WorldWideScience

Sample records for waste processing system

  1. Submerged demineralize system processing of TMI-2 accident waste water

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, H.F.; Quinn, G.J.

    1983-02-01

    Accident-generated radioactive waste at Three Mile Island Unit 2 includes a varity of high and low specific-activity waste. The high-specific-activity waste, particularly over one million gallons of contaminated water, required special processing and secondary waste handling. General public utilities and its contractors developed a zeolite-based ion-exchange system called the Submerged Demineralizer System to reduce contamination levels in the water to below allowable limits. Testing and modifications resulted in an operating system that had successfully processed waste water from the Reactor Coolant Bleed Tanks, the Reactor Building Basement, and the Reactor Coolant System as of August 1982. System design objectives were met and decontamination criteria established in 10 CFR 20 were attained. Additional wastes that could not be handled routinely were generated by another water-processing system, called EPICOR II. EPICOR II wastes are discussed. Low-specific-activity (LSA) wastes such as trash and resin-bed waste canisters are also included in handling. LSA wastes are routinely handled and shipped according to existing industry practice. Plant records are summarized to provide approximate yearly volumes and curie loadings of low-specific-activity wastes being shipped off the Island to a commercial burial site.

  2. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  3. Improving waste management through a process of learning: the South African waste information system

    CSIR Research Space (South Africa)

    Godfrey, L

    2011-05-01

    Full Text Available Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed...

  4. Waste receiving and processing plant control system; system design description

    Energy Technology Data Exchange (ETDEWEB)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  5. Process development work plan for waste feed delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Papp, I.G.

    1998-04-02

    This work plan defines the process used to develop project definition for Waste Feed Delivery (WFD). Project definition provides the direction for development of definitive design media required for the ultimate implementation of operational processing hardware and software. Outlines for the major deliverables are attached as appendices. The implementation of hardware and software will accommodate requirements for safe retrieval and delivery of waste currently stored in Hanford`s underground storage tanks. Operations and maintenance ensure the availability of systems, structures, and components for current and future planned operations within the boundary of the Tank Waste Remediation System (TWRS) authorization basis.

  6. High-Level Waste System Process Interface Description

    Energy Technology Data Exchange (ETDEWEB)

    d' Entremont, P.D.

    1999-01-14

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  7. Improving waste management through a process of learning: the South African waste information system.

    Science.gov (United States)

    Godfrey, Linda; Scott, Dianne

    2011-05-01

    Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed in the country, such that there is a noticeable improvement. The interviews with officials from municipalities and private waste companies, conducted as part of the piloting of the SAWIS, highlighted that certain organizations, typically private waste companies have been successful in collecting waste data. Through a process of learning, these organizations have utilized this waste data to inform and manage their operations. The drivers of such data collection efforts were seen to be financial (business) sustainability and environmental reporting obligations, particularly where the company had an international parent company. However, participants highlighted a number of constraints, particularly within public (municipal) waste facilities which hindered both the collection of waste data and the utilization of this data to effect change in the way waste is managed. These constraints included a lack of equipment and institutional capacity in the collection of data. The utilization of this data in effecting change was further hindered by governance challenges such as politics, bureaucracy and procurement, evident in a developing country context such as South Africa. The results show that while knowledge is a necessary condition for resultant action, a theoretical framework of learning does not account for all observed factors, particularly external influences.

  8. Waste Package Data Processing by Direct Upload to the SRS Waste Information System

    Energy Technology Data Exchange (ETDEWEB)

    Casella, V.R.

    2002-06-20

    Hundreds of waste packages are generated each month at the Westinghouse Savannah River Site (SRS), Aiken, SC. Most of these waste packages are compactable, low level waste (LLW) either in 55-gallon drums or B-25 boxes, and TRU waste is put in DOT Type A 55-gallon drums. Several methods are used for assay of the waste package contents, including direct assay, dose-to-curie measurements, and smear-to-curie measurements. These assays generate many thousands of data that must be entered manually into the SRS Waste Information Tracking System (WITS) by a Generation Certification Official, even though much of this data is already available electronically. Since spreadsheets are routinely used to collect data for manual entry into WITS, direct data upload would greatly improve data entry. WITS was originally written as an interactive program, requiring each data item to be entered individually with subsequent tests being performed on each data entry to ensure that acceptance criteria were me t. An error message was displayed if the acceptance criteria were not met, and either corrected data had to be re-entered or a deviation had to be approved by WITS personnel. This system did not allow batch data entry, where essentially all the data could be entered, and then all of this data were evaluated against the acceptance criteria. A WITS user interface has been written for batch data entry for over twenty waste generators. This interface accepts all the data for a waste package, and an error report is generated listing non-conforming data. This interface allows direct uploads of electronic data for waste packages by dumping this data into Microsoft Excel spreadsheets that are formatted for direct data entry into WITS. Therefore, programs can be written to transfer any electronic data to the WITS interface spreadsheet for direct uploads of waste data. The whole process is now much less labor intensive, more cost effective, and more accurate.

  9. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  10. Electromagnetic mixed-waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

  11. Tank waste remediation system process engineering instruction manual

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, M.R.

    1998-11-04

    The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees.

  12. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  13. Tank waste remediation system phase I high-level waste feed processability assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  14. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  15. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    Science.gov (United States)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  16. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Rosnick, C.K.

    1996-04-19

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  17. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  18. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    Energy Technology Data Exchange (ETDEWEB)

    Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

  19. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    Science.gov (United States)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  20. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    Science.gov (United States)

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  1. Processing of food wastes.

    Science.gov (United States)

    Kosseva, Maria R

    2009-01-01

    Every year almost 45 billion kg of fresh vegetables, fruits, milk, and grain products is lost to waste in the United States. According to the EPA, the disposal of this costs approximately $1 billion. In the United Kingdom, 20 million ton of food waste is produced annually. Every tonne of food waste means 4.5 ton of CO(2) emissions. The food wastes are generated largely by the fruit-and-vegetable/olive oil, fermentation, dairy, meat, and seafood industries. The aim of this chapter is to emphasize existing trends in the food waste processing technologies during the last 15 years. The chapter consists of three major parts, which distinguish recovery of added-value products (the upgrading concept), the food waste treatment technologies as well as the food chain management for sustainable food system development. The aim of the final part is to summarize recent research on user-oriented innovation in the food sector, emphasizing on circular structure of a sustainable economy.

  2. Electromagnetic mixed waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Inc., Portsmouth, NH (United States); Vaux, W.G. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Nocito, T. [Ohio DSI Corp., New York (United States)

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  3. Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

    1989-11-11

    The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

  4. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  5. Research on information security system of waste terminal disposal process

    Science.gov (United States)

    Zhou, Chao; Wang, Ziying; Guo, Jing; Guo, Yajuan; Huang, Wei

    2017-05-01

    Informatization has penetrated the whole process of production and operation of electric power enterprises. It not only improves the level of lean management and quality service, but also faces severe security risks. The internal network terminal is the outermost layer and the most vulnerable node of the inner network boundary. It has the characteristics of wide distribution, long depth and large quantity. The user and operation and maintenance personnel technical level and security awareness is uneven, which led to the internal network terminal is the weakest link in information security. Through the implementation of security of management, technology and physics, we should establish an internal network terminal security protection system, so as to fully protect the internal network terminal information security.

  6. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment.

  7. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  8. Tank 241-C-106 waste retrieval sluicing system process control plan

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, K.G.

    1998-07-25

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity.

  9. Urine pretreatment for waste water processing systems. [for space station

    Science.gov (United States)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  10. Urine pretreatment for waste water processing systems. [for space station

    Science.gov (United States)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  11. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    Science.gov (United States)

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry.

  12. Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, N.D.

    1992-08-10

    Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

  13. Use of Information System and lean manufacturing to reduce the waste in the process industry

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Singh

    2013-03-01

    Full Text Available The objective of this paper is to introduce the work of information technology in the process industry. In the industry the time is used as the money. So here the main task is to save time. In the industry the maximum time spent due to the waste. Lean Manufacturing is a term that is used to reduce the waste from the industry. It also use the information system in the form of Kanban. Lean principles and techniques have been applied in a wide variety of organizations, from make-to-stock to engineer-to-order industries, and even in typical service sectors, such as healthcare. In order to apply lean principles in various areas, variants were developed of well known techniques, such as Kanban, Kaizen, SMED, and 5S. Here the discrete and continuous manufacturing benefits are distinguished by the value stream mapping. Here the Value stream mapping is used to first map the current state and then used to identify sources of waste and to identify lean tools to try to eliminate this waste. The future state map is then developed for a system with lean tools applied to it. This thesis focuseson the development of a simulation model of the industry.

  14. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste.

    Science.gov (United States)

    Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya

    2014-11-01

    To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning.

  15. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  16. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  17. Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHRYS, K.L.

    1999-11-03

    Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

  18. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  19. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes

    Science.gov (United States)

    Clauwaert, Peter; Muys, Maarten; Alloul, Abbas; De Paepe, Jolien; Luther, Amanda; Sun, Xiaoyan; Ilgrande, Chiara; Christiaens, Marlies E. R.; Hu, Xiaona; Zhang, Dongdong; Lindeboom, Ralph E. F.; Sas, Benedikt; Rabaey, Korneel; Boon, Nico; Ronsse, Frederik; Geelen, Danny; Vlaeminck, Siegfried E.

    2017-05-01

    In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.

  20. The development of a zeolite system for upgrade of the Process Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.M.; Kent, T.E.; Arnold, W.D.; Parrott, J.R. Jr.

    1993-10-01

    Studies have been undertaken to design an efficient zeolite ion exchange system for use at the ORNL Process Waste Treatment Plant to remove cesium and strontium to meet discharge limits. This report focuses on two areas: (1) design of column hardware and pretreatment steps needed to eliminate column plugging and channeling and (2) development of equilibrium models for the wastewater system. Results indicate that zeolite columns do not plug as quickly when the wastewater equalization is performed in the new Bethel Valley Storage Tanks instead of the former equalization basin where suspended solids concentration is high. A down-flow column with spent zeolite was used successfully as a prefilter to prevent plugging of the zeolite columns being used to remove strontium and cesium. Equilibrium studies indicate that a Langmuir isotherm models binary zeolite equilibrium data while the modified Dubinin-Polyani model predicts multicomponent data.

  1. Technological processing waste water using the dressing the ejector system for pretreament

    Directory of Open Access Journals (Sweden)

    Božović Milan

    2017-01-01

    Full Text Available Slaughter industry produces large amounts of waste water, which endanger and degrade the natural recipients - recipients, given that the waste vode najčešće discharged without any form of treatment or purification. Wastewater slaughter industry carry faeces, straw, unprocessed animal feed, various stomach secretions, blood, fat, a variety of solid waste and other organic matter present. Many applied technical and technological solutions in order to prevent harming the recipients are not given adequate results from the ecological aspect. The reconstruction of a system for pre-treatment and slaughter waste water by applying technological solutions ejector - pump, not only have obtained good results required by the project, but also pointed to the possibility of their use in many types of agro-industrial waste water, especially with the growing number of small agro-industrial drive .

  2. Application of macro material flow modeling to the decision making process for integrated waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, S.A. [California Polytechnic State Univ., San Luis Obispo, CA (United States); Holter, G.M. [Battelle Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    Computer models have been used for almost a decade to model and analyze various aspects of solid waste management Commercially available models exist for estimating the capital and operating costs of landfills, waste-to-energy facilities and compost systems and for optimizing system performance along a single dimension (e.g. cost or transportation distance). An alternative to the use of currently available models is the more flexible macro material flow modeling approach in which a macro scale or regional level approach is taken. Waste materials are tracked through the complete integrated waste management cycle from generation through recycling and reuse, and finally to ultimate disposal. Such an approach has been applied by the authors to two different applications. The STELLA simulation language (for Macintosh computers) was used to model the solid waste management system of Puerto Rico. The model incorporated population projections for all 78 municipalities in Puerto Rico from 1990 to 2010, solid waste generation factors, remaining life for the existing landfills, and projected startup time for new facilities. The Pacific Northwest Laboratory has used the SimScript simulation language (for Windows computers) to model the management of solid and hazardous wastes produced during cleanup and remediation activities at the Hanford Nuclear Site.

  3. Multi-loop Control System Design for Biodiesel Process using Waste Cooking Oil

    Science.gov (United States)

    Patle, Dipesh S.; Z, Ahmad; Rangaiah, G. P.

    2015-06-01

    Biodiesel is one of the promising liquid fuels for future due to its advantages such as renewability and eco-friendliness. This manuscript describes the development of a multi-loop control system design for a comprehensive biodiesel process using waste cooking oil. Method for controlled variable-manipulated variable (CV-MV) pairings are vital for the stable, effective and economical operation of the process. Liquid recycles, product quality requirements and effective inventory control pose tough challenges to the safe operation of the biodiesel process. A simple and easy to apply effective RGA method [Xiong Q, Cai W J and He M J 2005 A practical loop pairing criterion for multivariable processes Journal of Process Control vol. 15 pp 741-747.] is applied to determine CV-MV pairings i.e. control configuration design for the bioprocess. This method uses steady state gain as well as bandwidth information of the process open loop transfer function to determine input-output pairings.

  4. Fabrication of a Sludge-Conditioning System for Processing Legacy Wastes from the Gunite and Associated Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, J. D.; Lewis, B. E.; Farmer, J. R.; Johnson, M. A.

    2000-08-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS.

  5. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  6. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    Energy Technology Data Exchange (ETDEWEB)

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  7. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    Science.gov (United States)

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, Azotobacter chroococcum, Azotobacter beijerincki, methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli, have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas production is

  8. Process Waste Assessment - Paint Shop

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  9. A new process for NOx reduction in combustion systems for the generation of energy from waste.

    Science.gov (United States)

    Gohlke, Oliver; Weber, Toralf; Seguin, Philippe; Laborel, Yann

    2010-07-01

    In the EU, emissions from energy from waste plants are largely reduced by applying the Waste Incineration Directive with its limit of 200 mg/m3(s) for NO(x) emissions. The need for further improvement is reflected by new German legislation effective as of 27 January 2009, requiring 100 mg/m3(s). Other countries are expected to follow this example due to the national emission ceilings of the Gothenburg protocol and the concluding EU directive 2001/81/EC. On the other hand, an increase in energy efficiency will be encouraged by the EU Waste Framework Directive. This is why there is a need for new technologies that make it possible to reconcile both requirements: reduced emissions and increased energy efficiency. A new process combining the internal recirculation of flue gas with ammonia or urea injection in order to achieve less then 80 mg/m3(s) of NO(x) is described. Important additional features of the process are an R1 efficiency above the required 0.65 of the EU Waste Framework Directive even with standard steam parameters of 40 bar/380 degrees C as well as low ammonia slip in the flue gas at the boiler outlet of below 10 mg/m3(s).

  10. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Husler, R.O. (Westinghouse Savannah River Co., Aiken, SC (United States)); Weir, T.J. (Pentek, Inc., Coraopolis, PA (United States))

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  11. Research and Application of Ectopic Microbial Fermentation System in Processing Piggery Waste

    OpenAIRE

    DONG Li-ting; ZHU Chang-xiong; Li ZHANG; MA Jin-feng; YANG Xiang-hua; GENG Bing

    2016-01-01

    In order to provide theoretical basis for application of the ectopic microbial fermentation bed, the efficiency and quality of the ectopic microbial fermentation bed in processing piggery waste were evaluated by measuring the changes of physicochemical and environmental factors and the absorption of piggery wastewater. The results showed that the fermentation temperature of the filler maintained above 40℃ for up to 48 days and the highest fermentation temperature was 66℃. The alkaline environ...

  12. Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system.

    Science.gov (United States)

    Hu, Zhenhu; Lane, Robert; Wen, Zhiyou

    2009-01-01

    Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients.

  13. Process Test Evaluation Report Waste Retrieval Sluicing System Emissions Collection (Phase 1 - 2 and 3)

    Energy Technology Data Exchange (ETDEWEB)

    PARKMAN, D.B.

    1999-12-29

    During sluicing of the first batch of sludge from tank 241-C-106 on November 18, 1998, an unexpected high concentration of volatile organic compounds was measured in the 296-C-006 ventilation stack. Eleven workers reported irritation related symptoms and were sent to Hanford Environmental Health Foundation (HEHF) and Kadlec Hospital for medical evaluations. No residual health effects were reported. As a result of the unexpectedly high concentrations of volatile organic compounds encountered during this November sluicing event, a phased process test designed to characterize the emission constituents was conducted on December 16, 1998, March 7, 1999, and March 28, 1999. The primary focus of this evaluation was to obtain samples of the 296-C-006 ventilation stack effluent and surrounding areas at elevated levels of volatile organic compounds initiated by sluicing. Characterization of the emission constituents was necessary to establish appropriate procedural and administrative exposure controls for continued sluicing. Additionally, this information would be used to evaluate the need for engineered equipment to mitigate any further potential chemical stack emissions. This evaluation confirms that the following actions taken during Phase I, Phase II, and Phase III of the Waste Retrieval Sluicing System Emissions Collection Process Test were conservative and appropriate for continued sluicing: Implement stack limit of 500 ppm volatile organic compounds, with lower administrative limits; Ensure worker involvement through enhanced planning; Continue using the existing fenced boundary location; Continue using pressure demand fresh air respiratory protection inside the C-Farm as recommended by Industrial Hygiene; Continue using the existing respiratory protection/ take cover requirements outside the C-Farm boundary as recommended by Industrial Hygiene; Continue using existing anti-contamination clothing; Minimize the number of workers exposed to emissions; Maintain the

  14. Process waste assessment: Color print processing (RA-4)

    Energy Technology Data Exchange (ETDEWEB)

    Catlett, P.

    1994-05-01

    The Kodak RA-4 process is used to develop prints and overhead transparencies from photographic negatives. The assessment was based on usage, effluent discharge, and final disposition of waste generated by the process. Two options explored were bleach-fix regeneration and the conversion to a digital image processing system. The RA-4 process is process is environmentally sound and generates a relatively small amount of waste. The bleach-fix option would provide only a small effluent reduction. The digital imaging conversion option, if fully implemented, could greatly reduce waste generated in the photo lab.

  15. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  16. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  17. Low Activity Waste Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  18. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Husler, R.O. [Westinghouse Savannah River Co., Aiken, SC (United States); Weir, T.J. [Pentek, Inc., Coraopolis, PA (United States)

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  19. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  20. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    Science.gov (United States)

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  1. Meat, Fish, and Poultry Processing Wastes.

    Science.gov (United States)

    Litchfield, J. H.

