Andrassy bentonite may be selected as the key component in the country's future development of deep underground radioactive waste facilities.

  12. Damage-plasticity model of the host rock in a nuclear waste repository

    Science.gov (United States)

    Koudelka, Tomáš; Kruis, Jaroslav

    2016-06-01

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented in the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.

  13. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes.

  14. Reducing the likelihood of future human activities that could affect geologic high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    The disposal of radioactive wastes in deep geologic formations provides a means of isolating the waste from people until the radioactivity has decayed to safe levels. However, isolating people from the wastes is a different problem, since we do not know what the future condition of society will be. The Human Interference Task Force was convened by the US Department of Energy to determine whether reasonable means exist (or could be developed) to reduce the likelihood of future human unintentionally intruding on radioactive waste isolation systems. The task force concluded that significant reductions in the likelihood of human interference could be achieved, for perhaps thousands of years into the future, if appropriate steps are taken to communicate the existence of the repository. Consequently, for two years the task force directed most of its study toward the area of long-term communication. Methods are discussed for achieving long-term communication by using permanent markers and widely disseminated records, with various steps taken to provide multiple levels of protection against loss, destruction, and major language/societal changes. Also developed is the concept of a universal symbol to denote Caution - Biohazardous Waste Buried Here. If used for the thousands of non-radioactive biohazardous waste sites in this country alone, a symbol could transcend generations and language changes, thereby vastly improving the likelihood of successful isolation of all buried biohazardous wastes.

  15. Recharge-area nuclear waste repository in southeastern Sweden. Demonstration of hydrogeologic siting concepts and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Provost, A.M.; Voss, C.I. [U.S. Geological Survey, Reston, VA (United States)

    2001-11-01

    Nuclear waste repositories located in regional ground-water recharge ('upstream') areas may provide the safety advantage that potentially released radionuclides would have long travel time and path length, and large path volume, within the bedrock before reaching the biosphere. Nuclear waste repositories located in ground-water discharge ('downstream') areas likely have much shorter travel time and path length and smaller path volume. Because most coastal areas are near the primary discharge areas for regional ground-water flow, coastal repositories may have a lower hydrogeologic safety margin than 'upstream' repositories located inland. Advantageous recharge-area sites may be located through careful use of regional three-dimensional, variable-density, ground-water modeling. Because of normal limitations of site-characterization programs in heterogeneous bedrock environments, the hydrogeologic structure and properties of the bedrock will generally remain unknown at the spatial scales required for the model analysis, and a number of alternative bedrock descriptions are equally likely. Model simulations need to be carried out for the full range of possible descriptions. The favorable sites are those that perform well for all of the modeled bedrock descriptions. Structural heterogeneities in the bedrock and local undulations in water-table topography, at a scale finer than considered by a given model, also may cause some locations in favored inland areas to have very short flow paths (of only hundreds of meters) and short travel times, compromising the long times and paths (of many kilometers) predicted by the analysis for these sites. However, in the absence of more detailed modeling, the favored upstream sites offer a greater chance of achieving long times and paths than do downstream discharge areas, where times and paths are expected to be short regardless of the level of detail included in the model. As an example of this siting

  16. Sample performance assessment of a high-level radioactive waste repository: sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, A. [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering

    2001-07-01

    The Yucca Mountain Project (YMP) is the USA's first attempt at long-term storage of High-Level Radioactive Waste (HLW). In theory, the reasoning for such a repository seems sound. In practice, there are many scenarios and cases to be considered while putting such a project into effect. Since a goal of YMP is to minimize dangers associated with long-term storage of HLW, it is important to estimate the dose rate to which current and future generations will be subjected. The lifetime of the repository is simulated to indicate the radiation dose rate to the maximally exposed individual; it is assumed that if the maximally exposed individual would not be harmed by the annual dose, the remaining population will be at even smaller risk. The determination of what levels of exposure can be deemed harmless is a concern, and the results from the simulations as compared against various regulations are discussed. (author)

  17. Using focused hard X-rays for investigations of nuclear waste repository analogs

    Science.gov (United States)

    Denecke, M. A.

    2009-04-01

    Micro-focused synchrotron radiation techniques to investigate determinant processes in actinide element transport in geological media are becoming an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize radionuclide speciation localized in components of heterogeneous natural systems. The advantage of using X-rays is that in situ investigations are possible, due to elimination of a vacuum requirement, no need for invasive sample preparation, and the high penetration capability of X-rays. The ultimate goal of such studies is to advance development of reliable predictive models for radionuclide transport processes at varying spatial and temporal scales, with a reliable estimate of uncertainty. This information is necessary for designing safe nuclear disposal concepts by assessing potential hazards associated with any radioactive contamination release. Examples using µ-XRF, µ-XAFS, and µ-XRD, partly in confocal geometry, to characterize what are referred to as natural analogs, in this case clayey sediments rich in uranium [1-4], will be presented. Natural analogs are considered to mimic repository geochemical and geological conditions on a geological time scale and knowledge gained from their study can be used to span the long time scales in a top down approach for predicting repository radiological safety. [1] M.A. Denecke, W. De Nolf, K. Janssens, B. Brendebach, A. Rothkirch, G. Falkenberg, U. Noseck, Spectrochim. Acta B 63, 484-492 (2008). [2] M.A. Denecke, A. Somogyi, K. Janssens, R. Simon, K. Dardenne, U. Noseck, Microscopy Microanal. 13(3), 165-172 (2007). [3] M.A. Denecke, K. Janssens, K. Proost, J. Rothe, U. Noseck, Environ. Sci. Technol. 39(7), 2049-2058 (2005). [4] P. Michel, M.A. Denecke, T. Schäfer, B. Brendebach, K. Dardenne, J. Rothe, T. Vitova, F. Huber, K. Rickers, M. Elie, G. Buckau, Proceedings to the 5th Nuclear Energy Agency (NEA) Workshop on

  18. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  19. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Juliet S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Meleshyn, Artur [Gesellschaft fur Anlagen und Reaktorsicherheit, Braunschweig (Germany); Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and “repository microbiology” related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that will most likely underscore the conservative value of that case.

  20. Panel discussion on rock mechanics issues in repository design

    Energy Technology Data Exchange (ETDEWEB)

    Bieniawski, Z.T.; Kim, K.S.; Nataraja, M. [and others

    1996-04-01

    The panel discussion was introduced by Mr. Z.T.(Richard) Bieniawski and then continued with five additional speakers. The topics covered in the discussion included rock mechanics pertaining to the design of underground facilities for the disposal of radioactive wastes and the safety of such facilities. The speakers included: Mr. Kun-Soo Kim who is a specialist in the area of rock mechanics testing during the Basalt Waste Isolation Project; Dr. Mysore Nataraja who is the senior project manager with the NRC; Dr. Michael Voegele who is the project manager for Science Applications International Corporation (SAIC) on the Yucca Mountain Project; Dr. Edward Cording who is a member of the Nuclear Waste Technical Review Board; and Dr. Hemendra Kalia who is employed by Los Alamos National Laboratory and coordinates various activities of testing programs at the Yucca Mountain Site.

  1. Attitudes and opposition in siting a high level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, L.; Viklund, M.; Truedsson, J

    1998-09-01

    In Sweden, the Swedish Nuclear Fuel and Waste Management Company (SKB) handles all issues concerning nuclear waste, including the siting process, in which the final outcome is intended to be a repository for high level nuclear waste placed deep down in bedrock. The main objective of the siting process is to find a host community fulfilling two important conditions: the safety demands have been met and agreements with the municipality can be accomplished. Only in such municipalities, so-called feasibility studies will be conducted. After conducting general studies in the whole country, SKB, in October 1992, sent letters with information about the intended feasibility studies to all Swedish municipalities. As a result, feasibility studies are or have been considered - and in some cases also been conducted - in eleven Swedish municipalities up until 1998. These are the municipalities where the attitudes and opposition towards a feasibility study, and possibly a final repository, are studied. The discussion can be divided into three main parts: Management of the siting process; Inherent `chaotic` processes and/or factors and risk perception. It is argued that two important problems could have been avoided at least partly: The citizens in many municipalities were uncertain of the relationship between a feasibility study and a final repository, and in many municipalities the citizens were afraid that the Government could overrule the municipal veto. Because of these fears, a common argument among the opponents of a feasibility study was: `to be sure of not receiving a final repository, we say no to a feasibility study`. Some inherent factors, more or less prevalent in the municipalities as well as in society in general, may also partly explain the outcome of the siting process. The municipalities in which the debate has been heated, and where public support has been more difficult to reach, share some common characteristics. Esp. in the municipalities in the north of

  2. Main Features for the Conceptualization of the Post-Closure Evolution Scenario of the Cigeo LIL-HL Waste Repository - 13105

    Energy Technology Data Exchange (ETDEWEB)

    Landais, Patrick; Giffaut, Eric; Pepin, Guillaume; Plas, Frederic; Schumacher, S. [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)

    2013-07-01

    In France, in order to commission the planned geological repository by 2025, a license application for the industrial project of this geological repository called Cigeo (Centre Industriel de Stockage Geologique) must be submitted and reviewed by the competent authorities by 2015. On the basis of its preliminary design set up in 2009 and on the associated requirements for long-term safety, an overall conceptual model has been developed in order to prepare the performance and safety analysis. The Cigeo repository makes use of the passive safety response characteristics of both the engineered and geological barriers that allow: - resisting water ingress, with repository designs favoring the limitation of the water flows; - limiting the release of radionuclides and chemical toxics; - delaying and mitigating the spread of radionuclides and chemical toxics. In order to evaluate the performance of the various elements, a conceptual model of the thermo-hydro-chemico-mechanical (THMC) evolution of the different components of the repository has been designed. It takes stock of a 20 years research effort which allowed data to be obtained from various surface geological campaigns, in-situ experiments in URLs and wastes characterization, and advances in numerical simulation to be utilised. Based on the best available knowledge to date, this conceptual model constitutes a robust basis for the definition and development of the long-term safety scenarios. It also helps identifying the residual uncertainties, and provides guidelines for additional research and system optimizations. (authors)

  3. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    Science.gov (United States)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  4. Modelling groundwater contamination above a nuclear waste repository at Gorleben, Germany

    Science.gov (United States)

    Schwartz, Michael O.

    2012-05-01

    The candidate repository for high-level nuclear waste in the Gorleben salt dome, Germany, is expected to host 8,550 tonnes of uranium in burnt fuel. It has been proposed that 5,440 waste containers be deposited at a depth of about 800 m. There is 260-280 m of siliciclastic cover sediments above the proposed repository. The potential groundwater contamination in the siliciclastic aquifer is simulated with the TOUGHREACT and TOUGH2-MP codes for a three-dimensional model with 290,435 elements. Two deterministic cases are simulated. The single-phase case considers the transport of radionuclides in the liquid phase only. The two-phase case accounts for hydrogen gas generated by the corrosion of waste containers and release of gaseous C-14. The gas release via a backfilled shaft is assumed to be steady (non-explosive). The simulation period is 2,000,000 years for the single-phase case and 7,000 years for the two-phase case. Only the radioactive dose in the two-phase case is higher than the regulatory limit (0.1 mSv/a).

  5. Systems study of the feasibility of high-level nuclear waste fractionation for thermal stress control in a geologic repository: appendices

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

    1983-06-01

    This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. Volume II contains appendices for: (1) thermal analysis supplement; (2) fractionation process experimental results supplement; (3) cost analysis supplement; and (4) radiological risk analysis supplement.

  6. Nye County nuclear waste repository project office independent scientific investigations program. Summary annual report, May 1996--April 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This annual summary report, prepared by Multimedia Environmental Technology, Inc. (MET) on behalf of Nye County Nuclear Waste Project Office, summarizes the activities that were performed during the period from May 1, 1996 to April 30, 1997. These activities were conducted in support of the Independent Scientific Investigation Program (ISIP) of Nye County at the Yucca Mountain Site (YMS). The Nye County NWRPO is responsible for protecting the health and safety of the Nye County residents. NWRPO`s on-site representative is responsible for designing and implementing the Independent Scientific Investigation Program (ISIP). Major objectives of the ISIP include: (1) Investigating key issues related to conceptual design and performance of the repository that can have major impact on human health, safety, and the environment. (2) Identifying areas not being addressed adequately by DOE Nye County has identified several key scientific issues of concern that may affect repository design and performance which were not being adequately addressed by DOE. Nye County has been conducting its own independent study to evaluate the significance of these issues.

  7. Integrating rock mechanics issues with repository design through design process principles and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Bieniawski, Z.T. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as {open_quotes}design for manufacture{close_quotes} or {open_quotes}concurrent engineering{close_quotes} are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of {open_quotes}Design for Constructibility and Performance{close_quotes} is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance.

  8. On release of radionuclides from a near-surface radioactive waste repository to the environment

    Directory of Open Access Journals (Sweden)

    Gudelis Arūnas

    2015-09-01

    Full Text Available A closed near-surface radioactive waste repository is the source of various radionuclides causing the human exposure. Recent investigations confirm an effectiveness of the engineering barriers installed in 2006 to prevent the penetration of radionuclides to the environment. The tritium activity concentration in groundwater decreased from tens of kBq/l to below hundreds of Bq/l. The monitoring and groundwater level data suggest the leaching of tritium from previously contaminated layers of unsaturated zone by rising groundwater while 210Pb may disperse as a decay product of 226Ra daughters.

  9. AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    S. KWON

    2013-02-01

    Full Text Available Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  10. Experiences from risk communication in the siting of a geological repository for high level waste in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Thegerstroem, C.; Engstroem, S. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1999-12-01

    SKB is planning in the year 2001 to designate two siting alternatives for further site characterisation. The work in the municipalities of Oesthammar, Nykoeping, Oskarshamn and Tierp is taking place in an atmosphere of constructive discussions. There is a growing feeling in Sweden among broad categories of the public that the nuclear waste exists and should be taken care of by our generation, without many of these people ever getting positive to the use of nuclear energy. While the NIMBY syndrome might still have a good grip on some, there has never been a more constructive debate about the nuclear waste than now, even though there still is a lot of work to do. Siting a geological repository for high level waste puts our democratic system under hard tests. The decision making process is about openness, skills in interacting with the public, respect of people's fears and concerns and at last but not the least independent, competent and visible participation by other stakeholders (politicians locally and nationally, regulatory bodies etc). Good skills in risk communication are important ingredients that might facilitate SKB's task as a developer. Far more important however, is the trust we might get from past and present record of handling the waste and from the way we work and behave in the feasibility studies in the municipalities where SKB is involved.

  11. Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Carnahan, C.L.

    1983-11-01

    In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.

  12. Main organic materials in a repository for high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta [Vita vegrandis, Hindaas (Sweden); Grive, Mireia; Gaona, Xavier; Duro, Lara; Bruno, Jordi [Enviros Consulting, Valldoreix, Barcelona (Spain)

    2007-11-15

    , although the presence of aromatic compounds and PAHs in groundwater is not desirable by itself, they are of no consequence for the long-term performance of the repository. 5. Detergents and lubricants. The same reasoning as for fuels and engine emissions can be applied in this case. The amount of detergents should be minimized, although in the amounts that they are expected to occur, no important impact is foreseen. 6. Materials from human activities. Among them, the ones having potentially a more important effect are fibres from clothes, due to the presence of cellulose, and therefore it is recommended to minimise human-related wastes, although no large amounts of these materials are expected to be present after the repository closure. The effects that organic substances can have in the repository will always depend on the amounts present in the repository after closure. The estimated average concentrations are below 1.7x10{sup -4} kg/m{sup 3} (0.17 mg/L) of hydrocarbons in the deposition tunnels and less than 8.4x10{sup -4} kg/m{sup 3} (0.84 mg/L) of carbohydrates, assuming a total saturation in the pore water and an even distribution of the organic materials. This should be compared to the organic material found in groundwater at natural circumstances. At 500 m depth the DOC (dissolved organic carbon) content usually are approximately 0.5.2 mg/L. Three processes are deemed to have the largest possible impact on the performance of the repository: i) Increase of the reducing capacity and decrease of the redox potential in the short-term, and increased rate of depletion of the oxygen trapped during the repository operation stage. ii) Increase in the complexing capacity of the groundwater due to the presence of organic complexants, which is expected to be a process of more relevance in the long-term. Many organic molecules with complexing capacity, such as short organic acids like acetate are, however, oxidised as a consequence of microbial metabolism. The acetate

  13. Main organic materials in a repository for high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta [Vita vegrandis, Hindaas (Sweden); Grive, Mireia; Gaona, Xavier; Duro, Lara; Bruno, Jordi [Enviros Consulting, Valldoreix, Barcelona (Spain)

    2007-11-15

    , although the presence of aromatic compounds and PAHs in groundwater is not desirable by itself, they are of no consequence for the long-term performance of the repository. 5. Detergents and lubricants. The same reasoning as for fuels and engine emissions can be applied in this case. The amount of detergents should be minimized, although in the amounts that they are expected to occur, no important impact is foreseen. 6. Materials from human activities. Among them, the ones having potentially a more important effect are fibres from clothes, due to the presence of cellulose, and therefore it is recommended to minimise human-related wastes, although no large amounts of these materials are expected to be present after the repository closure. The effects that organic substances can have in the repository will always depend on the amounts present in the repository after closure. The estimated average concentrations are below 1.7x10{sup -4} kg/m{sup 3} (0.17 mg/L) of hydrocarbons in the deposition tunnels and less than 8.4x10{sup -4} kg/m{sup 3} (0.84 mg/L) of carbohydrates, assuming a total saturation in the pore water and an even distribution of the organic materials. This should be compared to the organic material found in groundwater at natural circumstances. At 500 m depth the DOC (dissolved organic carbon) content usually are approximately 0.5.2 mg/L. Three processes are deemed to have the largest possible impact on the performance of the repository: i) Increase of the reducing capacity and decrease of the redox potential in the short-term, and increased rate of depletion of the oxygen trapped during the repository operation stage. ii) Increase in the complexing capacity of the groundwater due to the presence of organic complexants, which is expected to be a process of more relevance in the long-term. Many organic molecules with complexing capacity, such as short organic acids like acetate are, however, oxidised as a consequence of microbial metabolism. The acetate

  14. Application of integral methods to prediction of heat transfer from a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Blesch, C J; Kulacki, F A; Christensen, R N

    1983-10-01

    Integral methods have been developed and applied to the prediction of the far field thermal impact of a nuclear waste repository. Specifically, the heat balance integral has been applied to a semi-infinite layered domain in which a limited number of sublayers form the repository overburden, and the repository is represented by an infinite plane beneath either one or two sublayers. Calculations for PWR spent fuel with an initial areal thermal loading of 60 kW/acre are carried out for various stratigraphies and overburden compositions. Results of the analyses are temperature distributions and heat fluxes to the surface as a function to time. Based on this study, the thermophysical properties of the individual layers are identified as the most important influence on temperature distributions and maximum temperature rise at any position above the repository. The thicknesses of the sublayers play a secondary role for a given rock composition. Where a comparison to exact or numerical solutions is possible, the method predicts maximum temperature increases in the overburden to within 10 percent. Heat fluxes to the surface are found to be relatively insensitive to overburden composition. For dome salt, a maximum of 1.2 percent to 2.7 percent of the initial areal thermal power of a five-term source reaches the surface. For bedded salt, a maximum of 1 percent to 1.8 percent of the initial areal thermal power reaches the surface over a wide range of sublayer compositions. Similarly, low percentages of initial areal thermal power reach the surface for the other stratigraphies considered in the calculations.

  15. Qualified public involvement in the decision making process of siting a waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Danielle Monegalha [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao-Geral de Recursos Humanos], e-mail: drodrigues@cnen.gov.br; Almeida, Ivan Pedro Salati de [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao-Geral de Assuntos Internacionais], e-mail: ivsalati@cnen.gov.br

    2009-07-01

    The main objective of this paper is to identify the most important characteristics required for the qualification of local communities for participating in the process of defining a specific site for a radioactive waste repository. It also compares the strategies used by Hungary, United Kingdom and Belgium to stimulate the public participation in the decision-making process of building and operating a radioactive waste repository, considering both the stepwise process and the spontaneous candidacy. Two main aspects are discussed as prerequisites to constitute a qualified public. The first aspect is how well the person or entity can be considered an effective representative of the community affected by the repository. This means the conditions the representative has to speak on behalf of the community and participate in the decision making process as its voice. The second characteristic is the level and quality of the information that the community and its representatives must have to participate actively in the decision-making process and what can be done to improve this status. Referring to the strategy to public involvement, this paper discusses the importance of transparency in the process, aiming the credibility of the entrepreneur as the first pace to gaining the confidence of the public affected by the project. Implementing an open dialog and listening to the needs and claims of the population are the first steps to being accepted as a true partner of the community. Preliminary discussions and explanations are important to introduce the subject and to reduce beliefs of false threats in the affected community. The constitution of a local committee is suggested, to act as a legal and formal channel to facilitate the partnership between local community, neighbors and the entrepreneur in order to achieve a positive result in the whole process. (author)

  16. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    Science.gov (United States)

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  17. Assessment of backfill design for KBS-3V repository

    Energy Technology Data Exchange (ETDEWEB)

    Keto, Paula (B+tech, Eurajoki (Finland)); Dixon, David (AECL, Harwell (United Kingdom)); Jonsson, Esther; Gunnarsson, David (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hansen, Johanna (Posiva (Finland))

    2009-12-15

    Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and materials for backfilling of deposition tunnels. This report summarises the work done in the third and final phase of the BACLO programme. The main objective of this phase was to study how the various processes active during backfill installation and saturation as well as technical constraints affect its design basis. The work focused on the performance and technical feasibility of a block backfill concept, which calls for filling the majority of the tunnel volume with pre-compacted backfill blocks and the remaining volume with bentonite pellets. Several backfill composition alternatives were chosen for study and they consisted of clay materials with differing amounts of swelling minerals. A large body of information was gained on the effect of different processes on the performance of these backfill options, e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer in various laboratory and small-scale field tests. More practical tests included e.g. studies how the blocks and pellets could be installed to the deposition tunnel. Based on the new information on the effect of the processes investigated and the estimated achievable block filling degree and backfill density, recommendations were made concerning material selection, backfill layout and technical issues. In addition, issues requiring further attention to verify the long-term performance of the proposed backfill concept are identified and listed

  18. "Design and application of a data-independent precursor and product ion repository."

    NARCIS (Netherlands)

    Thalassinos, K.; Vissers, J.P.; Tenzer, S.; Levin, Y.; Thompson, J.W.; Daniel, D.; Mann, D.; Delong, M.R.; Moseley, M.A.; America, A.H.P.; Ottens, A.K.; Cavey, G.S.; Efstathiou, G.; Scrivens, J.H.; Langridge, J.I.; Geromanos, S.J.

    2012-01-01

    The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments i

  19. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    Science.gov (United States)

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  20. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

  1. Performance assessments of nuclear waste repositories--A dialogue on their value and limitations

    Science.gov (United States)

    Ewing, Rodney C.; Tierney, Martin S.; Konikowe, Leonard F.; Rechard, Rob P.

    1999-01-01

    Performance Assessment (PA) is the use of mathematical models to simulate the long-term behavior of engineered and geologic barriers in a nuclear waste repository; methods of uncertainty analysis are used to assess effects of parametric and conceptual uncertainties associated with the model system upon the uncertainty in outcomes of the simulation. PA is required by the U.S. Environmental Protection Agency as part of its certification process for geologic repositories for nuclear waste. This paper is a dialogue to explore the value and limitations of PA. Two “skeptics” acknowledge the utility of PA in organizing the scientific investigations that are necessary for confident siting and licensing of a repository; however, they maintain that the PA process, at least as it is currently implemented, is an essentially unscientific process with shortcomings that may provide results of limited use in evaluating actual effects on public health and safety. Conceptual uncertainties in a PA analysis can be so great that results can be confidently applied only over short time ranges, the antithesis of the purpose behind long-term, geologic disposal. Two “proponents” of PA agree that performance assessment is unscientific, but only in the sense that PA is an engineering analysis that uses existing scientific knowledge to support public policy decisions, rather than an investigation intended to increase fundamental knowledge of nature; PA has different goals and constraints than a typical scientific study. The “proponents” describe an ideal, sixstep process for conducting generalized PA, here called probabilistic systems analysis (PSA); they note that virtually all scientific content of a PA is introduced during the model-building steps of a PSA, they contend that a PA based on simple but scientifically acceptable mathematical models can provide useful and objective input to regulatory decision makers. The value of the results of any PA must lie between these two

  2. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Nukleare Entsorgung (INE)

    2015-07-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH){sub 2}. Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  3. Nuclear Waste State of the Art Report 2010 - challenges for the final repository programme

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In this year's report the Council calls for that SKB makes more studies of how the copper corrosion affects the long-term safety. SKB is criticized for not sufficiently set clear requirements for the bentonite clay, which should surround the copper canisters. Internationally possibility to take back spent fuel from the repository is one highly topical issue. Retrieval of waste for transmutation and future reuse of spent nuclear fuel should be discussed also in Sweden. It is estimated that SKB submit an application within one year to dispose of spent nuclear fuel in the 500 meter deep repository in the bedrock at Oesthammar. The mountain is the natural barrier between the nuclear fuel and the environment, and in addition to this, spent fuel is surrounded by two technical barriers: copper canisters and bentonite clay. The corrosion resistance of the copper canisters has recently been challenged by research from the Royal Institute of Technology, and this has created uncertainty over copper canister as a suitable barrier. The Council believes that SKB should actively contribute to investigate the issue of corrosion of copper in pure, oxygen-free water in a scientifically unassailable way, and that its potential effect is determined. Bentonite clay is the subject of intensive development work in SKB's new bentonite-laboratory, but the Council believes that SKB must set clearer requirements for bentonite clay quality, particularly with regard to thresholds for the contaminants that may occur. The question of what is possible and desirable in order retrieve the spent fuel from the repository is international discussed. Retrievability before closure is part of the safety requirements and is not controversial. Retrievability after sealing on the other hand, is both a controversial and complex issue, especially from a civil law perspective. New technology can make high-level waste as an interesting energy source, or use of the Partitioning and Transmutation can

  4. Perceived risk and benefit of nuclear waste repositories: four opinion clusters.

    Science.gov (United States)

    Seidl, Roman; Moser, Corinne; Stauffacher, Michael; Krütli, Pius

    2013-06-01

    Local public resistance can block the site-selection process, construction, and operation of nuclear waste repositories. Social science has established that the perception of risks and benefits, trust in authorities, and opinion on nuclear energy play important roles in acceptance. In particular, risk and benefit evaluations seem critical for opinion formation. However, risks and benefits have rarely been studied independently and, most often, the focus has been on the two most salient groups of proponents and opponents. The aim of this exploratory study is to examine the often-neglected majority of people holding ambivalent or indifferent opinions. We used cluster analysis to examine the sample (N = 500, mailed survey in German-speaking Switzerland) in terms of patterns of risk and benefit perception. We reveal four significantly different and plausible clusters: one cluster with high-benefit ratings in favor of a repository and one cluster with high-risk ratings opposing it; a third cluster shows ambivalence, with high ratings on both risk and benefit scales and moderate opposition, whereas a fourth cluster seems indifferent, rating risks and benefits only moderately compared to the ambivalent cluster. We conclude that a closer look at the often neglected but considerable number of people with ambivalent or indifferent opinions is necessary. Although the extreme factions of the public will most probably not change their opinion, we do not yet know how the opinion of the ambivalent and indifferent clusters might develop over time.

  5. Physico-chemical interactions at the concrete-bitumen interface of nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Sablayrolles C.

    2013-07-01

    Full Text Available This study investigates the fate of nitrate and organic acids at the bitumenconcrete-steel interface within a repository storage cell for long-lived, intermediatelevel, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V-paste specimens were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. C-steel chips, simulating the presence of steel in the repository, were added in the systems for some experiments. The concentrations of anions (acetate, oxalate, nitrate, and nitrite and cations (calcium, potassium, ammonium and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the absence of steel, whereas, reduction of nitrates was observed in the presence of steel (production of NH4+. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching; no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  6. Monitoring a repository for high-level radioactive waste in Germany. Possibilities and limits; Ueberwachung eines Endlagers fuer hochradioaktive Abfaelle in Deutschland. Moeglichkeiten und Grenzen

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Haverkamp, B. [DBE Technology GmbH, Peine (Germany); Eilers, G. [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2011-11-15

    Pursuant to the new BMU safety requirements of September 2010 imposed upon the final storage of radioactive waste generating heat, the operator of a repository in Germany must establish a monitoring program which furnishes relevant measured information during the operations phase and for a defined period of time after closure of the repository. Within the framework of a feasibility study, an assessment basis was established to show in what format information about the status of a closed repository mine could be obtained technically without impairing the safety of barriers, for instance, by cable ducts. As a conceptual design basis, processes and measured quantities relevant to monitoring were attributed to the components of the current safety demonstration concept. For one model variant, monitoring possibilities of these processes were shown on the basis of monitoring modules. Some first experiments are being carried out in European underground laboratories about the use of wireless transmission systems in the repository area. On the basis of those activities, experiments could also be designed in the German exploratory mine of Gorleben in order to examine to what extent information obtained by monitoring could be transmitted in a wireless mode in rock salt formations. As far as the autonomous supply of electricity to measurement systems is concerned, which must be guaranteed on a long-term basis, there is now a possibility of using thermoelectric isotope generators or betavoltaic batteries. (orig.)

  7. Conceptual model for concrete long time degradation in a deep nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lagerblad, B.; Traegaardh, J. [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1994-02-01

    This report is mainly a state-of-the-art report of concrete long time durability in the environment expected in a deep site underground nuclear waste repository in Swedish crystalline bedrock. The report treats how the concrete and the surrounding groundwater will interact and how they will be affected by cement chemistry, type of aggregate etc. The different mechanisms for concrete alteration treated include sulphate attack, carbonation, chloride attack, alkali-silica reaction and leaching phenomena. In a long time perspective, the chemical alterations in concrete is mainly governed by the surrounding groundwater composition. After closure the composition of the groundwater will change character from a modified meteoric to a saline composition. Therefore two different simulated groundwater compositions have been used in modelling the chemical interaction between concrete and groundwater. The report also includes a study of old and historical concrete which show observations concerning recrystallization phenomena in concrete. 72 refs, 39 figs.

  8. Geologic, stratigraphic, thermal, and mechanical factors which influence repository design in the bedded salt environment

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, J.P.; Nair, O.; Ortman, D.; Rowe, J.

    1979-12-01

    This report describes the geologic, stratigraphic, thermal, and mechanical considerations applicable to repository design. The topics discussed in the report include: tectonic activity; geologic structure; stratigraphy; rock mechanical properties; and hydrologic properties.

  9. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NARCIS (Netherlands)

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  10. Performance assessments for radioactive waste repositories; the rate of movement of faults

    Science.gov (United States)

    Trask, Newell J.

    1982-01-01

    Performance assessments of mined repositories for radioactive waste require estimates of the likelihood of fault movements and earthquakes that may affect the repository and its surrounding ground water flow system. Some previous assessments have attempted to estimate the rate of formation of new faults; some have relied heavily on historic seismicity or the time of latest movement on faults. More appropriate emphasis is on the identification of faults that have been active or may have been active under the present teconic regime in a broad region and on estimates of the long-term rate of movement of such faults. Faults that have moved under the current stress field, even at low rates, are likely to move again during the time the wastes will remain toxic. A continuum exists for the present rate of movement of faults which ranges from 10 mm per year for obviously active faults along the western margin of the North American plate to as low as 10 -4 mm per year for recently documented faults in the Atlantic Coast province. On the basis of regional consistency in movement rates and constraints imposed by geomorphology, I derive upper bounds for the rates of occurrence of fault offsets for various crustal stress provinces in the conterminous United States. These upper bounds are not meant to substitute for detailed studies of specific faults and seismicity at specific sites. They can help to reduce the considerable uncertainty that attaches to all estimates of future tectonic activity. The principal uncertainty in their estimation is the manner in which total slip across faults is distributed among discrete events especially in regions in which the rate of movement is very low.

  11. Public involvement on closure of Asse II radioactive waste repository in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Kallenbach-Herbert, Beate [Oko-Institut e.V., Darmstadt (Germany)

    2013-07-01

    From 1967 to 1978, about 125,800 barrels of low- and intermediate level waste were disposed of - nominally for research purposes - in the former 'Asse' salt mine which had before been used for the production of potash for many years. Since 1988 an inflow of brine is being observed which will cause dangers of flooding and of a collapse due to salt weakening and dissolution if it should increase. Since several years the closure of the Asse repository is planned with the objective to prevent the flooding and collapse of the mine and the release of radioactive substances to the biosphere. The first concept that was presented by the former operator, however, seemed completely unacceptable to regional representatives from politics and NGOs. Their activities against these plans made the project a top issue on the political agenda from the federal to the local level. The paper traces the main reasons which lead to the severe safety problems in the past as well as relevant changes in the governance system today. A focus is put on the process for public involvement in which the Citizens' Advisory Group 'A2B' forms the core measure. Its structure and framework, experience and results, expectations from inside and outside perspectives are presented. Furthermore the question is tackled how far this process can serve as an example for a participatory approach in a siting process for a geological repository for high active waste which can be expected to be highly contested in the affected regions. (authors)

  12. Projected costs for mined geologic repositories for dispoal of commercial nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, J.D.; Dippold, D.G.; McSweeney, T.I.

    1982-12-01

    This documen reports cost estimates for: (1) the exploration and development activities preceding the final design of terminal isolation facilities for disposal of commercial high-level waste; and (2) the design, construction, operation, and decommissioning of such facilities. Exploration and evelopment costs also include a separate cost category for related programs such as subseabed research, activities of the Transportation Technology Center, and waste disposal impact mitigation activities.

  13. Abadia de Goias repository: design conception; Repositorio de Abadia de Goias: concepcao de projeto

    Energy Technology Data Exchange (ETDEWEB)

    Martin Alves, Antonio Sergio de; Santos, Cicero Durval Pacifici dos; Passos, Erivaldo Mario dos; Coutinho, Fernando Paulo Millen [NUCLEN, Rio de Janeiro, RJ (Brazil)

    1995-12-31

    In this paper have been presented the criteria, the methodologies and the parameters that were utilized for the design of Abadia de Goias Repository. Hereby the purpose is to show in a succinct way the know how that has been acquired for the design of a LLW and ILW repository. This paper presents information and details concerning to the various phases of the design, beginning with the data collecting activity, the safety analysis elaboration up to the definition of the final concept of the repository and of the required infrastructure work. The safety analysis, based on the Cs-137 migration through the groundwater, made possible at first to determine the places of the repository site where the population is not allowed to drill wells. The analysis allowed also the institutional control period calculation based on the maximum concentration of Cs-137 in the aquifer as well as in the intrusion models. (author). 16 refs., 3 figs., 1 tab.

  14. Estimation of waste package performance requirements for a nuclear waste repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B J

    1980-07-01

    A method of developing waste package performance requirements for specific nuclides is described, and based on federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment, a simple and conservative transport model, and baseline and potential worst-case release scenarios.

  15. Results From an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-08-02

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  16. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs.

  17. Experimental Simulation of the Radionuclide Behaviour in the Process of Creating Additional Safety Barriers in Solid Radioactive Waste Repositories Containing Irradiated Graphite

    Science.gov (United States)

    Pavliuk, A. O.; Kotlyarevskiy, S. G.; Bespala, E. V.; Zakarova, E. V.; Rodygina, N. I.; Ermolaev, V. M.; Proshin, I. M.; Volkova, A.

    2016-08-01

    Results of the experimental modeling of radionuclide behavior when creating additional safety barriers in solid radioactive waste repositories are presented. The experiments were run on the repository mockup containing solid radioactive waste fragments including irradiated graphite. The repository mockup layout is given; the processes with radionuclides that occur during the barrier creation with a clayey solution and during the following barrier operation are investigated. The results obtained confirm high anti-migration and anti-filtration properties of clay used for the barrier creation even under the long-term excessive water saturation of rocks confining the repository.

  18. Study of thermo-hydro-mechanical processes at a potential site of an Indian nuclear waste repository

    Indian Academy of Sciences (India)

    Sachin Maheshwar; A K Verma; T N Singh; R K Bajpai

    2015-12-01

    A detailed scientific study is required for the disposal of high-level radioactive wastes because they generate extremely high heat during their half-life period. Although, several methods have been proposed for the disposal of nuclear wastes, deep underground repository is considered to be a suitable option. In this paper, field investigation has been done near to Bhima basin of peninsular India. Detailed fracture analysis near the borehole shows very prominent maxima of fractures striking N55°E coinciding with the trace of master basement cover metasediment fault. Physico-mechanical properties of rocks have been determined in the laboratory. The host rock chosen is granite and engineered barrier near the canister is proposed to be clay. A thermo-hydro-mechanical (THM) analysis has been done to study the effect of heat on deformations, stresses and pore-pressure variation in granite and clay barriers. For this purpose, finite difference method has been used. Suitable rheological models have been used to model elastic canister and elasto-plastic engineered barrier and host rock. It has been found that both temperature and stresses at any point in the rockmass is below the design criteria which are 100°C for temperature and 0.2 for damage number.

  19. Study of thermo-hydro-mechanical processes at a potential site of an Indian nuclear waste repository

    Science.gov (United States)

    Maheshwar, Sachin; Verma, A. K.; Singh, T. N.; Bajpai, R. K.

    2015-12-01

    A detailed scientific study is required for the disposal of high-level radioactive wastes because they generate extremely high heat during their half-life period. Although, several methods have been proposed for the disposal of nuclear wastes, deep underground repository is considered to be a suitable option. In this paper, field investigation has been done near to Bhima basin of peninsular India. Detailed fracture analysis near the borehole shows very prominent maxima of fractures striking N55∘E coinciding with the trace of master basement cover metasediment fault. Physico-mechanical properties of rocks have been determined in the laboratory. The host rock chosen is granite and engineered barrier near the canister is proposed to be clay. A thermo-hydro-mechanical (THM) analysis has been done to study the effect of heat on deformations, stresses and pore-pressure variation in granite and clay barriers. For this purpose, finite difference method has been used. Suitable rheological models have been used to model elastic canister and elasto-plastic engineered barrier and host rock. It has been found that both temperature and stresses at any point in the rockmass is below the design criteria which are 100∘C for temperature and 0.2 for damage number.

  20. Coupled Multi-physical Simulations for the Assessment of Nuclear Waste Repository Concepts: Modeling, Software Development and Simulation

    Science.gov (United States)

    Massmann, J.; Nagel, T.; Bilke, L.; Böttcher, N.; Heusermann, S.; Fischer, T.; Kumar, V.; Schäfers, A.; Shao, H.; Vogel, P.; Wang, W.; Watanabe, N.; Ziefle, G.; Kolditz, O.

    2016-12-01

    As part of the German site selection process for a high-level nuclear waste repository, different repository concepts in the geological candidate formations rock salt, clay stone and crystalline rock are being discussed. An open assessment of these concepts using numerical simulations requires physical models capturing the individual particularities of each rock type and associated geotechnical barrier concept to a comparable level of sophistication. In a joint work group of the Helmholtz Centre for Environmental Research (UFZ) and the German Federal Institute for Geosciences and Natural Resources (BGR), scientists of the UFZ are developing and implementing multiphysical process models while BGR scientists apply them to large scale analyses. The advances in simulation methods for waste repositories are incorporated into the open-source code OpenGeoSys. Here, recent application-driven progress in this context is highlighted. A robust implementation of visco-plasticity with temperature-dependent properties into a framework for the thermo-mechanical analysis of rock salt will be shown. The model enables the simulation of heat transport along with its consequences on the elastic response as well as on primary and secondary creep or the occurrence of dilatancy in the repository near field. Transverse isotropy, non-isothermal hydraulic processes and their coupling to mechanical stresses are taken into account for the analysis of repositories in clay stone. These processes are also considered in the near field analyses of engineered barrier systems, including the swelling/shrinkage of the bentonite material. The temperature-dependent saturation evolution around the heat-emitting waste container is described by different multiphase flow formulations. For all mentioned applications, we illustrate the workflow from model development and implementation, over verification and validation, to repository-scale application simulations using methods of high performance computing.

  1. [Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine].

    Science.gov (United States)

    Nazina, T N; Luk'ianova, E A; Zakharova, E V; Ivoĭlov, V S; Poltaraus, A B; Kalmykov, S N; Beliaev, S S; Zubkov, A A

    2006-01-01

    The physicochemical conditions, composition of microbial communities, and the rates of anaerobic processes in the deep sandy horizons used as a repository for liquid radioactive wastes (LRW) at the Siberian Chemical Combine (Seversk, Tomsk oblast), were studied. Formation waters from the observation wells drilled into the production horizons of the radioactive waste disposal site were found to be inhabited by microorganisms of different physiological groups, including aerobic organotrophs, anaerobic fermentative, denitrifying, sulfate-reducing, and methanogenic bacteria. The density of microbial population, as determined by cultural methods, was low and usually did not exceed 10(4) cells/ml. Enrichment cultures of microorganisms producing gases (hydrogen, methane, carbon dioxide, and hydrogen sulfide) and capable of participation in the precipitation of metal sulfides were obtained from the waters of production horizons. The contemporary processes of sulfate reduction and methanogenesis were assayed; the rates of these terminal processes of organic matter destruction were found to be low. The denitrifying bacteria from the underground repository were capable of reducing the nitrates contained in the wastes, provided sources of energy and biogenic elements were available. Biosorption of radionuclides by the biomass of aerobic bacteria isolated from groundwater was demonstrated. The results obtained give us insight into the functional structure of the microbial community inhabiting the waters of repository production horizons. This study indicates that the numbers and activity of microbial cells are low both inside and outside the zone of radioactive waste dispersion, in spite of the long period of waste discharge.

  2. A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bill Carey; Gordon Keating; Peter C. Lichtner

    1999-08-01

    Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat

  3. Simulation of coupled THM process in surrounding rock mass of nuclear waste repository in argillaceous formation

    Institute of Scientific and Technical Information of China (English)

    蒋中明; 陈永贵

    2015-01-01

    To investigate and analyze the thermo-hydro-mechanical (THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-situ test way. A transversely isotropic model was employed to reproduce the whole test process numerically. Parameters of the rock mass were determined by laboratory and in-situ experiments. Based on the numerical simulation results and in-situ test data, the variation processes of pore water pressure, temperature and deformation of surrounding rock were analyzed. Both the measured data and numerical results reveal that the thermal perturbation is the principal driving force which leads to the variation of pore water pressure and deformations in the surrounding rock. The temperature, pore pressure and deformation of rock mass change rapidly at each initial heating stage with a constant heating power. The temperature field near the heater borehole is relatively steady in the subsequent stages of the heating phase. However, the pore pressure and deformation fields decrease gradually with temperature remaining unchanged condition. It also shows that a transversely isotropic model can reproduce the THM coupling effects generating in the near-field of a nuclear waste repository in an argillaceous formation.

  4. Economic appraisal of deployment schedules for high-level radioactive waste repositories

    Directory of Open Access Journals (Sweden)

    Doan Phuong Hoai Linh

    2017-01-01

    Full Text Available The deep geological repository (DGR is considered as the definitive management solution for high-level waste (HLW. Countries defined different DGR implementation schedules, depending on their national context and political choices. We raise the question of the economic grounds of such political decisions by providing an economic analysis of different DGR schedules. We investigate the optimal timing for DGR commissioning based on available Nuclear Energy Agency (NEA data (2013. Two scenarios are considered: (1 rescheduling the deployment of a DGR with the same initial operational period, and (2 rescheduling the deployment of a DGR with a shorter operational period, i.e. initial closure date. Given the long timescales of such projects, we also take into account the discounting effect. The first finding is that it appears more economically favorable to extend the interim storage than to dispose of the HLW immediately. Countries which chose “immediate” disposal are willing to accept higher costs to quickly solve the problem. Another interesting result is that there is an optimal solution with respect to the length of DGR operational period and the waste flow for disposal. Based on data provided by the Organisation for Economic Cooperation and Development (OECD/Nuclear Energy Agency (NEA, we find an optimal operating period of about 15 years with a flow of 2000 tHM/year.

  5. Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories

    Directory of Open Access Journals (Sweden)

    S. Delepine-Lesoille

    2012-01-01

    Full Text Available Temperature and strain monitoring will be implemented in the envisioned French geological repository for high- and intermediate-level long-lived nuclear wastes. Raman and Brillouin scatterings in optical fibers are efficient industrial methods to provide distributed temperature and strain measurements. Gamma radiation and hydrogen release from nuclear wastes can however affect the measurements. An industrial qualification process is successfully proposed and implemented. Induced measurement uncertainties and their physical origins are quantified. The optical fiber composition influence is assessed. Based on radiation-hard fibers and carbon-primary coatings, we showed that the proposed system can provide accurate temperature and strain measurements up to 0.5 MGy and 100% hydrogen concentration in the atmosphere, over 200 m distance range. The selected system was successfully implemented in the Andra underground laboratory, in one-to-one scale mockup of future cells, into concrete liners. We demonstrated the efficiency of simultaneous Raman and Brillouin scattering measurements to provide both strain and temperature distributed measurements. We showed that 1.3 μm working wavelength is in favor of hazardous environment monitoring.

  6. Radiation doses from the transport of radioactive waste to a future repository in Denmark. A model study

    Energy Technology Data Exchange (ETDEWEB)

    2011-05-15

    The radiation doses modelled for transport of radioactive waste to a future repository in Denmark, demonstrates that the risk associated with road and sea transport should not limit the future selection of a location of the repository. From a safety perspective both road and sea transport seem to be feasible modes of transport. Although the modelling in most cases is performed conservatively, the modelled doses suggest that both transport methods can be carried out well within the national dose limits. Additionally, the dose levels associated with the modelled accident scenarios are low and the scenarios are thus found to be acceptable taken the related probabilities into account. (LN)

  7. Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository

    CERN Document Server

    Bourgeat, Alain; Smaï, Farid

    2008-01-01

    We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

  8. Technical elements for the performance assessment of a high-level waste geologic repository

    Science.gov (United States)

    Light, William Bradley

    Techniques for predicting various performance elements of a high level radioactive waste repository are developed and demonstrated. In the unsaturated Yucca Mountain repository site gaseous radionuclides traveling through open fractures will be retarded by absorption into pore-bound liquid. For small values of the modified Peclet number the fractured porous medium can be modeled as an equivalent continuum as demonstrated by discrete fracture analysis. The travel time for C-14(O2) from failed containers to the accessible environment is predicted to be hundreds to thousands of years and doses from above ground concentrations to be much lower than background radiation at sea level. A spent fuel source term is developed for episodic flooding of a partially-failed container. Solubility-limited, congruent, preferential and alteration-rate based release modes are considered. Transport is by advection with the mostly-intact container being credited with effectively blocking diffusive pathways. The possible benefits of limited oxygen entry into the container is also discussed. Calculated releases in response to assumed major flooding episodes are comparable to those of wet-drip models. A weapons-plutonium glass waste form might be driven to supercriticality by a flooding episode in the distant future if neutron poisons are first washed away as shown by a preliminary hydrodynamics-coupled reactor model. Criticality is approached from the undermoderated side as water enters the degraded waste form. Point neutronics equations track the event through self-shutdown by water expulsion. Calculated event magnitudes are comparable to those of documented criticality accidents. The fundamental problem of diffusion from a circular disc source at constant concentration located in the boundary of a semi-infinite media is solved numerically using coordinate transformation, grid scaling, and intelligent finite difference algorithms. The resulting time-dependent mass-transfer rate is

  9. Rolling Deck to Repository I: Designing a Database Infrastructure

    Science.gov (United States)

    Arko, R. A.; Miller, S. P.; Chandler, C. L.; Ferrini, V. L.; O'Hara, S. H.

    2008-12-01

    The NSF-supported academic research fleet collectively produces a large and diverse volume of scientific data, which are increasingly being shared across disciplines and contributed to regional and global syntheses. As both Internet connectivity and storage technology improve, it becomes practical for ships to routinely deliver data and documentation for a standard suite of underway instruments to a central shoreside repository. Routine delivery will facilitate data discovery and integration, quality assessment, cruise planning, compliance with funding agency and clearance requirements, and long-term data preservation. We are working collaboratively with ship operators and data managers to develop a prototype "data discovery system" for NSF-supported research vessels. Our goal is to establish infrastructure for a central shoreside repository, and to develop and test procedures for the routine delivery of standard data products and documentation to the repository. Related efforts are underway to identify tools and criteria for quality control of standard data products, and to develop standard interfaces and procedures for maintaining an underway event log. Development of a shoreside repository infrastructure will include: 1. Deployment and testing of a central catalog that holds cruise summaries and vessel profiles. A cruise summary will capture the essential details of a research expedition (operating institution, ports/dates, personnel, data inventory, etc.), as well as related documentation such as event logs and technical reports. A vessel profile will capture the essential details of a ship's installed instruments (manufacturer, model, serial number, reference location, etc.), with version control as the profile changes through time. The catalog's relational database schema will be based on the UNOLS Data Best Practices Committee's recommendations, and published as a formal XML specification. 2. Deployment and testing of a central repository that holds

  10. How to Shape a Successful Repository Program: Staged Development of Geologic Repositories for High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, T.

    2004-10-03

    Programs to manage and ultimately dispose of high-level radioactive wastes are unique from scientific and technological as well as socio-political aspects. From a scientific and technological perspective, high-level radioactive wastes remain potentially hazardous for geological time periods--many millennia--and scientific and technological programs must be put in place that result in a system that provides high confidence that the wastes will be isolated from the accessible environment for these many thousands of years. Of course, ''proof'' in the classical sense is not possible at the outset, since the performance of the system can only be known with assurance, if ever, after the waste has been emplaced for those geological time periods. Adding to this challenge, many uncertainties exist in both the natural and engineered systems that are intended to isolate the wastes, and some of the uncertainties will remain regardless of the time and expense in attempting to characterize the system and assess its performance.

  11. Hanford Tank Waste to WIPP - Maximizing the Value of our National Repository Asset

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Allan R.; Wheeler, Martin

    2013-11-11

    Preplanning scope for the Hanford tank transuranic (TRU) waste project was authorized in 2013 by the Department of Energy (DOE) Office of River Protection (ORP) after a project standby period of eight years. Significant changes in DOE orders, Hanford contracts, and requirements at the Waste Isolation Pilot Plant (WIPP) have occurred during this time period, in addition to newly implemented regulatory permitting, re-evaluated waste management strategies, and new commercial applications. Preplanning has identified the following key approaches for reactivating the project: qualification of tank inventory designations and completion of all environmental regulatory permitting; identifying program options to accelerate retrieval of key leaking tank T-111; planning fully compliant implementation of DOE Order 413.3B, and DOE Standard 1189 for potential on-site treatment; and re-evaluation of commercial retrieval and treatment technologies for better strategic bundling of permanent waste disposal options.

  12. Geochemical modelling of bentonite porewater in high-level waste repositories

    Science.gov (United States)

    Wersin, Paul

    2003-03-01

    The description of the geochemical properties of the bentonite backfill that serves as engineered barrier for nuclear repositories is a central issue for perfomance assessment since these play a large role in determining the fate of contaminants released from the waste. In this study the porewater chemistry of bentonite was assessed with a thermodynamic modelling approach that includes ion exchange, surface complexation and mineral equilibrium reactions. The focus was to identify the geochemical reactions controlling the major ion chemistry and acid-base properties and to explore parameter uncertainties specifically at high compaction degrees. First, the adequacy of the approach was tested with two distinct surface complexation models by describing recent experimental data performed at highly varying solid/liquid ratios and ionic strengths. The results indicate adequate prediction of the entire experimental data set. Second, the modelling was extended to repository conditions, taking as an example the current Swiss concept for high-level waste where the compacted bentonite backfill is surrounded by argillaceous rock. The main reactions controlling major ion chemistry were found to be calcite equilibrium and concurrent Na-Ca exchange reactions and de-protonation of functional surface groups. Third, a sensitivity analysis of the main model parameters was performed. The results thereof indicate a remarkable robustness of the model with regard to parameter uncertainties. The bentonite system is characterised by a large acid-base buffering capacity which leads to stable pH-conditions. The uncertainty in pH was found to be mainly induced by the pCO 2 of the surrounding host rock. The results of a simple diffusion-reaction model indicate only minor changes of porewater composition with time, which is primarily due to the geochemical similarities of the bentonite and the argillaceous host rock. Overall, the results show the usefulness of simple thermodynamic models to

  13. Swiss plans for deep geological repositories for radioactive wastes - Basics for communication at the localities affected; Sachplan geologische Tiefenlager. Forschungsprojekt 'Kommunikation mit der Gesellschaft': Grundlagen fuer die Kommunikation in den Standortregionen

    Energy Technology Data Exchange (ETDEWEB)

    Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the concept of how information concerning deep geological repositories for radioactive wastes should be presented and communicated to those in the areas which have been designated as potential sites for the repositories. Communication basics based on scientific knowledge in this area are discussed. The importance of a concept for general communication and risk-communication as a particular challenge are discussed. Trust and transparency are quoted as being indispensable in this connection. Ways of dealing with various target audiences and the media are examined. The report is concluded with a check-list that deals with important questions arising from the process of communicating information on deep geological repositories for radioactive wastes

  14. Design of Waste Shredder Machine

    Directory of Open Access Journals (Sweden)

    Asst. Prof. S.Nithyananth

    2014-03-01

    Full Text Available The conventional agro-waste disposal is a traditional and oldest method of waste disposal in which agriculture wastes are dumped as it is to degrade in a particular place for decomposing. As the wastes are dumped as such, it takes more time to degrade and it causes environmental pollution. The waste shredder machine aims to reduce the agro waste and convert it into useful nourishing fertilizer. It decreases the man work making the farm neat and clean. Also it reduces the heap amount of pollution, disease causing agro-wastes and produces a better fertilizer with vermin compost. The waste shredder machine is an attachment as like a ploughing attachment. In the shredder attachment input power and rigid support is provided by a KAMCO Tera-trac 4W tractor by means of PTO (power take off shaft and three point linkage. PTO shaft of the tractor acts as a basic power input and the three point linkage provide a rigid support to the machine. Various kinds of blades are used for chipping and powdering operations like sawing blades, rotatory blades, and triangular shape blades. The blades are mounted on the shaft. The power is transmitted to another shaft by means of pulley and belt. For designing waste shredder machine, Creo parametric 1.0 software is used.

  15. Workshop on the source term for radionuclide migration from high-level waste or spent nuclear fuel under realistic repository conditions: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, T.O.; Muller, A.B. (eds.)

    1985-07-01

    Sixteen papers were presented at the workshop. The fourteen full-length papers included in the proceedings were processed separately. Only abstracts were included for the following two papers: Data Requirements Based on Performance Assessment Analyses of Conceptual Waste Packages in Salt Repositories, and The Potential Effects of Radiation on the Source Term in a Salt Repository. (LM)

  16. Use of groundwater lifetime expectancy for the performance assessment of a deep geologic waste repository: 1. Theory, illustrations, and implications

    CERN Document Server

    Cornaton, F J; Normani, S D; Sudicky, E A; Sykes, J F

    2011-01-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to defi...

  17. Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, S.R.; Broxton, D.E.; Crowe, B.M.; Buono, A.; Orkild, P.P.

    1989-07-01

    In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation`s first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab.

  18. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-01-01

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  19. Naval Waste Package Design Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    T. Schmitt

    2006-12-13

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license application design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages.

  20. Anthropogenic influences on groundwater in the vicinity of a long-lived radioactive waste repository

    Science.gov (United States)

    Thomas, Matthew A.; Kuhlman, Kristopher L.; Ward, Anderson L.

    2017-07-01

    The groundwater flow system in the Culebra Dolomite Member (Culebra) of the Permian Rustler Formation is a potential radionuclide release pathway from the Waste Isolation Pilot Plant (WIPP), the only deep geological repository for transuranic waste in the United States. In early conceptual models of the Culebra, groundwater levels were not expected to fluctuate markedly, except in response to long-term climatic changes, with response times on the order of hundreds to thousands of years. Recent groundwater pressures measured in monitoring wells record more than 25 m of drawdown. The fluctuations are attributed to pumping activities at a privately-owned well that may be associated with the demand of the Permian Basin hydrocarbon industry for water. The unprecedented magnitude of drawdown provides an opportunity to quantitatively assess the influence of unplanned anthropogenic forcings near the WIPP. Spatially variable realizations of Culebra saturated hydraulic conductivity and storativity were used to develop groundwater flow models to estimate a pumping rate for the private well and investigate its effect on advective transport. Simulated drawdown shows reasonable agreement with observations (average Model Efficiency coefficient = 0.7). Steepened hydraulic gradients associated with the pumping reduce estimates of conservative particle travel times across the domain by one-half and shift the intersection of the average particle track with the compliance boundary by more than two kilometers. The value of the transient simulations conducted for this study lie in their ability to (i) improve understanding of the Culebra groundwater flow system and (ii) challenge the notion of time-invariant land use in the vicinity of the WIPP.