    1978-01-01

    Presents a literature review of industrial wastes, covering publications of 1976-77. This review includes studies on: (1) meat industry wastes; (2) fish-processing waste treatment; and (3) poultry-processing waste treatment. A list of 76 references is also presented. (HM)

  2. The new economics of waste oil processing?

    Energy Technology Data Exchange (ETDEWEB)

    Kress, D.

    1996-06-01

    The newly developed CANPED process, a process that effectively stabilizes and purifies fuel oil produced from a straight run thermal cracking process, was described. It was claimed that this same process can create an environment where recycling waste lubricating oils becomes economically attractive for a wide range of applications. The CANPED process deals effectively with the acids, olefins and odour causing compounds made from a feedstock of waste oil, without negative environmental effects, and only one by-product which can be converted to an asphalt additive. The system is easy to construct, uses common building materials, and operates at low pressures. The process was developed by CANMET, the research arm of Natural Resources Canada. It is now being marketed world-wide by Par Excellence Developments, an industrial services company, based in Sudbury, Ontario.

  3. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  4. DEVELOPMENT AND DEMONSTRATION OF INTEGRATED CARBON RECOVERY SYSTEMS FROM FINE COAL PROCESSING WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Y.P. Chugh; D. Patil; A. Patwardhan; R.Q. Honaker; B.K. Parekh; D. Tao; Latif Khan

    2000-07-01

    The project involves the development of an efficient, environmentally friendly system for the economical recovery of carbon from fine-coal refuse ponds. The project will be conducted in two phases. Phase I was involved in the development and evaluation of process equipment and techniques to be used in carbon recovery, product dewatering and reconstitution, and refuse management. Phase II will integrate the various units into a continuously operating circuit that will be demonstrated at a site selected based on the results presented in this study.

  5. Reduction in waste load from a meat processing plant: Beef

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-10-31

    ;Contents: Introduction (Randolph Packing Company, Meat Plant Wastewaters, Slaughterhouses, Packing Houses, Sources of Wastewater, Secondary Manufacturing Processes, An Example of Water Conservation and Waste Control, Water Conservation Program); Plant Review and Survey (Survey for Product Losses and Wastes, Water Use and Waste Load, Wastewater Discharge Limitations and Costs); Waste Centers, Changes, Costs and Results (In-Plant Control Measures, Water Conservation, Recovery Products, By-Products and Reducing Waste Load, Blood Conservation, Paunch Handling and Processing, Summary of Process Changes, Pretreatment, Advantages and Disadvantages of Pretreatment, Pretreatment Systems).

  6. Estimation and filtering of nonlinear systems application to a waste-water treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youssef, C.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Zeng, F.Y.; Rols, J.L. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1994-04-01

    A fundamental task in design and control of biotechnological processes is system modelling. This task is made difficult by the scarceness of on-line direct sensors for some key variables and by the fact that identifiability of models including Michaelis-Menten type of nonlinearities is not straightforward. The use of adaptive estimation approaches constitutes an interesting alternative to circumvent these kind of problems. This paper discusses an identification technique derived to solve the problem of estimating simultaneously inaccessible state variables and time-varying parameters of a nonlinear wastewater treatment process. An extended linearization technique using Kronecker`s calculation provides the error model of the joint observer-estimator procedure which convergence is proved via Lyapunov`s method. Sufficient conditions for stability of this joint identification scheme are given and discussed according to the persistence excitation conditions of the signals. A simulation study with measurement noises and abrupt jumps of the process parameters shows the feasibility and significant robustness of the proposed adaptive estimation methodologies. (author). (author). 10 refs., 3 figs.

  7. Process of Waste Sludge Facultative Metabolism

    Institute of Scientific and Technical Information of China (English)

    李茵

    2001-01-01

    Laboratory- scale experiments were conducted to determine new technology of waste sludge facultative metabolism . 10-L laboratory-scale facultative reactors were operated during 24-hour sludge residence time (SRT) and in room temperature . Results show that the organic matter in waste sludge after hydrolysis acidification will be reduced by 75.39%, the removal rate of CODer above 85% . Advantage of the process is hydrolysis-acidification in ambient air temperature as there is no need for facilities to be sealed or heated. In addition, the sludge will be recycled into the wastewater treatment system and finally towards zero-discharge.

  8. Thermodynamic investigation of waste cooking oil based hydrogen generation system with chemical looping process

    Directory of Open Access Journals (Sweden)

    Nahla Faleh

    2016-07-01

    The results show that coke formation can be thermodynamically inhibited by increasing the S/C ratio and/or the NiO/C ratio. The conditions that maximize hydrogen production, minimize methane and carbon monoxide content as well as avoid coke formation at thermoneutral conditions were found to be S/C = 5, T = 600 °C and NiO/C = 0.493. Under these conditions, a hydrogen yield of 144.3 mol/kg of soybean waste cooking oil can be obtained, which appears to be an attractive result for starting experimental research.

  9. Tank Waste Remediation System Guide

    Energy Technology Data Exchange (ETDEWEB)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

  10. Low temperature waste form process intensification

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    This study successfully demonstrated process intensification of low temperature waste form production. Modifications were made to the dry blend composition to enable a 50% increase in waste concentration, thus allowing for a significant reduction in disposal volume and associated costs. Properties measurements showed that the advanced waste form can be produced using existing equipment and processes. Performance of the waste form was equivalent or better than the current baseline, with approximately double the amount of waste incorporation. The results demonstrate the feasibility of significantly accelerating low level waste immobilization missions across the DOE complex and at environmental remediation sites worldwide.

  11. Catalytic processes for space station waste conversion

    Science.gov (United States)

    Schoonover, M. W.; Madsen, R. A.

    1986-01-01

    Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

  12. Separating, baling and processing waste

    Directory of Open Access Journals (Sweden)

    Komazec Gordana

    2011-01-01

    Full Text Available The economy based on the exploitation of fossil fuels has entered the phase of disappearance, and a new one is being formed under the influence of the third industrial revolution. The third industrial revolution is developing from the process of the resolution of serious problems that have appeared in the ecosystem, and demands a new platform of interaction between the world's governments, civil society and the business world [Stigson 2008]. The consumer society that was developing until the beginning of the 21st century started from the premise that we cannot expect charity from nature. Regardless of their renewability and speed of renewal, natural resources should have been used in the measure in which humanity needed it. Needs rose uncontrollably, damaging the basic principle by which the balance of the biosphere was maintained - the parity of community members' insignificance. The man with the technosphere prevailed over the biosphere. Since nothing is provided for free and nature knows best, the beginning of the 21st century is seeing renewed attempts to establish a co-evolution of nature and society. This necessitates radical changes in people's work, lifestyle and thinking. The problem of waste requires a total break with previous practices. The existing 6.6 billion people annually produce between 2.5 and 4 billion tons of waste (The Millennium Development Goals Report 2008. Developed countries such as, e.g., the US, annually produce about 700 kilograms of waste per person, while poor countries, such as, e.g., the urban parts of India, produce only 150 kilograms per person annually. Each resident of the EU leaves behind 500 kg of waste per year. Serbia has the same civilization problems. In addition, as a transition country, it is in a position to decide the extent to which this problem will be in the hands of state companies and how much will be left to private capital owners. Moreover, Serbia is creating a development strategy that also

  13. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  14. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  15. 1993 baseline solid waste management system description

    Energy Technology Data Exchange (ETDEWEB)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

  16. The Potential and Beneficial Use of Weigh-In-Motion (WIM) Systems Integrated with Radio Frequency Identification (RFID) Systems for Characterizing Disposal of Waste Debris to Optimize the Waste Shipping Process

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, Robert K [ORNL; Buckner Jr, Dooley [ORNL; Newton, David D [ORNL

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) Weigh-In-Motion (WIM) system provides a portable and/or semi-portable means of accurately weighing vehicles and its cargo as each vehicle crosses the scales (while in motion), and determining (1) axle weights and (2) axle spacing for vehicles (for determination of Bridge Formula compliance), (3) total vehicle/cargo weight and (4) longitudinal center of gravity (for safety considerations). The WIM system can also weigh the above statically. Because of the automated nature of the WIM system, it eliminates the introduction of human errors caused by manual computations and data entry, adverse weather conditions, and stress. Individual vehicles can be weighed continuously at low speeds (approximately 3-10 mph) and at intervals of less than one minute. The ORNL WIM system operates and is integrated into the Bethel Jacobs Company Transportation Management and Information System (TMIS, a Radio-Frequency Identification [RFID] enabled information system). The integrated process is as follows: Truck Identification Number and Tare Weight are programmed into a RFID Tag. Handheld RFID devices interact with the RFID Tag, and Electronic Shipping Document is written to the RFID Tag. The RFID tag read by an RFID tower identifies the vehicle and its associated cargo, the specific manifest of radioactive debris for the uniquely identified vehicle. The weight of the cargo (in this case waste debris) is calculated from total vehicle weight information supplied from WIM to TMIS and is further processed into the Information System and kept for historical and archival purposes. The assembled data is the further process in downstream information systems where waste coordination activities at the Y-12 Environmental Management Waste Management Facility (EMWMF) are written to RFID Tag. All cycle time information is monitored by Transportation Operations and Security personnel.

  17. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    to optimize current waste management systems with respect to environmental achievements and by authorities to Set Guidelines and regulations and to evaluate different strategies for handling of waste. The waste hierarchy has for decades been governing waste management but the ranking of handling approaches......A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  18. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  19. Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, L.M.; Deforest, T.J; Richards, J.R.

    1996-03-01

    This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

  20. Technological and hygiene-sanitary aspects of using biologically pure process waste watern in the systems of technical water supply

    OpenAIRE

    Ushakov, Vasily Yakovlevich; Solodov, G. А.

    2007-01-01

    According to sanitary-toxicological factors biologically purified waste water of chemical enterprise are referred to low-toxic substances, are not allergens, do not posses irritant action on mucous tunics and skin and are suitable for recycling water system makeup. Crucial factors of reusing these waters are their corrosive activity, susceptibility to mineral salt accumulation and bioaccretion.

  1. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  2. W-026, Waste Receiving and Processing Facility data management system validation and verification report

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, M.E.

    1997-12-05

    This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure that the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.

  3. Thermocatalytic conversion of food processing wastes: Topical report, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Butner, R.S.; Sealock, L.J. Jr.; Elliott, D.C.; Neuenschwander, G.G.

    1989-01-01

    The efficient utilization of waste produced during food processing operations is a topic of growing importance to the industry. While incineration is an attractive option for wastes with relatively low ash and moisture contents (i.e., under about 50 wt % moisture), it is not suitable for wastes with high moisture contents. Cheese whey, brewer's spent grain, and fruit pomace are examples of food processing wastes that are generally too wet to burn efficiently and cleanly. Pacific Northwest Laboratory (PNL) is developing a thermocatalytic conversion process that can convert high-moisture wastes (up to 98 wt % moisture) to a medium-Btu fuel gas consisting primarily of methane and carbon dioxide. At the same time, the COD of these waste streams is reduced by 90% to 99%, Organic wastes are converted by thermocatalytic treatment at 350/degree/C to 400/degree/C and 3000 to 4000 psig. The process offers a relatively simple solution to waste treatment while providing net energy production from wastes containing as little as 2 wt % organic solids (this is equivalent to a COD of approximately 25,000 mg/L). This report describes continuous reactor system (CRS) experiments that have been conducted with food processing wastes. The purpose of the CRS experiments was to provide kinetic and catalyst lifetime data, which could not be obtained with the batch reactor tests. These data are needed for commercial scaleup of the process.

  4. Design, fabrication and testing of a wet oxidation waste processing system. [for manned space flight

    Science.gov (United States)

    1975-01-01

    The wet oxidation of sewage sludge during space flight was studied for water and gas recovery, and the elimination of overboard venting. The components of the system are described. Slurry and oxygen supply modules were fabricated and tested. Recommendations for redesign of the equipment are included.

  5. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  6. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  7. Role of the South African Waste Information System in improving waste management

    CSIR Research Space (South Africa)

    Godfrey, L

    2010-09-01

    Full Text Available Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research, whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed...

  8. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake, E-mail: jake.amoroso@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James C. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lin, Ye; Chen, Fanglin [University of South Carolina, Columbia, SC 29208 (United States); Su, Dong [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brinkman, Kyle S. [Clemson University, Clemson, SC 29634 (United States)

    2014-11-15

    Highlights: • We explored the feasibility of melt processing multiphase titanate-based ceramics. • Melt processing produced phases obtained by alternative processing methods. • Phases incorporated multiple lanthanides and transition metals. • Processing in reducing atmosphere suppressed un-desirable Cs–Mo coupling. • Cr partitions to and stabilizes the hollandite phase, which promotes Cs retention. - Abstract: Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction–oxidation (Redox) conditions suppressed undesirable Cs–Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  9. Evaluation of mercury in the liquid waste processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vijay [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shah, Hasmukh [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Occhipinti, John E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, Richard E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  10. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  11. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  12. Torrefaction Processing for Human Solid Waste Management

    Science.gov (United States)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  13. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  14. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes

    National Research Council Canada - National Science Library

    Giorgia Pagliano; Valeria Ventorino; Antonio Panico; Olimpia Pepe

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and bio...

  15. Process waste assessment for the Radiography Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, N.M.

    1994-07-01

    This Process Waste Assessment was conducted to evaluate the Radiography Laboratory, located in Building 923. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility. The Radiography Laboratory provides film radiography or radioscopy (electronic imaging) of weapon and nonweapon components. The Radiography Laboratory has six x-ray machines and one gamma ray source. It also has several other sealed beta- and gamma-ray isotope sources of low microcurie ({mu}Ci) activity. The photochemical processes generate most of the Radiography Laboratory`s routinely generated hazardous waste, and most of that is generated by the DuPont film processor. Because the DuPont film processor generates the most photochemical waste, it was selected for an estimated material balance.

  16. Tank waste remediation system mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Acree, C.D.

    1998-01-09

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

  17. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    Science.gov (United States)

    Amoroso, Jake; Marra, James C.; Tang, Ming; Lin, Ye; Chen, Fanglin; Su, Dong; Brinkman, Kyle S.

    2014-11-01

    Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction-oxidation (Redox) conditions suppressed undesirable Cs-Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  18. Use of the Geographic Information System and Analytic Hierarchy Process for Municipal Solid Waste Landfill Site Selection: A Case Study of Najafabad, Iran

    Directory of Open Access Journals (Sweden)

    A. Afzali

    2014-03-01

    Full Text Available Following technological advancements and integrated municipal solid waste management in recent decades, various methods such as recycling, biotreatment, thermal treatment, and sanitary landfills have been developed and employed. Creating sanitary landfills is a major strategy in the integrated solid waste management hierarchy. It is cheaper and thus more common than other disposal methods. Selecting a suitable solid waste landfill site can prevent adverse ecological and socioeconomic effects. Landfill site selection requires the analysis of spatial data, regulations, and accepted criteria. The present study aimed to use the geographic information system and the analytic hierarchy process to identify an appropriate landfill site for municipal solid wastes in Najafabad (Isfahan, Iran. Environmental and socioeconomic criteria were evaluated through different information layers in the Boolean and fuzzy logics. The analytical hierarchy process was applied for weighing the fuzzy information layers. Subsequently, two suitable sites were identified by superimposing the maps from the Boolean and fuzzy logics and considering the minimum required landfill area for 20 years. However, proximity of these two sites to Tiran (a nearby city made them undesirable landfill sites for Najafabad. Therefore, due to the existing restrictions in Najafabad, the possibility of creating landfill sites in common with adjacent cities should be further investigated.

  19. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational...... and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  20. Closed Loop Waste Processing Dryer (DRYER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a gravity-independent pasteurization and hot air drying process suitable for stabilization of ALS wet cabin waste,...

  1. Closed Loop Waste Processing Dryer (DRYER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a gravity-independent pasteurization and hot air drying process suitable for stabilization of ALS wet cabin waste,...

  2. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  3. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    Energy Technology Data Exchange (ETDEWEB)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  4. Standardization of DOE Disposal Facilities Waste Acceptance Process

    Energy Technology Data Exchange (ETDEWEB)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  5. Hydrothermal processing of radioactive combustible waste

    Energy Technology Data Exchange (ETDEWEB)

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-09-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

  6. Design/Installation and Structural Integrity Assessment of the Bethel Valley Low-Level Waste Collection and Transfer System Upgrade for Building 3544 (Process Waste Treatment Plant) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document describes and assesses planned modifications to be made to the Building 3544 Process Waste Treatment Plant of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of the Federal Facility Agreement (FFA) relating to environmental protection requirements for tank systems. The modifications include the provision of a new double contained LLW line replacing an existing buried line that does not provide double containment. This new above ground, double contained pipeline is provided to permit discharge of treated process waste fluid to an outside truck loading station. The new double contained discharge line is provided with leak detection and provisions to remove accumulated liquid. An existing LLW transfer pump, concentrated waste tank, piping and accessories are being utilized, with the addition of a secondary containment system comprised of a dike, a chemically resistant internal coating on the diked area surfaces and operator surveillance on a daily basis for the diked area leak detection. This assessment concludes that the planned modifications comply with applicable requirements of Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

  7. Onsite Waste Water Treatment System

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Onsite wastewater treatment systems (OWTSs have evolved from the pit privies used widely throughout history to installations capable of producing a disinfected effluent that is fit for human consumption. Although achieving such a level of effluent quality is seldom necessary, the ability of onsite systems to remove settles able solids, floatable grease and scum, nutrients, and pathogens. From wastewater discharges defines their importance in protecting human health and environmental resources. In the modern era, the typical onsite system has consisted primarily of a septic tank and a soil absorption field, also known as a subsurface wastewater infiltration system, or SWIS. In this manual, such systems are referred to as conventional systems. Septic tanks remove most settle able and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter. Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields (SWISs for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils. Conventional systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance. These criteria, however, are often not met. Only about one-third of the land area in the United States has soils suited for conventional subsurface soil absorption fields. System densities in some areas exceed the capacity of even suitable soils to assimilate wastewater flows and retain and transform their contaminants. In addition, many systems are located too close to ground water or surface waters and others, particularly in rural areas with newly installed public

  8. Waste Information Management System-2012 - 12114

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)

  9. Process for treating alkaline wastes for vitrification

    Science.gov (United States)

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  10. Waste heat utilization in industrial processes

    Science.gov (United States)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  11. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ducman, V., E-mail: vilma.ducman@zag.si [ZAG Ljubljana, Dimičeva 12, 1000 Ljubljana (Slovenia); Korat, L.; Legat, A. [ZAG Ljubljana, Dimičeva 12, 1000 Ljubljana (Slovenia); Mirtič, B. [NTF, Aškerčeva 12, 1000 Ljubljana (Slovenia)

    2013-12-15

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of pores decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (μcT)

  12. High Level Waste (HLW) Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  13. Facilitating the improved management of waste in South Africa through a national waste information system.