  1. Proceedings of the 6th US/German Workshop on Salt Repository Research, Design, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steininger, Walter [Karlsruhe Inst. of Technology (KIT) (Germany); Bollingerfehr, Wilhelm [DBE Technology GmbH, Peine (Germany)

    2016-01-11

    The 6th US/German Workshop on Salt Repository Research, Design, and Operation was held in Dresden. Germany on September 7-9, 2015. Over seventy participants helped advance the technical basis for salt disposal of radioactive waste. The number of collaborative efforts continues to grow and to produce useful documentation, as well as to define the state of the art for research areas. These Proceedings are divided into Chapters, and a list of authors is included in the Acknowledgement Section. Also in this document are the Technical Agenda, List of Participants, Biographical Information, Abstracts, and Presentations. Proceedings of all workshops and other pertinent information are posted on websites hosted by Sandia National Laboratories and the Nuclear Energy Agency Salt Club. The US/German workshops provide continuity for long-term research, summarize and publish status of mature areas, and develop appropriate research by consensus in a workshop environment. As before, major areas and findings are highlighted, which constitute topical Chapters in these Proceedings. In total, the scientific breadth is substantial and while not all subject matter is elaborated into chapter format, all presentations and abstracts are published in this document. In the following Proceedings, six selected topics are developed in detail.

  2. Sorption of strontium on uranyl peroxide: implications for a high-level nuclear waste repository.

    Science.gov (United States)

    Sureda, Rosa; Martínez-Lladó, Xavier; Rovira, Miquel; de Pablo, Joan; Casas, Ignasi; Giménez, Javier

    2010-09-15

    Strontium-90 is considered the most important radioactive isotope in the environment and one of the most frequently occurring radionuclides in groundwaters at nuclear facilities. The uranyl peroxide studtite (UO2O2 . 4H2O) has been observed to be formed in spent nuclear fuel leaching experiments and seems to have a relatively high sorption capacity for some radionuclides. In this work, the sorption of strontium onto studtite is studied as a function of time, strontium concentration in solution and pH. The main results obtained are (a) sorption is relatively fast although slower than for cesium; (b) strontium seems to be sorbed via a monolayer coverage of the studtite surface, (c) sorption has a strong dependence on ionic strength, is negligible at acidic pH, and increases at neutral to alkaline pH (almost 100% of the strontium in solution is sorbed above pH 10). These results point to uranium secondary solid phase formation on the spent nuclear fuel as an important mechanism for strontium retention in a high-level nuclear waste repository (HLNW).

  3. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  4. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  5. Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository

    Science.gov (United States)

    Matteo, E. N.; Hadgu, T.; Park, H.

    2016-12-01

    Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under

  6. Repository development status in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Beceiro, Alvaro; Zuloaga, Pablo [ENRESA (Spain)

    2009-06-15

    The paper describes the status of repository development for the different waste categories. Low and Intermediate Waste Disposal facility of El Cabril was commissioned in 1992 and is in normal operation. The major modifications and activities during the last years are the adaptation to waste streams not initially foreseen such as some decommissioning waste or waste from steel industry, and the improvement of its performance assessment, supported by a R and D and refined models. As part of this facility, a new disposal facility specifically intended for very low activity waste has been constructed and commissioned in July 2008. Its design is based on the European Directive for hazardous waste disposal. National policy for Nuclear Spent Fuel and High-Level waste is focused on the development of a centralized storage facility of the vault type, whose site location would be selected through a volunteering process. Meanwhile, with the aim of solving specific problems, three individual storage facilities are in different status at reactor sites. Research on final solution, including some repository aspects as well as separation and transmutation are being carried out in accordance to ENRESA's R and D program. ENRESA has developed conceptual designs for non site specific repositories, both in granite and clay, and has carried out their corresponding performance assessment exercises. (authors)

  7. Data for calibration and validation of numerical models at SFR Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Axelsson, Carl-Lennart [Golder Associates AB (Sweden)

    1997-12-01

    The final repository for low and intermediate radioactive waste, SFR, is located below the Baltic, offshore of the nuclear power plant at Forsmark. The current operating permit for SKB stipulates that the safety assessment is updated at least every ten year. In response, SKB has started the SAFE project which aims at submitting a complete revised safety analysis before or during the year 2000. The current report is part of the far-field analyses in SAFE and provides information that can be used in a revised hydrogeological modelling of the facility. Information have been collected mainly during the construction phase of SFR, 1983 - 88, and the operation phase from 1988. The specific information that is available for the construction phase is: pressure responses in different bore holes when pumping in one bore hole, groundwater pressure in sections of bore holes, inflow to different parts of the SFR, and groundwater chemistry and isotope analyses in sections of bore holes. During the operation phase, the following information is available: ground-water pressure in sections of bore holes, inflow to different parts of the SFR facility, and groundwater chemistry and isotope analyses in sections of bore holes. The important issues in the groundwater modelling for the performance assessment study of SFR is the amount of water that flows through the storage caverns and the silo together with the possible retention and adsorption in the rock mass, i.e. the flow paths from the repository parts. Thus, the most important type of information is the inflow measurements made in different parts of SFR. The groundwater chemistry may be used to understand the flow pattern and mixing of water with various origin such as fresh groundwater, saline rock/fracture groundwater and Baltic Sea water, especially to predict breakthrough time for the Baltic Sea water at different bore hole sections in fracture zones. The report discusses especially the availability and evolution of inflow and

  8. Transparency and Public Involvement in Siting a Nuclear Waste Repository in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Hans-Albert; Mussel, Christine [WIBERA/PWIBERA/PriceWaterhouseCoopers Deutsche Rev., Hannover (Germany); Nies, Alexander [Federal Ministry for the Environment, Bonn (Germany)

    2001-07-01

    The 1998 election of the Federal Parliament led to a significant reorientation of German energy policy. In June 2000, the Federal Government (FG) has achieved an agreement with the utility companies in which they respect the decision of the FG to put an orderly end to nuclear power generation by prohibiting the erection of new, and limiting the operational period of existing power plants. The agreement also contains cornerstones of a new radioactive waste management policy: New interim storage facilities will be built at reactor sites in order to minimise transports to the existing central interim storage facilities at Ahaus and Gorleben; The utilities will use all acceptable contractual possibilities with their international partners to end reprocessing as soon as possible. By mid 2005 at the latest, spent fuel management in Germany will be limited to direct disposal; The exploration of the salt dome at Gorleben will be interrupted for at least three, and at most ten years, to clarify conceptual and safety questions. Correspondingly, the FG has initiated an amendment of the atomic energy act and the development of a new plan for radioactive waste management. In the field of radioactive waste disposal, the Federal Government pursues two new objectives: For the disposal of all kinds and amounts of radioactive waste, one single repository in deep geologic formations shall be erected around 2030; The suitability of further sites in different host formations shall be examined. Feasibility and consequences of the first objective have still to be carefully examined in detail. Development of a new disposal concept and final decisions on both the existing disposal projects as well as on new potential sites are therefore an ambitious challenge for the coming years. The second objective brings up a key question which several leading countries presently attempt to successfully address: how to select sites which are both suitable for safe disposal and accepted in the public

  9. Maximum flood hazard assessment for OPG's deep geologic repository for low and intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Nimmrichter, P.; McClintock, J.; Peng, J. [AMEC plc., Toronto, ON (Canada); Leung, H. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2011-07-01

    Ontario Power Generation (OPG) has entered a process to seek Environmental Assessment and licensing approvals to construct a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW) near the existing Western Waste Management Facility (WWMF) at the Bruce nuclear site in the Municipality of Kincardine, Ontario. In support of the design of the proposed DGR project, maximum flood stages were estimated for potential flood hazard risks associated with coastal, riverine and direct precipitation flooding. The estimation of lake/coastal flooding for the Bruce nuclear site considered potential extreme water levels in Lake Huron, storm surge and seiche, wind waves, and tsunamis. The riverine flood hazard assessment considered the Probable Maximum Flood (PMF) within the local watersheds, and within local drainage areas that will be directly impacted by the site development. A series of hydraulic models were developed, based on DGR project site grading and ditching, to assess the impact of a Probable Maximum Precipitation (PMP) occurring directly at the DGR site. Overall, this flood assessment concluded there is no potential for lake or riverine based flooding and the DGR area is not affected by tsunamis. However, it was also concluded from the results of this analysis that the PMF in proximity to the critical DGR operational areas and infrastructure would be higher than the proposed elevation of the entrance to the underground works. This paper provides an overview of the assessment of potential flood hazard risks associated with coastal, riverine and direct precipitation flooding that was completed for the DGR development. (author)

  10. Initial demonstration of the NRC`s capability to conduct a performance assessment for a High-Level Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Codell, R.; Eisenberg, N.; Fehringer, D.; Ford, W.; Margulies, T.; McCartin, T.; Park, J.; Randall, J.

    1992-05-01

    In order to better review licensing submittals for a High-Level Waste Repository, the US Nuclear Regulatory Commission staff has expanded and improved its capability to conduct performance assessments. This report documents an initial demonstration of this capability. The demonstration made use of the limited data from Yucca Mountain, Nevada to investigate a small set of scenario classes. Models of release and transport of radionuclides from a repository via the groundwater and direct release pathways provided preliminary estimates of releases to the accessible environment for a 10,000 year simulation time. Latin hypercube sampling of input parameters was used to express results as distributions and to investigate model sensitivities. This methodology demonstration should not be interpreted as an estimate of performance of the proposed repository at Yucca Mountain, Nevada. By expanding and developing the NRC staff capability to conduct such analyses, NRC would be better able to conduct an independent technical review of the US Department of Energy (DOE) licensing submittals for a high-level waste (HLW) repository. These activities were divided initially into Phase 1 and Phase 2 activities. Additional phases may follow as part of a program of iterative performance assessment at the NRC. The NRC staff conducted Phase 1 activities primarily in CY 1989 with minimal participation from NRC contractors. The Phase 2 activities were to involve NRC contractors actively and to provide for the transfer of technology. The Phase 2 activities are scheduled to start in CY 1990, to allow Sandia National Laboratories to complete development and transfer of computer codes and the Center for Nuclear Waste Regulatory Analyses (CNWRA) to be in a position to assist in the acquisition of the codes.

  11. Use of One-On Analysis to Evaluate Total System Performance of the Proposed Yucca Mountain Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    G.J. Saulnier, Jr.; K.P. Lee; S. Mehta; S.D. Sevougian; D. Kalinich; J.A. McNeish

    2002-09-12

    The Yucca Mountain Site Characterization Project is currently evaluating the future performance of the proposed U.S. high-level nuclear waste repository. Using the Total System Performance Assessment (TSPA) model, a stylized analysis was conducted to evaluate the relative importance of natural and engineered barriers to movement of radionuclides from the proposed repository. These stylized ''one-on'' analyses consist of sequentially adding features, components, and processes, associated with the natural and engineered barriers, incorporated within the TSPA model and evaluating the effect of these elements on repository performance, as measured by the total mean annual dose to a reasonably maximally exposed individual. The analyses are ''stylized'' in the sense that they are performed to gain insight only. They are not meant to represent a real physical system in most cases, and in some cases allow the TSPA model to simulate results using parameter ranges outside the normal bounds of the TSPA model. In particular, the analyses provide insight into the relative contributions of repository features and processes in a way that is not possible using the full TSPA performance-assessment model. For example, in the nominal scenario of the TSPA model, the contribution of the natural system is masked by the contribution of the engineered system.

  12. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Barr, Deborah; Birkholzer, Jens T.; Fujisaki, Kiyoshi; Kolditz, Olf; Liu, Quan-Shen; Fujita, tomoo; Wang, Wenqing; Zhang, Cheng-Yuan

    2008-10-23

    This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings: (a) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (b) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermal-mechanically-induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal-mechanically-induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermal-mechanically-induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts.

  13. Salt Repository Project Repository (WBS 1. 3. 4) Program Plan: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, R.S.; Hume, H.R.; McNulty, E.G.

    1986-06-01

    This program plan will describe Salt Repository Project activities conducted under the repository Work Breakdown Structure element. The plan will describe those activities occurring from FY 1986 through the license application in 1991. During this period, the SRP program has three main objectives involving WBS. These include developing repository designs to the extent necessary to support the preparation of the principal licensing documents, the license application, and the final repository site selection report; conducting the RandD studies necessary to support repository design, licensing, and postclosure performance assessment; and analyzing the postclosure performance and waste isolation capabilities of the repository design. Meeting these objectives will require close coordination among all SRP WBS elements. 23 refs., 1 fig., 27 tabs.

  14. Colloids in the mortar backfill of a cementitious repository for radioactive waste.

    Science.gov (United States)

    Wieland, E; Spieler, P

    2001-01-01

    Colloids are present in groundwater aquifers and water-permeable engineered barrier systems and may facilitate the migration of radionuclides. A highly permeable mortar is foreseen to be used as backfill for the engineered barrier of the Swiss repository for low- and intermediate-level waste. The backfill is considered to be a chemical environment with some potential for colloid generation and, due to its high porosity, for colloid mobility. Colloid concentration measurements were carried out using an in-situ liquid particle counting system. The in-house developed counting system with three commercially available sensors allowed the detection of single particles and colloids at low concentrations in the size range 50-5000 nm. The counting system was tested using suspensions prepared from certified size standards. The concentrations of colloids with size range 50-1000 nm were measured in cement pore water, which was collected from a column filled with a highly permeable backfill mortar. The chemical composition of the pore water corresponded to a Ca(OH)2-controlled cement system. Colloid concentrations in the backfill pore water were found to be typically lower than approximately 0.1 ppm. The specific (geometric) surface areas of the colloid populations were in the range 240 m2 g(-1) to 770 m2 g(-1). The low colloid inventories observed in this study can be explained by the high ionic strength and Ca concentrations of the cement pore water. These conditions are favourable for colloid-colloid and colloid-backfill interactions and unfavourable for colloid-enhanced nuclide transport.

  15. Illitization within bentonite engineered barrier system in clay repositories for nuclear waste and its effect on the swelling stress: a coupled THMC modeling study

    Science.gov (United States)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Liu, H. H.

    2014-12-01

    Geological repositories for disposal of high-level nuclear waste generally rely on a multi-barrier system to isolate radioactive waste from the biosphere. An engineered barrier system (EBS), which comprises in many design concepts a bentonite backfill, is widely used. Clay formations have been considered as a host rock throughout the world. Illitization, the transformation of smectite to illite, could compromise some beneficiary features of EBS bentonite and clay host rock such as sorption and swelling capacity. It is the major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present a fully coupled THMC simulation study of a generic nuclear waste repository in a clay formation with a bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant under higher temperature. However, the quantity of illitization is affected by many chemical factors and therefore varies a great deal. The most important chemical factors are the concentration of K in the pore water as well as the abundance and dissolution rate of K-feldspar. For the particular case and bentonite properties studied, the reduction in swelling stress as a result of chemical changes vary from 2% up to 70% depending on chemical and temperature conditions, and key mechanical parameters. The

  16. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L.; Stephansson, O. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Tsang, C.F. [Lawrence Berkely National Laboratory, Berkeley, CA (United States). Earth Science Div.; Mayor, J.C. [ENRESA, Madrid (Spain); Kautzky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2005-02-15

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project

  17. Risk management in the project of implantation of the repository for low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Borssatto, Maria de Fatima B.; Tello, Cledola Cassia O. de; Uemura, George, E-mail: tellocc@cdtn.br, E-mail: george@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil)

    2011-07-01

    Project RBMN is part of the Brazilian solution for the storage of radioactive waste generated by the activities of nuclear energy in Brazil. The aim of RBMN is to implement the National Repository to dispose the low and intermediate-level radioactive waste. Risk is a characteristic of all projects, and it is originated from uncertainties, assumptions and the environment of execution of the project. Risk management is the way to monitor systematically these uncertainties and a guaranty that the goals of the project will be attained. A specific methodology for the risk management of the Project RBMN is under development, which integrates models and processes for identification and analysis of risks, reactions, monitoring, control and planning of risk management. This methodology is fundamental and will be of primordial importance for future generations who will be responsible for the operation at final stages, closure and institutional control during the post-closure of the repository. It will provide greater safety to executed processes and safeguarding risks and specific solutions for this enterprise, guaranteeing the safety of the repository in its life cycle, which has a foreseen duration of at least three hundred years. The aim of this paper is to present the preliminary analysis of the opportunities, threats, strong points and weak points identified up to now, that will provide support to implement risk management procedures. The methodology will be based on the PMBOK{sup R} - Project Management Board of Knowledge - and will take into consideration the best practices for project management.(author)

  18. Microbial gas generation under expected Waste Isolation Pilot Plant repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Gillow, J.B.; Giles, M.R. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

    1997-03-01

    Gas generation from the microbial degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository was investigated at Brookhaven National Laboratory. The biodegradation of mixed cellulosics (various types of paper) and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, neoprene, hypalon, and leaded hypalon) was examined. The rate of gas production from cellulose biodegradation in inundated samples incubated for 1,228 days at 30 C was biphasic, with an initial rapid rate up to approximately 600 days incubation, followed by a slower rate. The rate of total gas production in anaerobic samples containing mixed inoculum was as follows: 0.002 mL/g cellulose/day without nutrients; 0.004 mL/g cellulose/day with nutrients; and 0.01 mL/g cellulose/day in the presence of excess nitrate. Carbon dioxide production proceeded at a rate of 0.009 {micro}mol/g cellulose/day in anaerobic samples without nutrients, 0.05 {micro}mol/g cellulose/day in the presence of nutrients, and 0.2 {micro}mol/g cellulose/day with excess nitrate. Adding nutrients and excess nitrate stimulated denitrification, as evidenced by the accumulation of N{sub 2}O in the headspace (200 {micro}mol/g cellulose). The addition of the potential backfill bentonite increased the rate of CO{sub 2} production to 0.3 {micro}mol/g cellulose/day in anaerobic samples with excess nitrate. Analysis of the solution showed that lactic, acetic, propionic, butyric, and valeric acids were produced due to cellulose degradation. Samples incubated under anaerobic humid conditions for 415 days produced CO{sub 2} at a rate of 0.2 {micro}mol/g cellulose/day in the absence of nutrients, and 1 {micro}mol/g cellulose/day in the presence of bentonite and nutrients. There was no evidence of biodegradation of electron-beam irradiated plastic and rubber.

  19. Methodology Used for Total System Performance Assessment of the Potential Nuclear Waste Repository at Yucca Mountain (USA)

    Energy Technology Data Exchange (ETDEWEB)

    E. Devibec; S.D. Sevougian; P.D. Mattie; J.A. McNeish; S. Mishra

    2001-03-15

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model [1]. Process models included in the TSPA model are unsaturated zone flow and transport, thermal hydrology, in-drift geochemistry, waste package degradation, waste form degradation, engineered barrier system transport, saturated zone flow and transport, and biosphere transport. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. The environmental impact is measured primarily by the annual dose received by an average member of a critical population group residing 20 km down-gradient of the potential repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption

  20. Designing a Secure Storage Repository for Sharing Scientific Datasets using Public Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhare, Alok; Simmhan, Yogesh; Prasanna, Viktor

    2011-11-14

    As Cloud platforms gain increasing traction among scientific and business communities for outsourcing storage, computing and content delivery, there is also growing concern about the associated loss of control over private data hosted in the Cloud. In this paper, we present an architecture for a secure data repository service designed on top of a public Cloud infrastructure to support multi-disciplinary scientific communities dealing with personal and human subject data, motivated by the smart power grid domain. Our repository model allows users to securely store and share their data in the Cloud without revealing the plain text to unauthorized users, the Cloud storage provider or the repository itself. The system masks file names, user permissions and access patterns while providing auditing capabilities with provable data updates.

  1. Study on the locational criteria for submarine rock repositories of low and medium level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G. H.; Kang, W. J.; Kim, T. J. and others [Chungnam National Univ., Taejon (Korea, Republic of)

    1992-01-15

    Submarine repositories have significant advantages over their land counterparts locating close to the areas of daily human activities. Consequently, the construction of submarine repositories on the vast continental shelves around Korean seas is considered to be highly positive. In this context, the development of locational criteria primarily targeting the safety of submarine rock repositories is very important.The contents of the present study are: analyzing characteristics of marine environment: Search of potential hazards to, and environmental impact by, the submarine repositories; Investigation of the oceanographic, geochemical, ecological and sedimentological characteristics of estuaries and coastal seas. Locating potential hazards to submarine repositories by: Bibliographical search of accidents leading to the destruction of submarine structures by turbidity currents and other potentials; Review of turbidity currents. Consideration of environmental impact caused by submarine repositories: Logistics to minimize the environmental impacts in site selection; Removal and dispersion processes of radionuclides in sea water. Analyses of oceanographical characteristics of, and hazard potentials in, the Korean seas. Evaluation of the MOST 91-7 criteria for applicability to submarine repositories and the subsequent proposition of additional criteria.

  2. DISPERSION AND SORPTION CHARACTERISTICS OF URANIUM IN THE ZEOLITE-QUARTZ MIXTURE AS BACKFILL MATERIAL IN THE RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    Herry Poernomo

    2010-06-01

    Full Text Available The experiment of sorption and dispersion characteristics of uranium in the zeolite-quartz mixture as candidate of raw material of backfill material in the radioactive waste repository has been performed. The objective is to know the effect of zeolite and quartz grain size on the zeolite-to-quartz weight ratio that gives porosity (ε, permeability (K, and dispersivity (α of uranium in the zeolite-quartz mixture as backfill material. The experiment was carried out by fixed bed method in the column filled by the zeolite-quartz mixture with zeolite-to-quartz weight percent ratio of 100/0, 80/20, 60/40, 40/60, 20/80, 0/100 wt. % in the water saturated condition flowed by uranyl nitrate solution of 500 ppm concentration (Co as uranium simulation which was leached from immobilized radioactive waste in the repository. The concentration of uranium in the effluents represented as Ct were analyzed by spectrophotometer Corning Colorimeter 253 every 15 minutes, then using Co and Ct uranium dispersivity (α in the backfill material was determined. The experiment data shown that 0.196 mm particle size of zeolite and 0.116 mm particle size of quartz on the zeolite-to-quartz weight ratio of 60/40 wt. % with ε = 0.678, K = 3.345x10-4 cm/second, and α = 0.759 cm can be proposed as candidate of raw material of backfill material in the radioactive waste repository.   Keywords: backfill material, quartz, radioactive waste, zeolite

  3. Modeling and Analysis on Radiological Safety Assessment of Low- and Intermediate Level Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jung, Jong Tae; Kang, Chul Hyung (and others)

    2008-04-15

    Modeling study and analysis for technical support for the safety and performance assessment of the low- and intermediate level (LILW) repository partially needed for radiological environmental impact reporting which is essential for the licenses for construction and operation of LILW has been fulfilled. Throughout this study such essential area for technical support for safety and performance assessment of the LILW repository and its licensing as gas generation and migration in and around the repository, risk analysis and environmental impact during transportation of LILW, biosphere modeling and assessment for the flux-to-dose conversion factors for human exposure as well as regional and global groundwater modeling and analysis has been carried out.

  4. Modeling and Analysis on Radiological Safety Assessment of Low- and Intermediate Level Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jung, Jong Tae; Kang, Chul Hyung (and others)

    2008-04-15

    Modeling study and analysis for technical support for the safety and performance assessment of the low- and intermediate level (LILW) repository partially needed for radiological environmental impact reporting which is essential for the licenses for construction and operation of LILW has been fulfilled. Throughout this study such essential area for technical support for safety and performance assessment of the LILW repository and its licensing as gas generation and migration in and around the repository, risk analysis and environmental impact during transportation of LILW, biosphere modeling and assessment for the flux-to-dose conversion factors for human exposure as well as regional and global groundwater modeling and analysis has been carried out.

  5. Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks

  6. A Competency-Based Ontology for Learning Design Repositories

    Directory of Open Access Journals (Sweden)

    Gilbert Paquette

    2014-01-01

    Full Text Available Learning designs are central resources for educational environments because they provide the organizational structure of learning activities; they are concrete instructional methods. We characterize each learning design by the competencies they target. We define competencies at the meta-knowledge level, as generic processes acting on domain-specific knowledge. We summarize a functional taxonomy of generic skills that draws upon three fields of knowledge: education, software engineering and artificial intelligence. This taxonomy provides the backbone of an ontology for learning designs, enabling the creation of a library of learning designs based on their cognitive and meta-cognitive properties.

  7. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  8. Staged Repository Development Programmes

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, T

    2003-10-01

    Programs to manage and ultimately dispose of high-level radioactive wastes are unique from scientific and technological as well as socio-political aspects. From a scientific and technological perspective, high-level radioactive wastes remain potentially hazardous for geological time periods-many millennia-and scientific and technological programs must be put in place that result in a system that provides high confidence that the wastes will be isolated from the accessible environment for these many thousands of years. Of course, ''proof'' in the classical sense is not possible at the outset, since the performance of the system can only be known with assurance, if ever, after the waste has been emplaced for those geological time periods. Adding to this challenge, many uncertainties exist in both the natural and engineered systems that are intended to isolate the wastes, and some of the uncertainties will remain regardless of the time and expense in attempting to characterize the system and assess its performance. What was perhaps underappreciated in the early days of waste management and repository program development were the unique and intense reactions that the institutional, political, and public bodies would have to repository program development, particularly in programs attempting to identify and then select sites for characterization, design, licensing, and ultimate development. Reactions in most nations were strong, focused, unrelenting, and often successful in hindering, derailing, and even stopping national repository programs. The reasons for such reactions and the measures to successfully respond to them are still evolving and continue to be the focus of many national program and political leaders. Adaptive Staging suggests an approach to repository program development that reflects the unique challenges associated with the disposal of high-level radioactive waste. The step-wise, incremental, learn-as-you-go approach is intended to

  9. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A. [Duke Engineering and Services, Town Center Drive, Las Vegas (United States); Mishra, S. [Duke Engineering and Services, Austin, TX (United States)

    2001-07-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  10. Refinancing of the search for a repository and of the repository for heat generating radioactive Waste. Pt. 2; Refinanzierung der Endlagersuche und des Endlagers fuer waermeentwickelnde radioaktive Abfaelle. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    Moench, Christoph [Sozietaet Gleiss Lutz, Berlin (Germany); Frankfurt Univ. (Germany)

    2013-03-15

    Part I of this article, which appeared in the preceding issue, described in general terms the background to the search for a disposal site and the result of the exploration to date of the repository, which would appear to be suitable from a mining standpoint according to the present knowledge. According to the rules in effect up to now, the exploration and construction would be financed by advance payments on the contributions of the waste producing companies, in particular the utility companies. The working draft of an 'Act on the search for and selection of a site for a repository for heat generating radioactive waste' (Gesetz zur Suche und Auswahl eines Standortes fuer ein Endlager fuer waermeentwickelnde radioaktive Abfaelle) from autumn 2012 provides for a new version of section 21b Atomic Energy Act, under which the costs for 'carrying out a repository selection procedure pursuant to the Repository Selection Act (Standort-auswahlgesetz)' would be allocated to the future users of the repository who are obliged to make contributions as a 'necessary expense'. Part II evaluates this provision of the working draft on the basis of the financial constitutional law. A comparison of sites is not a measure that could be allocated to the future users of the repository who are obliged to make contributions as a 'necessary expense'. Moreover, there is a lack of responsibility for the financing and of a legally relevant advantage that would be conferred by a cumulative alternative repository search for the later users of the repository who are obliged to provide the pre-financing. The costs can therefore not be allocated to the later users as either a contribution or a special charge, not even by way of an association with mandatory membership (Zwangsverband). They must be borne by the state. Consequently, the allocation stipulated by provision would constitute an impermissible charge under financial constitutional law. (orig.)

  11. Problem trap final repository. Social challenges concerning nuclear waste; Problemfalle Endlager. Gesellschaftliche Herausforderungen im Umgang mit Atommuell

    Energy Technology Data Exchange (ETDEWEB)

    Brunnengraeber, Achim (ed.)

    2016-07-01

    How is it possible that there is still no final storage facility in the entire world for highly radioactive waste from nuclear power stations? How is it possible that electricity has been generated by industrial-scale nuclear installations for decades without the issue of the disposal of nuclear waste having been resolved? The events in Chernobyl in 1986 and Fukushima in 2011 have made it blatantly obvious how risky this technology is and how important it is to keep humans and the environment at a safe distance from radioactivity. This anthology examines the technological, political, social and economic dimensions of the permanent disposal of nuclear waste. It provides an insight into the emergence of the problem and the people involved and their interests. It describes and analyses the changes that are taking place in Germany (for instance, in relation to the government's commission on nuclear repositories) and other countries with regard to how they handle nuclear waste. The book deals with both questions related to socio-technical aspects of the permanent disposal of nuclear waste and calls for the democratic need for participation and new ways of doing so, without which the search for a permanent disposal site will not bear fruit. This anthology presents a comprehensive discussion of the disposal of nuclear waste and the search for a permanent repository for it. Not only will students and teachers find it extremely useful, but so will any readers who are interested in its subject matter and wish to gain a more in-depth insight into it.

  12. Paleoclimate Impact on a Proposed Canadian Deep Geologic Repository for Low and Intermediate Level Radioactive Waste

    Science.gov (United States)

    Normani, S. D.; Sykes, J. F.; Yin, Y.

    2009-05-01

    A Deep Geologic Repository (DGR) for low and intermediate level radioactive waste has been proposed by Ontario Power Generation (OPG) for the Bruce site near Tiverton, Ontario Canada. As envisioned, the DGR is to be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. Within the geologic setting of southern Ontario, the Bruce site is located west of the Algonquin Arch within the Bruce Megablock, positioned along the eastern edge of the Michigan Basin. It is clear that to credibly address the long-term safety of a deep geologic repository, long-term climate change and in particular a glaciation scenario, must be incorporated into performance assessment modelling activities. In addition, by simulating flow system responses to the last Laurentide (North American) glacial episode, insight is gained into the role of significant past stresses (mechanical, thermal and hydrological) on determining the nature of present flow system conditions, and by extension, the likely impact of similar, future boundary condition changes on long-term flow system stability. The last Laurentide glacial episode was characterized by the following: occurred over a 120 000 year time period; included numerous cycles of glacial advance and retreat, with maximum ice thickness over a typical Ontario site reaching nearly 3 km; included extensive periods of transient, peri-glacial conditions during which permafrost could impact the subsurface, depending on location, to several hundreds of metres; and was accompanied by significant basal meltwater production near the end of the glacial episode. The impact of glaciation and deglaciation on density-dependent groundwater flow was investigated using results from the deterministic University of Toronto Glacial Systems Model (GSM) of continental ice-sheet evolution. The 18,500 km2 regional-scale domain extends from Lake Huron to Georgian Bay and includes 31 sedimentary strata that

  13. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008; Entsorgungsprogramm und Standortgebiete fuer geologische Tiefenlager. Zusammenfassung. November 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  14. Selection and Basic Properties of the Buffer Material for High-Level Radioactive Waste Repository in China

    Institute of Scientific and Technical Information of China (English)

    WEN Zhijian

    2008-01-01

    Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common features are the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposing high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. It is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation properties, thermal conductivity, chemical buffering property,canister supporting property, and stress buffering property over a long period of time. Bentonite is selected as the main content of buffer material that can satisfy the above requirements. The Gaomiaozi deposit is selected as the candidate supplier for China's buffer material of high level radioactive waste repository. This paper presents the geological features of the GMZ deposit and basic properties of the GMZ Na-bentonite. It is a super-large deposit with a high content of montmorillonite (about 75%), and GMZ-1, which is Na-bentonite produced from GMZ deposit is selected as the reference material for China's buffer material study.

  15. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    Brantberger, Martin; Zetterqvist, Anders [Ramboell Sweden AB, Stockholm (Sweden); Arnbjerg-Nielsen, Torben [Ramboell Denmark A/S, Virum (Denmark); Olsson, Tommy [IandT Olsson AB, Uppsala (Sweden); Outters, Nils [Golder Associates AB, Uppsala (Sweden); Syrjaenen, Pauli [Gridpoint Oy, Helsinki (Sweden)

    2006-04-15

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due

  16. Isotope techniques for the research of groundwater in the potential site of China’s high-level waste repository

    Institute of Scientific and Technical Information of China (English)

    郭永海; 刘淑芬; 杨天笑; 姜桂林

    2001-01-01

    Using the isotope techniques, the groundwater origin, evolution and circulation in the potential site of China’s high-level waste repository are studied. The results indicate that both shallow groundwaters and deep groundwaters in the site area are of meteoric origin. The shallow groundwaters are mainly recharged by modern and local precipitation, and the deep groundwaters are originated from regional precipitation at higher elevation, or may be from the precipitation during the geological history period with lower temperature. Through the study we can also understand that the deep underground is a very low-permeability system where the groundwater flow-rates are very low.

  17. Implementation of the Brazilian national repository

    Energy Technology Data Exchange (ETDEWEB)

    Tello, Cledola Cassia Oliveira de, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Ionizing radiation in Brazil is used in electricity generation, medicine, industry, agriculture and for research and development purposes. All these activities can generate radioactive waste. At this point, in Brazil, the use of nuclear energy and radioisotopes justifies the construction of a national repository for radioactive wastes of low and intermediate-level. According to Federal Law No. 10308, Brazilian National Commission for Nuclear Energy (CNEN) is responsible for designing and constructing the intermediate and final storages for radioactive wastes. Additionally, a restriction on the construction of Angra 3 is that the repository is under construction until its operation start, attaining some requirements of the Brazilian Environmental Regulator (IBAMA). The RBMN Project (Repository for Low and Intermediate-Level Radioactive Wastes) aims at the implantation of a National Repository for disposal of low and intermediate-level of radiation wastes. This Project has some aspects that are unique in the Brazilian context, especially referring to the time between its construction and the end of its institutional period. This time is about 360 years, when the area will be released for unrestricted uses. It means that the Repository must be safe and secure for more than three hundred years, which is longer than half of the whole of Brazilian history. This aspect is very new for the Brazilian people, bringing a new dimension to public acceptance. Another point is this will be the first repository in South America, bringing a real challenge for the continent. The current status of the Project is summarized. (author)

  18. Final repository for spent nuclear fuel. Underground design Simpevarp, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    This report is a compilation of the results of the underground design work carried out in design phase D1 of the Repository Design Project within the Deep Repository Project for the Simpevarp site. Similar reports are also being produced for the Laxemar and Forsmark sites. The design phase coincides with the initial site investigation phase. The main purpose of phase D1 is to answer the question 'Can a final repository be accommodated within the designated site', but also to test the design methodology and provide feedback to the modelling project. Design was carried out in accordance with the methodology described in UDP (Underground Design Premises), SKB R-04-60, and was based on preliminary data from various disciplines in the site modelling project. The preliminary input data used were then cross-checked against data in the final Site Descriptive Model SDM v 1.2 and significant differences were integrated in the design work. The design results from each design topic were presented by the designer at presentation meetings for SKB's design management and the reviewers engaged by SKB for the specific topic. After the presentation meeting the designer wrote up the work reports for the topic in question. The work reports were then reviewed by SKB's review team. The results of the review were compiled in a statement that was submitted to the designer to be dealt with. In the statement the designer documented which comments were dealt with and how. This report is a compilation of the entire design phase D1 for Simpevarp. The 3D layout with coordinate lists for deposition holes and tunnels that was drawn to illustrate a possible layout was used in the Preliminary safety evaluation of the Simpevarp subarea and the hydro modelling of the Open Repository, both activities within the Deep Repository Project. According to current plans for the Swedish nuclear programme, the minimum required number of canister positions in the repository is estimated to be

  19. Final repository for spent nuclear fuel. Underground design Simpevarp, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    This report is a compilation of the results of the underground design work carried out in design phase D1 of the Repository Design Project within the Deep Repository Project for the Simpevarp site. Similar reports are also being produced for the Laxemar and Forsmark sites. The design phase coincides with the initial site investigation phase. The main purpose of phase D1 is to answer the question 'Can a final repository be accommodated within the designated site', but also to test the design methodology and provide feedback to the modelling project. Design was carried out in accordance with the methodology described in UDP (Underground Design Premises), SKB R-04-60, and was based on preliminary data from various disciplines in the site modelling project. The preliminary input data used were then cross-checked against data in the final Site Descriptive Model SDM v 1.2 and significant differences were integrated in the design work. The design results from each design topic were presented by the designer at presentation meetings for SKB's design management and the reviewers engaged by SKB for the specific topic. After the presentation meeting the designer wrote up the work reports for the topic in question. The work reports were then reviewed by SKB's review team. The results of the review were compiled in a statement that was submitted to the designer to be dealt with. In the statement the designer documented which comments were dealt with and how. This report is a compilation of the entire design phase D1 for Simpevarp. The 3D layout with coordinate lists for deposition holes and tunnels that was drawn to illustrate a possible layout was used in the Preliminary safety evaluation of the Simpevarp subarea and the hydro modelling of the Open Repository, both activities within the Deep Repository Project. According to current plans for the Swedish nuclear programme, the minimum required number of canister positions in the repository is estimated to be

  20. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada.

    Science.gov (United States)

    Slovic, P; Layman, M; Kraus, N; Flynn, J; Chalmers, J; Gesell, G

    1991-12-01

    This study investigates the potential impacts of the proposed nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse impacts may be expected to result from perceptions of risk, stigmatization, and socially amplified reactions to "unfortunate events" associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The conceptual underpinnings of risk perception, stigmatization, and social amplification are discussed and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse economic effects. The possibility that intense negative imagery associated with the repository may cause significant harm to Nevada's economy can no longer be ignored by serious attempts to assess the risks and impacts of this unique facility. The behavioral processes described here appear relevant as well to the social impact assessment of any proposed facility that produces, uses, transports, or disposes of hazardous materials.

  1. State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-16

    Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes.

  2. The Geologic Basis for Volcanic Hazard Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry

    2002-10-15

    Studies of volcanic risk to the proposed high-level radioactive waste repository at Yucca Mountain have been ongoing for 25 years. These studies are required because three episodes of small-volume, alkalic basaltic volcanism have occurred within 50 km of Yucca Mountain during the Quaternary. Probabilistic hazard estimates for the proposed repository depend on the recurrence rate and spatial distribution of past episodes of volcanism in the region. Several independent research groups have published estimates of the annual probability of a future volcanic disruption of the proposed repository, most of which fall in the range of 10{sup -7} to 10{sup -9} per year; similar conclusions were reached. through an extensive expert elicitation sponsored by the Department of Energy in 1995-1996. The estimated probability values are dominated by a regional recurrence rate of 10{sup -5} to 10{sup -6} volcanic events per year (equating to recurrence intervals of several hundred thousand years). The recurrence rate, as well as the spatial density of volcanoes, is low compared to most other basaltic volcanic fields in the western United States, factors that may be related to both the tectonic history of the region and a lithospheric mantle source that is relatively cold and not prone to melting. The link between volcanism and tectonism in the Yucca Mountain region is not well understood beyond a general association between volcanism and regional extension, although areas of locally high extension within the region may control the location of some volcanoes. Recently, new geologic data or hypotheses have emerged that could potentially increase past estimates of the recurrence rate, and thus the probability of repository disruption. These are (1) hypothesized episodes of anomalously high strain rate, (2) hypothesized presence of a regional mantle hotspot, and (3) new aeromagnetic data suggesting as many as twelve previously unrecognized volcanoes buried in alluvial-filled basins near

  3. Need for USA high level waste (HLW) alternate geological repository (AGR) and for a different methodology to enhance its acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Salomon, E-mail: slevy112@aol.co [3425 South Bascom Avenue, Suite 225, Campbell, CA 95008 (United States)

    2010-10-15

    In early February 2010, the administration stopped work and withdrew the Department of Energy (DOE) application for a construction permit for the Yucca Mountain geological repository from the Nuclear Regulatory Commission (NRC). Also, a 'blue ribbon' Commission was appointed to explore alternatives for storage, processing, and disposal, including evaluation of advanced fuel cycles and to provide a final report in 24 months. That decision, however, failed to recognize that: (1) the U.S. will need an early alternate geological repository (AGR) for its HLW irrespective of the findings of the 'blue ribbon' Commission; (2) the once-through spent fuel inventory from commercial nuclear power reactors will continue to rise and so will the damages against the government for its failure to remove spent fuel from reactors sites, as specified in contracts; (3) there are prepackaged DOE and nuclear weapons HLW ready for shipment to a repository which must be taken into account because of government penalties for failure to do so; (4) the current Nuclear Waste Policy Act (NWPA) needs to be modified to allow the early search and approval of Alternate Geological Repository (AGR) and for an interim centralized HLW storage facility to reduce government liabilities; and (5) the methodology used to license Yucca Mountain needs to undergo serious modifications, including a different non-politicized management and siting credo. This paper reviews and discusses all the preceding shortcomings and proposes significant changes to pursue AGR as soon as possible and to get site approval by the NRC first under a formal, stepwise, well-structured risk-informed decision approach as recommended.

  4. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a

  5. Hydrothermal conditions and resaturation times in underground openings for a nuclear waste repository in the Umtanum flow at the Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Bodvarsson, G.

    1982-07-01

    Numerical simulation techniques have been used to study heat flow and pore fluid migration in the near field of storage tunnels and canister storage holes in a proposed high-level nuclear waste repository in the Umtanum Basalt at the Basalt Waste Isolation Project site at Hanford, Washington. Particular emphasis was placed on evaluating boiling conditions in the host rock. Sensitivity studies were performed to determine the influence of variations in critical site-specific parameters which are not presently accurately known. The results indicate that, even when rather extreme values are assumed for key hydrothermal parameters, the volume of rock dried by boiling of pore fluids is negligible compared to the volume of excavated openings. The time required for saturation of backfilling materials is thus controlled by the volume of the mined excavations. When realistic values for the parameters of the natural and man-made systems are used resaturation is predicted to occur within less than two years after backfilling is placed. The approximations used in the analyses, and their limitations, are discussed in the body of the report. Recommendations are made for additional studies of the thermohydrological behavior of a high-level nuclear waste repository. 31 references, 76 figures, 7 tables.

  6. Quality assurance aspects of geotechnical practices for underground radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    In August 1988, the National Research Council, through the Geotechnical Board and the Board on Radioactive Waste Management, held a colloquium to discuss the practice of quality assurance that is being implemented in the high-level radioactive waste storage program. The intent of the colloquium was to bring together program managers of the Department of Energy and Nuclear Regulatory Commission, to discuss with the technical community both the advantages and problems associated with applying current quality assurance practices to underground science and engineering. The colloquium program included talks from 14 individuals that provided a variety of perspectives on both programmatic and technical issues. The talks initiated extended discussions from the 71 participants representing 7 government agencies, 8 academic institutions, and 22 private companies. The competencies of the participants were many and varied including, among others, geochemistry, hydrology, geotechnical engineering, computer programming, engineering and structural geology, underground design and construction, rock mechanics, laboratory testing, systems engineering, nuclear engineering, law, and environmental science. Based on a transcript of the meeting, this report summarizes the talks and discussions which took place. 2 figs.

  7. SORPTION AND DISPERSION OF STRONTIUM RADIONUCLIDE IN THE BENTONITE-QUARTZ-CLAY AS BACKFILL MATERIAL CANDIDATE ON RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    Herry Poernomo

    2010-12-01

    Full Text Available The experiment of sorption and dispersion characteristics of strontium in the mixture of bentonite-quartz, clay-quartz, bentonite-clay-quartz as candidate of raw material for backfill material in the radioactive waste repository has been performed. The objective of this research is to know the grain size effect of bentonite, clay, and quartz on the weight percent ratio of bentonite to quartz, clay to quartz, bentonite to clay to-quartz can be gives physical characteristics of best such as bulk density (rb, effective porosity (e, permeability (K, best sorption characteristic such as distribution coefficient (Kd, and best dispersion characteristics such as dispersivity (a and effective dispersion coefficient (De of strontium in the backfill material candidate. The experiment was carried out in the column filled by the mixture of bentonite-quartz, clay-quartz, bentonite-clay-quartz with the weight percent ratio of bentonite to quartz, clay to quartz, bentonite to clay to quartz of 100/0, 80/20, 60/40, 40/60, 20/80, 0/100 respectively at saturated condition of water, then flowed 0.1 N Sr(NO32 as buffer solution with tracer of 0.05 Ci/cm3 90Sr as strontium radionuclide simulation was leached from immobilized radioactive waste in the radioactive waste repository. The concentration of 90Sr in the effluents represented as Ct were analyzed by Ortec b counter every 30 min, then by using profile concentration of Co and Ct, values of Kd, a and De of 90Sr in the backfill material was determined. The experiment data showed that the best results were -80+120 mesh grain size of bentonite, clay, quartz respectively on the weight percent ratio of bentonite to clay to quartz of 70/10/20 with physical characteristics of rb = 0.658 g/cm3, e = 0.666 cm3/cm3, and K = 1.680x10-2 cm/sec, sorption characteristic of Kd = 46.108 cm3/g, dispersion characteristics of a = 5.443 cm, and De = 1.808x10-03 cm2/sec can be proposed as candidate of raw material of backfill material

  8. Engineered waste-package-system design specification

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

  9. Mont Terri Project - Ventilation experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J. C. [Empresa Nacional de Residuos Radioactivos SA (ENRESA), Madrid (Spain); Garcia-Sineriz, J. [Asociacion para la Investigacion y Desarollo Industrial de los Recursos Naturales (AITEMIN), Madrid (Spain); Velasco, M. [DM Iberia SA, Madrid (Spain); Gomez-Hernandez, J. [Ingenieria Hidraulica y Medio Ambiente, Escuela de Ingenieros de Caminos (UPV), Valencia (Spain); Lloret, A.; Matray, J.-M. [IRSN/DEI/SARG/LETS, Fontenay-aux-Roses (France); Coste, F. [Aradis ESG, Sevres Cedex (France); Giraud, A. [LAEGO-ENSG, Vandoeuvre les Nancy (France); Rothfuchs, T. [Gesellschaft fuer Anlagen und Reaktorsicherheit mbH (GRS), Braunschweig (Germany); Marschall, P. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland); Roesli, U. [Solexperts AG, Moenchaltorf (Switzerland); Mayer, G. [Colenco Power Engineering Ltd, Baden (Switzerland)

    2007-07-01

    The ventilation of the underground drifts during the construction and operation of a radioactive waste repository could produce the partial desaturation of the rock around the drifts, modifying its thermo-hydro-mechanical properties, especially in clayey rocks. This change of rock properties may have an impact on the design of the repositories (drifts spacing and repository size), which depends on the thermal load that the clay barrier and the rock can accept. To evaluate 'in situ' and better understand the desaturation process of a hard clay formation, the Ventilation Experiment (VE) has been carried out at the Mont Terri underground laboratory (Switzerland), generating a flow of dry air during several months along a section of a microtunnel. Specifically, the VE test has been performed, under practically isothermal conditions (T {approx_equal} 15-16 {sup o}C), in a 10 m long section of a non-lined horizontal microtunnel (diameter = 1.3 m), excavated in 1999 in the shaly facies of the Opalinus Clay of Mont Terri. The microtunnel is oriented perpendicular to the bedding strike direction of the rock (mean value of the bedding dip {approx_equal} 25{sup o}). The VE experiment real data and its modelling have shown that the desaturation of clayey rocks of low hydraulic conductivity (K < 10{sup -12} m/s) due to ventilation is very small. Under real repository conditions, the thermal and hydro-mechanical rock characteristics will not be practically affected by the ventilation. Specifically, the monitoring of the VE test (mainly the hygrometer data, confirmed also by the geoelectrical measurements) indicates that, after about 5 months of ventilation with almost dry air, the rock relative humidity (and then the degree of saturation) was less than 95% only in a ring of thickness less than 40 cm. Nevertheless, a suction state (subatmospheric liquid pressures) developed up to a distance of about 2 m, but it should be kept in mind that a clayey rock such as the

  10. A Review Corrosion of TI Grade 7 and Other TI Alloys in Nuclear Waste Repository Environments

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-05-11

    Titanium alloy degradation modes are reviewed in relation to their performance in repository environments. General corrosion, localized corrosion, stress corrosion cracking, hydrogen induced cracking, microbially influenced corrosion, and radiation-assisted corrosion of Ti alloys are considered. With respect to the Ti Grade 7 drip shields selected for emplacement in the repository at Yucca Mountain, general corrosion, hydrogen induced cracking, and radiation-assisted corrosion will not lead to failure within the 10,000 year regulatory period; stress corrosion cracking (in the absence of disruptive events) is of no consequence to barrier performance; and localized corrosion and microbially influenced corrosion are not expected to occur. To facilitate the discussion, Ti Grades 2, 5, 7, 9, 11, 12, 16, 17, 18, and 24 are included in this review.

  11. Clinoptilolite compositions in diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Broxton, D.E.

    1987-12-31

    The compositions of Yucca Mountain clinoptilolites and their host tuffs are highly variable. Clinoptilolites and heulandites in fractures near the repository and in a thin, altered zone at the top of the Topopah Spring basal vitrophyre have consistent calcium-rich compositions. Below this level, clinoptilolites in thick zones of diagenetic alteration on the east side of Yucca Mountain have calcic-potassic compositions and become more calcium rich with depth. Clinoptilolites in stratigraphically equivalent tuffs to the west have sodic-potassic compositions and become more sodic with depth. Clinoptilolite properties important for repository performance assessment include thermal expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties. These properties can be significantly affected by clinoptilolite compositions. The compositional variations for clinoptilolites found by this study suggest that the properties will vary vertically and laterally at Yucca Mountain. Used in conjunction with experimental data, the clinoptilolite compositions presented here can be used to model the behavior of clinoptilolites in the repository environment and along transport pathways.

  12. Joint SKI and SSI review of SKB preliminary safety assessment of repository for long-lived low- and intermediate-level waste. Review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    that SKB have included no discussion in the safety report as to which R and D activities they intend to prioritise. According to the current SKB timetable, siting and construction of SFL 3-5 will not begin for another 30 years. However, SKI and SSI do not consider this to be a reason to postpone essential R and D work. If a complete and thorough basis is not produced for assessing the long-term safety of an SFL 3-5 repository, the risk that these waste categories will have to undergo interim storage for an indefinite period of time increases. A future siting of SFL 3-5 based on our current level of knowledge is problematic. The present safety assessment points toward a substantial site-specific effect on the repository's protective capacity that can be related primarily to the local groundwater flow rate, but also to relevant geochemical conditions. Calculated doses for cases involving consumption of drinking water give the impression that the margins are small vis-a-vis the existing requirement framework, at least based on the methods used heretofore. In their main report, SKB discuss the possibility of improving the technical barriers to increase their impact on long-term safety (thereby mitigating the impact of site-specific factors). SKI and SSI feel that this approach is reasonable from the current preliminary perspective, but not for subsequent stages. SKB should in future formulate a proposed repository design that can be considered sufficiently robust with respect to the effects of the site-specific factors and their long-term evolution. The requirements and criteria that are relevant to the siting of SFL 3-5 must be addressed therein. In addition, more in-depth studies regarding the optimum storage depth for SFL 3-5 and the importance of the interactions between SFL 2 and SFL 3-5 should be undertaken relatively soon. The importance of these issues needs to be well documented in order to provide a basis for identifying suitable rock volumes for potential

  13. The Danish inventory of radioactive waste and the required repository type

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Gerhard [Oeko-Institut e.V., Darmstadt (Germany). Div. on Nuclear Engineering and Facility Safety

    2014-11-15

    Denmark has a relatively small inventory of radioactive wastes. As Denmark never built and operated nuclear power plants, the wastes resulted only from various research activities. In order to manage those wastes, the Danish Government has ordered to describe those wastes and the available management options. Based on vague criteria, most of the waste types were termed as ''short-lived'' and as suitable for a surface-near disposal facility. The Government then ordered the Geological survey organization of Denmark, GEUS, to scan Denmark for suitable locations. ''Suitable'' depth was defined as 0 to 100 m below ground. Neither were isolation properties or other requirements for geological layers defined nor were those criteria agreed in a broader sense (with experts, with the public). GEUS identified a number of potentially suitable locations and selected six of those as the most promising. In this paper the basic decision of preferring surface-near disposal for most of the waste types is analysed. As a central criterion for the suitability of the waste types for surface-near disposal is defined that those waste types decay within 300 years to below today's clearance levels. The results show, that none of the Danish types of waste meets this simple requirement. All are above that criterion, most of them by several orders of magnitude and over very much longer times such as 100.000 years or even longer. The basic assumption of the performed site selection procedure, to search for near-surface locations for short-lived wastes, so proves to be invalid. The whole process should be re-done on the basis that the long-term isolation of those wastes in impermeable layers has to be guaranteed. The suitability criteria should focus on the long-term isolation of all wastes and should be agreed in advance.

  14. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  15. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  16. Laymen's demand on an understandable safety analysis for a nuclear waste repository. A communication challenge

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, T.L.; Thunberg, A.M. [KASAM - Swedish National Council for Nuclear Waste (Sweden)

    1999-12-01

    This paper is a summary in English of some impressions from a seminar 'Safety Analysis of the Final Disposal of Nuclear Waste. An issue for specialists only or for all of us?' The seminar was held in Swedish and was arranged by KASAM in Nykoeping, Sweden in November 1997. A report in Swedish from the seminar has been published. The seminar was arranged in response to a request from representatives from some of the municipalities concerned by the feasibility studies, which are part of the siting process. They had noticed that it is very hard for people without specialist competence to get an understanding of the safety issues based on the available information. There is a need for a presentation of the safety analysis, which is adopted not only for the need of the safety authorities, which have their own expertise, but also for the need of laymen who are involved in issues about the design, siting and safety of a final repository. Therefore, the seminar was mainly intended for representatives for the citizens (i.e. politicians) from the municipalities involved in the ongoing feasibility studies in Sweden. Some representatives from different environmental organisations opposing final disposal were also invited as well as representatives from the nuclear industry and from the concerned Swedish authorities. The seminar was structured in four sessions The handling of risk in the modern society - risk assessment and risk comparisons; The safety analysis and its role for the citizens; What can actually happen - in our own time and in the future?; Group discussions. In order to give a realistic picture of the intense debate, which at least in some of the municipalities had been very apparent, the organisers had chosen to make SKB and Greenpeace main actors at the seminar, such as they appeared in connection with campaign before the referendum at Malaa. Parts of the seminar were arranged like a hearing, led by a science journalist. The intention with this paper is

  17. Mega-conflict project and social complexity - Illustrated by the decision-making on locating a radioactive waste repository in Denmark

    DEFF Research Database (Denmark)

    Kørnøv, Lone; Lyhne, Ivar; Larsen, Sanne Vammen

    2018-01-01

    The deposit of radioactive waste is a complex policy problem and a socio-technical challenge with potentially large societal impacts and a very large time horizon. These characteristics are also found in the Danish decision-making process regarding future management of radioactive waste....... The process was formally initiated in 2003 when the Danish Parliament gave consent for the government to start preparing a basis for deciding a final repository for Denmark’s low- and intermediate level radioactive waste. After preliminary studies, proposal for a plan for a final repository – and later also...... a proposal for an interim deposit, strategic environmental assessment and hearings, the process has not led to a final political decision. This paper explores the decision-making process of site identification, site selection process and choice of technology for storing nuclear waste in Denmark. The paper...

  18. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.

  19. Representation of two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    VAUGHN,PALMER; BEAN,J.E.; HELTON,JON CRAIG; LORD,MICHAEL E.; MACKINNON,ROBERT J.; SCHREIBER,JAMES D.

    2000-05-18

    The following topics related to the representation of two-phase (gas and brine) flow in the vicinity of the repository in the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) are discussed: (1) system of nonlinear partial differential equations used to model two-phase flow, (2) incorporation of repository shafts into model (3) creep closure of repository. (4) interbed fracturing, (5) gas generation (6) capillary action in waste, (7) borebole model (8) numerical solution and (9) gas and brine flow across specified boundaries. Two-phase flow calculations are a central part of the 1996 WIPP PA and supply results that are subsequently used in the calculation of releases to the surface at the time of a drilling intrusion (i.e., spallings, direct brine releases) and long-term releases due to radionuclide transport by flowing groundwater.

  20. Experimental investigation of hydrous pyrolysis of diesel fuel and the effect of pyrolysis products on performance of the candidate nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.J.; Carroll, S.A. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    It is thought that a significant amount of diesel fuel and other hydrocarbon-rich phases may remain inside the candidate nuclear waste repository at Yucca Mountain after construction and subsequent emplacement of radioactive waste. Although the proposed repository horizon is above the water table, the remnant hydrocarbon phases may react with hydrothermal solutions generated by high temperature conditions that will prevail for a period of time in the repository. The preliminary experimental results of this study show that diesel fuel hydrous pyrolysis is minimal at 200{degrees}C and 70 bars. The composition of the diesel fuel remained constant throughout the experiment and the concentration of carboxylic acids in the aqueous phases was only slightly above the detection limit (1-2 ppm) of the analytical technique.

  1. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    Energy Technology Data Exchange (ETDEWEB)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  2. A strategy for describing the biosphere at candidate sites for repositories of nuclear waste: linking ecosystem and landscape modeling.

    Science.gov (United States)

    Lindborg, Tobias; Lindborg, Regina; Löfgren, Anders; Söderbäck, Björn; Bradshaw, Clare; Kautsky, Ulrik

    2006-12-01

    To provide information necessary for a license application for a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Co. has started site investigations at two sites in Sweden. In this paper, we present a strategy to integrate site-specific ecosystem data into spatially explicit models needed for safety assessment studies and the environmental impact assessment. The site-specific description of ecosystems is developed by building discipline-specific models from primary data and by identifying interactions and stocks and flows of matter among functional units at the sites. The conceptual model is a helpful initial tool for defining properties needed to quantify system processes, which may reveal new interfaces between disciplines, providing a variety of new opportunities to enhance the understanding of the linkages between ecosystem characteristics and the functional properties of landscapes. This type of integrated ecosystem-landscape characterization model has an important role in forming the implementation of a safety assessment for a deep repository.