    Science.gov (United States)

    Godfrey, Linda

    2008-01-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such as South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.

  14. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  15. Revolutionary advances in medical waste management. The Sanitec system.

    Science.gov (United States)

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the

  16. Selection criteria for waste management processes in manned space missions.

    Science.gov (United States)

    Doll, S; Cothran, B; McGhee, J

    1991-10-01

    Management of waste produced during manned space exploration missions will be an important function of advanced life support systems. Waste materials can be thrown away or recovered for reuse. The first approach relies totally on external supplies to replace depleted resources while the second approach regenerates resources internally. The selection of appropriate waste management processes will be based upon criteria which include mission and hardware characteristics as well as overall system considerations. Mission characteristics discussed include destination, duration, crew size, operating environment, and transportation costs. Hardware characteristics include power, mass and volume requirements as well as suitability for a given task. Overall system considerations are essential to assure optimization for the entire mission rather than for an individual system. For example, a waste management system designed for a short trip to the moon will probably not be the best one for an extended mission to Mars. The purpose of this paper is to develop a methodology to identify and compare viable waste management options for selection of an appropriate waste management system.

  17. 转炉烟气余热回收系统工艺设计%Process Planning of Flue Gas Waste Heat Recovery System in Converter

    Institute of Scientific and Technical Information of China (English)

    江文豪; 姚群

    2014-01-01

    The recovery system can fully recover the waste heat resources of flue gas in converter, and produce steam that can be used, thus obtain remarkable economic benefit. The process planning of flue gas waste heat recovery system of a certain 120t converter has been introduced. Since the system put into operation, the whole production process is stable, and all indicators can reach the design requirements.%转炉烟气余热回收系统将转炉烟气的余热资源充分回收,使之转化为可以利用的蒸汽,经济效益显著。介绍了某钢铁厂120 t转炉烟气余热回收系统的工艺设计要点。该系统自投运以来,整个生产过程运行稳定,各项指标均达到设计要求。

  18. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  19. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  20. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  1. Processing method for molten salt waste

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Shuichi; Sawa, Toshio; Hoshikawa, Tadahiro; Suzuoki, Akira

    1999-01-06

    The present invention concerns a processing method for selectively adsorbing and removing radioactive metal ingredients contained in high temperature molten salts by an inorganic ion exchanger and separating radioactive metal ingredients from the molten salts as high level radioactive wastes upon reprocessing of spent nuclear fuels by using molten salts. The molten salts occluded in the inorganic ion exchanger are desorbed with highly purified water. Successively, saturation adsorbed radioactive metal ingredients are desorbed by an aqueous solution of alkali metal salt or an aqueous solution of alkaline earth metal salt. The desorbed molten salts and radioactive metal ingredients are formed into at least two kinds of radioactive waste solidification materials depending on each of radioactivity level. As the inorganic ion exchanger, at least one of aluminosilicate and hydroxides is used. Then, molten salt wastes generated upon a dry-type reprocessing can be processed as a stable borosilicate glass solidification material or as a similar homogeneous solid material. (T.M.)

  2. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  3. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  4. Understanding waste for lean health information systems: a preliminary review.

    Science.gov (United States)

    Kalong, Nadia Awang; Yusof, Maryati Mohd

    2013-01-01

    Despite the rapid application of the Lean method in healthcare, its study in IT environments, particularly in Health Information Systems (HIS), is still limited primarily by a lack of waste identification. This paper aims to review the literature to provide an insight into the nature of waste in HIS from the perspective of Lean management. Eight waste frameworks within the context of healthcare and information technology were reviewed. Based on the review, it was found that all the seven waste categories from the manufacturing sector also exist in both the healthcare and IT domains. However, the nature of the waste varied depending on the processes of the domains. A number of additional waste categories were also identified. The findings reveal that the traditional waste model can be adapted to identify waste in both the healthcare and IT sectors.

  5. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-07-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  6. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  7. Nondestructive boxed transuranic (TRU) waste assay systems

    Science.gov (United States)

    Caldwell, John T.; Jones, Stephanie A.; Lucero, Randy F.

    1999-01-01

    A brief history of boxed waste assay systems (primarily those developed at Los Alamos National Laboratory) is presented. The characteristics and design process involved with current generation systems--as practiced by BII--are also discussed in some detail. Finally, a specific boxed waste assay system and acceptance test results are presented. This system was developed by BII and installed at the Waste Receiving and Packaging (WRAP) facility in Hanford, Washington in early 1997. The WRAP system combines imaging passive/active neutron (IPAN) techniques with gamma- ray energy analysis (GEA) to assay crates up to 2.5 m X 2.5 m X 6.5 m in size. (Systems that incorporate both these methodologies are usually denoted IPAN/GEA types.) Two separate gamma-ray measurements are accomplished utilizing 16 arrayed NaI detectors and a moveable HPGe detector, while 3He detectors acquire both active and passive neutron data. These neutron measurements use BII's proprietary imaging methodology. Acceptance testing of the system was conducted at Hanford in January 1998. The system's operating performance was evaluated based on accuracy and sensitivity requirements for three different matrix types. Test results indicate an average 13% active mode accuracy for 10 nCi/g loadings of Pu waste and 5% passive mode accuracy for 10 g loadings of Pu waste. Sensitivity testing demonstrated an active mode lower limit of detection of less than 5 nCi/g of 239Pu for the medium matrix and less than 20 pCi/g of fission and activation products at 3(sigma) above background.

  8. Multi agent gathering waste system

    Directory of Open Access Journals (Sweden)

    Álvaro LOZANO MURCIEGO

    2016-07-01

    Full Text Available Along this paper, we present a new multi agent-based system to gather waste on cities and villages. We have developed a low cost wireless sensor prototype to measure the volume level of the containers. Furthermore a route system is developed to optimize the routes of the trucks and a mobile application has been developed to help drivers in their working days. In order to evaluate and validate the proposed system a practical case study in a real city environment is modeled using open data available and with the purpose of identifying limitations of the system.

  9. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    Science.gov (United States)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  10. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  11. Updraft gasification of salmon processing waste

    Science.gov (United States)

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  12. LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    Science.gov (United States)

    The purpose of this project is to test the leaching of Mineral Processing Waste (MPW) contaminated with heavy metals using scientifically defendable leaching tests other than TCLP. Past experience and literature have shown that TCLP underestimates the levels of metals such as oxo...

  13. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2017-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover......, specific methodological challenges arise when investigating waste systems, such as the allocation of impacts and the consideration of long-term emissions. The complexity of waste LCAs is mainly derived from the variability of the object under study (waste) which is made of different materials that may...

  14. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  15. Human Factor Investigation of Waste Processing System During the HI-SEAS 4 Month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    Science.gov (United States)

    Caraccio, Anne; Hintze, Paul; Miles, John D.

    2014-01-01

    NASAs Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  16. Human Factor Investigation of Waste Processing System During the HI-SEAS 4-month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    Science.gov (United States)

    Caraccio, Anne; Hintze, Paul E.; Miles, John D.

    2014-01-01

    NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  17. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  18. Multi agent gathering waste system

    OpenAIRE

    Lozano Murciego, Álvaro; Gabriel VILLARRUBIA GONZÁLEZ; Alberto LÓPEZ BARRIUSO; Daniel HERNÁNDEZ DE LA IGLESIA; Jorge REVUELTA HERRERO

    2015-01-01

    Along this paper, we present a new multi agent-based system to gather waste on cities and villages. We have developed a low cost wireless sensor prototype to measure the volume level of the containers. Furthermore a route system is developed to optimize the routes of the trucks and a mobile application has been developed to help drivers in their working days. In order to evaluate and validate the proposed system a practical case study in a real city environment is modeled using open data avai...

  19. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    Science.gov (United States)

    Choi, Jung-Hoon; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-01

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO2sbnd Al2O3sbnd B2O3 glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  20. Microbial processes in radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Karsten [Goeteborg Univ. (Sweden). Dept. of Cell and Molecular Biology, Microbiology

    2000-04-15

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  1. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  2. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  3. A process for treatment of residues from dry/semidry APC systems at municipal solid waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjelmar, O. [VKI, Hoersholm (Denmark)] Holland, D. [FLS miljoe a/s, Valby (Denmark)] Poulsen, B. [KARA, Roskilde (Denmark)

    1997-08-01

    The main objective of the project has been to establish and test a process for treatment of residues from the semidry (and dry) lime injection based APC processes at MSWIs, which will ensure that the residues can be managed in an environmentally safe manner. In pursuit of this goal, the following activities have been carried out: Performance of pilot scale extractions (approximately 50 kg of residue per batch) at the KARA MSWI in Roskilde of semidry APC system residues in order to establish and optimize process conditions. The optimization includes consideration of the possibilities for subsequent treatment/stabilization of the extracted solid phase as well as the possibility of treatment and safe discharge/utilization of the extract; Performance of chemical characterization, hydrogeochemical model calculations and experimental work in order to improve the understanding of the mechanisms and factors which for several contaminants control the equilibrium between the solid and liquid phases, both in the short and the long germ, and to use this information to obtain an environmentally acceptable method for stabilization/treatment of the extracted residues while at the same time minimizing the necessary amount of additives; production of treated residues and performance of leaching tests on these to assess and demonstrate the effectiveness of the entire process (extraction + stabilization/treatment); Evaluation of the technical, economical and environmental consequences of full scale implementation of the process. (EG) EFP-94. 19 refs.

  4. Tank waste remediation system (TWRS) mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  5. Geotechnical/geochemical characterization of advanced coal process waste streams: Task 2

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, C.J.; Olson, E.S.

    1992-09-01

    Successful disposal practices for solid wastes produced from advanced coal combustion and coal conversion processes must provide for efficient management of relatively large volumes of wastes in a cost-effective and environmentally safe manner. At present, most coal-utilization solid wastes are disposed of using various types of land-based systems, and it is probable that this disposal mode will continue to be widely used in the future for advanced process wastes. Proper design and operation of land-based disposal systems for coal combustion wastes normally require appropriate waste transfer, storage, and conditioning subsystems at the plant to prepare the waste for transport to an ultimate disposal site. Further, the overall waste management plan should include a by-product marketing program to minimize the amount of waste that will require disposal. In order to properly design and operate waste management systems for advanced coal-utilization processes, a fundamental understanding of the physical properties, chemical and mineral compositions, and leaching behaviors of the wastes is required. In order to gain information about the wastes produced by advanced coal-utilization processes, 55 waste samples from 16 different coal gasification, fluidized-bed coal combustion (FBC), and advanced flue gas scrubbing processes were collected. Thirty-four of these wastes were analyzed for their bulk chemical and mineral compositions and tested for a detailed set of disposal-related physical properties. The results of these waste characterizations are presented in this report. In addition to the waste characterization data, this report contains a discussion of potentially useful waste management practices for advanced coal utilization processes.

  6. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    Energy Technology Data Exchange (ETDEWEB)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  7. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  8. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  9. Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System

    OpenAIRE

    Thompson, Reese S

    2008-01-01

    Hydrogen production by means of anaerobic fermentation was researched utilizing three different substrates. Synthetic wastewater, dairy manure, and cheese whey were combined together at different concentrations under batch anaerobic conditions to determine the optimal hydrogen producing potential and waste treatment of each. Cheese whey at a concentration of 55% was combined with dairy manure at a concentration of 45% to produce 1.53 liters of hydrogen per liter of substrate. These results...

  10. Development and testing of the Minimum Additive Waste Stabilization (MAWS) system for Fernald wastes. Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S.S.; Matlack, K.S.; Mohr, R.K.; Brandys, M. Hojaji, H.; Bennett, S.; Ruller, J.; Pegg, I.L. [GTS Duratek, Columbia, MD (United States)

    1994-12-01

    This report presents results of a treatability study for the evaluation of the MAWS process for wastes stored at the Fernald Environmental Management Project (FEMP) site. Wastes included in the study were FEMP Pit 5 sludges, soil-wash fractions, and ion exchange media from a water treatment system supporting a soil washing system. MAWS offers potential for treating a variety of waste streams to produce a more leach resistant waste form at a lower cost than, say, cement stabilization.

  11. Proposal of recycling system for waste aluminum

    Directory of Open Access Journals (Sweden)

    Š. Valenčík

    2008-04-01

    Full Text Available Introduced work is focused on waste aluminum recycling process with objective to propose complex production system for recovering of aluminum and some aluminum alloys. Solution is supported by extended analysis concerning purpose, basis and system sequences for recyclation. Based on that, sources, possibilities and conditions for recycling are formed. This has been used in proposal of manufacturing system. The principle is the structural proposal of manufacturing system, which does not only differentiate the stage of aluminum melting process, but also related stages as gross separation, sizing, containerisation and batching, palletisation, stacking and some related operations. Production system respects technological specifications, requirements for rationalisation of manufacturing systems, technical and economical feasibility conditions and is considered in lower automation level. However production system solves complex problem of recycling of some types of aluminum, it improves flexibility, production, quality (melting by high enforcements and in protective atmosphere and extention of production (final products production.

  12. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  13. Waste management study: Process development at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes.

  14. Solid Waste Information Tracking System (SWITS), Backlog Waste Modifications, Software Requirements Specification (SRS)

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.E. [USDOE Richland Operations Office, WA (United States)

    1995-05-05

    Purpose of this document is to define the system requirements necessary to improve computer support for the WHC backlog waste business process through enhancements to the backlog waste function of the SWITS system. This SRS document covers enhancements to the SWITS system to support changes to the existing Backlog Waste screens including new data elements, label changes, and new pop-up screens. The pop-ups will allow the user to flag the processes that a waste container must have performed on it, and will provide history tracking of changes to data. A new screen will also be provided allowing Acceptable Services to perform mass updates to specific data in Backlog Waste table. The SWITS Backlog Waste enhancements in this document will support the project goals in WHC-SD-WM-003 and its Revision 1 (Radioactive Solid Waste Tracking System Conceptual Definition) for the control, tracing, and inventory management of waste as the packages are generated and moved through final disposal (cradle-to-grave).

  15. Distribution of human waste samples in relation to sizing waste processing in space

    Science.gov (United States)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  16. Effects of high salinity and constituent organic compounds on treatment of photo-processing waste by a sulfur-oxidizing bacteria/granular activated carbon sludge system.

    Science.gov (United States)

    Lin, Bin-Le; Hosomi, Masaaki; Murakami, Akihiko

    2002-02-01

    To achieve practical treatment of photo-processing waste (PW) using our previously proposed sulfur-oxidizing bacteria (SOB)/granular activated carbon (GAC) sludge system, this paper elucidates why 3- to 5-X dilution of PW was required. That is, a series of experiments were carried out to show the effects of high salinity and constituent organic compounds in PW, respectively. Both an inorganic salts system and calcination PW system showed that SOB completely oxidizes S2O(3)2- -S to SO(4)2- -S even at 12.3 or 13.6% salinity, respectively; hence the dilution requirement is not attributable to high salinity. In experiments employing SOB and SOB/GAC systems to investigate the effects of 23 constituent compounds in PW, compounds were classified into Groups I, II, IIIa, and IIIb. Even with 10 g/l GAC, the nine compounds in Group IIIb still exhibited a toxic effect on SOB activity at 1- and 3-X dilutions; thus it is these compounds that are responsible for requiring dilution of PW. Accordingly, a reduction in their use within the photodeveloping and fix-stabilizing industry, and/or use of > 10g/l GAC, are new considerations for establishing a more practical PW treatment process.

  17. Global earth systems : from waste to watts

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.

    2006-04-01

    As sanitary landfills reach capacity in North America, many municipal jurisdictions are searching for alternative environmental solutions. Global Earth Systems is a company that develops treatment technologies for solid and liquid organic materials to serve the nutrient and waste management needs of agricultural, industrial and municipal interests. Their accelerated composting system provides a practical alternative energy source of recoverable thermal energy and the generation of green electrical energy for use on site or for commercial resale. The company was initially formed to investigate aerobic composting to reduce the overall environmental impact of liquid swine manure. In 2003, an innovative technology was developed to recapture heat generated from the natural organic decomposition process. The technology extracts heat from the organic mass in a controlled system environment that enhances the thermophilic reaction in the composting material. Some systems made by the company can recover thermal energy in the medium of hot water for reuse in a variety of applications. A new system designed by the company can convert thermal energy recaptured from the decomposing mass into electricity for on-site use or resale to the power grid. The proprietary process uses a patented organic fluid in an electrical generator which operates continuously. The company has also developed a biomass energy system which processes unwanted and nuisance organic waste materials into organic fertilizer products. 5 figs.

  18. Life Cycle Assessment of Municipal Waste Management System ...

    African Journals Online (AJOL)

    Life Cycle Assessment of Municipal Waste Management System (Case Study: ... solid waste management systems for determine the optimum municipal solid waste ... include water pollution, air pollution, consumed energy and waste residues.

  19. Waste burner overfire draft system

    Energy Technology Data Exchange (ETDEWEB)

    Kahlert, G.; Pommer, L.; Davis, J.; Whebell, B.

    1977-11-22

    An overfire draft system for a waste burner is disclosed. Such system comprises air vents arranged circumferentially around the base of the burner for communicating the interior of the burner to the atmosphere and a draft modulated damper plate located in each air vent for automatically regulating the volume of overfire air delivered to the interior of the burner. Each draft modulated damper plate is provided with a lower lip which is deflected by a predetermined angle with respect to the plate to create an aerodynamic lift effect with large opening moment to assist the damper plate in its response under low air velocity conditions, and an oppositely deflected upper lip with proportionately less bent surface to avoid flutter or hunting of the damper as it approaches the maximum open position and to provide added dynamic opening force. The overfire draft system is also provided with ducts connected to the air vents and oriented so as to direct air tangentially around the base of the burner and toward the lower inside wall of the burner so as to minimize the disturbance of the inside air. The waste burner may also be provided with draft modulated or forced air vents arranged circumferentially at mid-elevation around the burner and duct means connected to such vents and directed at a small angle with the radius of the burner so as to cause turbulence in the flame zone and reduce the vertical velocity of gases above the fire, thus reducing emission of particulate materials.

  20. Part 1: The role of waste data in building knowledge: the South African waste information system.

    Science.gov (United States)

    Godfrey, Linda; Scott, Dianne; Difford, Mark; Trois, Cristina

    2012-11-01

    An empirical study was undertaken with 31 organisations submitting data to the South African Waste Information System (SAWIS) in order to explore the relationship between data and resultant waste knowledge generated through a process of learning. The results show that of the three constructs of knowledge (experience, data/information, and theory), experience has the greatest influence on building waste knowledge, nearly twice that of data/information and three times that of theory. Together the three constructs account for 54.1% of the variance in knowledge. Respondents from municipalities and private waste organisations reflect two distinct sub-groups in the data set. While the theoretical model remains the same for the two sub-groups, the way in which knowledge is constructed, and the variance in knowledge explained by the model, differs for the two. A mixed methods research design, combining quantitative statistical analysis and rich qualitative data, contributes to a comprehensive interpretation of the role of waste data in building knowledge in South Africa. While waste data has a minor influence on building knowledge, respondents acknowledge that waste data does have a positive impact on the way their organisations manage waste. However, it is not the data, but rather the resultant waste knowledge and raised level of awareness that causes the operational response. Experience is obtained predominantly through learning from others. Respondents in municipalities, emphasised learning from consultants, landfill site contractors, and colleagues in city-twinning programmes, while respondents in private waste companies, emphasised learning from experienced, senior colleagues.

  1. Waste Emplacement/Retrieval System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Waste Emplacement/Retrieval System transports Waste Packages (WPs) from the Waste Handling Building (WHB) to the subsurface area of emplacement, and emplaces the WPs once there. The Waste Emplacement/Retrieval System also, if necessary, removes some or all of the WPs from the underground and transports them to the surface. Lastly, the system is designed to remediate abnormal events involving the portions of the system supporting emplacement or retrieval. During emplacement operations, the system operates on the surface between the WHB and North Portal, and in the subsurface in the North Ramp, access mains, and emplacement drifts. During retrieval or abnormal conditions, the operations areas may also extend to a surface retrieval storage site and South Portal on the surface, and the South Ramp in the subsurface. A typical transport and emplacement operation involves the following sequence of events. A WP is loaded into a WP transporter at the WHB, and coupled to a pair of transport locomotives. The locomotives transport the WP from the WHB, down the North Ramp, and to the entrance of an emplacement drift. Once docked at the entrance of the emplacement drift, the WP is moved outside of the WP transporter, and engaged by a WP emplacement gantry. The WP emplacement gantry lifts the WP, and transports it to its emplacement location, where the WP is then lowered to its final resting position. The WP emplacement gantry remains in the drift while the WP transporter is returned to the WHB by the locomotives. When the transporter reaches the WHB, the sequence of operations is repeated. Retrieval of all the WPs, or a large group of WPs, under normal conditions is achieved by reversing the emplacement operations. Retrieval of a small set of WPs, under normal or abnormal conditions, is known as recovery. Recovery performed under abnormal conditions will involve a suite of specialized equipment designed to perform a variety of tasks to enable the recovery process. Recovery

  2. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  3. A design methodology to reduce waste in the construction process

    Institute of Scientific and Technical Information of China (English)

    AndrewN.BALDWIN; SimonA.AUSTIN; AndrewKEYS

    2003-01-01

    This paper describes a conceptual tool to enable construction professional to identify where waste is generated during the construction of buildings and address how it can be reduced. It allows an improvement in the waste management practices on site by forecasting future waste types and volumes. It will reduce waste volumes on site through identification of wasteful design practices. The tool contributes to all stages of design and construction. At the Concept Stage of Design the proposed methodology provides a framework for reducing waste through better informed decisions. At the Detailed Design Stage it gives a methodology to address the areas of concern and provide focused information to aid the reduction of waste through informed design decisions. During construction it provides a tool to predict waste types arising on site thus allowing a system of proaclive waste management that will aid skip segregation strategies leading to improved waste recycling and waste reuse.

  4. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.

  5. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    Energy Technology Data Exchange (ETDEWEB)

    Bitz, D.A. [Independent Consultant, Kirkland, WA (United States); Berry, D.L. [Sandia National Labs., Albuquerque, NM (United States); Jardine, L.J. [Lawrence Livermore National Lab., CA (United States)

    1994-03-01

    Hanford`s underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report.

  6. Systems engineering programs for geologic nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

    1980-06-01

    The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

  7. Assessing waste management systems using reginalt software

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs.

  8. Study on the construction and operation for management system of municipal domestic wastes

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Wang Shuqiang; Chen Jingxin

    2006-01-01

    In recent years, the quantity of our country's municipal domestic wastes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environmental pollution and so on. By holding waste minimization as the center, the developed countries have formed perfect waste management system. Based on analyzing the status quo and problems of processing in our country, on the principle of benefit, scale,waste minimization, reclamation and hazard-free treatment, according to the recycling model of processing, the article has constructed our country's domestic wastes management system, proposed the measures of promoting the operation of system. It has realized the transformation of waste management system from terminal disposal to source reduction,achieved the goals, including domestic wastes categorizing and reclaiming, industrialization and non-pollution processing,and finally brought sustainable development for resources, environment, economy and society.

  9. Waste management system optimisation for Southern Italy with MARKAL model

    Energy Technology Data Exchange (ETDEWEB)

    Salvia, M.; Cosmi, C. [Istituto di Metodologie Avanzate di Analisi Ambientale, Consiglio Nazionale delle Ricerche, C. da S. Loja, 85050 (PZ) Tito Scalo (Italy); Macchiato, M. [Dipartimento di Scienze Fisiche, Universita Federico II, Via Cintia, 80126 Napoli (Italy); Mangiamele, L. [Dipartimento di Ingegneria e Fisica dell' Ambiente, Universita degli Studi della Basilicata, C. da Macchia Romana, 85100 Potenza (Italy)

    2002-01-01

    The MARKAL models generator was utilised to build up a comprehensive model of the anthropogenic activities system which points out the linkages between productive processes and waste disposal technologies. The aim of such a study is to determine the optimal configuration of the waste management system for the Basilicata region (Southern Italy), in order to support the definition of the regional waste management plan in compliance with the Italian laws. A sensitivity analysis was performed to evaluate the influence of landfilling fees on the choice of waste processing technologies, in order to foster waste management strategies which are environmentally sustainable, economically affordable and highly efficient. The results show the key role of separate collection and mechanical pre-treatments in the achievement of the legislative targets.

  10. Flash Cracking Reactor for Waste Plastic Processing

    Science.gov (United States)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  11. Double Shell Tank (DST) Process Waste Sampling Subsystem Specification

    Energy Technology Data Exchange (ETDEWEB)

    RASMUSSEN, J.H.

    2000-05-03

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Process Waste Sampling Subsystem which supports the first phase of Waste Feed Delivery.

  12. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2011-10-12

    ...: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special......

  13. Waste Receiving and Processing, Module 2A, feed specification: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, O.L.; Sheriff, M.L.

    1994-11-14

    Detailed descriptions of the various mixed low-level waste feed streams that will be processed in the Waste Receiving and Processing Facility, Module 2A (WRAP 2A) are provided. Feed stream descriptions are based on available reports, the solid waste information tracking system database, and the 1993 solid waste forecast data. Available chemical and physical attributes, radionuclide data, waste codes, and packaging information are shown for 15 feed streams. The information sources and methodology for obtaining projections for WRAP 2A expected feed stream volumes also are described.

  14. Buried waste containment system materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  15. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.

    Science.gov (United States)

    Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab

  16. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  17. Pyrolysis processing for solid waste resource recovery

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  18. Utilization of waste heat from energy conversion and industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.R.; Hamilton, R.W.

    The laws of thermodynamics state that no process of energy transformation can take place with perfect efficiency--some waste heat is always produced. The generation of waste heat from energy conversion and industrial processes are discussed. First-law and second-law efficiencies are defined. After listing the amounts of waste heat produced, some technological options for reducing waste heat or using it for other purposes, such as district heating, are described.

  19. Healthcare waste generation and its management system: the case ...

    African Journals Online (AJOL)

    Healthcare waste generation and its management system: the case of health ... in the course of activities, the generation of hazardous and non hazardous waste is a ... Segregation of wastes and pre treatment of infectious wastes were not ...

  20. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  1. Tank waste remediation system engineering plan

    Energy Technology Data Exchange (ETDEWEB)

    Rifaey, S.H.

    1998-01-09

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

  2. Application of the analytical hierarchy process to establish health care waste management systems that minimise infection risks in developing countries

    CSIR Research Space (South Africa)

    Brent, AC

    2007-01-01

    Full Text Available . This is achieved by evaluating the way in which the AHP can best be combined with a life cycle management (LCM) approach, and addressing a main objective of HCWM systems, i.e. to minimize infection of patients and workers within the system. The modified approach...

  3. Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: a case study in Mahshahr County, Iran.

    Science.gov (United States)

    Alavi, Nadali; Goudarzi, Gholamreza; Babaei, Ali Akbar; Jaafarzadeh, Nemat; Hosseinzadeh, Mohsen

    2013-01-01

    Landfill siting is a complicated process because it must combine social, environmental and technical factors. In this study, in order to consider all factors and rating criteria, a combination of geographic information systems and analytical hierarchy process (AHP) was used to determine the best sites for disposal of municipal solid waste (MSW) in Mahshahr County, Iran. In order to the decision making for landfill siting a structural hierarchy formed and the most important criteria: surface water, sensitive ecosystems, land cover, urban and rural areas, land uses, distance to roads, slope and land type were chosen according to standards and regulations. Each criterion was evaluated by rating methods. In the next step the relative importance of criteria to each other was determined by AHP. Land suitability for landfill was evaluated by simple additive weighting method. According to the landfill suitability map, the study area classified to four categories: high, moderate, low and very low suitability areas, which represented 18.6%, 20.3%, 1.6 and 0.8% of the study area respectively. The other 58.7% of the study area was determined to be completely unsuitable for landfill. By considering the parameters, such as the required area for landfill, distance to MSW generation points, and political and management issues, and consulting with municipalities managers in the study area, six sites were chosen for site visiting. The result of field study showed that it is a supplementary, and necessary, step in finding the best candidate landfill site from land with high suitability.

  4. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  5. Waste Emplacement/Retrieval System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Waste Emplacement/Retrieval System transports Waste Packages (WPs) from the Waste Handling Building (WHB) to the subsurface area of emplacement, and emplaces the WPs once there. The system also, if necessary, removes some or all of the WPs from the underground and transports them to the surface. Lastly, the system is designed to remediate abnormal events involving the portions of the system supporting emplacement or retrieval. During emplacement operations, the system operates on the surface between the WHB and North Portal, and in the subsurface in the North Ramp, access mains, and emplacement drifts. During retrieval or abnormal conditions, the operations areas may also extend to a surface retrieval storage site and South Portal on the surface, and the South Ramp in the subsurface. A typical transport and emplacement operation involves the following sequence of events. A WP is loaded into a WP transporter at the WHB, and coupled to a pair of transport locomotives. The locomotives transport the WP from the WHB, down the North Ramp, and to the entrance of an emplacement drift. Once docked at the entrance of the emplacment drift, the WP is moved outside of the WP transporter, and engaged by a WP emplacement gantry. The gantry lifts the WP, and transports it to its emplacement location, where the WP is then lowered to its final resting position. The gantry remains in the drift while the WP transporter is returned to the WHB by the locomotives. When the transporter reaches the WHB, the sequence of operations is repeated. Retrieval of all the WPs, or a large group of WPs, under normal conditions is achieved by reversing the emplacement operations. Retrieval of a small set of WPs, under normal or abnormal conditions, is known as recovery. Recovery performed under abnormal conditions will involve a suite of specialized equipment designed to perform a variety of tasks to enable the recovery process. Recovery after abnormal events may require clearing of equipment

  6. Effects of biodrying process on municipal solid waste properties.

    Science.gov (United States)

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas.

  7. 广东省电子废物回收处理体系建设对策研究%Study on Development Strategies of Building Electronic Waste Recovery Processing System in Guangdong Province

    Institute of Scientific and Technical Information of China (English)

    廖程浩; 张永波; 王明旭; 王春霖

    2012-01-01

    The amount of electronic wastes is very large in Guangdong Province.In order to recycle the resources and avoid the environmental pollution cause by dismantling the electronic waste,it is pressing to build a standardized recovery and processing system.After analyzing the current situation and problems of electronic waste recovery in Guangdong Province,this paper proposes to develop a recovery processing system that include centralized treatment sub-system,industrial recycling sub-system and unified monitoring sub-system.Countermeasures for building the system are studied to facilitate the innocuous reducing and electronic wastes recycling.%广东省的电子废物产生量大,亟须建立规范的回收处理处置体系,实现资源的有序回收利用,避免电子废物的不当拆解处理造成环境污染。针对广东省电子废物回收处理的现状和存在问题,提出建设规模化的集中处理体系,产业化的回收利用体系和规范化的统一监管体系的相关对策,以促进电子废物的无害化、减量化和资源化处理处置。

  8. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  9. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    Energy Technology Data Exchange (ETDEWEB)

    TRINER, G.C.

    1999-11-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  10. Application of pyrolysis process in processing of mixed food wastes

    Directory of Open Access Journals (Sweden)

    Grycová Barbora

    2016-03-01

    Full Text Available The food industry produces large amounts of solid and also liquid wastes. Different waste materials and their mixtures were pyrolysed in the laboratory pyrolysis unit to a final temperature of 800°C with a 10 minute delay at the final temperature. After the pyrolysis process of the selected wastes a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The highest concentration of methane, hydrogen and carbon monoxide were analyzed during the 4th gas sampling at a temperature of approx. 720–780°C. The concentration of hydrogen was measured in the range from 22 to 40 vol.%. The resulting iodine numbers of samples CHFO, DS, DSFW reach values that indicate the possibility of using them to produce the so-called “disposable sorbents” in wastewater treatment. The WC condensate can be directed to further processing and upgrading for energy use.

  11. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  12. Waste Heat Recapture from Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  13. Waste in health information systems: a systematic review.

    Science.gov (United States)

    Awang Kalong, Nadia; Yusof, Maryati

    2017-05-08

    Purpose The purpose of this paper is to discuss a systematic review on waste identification related to health information systems (HIS) in Lean transformation. Design/methodology/approach A systematic review was conducted on 19 studies to evaluate Lean transformation and tools used to remove waste related to HIS in clinical settings. Findings Ten waste categories were identified, along with their relationships and applications of Lean tool types related to HIS. Different Lean tools were used at the early and final stages of Lean transformation; the tool selection depended on the waste characteristic. Nine studies reported a positive impact from Lean transformation in improving daily work processes. The selection of Lean tools should be made based on the timing, purpose and characteristics of waste to be removed. Research limitations/implications Overview of waste and its category within HIS and its analysis from socio-technical perspectives enabled the identification of its root cause in a holistic and rigorous manner. Practical implications Understanding waste types, their root cause and review of Lean tools could subsequently lead to the identification of mitigation approach to prevent future error occurrence. Originality/value Specific waste models for HIS settings are yet to be developed. Hence, the identification of the waste categories could guide future implementation of Lean transformations in HIS settings.

  14. The use KPI's to determine the waste in production process

    Science.gov (United States)

    Borsos, G.; Iacob, C. C.; Calefariu, G.

    2016-11-01

    In theory and practice of management is well-known Lean approach about forms of waste from production processes (Muda) and the method VSM (Value Stream Map), one of the most effective methods for determining the activities generating value within industrial companies. It is also obvious concern of the specialists for performance measurement regardless of purview of the organizations. The literature review has shown that the link between performance indicators and the objectives of the companies is researched in detail. However, the correlation between indicators and the forms of waste that generate deviations from the setpoints is rather nature practical and it depends on the talent and managerial skills of those directing production processes. The paper presents the results of a applied study, performed by the authors, through which it was has sought to will create a system of performance indicators specific to manufacturing activity that to be a useful tool to quantify the losses and to determining ways to improve default losses.

  15. Advances in modeling plastic waste pyrolysis processes

    Directory of Open Access Journals (Sweden)

    Y. Safadi, J. Zeaiter

    2014-01-01

    Full Text Available The tertiary recycling of plastics via pyrolysis is recently gaining momentum due to promising economic returns from the generated products that can be used as a chemical feedstock or fuel. The need for prediction models to simulate such processes is essential in understanding in depth the mechanisms that take place during the thermal or catalytic degradation of the waste polymer. This paper presents key different models used successfully in literature so far. Three modeling schemes are identified: Power-Law, Lumped-Empirical, and Population-Balance based equations. The categorization is based mainly on the level of detail and prediction capability from each modeling scheme. The data shows that the reliability of these modeling approaches vary with the degree of details the experimental work and product analysis are trying to achieve.

  16. Environmental Factor{trademark} system: RCRA hazardous waste handler information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Environmental Factor{trademark} RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collected every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information -- dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.

  17. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2011-12-08

    ....: EPA-R08-RCRA-2011-0823; FRL-9502-4] Hazardous Waste Management System; Identification and Listing of... industrial solid waste. If finalized, the EPA would conclude that ConocoPhillips' petitioned waste is... subject to Federal RCRA delisting, to manage industrial waste. II. Background A. What is a listed waste...

  18. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  19. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  20. THOREX processing and zeolite transfer for high-level waste stream processing blending

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services` (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility.

  1. Tank waste remediation system systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

  2. Intelligent information system for waste management; Jaetehuollon aelykaes tietojaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nuortio, T. [Kuopio Univ. (Finland)

    2005-07-01

    'iWaste - Intelligent Information System for Waste Management' - was a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project was to improve the management and use of waste management data. Also the project focused on the development of information management systems. The results of the project are numerous. A study of the present state of information management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, communication requirements among different actors, and the characteristics and applications of the software products. The conceptual data model of waste management was developed and resulted as the hyper document for connecting waste and information management specialists, and for research and educational purposes. Also, this model can be used for the development of political regulation. Methodologies and models for processing data into information for decision making were developed. The methodologies and models include e.g. data mining techniques, prediction of waste generation and optimisation of waste pick-up and transport. (orig.)

  3. Development of a Radioactive Waste Assay System

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Duck Won; Song, Myung Jae; Shin, Sang Woon; Sung, Kee Bang; Ko, Dae Hach [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kim, Kil Jeong; Park, Jong Mook; Jee, Kwang Yoong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Nuclear Act of Korea requires the manifest of low and intermediate level radioactive waste generated at nuclear power plants prior to disposal sites.Individual history records of the radioactive waste should be contained the information about the activity of nuclides in the drum, total activity, weight, the type of waste. A fully automated nuclide analysis assay system, non-destructive analysis and evaluation system of the radioactive waste, was developed through this research project. For the nuclides that could not be analysis directly by MCA, the activities of the representative {gamma}-emitters(Cs-137, Co-60) contained in the drum were measured by using that system. Then scaling factors were used to calculate the activities of {alpha}, {beta}-emitters. Furthermore, this system can automatically mark the analysis results onto the drum surface. An automated drum handling system developed through this research project can reduce the radiation exposure to workers. (author). 41 refs., figs.