  3. Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden)

    Science.gov (United States)

    Selroos, Jan-Olof; Painter, Scott L.

    2012-12-01

    The Swedish Nuclear Fuel and Waste Management Company has recently submitted an application for a license to construct a final repository for spent nuclear fuel, at approximately 500 m depth in crystalline bedrock. Migration pathways through the geosphere barrier are geometrically complex, with segments in fractured rock, deformation zones, backfilled tunnels, and near-surface soils. Several simplifications of these complex migration pathways were used in the assessments of repository performance that supported the license application. Specifically, in the geosphere transport calculations, radionuclide transport in soils and tunnels was neglected, and deformation zones were assumed to have transport characteristics of fractured rock. The effects of these simplifications on the projected performance of the geosphere barrier system are addressed. Geosphere performance is shown to be sensitive to how transport characteristics of deformation zones are conceptualized and incorporated into the model. Incorporation of advective groundwater travel time within backfilled tunnels reduces radiological dose from non-sorbing radionuclides such as I-129, while sorption in near-surface soils reduces radiological doses from sorbing radionuclides such as Ra-226. These results help quantify the degree to which geosphere performance was pessimistically assessed, and provide some guidance on how future studies to reduce uncertainty in geosphere performance may be focused.

  4. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  5. Conservation and retrieval of information - Elements of a strategy to inform future societies about nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [ed.] [National Inst. of Radiation Protection, Stockholm (Sweden)

    1996-12-01

    Two main strategies exist for long-term information transfer, one which links information through successive transfers of archived material and other forms of knowledge in society, and one - such as marking the site with a monument - relying upon a direct link from the present to the distant future. Digital methods are not recommended for long-term storage, but digital processing may be a valuable tool to structure information summaries, and in the creation of better long-lasting records. Advances in archive management should also be pursued to widen the choice of information carriers of high durability. In the Nordic countries, during the first few thousand years, and perhaps up to the next period of glaciation, monuments at a repository site may be used to warn the public of the presence of dangerous waste. But messages from such markers may pose interpretation problems as we have today for messages left by earlier societies such as rune inscriptions. Since the national borders may change in the time scale relevant for nuclear waste, the creation of an international archive for all radioactive wastes would represent an improvement as regards conservation and retrieval of information. (EG).

  6. FY 1985 status report on feasibility assessment of copper-base waste package container materials in a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    McCright, R.D.

    1985-09-30

    This report discusses progress made during the first year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. The expected corrosion and oxidation performances of oxygen-free copper, aluminum bronze, and 70% copper-30% nickel are presented; a test plan for determining whether copper or one of the alloys can meet the containment requirements is outlined. Some preliminary corrosion test data are presented and discussed. Fabrication and joining techniques for forming waste package containers are descibed. Preliminary test data and analyses indicate that copper and copper-base alloys have several attractive features as waste package container materials, but additional work is needed before definitive conclusions can be made on the feasibility of using copper or a copper-base alloy for containers. Plans for work to be undertaken in the second year are indicated.

  7. Design and Development of a Web Based Digital Repository for Scholarly Communication: A Case of NM‐AIST Tanzania

    Directory of Open Access Journals (Sweden)

    Wasiwasi J. Mgonzo

    2014-12-01

    Full Text Available Institutional repositories are essential research infrastructures for research ‐based universities. A properly dimensioned institutional repository has the potential to increase research impact and enhance the visibility of an institution through its scholarly outputs. The aim of the study reported in this paper was to design and develop a web‐based digital repository for scholarly communications using NM‐AIST as a case study. The system was developed using open source software. Findings obtained from system validation tests show that the system is a viable solution to the major challenges encountered in the management and sharing of scholarly information at the institution.

  8. Risk perception, risk evaluation and human values: cognitive bases of acceptability of a radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Earle, T.C.; Lindell, M.K.; Rankin, W.L.

    1981-07-01

    Public acceptance of radioactive waste management alternatives depends in part on public perception of the associated risks. Three aspects of those perceived risks were explored in this study: (1) synthetic measures of risk perception based on judgments of probability and consequences; (2) acceptability of hypothetical radioactive waste policies, and (3) effects of human values on risk perception. Both the work on synthetic measures of risk perception and on the acceptability of hypothetical policies included investigations of three categories of risk: (1) Short-term public risk (affecting persons living when the wastes are created), (2) Long-term public risk (affecting persons living after the time the wastes were created), and (3) Occupational risk (affecting persons working with the radioactive wastes). The human values work related to public risk perception in general, across categories of persons affected. Respondents were selected according to a purposive sampling strategy.

  9. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    Energy Technology Data Exchange (ETDEWEB)

    Gulik, V.I. [Institute for Nuclear Research, pr. Nauky 47, Kyiv, 03680 (Ukraine); Biland, A.B. [HHK Technologies, 3535 Wilcreast Dr., Houston TX 77042 (United States)

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spent nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)

  10. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository; [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Freudenburg, W.R. [Wisconsin Univ., Madison, WI (United States); Carter, L.F.; Willard, W. [Washington State Univ., Pullman, WA (United States); Lodwick, D.G. [Miami Univ., Oxford, OH (United States); Hardert, R.A. [Arizona State Univ., Tempe, AZ (United States); Levine, A.G. [State Univ. of New York, Buffalo, NY (United States). Dept. of Sociology; Kroll-Smith, S. [New Orleans Univ., LA (United States); Couch, S.R. [Pennsylvania State Univ., University Park, PA (United States); Edelstein, M.R. [Ramapo College, Mahwah, NJ (United States)

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed.

  11. Determining redox properties of clay-rich sedimentary deposits in the context of performance assessment of radioactive waste repositories : Conceptual and practical aspects

    NARCIS (Netherlands)

    Behrends, T.; Bruggeman, Christophe

    2016-01-01

    Redox reactions play a key factor controlling the mobility of redox sensitive radionuclides in clay-rich sediments which might serve as host formations for radioactive waste repositories. Assessing the redox speciation of radionuclides requires information about the redox conditions in the formation

  12. AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Dove, F.H.; Cole, C.R.; Foley, M.G.

    1982-09-01

    A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere.

  13. The magnitude and relevance of the February 2014 radiation release from the Waste Isolation Pilot Plant repository in New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, P. [Carlsbad Environmental Monitoring & Research Center, 1400 University Drive, Carlsbad, NM, 88220 (United States); Lemons, B.G.; White, C.R. [AECOM, Carlsbad Operations, Carlsbad, NM, 88220 (United States)

    2016-09-15

    After almost fifteen years of successful waste disposal operations, the first unambiguous airborne radiation release from the Waste Isolation Pilot Plant (WIPP) was detected beyond the site boundary on February 14, 2014. It was the first accident of its kind in the 15-year operating history of the WIPP. The accident released moderate levels of radioactivity into the underground air. A small but measurable amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. The dominant radionuclides released were americium and plutonium, in a ratio consistent with the known content of a breached drum. The radiation release was caused by a runaway chemical reaction inside a transuranic (TRU) waste drum which experienced a seal and lid failure, spewing radioactive materials into the repository. According to source-term estimation, approximately 2 to 10 Ci of radioactivity was released from the breached drum into the underground, and an undetermined fraction of that source term became airborne, setting off an alarm and triggering the closure of seals designed to force exhausting air through a system of filters including high-efficiency-particulate-air (HEPA) filters. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to determine the extent of impact to WIPP personnel, the public, and the environment, if any. This article attempts to compile and interpret analytical data collected by an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC) and by a compliance-monitoring program conducted by the WIPP's management and operating contractor, the Nuclear Waste Partnership (NWP), LLC., in response to the accident. Both the independent and the WIPP monitoring efforts concluded that the levels detected were very low and localized, and no radiation-related health effects among local workers or the public would be

  14. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on preferred repository sites within the Palo Duro Basin, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Fenster, D.; Edgar, D.; Gonzales, S.; Domenico, P.; Harrison, W.; Engelder, T.; Tisue, M.

    1984-04-01

    Documents are being submitted to the Salt Repository Project Office (SRPO) of the US Department of Energy (DOE) by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) to satisfy milestones of the Salt Repository Project of the Civilian Radioactive Waste Management Program. Some of these documents are being reviewed by multidisciplinary groups of peers to ensure DOE of their adequacy and credibility. Adequacy of documents refers to their ability to meet the standards of the US Nuclear Regulatory Commission, as enunciated in 10 CFR 60, and the requirements of the National Environmental Policy Act and the Nuclear Waste Policy Act of 1982. Credibility of documents refers to the validity of the assumptions, methods, and conclusions, as well as to the completeness of coverage. This report summarizes Argonne's review of ONWI's two-volume draft report entitled Identification of Preferred Sites within the Palo Duro Basin: Vol. 1 - Palo Duro Location A, and Vol. 2 - Palo Duro Location B, dated January 1984. Argonne was requested by DOE to review these documents on January 17 and 24, 1984 (see App. A). The review procedure involved obtaining written comments on the reports from three members of Argonne's core peer review staff and three extramural experts in related research areas. The peer review panel met at Argonne on February 6, 1984, and reviewer comments were integrated into this report by the review session chairman, with the assistance of Argonne's core peer review staff. All of the peer review panelists concurred in the way in which their comments were represented in this report (see App. B). A letter report and a draft of this report were sent to SRPO on February 10, 1984, and April 17, 1984, respectively. 5 references.

  15. The magnitude and relevance of the February 2014 radiation release from the Waste Isolation Pilot Plant repository in New Mexico, USA.

    Science.gov (United States)

    Thakur, P; Lemons, B G; White, C R

    2016-09-15

    After almost fifteen years of successful waste disposal operations, the first unambiguous airborne radiation release from the Waste Isolation Pilot Plant (WIPP) was detected beyond the site boundary on February 14, 2014. It was the first accident of its kind in the 15-year operating history of the WIPP. The accident released moderate levels of radioactivity into the underground air. A small but measurable amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. The dominant radionuclides released were americium and plutonium, in a ratio consistent with the known content of a breached drum. The radiation release was caused by a runaway chemical reaction inside a transuranic (TRU) waste drum which experienced a seal and lid failure, spewing radioactive materials into the repository. According to source-term estimation, approximately 2 to 10Ci of radioactivity was released from the breached drum into the underground, and an undetermined fraction of that source term became airborne, setting off an alarm and triggering the closure of seals designed to force exhausting air through a system of filters including high-efficiency-particulate-air (HEPA) filters. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to determine the extent of impact to WIPP personnel, the public, and the environment, if any. This article attempts to compile and interpret analytical data collected by an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC) and by a compliance-monitoring program conducted by the WIPP's management and operating contractor, the Nuclear Waste Partnership (NWP), LLC., in response to the accident. Both the independent and the WIPP monitoring efforts concluded that the levels detected were very low and localized, and no radiation-related health effects among local workers or the public would be expected.

  16. Locational conflict and the siting of nuclear waste disposal repositories: an international appraisal

    OpenAIRE

    F M Shelley; B D Solomon; M J Pasqualetti; G T Murauskas

    1988-01-01

    The industrialized nations of the world have begun to plan for the storage and eventual disposal of their increasing volumes of nuclear wastes. In this paper the authors inventory the progress made by these nations in planning for nuclear waste disposal. A typology based on the adoption of spent-fuel reprocessing programs and of progress toward selection of permanent disposal sites is developed, and the world's nuclear nations are located within this typology. However, those countries which h...

  17. Science Is Important, but Politics Drives the Siting of Nuclear Waste Repositories

    Science.gov (United States)

    Shaw, George H.

    2014-02-01

    In 1982, I worked on the Nuclear Waste Policy Act as an AGU Congressional Science Fellow tasked with assisting a member of the House Energy and Commerce Committee. When I recently read the suggestion that clay-rich strata (shales) could be a viable medium for high-level nuclear waste (HLW) disposal [Neuzil, 2013], I could not help but remember the insights I gained more than 30 years ago from my time on the Hill.

  18. Near-field thermal-hydrological behavior for alternative repository designs at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T.A.; Nitao, J.J.; Ramspott, L.D.

    1996-12-01

    three-dimensional calculations that explicitly represent a realistic mixture of waste packages (WPs) are used to analyze decay-heat-driven thermal-hydrological behavior around emplacement drifts in a potential high-level waste facility at Yucca Mountain, Calculations, using the NUFT code, compare two fundamentally different ways that WPs can be arranged in the repository, with a focus on temperature, relative humidity, and liquid-phase flux on WPs. These quantities strongly affect WP integrity and the mobilization and release of radionuclides from WPs. Point-load spacing, which places the WPs roughly equidistant from each other, thermally isolates WPs from each other, causing large variability in temperature, relative humidity, and liquid-phase flux among the drifts. Line-load spacing, which WPs nearly end to end in widely spaced drifts, results in more locally intensive and uniform heating along the drifts, causing hotter, drier and more uniform conditions. A larger and more persistent reduction in relative humidity on WPs occurs if the drifts are backfilled with a low thermal conductivity granular material with hydrologic properties that minimize moisture wicking.

  19. Results from an International Simulation Study on Coupled Thermal,Hydrological, and Mechanical (THM) Processes near Geological NuclearWaste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Rutqvist, J.; Barr, D.; Birkholzer, J.T.; Chijimatsu, M.; Kolditz, O.; Liu, Q.-S; Oda, Y.; Wang, W.; Zhang, C.-Y.

    2007-10-23

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  20. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  1. Container design testing for the final repository Konrad - experiences with respect to so called ''old'' containers; Bauartpruefungen an Behaeltern fuer das Endlager KONRAD. Erfahrungen bezueglich sog. ''Alt''-Behaelter

    Energy Technology Data Exchange (ETDEWEB)

    Noack, Volker; Voelzke, Holger; Nieslony, Gregor; Kovacs, Oliver; Hagenow, Peter [BAM Bundesanstalt fuer Materialforschung und -pruefung (Germany)

    2009-07-01

    The Konrad ore mine is a final repository for low- and intermediate-level radioactive waste in Germany. The demand for final storage suitable containers is increasing. The authors describe tests of so called ''old'' containers for qualification with respect to the appropriateness for final disposal. BAM (Bundesanstalt fuer Materialpruefung) has test facilities for drop tests and fire tests. The testing requirements for all available container types are discussed, including the boundary conditions with respect to the supposed waste properties, conditioning and loading. The project of container design testing is aimed to the possibility of a continuous recording of a large amount of waste packages for the final repository Konrad that allows a short-term backtracking of the relevant data for quality assurance.

  2. Assessment of a KBS-3 nuclear waste repository as a plane of weakness

    Energy Technology Data Exchange (ETDEWEB)

    Loennqvist, Margareta; Kristensson, Ola; Faelth, Billy (Clay Technology AB, Lund (Sweden))

    2010-06-15

    The objective of this study is to investigate if the KBS-3 repository can act as a plane of weakness when subjected to different loads. These loads may cause either shear- or tensile fracturing. In this report these two modes of fracturing are simply referred to as 'Shearing' and 'Sheeting', respectively. The sensitivity of the rock mass to the presence of a system of tunnels is studied by means of numerical modelling using the two-dimensional distinct element code UDEC. In order to study the stability against shearing, the slip behaviours of two cases are compared: - A single fracture embedded in a portion of rock. - A single fracture embedded in a portion of rock is cutting through a system of tunnels, i.e. a repository. The evaluation concerns three issues: - How the presence of a system of tunnels affects the stability of the rock mass. - How the presence of a system of tunnels affects the shear displacements in the hypothetical case of complete failure. - How the tunnel spacing affects the stability and shear displacements. The above is investigated for a number of in situ stress states. The stress states are varied in absolute magnitude, ratio between major and minor principal stress and inclination of the major stress with respect to the fracture plane. The results from the models are used to evaluate the stability of the repository rock mass against shear failure in terms of Factor of Safety (FoS). The results indicate that the stability margin in the fracture has a limited sensitivity to the presence of the tunnels and to the tunnel spacing. Including tunnels with 40 m spacing gives a reduction of the stability margin by about 20% at a maximum. Applying the stress state where the stresses are oriented in order to give maximum instability gives a FoS higher than 1.4 for all tunnel spacings larger than 20 m. The stability is also evaluated using stress input from dynamic earthquake simulations. The FoS quantity is calculated based on the

  3. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  4. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    Science.gov (United States)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  5. Recommended new criteria for the selection of nuclear waste repository sites in Columbia River basalt and US Gulf Coast domed salt

    Energy Technology Data Exchange (ETDEWEB)

    Steinborn, T.L.; Wagoner, J.L.; Qualheim, B.; Fitts, C.R.; Stetkar, R.E.; Turnbull, R.W.

    1980-06-16

    Screening criteria and specifications are recommended to aid in the evaluation of sites proposed for nuclear waste disposal in basalt and domed salt. The recommended new criteria proposed in this report are intended to supplement existing repository-related criteria for nuclear waste disposal. The existing criteria are contained in 10 CFR 60 sections which define siting criteria of the Nuclear Regulatory Commission (NRC), and ONWI 33(2) which defines siting criteria of the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy. The specifications are conditions or parameter values that the authors recommend be applied in site acceptance evaluations. The siting concerns covered in this report include repository depth, host rock extent, seismic setting, structural and tectonic conditions, groundwater and rock geochemistry, volcanism, surface and subsurface hydrology, and socioeconomic issues, such as natural resources, land use, and population distribution.

  6. Proposed methodology for completion of scenario analysis for the Basalt Waste Isolation Project. [Assessment of post-closure performance for a proposed repository for high-level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roberds, W.J.; Plum, R.J.; Visca, P.J.

    1984-11-01

    This report presents the methodology to complete an assessment of postclosure performance, considering all credible scenarios, including the nominal case, for a proposed repository for high-level nuclear waste at the Hanford Site, Washington State. The methodology consists of defensible techniques for identifying and screening scenarios, and for then assessing the risks associated with each. The results of the scenario analysis are used to comprehensively determine system performance and/or risk for evaluation of compliance with postclosure performance criteria (10 CFR 60 and 40 CFR 191). In addition to describing the proposed methodology, this report reviews available methodologies for scenario analysis, discusses pertinent performance assessment and uncertainty concepts, advises how to implement the methodology (including the organizational requirements and a description of tasks) and recommends how to use the methodology in guiding future site characterization, analysis, and engineered subsystem design work. 36 refs., 24 figs., 1 tab.

  7. Environmental and health impacts of February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository.

    Science.gov (United States)

    Thakur, P; Lemons, B G; Ballard, S; Hardy, R

    2015-08-01

    The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the

  8. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    Science.gov (United States)

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again.

  9. 核废料处置库近场的热-水-力耦合分析%Numerical analysis for coupled thermo-hydro-mechanical processes in near field of nuclear waste repository

    Institute of Scientific and Technical Information of China (English)

    张大斌; 李子善

    2012-01-01

    为研究高放射性核废料地质处置的热-水-力耦合过程,以FEBEX原位试验为计算模型,利用有限元软件code-bright进行数值模拟分析,得到热-水-力耦合作用下处置库关闭后近场膨润土和岩石内温度、饱和度、吸力、应力及位移的变化规律,其结果可为核废料处置库的规划、设计以及缓冲/回填材料的选取提供参考.%To analyze coupled thermo-hydro-mechanical process for geological disposal of high level radioactive nuclear waste,a numerical analysis taking the FEBEX in-situ test for geological disposal of high level radioactive nuclear waste as the modeling object was carried out by using code-bright program. The variations of temperature, saturation degree, the suction, the stress and the displacement in bentonite and rock under the coupled thermo-hydro-mechancial action after the closure of nuclear waste repository are obtained. Valuable reference is presented for planning,designing of the nuclear waste repository and the selection of the buffer material.

  10. No nuclear power plant - now final repository? What to do with small amounts of waste?; Kein Kernkraftwerk - kein Endlager? Wohin mit wenig Abfaellen?

    Energy Technology Data Exchange (ETDEWEB)

    Feinhals, Joerg [DMT GmbH und Co. KG, Hamburg (Germany)

    2015-07-01

    Countries with nuclear power plants try to find a solution for the disposal of radioactive waste. Countries that have no nuclear power plants but produce radioactive waste in medicine, industry and research and operate research reactors have a problem: the challenging question of an appropriate disposal concept. Possibilities for such a concept are discussed in this contribution, for instance a multinational final repository, near-surface disposal of low- and medium-level radioactive wastes or a small scale disposal facility (SSDF). In any case safety analyses are required.

  11. Coupling Legacy and Contemporary Deterministic Codes to Goldsim for Probabilistic Assessments of Potential Low-Level Waste Repository Sites

    Science.gov (United States)

    Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.

    2006-12-01

    project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.

  12. Radioactive wastes repository in Temascalapa, State of Mexico, public opinion. Determination of health effects; Repositorio de residuos radiactivos en Temascalapa Estado de Mexico, Opinion publica. Determinacion de efectos en la salud

    Energy Technology Data Exchange (ETDEWEB)

    Solis Tinoco, E

    1998-12-31

    Nuclear waste usually concerns public about the impact on public health and the environment. In Mexico, such interest exists, particularly in the Temascalapa Municipality, Mexico where a low level waste repository recognized by the IAEA, has been functioning since 1972. Maquixco repository is located at 42 Kilometers northeast of Mexico City. Although the environmental radiological monitoring records have demonstrated negligible impact on the environment, in 1998 an unusual public polemic on radioactive health effects appeared among Temascalapa residents. This paper presents a research performed during 1998 with the participation of the National Nuclear Research Institute of Mexico and the National Autonomous University of Mexico. The research design allowed the involvement of local authorities, as a way of stimulate public participation. The research was performed in nine locations of the Temascalapa Municipality, it was focused on public polemics, associated to Maquixco repository as well as trying to identify demographic factors that exert influence on public attitudes. There are also presented the results of personal dosimetry analysis performed on a four hundred residents sample of this Municipality. (Author)

  13. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository; Experimentation et modelisation du transfert d'hydrogene a travers des argiles de centre de stockage de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Boulin, P

    2008-10-15

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  14. Refinancing of the search for a repository and of the repository for heat generating radioactive waste. Pt. 1; Refinanzierung der Endlagersuche und des Endlagers fuer waermeentwickelnde radioaktive Abfaelle. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Moench, Christoph [Sozietaet Gleiss Lutz, Berlin (Germany)

    2013-02-15

    The final disposal of radioactive waste is a state task that is assigned to the Federal Government pursuant to section 9a (3) sentence 1 of the Atomic Energy Act (AtG). Since the early 1970's, the Federal Government has been actively searching for and exploring final disposal sites for radioactive waste. In a proceeding accompanied by the intensive participation of technical experts and the public, the Gorleben salt dome (Salzstock) has emerged as a presumably suitable disposal site from a mining standpoint (eignungshoeffig) according to the current status of the exploration. The cost of these exploratory measures - and the subsequent construction - will be financed by the waste producers, in particular the utility companies, by means of advance payments on their contributions. Part I of this article will evaluate the selection and exploration of the Gorleben salt dome to date and examine the provisions on the pre-financing burden from the point of view of constitutional law. Constitutional objections can also be raised against the regulation in section 21b (4) AtG that was introduced in 1998, which excludes a refunding of the pre-financing contributions even if the repository is never erected or operated. Part II of this article, which will appear in the next issue, will take up the question of whether a search for an alternative repository site, as the Federal Ministry for the Environment (BMU) envisions in the working draft of an 'Act on the search for and selection of a site for a repository for heat generating radioactive waste' (Gesetz zur Suche und Auswahl eines Standortes fuer ein Endlager fuer waermeentwickelnde radioaktive Abfaelle), is likewise to be refinanced as a contribution by the parties obliged to make advance payments. (orig.)

  15. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H F; Blink, J; Farmer, J; Latkowski, J; Kramer, K

    2009-09-08

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce {approx}2 GWt of power (fusion + fission) over its 50- to 70-year lifetime

  16. Cementitious Mixtures for Sealing Evaporite and Clastic Rocks in a Radioactive-Waste Repository.

    Science.gov (United States)

    1985-09-01

    on other materials (Struble, Skalny, and Mindess 1980; Barnes, Diamond, and Dolch 1978). Images of chloride distribution show concentrations of...Waste Management, US Department of Energy, Washington, DC. Struble, L., Skalny, L., and Mindess , S. 1980. Cement and Concrete Research, Vol 10, pp

  17. Simulating Earthquake Rupture and Off-Fault Fracture Response: Application to the Safety Assessment of the Swedish Nuclear Waste Repository

    KAUST Repository

    Falth, B.

    2014-12-09

    To assess the long-term safety of a deep repository of spent nuclear fuel, upper bound estimates of seismically induced secondary fracture shear displacements are needed. For this purpose, we analyze a model including an earthquake fault, which is surrounded by a number of smaller discontinuities representing fractures on which secondary displacements may be induced. Initial stresses are applied and a rupture is initiated at a predefined hypocenter and propagated at a specified rupture speed. During rupture we monitor shear displacements taking place on the nearby fracture planes in response to static as well as dynamic effects. As a numerical tool, we use the 3Dimensional Distinct Element Code (3DEC) because it has the capability to handle numerous discontinuities with different orientations and at different locations simultaneously. In tests performed to benchmark the capability of our method to generate and propagate seismic waves, 3DEC generates results in good agreement with results from both Stokes solution and the Compsyn code package. In a preliminary application of our method to the nuclear waste repository site at Forsmark, southern Sweden, we assume end-glacial stress conditions and rupture on a shallow, gently dipping, highly prestressed fault with low residual strength. The rupture generates nearly complete stress drop and an M-w 5.6 event on the 12 km(2) rupture area. Of the 1584 secondary fractures (150 m radius), with a wide range of orientations and locations relative to the fault, a majority move less than 5 mm. The maximum shear displacement is some tens of millimeters at 200 m fault-fracture distance.

  18. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Chih-Hsiang [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Mathematical Sciences

    1994-10-17

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP).

  19. RESOLUTION STRATEGY FOR GEOMECHANICALLY-RELATED REPOSITORY DESIGN FOR THERMAL-MECHANICAL EFFECTS (RDTME)

    Energy Technology Data Exchange (ETDEWEB)

    M. Board

    2003-04-01

    In September of 2000, the U.S. Nuclear Regulatory Commission (NRC) issued an Issue Resolution Status Report (NRC 2000). The Key Technical Issue (KTI) agreements on Repository Design and Thermal-Mechanical Effects (RDTME) were jointly developed at the Technical Exchange and Management Meeting held on February 6-8, 2001 in Las Vegas, Nevada. In that report, a number of geomechanically-related issues were raised regarding the determination of rock properties, the estimation of the impacts of geologic variability, the use of numerical models, and the examination of drift degradation and design approach to the ground support system for the emplacement drifts. Ultimately, the primary end products of the KTI agreement resolution processes are an assessment of the preclosure stability of emplacement drifts and the associated ground support requirements. There is also an assessment of the postclosure degradation of the excavations when subjected to thermal and seismic-related stresses as well as in situ loading over time.

  20. Nuclear Waste Risk Perceptions and Attitudes in Siting a Final Repository for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, Lennart [Stockholm School of Economics (Sweden). Center for Risk Research

    2006-09-15

    The paper does the following: Describes the time trends between 2001 and 2005 in terms of policy intention, perceived risk, trust and attitude Analyzes the relationships between policy attitude - the major dependent variable - and the explanatory variables of perceived risk, trust and attitude. Determines whether policy attitude variation across time, municipalities and genders can be accounted for by variation in perceived risk, trust and attitude. Random samples of 2000 persons living in Oesthammar and Oskarshamn were approached with a mailed questionnaire in 2005 (as was done in 2005). After two reminders, 888 had returned filled out questionnaires, yielding a total response rate of 50 percent, taking into account that some persons had moved without giving a forwarding address to the post office, and that some were unable to answer due to illness or old age. (1). There was a substantially more positive attitude to a local SNF repository in 2005 than in 2001, after an intervening period of phase 2 site investigation. This was true for men and women, both municipalities and with all the response measures analyzed. Men were more positive than women, and had developed more strongly in the positive direction than women had. The attitude in Oskarshamn was somewhat more positive than in Oesthammar. (2). Policy intention was well accounted for by the explanatory variables used here, close to 64 percent of the variance. The most important explanatory variables were epistemic trust, attitude to the repository and social trust, in that order. The differences among these three variables were small with regard to explanatory power. (3) Variation in policy attitude across time, municipalities and gender was reduced in an analysis of covariance with risk, trust and attitude as controlling factors. Hence, these factors explain a large fraction of the variation in policy attitude as observed here. Yet, the time trend was not fully explained and gender variability remained to

  1. Test case for a near-surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M.; Jones, C. [Kemakta Konsult AB, Stockholm (Sweden); Nilsson, L.B. [Swedish Nuclear Fuel and Waste Co, Stockholm (Sweden); Skagius, K.; Wiborgh, M. [Kemakta Konsult AB, Stockholm (Sweden)

    1998-09-01

    A test case is presented for assessment of a near-surface disposal facility for radioactive waste. The case includes waste characterization and repository design, requirements and constraints in an assessment context, scenario development, model description and test calculations 6 refs, 12 tabs, 16 figs

  2. Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2004-07-01

    This document is a summary of the available information on the thermo-hydro-mechanical properties of the bentonite barrier of a high-level radioactive waste repository and of the processes taking place in it during the successive repository operation phases. Mainly the thermal properties, the volume change processes (swelling and consolidation), the permeability and the water retention capacity are analysed. A review is made of the existing experimental knowledge on the modification of the these properties by the effect of temperature, water salinity, humidity and density of the bentonite, and their foreseen evolution as a consequence of the processes expected in the repository. The compiled evolution refers mostly to the FEBEX (Spain), the MX-80 (US) and the FoCa (France) bentonite, considered as reference barrier materials in several European disposal concepts. (Author) 102 refs.