  4. Lessons learned in TRU waste process improvement at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, J. C.; Huchton, J. (Judith); Martin, B. (Beverly); Lindahl, P. (Peter); Miller, S. (Scott); Hartwell, W. B. (Ware B.)

    2004-01-01

    Typical papers that discuss lessons learned or quality improvement focus on the challenge for a production facility reaching six sigma (3.4 Defects Per Million Opportunities) from five sigma. This paper discusses lessons learned when the Los Alamos National Laboratory's (LANL) transuranic (TRU) waste management project was challenged to establish a production system to meet the customer's expectations. The target for FY 2003 was set as two shipments of TRU waste per week leaving the site. The average for the four previous years (FY99-02) was about one shipment every two months. LANL recognized that, despite its success in 1999 as the first site to ship TRU waste to open the Waste Isolation Pilot Plant (WIPP), significant changes to the way business was being done were required to move to a production mode. Process improvements began in earnest in April 2002. This paper discusses several of the initiatives LANL took to achieve forty-five shipments in FY03. The paper is organized by topic into five major areas that LANL worked to get the job done.

  5. Methodology for assessing performance of waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.K.; Herzenberg, C.L.; Camasta, S.F.

    1988-01-01

    The purpose of the methodology provided in this report is to select the optimal way to manage particular sets of waste streams from generation to disposal in a safe and cost-effective manner. The methodology described is designed to review the entire waste management system, assess its performance, ensure that the performance objectives are met, compare different LLW management alternatives, and select the optimal alternative. The methodology is based on decision analysis approach, in which costs and risk are considered for various LLW management alternatives, a comparison of costs, risks, and benefits is made, and an optimal system is selected which minimizes costs and risks and maximizes benefits. A ''zoom-lens'' approach is suggested, i.e., one begins by looking at gross features and gradually proceeds to more and more detail. Performance assessment requires certain information about the characteristics of the waste streams and about the various components of the waste management system. Waste acceptance criteria must be known for each component of the waste management system. Performance assessment for each component requires data about properties of the waste streams and operational and design characteristics of the processing or disposal components. 34 refs., 2 figs., 1 tab.

  6. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  7. Pyrolysis Processing of Waste Peanuts Crisps

    Directory of Open Access Journals (Sweden)

    Grycová Barbora

    2015-12-01

    Full Text Available Wastes are the most frequent "by-product" of human society. The Czech Republic still has a considerable room for energy reduction and material intensiveness of production in connection with the application of scientific and technical expertise in the context of innovation cycles. Pyrolysis waste treatment is a promising alternative to the production of renewable hydrogen as a clean fuel. It can also reduce the environmental burden and the amount of waste in the environment at the same time.

  8. The Use of Microwave Incineration to Process Biological Wastes

    Science.gov (United States)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)

    1994-01-01

    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  9. Process analysis transit of municipal waste. Part II - Domestic provisions of law

    Directory of Open Access Journals (Sweden)

    Starkowski Dariusz

    2017-06-01

    Full Text Available In 2013, the Polish legal system referring to municipal waste management was restructured in a revolutionary way. The analysis of new provisions of law described in the article requires particular attention, taking into account their place in the entire system of dealing with waste and connections with the remaining elements of this system. At present, Polish regulations lay down the rules of conduct with all types of waste, diversifying a subjective area of responsibility. These assumptions are determined by the provisions of law that are in force in the Republic of Poland. At present, the system of legal provisions is quite complex; however, the provisions of law of the EU constitute its base (the first article. At the level of Polish law, the goals and tasks concerned with dealing with waste were set forth, which leads to tightening of the system. All actions in this respect - from propagating the selective accumulation and collection of municipal waste, keeping the established levels of recycling and recycling of packaging wastes, and limiting the mass of biodegradable waste directed at the storage - is only a beginning of the road to reduction of environmental risks. In this case, permanent monitoring of proper waste dealing in the commune, the province as well as the entire country is essential. Third part of the article will present characterization, division, classification and identification of waste, together with the aspects of logistic process of municipal waste collection and transport.

  10. Electronic Waste and Existing Processing Routes: A Canadian Perspective

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2016-11-01

    Full Text Available Electrical and electronic products have become an integral part of the current economy and, with the development of newer technologies, the life span of these products are getting shorter. As a consequence, the volume of electronic waste is increasing drastically around the globe. With the implementation of new rules, regulations, and policies by the government, the landfilling of electronic waste has been reduced. The presence of valuable metals in the e-waste stream provides a major economic benefit for recycling industries but, due to the presence of hazardous materials, a proper recycling technique is required prior to the disposal of the e-waste. The total e-waste generated in Canada was 725 kt in 2014. There are several organizations currently working in various provinces to deal with the collection and recycling of e-waste. These organizations collected nearly 20% of the total e-waste generated in 2014. The collection rate for e-waste can be boosted by increasing awareness and by creating more centers to collect all kinds of e-waste. The collected e-waste is processed at local processing facilities mostly dealing with dismantling and hazardous material removal processes and then shipping the remaining material to a central location for subsequent processing.

  11. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    Science.gov (United States)

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  12. Tank waste remediation system operational scenario

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  13. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  14. Evaluation of mercury in liquid waste processing facilities - Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. E. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. E. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  15. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, B. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  16. Bioactives from fruit processing wastes: Green approaches to valuable chemicals.

    Science.gov (United States)

    Banerjee, Jhumur; Singh, Ramkrishna; Vijayaraghavan, R; MacFarlane, Douglas; Patti, Antonio F; Arora, Amit

    2017-06-15

    Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.

  17. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  18. Tank waste remediation system: An update

    Energy Technology Data Exchange (ETDEWEB)

    Alumkal, W.T.; Babad, H.; Dunford, G.L.; Honeyman, J.O.; Wodrich, D.D.

    1995-02-01

    The US Department of Energy`s Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M{sup 3} (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of {sup 90}Sr and {sup 137}Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal.

  19. Smart Garbage Monitoring System for Waste Management

    Directory of Open Access Journals (Sweden)

    Mohd Yusof Norfadzlia

    2017-01-01

    Full Text Available Piles of rubbish are one of the major problems faced by most people in Malaysia, especially those who live in flats, as the number of bins is limited and shared among all residents. It may cause pollutions, which may lead to sanitary issues and diseases. This project presents the development of a smart garbage monitoring system in order to measure waste level in the garbage bin in real-time and to alert the municipality, in particular cases, via SMS. The proposed system is consisted by the ultrasonic sensor to measure the waste level, the GSM module to send the SMS, and an Arduino Uno which controls the system operation. It supposes to generate and send the warning messages to the municipality via SMS when the waste bin is full or almost full, so the garbage can be collected immediately. Furthermore, it is expected to contribute to improving the efficiency of the solid waste disposal management.

  20. Tank waste remediation system mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Acree, C.D.

    1998-01-06

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.

  1. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  2. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  3. Solid Waste Management System: Public-Private Partnership, the Best System for Developing Countries

    Directory of Open Access Journals (Sweden)

    Dr. Nabukeera Madinah

    2016-04-01

    Full Text Available Solid waste management (SWM is a major public health and environmental concern in urban areas of many developing countries. Nairobi’s solid waste situation, which could be taken to generally represent the status which is largely characterized by low coverage of solid waste collection, pollution from uncontrolled dumping of waste, inefficient public services, unregulated and uncoordinated private sector and lack of key solid waste management infrastructure. This paper recapitulates on the public-private partnership as the best system for developing countries; challenges, approaches, practices or systems of SWM, and outcomes or advantages to the approach; the literature review focuses on surveying information pertaining to existing waste management methodologies, policies, and research relevant to the SWM. Information was sourced from peer-reviewed academic literature, grey literature, publicly available waste management plans, and through consultation with waste management professionals. Literature pertaining to SWM and municipal solid waste minimization, auditing and management were searched for through online journal databases, particularly Web of Science, and Science Direct. Legislation pertaining to waste management was also researched using the different databases. Additional information was obtained from grey literature and textbooks pertaining to waste management topics. After conducting preliminary research, prevalent references of select sources were identified and scanned for additional relevant articles. Research was also expanded to include literature pertaining to recycling, composting, education, and case studies; the manuscript summarizes with future recommendationsin terms collaborations of public/ private patternships, sensitization of people, privatization is important in improving processes and modernizing urban waste management, contract private sector, integrated waste management should be encouraged, provisional government

  4. Selective Oxidation of Organic Compounds in Waste Water by ozone-based oxidation processes

    NARCIS (Netherlands)

    Boncz, M.A.

    2002-01-01

    For many different types of waste water, treatment systems have been implemented in the past decades. Waste water treatment is usually performed by biological processes, either aerobic or anaerobic, complemented with physical / chemical post treatment techniques. However, in so

  5. Environment. Biological processing of wastes; Environnement. Traitement biologique des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, R. [Institut National des Sciences Appliquees, INSA, Lab. d' Analyse Environnementale des Procedes et des Systemes Industriels, 69 - Villeurbanne (France)

    2001-01-01

    The main principle of the biological processing is the utilization of microbial activities by a control stimulation in order to decrease the wastes harmful effects, or by an energetic valorization. This paper deals with the solid wastes or the sludges. After a short presentation of the concerned wastes, their metabolism and their consequences, the author details two treatments: the composting (aerobic) and the methanization (anaerobic). The last part is devoted to the alcoholic fermentation and the industrial wastes (non agricultural) processing. (A.L.B.)

  6. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: influence of aggregate formation on process stability.

    Science.gov (United States)

    Kleyböcker, A; Liebrich, M; Kasina, M; Kraume, M; Wittmaier, M; Würdemann, H

    2012-06-01

    Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH>7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.

  7. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  8. ASSESSMENT OF ENERGY SAVING IN WASTE RECYCLING USING SYSTEM DYNAMICS

    Directory of Open Access Journals (Sweden)

    Eugênio de Oliveira Simonetto

    2013-06-01

    Full Text Available Recycling is a topic of great importance in integrated waste management, evidence of this is verified in the National Policy of Solid Waste, decreed in 2010, where it is considered one of the priorities. In this article is presented a computer simulation model, since their development until its validation, which aims to support environmental managers in their decisions regarding the definition and / or maintenance of solid waste policies recycling, as well as evaluating the benefits of process in the environment (in this article we evaluated the energy savings. For the model development was considered: the rate of natural population growth (births and deaths, percentage of solid waste recycled (for each type of material, gravimetric composition of the material in the total waste generated, the amount of waste generated per inhabitant and energy savings caused by each distinct type of material. Through the model results generated, end users (environmental managers thereof may, for example, set incentives to reduce the total generation of solid waste, produce campaigns enhancing reuse and recycling and to assess the relative benefits of energy savings caused by recycling. Model validation was through analysis of future scenarios for a given municipality in southern Brazil. For modeling and system validation was used Vensim from Ventana Systems.

  9. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  10. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  11. Development of Waste Reduction System of Wastewater Treatment Process Using a Moss: Production of Useful Materials from Remainder of a Moss

    Science.gov (United States)

    Fumihisa, Kobayashi

    Landfill leachate pollution presents a serious environmental problem. It would be valuable to develop a sustainable method, one that is inexpensive and requires little energy, to eliminate the pollution and dispose of the waste. In a previous study, we reported the results of a leachate treatment for landfills in which we relied on the moss, Scopelophia cataractae, to support a sustainable method of waste reduction. In this study, for the development of a waste reduction system of landfill leachate treatment, we attempted to produce zinc as useful metal and ethanol as fuel from the remainder of moss after wastewater treatment. Steam explosions, which were used as physicochemical pretreatments to expose the raw material to saturated steam under high pressure and temperature, were used to pretreat the moss. By electrolysis, zinc recovered, and the maximum zinc recovery after wastewater treatment was 0.504 at 2.0 MPa steam pressure (211 °C) and 5 min steaming time. After that time, by simultaneous saccharification and fermentation using a Meicelase and Saccharomyces cerevisiae AM12, 0.42 g dm-3 of the maximum ethanol concentration was produced from 10 g dm-3 of exploded moss at 2.5 MPa steam pressure (223 °C) and 1 min steaming time.

  12. Development of a Universal Waste Management System

    Science.gov (United States)

    Stapleton, Thomas J.; Baccus, Shelley; Broyan, James L., Jr.

    2013-01-01

    NASA is working with a number of commercial companies to develop the next low Earth orbit spacecraft. The hardware volume and weight constraints are similar to or greater than those of the Apollo era. This, coupled with the equally demanding cost challenge of the proposed commercial vehicles, causes much of the Environmental Control and Life Support System (ECLSS) designs to be reconsidered. The Waste Collection System (WCS) is within this group of ECLSS hardware. The development to support this new initiative is discussed within. A WCS concept - intended to be common for all the vehicle platforms currently on the drawing board - is being developed. The new concept, referred to as the Universal Waste Management System (UWMS), includes favorable features from previous designs while improving on other areas on previous Space Shuttle and the existing International Space Station (ISS) WCS hardware, as needed. The intent is to build a commode that requires less crew time, improved cleanliness, and a 75% reduction in volume and weight compared to the previous US ISS/Extended Duration Orbitor WCS developed in the 1990s. The UWMS is most similar to the ISS Development Test Objective (DTO) WCS design. It is understood that the most dramatic cost reduction opportunity occurs at the beginning of the design process. To realize this opportunity, the cost of each similar component between the UWMS and the DTO WCS was determined. The comparison outlined were the design changes that would result with the greatest impact. The changes resulted in simplifying the approach or eliminating components completely. This initial UWMS paper will describe the system layout approach and a few key features of major components. Future papers will describe the UWMS functionality, test results, and components as they are developed.

  13. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  14. The Characterization of a Bauxite Waste From The Bayer Process

    Directory of Open Access Journals (Sweden)

    Nevin Yalçın

    2001-06-01

    Full Text Available The Bayer process for the alumina frombauxite produce a high quantity of waste in the formof mud. This waste -red mud- ııresent seriousproblems on environmental pollution. A possiblesolution for these wastes would be the utilization atthe ceramic industry. Because of this, thecharacterization of a bauxite 'vaste has beenperformed using various techniques. The particle sizedistribution licd bet1veen 1 and 30 J.lm. The meandeıısit

  15. A Regulatory Analysis and Reassessment of U.S. Environmental Protection Agency Listed Hazardous Waste Numbers for Applicability to the INTEC Liquid Waste System

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, K.L.; Venneman, T.E.

    1998-12-01

    This report concludes that there are four listed hazardous waste numbers (F001, F002, F005, and U134) applicable to the waste in the Process Equipment Waste Evaporator (PEWE) liquid waste system at the Idaho National Engineering and Environmental Laboratory. The chemical constituents associated with these listed hazardous waste numbers, including those listed only for ignitability are identified. The RCRA Part A permit application hazardous waste numbers identify chemical constituents that may be treated or stored by the PEWE liquid waste system either as a result of a particular characteristic (40 CFR, Subpart C) or as a result of a specific process (40 CFR 261, Subpart D). The RCRA Part A permit application for the PEWE liquid waste system identifies the universe of Environmental Protection Agency (EPA) hazardous waste numbers [23 characteristic (hazardous waste codes) numbers and 105 listed numbers (four F-listed hazardous waste numbers, 20 P-listed hazardous waste numbers, and 81 U-listed hazardous waste numbers)] deemed acceptable for storage and treatment. This evaluation, however, identifies only listed wastes (and their chemical constituents) that have actually entered the PEWE liquid waste system and would, therefore, be assigned to the PEWE liquids and treatment residuals.

  16. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  17. Torrefaction Processing of Human Fecal Waste Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New technology is needed to collect, stabilize, safen, recover useful materials, and store human fecal waste for long duration missions. The current SBIR Phase I...

  18. Application of advanced oxidative process in treatment radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Catia; Sakata, Solange K.; Ferreira, Rafael V.P.; Marumo, Julio T., E-mail: jtmarumo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H{sub 2}O{sub 2} / Fe{sup +2}) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H{sub 2O}2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO{sub 3} as a white precipitate resulting from the reaction between the Ba(OH){sub 2} and the CO{sub 2} from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe{sup +2} /H{sub 2}O{sub 2} 30%) at 100 deg C after 2 hours. (author)

  19. Waste container weighing data processing to create reliable information of household waste generation.

    Science.gov (United States)

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations.

  20. Bio-hydrogen production from tempeh and tofu processing wastes via fermentation process using microbial consortium: A mini-review

    Science.gov (United States)

    Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad

    2017-03-01

    One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.

  1. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  2. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identifying and Listing Hazardous Waste... permitted, licensed, or registered by a State to manage industrial solid waste. The rule also imposes... per year from the list of hazardous wastes. The Agency has decided to grant the petition based on an...

  3. Synthesis and evaluation of potential ligands for nuclear waste processing

    NARCIS (Netherlands)

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In

  4. New growing media and value added organic waste processing

    NARCIS (Netherlands)

    Blok, C.; Rijpsma, E.; Ketelaars, J.J.M.H.

    2016-01-01

    Public pressure to use peat alternatives in horticultural rooting media offers room for the re-use of local organic waste materials. The re-use of organic wastes requires value added processing such as composting, co-composting, digestion, fractioning/sieving, pressing, binding, stabilising by

  5. New growing media and value added organic waste processing

    NARCIS (Netherlands)

    Blok, C.; Rijpsma, E.; Ketelaars, J.J.M.H.

    2016-01-01

    Public pressure to use peat alternatives in horticultural rooting media offers room for the re-use of local organic waste materials. The re-use of organic wastes requires value added processing such as composting, co-composting, digestion, fractioning/sieving, pressing, binding, stabilising by to

  6. Synthesis and evaluation of potential ligands for nuclear waste processing

    NARCIS (Netherlands)

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In

  7. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    Science.gov (United States)

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  8. METALS LEACHING FROM A MINERAL PROCESSING WASTE: A COLUMN STUDY

    Science.gov (United States)

    A mineral processing waste was used to study the effect of liquid to solid ratio (L/S) on the leaching behavior of metals. Leaching tests in the form of column and batch studies were carried out to investigate liquid to solid ratios ranging from 0.7 to 50. Although the waste pass...

  9. Waste Minimization Through Process Integration and Multi-objective Optimization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.

  10. Eco-friendly copper recovery process from waste printed circuit boards using Fe³⁺/Fe²⁺ redox system.

    Science.gov (United States)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila; Imre-Lucaci, Árpád; Ilea, Petru

    2015-06-01

    The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe(3+) combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%.