  3. Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, P.L.; Breslin, J.J. (eds.)

    1981-01-01

    The papers in this volume cover the following subjects: waste isolation and the natural geohydrologic system; repository perturbations of the natural system; radionuclide migration through the natural system; and repository design technology. Individual papers are abstracted.

  4. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.

    2011-07-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  5. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  6. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  7. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  8. Experiences from the design and construction of plug II in the Prototype Repository

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstroem, Lars-Olof (NCC Teknik (Sweden))

    2009-12-15

    The intention with this document is to summarise the comprehensive documentation and experience that was gained during the design and construction of the temporary plugs in the Prototype Repository experiment at Aespoe HRL. The Prototype Repository experiment was designed to in full scale test the engineered barriers and their function, including the plug that separate the deposition tunnel from the temporary access- and transportation tunnels that are at atmospheric pressure. This plug is designed and constructed as a concrete plug with a spherical front side and a flat pressurised side. This report presents the processes and operations that were considered when developing the 'plug', design, construction and verification. In the Prototype Repository the demand of leakage control is very high and the maximum length of the plugs is constrained due to available clearance space, experimental set-up and configuration. Therefore a typical 'friction plug' normally used to block waterways in connection with hydropower plants, is not suitable. Instead a plug constructed as an 'arch plug' with abutments was considered. In order to minimize the Excavation Disturbed Zone (EDZ) the abutments, in which the plug is inserted, was excavated by seam drilling with coring technique. The steel formwork was pre-assembled at the ground surface before taken down to the tunnel. The steel was bolted and welded together and crossbars and plywood were mounted on top. Before taken down to the tunnel, the formwork was separated into smaller pieces that were easier to transport down the tunnel but easy to assembly at the Prototype Repository experiment. Before assembling the formwork, a retaining wall was installed to resist the earth and compaction pressure developed from the backfill material. The retaining wall consists of pre-fabricated concrete beams that were installed parallel with the installation of the backfill. Reinforcement was cut and bent at the

  9. Project SAFE. Microbial features, events and processes in the Swedish final repository for low-and intermediate-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Karsten [Goeteborg Univ. (Sweden)

    2001-01-01

    The waste disposed of in the Swedish final repository for low and intermediate radioactive waste (SFR) typically contains large amounts of organic substances. This waste thus constitutes a possible source of energy and nutrients for microorganisms. Microbes can degrade the waste to degradation products, which to a varying degree may create problems if the process is significant. The environment for microbial life in the SFR is, however, unique since it cannot be compared to any environment to which microbes have adapted naturally over millions of years. Most similar to the SFR are waste dumps and landfills. In those, microbes degrade the waste and form degradation products. The experience from such 'analogues' and from research performed under repository-like conditions may provide useful clues about the microbial processes which may occur in the repository. Microbes have the ability to degrade bitumen, used to solidify some wastes, but this degradation is very slow under anaerobic conditions. Bitumen degradation will, therefore, not influence the safety of the SFR. However, some microbes can produce acids that could influence concrete stability, particularly in the presence of oxygen. The future SFR environment is anaerobic, which suggests that acid production is a very unlikely problem. Sulphate-reducing bacteria (SRB) have the ability to produce sulphide, which may act as a corrosive on metals. Under specific conditions, with the local groundwater flow close to a metal surface and with dissolved organic material from the repository, pitting corrosion of metal canisters is a potential threat. This process appears to require conditions fairly atypical of the SFR, however. Large groups of microorganisms can use hydrogen as a source of energy, thereby contributing to the decrease of this gas mainly formed from water during the anaerobic corrosion of metals. Cellulose is an excellent substrate for many microorganisms and it will be the dominating carbon and

  10. Development of database systems for safety of repositories for disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hoon; Han, Jeong Sang; Shin, Hyeon Joon; Ham, Sang Won; Moon, Sang Kee [Yonsei Univ., Seoul (Korea, Republic of)

    1998-03-15

    In this study, contents and survey and supervision items in each part are selected to avoid overlap between different parts referring national lows, criterion, and guidance related to atomic energy. The items consist of climatology, hydrology, geology, seismology, engineering geology, geochemistry, and civil and social parts. Based on these items, general study and systematic control related to the stability of disposal sites os established and as specific region required with the properties that is similar to properties of radioactive waste disposal sites, Ulsan region equipped with LPG underground storage facility was selected and its datum were surveyed and inputted. So propriety of established database system was proved.

  11. Repository seals requirements study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-03

    The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. This report presents the results of a repository sealing requirements study. Sealing is defined as the permanent closure of the shafts, ramps, and exploratory boreholes. Sealing includes those components that would reduce potential inflows above the repository, or that would divert flow near the repository horizon to allow vertical infiltration to below the repository. Sealing of such features as emplacement drifts was not done in this study because the current capability to calculate fracture flow into the drifts is not sufficiently mature. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing.

  12. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  13. BENTONITE-QUARTZ SAND AS THE BACKFILL MATERIALS ON THE RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    Raharjo Raharjo

    2010-06-01

    Full Text Available An investigation of the contribution of quartz sand in the bentonite mixture as the backfill materials on the shallow land burial of radioactive waste has been done. The experiment objective is to determine the effect of quartz sand in a bentonite mixture with bentonite particle sizes of -20+40, -40+60, and -60+80 mesh on the retardation factor and the uranium dispersion in the simulation of uranium migration in the backfill materials. The experiment was carried out by the fixed bed method in the column filled by the bentonite mixture with a bentonite-to-quartz sand weight percent ratio of 0/100, 25/75, 50/50, 75/25, and 100/0 on the water saturated condition flown by uranyl nitrate solution at concentration (Co of 500 ppm. The concentration of uranium in the effluents in interval 15 minutes represented as Ct was analyzed by spectrophotometer, then using Co and Ct, retardation factor (R and dispersivity ( were determined. The experiment data showed that the bentonite of -60+80 mesh and the quartz sand of -20+40 mesh on bentonite-to-quartz sand with weight percent ratio of 50/50 gave the highest retardation factor and dispersivity of 18.37 and 0.0363 cm, respectively.   Keywords: bentonite, quartz sand, backfill materials, radioactive waste

  14. Demonstrating compliance with protection objectives for non-human biota within post-closure safety cases for radioactive waste repositories.

    Science.gov (United States)

    Jackson, D; Smith, K; Wood, M D

    2014-07-01

    Over recent years, a number of approaches have been developed that enable the calculation of dose rates to animals and plants following the release of radioactivity to the environment. These approaches can be used to assess the potential impacts of activities that may release radioactivity to the environment, such as the operation of waste repositories. A number of national and international studies have identified screening criteria to indicate those assessment results below which further consideration is not generally required. However no internationally agreed criteria are currently available and consistency in criteria between countries has not been achieved. Furthermore, since screening criteria are not intended to be applied as limits, it is clear that they cannot always form a sufficient basis for assessing the adequacy of protection afforded. Typically, exceeding a screening value leads to a regulatory requirement to undertake a further, more detailed assessment. It does not, per se, imply that there is inadequate protection of the organism types at the specific site under assessment. Therefore, there is a need to develop a more structured approach to dealing with situations in which current screening criteria are exceeded. As a contribution to the developing international discussions, and as an interim measure for application where assessments are required currently, a two-tier, three zone framework is proposed here, relevant to the long term assessment of potential impacts from the deep disposal of radioactive wastes. The purpose of the proposed framework is to promote a proportionate and risk-based approach to the level of effort required in undertaking and interpreting an assessment. Copyright © 2013. Published by Elsevier Ltd.

  15. Geologic uncertainty in a regulatory environment: An example from the potential Yucca Mountain nuclear waste repository site

    Science.gov (United States)

    Rautman, C. A.; Treadway, A. H.

    1991-11-01

    Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.

  16. Laboratory studies of the diffusive transport of {sup 137}Cs and {sup 60}Co through potential waste repository soils

    Energy Technology Data Exchange (ETDEWEB)

    Itakura, Takashi [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Airey, David W., E-mail: david.airey@sydney.edu.a [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Leo, Chin Jian [School of Engineering and Industrial Design, University of Western Sydney, Penrith, NSW (Australia); Payne, Timothy; McOrist, Gordon D. [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)

    2010-09-15

    Tests using reconstituted samples have been performed to assess the diffusive transport of {sup 137}Cs and {sup 60}Co through natural regolith materials from a region in South Australia being considered for a radioactive waste repository. A double diffusion cell apparatus made of polycarbonate resin was developed to estimate the effective diffusion (D{sub e}) and sorption coefficients (K{sub d}) that allowed large withdrawals from the source and collector cells and has enabled tests with low concentrations of radioactivity. An alternative to porous stainless steel filter plates has also been used to reduce uncertainty in test interpretation. Analysis of the transient data used a staged method of the Laplace transform to take into consideration the volume of the samples withdrawn from the apparatus during testing. At test completion samples were cut into slices and analysed for radionuclide concentration. Data obtained from the sliced samples confirmed that both numerical and experimental data produced acceptable mass balance. The D{sub e} values obtained in this study were of the order of 10{sup -6} cm{sup 2} s{sup -1} for both species, higher than previously published data. The K{sub d} values from the diffusion and batch sorption tests were in reasonable agreement for {sup 137}Cs, but an order of magnitude different for {sup 60}Co. The sorption of the latter radionuclide was strongly pH dependent, and this dependency during diffusion tests would benefit from further investigation.

  17. Evaluation of long-term behavior of concretes in high level waste repositories. An accelerated leaching test

    Directory of Open Access Journals (Sweden)

    Hidalgo, A.

    2004-04-01

    Full Text Available The present work describes an accelerated leaching method that with a rapid process allows to develop and evaluate cements for use in a nuclear disposal, and the understanding of the long term effects. The method has been developed to study the stability of cementitious materials in contact with bentonite, to be used in high level radioactivity waste repositories. Nitric acid has been selected to simulate in an accelerated way the pH decreasing produced when concrete is in contact with groundwaters.

    El presente trabajo describe un ensayo acelerado de lixiviación, que mediante un proceso rápido, permite desarrollar y evaluar cementos para su uso en instalaciones nucleares, y la comprensión de su comportamiento a largo plazo. El método se ha desarrollado para estudiar la estabilidad de materiales de base cemento, en contacto con bentonita, que serán utilizados en almacenamientos de resíduos radiactivos de alta actividad. Como agente lixiviante se seleccionó el ácido nítrico, con objeto de simular de forma acelerada, la disminución del pH que se produce cuando el hormigón entra en contacto con aguas subterráneas.

  18. Conceptual modeling coupled thermal-hydrological-chemical processes in bentonite buffer for high-level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Young; Park, Jin Young [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Ryu, Ji Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

  19. Interim Report on Development of a Model to Predict Dissolution Behavior of the Titanate Waste Form in a Repository

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L.

    1999-08-16

    Dissolution testing performed to date on a titanate waste form under development for plutonium immobilization reveals the following: (1) The wasteform is very durable. Many of the test results have shown the dissolution rate to be below detection or less than background levels of the constituent elements; (2) elemental release is non-stoichiometric with Pu, U, Ca, and Gd released faster than Ti and Hf at most pH conditions; (3) dissolution rates measured in flow-through tests sometimes show a continuous decrease with time in tests of up to two years duration; (4) attempts to model the dissolution as a transport-controlled process with diffusion through a leached layer as the rate limiting mechanism show reasonable agreement at low pH conditions but poor agreement at neutral to alkaline pHs. Based on present uncertainties in our understanding of rate control, we have provided conservative estimates of radionuclide release rates based on the fastest observed release rates measured in short-term tests. These dissolution rates under repository-relevant conditions are in the range of 10{sup -3} to 10{sup -6}g/m{sup 2}/day.

  20. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scales in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.

  1. 美国某地下核废料库岩体变形分析%Analysis on One underground Nuclear Waste Repository Rock Mass in USA

    Institute of Scientific and Technical Information of China (English)

    哈秋舲; 张田田

    2012-01-01

    在美国某地下核废料库的岩体力学分析中,现行研究均基于加载力学条件,未考虑岩体卸荷损伤.根据该地下核废料库实际加载区岩体和卸荷不同的力学条件,结合现行的加载岩体力学和卸荷岩体力学对地下核废料库的岩体变形进行综合分析.结果表明,综合分析结果与该地下核废料库的变形实测数据基本一致;研究结果可为该地下核废料库的支护提供支撑数据.%When analyzing the rock mass of a underground nuclear waste repository, the current studies are all based on the loading mechanical condition, and the unloading damage of rock mass is unconsidered. According to the different mechanical condition of actual engineering rock mass of loading and unloading, this paper implements a comprehensive analysis on the rock mass deformation of underground nuclear waste repository through the combination of present loading and unloading rock mass mechanics. It is found that the results of comprehensive analysis and actual measured data on the rock mass deformation of underground nuclear waste repository are basically the same, which provide supporting data for the underground nuclear waste repository.

  2. Deep repository for long-lived low and intermediate-level waste. A preliminary safety assessment; Djupfoervar for laanglivat laag- och medelaktivt avfall. Preliminaer saekerhetsanalys

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as {sup 36}Cl and {sup 93}Mo, are important to be taken into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon.

  3. Shaft sealing concepts for high-level radioactive waste repositories based on the host-rock options rock salt and clay stone; Schachtverschlusskonzepte fuer zukuenftige Endlager fuer hochradioaktive Abfaelle fuer die Wirtsgesteinsoptionen Steinsalz und Ton

    Energy Technology Data Exchange (ETDEWEB)

    Kudla, Wolfram; Gruner, Matthias [TU Bergakademie Freiberg (Germany). Inst. fuer Erdbau und Spezialtiefbau; Herold, Philipp; Jobmann, Michael [DBE Technology GmbH, Peine (Germany)

    2015-07-01

    Unlike the shaft barriers used for the dry preservation of former mine workings and underground storage sites, shaft seals designed for radioactive-waste repositories must also fulfil additional requirements associated with the design diversity of the sealing system. This diversity makes use of the simple redundancy principle in order to prevent the proliferation of defects. In practice this means combining several sealing elements made from different materials or from materials with different properties. The R and D project, Shaft sealing systems for final repositories for high-level radioactive waste (ELSA) - phase 2: concept design for shaft seals and testing of the functional elements of shaft seals', which was funded by the Federal Ministry for Economic Affairs and Energy (BMWi), set out to investigate potential sealing elements for the two host-rock options rock salt and mudstone. This paper combines the text that the authors presented at the First International Freiberg Shaft Colloquium held at the Freiberg University of Mining and Technology on 01.10.2014 with a presentation on the sealing elements that were investigated as part of the R and D project.

  4. The Evaluation of Material Properties of Low-pH Cement Grout for the Application of Cementitious Materials to Deep Radioactive Waste Repository Tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Seop; Kwon, S. K.; Cho, W. J.; Kim, G. W

    2009-12-15

    Considering the current construction technology and research status of deep repository tunnels for radioactive waste disposal, it is inevitable to use cementitious materials in spite of serious concern about their long-term environmental stability. Thus, it is an emerging task to develop low pH cementitious materials. This study reviews the state of the technology on low pH cements developed in Sweden, Switzerland, France, and Japan as well as in Finland which is constructing a real deep repository site for high-level radioactive waste disposal. Considering the physical and chemical stability of bentonite which acts as a buffer material, a low pH cement limits to pH {<=}11 and pozzolan-type admixtures are used to lower the pH of cement. To attain this pH requirement, silica fume, which is one of the most promising admixtures, should occupy at least 40 wt% of total dry materials in cement and the Ca/Si ratio should be maintained below 0.8 in cement. Additionally, selective super-plasticizer needs to be used because a high amount of water is demanded from the use of a large amount of silica fume. In this report, the state of the technology on application of cementitious materials to deep repository tunnels for radioactive waste disposal was analysed. And the material properties of low-pH and high-pH cement grouts were evaluated base on the grout recipes of ONKALO in Finlan.

  5. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository

    CERN Document Server

    Caro, Florian; Saad, Mazen

    2012-01-01

    Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry's law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.

  6. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository

    KAUST Repository

    Caro, Florian

    2013-09-01

    Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.

  7. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad

    2015-11-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since the dawn of nuclear era. Albeit the relatively large number of research works that have been conducted to investigate temperature distribution surrounding waste canisters, they all abide to consider the host formations as homogeneous and isotropic. While this could be the case in some subsurface settings, in most cases, this is not true. In other words, subsurface formations are, in most cases, inherently anisotropic and heterogeneous. In this research, we show that even a slight difference in anisotropy of thermal conductivity of host rock with direction could have interesting effects on temperature fields. We investigate the effect of anisotropy angle (the angle the principal direction of anisotropy is making with the coordinate system) on the temperature field as well as on the maximum temperature attained in different barrier systems. This includes 0°, 30°, 45°, 60°, and 90°in addition to the isotropic case as a reference. We also consider the effect of anisotropy ratio (the ratio between the principal direction anisotropies) on the temperature fields and maximum temperature history. This includes ratios ranging between 1.5 and 4. Interesting patterns of temperature fields and profiles are obtained. It is found that the temperature contours are aligned more towards the principal direction of anisotropy. Furthermore the peak temperature in the buffer zone is found to be larger the smaller the anisotropy angle and vice versa. © 2015 Elsevier Ltd. All rights reserved.

  8. Numerical modeling capabilities to predict repository performance

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used.

  9. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  10. PlanetDR, a scalable architecture for federated repositories supporting IMS Learning Design

    NARCIS (Netherlands)

    Blat, Josep; Griffiths, David; Navarrete, Toni; Santos, José Luis; García, Pedro; Pujol, Jordi

    2006-01-01

    This paper discusses PlanetDR, whose architecture supports very large federated educational digital repositories. It is based on the implementation of current open specifications for interoperability (such as IEEE Learning Object Metadata and IMS Digital Repositories Interoperability, in its Edusour

  11. Planting Seeds for a Successful Institutional Repository: Role of the Archivist as Manager, Designer, and Policymaker

    Science.gov (United States)

    Watterworth, Melissa

    2009-01-01

    Recent surveys indicate that many colleges and universities have reached a pivotal moment in assessing the function and future development of their institutional repositories. Other surveys convey that archivists are participating in the development and implementation of institutional repositories at a variety of levels and have contributed to the…

  12. INDIVIDUAL DOSIMETRY IN DISPOSAL REPOSITORY OF HEAT-GENERATING NUCLEAR WASTE.

    Science.gov (United States)

    Pang, Bo; Saurí Suárez, Héctor; Becker, Frank

    2016-09-01

    Certain working scenarios in a disposal facility of heat-generating nuclear waste might lead to an enhanced level of radiation exposure for workers in such facilities. Hence, a realistic estimation of the personal dose during individual working scenarios is desired. In this study, the general-purpose Monte Carlo N-Particle code MCNP6 (Pelowitz, D. B. (ed). MCNP6 user manual LA-CP-13-00634, Rev. 0 (2013)) was applied to simulate a representative radiation field in a disposal facility. A tool to estimate the personal dose was then proposed by taking into account the influence of individual motion sequences during working scenarios. As basis for this approach, a movable whole-body phantom was developed to describe individual body gestures of the workers during motion sequences. In this study, the proposed method was applied to the German concept of geological disposal in rock salt. The feasibility of the proposed approach was demonstrated with an example of working scenario in an emplacement drift of a rock salt mine.

  13. Interpretation by numerical modeling of data monitored at a cover for a nuclear waste repository

    Science.gov (United States)

    Gran, M.; Carrera, J.; Saaltink, M. W.

    2012-04-01

    Two pilot covers have been set up at the Spanish facility for disposal of low and intermediate-level radioactive waste located at El Cabril (southern Spain). Their objective is to test the effectiveness in reducing or preventing surface erosion and runoff, infiltration and biointrusion. They consist of multilayer systems that profit from capillary barrier concepts. A complete monitoring system involving more than 200 sensors has been installed. At the same time, a complete meteorological station records meteorological data. This information is used to define initial and boundary conditions of a numerical model and also to test its validity. Here we discuss results of a preliminary 1D non isothermal multiphase flow model with an atmospheric boundary (whose fluxes depend on meteorological data) at the top. Furthermore a sink-source term has been developed to simulate the effect of lateral flow caused by the steep slope (40%) of the cover. Joint analysis of numerical simulation results together with field data allows us to study the behaviour of the liquid, gas and energy fluxes in a layered slope and to study the effects of different hydraulic properties, capillary pressures and degrees of saturation of the materials on the magnitude and direction of these flows.

  14. Gas and water flow in an excavation-induced fracture network around an underground drift: A case study for a radioactive waste repository in clay rock

    Science.gov (United States)

    de La Vaissière, Rémi; Armand, Gilles; Talandier, Jean

    2015-02-01

    The Excavation Damaged Zone (EDZ) surrounding a drift, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. A specific experiment (called CDZ) was designed and implemented in the Meuse/Haute-Marne Underground Research Laboratory (URL) in France to investigate the EDZ. This experiment is dedicated to study the evolution of the EDZ hydrogeological properties (conductivity and specific storage) of the Callovo-Oxfordian claystone under mechanical compression and artificial hydration. Firstly, a loading cycle applied on a drift wall was performed to simulate the compression effect from bentonite swelling in a repository drift (bentonite is a clay material to be used to seal drifts and shafts for repository closure purpose). Gas tests (permeability tests with nitrogen and tracer tests with helium) were conducted during the first phase of the experiment. The results showed that the fracture network within the EDZ was initially interconnected and opened for gas flow (particularly along the drift) and then progressively closed with the increasing mechanical stress applied on the drift wall. Moreover, the evolution of the EDZ after unloading indicated a self-sealing process. Secondly, the remaining fracture network was resaturated to demonstrate the ability to self-seal of the COx claystone without mechanical loading by conducting from 11 to 15 repetitive hydraulic tests with monitoring of the hydraulic parameters. During this hydration process, the EDZ effective transmissivity dropped due to the swelling of the clay materials near the fracture network. The hydraulic conductivity evolution was relatively fast during the first few days. Low conductivities ranging at 10-10 m/s were observed after four months. Conversely, the specific storage showed an erratic evolution during the first phase of hydration (up to 60 days). Some uncertainty remains on this parameter due to volumetric strain during the

  15. Estimation of the impact of water movement from sewage and settling ponds near a potential high level radioactive waste repository in Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, S.R.; Fewell, M.E.

    1992-02-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to design site characterization activities with minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. One activity of site characterization is the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and the accompanying ponds used for the storage of sewage water and muck water removed from construction operations. The information in this report pertains to the two-dimensional numerical calculations modelling the movement of sewage and settling pond water, and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing Appendix I of the Exploratory Studies Facility Design Requirements document (ESF DR) for the Yucca Mountain Site Characterization Project.

  16. Technical program plan, Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-19

    The Basalt Waste Isolation Program covers all activities necessary to assess the feasibility and provide the technology needed to design and construct a nuclear waste repository in basalt. The program is divided into the following areas: program management; systems integration; scientific technology; near-surface test facility; and repository studies. The program is discussed in detail.

  17. Biosphere modelling for dose assessments of radioactive waste repositories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klos, R. [Paul Scherrer Inst., Wuerenlingen (Switzerland)] [and others

    1996-09-01

    The aims of the Complementary Studies Working Group were: to investigate and explain differences which exist between contemporary models with respect to how, for a given test case, they represent the modelled Features, Events and Processes (FEPs) and how the nature of these representations affects the calculational end-points; to determine the most appropriate ways of representing key FEPs; to identify where knowledge needs to be improved to give better representations of these key FEPs in the future and where simplifications of existing formulations might be possible; to show that the modelling undertaken is suitable for purpose, in that it is robust and that it is unlikely that the radiological consequences calculated by the models would be underestimated (so that any conservative bias in the models is justified); to build confidence in the available modelling tools; to extend the work undertaken in the first phase of BIOMOVS to include consideration of radiological dose. Ten modelling groups from Western Europe and Canada have participated, revealing a variety of representations of radionuclide transport processes and techniques for calculating dose. The exercise has focused on the ways in which key FEPs are represented with the intention of determining the robustness or otherwise of existing representations. This has been achieved by applying a well defined dataset representative of a Central European inland valley. Human habits and lifestyle are chosen to be representative of a subsistence agricultural community. Climatic conditions are those of the present day. Many of the conclusions have relevance beyond the immediate concerns of the Central European biospheres and, although care should be exercised when terms of reference differ greatly from the system detailed here, much has been learned which has wider applicability. The exercise has successfully compared not only the behaviour of biosphere models for waste disposal assessments, but has also provided the

  18. On the flow of groundwater in closed tunnels. Generic hydrogeological modelling of nuclear waste repository, SFL 3-5

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, J.G. [Uppsala Univ. (Sweden). Inst. of Earth Sciences]|[Golder Associates AB (Sweden)

    1997-06-01

    The purpose is to study the flow of groundwater in closed tunnels by use of mathematical models. The calculations were based on three dimensional models, presuming steady state conditions. The stochastic continuum approach was used for representation of a heterogeneous rock mass. The size of the calculated flow is given as a multiple of an unknown regional groundwater flow. The size of the flow in a tunnel has been studied, as regards: Direction of the regional groundwater flow, Tunnel length, width and conductivity; Heterogeneity of the surrounding rock mass; Flow barriers and encapsulation inside a tunnel. The study includes a model of the planned repository for nuclear waste (SFL 3-5). The flow through the tunnels is estimated for different scenarios. The stochastic continuum approach has been investigated, as regards the representation of a scale dependent heterogeneous conductivity. An analytical method is proposed for the scaling of measured conductivity values, the method is consistent with the stochastic continuum approach. Some general conclusions from the work are: The larger the amount of heterogeneity, the larger the expected flow; The effects of the heterogeneity will decrease with increased tunnel length; If the conductivity of the tunnel is smaller than a threshold value, the tunnel conductivity is the most important parameter; If the tunnel conductivity is large and the tunnel is long, the most important parameter is the direction of the regional flow; Given a heterogeneous rock mass, if the tunnel length is shorter than about 500 m, the heterogeneity will be an important parameter, for lengths shorter than about 250 m, probably the most important; The flow through an encapsulation surrounded by a flow barrier is mainly dependent on the conductivity of the barrier. 70 refs, 110 figs, 10 tabs.