  11. Waste incineration corrosion processes: Oxidation mechanisms by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F.J.; Hierro, M.P.; Nieto, J. [Departamento de Ciencia de los Materiales. Facultad de Ciencias Quimicas, Grupo de Investigacion de Ingenieria de Superficies, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2008-07-15

    Molten chloride mixtures are formed in waste incineration plants during waste firing and energy production. These mixtures are responsible for degradation processes like hot corrosion. In order to evaluate the damage of molten salt mixtures in waste incineration environments, the alloys 625 and 617 were exposed beneath a molten KCl-ZnCl{sub 2} mixture at 650 C in air. The corrosion process was monitored by electrochemical impedance spectroscopy (EIS). An extensive microscopy analysis has been done in order to correlate the electrochemical results, and to establish an electrochemical mechanism for such high temperature corrosion processes. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  13. Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Crosley, S.M.; Lorenzo, D.K.; Van Cleve, J.E. [Oak Ridge National Lab., TN (United States); Gay, R.L.; Barclay, K.M.; Newcomb, J.C.; Yosim, S.J.

    1993-12-31

    The Molten Salt Oxidation (MSO) process has been under development by Rockwell International to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored.

  14. Solid municipal wastes system using MIME/WASTE model Alava (Spain); Sistema para la gestion de residuos solidos municipales a partir del modelo MIMES/WASTE: el caso de Alava

    Energy Technology Data Exchange (ETDEWEB)

    Artaraz Minon, M.

    2001-07-01

    Environmental policies in European Union should be able to evolve looking for sustainable development. MIMES/Waste Models (Model for description and optimisation of Integrated Materials Flows and Energy Systems) have been developed for analysing solid waste management systems. This article describes the model and the methodology for using it to analyse municipal waste management systems, and processes to apply it in Alava (Spain). The author explains particularly the possibility of making source separation and later treatment of biodegradable waste fraction of household wastes on the one hand, and efficiency of a waste disposal tax on the other hand. (Author) 7 refs.

  15. Emission control with route optimization in solid waste collection process: A case study

    Indian Academy of Sciences (India)

    Omer Apaydin; M Talha Gonullu

    2008-04-01

    Solid waste collection processes are usually carried out by using trucks with diesel engine. In solid waste collection process, the trucks emit to environment different emissions from its exhausts. For this reason, in solid waste collection process, it is necessary that route optimization should be performed in order to decrease the emissions. This study was performed in Trabzon City with 39 districts, a shortest path model was used in order to optimize solid waste collection/hauling processes to minimize emission. Unless it performs route optimization in solid waste collection/hauling process, emissions increase due to empty miles negativeness. A software was used as an optimization tool. The software provided Geographical Information System (GIS) elements such as numerical pathways, demographic distribution data, container distribution data and solid waste production data. In addition, thematic container layer was having 777 points for the entire city. By using the software, the optimized route was compared with the present route. If the optimized route in solid waste collection system is used, route distance and route time will be decreased by 24·6 % and 44·3 % as mean of nine routes, respectively. By performing the stationary container collection process and route optimization, it is determined that CO2, NOx, HC, CO, PM emissions will be reduced 831·4, 12·8, 1·2, 0·4, 0·7 per route, respectively

  16. Development of New Drummed Nuclear Waste Neutron Counting System

    Institute of Scientific and Technical Information of China (English)

    ZHU; Li-qun; XU; Xiao-ming; BAI; Lei; LI; Xin-jun; GU; Shao-gang; HE; Li-xia; WANG; Mian

    2012-01-01

    <正>The development of a new neutron counting system (Fig. 1) for 200 L drummed radioactive waste measurement has been accomplished in this year. This waste neutron counting system is mainly used for solid radioactive waste classification. It is based on the passive neutron counting technique. The amount of radionuclide contained in the waste is

  17. Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS)

    Science.gov (United States)

    Zainun, Noor Yasmin; Rahman, Ismail Abdul; Azwana Rothman, Rosfazreen

    2016-11-01

    Illegal dumping of solid waste not only affecting the environment but also social life of communities, hence authorities should have an effective system to cater this problem. Malaysia is experiencing extensive physical developments and this has led to an increase of construction waste illegal dumping. However, due to the lack of proper data collection, the actual figure for construction waste illegal dumping in Malaysia are not available. This paper presents a mapping of construction waste illegal dumping in Kluang district, Johor using Geographic Information System (GIS) software. Information of the dumped waste such as coordinate, photos, types of material and quantity of waste were gathered manually through site observation for three months period. For quantifying the dumped waste, two methods were used which are the first method is based on shape of the waste (pyramids or squares) while the second method is based weighing approach. All information regarding the waste was assigned to the GIS for the mapping process. Results indicated a total of 12 types of construction waste which are concrete, tiles, wood, gypsum board, mixed construction waste, brick and concrete, bricks, sand, iron, glass, pavement and tiles, and concrete at 64 points locations of illegal dumping on construction waste in Kluang. These wastes were accounted to an estimated volume of 427.2636 m3. Hopefully, this established map will assist Kluang authority to improve their solid waste management system in Kluang.

  18. Greenhouse gas emissions of waste management processes and options: A case study.

    Science.gov (United States)

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles.

  19. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  20. Wet oxidation as a waste treatment in closed systems

    Science.gov (United States)

    Onisko, B. L.; Wydeven, T.

    1981-01-01

    The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.

  1. Wet Oxidation as a Waste Treatment Method in Closed Systems

    Science.gov (United States)

    Onisko, B. L.; Wydeven, T.

    1982-01-01

    The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.

  2. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    OpenAIRE

    Fang Fang; Hong Yue; Yeli Zhou; Jiancun Feng; Jianhua Zhang

    2012-01-01

    In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power ...

  3. Impact Of Aerobic Biostabilisation And Biodrying Process Of Municipal Solid Waste On Minimisation Of Waste Deposited In Landfills

    Directory of Open Access Journals (Sweden)

    Dziedzic Krzysztof

    2015-12-01

    Full Text Available The article discusses an innovative system used for aerobic biostabilisation and biological drying of solid municipal waste. A mechanical–biological process (MBT of municipal solid waste (MSW treatment were carried out and monitored in 5 bioreactors. A two-stage biological treatment process has been used in the investigation. In the first step an undersize fraction was subjected to the biological stabilisation for a period of 14 days as a result of which there was a decrease of loss on ignition, but not sufficient to fulfill the requirements of MBT technology. In the second stage of a biological treatment has been applied 7-days intensive bio-drying of MSW using sustained high temperatures in bioreactor. The article presents the results of the chemical composition analysis of the undersize fraction and waste after biological drying, and also the results of temperature changes, pH ratio, loss on ignition, moisture content, combustible and volatile matter content, heat of combustion and calorific value of wastes. The mass balance of the MBT of MSW with using the innovative aeration system showed that only 14.5% of waste need to be landfilled, 61.5% could be used for thermal treatment, and nearly 19% being lost in the process as CO2 and H2O.

  4. Description of waste pretreatment and interfacing systems dynamic simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  5. Air flotation treatment of salmon processing waste water

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper discusses methods for the reduction of the pollution strength of salmon processing waste water. Past research has indicated the success of air pressure...

  6. Technical resource document for assured thermal processing of wastes

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

    1994-06-01

    This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

  7. A bioseparation process for removing heavy metals from waste ...

    African Journals Online (AJOL)

    A bioseparation process for removing heavy metals from waste water using biosorbents. ... In recent years, many low cost sorbents such as algae, fungi bacteria and ... In this comprehensive review, the emphasis is on outlining the occurrences ...

  8. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  9. INTEGRATED WASTE MANAGEMENT SYSTEM IN HARGHITA COUNTY

    Directory of Open Access Journals (Sweden)

    Mihai-Constantin AVORNICULUI

    2015-11-01

    Full Text Available Waste management problems in Harghita County (and other places in the country have a major negative impact on society and pose a direct threat to human health, and an adverse effect on quality of life. Considering the current practices, it is clear that the system of waste management in Romania and Harghita county needs to be improved to meet the requirements of new national and European regulations. In Harghita County there are 36 protected areas of national interest, four protected areas of local interest and 18 Natura 2000 sites, including 13 Sites of Community Importance (SCI and 5 Special Protection Areas (SPA. Strengthening a sustainable waste management system involves major changes to current practices. Implementing such changes can be successfully achieved only through the involvement of the whole society: population– as users, entrepreneurs, socio-economic institutions and public authorities.

  10. The challenges of reusing mining and mineral-processing wastes.

    Science.gov (United States)

    Bian, Zhengfu; Miao, Xiexing; Lei, Shaogang; Chen, Shen-en; Wang, Wenfeng; Struthers, Sue

    2012-08-10

    Mining and mineral-processing wastes are one of the world's largest chronic waste concerns. Their reuse should be included in future sustainable development plans, but the potential impacts on a number of environmental processes are highly variable and must be thoroughly assessed. The chemical composition and geotechnical properties of the source rock determine which uses are most appropriate and whether reuse is economically feasible. If properly evaluated, mining waste can be reused to reextract minerals, provide additional fuel for power plants, supply construction materials, and repair surface and subsurface land structures altered by mining activities themselves.

  11. Serbia: A new process for waste rubber and plastic recycling

    Directory of Open Access Journals (Sweden)

    Ozren Ocic

    2010-02-01

    Full Text Available This paper intends to describe a new technological process for waste rubber and plastic recycling up to the commercial components in safe environmental friendly way. Researches and all relevant technical-technological data related to this process are checked at constructed pilot plant. The future construction of these units for waste rubber and plastic recycling will allow interested parties to achieve the environmental effectiveness and economic efficiency.

  12. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jackson, D. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shah, H. B. [Savannah River Remediation, LLC., Aiken, SC (United States); Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Occhipinti, J. E. [Savannah River Remediation, LLC., Aiken, SC (United States); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  13. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  14. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Choi, A.

    2009-03-25

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  15. Expert System for Building TRU Waste Payloads - 13554

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Heather; Slater, Bryant [Information Systems Laboratories, 2235 East 25th Street, Suite 100, Idaho Falls, ID 83404 (United States)

    2013-07-01

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiative intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)

  16. IMPROVEMENT OF THE PROCESSING OF SOLID WASTE IN UKRAINE

    Directory of Open Access Journals (Sweden)

    T. Kharchenko

    2014-12-01

    Full Text Available The article is dedicated to the problems of recycling and solid waste. It is investigated traditional methods of waste management (storage, disposal, incineration. Authors insist on ineffectiveness of these methods, because of the pollution increases anthropogenic pressure on the environment. It is proved harmful health effects using the traditional methods of disposal. The question of introducing innovative recycling, particularly separating solid waste, the development and use of clean technology waste processing, using microorganisms, pyrolysis. It is determined implementation barriers such as lack of effective government support, and high cost. It is noted that there is a problem of underestimating the complexity, scope and specifics of the issue. The experience of developed countries is outlined. The comparative performance of existing tariffs for disposal of solid waste is used. The ways of solving problems are done.

  17. On Integrity Constraints for a Waste Management Information System

    OpenAIRE

    Schreiber, D. (Dominik)

    1994-01-01

    There is a waste problem in nearly every country. A model of a waste generating system and an efficient waste management information system are the first steps to control this problem. Some countries have already enacted laws which force communities and enterprises to report annually the amounts of wastes produced. For example, the German federal state, Lower Saxony, enacted such a law in 1992. This YSSP-Project deals with a case study on the development of a waste management information syst...

  18. Railcar waste transfer system hydrostatic test report

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, S.D.

    1997-04-03

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per HNF-SD-W417-ATP-001, ''Rail car Waste Transfer System Hydrostatic Test''. The test was completed and approved without any problems or exceptions.

  19. Railcar waste transfer system hydrostatic test

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, S.D.

    1997-03-31

    Recent modifications have been performed on the T-Plant Railcar Waste Transfer System, This Acceptance Test Procedure (ATP) has been prepared to demonstrate that identified piping welds and mechanical connections incorporated during the modification are of high integrity and are acceptable for service. This will be achieved by implementation of a hydrostatic leak test.

  20. Stakeholder analysis for industrial waste management systems.

    Science.gov (United States)

    Heidrich, Oliver; Harvey, Joan; Tollin, Nicola

    2009-02-01

    Stakeholder approaches have been applied to the management of companies with a view to the improvement of all areas of performance, including economic, health and safety, waste reduction, future policies, etc. However no agreement exists regarding stakeholders, their interests and levels of importance. This paper considers stakeholder analysis with particular reference to environmental and waste management systems. It proposes a template and matrix model for identification of stakeholder roles and influences by rating the stakeholders. A case study demonstrates the use of these and their ability to be transferred to other circumstances and organizations is illustrated by using a large educational institution.

  1. Feasibility and Operation of High Concentration Waste Water Impact of UNITANK Process Biochemical System%UNITANK工艺应对高浓度废水冲击操作的可行性研究

    Institute of Scientific and Technical Information of China (English)

    杨明远; 董国华; 汪巧雯

    2016-01-01

    Feed with high concentration and degration-resistant organic mater, produce enormous impact for the biochemical operation system which has acclimatized municipal sewage, have a strong impact on treatment effect of biochemical system, the work statement of biochemical flora, the effluent quality, the COD emission reductions and, the normal production operation, the biochemical system seems slowly to recover after impact and, to last a long time. With a view to the treatment process traits of waste water treatment plant, analyzed the effects that resulting from high concentration and degration-resistant organic waste wa-ter impact, and based on the theory of waste water treatment and, the test of leachate and municipal sewage synergy treatment and, the impact test of different COD charge, and the key technology of high concentration and degration-resistant waste water treatment. Analyzed the feasibility operation, and put forward reference projects. In the process of daily operation management in waste water treatment plant, with a view to solutions to adjust and operate production, ensure stable operation statement and stable sludge concentration and activity, avoid the accumulate of biotoxin in biological system. Standard operation management, ensure biological system operate in suitable work conditions, avoid resulting from feed water quality and improper operation cause the change of environment of microbes growing and the structure of biotic population, resulting from abnormal problems happen. Thus at the accident statements, positively respond to ensure the treatment and operation effect, and COD emission reduction quantity, and stable operation system.%高浓度难降解有机废水对已经适应了城市污水处理的生化处理系统造成了巨大的冲击,严重影响了生化系统的处理效果,以及正常的生产操作,同时生化系统受冲击后的恢复显得异常缓慢、延续的时间也较长.针对生产的操作,论述了应对措施

  2. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    Energy Technology Data Exchange (ETDEWEB)

    Okeson, J K; Galloway, R M; Wilhite, E L; Woolsey, G B; B, Ferguson R

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste.

  3. Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling

    Science.gov (United States)

    2008-09-01

    Figure 4. Bouldin processing system used during the Fort Benning demonstration. Bobcat is loading the initial shredder with domestic waste from the pile...on the right. Shredder is followed by metal removal, a second shredder , grinder, and hydrolyzer (on left...converting it into usable end products. The system includes: two shredders , a grinder, a hydrothermal process (hydrolyzer), dryer, and par- ticle screens

  4. Function analysis for waste information systems

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, J.L.; Neal, C.T.; Heath, T.C.; Starling, C.D.

    1996-04-01

    This study has a two-fold purpose. It seeks to identify the functional requirements of a waste tracking information system and to find feasible alternatives for meeting those requirements on the Oak Ridge Reservation (ORR) and the Portsmouth (PORTS) and Paducah (PGDP) facilities; identify options that offer potential cost savings to the US government and also show opportunities for improved efficiency and effectiveness in managing waste information; and, finally, to recommend a practical course of action that can be immediately initiated. In addition to identifying relevant requirements, it also identifies any existing requirements that are currently not being completely met. Another aim of this study is to carry out preliminary benchmarking by contacting representative companies about their strategic directions in waste information. The information obtained from representatives of these organizations is contained in an appendix to the document; a full benchmarking effort, however, is beyond the intended scope of this study.

  5. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  6. FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2009-01-28

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  7. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...

  8. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  9. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  10. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  11. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  12. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study

  13. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  14. Waste water reuse pathways for processing tomato

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

    to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water and decreased access to water. New water treatment devices (prototypes) are under development to allow...... a safe use of waste water produced by small communities/industries (≤2000 EI) or of treated water discharged in irrigation channels. Water treatment technologies are coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management....

  15. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  16. The Defense Waste Processing Facility: Two Years of Radioactive Operation

    Energy Technology Data Exchange (ETDEWEB)

    Marra, S.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Gee, J.T.; Sproull, J.F.

    1998-05-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

  17. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    National Research Council Canada - National Science Library

    Debere, Mesfin Kote; Gelaye, Kassahun Alemu; Alamdo, Andamlak Gizaw; Trifa, Zemedu Mehamed

    2013-01-01

    Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system...

  18. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, Darsh T.; Nikolov, Alex; Lambert, Dan; Calloway, T. Bond

    2004-06-01

    The objective of this research is to develop a fundamental understanding of the physico-chemical mechanisms that cause foaminess in the DOE High Level (HLW) and Low Activity radioactive waste separation processes and to develop and test advanced antifoam/defoaming agents. Antifoams developed for this research will be tested using simulated defense HLW radioactive wastes obtained from the Hanford and Savannah River sites.

  19. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, Darsh T.

    2002-08-01

    The objective of this research is to develop a fundamental understanding of the physico-chemical mechanisms that cause foaminess in the DOE High Level (HLW) and Low Activity radioactive waste separation processes and to develop and test advanced antifoam/defoaming agents. Antifoams developed for this research will be tested using simulated defense HLW radioactive wastes obtained from the Hanford and Savannah River sites.

  20. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, Darsh T.; Nikolov, Alex; Lambert, Dan; Calloway, T. Bond, Jr.

    2003-06-05

    The objective of this research is to develop a fundamental understanding of the physico-chemical mechanisms that cause foaminess in the DOE High Level (HLW) and Low Activity radioactive waste separation processes and to develop and test advanced antifoam/defoaming agents. Antifoams developed for this research will be tested using simulated defense HLW radioactive wastes obtained from the Hanford and Savannah River sites.

  1. Process development accomplishments: Waste and hazard minimization, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Homan, D.A.

    1991-11-04

    This report summarizes significant technical accomplishments of the Mound Waste and Hazard Minimization Program for FY 1991. The accomplishments are in one of eight major areas: environmentally responsive cleaning program; nonhalogenated solvent trials; substitutes for volatile organic compounds; hazardous material exposure minimization; nonhazardous plating development; explosive processing waste reduction; tritium capture without conversion to water; and robotic assembly. Program costs have been higher than planned.

  2. Process simulation and analysis of mechanical vapor compression based oilfield waste water desalination systems%基于机械蒸汽压缩蒸发的油田污水脱盐系统及分析

    Institute of Scientific and Technical Information of China (English)

    李清方; 刘中良; 庞会中; 张建; 祝威

    2011-01-01

    A mechanical vapor compression (MVC) based desalination system for oilfield waste water is proposed to combat the difficulties resulted from complicated and strongly polluting pollutants of the waste water in using membrane methods. The complete mathematical model for process simulation and design is developed for the MVC-based oilfield waste water desalination system and the influences of the heat transfer temperature difference of falling-film evaporators, waste water temperature and evaporation temperature on the system performance are analyzed. The results show that the temperature difference is the controlling factor that determines the specific heat transfer area and the specific compression work of the system. Reducing this temperature difference will directly decrease the specific compression work and increase the specific heat transfer area. Higher waste water temperature results in a slight decrease in the specific heat transfer area, which demonstrates that the system is highly perfect in thermodynamics. The results also show that increasing evaporation temperature may significantly improve the performance of the system.%针对油田污水污染物成分复杂、污染性强不适合膜法脱盐的特点,提出用机械蒸汽压缩蒸发(MVC)技术对油田污水进行脱盐处理的技术方案.建立了基于MVC的油田污水脱盐系统的工艺流程设计计算模型,系统分析了降膜蒸发器传热温差、油田污水温度和蒸发温度的影响.结果表明:传热温差是影响系统装置规模和运行电耗的控制因素,减小传热温差可以明显降低压缩机比电耗,付出的代价是系统比传热面积的增大;MVC系统的热力完善度高,无废热排放,油田污水温度越高,系统比传热面积减小;在其他条件允许的条件下,提高系统的运行温度有利于改善系统的性能.

  3. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    Science.gov (United States)

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable.

  4. Separation of metals from incineration wastes using mineral industry processes

    Energy Technology Data Exchange (ETDEWEB)

    Scheizer, G. [Universite de Technologie, Aix-la-Chapelle (Germany)

    1996-12-01

    The incineration of municipal wastes in Federal Republic of Germany produced about 2.7 to 2.8 millions of tons of solid wastes in 1993 which still contain huge amounts of mineral and organic pollutants. Ashes represent the largest part of wastes with about 2.4 millions of tons. Vitrification is an innovative treatment technique which allows a 90% reduction of the waste volume, the complete removal of the organic matter content, and the storage of these waste in an environmentally neutral form. However, metals must be extracted from the ashes prior to the vitrification process. Most metals fall into the 2.4-2.7 g/cm{sup 3} and > 3 g/cm{sup 3} density ranges. The lighter fraction corresponds to aluminium particles and alloys, while the high density fraction is enriched in copper, copper alloys and more particularly in brass. The treatment process, after drying, consist in the use of high intensity magnetic separation devices (permanent neodymium-bore-iron magnets) for the removal of ferrous particles, and in the use of Foucault currents separation devices for non-magnetic metals. At the pilot-scale, the distribution of the processed wastes corresponds to: 62.6 % of non-metallized ashes, 35.5 % of magnetic products, and 1.9% of non-magnetic products. The possible recycling of the metal fraction must be demonstrated by further studies. (J.S.). Abstract only.

  5. Overview of waste heat utilization systems

    Science.gov (United States)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  6. High Level Waste Tank Closure Modeling with Geographic Information Systems (GIS)

    Energy Technology Data Exchange (ETDEWEB)

    BOLLINGER, JAMES

    2004-07-29

    Waste removal from 49 underground storage tanks located in two tank farms involves three steps: bulk waste removal, water washing to remove residual waste, and in some cases chemical cleaning to remove additional residual waste. Not all waste can be completely removed by these processes-resulting in some residual waste loading following cleaning. Completely removing this residual waste would be prohibitively expensive; therefore, it will be stabilized by filling the tanks with grout. Acceptable residual waste loading inventories were determined using one-dimensional groundwater transport modeling to predict future human exposure based on several scenarios. These modeling results have been incorporated into a geographic information systems (GIS) application for rapid evaluation of various tank closure options.

  7. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  8. A Fast and Efficient Dehydration Process for Waste Drilling Slurry

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2017-01-01

    Full Text Available In this article, slurry system was converted to colloid from fluid with the colloidization of high polymer coagulants with high viscosity. The solid-liquid separation of the waste slurry was realized by the process of chemical colloidal gel breaking, coagulation function, acidification gelout. In addition, the surface morphology of slurry cake was investigated by using Field emission scanning electron microscope (FE-SEM. The results indicate that mud separation effect is decides on the type of flocculants, gel breaker. The solid content of mud cake increases from 40.5% to 77.5% when A-PA and H20 are employed as the flocculants, gelout, with the dosage of zero point four grams and zero point five grams.

  9. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  10. Test procedure for boxed waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, J. [Los Alamos National Lab., NM (United States)

    1994-12-07

    This document, prepared by Los Alamos National Laboratory`s NMT-4 group, details the test methodology and requirements for Acceptance/Qualification testing of a Boxed Waste Assay System (BWAS) designed and constructed by Pajarito Scientific Corporation. Testing of the BWAS at the Plutonium Facility (TA55) at Los Alamos National Laboratory will be performed to ascertain system adherence to procurement specification requirements. The test program shall include demonstration of conveyor handling capabilities, gamma ray energy analysis, and imaging passive/active neutron accuracy and sensitivity. Integral to these functions is the system`s embedded operating and data reduction software.

  11. Waste water reuse pathways for processing tomato

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

    to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water and decreased access to water. New water treatment devices (prototypes) are under development to allow......  Direct or indirect water reuse involves several aspects: contamination by faecal, inorganic and xenobiotic pollutants; high levels of suspended solids and salinity; rational use of the dissolved nutrients (particularly nitrogen). The challenge is apply new strategies and technologies which allows...... a safe use of waste water produced by small communities/industries (≤2000 EI) or of treated water discharged in irrigation channels. Water treatment technologies are coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management....

  12. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  13. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... than 1. The description of the waste is corrected from ``wastewater treatment plant (WWTP) sludge'' to..., 2010. The Hazardous and Solid Waste Amendments of 1984 amended section 3010 of the Resource... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  14. Bases for solid waste volume estimates for tank waste remediation system

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, G.W., Westinghouse Hanford

    1996-08-01

    This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

  15. 75 FR 51434 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-08-20

    ... No. EPA-HQ-RCRA-2009-0640. Mail: Send your comments to the Hazardous and Solid Waste Management... Delivery: Deliver two copies of your comments to the Hazardous and Solid Waste Management System... electronically in http://www.regulations.gov or in hard copy at the Hazardous and Solid Waste Management...

  16. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the...

  17. Development of a Waste Treatment Process to Deactivate Reactive Uranium Metal and Produce a Stable Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Gates-Anderson, D D; Laue, C A; Fitch, T E

    2002-01-17

    This paper highlights the results of initial investigations conducted to support the development of an integrated treatment process to convert pyrophoric metallic uranium wastes to a non-pyrophoric waste that is acceptable for land disposal. Several dissolution systems were evaluated to determine their suitability to dissolve uranium metal and that yield a final waste form containing uranium specie(s) amenable to precipitation, stabilization, adsorption, or ion exchange. During initial studies, one gram aliquots of uranium metal or the uranium alloy U-2%Mo were treated with 5 to 60 mL of selected reagents. Treatment systems screened included acids, acid mixtures, and bases with and without addition of oxidants. Reagents used included hydrochloric, sulfuric, nitric, and phosphoric acids, sodium hypochlorite, sodium hydroxide and hydrogen peroxide. Complete dissolution of the uranium turnings was achieved with the H{sub 3}PO{sub 4}/HCI system at room temperature within minutes. The sodium hydroxide/hydrogen peroxide, and sodium hypochlorite systems achieved complete dissolution but required elevated temperatures and longer reaction times. A ranking system based on criteria, such as corrosiveness, temperature, dissolution time, off-gas type and amount, and liquid to solid ratio, was designed to determine the treatment systems that should be developed further for a full-scale process. The highest-ranking systems, nitric acid/sulfuric acid and hydrochloric acid/phosphoric acid, were given priority in our follow-on investigations.

  18. Natural diatomite process for removal of radioactivity from liquid waste.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  19. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  20. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  1. Summary of LLNL`s accomplishments for the FY93 Waste Processing Operations Program

    Energy Technology Data Exchange (ETDEWEB)

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

    1994-04-01

    Under the US Department of Energy`s (DOE`s) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program`s mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE`s Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section`s contributions in support of DOE`s FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993.

  2. Two stages kinetics of municipal solid waste inoculation composting processes

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou1; HUANG Guo-he; QIN Xiao-sheng; LIU Hong-liang

    2004-01-01

    In order to understand the key mechanisms of the composting processes, the municipal solid waste(MSW) composting processes were divided into two stages, and the characteristics of typical experimental scenarios from the viewpoint of microbial kinetics was analyzed. Through experimentation with advanced composting reactor under controlled composting conditions, several equations were worked out to simulate the degradation rate of the substrate. The equations showed that the degradation rate was controlled by concentration of microbes in the first stage. The degradation rates of substrates of inoculation Run A, B, C and Control composting systems were 13.61 g/(kg·h), 13.08 g/(kg·h), 15.671 g/(kg·h), and 10.5 g/(kg·h), respectively. The value of Run C is around 1.5 times higher than that of Control system. The decomposition rate of the second stage is controlled by concentration of substrate. Although the organic matter decomposition rates were similar to all Runs, inoculation could reduce the values of the half velocity coefficient and could be more efficient to make the composting stable. Particularly. For Run C, the decomposition rate is high in the first stage, and is low in the second stage. The results indicated that the inoculation was efficient for the composting processes.

  3. Academic Design of On-line Radiation Monitoring Instrument for Gaseous Radioactive Waste Processing System%核电站废气处理系统在线辐射监测仪理论设计

    Institute of Scientific and Technical Information of China (English)

    王洪; 刘春雨; 罗鹏; 陈祥磊

    2013-01-01

    针对核电站废气处理系统对所排含氢废气的放射性监测要求,提出了一种在线监测方案,有效地解决了废气处理系统含氢废气中85 Kr、133 Xe核素放射性监测的问题。并利用模拟程序对监测仪的探测效率、环境γ本底影响等进行了蒙特卡罗模拟计算,为设备的研制生产提供了重要的理论参考和依据。计算结果表明:采用尺寸为φ15 mm ×0.5 mm的圆形薄片塑料闪烁体,基于在线监测方案,在理论设计上可满足AP1000核电站废气处理系统对所排含氢废气的放射性监测要求,在γ环境本底小于10μGy/h条件下无需增加铅屏蔽体。%According to the radioactivity monitoring requirements for exhaust air with the hydrogen waste gas from the waste gas processing system of the nuclear power plant , a kind of on-line monitoring scheme is de-signed to efficiently solve the problem of radiation monitoring of 85 Kr and 133 Xe in waste gas containing hydro-gen.The detection efficiency and the influences of the environmental gamma background for the monitor have been calculated by Monte Carlo code .Thereby , important theoretical references are provided for the equipment development and production .The calculated results show that plastic scintillator with the size of φ10 ×0.5mm that is based on the on -line monitoring scheme fully meets the radioactivity monitoring requirements for exhaust air with the hydrogen waste gas from the waste gas processing system of AP 1000 nuclear power plant .If the gamma environmental background is smaller than 10μGy/h, the lead shielding is not needed .

  4. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  5. Processing of wastes from lead/acid battery production

    Science.gov (United States)

    Polivianny, I. R.; Rusin, A. I.; Lata, V. A.; Khegay, L. D.; Nourjigitov, S. T.

    Experience in the recovery of scrap and wastes from lead/acid battery production suggests that an electrothermal method has good prospects. This process is characterized by a high degree of lead and antimony (approx 98%) extraction, by effective gas cleaning and dust collection, and by full dust returning to the furnace. The electrothermal method is also distinguished by the high reliability of electric furnaces, the useability of any type of secondary lead battery scrap and wastes, and the possibility of process mechanization and control. In this paper, a description is given of the main technical and economical factors of soda-reduction smelting in an electric furnace, a technological scheme for wastes recovery, and the charge composition and features of the process.

  6. Basalt Waste Isolation Project technical program evaluation process: A criteria-based method

    Science.gov (United States)

    Babad, H.; Evans, G. C.; Wolfe, B. A.

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the SWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (MWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP will be further formalized and further applied to the review of BWIP technical activities.

  7. Basalt Waste Isolation Project Technical Program Evaluation Process: a criteria-based method

    Energy Technology Data Exchange (ETDEWEB)

    Babad, H.; Evans, G.C.; Wolfe, B.A.

    1982-01-01

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the SWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (MWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP wll be further formalized and further applied to the review of BWIP technical activities.

  8. Tank Waste Remediation System Projects Document Control Plan

    Energy Technology Data Exchange (ETDEWEB)

    Slater, G.D.; Halverson, T.G.

    1994-09-30

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project.

  9. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    Energy Technology Data Exchange (ETDEWEB)

    Penzin, R.A.; Sarychev, G.A. [All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, 115409 (Russian Federation)

    2012-07-01

    This paper presents the results of research activities aimed at creation of a principally new LRW distilling treatment method. The new process is based on the instantaneous evaporation method widely used in distillation units. The main difference of the proposed process is that the vapor condensation is conducted without using heat exchangers in practically ideal mode by way of direct contacting in a vapor-liquid system. This process is conducted in a specially designed ejector unit in supersonic mode. Further recuperation of excess heat of vaporization is carried out in a standard heat exchanger. Such an arrangement of the process, together with use of the barometric height principle, allows to carry out LRW evaporation under low temperatures, which enables to use excess heat from NPS for heating initial LRW. Thermal calculations and model experiments have revealed that, in this case, the expenditure of energy for LRW treatment by distilling will not exceed 3 kilowatt-hour/m{sup 3}, which is comparable with the reverse-osmosis desalination method. Besides, the proposed devices are 4 to 5 times less metal-intensive than standard evaporation units. These devices are also characterized by versatility. Experiments have revealed that the new method can be used for evaporation of practically any types of LRW, including those containing a considerable amount of oil products. Owing to arrangement of the evaporation process at low temperatures, the new devices are not sensitive to 'scale formation'. This is why, they can be used for concentrating brines of up to 500-600 g/l. New types of such evaporating devices can be required both for LRW treatment processes at nuclear-power plants under design and for treating 'non-standard' LRW with complex physicochemical and radionuclide composition resulting from the disaster at the Fukushima I Nuclear Power Plant.) As a result of accidents at nuclear energy objects, as it has recently happened at NPP &apos

  10. Glass waste forms for heat-generating Cs{sup +} and Sr{sup 2+} wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Suk; Heo, Jong [POSTECH, Pohang (Korea, Republic of); Park, Hwan Seo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Pyro-processing is one of the promising recycling technologies for spent nuclear fuel (SNF) from Light Water Reactors (LWR) in Korea. This processing is able to separate radioactive waste nuclei and reduce heat loading in storage site by extraction of heat generating radioactive nuclei. In this study, we used alumino-borosilicate glasses for the immobilization of Cs{sub 2}O and SrO wastes. Glasses were prepared and their important properties including chemical durability were analyzed. In addition, heat generation and its effect on thermal stability of glasses was examined. Glass waste forms that contain heat-generating Cs{sup +} and Sr{sup 2+} from pyro-processing were synthesized. Basic properties of glasses such as densities, linear expansion coefficients and glass-transition temperatures were similar to those of industrial radioactive waste glass. Analysis on the heat load simulation under the failure of the cooling system indicated that maximum temperature inside the canisters are well below the glass-transition temperature of each glass.

  11. Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106

    Energy Technology Data Exchange (ETDEWEB)

    Esch, R.A.

    1997-04-14

    This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

  12. Statistical Description of Liquid Low-Level Waste System Transssuranic Wastes at Oak Ridge Nation Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The US DOE has presented plans for processing liquid low-level wastes (LLLW) located at Oak Ridge National Laboratory (ORNL) in the LLLW tank system. These wastes are among the most hazardous on the Oak Ridge reservation and exhibit both RCRA toxic and radiological hazards. The Tennessee Department of Health and Environment has mandated that the processing of these wastes must begin by the year 2002 and the the goal should be permanent disposal at a site off the Oak Ridge Reservation. To meet this schedule, DOE will solicit bids from various private sector companies for the construction of a processing facility on land located near the ORNL Melton Valley Storage Tanks to be operated by the private sector on a contract basis. This report will support the Request for Proposal process and will give potential vendors information about the wastes contained in the ORNL tank farm system. The report consolidates current data about the properties and composition of these wastes and presents methods to calculate the error bounds of the data in the best technically defensible manner possible. The report includes information for only the tank waste that is to be included in the request for proposal.

  13. SYSTEM PLANNING WITH THE HANFORD WASTE OPERATIONS SIMULATOR

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD TW; CERTA PJ; WELLS MN

    2010-01-14

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  14. Development of components for waste management systems using aerospace technology

    Energy Technology Data Exchange (ETDEWEB)

    Rousar, D.; Young, M.; Sieger, A. [Aerojet-General Corp., Sacramento, CA (United States)

    1995-09-01

    An aerospace fluid management technology called ``platelets`` has been applied to components that are critical to the economic operation of waste management systems. Platelet devices are made by diffusion bonding thin metal plates which have been etched with precise flow passage circuitry to control and meter fluid to desired locations. Supercritical water oxidation (SCWO) is a promising waste treatment technology for safe and environmentally acceptable destruction of hazardous wastes. Performance and economics of current SCWO systems are limited by severe salt deposition on and corrosion of the reactor walls. A platelet transpiring-wall reactor has been developed that provides a protective layer of water adjacent to the reactor walls which prevents salt deposition and corrosion. Plasma arc processing is being considered as a method for stabilizing mixed radioactive wastes. Plasma arc torch systems currently require frequent shutdown to replace failed electrodes and this increases operating costs. A platelet electrode design was developed that has more than 10 times the life of conventional electrodes. It has water cooling channels internal to the electrode wall and slots through the wall for injecting gas into the arc.

  15. Whole process reclamation and utilization of wastes produced in the biological fermentation industry

    Institute of Scientific and Technical Information of China (English)

    YAN Ling-jun; LI Da-peng; MA Fang; Chein-chi Chang; XU Shan-wen; QIU Shan

    2008-01-01

    Wastes yielded in the vintage process and the biological fermentation of itaconic acid and sodium gluconate of a winery in Shandong,such as grain stillage,melon lees,cornstarch protein residues,itaconic acid mother liquid,itaconic acid mycelium and sodium gluconate mycelium,were studied.Hish-activity biological protein feed,foliar fertilizer and irrigation fertilizer were generated from these wastes by applying biological/microbial technologies.Meanwhile,a whole set of technological pathways Was put forward.As a result,the optimal economical and social benefits can be obtained with low natural resource consumption and environmental costs by converting wastes into useful matters.In conclusion,through the utilization of limited resources in the whole process of reclamation and utilization of wastes,the harmony promotion Can be achieved between the economic system and the natural ecosystem.