  19. Reactivity of nitrate and organic acids at the concrete–bitumen interface of a nuclear waste repository cell

    Energy Technology Data Exchange (ETDEWEB)

    Bertron, A., E-mail: bertron@insa-toulouse.fr [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Jacquemet, N. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Erable, B. [Université de Toulouse (France); INPT, UPS (France); CNRS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, F-31030 Toulouse (France); Sablayrolles, C. [Université de Toulouse (France); INP (France); LCA (Laboratoire de Chimie Agro-Industrielle), ENSIACET, 4 allée Emile Monso, BP 44 362, 31432 Toulouse Cedex 4 (France); INRA (France); LCA (Laboratoire de Chimie Agro-Industrielle), F-31029 Toulouse (France); Escadeillas, G. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Albrecht, A. [Andra, 1-7, rue Jean-Monnet, 92298 Châtenay-Malabry (France)

    2014-03-01

    Highlights: • Interactions of cement paste and organic acid–nitrate solutions were investigated. • Cement leaching imposed alkaline pH (>10) very rapidly in the liquid media. • Acetic acid action on cement paste was similar to that of classical leaching. • Oxalic acid attack formed Ca-oxalate salts; organic matter in solution decreased. • Nitrate was stable under abiotic conditions and with organic matter. - Abstract: This study investigates the fate of nitrate and organic acids at the bitumen–concrete interface within repository cell for long-lived, intermediate-level, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V cement paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the abiotic conditions of the experiments. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching in the absence of organic acids (i.e. carried out with water or strong acids); no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  20. Biosphere modelling for dose assessments of radioactive waste repositories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klos, R. [Paul Scherrer Inst., Wuerenlingen (Switzerland)] [and others

    1996-09-01

    The aims of the Complementary Studies Working Group were: to investigate and explain differences which exist between contemporary models with respect to how, for a given test case, they represent the modelled Features, Events and Processes (FEPs) and how the nature of these representations affects the calculational end-points; to determine the most appropriate ways of representing key FEPs; to identify where knowledge needs to be improved to give better representations of these key FEPs in the future and where simplifications of existing formulations might be possible; to show that the modelling undertaken is suitable for purpose, in that it is robust and that it is unlikely that the radiological consequences calculated by the models would be underestimated (so that any conservative bias in the models is justified); to build confidence in the available modelling tools; to extend the work undertaken in the first phase of BIOMOVS to include consideration of radiological dose. Ten modelling groups from Western Europe and Canada have participated, revealing a variety of representations of radionuclide transport processes and techniques for calculating dose. The exercise has focused on the ways in which key FEPs are represented with the intention of determining the robustness or otherwise of existing representations. This has been achieved by applying a well defined dataset representative of a Central European inland valley. Human habits and lifestyle are chosen to be representative of a subsistence agricultural community. Climatic conditions are those of the present day. Many of the conclusions have relevance beyond the immediate concerns of the Central European biospheres and, although care should be exercised when terms of reference differ greatly from the system detailed here, much has been learned which has wider applicability. The exercise has successfully compared not only the behaviour of biosphere models for waste disposal assessments, but has also provided the

  1. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  2. Monitored Geologic Repository Test Evaluation Plan

    Energy Technology Data Exchange (ETDEWEB)

    M.B. Skorska

    2002-01-02

    The Monitored Geologic Repository test & evaluation program will specify tests, demonstrations, examinations, and analyses, and describe procedures to conduct and document testing necessary to verify meeting Monitored Geologic Repository requirements for a safe and effective geologic repository for radioactive waste. This test program will provide assurance that the repository is performing as designed, and that the barriers perform as expected; it will also develop supporting documentation to support the licensing process and to demonstrate compliance with codes, standards, and regulations. This comprehensive program addresses all aspects of verification from the development of test requirements to the performance of tests and reporting of the test results. The ''Monitored Geologic Repository Test & Evaluation Plan'' provides a detailed description of the test program approach necessary to achieve the above test program objectives. This test plan incorporates a set of test phases focused on ensuring repository safety and operational readiness and implements a project-wide integrated product management team approach to facilitate test program planning, analysis, and implementation. The following sections provide a description of the individual test phases, the methodology for test program planning and analyses, and the management approach for implementing these activities.

  3. Long-Term Modeling of Coupled Processes in a Generic Salt Repository for Heat-Generating Nuclear Waste: Analysis of the Impacts of Halite Solubility Constraints

    Science.gov (United States)

    Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.

    2015-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012

  4. MicroarrayDesigner: an online search tool and repository for near-optimal microarray experimental designs

    Directory of Open Access Journals (Sweden)

    Ferhatosmanoglu Nilgun

    2009-09-01

    Full Text Available Abstract Background Dual-channel microarray experiments are commonly employed for inference of differential gene expressions across varying organisms and experimental conditions. The design of dual-channel microarray experiments that can help minimize the errors in the resulting inferences has recently received increasing attention. However, a general and scalable search tool and a corresponding database of optimal designs were still missing. Description An efficient and scalable search method for finding near-optimal dual-channel microarray designs, based on a greedy hill-climbing optimization strategy, has been developed. It is empirically shown that this method can successfully and efficiently find near-optimal designs. Additionally, an improved interwoven loop design construction algorithm has been developed to provide an easily computable general class of near-optimal designs. Finally, in order to make the best results readily available to biologists, a continuously evolving catalog of near-optimal designs is provided. Conclusion A new search algorithm and database for near-optimal microarray designs have been developed. The search tool and the database are accessible via the World Wide Web at http://db.cse.ohio-state.edu/MicroarrayDesigner. Source code and binary distributions are available for academic use upon request.

  5. Deep repository for long-lived low- and intermediate-level waste in Sweden (SFL 3-5): An international peer review of SKB 's preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, N. [QuantiSci Ltd, Melton Mowbray (United Kingdom); Apted, M. [Monitor Scientific, Denver, CO (United States); Glasser, F. [Univ. of Aberdeen (United Kingdom). Dept. of Chemistry; Kessler, J. [EPRI, Inc., Palo Alto, CA (United States); Voss, C. [US Geological Survey, Reston, VA (United States)

    2000-10-01

    The SKB safety assessment of the SFL 3-5 repository (the planned deep repository for long-lived low- and intermediate level waste) can be read in two contexts: as a preliminary evaluation of the performance and design options for a repository that will not be required for perhaps forty years; or as an evaluation of a repository that might need to be sited together with the SFL 2 spent fuel repository, and whose nature and performance might thus need to be understood to a level that can be used to make wider programmatic decisions during the next five years. These two 'assessment contexts' are quite different, and an overarching issue is the fact that it was not clear to the review team which view to take. Apparently, SKB would tend towards the first context. However, it is not at all apparent to the reviewers why the second context should not be the predominant driver in the near future. The review team notes that the SFL 3-5 repository, as modelled by SKB, gives rise to potentially perceptible radionuclide releases to the environment on a timescale of hundreds of years after closure. This is in contrast to the SR 97 assessment for the SFL 2 spent fuel repository, which base scenario predicts no releases over a million year timescale. It is clear that according to SKB's SR97 and SFL3-5 analyses, for co-located facilities, it is this repository that has the potential for real radiological impacts in the immediate future. An initial recommendation from the review, is that SKB and the regulatory authorities consider which context is appropriate to the current status of the Swedish programme. This is important, because an overall impression of the reviewers is that the analysis would not be 'fit for purpose' if it were needed to assist with decision-making by SKB or the regulatory agencies. There are too many unanswered questions, and the overall impression of the safety concept is one of some fragility. Because there is no real design basis

  6. A design methodology to reduce waste in the construction process

    Institute of Scientific and Technical Information of China (English)

    AndrewN.BALDWIN; SimonA.AUSTIN; AndrewKEYS

    2003-01-01

    This paper describes a conceptual tool to enable construction professional to identify where waste is generated during the construction of buildings and address how it can be reduced. It allows an improvement in the waste management practices on site by forecasting future waste types and volumes. It will reduce waste volumes on site through identification of wasteful design practices. The tool contributes to all stages of design and construction. At the Concept Stage of Design the proposed methodology provides a framework for reducing waste through better informed decisions. At the Detailed Design Stage it gives a methodology to address the areas of concern and provide focused information to aid the reduction of waste through informed design decisions. During construction it provides a tool to predict waste types arising on site thus allowing a system of proaclive waste management that will aid skip segregation strategies leading to improved waste recycling and waste reuse.

  7. Towards Zero-Waste Furniture Design.

    Science.gov (United States)

    Koo, Bongjin; Hergel, Jean; Lefebvre, Sylvain; Mitra, Niloy

    2016-12-01

    In traditional design, shapes are first conceived, and then fabricated. While this decoupling simplifies the design process, it can result in unwanted material wastage, especially where off-cut pieces are hard to reuse. In absence of explicit feedback on material usage, the designer remains helpless to effectively adapt the design - even when design variabilities exist.We investigate waste minimizing furniture design wherein based on the current design, the user is presented with design variations that result in less wastage of materials. Technically, we dynamically analyze material space layout to determine which parts to change and how, while maintaining original design intent specified in the form of design constraints. We evaluate the approach on various design scenarios, and demonstrate effective material usage that is difficult, if not impossible, to achieve without computational support.

  8. Simulation of groundwater and nuclide transport in the near-field of the high-level radioactive waste repository with TOUGHREACT

    Institute of Scientific and Technical Information of China (English)

    LI Xun; YANG Zeping; ZHENG Zhihong; WU Hongmei

    2008-01-01

    In order to know the mechanism of groundwater transport and the variation of ion concentrations in the near-field of the high-level radioactive waste repository, the whole process was simulated by EOS3 module of TOUGHREACT. Generally, the pH and cation concentrations vary obviously in the near-field saturated zone due to interaction between groundwater and bentonite. Moreover, the simulated results showed that calcite precipitation could not cause obvious variations in the porosity of media in the near-filed if the chemical components and their concentrations of groundwater and bentonite pore water are similar to those used in this study.

  9. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA); Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S. [CDA/INCRA Joint Advisory Group, Greenwich, CT (USA)

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  10. Packaging Design Criteria for the Steel Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2000-10-19

    This packaging design criteria provides the criteria for the design, fabrication, safety evaluation, and use of the steel waste package (SWP) to transport remote-handled waste and special-case waste from the 324 facility to Central Waste Complex (CWC) for interim storage.

  11. Illustration of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high level radioactive waste repository at Yucca Mountain, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon Craig (Arizona State University, Tempe, AZ); Sallaberry, Cedric J. PhD. (.; .)

    2007-04-01

    A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the U.S. Environmental Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This presentation describes and illustrates how general and typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI).

  12. Earthquake activity in Sweden. Study in connection with a proposed nuclear waste repository in Forsmark or Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir; Lund, Bjoern; Roberts, Roland; Slunga, Ragnar [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2006-02-15

    The aim of this report is to evaluate the risks for future earthquakes in the vicinity of the proposed nuclear waste repository sites at Forsmark and Oskarshamn. Time periods of 100 and 1,000 years will be considered, which implies that the focus of this study is on an evaluation of the current, general situation in the region. Major events on a longer time scale, such as an ice-age, will only be briefly considered. Earthquakes are products of ongoing deformations within the Earth and this report will, therefore, concentrate on the current state of knowledge about deformations in the region. As earthquakes are our most important source of information about deformations at depth in the crust, we will focus on the available seismic data using the Nordic earthquake catalog maintained at the Institute of Seismology, Helsinki University, and the recent data from the new Swedish National Seismic Network. Direct measurements of surface deformation using the Global Positioning System will also be utilized in the analysis. Sweden is a low seismicity area, with most earthquakes being observed in the south-west, around Lake Vaenern, along the north-east coast and in Norrbotten. South-eastern Sweden is on the contrary relatively inactive. Seismicity is also, generally, episodic in time which together with the short period of instrumental observation, approximately 100 years, makes our knowledge about the activity far from complete. Although very large earthquakes (magnitude about 8) have occurred in Sweden, it is generally agreed that these were connected to the late stages of deglaciation at the end of the previous ice-age. At the time scales considered in this report, inferences from current seismicity is of more relevance. This data suggests that we should expect at least one magnitude 5 earthquake in our region every century and one magnitude 6 earthquake every one thousand years. In order to illustrate the effects of static and dynamic deformation from a magnitude 5

  13. Shaft barriers for underground waste repositories in abandoned salt mines. Preparatory project. Vol. 2. Annex; Schachtverschluesse fuer untertaegige Deponien in Salzbergwerken. Vorprojekt. Bd. 2. Anhang

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.W. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Fruth, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Stockmann, N. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Birthler, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Boese, B. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Storck, R. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Sitz, P. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Krausse, A. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Eulenberger, K.H. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Schleinig, J.P. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Duddeck, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Statik; Ahrens, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Statik; Menzel, W. [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Salzer, K. [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Minkley, W. [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Busche, H. [Kali und Salz AG, Kassel (Germany); Lindloff, U. [Kali und Salz AG, Kassel (Germany); Gierenz, S. [Kali und Salz AG, Kassel (Germany)

    1995-12-31

    This preparatory study, ``Shaft barriers for underground waste repositories in abandoned salt mines``, was to demonstrate the current scientific and technological know-how based on a comprehensive analysis of the barrier design concepts or established structures intended to serve as barriers in abandoned shafts of potash or rock salt mines. Taking as a basis the current regulatory regime and the available know-how on barrier systems in underground waste repositories taken into account so far in plan approval and licensing procedures, as well as the state of the art, concepts are developed as technical guides and models of barrier systems for mine shafts. The required research work for the various components of a shaft barrier is shown, particularly relating to aspects such as materials suitability and technical realisation. Immediate demand for research activities is shown with regard to the available potentials of mathematic and numeric geotechnical and hydrogeologic calculation models required in order to give proof of the long-term workability of shaft barriers. The authors are of the opinion that the following activities are required in order to meet the research demand quantified: (1) Laboratory and bench-scale experiments for determination of the efficiency of various sealing materials and backfilling materials, and (2) an in-situ, large-scale experiment in order to demonstrate the suitability of low-consolidation shotter columns, or constructional technologies. The laboratory work can be done in the facilities of the GSF research mine of Asse, the Freiburg Mining Academy, and the Institut fuer Gebirgsmechanik in Leipzig, and the benchmark experiments also at the Asse site in the research mine. The Kali und Salz Beteiligungs AG is prepared to offer its mine Salzdetfurth II as a site for the large-scale experiment. (orig.) [Deutsch] Im Rahmen der Vorstudie ``Schachtverschluesse fuer Untertagedeponien in Salzbergwerken`` wird ausgehend von einer umfangreichen

  14. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    Science.gov (United States)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  15. Design and Development of an Institutional Repository at the Indian Institute of Technology Kharagpur

    Science.gov (United States)

    Sutradhar, B.

    2006-01-01

    Purpose: To describe how an institutional repository (IR) was set up, using open source software, at the Indian Institute of Technology (IIT) in Kharagpur. Members of the IIT can publish their research documents in the IR for online access as well as digital preservation. Material in this IR includes instructional materials, records, data sets,…

  16. Designing Learning Object Repositories as Systems for Managing Educational Communities Knowledge

    Science.gov (United States)

    Sampson, Demetrios G.; Zervas, Panagiotis

    2013-01-01

    Over the past years, a number of international initiatives that recognize the importance of sharing and reusing digital educational resources among educational communities through the use of Learning Object Repositories (LORs) have emerged. Typically, these initiatives focus on collecting digital educational resources that are offered by their…

  17. NIDDK Central Repository

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NIDDK Central Repository stores biosamples, genetic and other data collected in designated NIDDK-funded clinical studies. The purpose of the NIDDK Central...

  18. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  19. Actinide Sorption in a Brine/Dolomite Rock System: Evaluating the Degree of Conservatism in Kd Ranges used in Performance Assessment Modeling for the WIPP Nuclear Waste Repository

    Science.gov (United States)

    Dittrich, T. M.; Reed, D. T.

    2015-12-01

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM is the only operating nuclear waste repository in the US and has been accepting transuranic (TRU) waste since 1999. The WIPP is located in a salt deposit approximately 650 m below the surface and performance assessment (PA) modeling for a 10,000 year period is required to recertify the operating license with the US EPA every five years. The main pathway of concern for environmental release of radioactivity is a human intrusion caused by drilling into a pressurized brine reservoir below the repository. This could result in the flooding of the repository and subsequent transport in the high transmissivity layer (dolomite-rich Culebra formation) above the waste disposal rooms. We evaluate the degree of conservatism in the estimated sorption partition coefficients (Kds) ranges used in the PA based on an approach developed with granite rock and actinides (Dittrich and Reimus, 2015; Dittrich et al., 2015). Sorption onto the waste storage material (Fe drums) may also play a role in mobile actinide concentrations. We will present (1) a conceptual overview of how Kds are used in the PA model, (2) technical background of the evolution of the ranges and (3) results from batch and column experiments and model predictions for Kds with WIPP dolomite and clays, brine with various actinides, and ligands (e.g., acetate, citrate, EDTA) that could promote transport. The current Kd ranges used in performance models are based on oxidation state and are 5-400, 0.5-10,000, 0.03-200, and 0.03-20 mL g-1 for elements with oxidation states of III, IV, V, and VI, respectively. Based on redox conditions predicted in the brines, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will also discuss the challenges of upscaling from lab experiments to field scale predictions, the role of colloids, and the effect of engineered barrier materials (e.g., MgO) on transport conditions. Dittrich

  20. Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations

    Science.gov (United States)

    Figueiredo, Bruno; Tsang, Chin-Fu; Niemi, Auli; Lindgren, Georg

    2016-05-01

    Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. `Sparse channels' refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.

  1. Comparison of ICRP2 and ICRP30 for estimating the dose and adverse health effects from potential radionuclide releases from a geologic waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Runkle, G.E.; Soldat, J.K.

    1982-01-01

    This paper presents a comparison of the calculated risk of adverse health effects from the radionuclides considered in the inventory of a high-level waste repository using the ICRP2 and ICRP30 internal dosimetry models. A CRPC (cancer risk per curie) index was calculated to compare the two models. The CRPC indices for the ICRP30 model are approximately 2 to 20 times higher than the ICRP2 indices for most radionuclides for ingestion intakes. However, the /sup 237/Np index is approximately 200 times greater for the ICRP30 model and the /sup 228/Ra and /sup 226/Ra indices are approximately 30 to 90 times greater for the ICRP2 model. Generally, there is closer agreement of the CRPC indices for the inhalation intakes. A scenario that considers a U-tube effect and withdrawal of water from wells downdip from the repository was analyzed. This analysis, based on a hypothetical waste disposal site, considered groundwater transport and environmental transport with subsequent uptake by the human via ingestion and inhalation. The ICRP30 risks are higher by approximately 20 at 10,000 years post closure for the ingestion pathway. However, the ICRP2 risks are higher by factors of approximately 2 to 10 at times greater than 50,000 years. Differences in the mathematical modeling assumptions, gut uptakes and other metabolic parameters between the two models account for most of the variability in the risk estimates.

  2. Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations

    Science.gov (United States)

    Figueiredo, Bruno; Tsang, Chin-Fu; Niemi, Auli; Lindgren, Georg

    2016-11-01

    Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. `Sparse channels' refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.

  3. Architects' perspectives on construction waste reduction by design.

    Science.gov (United States)

    Osmani, M; Glass, J; Price, A D F

    2008-01-01

    The construction, demolition and excavation waste arising in England was estimated at 91 million tonnes in 2003. The current thinking on construction waste minimisation is heavily focussed on several issues relating to physical construction waste and recycling guides. Indeed, much had been published on ways to improve on-site waste management and recycling activities but very few attempts made to address the effect of design practices on waste generation. However, there is a consensus in the literature that the architect has a decisive role to play in helping to reduce waste by focussing on designing out waste. This paper examines previous studies on architects' approach towards construction waste minimisation; and by means of a postal questionnaire, investigates: the origins of waste; waste minimisation design practices in the UK; and responsibilities and barriers within the UK architectural profession. The findings reveal that waste management is not a priority in the design process. Additionally, the architects seemed to take the view that waste is mainly produced during site operations and rarely generated during the design stages; however, about one-third of construction waste could essentially arise from design decisions. Results also indicate that a number of constraints, namely: lack of interest from clients; attitudes towards waste minimisation; and training all act as disincentives to a proactive and sustainable implementation of waste reduction strategies during the design process.

  4. Development and validation of a building design waste reduction model.

    Science.gov (United States)

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings.

  5. Preservation of artifacts in salt mines as a natural analog for the storage of transuranic wastes at the WIPP repository

    Energy Technology Data Exchange (ETDEWEB)

    Martell, M.A.; Hansen, F.; Weiner, R.

    1998-10-01

    Use of nature`s laboratory for scientific analysis of complex systems is a largely untapped resource for understanding long-term disposal of hazardous materials. The Waste Isolation Pilot Plant (WIPP) in the US is a facility designed and approved for storage of transuranic waste in a salt medium. Isolation from the biosphere must be ensured for 10,000 years. Natural analogs provide a means to interpret the evolution of the underground disposal setting. Investigations of ancient sites where manmade materials have experienced mechanical and chemical processes over millennia provide scientific information unattainable by conventional laboratory methods. This paper presents examples of these pertinent natural analogs, provides examples of features relating to the WIPP application, and identifies potential avenues of future investigations. This paper cites examples of analogical information pertaining to the Hallstatt salt mine in Austria and Wieliczka salt mine in Poland. This paper intends to develop an appreciation for the applicability of natural analogs to the science and engineering of a long-term disposal facility in geomedia.

  6. Construction of quality-assured infant feeding process of care data repositories: definition and design (Part 1).

    Science.gov (United States)

    Garcí A-de-León-Chocano, Ricardo; Sáez, Carlos; Muñoz-Soler, Verónica; Garcí A-de-León-González, Ricardo; García-Gómez, Juan M

    2015-12-01

    This is the first paper of a series of two regarding the construction of data quality (DQ) assured repositories for the reuse of information on infant feeding from birth until two years old. This first paper justifies the need for such repositories and describes the design of a process to construct them from Electronic Health Records (EHR). As a result, Part 1 proposes a computational process to obtain quality-assured datasets represented by a canonical structure extracted from raw data from multiple EHR. For this, 13 steps were defined to ensure the harmonization, standardization, completion, de-duplication, and consistency of the dataset content. Moreover, the quality of the input and output data for each of these steps is controlled according to eight DQ dimensions: predictive value, correctness, duplication, consistency, completeness, contextualization, temporal-stability and spatial-stability. The second paper of the series will describe the application of this computational process to construct the first quality-assured repository for the reuse of information on infant feeding in the perinatal period aimed at the monitoring of clinical activities and research.

  7. Bases for an environmental liability management system: application to a repository for radioactive waste; Bases para um sistema de gerenciamento de responsabilidades ambientais: aplicacao a um repositorio de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Tostes, Marcelo Mallat

    1999-03-15

    This thesis aims the establishment of conceptual bases for the development of Environmental Liability Management System - instruments designed to provide financial and managerial coverage to financial liabilities arising from activities that impact the environment. The document analyses the theories that link the evolution of economic thought and environment, as a means of establish the necessary framework for the development of up-to-date environmental policy instruments. From these concepts and from the analysis of environmental liability system being implemented in several countries, the bases for environmental liability systems development are drawn. Finally, a study is carried out on the application of these bases for the development of an environmental liability management system for a radioactive waste repository. (author)

  8. Intercomparison of Cement Solid-Solution Models. Issues Affecting the Geochemical Evolution of Repositories for Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Savage, David [Quintessa Ltd., Henley-on-Thames (United Kingdom); Walker, Colin [Dept. of Mineralogy, The Natural History Museum London (United Kingdom)

    2007-05-15

    Many concepts for the geological storage of radioactive waste incorporate cement based materials, which act to provide a chemical barrier, impede groundwater flow or provide structural integrity of the underground structures. Thus, it is important to understand the long-term behaviour of these materials when modelling scenarios for the potential release and migration of radionuclides. In the presence of invasive groundwater, the chemical and physical properties of cement, such as its pH buffering capacity, resistance to flow, and its mechanical properties, are expected to evolve with time. Modelling the degradation of cement is complicated by the fact that the long term pH buffer is controlled by the incongruent dissolution behaviour of calcium-silicate-hydrate (C-S-H) gel. It has been previously shown (SKI Report 2005:64) that it is possible to simulate the long term evolution of both the physical and chemical properties of cement based materials in an invasive groundwater using a fully coupled geochemical transport model. The description of the incongruent dissolution of C-S-H gel was based on a binary solid solution aqueous solution (SSAS) between end-member components portlandite (Ca(OH){sub 2}) and a C-S-H gel composition expressed by its component oxides (CaH{sub 2}SiO{sub 4}). The models considered a range of uncertainties including different groundwater compositions, parameterised couplings between the evolution of porosity with permeability and diffusivity and alternative secondary mineral assemblages. The results of the modelling suggested that alternative evolutions were possible under these different conditions. The focus of this report is to address the uncertainty regarding the choice of model for the C-S-H gel dissolution. We compare two alternative C-S-H SSAS models with the one that was used in the previous report, with an emphasis on a direct comparison of the model predictions. Thus we have chosen one simple simulated experimental model based on

  9. Present status and an appreciation of the consequences for recreation and outdoor leisure activities from siting a nuclear waste repository at Oskarshamn; Nulaegesanalys samt bedoemning av konsekvenser foer rekreation och friluftsliv av ett slutfoervar i Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstroem, Kristina

    2007-07-15

    This report describes recreation and outdoor life in and around Simpevarp/Laxemar area. It also describes the impact of constructing a final repository for spent nuclear fuel on the outdoor life. The study area in this report is situated in the parish of Misterhult, in the municipality of Oskarshamn. Oskarshamn nuclear power plant (OKG) and the interim storage facility for spent nuclear fuel (Clab) are situated within the area. The parish of Misterhult is sparsely populated and includes both houses and holiday cottages. The area is used for various kinds of recreation by inhabitants from surrounding villages and employees at OKG and SKB (Swedish Nuclear Fuel and Waste Management Co), and also by a number of different associations and by tourists. Misterhult archipelago has the highest values for recreation and outdoor life in the study area. Many water related activities, such as swimming, sailing, fishing, diving, kayaking and canoeing are conducted in the region Hamnefjaerden, Kraakelund and a walking track called Ostkustleden are three other places in the study area which are popular for outdoor life. SKB and OKG facilities are also visited by many tourists. Disturbances to the recreation and outdoor life during construction and operation of a final repository and a interim storage facility will occur in the form of increased noise and movement in the area, mostly from the traffic. The consequences of these disturbances are: Decreased serenity, which will probably decrease the enjoyment value for the people spending time in the area. The final repository in Laxemar will likely require road access that will cross the walking track. Various prevention and compensation measures, such as noise restrictions and a new section of the walking track at Ostkustleden, are suggested to minimise and/or mitigate the consequences. Also measures that increase the value of recreation and outdoor life are listed, for example an exhibition about the areas nature and culture

  10. Preliminary waste form characteristics report Version 1.0. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.; Leider, H.R. [eds.

    1991-10-11

    This report focuses on radioactive waste form characteristics that will be used to design a waste package and an engineered barrier system (EBS) for a suitable repository as part of the Yucca Mountain Project. The term waste form refers to irradiated reactor fuel, other high-level waste (HLW) in various physical forms, and other radioactive materials (other than HLW) which are received for emplacement in a geologic repository. Any encapsulating of stabilizing matrix is also referred to as a waste form.

  11. Analytical results and effective dose estimation of the operational Environmental Monitoring Program for the radioactive waste repository in Abadia de Goias from 1998 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Edison, E-mail: edison@cnen.gov.b [Centro Regional de Ciencias Nucleares do Centro-Oeste, Comissao Nacional de Energia Nuclear- Br 060 km 174, 5-Abadia de Goias- Goias, CEP 75345-000 (Brazil); Tauhata, Luiz, E-mail: tauhata@ird.gov.b [Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Eugenia dos Santos, Eliane, E-mail: esantos@cnen.gov.b [Centro Regional de Ciencias Nucleares do Centro-Oeste, Comissao Nacional de Energia Nuclear- Br 060 km 174, 5-Abadia de Goias- Goias, CEP 75345-000 (Brazil); Silveira Correa, Rosangela da, E-mail: rcorrea@cnen.gov.b [Centro Regional de Ciencias Nucleares do Centro-Oeste, Comissao Nacional de Energia Nuclear- Br 060 km 174, 5-Abadia de Goias- Goias, CEP 75345-000 (Brazil)

    2011-02-15

    This paper presents the results of the Environmental Monitoring Program for the Radioactive waste repository of Abadia de Goias, which was originated from the accident of Goiania, conducted by the Regional Center of Nuclear Sciences (CRCN-CO) of the National Commission on Nuclear Energy (CNEN), from 1998 to 2008. The results are related to the determination of {sup 137}Cs activity per unit of mass or volume of samples from surface water, ground water, depth sediments of the river, soil and vegetation, and also the air-kerma rate estimation for gamma exposure in the monitored site. In the phase of operational Environmental Monitoring Program, the values of the geometric mean and standard deviation obtained for {sup 137}Cs activity per unit of mass or volume in the analyzed samples were (0.08 {+-} 1.16) Bq.L{sup -1} for surface and underground water, (0.22 {+-} 2.79) Bq.kg{sup -1} for soil, and (0.19 {+-} 2.72) Bq.kg{sup -1} for sediment, and (0.19 {+-} 2.30) Bq.kg{sup -1} for vegetation. These results were similar to the values of the pre-operational Environmental Monitoring Program. With these data, estimations for effective dose were evaluated for public individuals in the neighborhood of the waste repository, considering the main possible way of exposure of this population group. The annual effective dose obtained from the analysis of these results were lower than 0.3 mSv.y{sup -1}, which is the limit established by CNEN for environmental impact in the public individuals indicating that the facility is operating safely, without any radiological impact to the surrounding environment. - Research highlights: {yields} A stolen capsule of Cesium 137 was opened in the city of Goiania, generating some 6000 tons of debris which were stored in the Repository area built for this purpose. {yields} The activity of cesium 137 of the surface water, underground water, depth sediments of river, soil, vegetation, and air, inside and surround the Repository area. {yields

  12. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  13. Identification and Characterization of Potential Discharge Areas for Radionuclide Transport by Groundwater from a Nuclear Waste Repository in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Sten [HydroResearch AB, Taeby (Sweden)], E-mail: sten.berglund@hydroresearch.se; Bosson, Emma; Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm (Sweden); Sassner, Mona [DHI Sverige AB, Stockholm (Sweden)

    2013-05-15

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  14. Microbiological culture broth designed from food waste.

    Science.gov (United States)

    Chalón, Miriam C; Terán, Victoria; Arena, Mario E; Oliszewki, Rubén; González, Silvia N

    2013-01-30

    The current trend of increasing air, water, and soil pollution is, in part, due to inadequate management of municipal solid waste (MSW). The relationship between public health and the collection, storage and improper disposal of solid waste has encouraged several studies and the results were attributed to the spread of over twenty human and animal diseases due to this interrelationship. The term "single cell protein" (SCP) refers to microbial biomass used as a dietary additive. It has high nutritional value because of its high content of vitamins, lipids, and proteins of biological quality (the presence of all essential amino acids) (Lal, 2005). The aim of this work was to design a culture media for microbiological assays and to produce SCP for animal feeding, using nutrients contained in organic waste. In order to compare the effectiveness of food waste (FW) and LAPTg media, different strains of Lactobacillus, Enterococcus, Staphylococcus, Shigella, Salmonella, Saccharomyces and Schizosaccharomyces were studied. In all cases, the growth obtained from FW and LAPTg culture media were not significantly different (p > 0.05). In addition, the growth of Saccharomyces cerevisiae was studied in order to produce SCP for animal feeding. Comparative experiments involving molasses broth, FW broth, and basal broth were carried out. The biomass yield calculated at 24 h from FW broth was 13% lower than from molasses broth. The FW broth provided a significantly lower biomass yield; however, it can be very useful in areas where molasses are not available. FW broth can be elaborated at low cost, in any populated region of the world because its ingredients are wastes generated by humans. It has great versatility, allowing the development of a wide variety of microorganisms, both Gram negative and Gram positive bacteria as well as yeasts. The production of safe protein additives, with high biological quality and low cost, is necessary due to the increasing global demand for food

  15. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  16. Nuclear Waste State-of-the-Art report 2010 - Challenges for the repository programme; Kunskapslaegesrapport paa kaernavfallsomraadet 2010 - utmaningar foer slutfoervarsprogrammet

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-15

    In this year's report the Council calls for that SKB makes more studies of how the copper corrosion affects the long-term safety. SKB is criticized for not sufficiently set clear requirements for the bentonite clay, which should surround the copper canisters. Internationally possibility to take back spent fuel from the repository is one highly topical issue. Retrieval of waste for transmutation and future reuse of spent nuclear fuel should be discussed also in Sweden. It is estimated that SKB submit an application within one year to dispose of spent nuclear fuel in the 500 meter deep repository in the bedrock at Oesthammar. The mountain is the natural barrier between the nuclear fuel and the environment, and in addition to this, spent fuel is surrounded by two technical barriers: copper canisters and bentonite clay. The corrosion resistance of the copper canisters has recently been challenged by research from the Royal Institute of Technology, and this has created uncertainty over copper canister as a suitable barrier. The Council believes that SKB should actively contribute to investigate the issue of corrosion of copper in pure, oxygen-free water in a scientifically unassailable way, and that its potential effect is determined. Bentonite clay is the subject of intensive development work in SKB's new bentonite-laboratory, but the Council believes that SKB must set clearer requirements for bentonite clay quality, particularly with regard to thresholds for the contaminants that may occur. The question of what is possible and desirable in order retrieve the spent fuel from the repository is international discussed. Retrievability before closure is part of the safety requirements and is not controversial. Retrievability after sealing on the other hand, is both a controversial and complex issue, especially from a civil law perspective. New technology can make high-level waste as an interesting energy source, or use of the Partitioning and Transmutation can

  17. Conceptual design of retrieval systems for emplaced transuranic waste containers in a salt bed depository. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.

    1980-04-01

    The US Department of Energy and the Nuclear Regulatory Commission have jurisdiction over the nuclear waste management program. Design studies were previously made of proposed repository site configurations for the receiving, processing, and storage of nuclear wastes. However, these studies did not provide operational designs that were suitable for highly reliable TRU retrieval in the deep geologic salt environment for the required 60-year period. The purpose of this report is to develop a conceptual design of a baseline retrieval system for emplaced transuranic waste containers in a salt bed depository. The conceptual design is to serve as a working model for the analysis of the performance available from the current state-of-the-art equipment and systems. Suggested regulations would be based upon the results of the performance analyses.

  18. Experimental design of a waste glass study

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150{degrees}C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases.

  19. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  20. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  1. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  2. Implementation of the Brazilian National Repository - RBMN Project - 13008

    Energy Technology Data Exchange (ETDEWEB)

    Cassia Oliveira de Tello, Cledola [CDTN - Center for Development of Nuclear Technology, Av. Presidente Antonio Carlos, 6.627 - Campus UFMG - Pampulha, CEP 31270-901 - Belo Horizonte - MG (Brazil)

    2013-07-01

    Ionizing radiation in Brazil is used in electricity generation, medicine, industry, agriculture and for research and development purposes. All these activities can generate radioactive waste. At this point, in Brazil, the use of nuclear energy and radioisotopes justifies the construction of a national repository for radioactive wastes of low and intermediate-level. According to Federal Law No. 10308, Brazilian National Commission for Nuclear Energy (CNEN) is responsible for designing and constructing the intermediate and final storages for radioactive wastes. Additionally, a restriction on the construction of Angra 3 is that the repository is under construction until its operation start, attaining some requirements of the Brazilian Environmental Regulator (IBAMA). Besides this NPP, in the National Energy Program is previewed the installation of four more plants, by 2030. In November 2008, CNEN launched the Project RBMN (Repository for Low and Intermediate-Level Radioactive Wastes), which aims at the implantation of a National Repository for disposal of low and intermediate-level of radiation wastes. This Project has some aspects that are unique in the Brazilian context, especially referring to the time between its construction and the end of its institutional period. This time is about 360 years, when the area will be released for unrestricted uses. It means that the Repository must be safe and secure for more than three hundred years, which is longer than half of the whole of Brazilian history. This aspect is very new for the Brazilian people, bringing a new dimension to public acceptance. Another point is this will be the first repository in South America, bringing a real challenge for the continent. The current status of the Project is summarized. (authors)

  3. Groundwater flow modelling of an abandoned partially open repository

    Energy Technology Data Exchange (ETDEWEB)

    Bockgaard, Niclas (Golder Associates AB (Sweden))

    2010-12-15

    As a part of the license application, according to the nuclear activities act, for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study presented here serves as an input for analyses of so-called future human actions that may affect the repository. The objective of the work was to investigate the hydraulic influence of an abandoned partially open repository. The intention was to illustrate a pessimistic scenario of the effect of open tunnels in comparison to the reference closure of the repository. The effects of open tunnels were studied for two situations with different boundary conditions: A 'temperate' case with present-day boundary conditions and a generic future 'glacial' case with an ice sheet covering the repository. The results were summarized in the form of analyses of flow in and out from open tunnels, the effect on hydraulic head and flow in the surrounding rock volume, and transport performance measures of flow paths from the repository to surface

  4. Proceedings of the scientific visit on crystalline rock repository development.

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka [RAWRA, Czech Republic

    2013-02-01

    A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations. Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.

  5. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Prickett, T.A.

    1980-04-01

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  6. Thermal Analysis of Disposal of High-Level Nuclear Waste in a Generic Bedded Salt repository using the Semi-Analytical Method.

    Energy Technology Data Exchange (ETDEWEB)

    Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    An example case is presented for testing analytical thermal models. The example case represents thermal analysis of a generic repository in bedded salt at 500 m depth. The analysis is part of the study reported in Matteo et al. (2016). Ambient average ground surface temperature of 15°C, and a natural geothermal gradient of 25°C/km, were assumed to calculate temperature at the near field. For generic salt repository concept crushed salt backfill is assumed. For the semi-analytical analysis crushed salt thermal conductivity of 0.57 W/m-K was used. With time the crushed salt is expected to consolidate into intact salt. In this study a backfill thermal conductivity of 3.2 W/m-K (same as intact) is used for sensitivity analysis. Decay heat data for SRS glass is given in Table 1. The rest of the parameter values are shown below. Results of peak temperatures at the waste package surface are given in Table 2.

  7. FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock

    Energy Technology Data Exchange (ETDEWEB)

    Alberid, J.; Barcala, J. M.; Campos, R.; Cuevas, A. M.; Fernandez, E. [Ciemat. Madrid (Spain)

    2000-07-01

    FEBEX has the multiple objective of demonstrating the feasibility of manufacturing, handling and constructing the engineered barriers and of developing codes for the thermo-hydro-mechanical and thermo-hydro-geochemical performance assessment of a deep geological repository for high level radioactive wastes. These objectives require integrated theoretical and experimental development work. The experimental work consists of three parts: an in situ test, a mock-up test and a series of laboratory tests. The experiments is based on the Spanish reference concept for crystalline rock, in which the waste capsules are placed horizontally in drifts surround by high density compacted bentonite blocks. In the two large-scale tests, the thermal effects of the wastes were simulated by means of heaters; hydration was natural in the in situ test and controlled in the mock-up test. The large-scale tests, with their monitoring systems, have been in operation for more than two years. the demonstration has been achieved in the in situ test and there are great expectation that numerical models sufficiently validated for the near-field performance assessment will be achieved. (Author)

  8. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  9. Earthquake activity in Sweden. Study in connection with a proposed nuclear waste repository in Forsmark or Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir; Lund, Bjoern; Roberts, Roland; Slunga, Ragnar [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2006-02-15

    The aim of this report is to evaluate the risks for future earthquakes in the vicinity of the proposed nuclear waste repository sites at Forsmark and Oskarshamn. Time periods of 100 and 1,000 years will be considered, which implies that the focus of this study is on an evaluation of the current, general situation in the region. Major events on a longer time scale, such as an ice-age, will only be briefly considered. Earthquakes are products of ongoing deformations within the Earth and this report will, therefore, concentrate on the current state of knowledge about deformations in the region. As earthquakes are our most important source of information about deformations at depth in the crust, we will focus on the available seismic data using the Nordic earthquake catalog maintained at the Institute of Seismology, Helsinki University, and the recent data from the new Swedish National Seismic Network. Direct measurements of surface deformation using the Global Positioning System will also be utilized in the analysis. Sweden is a low seismicity area, with most earthquakes being observed in the south-west, around Lake Vaenern, along the north-east coast and in Norrbotten. South-eastern Sweden is on the contrary relatively inactive. Seismicity is also, generally, episodic in time which together with the short period of instrumental observation, approximately 100 years, makes our knowledge about the activity far from complete. Although very large earthquakes (magnitude about 8) have occurred in Sweden, it is generally agreed that these were connected to the late stages of deglaciation at the end of the previous ice-age. At the time scales considered in this report, inferences from current seismicity is of more relevance. This data suggests that we should expect at least one magnitude 5 earthquake in our region every century and one magnitude 6 earthquake every one thousand years. In order to illustrate the effects of static and dynamic deformation from a magnitude 5

  10. Axisymmetric analysis of multilayered thermoelastic media with application to a repository for heat-emitting high-level nuclear waste in a geological formation

    Science.gov (United States)

    Yang, Yang; Datcheva, Maria; Schanz, Tom

    2016-08-01

    Comprehensive analytical solutions to 3-D axisymmetric problems for static response of multilayered thermoelastic media subjected to surface loads and containing sources are presented in this study. The solution strategy employs Laplace and Hankel transforms to the field variables. The problem is formulated in cylindrical coordinate system and in this coordinate system vector surface harmonics and generalized propagator matrix are introduced to find the solution for the problem for the behaviour of thermoelastic multilayered media subject to surface loads and containing heat sources. A high-order adaptive Gaussian quadrature method with continued fraction expansions is employed to approximate the integral solutions expressed in terms of semi-infinite Hankel-type integrals. It is the first time to apply the proposed solution method to investigate the behaviour of repository for heat-emitting high-level nuclear waste (HLW) in a geological formation where the HLW can be regarded as a decaying with time point heat source.

  11. VESPA. Behaviour of long-lived fission and activation products in the nearfield of a nuclear waste repository and the possibilities of their retention

    Energy Technology Data Exchange (ETDEWEB)

    Bischofer, Barbara; Hagemann, Sven [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Altmaier, Marcus [Karlsruher Institut fuer Technologie (KIT) (Germany); and others

    2016-06-15

    The present document is the final report of the Joint Research Project VESPA (Behaviour of Long-lived Fission and Activation Products in the Near Field of a Nuclear Waste Repository and the Possibilities of Their Retention), started in July 2010 with a duration of four years. The following four institutions were collaborative Partners in VESPA: - Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH - Institut fuer Energie- und Klimaforschung, IEK-6: Nukleare Entsorgung und Reaktorsicherheit, Forschungszentrum Juelich (FZJ) - Institut fuer Ressourcenoekologie (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) - Institut fuer Nukleare Entsorgung (INE), Karlsruher Institut fuer Technologie (KIT) VESPA was funded by the German Federal Ministry of Economics and Energy (BMWi) under the contract numbers 02 E 10770 (GRS), 02 E 10780 (FZJ-IEF-6), 02 E 10790 (HZDR-IRE), 02 E 10800 (KIT-INE).

  12. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Umari, A.M.J.; Geldon, A.; Patterson, G.; Gemmell, J.; Earle, J.; Darnell, J. [Geological Survey, Denver, CO (United States)

    1994-12-31

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumented with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain.

  13. Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste

    Science.gov (United States)

    Berner, Urs; Kulik, Dmitrii A.; Kosakowski, Georg

    In Switzerland the geological storage in the Opalinus Clay formation is the preferred option for the disposal of spent fuel (SF) and high-level radioactive waste (HLW). The waste will be encapsulated in steel canisters and emplaced into long tunnels that are backfilled with bentonite. Due to uncertainties in the depth of the repository and the associated stress state, a concrete liner might be used for support of emplacement tunnels. Numerical reactive transport calculations are presented that investigate the influence of a concrete liner on the adjacent barrier materials, namely bentonite and Opalinus Clay. The geochemical setup was tailored to the specific materials foreseen in the Swiss repository concept, namely MX-80 bentonite, low-pH concrete (ESDRED) and Opalinus Clay. The heart of the bentonite model is a new conceptual approach for representing thermodynamic properties of montmorillonite which is formulated as a multi-component solid solution comprised of several end-members. The presented calculations provide information on the extent of pH fronts, on the sequence and extent of mineral phase transformations, and on porosity changes on cement-clay interfaces. It was found that the thickness of the zone containing significant mineralogical alterations is at most a few tens of centimeters thick in both the bentonite and the Opalinus Clay adjacent to the liner. Near both interfaces, bentonite-concrete liner and concrete liner-Opalinus Clay, the precipitation of minerals causes a reduction in the porosity. The effect is more pronounced and faster at the concrete liner-Opalinus Clay interface. The simulations reveal that significant pH-changes (i.e. pH > 9) in bentonite and Opalinus Clay are limited to small zones, less than 10 cm thick at the end of the simulations. It is not to be expected that the zone of elevated pH will extend much further at longer times.

  14. Can transmutation replace deep radioactive repositories?; Ersetzt Transmutation die Tiefenlagerung radioaktiver Abfaelle?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This illustrated brief report issued by the Swiss Federal Nuclear Safety Inspectorate (ENSI) takes a look at transmutation - a method to reduce the time taken for the radioactivity of radioactive wastes to decay. The aim of such a reduction is to reduce the amount of space needed for special underground repositories for highly radioactive wastes. Transmutation is briefly described. Nuclear fuel cycles with spent fuel separation and reprocessing is examined. The large-scale feasibility of such methods is looked at and the advantages offered in connection with the design and implementation of deep nuclear waste repositories are discussed.

  15. Can transmutation replace deep radioactive repositories?; Ersetzt Transmutation die Tiefenlagerung radioaktiver Abfaelle?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This illustrated brief report issued by the Swiss Federal Nuclear Safety Inspectorate (ENSI) takes a look at transmutation - a method to reduce the time taken for the radioactivity of radioactive wastes to decay. The aim of such a reduction is to reduce the amount of space needed for special underground repositories for highly radioactive wastes. Transmutation is briefly described. Nuclear fuel cycles with spent fuel separation and reprocessing is examined. The large-scale feasibility of such methods is looked at and the advantages offered in connection with the design and implementation of deep nuclear waste repositories are discussed.

  16. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Kana, D.D.; Vanzant, B.W.; Nair, P.K. [Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses; Brady, B.H.G. [ITASCA Consulting Group, Inc., Minneapolis, MN (USA)

    1991-06-01

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs.

  17. Experimental study of the diffusion of {sup 1}37Cs in mortars used in nuclear waste repositories medium and low activity; Estudio experimental de la difusion de {sup 1}37Cs en morteros utilizados en almacenamientos de residuos radiactivos de media y baja actividad

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Morejon, J.

    2013-07-01

    Cement is a largely used material in radioactive waste repository for conditioning and isolating the waste. In this study, the adequacy of different type of cement to act as barrier to the {sup 1}37Cs migration has been analyzed. {sup 1}37Cs is a very important fission product in low and medium radioactive waste repository. As diffusion is the main transport process in cementitious materials, in this study the diffusion behavior of the radionuclide was especially evaluated.

  18. The Computational Materials Repository

    DEFF Research Database (Denmark)

    Landis, David D.; Hummelshøj, Jens S.; Nestorov, Svetlozar

    2012-01-01

    The possibilities for designing new materials based on quantum physics calculations are rapidly growing, but these design efforts lead to a significant increase in the amount of computational data created. The Computational Materials Repository (CMR) addresses this data challenge and provides...

  19. Progress report on the results of testing advanced conceptual design metal barrier materials under relevant environmental conditions for a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    McCright, R.D.; Halsey, W.G.; Van Konynenburg, R.A.

    1987-12-01

    This report discusses the performance of candidate metallic materials envisioned for fabricating waste package containers for long-term disposal at a possible geological repository at Yucca Mountain, Nevada. Candidate materials include austenitic iron-base to nickel-base alloy (AISI 304L, AISI 316L, and Alloy 825), high-purity copper (CDA 102), and copper-base alloys (CDA 613 and CDA 715). Possible degradation modes affecting these container materials are identified in the context of anticipated environmental conditions at the repository site. Low-temperature oxidation is the dominant degradation mode over most of the time period of concern (minimum of 300 yr to a maximum of 1000 yr after repository closure), but various forms of aqueous corrosion will occur when water infiltrates into the near-package environment. The results of three years of experimental work in different repository-relevant environments are presented. Much of the work was performed in water taken from Well J-13, located near the repository, and some of the experiments included gamma irradiation of the water or vapor environment. The influence of metallurgical effects on the corrosion and oxidation resistance of the material is reviewed; these effects result from container fabrication, welding, and long-term aging at moderately elevated temperatures in the repository. The report indicates the need for mechanisms to understand the physical/chemical reactions that determine the nature and rate of the different degradation modes, and the subsequent need for models based on these mechanisms for projecting the long-term performance of the container from comparatively short-term laboratory data. 91 refs., 17 figs., 16 tabs.

  20. DECOVALEX III/BENCHPAR PROJECTS. Implications of Thermal-Hydro-Mechanical Coupling on the Near-Field Safety of a Nuclear Waste Repository in a Homogeneous Rock Mass. Report of BMT1B/WP2

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Nguyen, T.S. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)] (eds.)

    2005-02-15

    This report presents the works performed for the second phase (BMT1B) of BMT1 of the DECOVALEX III project for the period of 1999-2002. The works of BMT1 is divided into three phases: BMT1A, BMT1B and BMT1C. The BMT1A concerns with calibration of the computer codes with a reference T-H-M experiment at Kamaishi Mine, Japan. The objective is to validate the numerical approaches, computer codes and material models, so that the teams simulating tools are at a comparable level of maturity and sophistication. The BMT1B uses the calibrated codes to perform scoping calculations, considering varying degrees of THM coupling and varying permeability values of the surrounding rock for a reference generic repository design without fractures. The aim is to identify the coupling mechanisms of importance for construction, performance and safety of the repository. The chosen measures for evaluating the long term safety and performance of the repository are the maximal temperature created by the thermal loading from the emplaced wastes, the time for re-saturation of the buffer, the maximal swelling stress developed in the buffer, the structural integrity of the rock mass and the permeability evolution in the rock mass. Six teams participated in BMT1B: IRSN/CEA (France), CNSC (Canada), ANDRA/INERIS (France), JNC (Japan), BGR/ISEB-ZAG (Germany) and SKI/KTH (Sweden). All teams used FEM approach except the ANDRA/INERIS team who used the FDM approach, with different codes. All research teams except ISEB/ZAG used models with full THM coupling capabilities. The governing equations in these models were derived within the framework of Biot's theory of consolidation and have for primary unknown variables: temperature, pore fluid pressure and displacements of the solid skeleton. Since the original Biot's theory of consolidation is applicable to saturated materials and isothermal conditions, the research teams have to extend Biot's theory in order to deal with thermal effects and

  1. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  2. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  3. The OPG/Kincardine hosting agreement for a deep geologic repository for OPG's low- and intermediate-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Castellan, A.G.; Barker, D.E. [Ontario Power Generation, Toronto, Ontario (Canada)]. E-mail: angelo.castellan@opg.com; diane.barker@opg.com

    2006-07-01

    A Hosting Agreement has been reached between Ontario Power Generation and the Municipality of Kincardine for the purpose of siting a long-term management facility for low- and intermediate-level radioactive waste at the Western Waste Management Facility. Following an independent review of the feasibility of three options for a long-term facility at the site, including a review of the safety, geotechnical feasibility, social and economic effects and potential environmental effects, Kincardine passed a resolution indicating their preference for a Deep Geologic Repository. A Host Community Agreement has been negotiated based on this preference, and on information that had been gathered from municipal authorities at other locations that have hosted similar facilities. The Hosting Agreement includes financial compensation, totalling $35.7 million (Canadian 2004) to the Municipality of Kincardine and to four surrounding municipalities. The financial aspects include lump sum payments based on achieving specific project milestones as well as annual payments to each of the municipalities. The payments are indexed to inflation, and are also contingent on the municipalities acting reasonably and in good faith during the licencing process of the proposed facility. In addition to the fees, the Agreement includes provision for a Property Value Protection Plan that would provide residents with compensation in the event that there is depreciation in property value shown to directly result from a release from the proposed facility. New permanent OPG jobs supporting the project would be located at the site. OPG and Kincardine will support a centre of nuclear excellence. (author)

  4. Using geologic conditions and multiattribute decision analysis to determine the relative favorability of selected areas for siting a high-level radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Edgar, D.E.; Baker, C.H.; Buehring, W.A.; Whitfield, R.G.; Van Luik, A.E.J.; Sood, M.K.; Flower, M.F.J.; Warren, M.F.; Jusko, M.J.; Peerenboom, J.P.; Bogner, J.E.

    1988-05-01

    A method is presented for determining the relative favorability of geologically complex areas for isolating high-level radioactive wastes. In applying the method to the northeastern region of the United States, seismicity and tectonic activity were the screening criteria used to divide the region into three areas of increasing seismotectonic risk. Criteria were then used to subdivide the area of lowest seismotectonic risk into six geologically distinct subareas including characteristics, surface-water and groundwater hydrology, potential human intrusion, site geometry, surface characteristics, and tectonic environment. Decision analysis was then used to identify the subareas most favorable from a geologic standpoint for further investigation, with a view to selecting a site for a repository. Three subareas (parts of northeastern Vermont, northern New Hampshire, and western Maine) were found to be the most favorable, using this method and existing data. However, because this study assessed relative geologic favorability, no conclusions should be drawn concerning the absolute suitability of individual subareas for high-level radioactive waste isolation. 34 refs., 7 figs., 20 tabs.

  5. Inventory evaluation and prognosis of NORM residues for the final disposal in a radioactive waste final repository. Final report; Bestandsaufnahme und Prognose von NORM-Rueckstaenden fuer die Endlagerung in einem Endlager fuer radioaktive Abfaelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ettenhuber, E.; Gellermann, R.; Kahnwald, S.; Kunze, C.; Weiss, D.; Schulz, H.

    2014-11-15

    The report on the evaluation and prognosis of NORM residues for the final disposal covers the following issues: scope of the project; practice of release of NORM residues for utilization and disposal and its impact on the mass balance of NORM wastes; compilation of the amount of NORM residues with improbable clearance from radiation protection monitoring; identification of so far existing storage sites and interim storage possibilities and their capacities; NORM residues that are not released from radiation surveillance and need presumably the delivering to a radioactive waste repository; estimation of cost and evaluation of economic aspects for the options interim storage and final disposal; options for the final disposal of NORM wastes.

  6. Public Involvement in Repository Site Selection for Nuclear Waste: Towards a more Dynamic View in Decision-Making Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Stauffacher, Michael; Flueeler, Thomas; Scholz, Roland W. [ETH Zuerich (Switzerland). lnst. for Human-Environment Systems (HES)

    2006-09-15

    This paper discusses possibilities of public involvement in radioactive waste management. A general overview of the radioactive waste issue is presented referring to a proposed model of the respective decision-making process. Based on the well known participation ladder by Arnstein, we differentiate various intensities of public involvement. A matrix with public involvement and the decision-making process is introduced and three prototypical patterns are discussed. We conclude that time frame, the level of public involvement and the mission have to be considered as well as techniques and the overarching context - all in all, a systematic and dynamic approach for public involvement is needed.

  7. Analyses of releases due to drilling at the potential Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.W. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Radionuclide releases due to drilling into the potential Yucca Mountain nuclear-waste repository have been evaluated as part of a recent total-system performance assessment. The probability that a drilling event intersects a waste package is a function of the sizes of the drill bit and the waste package, and the density of placement of the containers in the repository. The magnitude of the release is modeled as a random function that also depends on the amount of decay the radionuclides have undergone. Four cases have been analyzed, representing the combinations of two waste-package designs (small-capacity, thin-wall, vertically emplaced; and large-capacity, thick-wall, horizontally emplaced) and two repository layouts (lower thermal power dissipation, low waste-package placement density; and higher thermal power dissipation, high waste-package placement density). The results show a fairly pronounced dependence on waste-package design and slight dependence on repository layout. Given the assumptions in the model, releases from the larger containers are 4-5 times greater than from the smaller packages.

  8. Liquid radioactive waste subsystem design description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-01

    The Liquid Radioactive Waste Subsystem provides a reliable system to safely control liquid waste radiation and to collect, process, and dispose of all radioactive liquid waste without impairing plant operation. Liquid waste is stored in radwaste receiver tanks and is processed through demineralizers and temporarily stored in test tanks prior to sampling and discharge. Radwastes unsuitable for discharge are transferred to the Solid Radwaste System.

  9. Impact assessment of ionizing radiation on human and non-human biota from the vicinity of a near-surface radioactive waste repository.

    Science.gov (United States)

    Nedveckaite, T; Gudelis, A; Vives i Batlle, J

    2013-05-01

    This work describes the radiological assessment of the near-surface Maisiagala radioactive waste repository (Lithuania) over the period 2005-2012, with focus on water pathways and special emphasis on tritium. The study includes an assessment of the effect of post-closure upgrading, the durability of which is greater than 30 years. Both human and terrestrial non-human biota are considered, with local low-intensity forestry and small farms being the area of concern. The radiological exposure was evaluated using the RESRAD-OFFSITE, RESRAD-BIOTA and ERICA codes in combination with long-term data from a dedicated environmental monitoring programme. All measurements were performed at the Lithuanian Institute of Physics as part of this project. It is determined that, after repository upgrading, radiological exposure to humans are significantly lower than the human dose constraint of 0.2 mSv/year valid in the Republic of Lithuania. Likewise, for non-human biota, dose rates are below the ERICA/PROTECT screening levels. The potential annual effective inhalation dose that could be incurred by the highest-exposed human individual (which is due to tritiated water vapour airborne release over the most exposed area) does not exceed 0.1 μSv. Tritium-labelled drinking water appears to be the main pathway for human impact, representing about 83 % of the exposure. Annual committed effective dose (CED) values for members of the public consuming birch sap as medical practice are calculated to be several orders of magnitude below the CEDs for the same location associated with drinking of well water. The data presented here indicate that upper soil-layer samples may not provide a good indication of potential exposure to terrestrial deep-rooted trees, as demonstrated by an investigation of stratified (3)H in soil moisture, expressed on a wet soil mass basis, in an area with subsurface contamination.

  10. Gamma-ray spectrometry method used for radioactive waste drums characterization for final di