  16. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  17. Processing Satellite Imagery To Detect Waste Tire Piles

    Science.gov (United States)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  18. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-09

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  19. Boiling process and practice of 150t converter waste gas recovery evaporation cooling system%梅钢150t转炉汽化冷却系统煮炉工艺实践

    Institute of Scientific and Technical Information of China (English)

    徐光庆

    2011-01-01

    Boiling is a very important process for converter waste gas recovery evaporation cooling system before put into production. The effect of boiling will influence the life and safety of evaporation cooling system. The technique key points of evaporation cooling system control were introduced.%煮炉是转炉汽化系统投用前的一个重要环节,煮炉的效果将直接影响转炉汽化系统的安全运行与寿命.总结并阐述了梅钢转炉汽化系统煮炉工艺操作技巧及控制要领.

  20. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  1. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  2. Zone Freezing Study for Pyrochemical Process Waste Minimization

    Energy Technology Data Exchange (ETDEWEB)

    Ammon Williams

    2012-05-01

    temperature differences between the high and low furnace zones—200 and 300 ?C. During each experiment, the temperatures at selected locations around the crucible were measured and recorded to provide temperature profiles. Following each experiment, samples were collected and elemental analysis was done to determine the composition of iii the salt. Several models—non-mixed, well-mixed, Favier, and hybrid—were explored to describe the zone freezing process. For CsCl-LiCl-KCl system, experimental results indicate that through this process up to 90% of the used salt can be recycled, effectively reducing waste volume by a factor of ten. The optimal configuration was found to be a 5.0 mm/hr rate with a lid configuration and a ?T of 200°C. The larger 400 g mixtures had recycle percentages similar to the 50 g mixtures; however, the throughput per time was greater for the 400 g case. As a result, the 400 g case is recommended. For the CeCl3-LiCl-KCl system, the result implies that it is possible to use this process to separate the rare-earth and transuranics chlorides. Different models were applied to only CsCl ternary system. The best fit model was the hybrid model as a result of a solute transport transition from non- mixed to well-mixed throughout the growing process.

  3. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  4. Waste survey - landfill disposability of furniture industrial wastes from varnishing processes; Huonekaluteollisuuden maalaamokaappijaetteiden kaatopaikkakelpoisuus

    Energy Technology Data Exchange (ETDEWEB)

    Vaajasaari, K.; Kulovaara, M.; Joutti, A.; Schulz, E. [Pirkanmaan Ympaeristoekeskus, Tampere (Finland)

    2001-07-01

    The objective of this study was to screen the environmental hazard of eight different furniture industrial wastes in context of their landfill disposal. These wastes are resulting from the varnishing process of furniture manufacture. Four of these materials were collected from a dry varnishing processes and the other four residues from a wet varnishing processes. We wanted to classify these industrial wastes according to their leaching and ecotoxicological properties to evaluate if these kind of materials could be disposed off to a non-hazardous landfill. Leaching properties of residues were determined with European standard draft prEN 12457-2 method. The toxicity measurement of the leaching tests eluates from furniture industrial residues was carried out with a plant (the onion Allium cepa root elongation test), bacteria (the luminescent bacteria Vibrio fischeri assay) and enzyme inhibition (the reverse electron transport, RET, assay). Chemical concentrations of TOC, formaldehyde and solvents in solid wastes and their leaching test eluates were measured simultaneously. The results showed that dry residues contained high amount of formaldehyde which will leach out from the wastes a long time period if wastes are in contact with water at landfill conditions. Furthermore, the water leachable substances in dry residues resulted very high acute toxicity. Toxicity test results confirmed the conclusions drawn from the chemical data as well in wet residues. Two of the wet residues with the highest solvent concentrations were clearly toxic, while the other two wet residues had the smallest concentrations of the harmful substances and only slight acute toxicity. The biggest problems in context of landfill disposability are connected to a high liquid content of wet residues (over 70 %). (orig.)

  5. Flammability Control In A Nuclear Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  6. A BIM-based system for demolition and renovation waste estimation and planning

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jack C.P., E-mail: cejcheng@ust.hk [Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology (Hong Kong); Ma, Lauren Y.H., E-mail: yingzi@ust.hk [Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology (Hong Kong)

    2013-06-15

    Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results

  7. [PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].

    Science.gov (United States)

    Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K

    2015-01-01

    The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.

  8. Behavior of technetium in nuclear waste vitrification processes.

    Science.gov (United States)

    Pegg, Ian L

    Nearly 100 tests were performed with prototypical melters and off-gas system components to investigate the extents to which technetium is incorporated into the glass melt, partitioned to the off-gas stream, and captured by the off-gas treatment system components during waste vitrification. The tests employed several simulants, spiked with (99m)Tc and Re (a potential surrogate), of the low activity waste separated from nuclear wastes in storage in the Hanford tanks, which is planned for immobilization in borosilicate glass. Single-pass technetium retention averaged about 35 % and increased significantly with recycle of the off-gas treatment fluids. The fraction escaping the recycle loop was very small.

  9. COMPLEX PROCESSING OF CELLULOSE WASTE FROM POULTRY AND SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    E. V. Sklyadnev

    2015-01-01

    Full Text Available Summary.To solve the problem of disposing of huge volumes of cellulose waste from sugar production in the form of beet pulp and waste of poultry farms in the form of poultry manure is proposed to use the joint use of two methods of thermal processing of waste - pyrolysis and gasification. The possibility of using pyrolysis applied to the waste are confirmed by experimental results. Based on the results of laboratory studies of the properties of by-products resulting from the thermal processing of the feedstock, it is proposed complex processing to produce useful products, to be implemented in the form of marketable products, and the organization's own process energy utilization. Developed flow diagram of an integrated processing said waste comprises 3 sections, which successively carried out: pyrolytic decomposition of the feedstock to obtain a secondary product in the form of solid, liquid and gas fractions, the gasification of solids to obtain combustible gas and separating the liquid fraction by distillation to obtain valuable products. The main equipment in the first region is the pyrolysis reactor cascade condensers; the second section - gasifiers layers and stream type; the third - one or more distillation columns with the necessary strapping. Proper power supply installation is organized by the use of the heat produced during combustion of the synthesis gas for heating and gasification reactor. For the developed scheme presents calculations of the heat balance of the installation, supporting the energy efficiency of the proposed disposal process. Developments carried out in the framework of the project the winner of the Youth Prize Competition Government of Voronezh region to support youth programs in the 2014-2015.

  10. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    Science.gov (United States)

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  11. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    Science.gov (United States)

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  12. Processing liquid organic wastes at the NNL Preston laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera; Allinson, Sarah; Sultan, Ruqayyah; May, Sarah [National Nuclear Laboratory Preston, Lancashire (United Kingdom)

    2013-07-01

    Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal. The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have

  13. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    Science.gov (United States)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  14. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    Science.gov (United States)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  15. A Management Framework for Municipal Solid Waste Systems and Its Application to Food Waste Prevention

    Directory of Open Access Journals (Sweden)

    Krista L. Thyberg

    2015-08-01

    Full Text Available Waste management is a complex task involving numerous waste fractions, a range of technological treatment options, and many outputs that are circulated back into society. A systematic, interdisciplinary systems management framework was developed to facilitate the planning, implementation, and maintenance of sustainable waste systems. It aims not to replace existing decision-making approaches, but rather to enable their integration to allow for inclusion of overall sustainability concerns and address the complexity of solid waste management. The framework defines key considerations for system design, steps for performance monitoring, and approaches for facilitating continual system improvements. It was developed by critically examining the literature to determine what aspects of a management framework would be most effective at improving systems management for complex waste systems. The framework was applied to food waste management as a theoretical case study to exemplify how it can serve as a systems management tool for complex waste systems, as well as address obstacles typically faced in the field. Its benefits include the integration of existing waste system assessment models; the inclusion of environmental, economic, and social priorities; efficient performance monitoring; and a structure to continually define, review, and improve systems. This framework may have broader implications for addressing sustainability in other disciplines.

  16. Liquid rad waste system improvement at YGN 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. S.; Kang, Y. H.; Shin, Y. H. [Korea Power Engineering Company Inc. (KOPEC), Yonggin, Kyunggido(Korea, Republic of)

    1999-07-01

    The performance of the rad waste system is measured in terms of the generation of waste volumes, the release of radioactive materials to the environment and the occupational radiation exposure to workers. Based on our design and operating experience from PWR plants, various design goals for the liquid rad waste system were developed to improve system performance. As a result of feasibility studies for an improved liquid rad waste system, a design concept was developed to meet the basic design goals, which have been incorporated into the YGN 5 and 6 system. As a result, the performance of the system will be significantly improved. (author)

  17. A multimodal transportation system routing implemented in waste collection

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-01-01

    Full Text Available Waste collection is an important municipal service that charges large expenditures to waste management (WM system. In this study, a hierarchical structure is proposed in order to minimize total cost of waste collection routing problem. Moreover, in second stage destructive environmental effects of waste transportation are minimized concurrently through taking advantage of a road/rail transportation system. In the proposed multimodal transportation system, waste packs are transferred to final destination while travel time and risk of environmental threatening is minimized. The discussed problem is formulated mathematically in two stages. In the first stage, a household waste collection routing problem is formulated while, in second stage a multimodal transportation system is routed to transfer waste packs to final destination through roads and railroads. In order to solve the proposed NP hard models, an improved genetic algorithm is developed. Comparison of the obtained results with those of GAMS for small-size samples validates the proposed models.

  18. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H. [and others

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford`s Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste.

  19. Large-scale continuous process to vitrify nuclear defense waste: operating experience with nonradioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Cosper, M B; Randall, C T; Traverso, G M

    1982-01-01

    The developmental program underway at SRL has demonstrated the vitrification process proposed for the sludge processing facility of the DWPF on a large scale. DWPF design criteria for production rate, equipment lifetime, and operability have all been met. The expected authorization and construction of the DWPF will result in the safe and permanent immobilization of a major quantity of existing high level waste. 11 figures, 4 tables.

  20. Improving the process of preparing waste water at Kamennolozhskiy UPPN

    Energy Technology Data Exchange (ETDEWEB)

    Abashev, R.G.

    1982-01-01

    The main reasons are examined for low efficient operation of treatment works at the Kamennolozhskiy UPPN and efficient ways to improve quality of waste water by introducing separate collection and preparation of individual types of water, organization of preliminary discharge at the main structures and pinpointing the duration of settling. The process of settling was studied on waste water under field conditions using sampling from a strictly defined level of the settling tank in definite time intervals and analysis of samples for the content of mechanical admixtures and petroleum products. The duration of settling in the reservoir was corrected according to the curve for the dependence of the contaminant content in the waste water on the duration of settling. It was indicated that introduction of recommendations guarantees quality of water of the required condition for injection into productive beds to maintain bed pressure.

  1. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Brian; Heacker, Fred [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States); McMillan, Bill [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ∼12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated

  2. A cost evaluation method for transferring municipalities to solid waste source-separated system.

    Science.gov (United States)

    Lavee, Doron; Nardiya, Shlomit

    2013-05-01

    Most of Israel's waste is disposed in landfills, threatening scarce land resources and posing environmental and health risks. The aim of this study is to estimate the expected costs of transferring municipalities to solid waste source separation in Israel, aimed at reducing the amount of waste directed to landfills and increasing the efficiency and amount of recycled waste. Information on the expected costs of operating a solid waste source separation system was gathered from 47 municipalities and compiled onto a database, taking into consideration various factors such as costs of equipment, construction adjustments and waste collection and disposal. This database may serve as a model for estimating the costs of entering the waste source separation system for any municipality in Israel, while taking into consideration its specific characteristics, such as size and region. The model was used in Israel for determining municipalities' eligibility to receive a governmental grant for entering an accelerated process of solid waste source separation. This study displays a user-friendly and simple operational tool for assessing municipalities' costs of entering a process of waste source separation, providing policy makers a powerful tool for diverting funds effectively in promoting solid waste source separation.

  3. Crystallization behavior during melt-processing of ceramic waste forms

    Science.gov (United States)

    Tumurugoti, Priyatham; Sundaram, S. K.; Misture, Scott T.; Marra, James C.; Amoroso, Jake

    2016-05-01

    Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 °C and heat-treated at crystallization temperatures of 1285 °C and 1325 °C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 °C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 °C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO2.

  4. The use of representative cases in hazard analysis of the tank waste remediation system at Hanford. The information in this document is a combination of HNF-SA-3168-A {ampersand} HNF-SA-3169-A - The control identification process

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, B.J.

    1997-04-24

    During calendar year 1996, Duke Engineering and Services Hanford, Inc. conducted a safety analysis in accordance with DOE-STD-3009-94 as part of the development of a Final Safety Analysis Report (TSAR) for the Tank Waste Remediation System (TWRS) at the DOE Hanford site. The scope of the safety analysis of TWRS primarily addressed 177 large underground liquid waste storage tanks and associated equipment for transferring waste to and from tanks. The waste in the tanks was generated by the nuclear production and processing facilities at Hanford. The challenge facing the safety analysis team was to efficiently analyze the system within the time and budget allotted to provide the necessary and sufficient information for accident selection, control identification, and justification on the acceptability of the level of safety of TWRS. It was clear from the start that a hazard and accident analysis for each of the 177 similar tanks and supporting equipment was not practical nor necessary. For example, many of the tanks were similar enough that the results of the analysis of one tank would apply to many tanks. This required the development and use of a tool called the ''Hazard Topography''. The use of the Hazard Topography assured that all tank operations and configurations were adequately assessed in the hazard analysis and that the results (e.g., hazard identification and control decisions) were appropriately applied to all tanks and associated systems. The TWRS Hazard Topography was a data base of all the TWRS facilities (e.g., tanks, diversion boxes, transfer lines, and related facilities) along with data on their configuration, material at risk (MAR), hazards, and known safety related phenomenological issues. Facilities were then classified into groups based on similar combinations of configuration, MAR, hazards and phenomena. A hazard evaluation was performed for a tank or facility in each group. The results of these evaluations, also contained in

  5. Electrochemical processing of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  6. Hanford low-level waste process chemistry testing data package

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  7. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  8. Methane fermentation process for utilization of organic waste

    Science.gov (United States)

    Frąc, M.; Ziemiński, K.

    2012-07-01

    Biogas is a renewable and sustainable energy carrier generated via anaerobic digestion of biomass. This fuel is derived from various biomass resources and depending on its origin it contains methane (40-75%), carbon dioxide (20-45%) and some other compounds. The aim of this paper is to present the current knowledge and prospects of using the methane fermentation process to dispose of various types of organic wastes as well as conditions and factors affecting the methane fermentation process.

  9. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  10. Installing and Commissioning a New Radioactive Waste Tracking System - Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson; Miklos Garamszeghy; Fred Rodrigues; Ed Nicholls

    2005-05-01

    Ontario Power Generation (OPG) recognizes the importance of information management particularly with regards to its low and intermediate level waste program. Various computer based waste tracking systems have been used in OPG since the 1980s. These systems tracked the physical receipt, processing, storage, and inventory of the waste. As OPG moved towards long-term management (e.g. disposal), it was recognized that tracking of more detailed waste characterization information was important. This required either substantial modification of the existing system to include a waste characterization module or replacing it entirely with a new system. After a detailed review of available options, it was decided that the existing waste tracking application would be replaced with the Idaho National Laboratory’s (INL) Integrated Waste Tracking System (IWTS). Installing and commissioning a system which must receive historical operational waste management information (data) and provide new features, required much more attention than was originally considered. The operational readiness of IWTS required extensive vetting and preparation of historic data (which itself had been created from multiple databases in varied formats) to ensure a consistent format for import of some 30,000-container records, and merging and linking these container records to a waste stream based characterization database. This paper will discuss some of the strengths and weaknesses contributing to project success or hindrance so that others can understand and minimize the difficulties inherent in a project of this magnitude.

  11. Fuel corrosion processes under waste disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada)

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate.

  12. A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is...

  13. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  14. Report: integrated industrial waste management systems in China.

    Science.gov (United States)

    Zhang, Wenxin; Roberts, Peter

    2007-06-01

    Various models of urban sustainable development have been introduced in recent years and some of these such as integrated waste management have been proved to be of particular value. Integrated industrial waste management systems include all the administrative, financial, legal, planning and engineering functions involved in solutions to the problems of industrial waste. Even though the pace of the improvement made to China's industrial waste management capacity is impressive, China has been unable to keep up with the increasing demand for waste management. This paper will evaluate the application of integrated industrial waste management systems in promoting urban sustainable development in the context of three case study cities in China (positive case, average case and negative case) by identifying and accessing the factors that affect the success or failure of integrated industrial waste management systems.

  15. Tank waste remediation system operation and utilization plan,vol. I {ampersand} II

    Energy Technology Data Exchange (ETDEWEB)

    Kirkbride, R.A.

    1997-09-01

    The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

  16. Waste assay and mass balance for the decontamination and volume reduction system at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Ferran, Scott G.; Garner, Scott E.; Romero, Mike J.; Christensen, Davis V.; Bustos, Roland M.

    2003-07-01

    The Decontamination and Volume Reduction System (DVRS) operated by the Solid Waste Operations (SWO) Group at Los Alamos National Laboratory (LANL) processes large volume, legacy radioactive waste items. Waste boxes, in sizes varying from 4 ft x 4 ft x 8 ft to 10 ft x 12 ft x 40 ft, are assayed prior to entry into the processing building. Inside the building, the waste items are removed from their container, decontaminated and/or size reduced if necessary, and repackaged for shipment to the Waste Isolation Pilot Plant (WIPP) or on-site low-level waste disposal. The repackaged items and any secondary waste produced (e.g., personal protective equipment) are assayed again at the end of the process and a mass balance is done to determine whether there is any significant hold-up material left in the DVRS building. The DVRS building is currently classed as a radiological facility, with a building limit of 0.52 Ci of Pu239 and Am241, and 0.62 Ci of Pu238, the most common radionuclides processed. This requires tight controls on the flow of nuclear material. The large volume of the initial waste packages, the (relatively) small amounts of radioactive material in them, and the tight ceiling on the building inventory require accurate field measurements of the nuclear material. This paper describes the radioactive waste measurement techniques, the computer modeling used to determine the amount of nuclear material present in a waste package, the building inventory database, and the DVRS process itself. Future plans include raising the limit on the nuclear material inventory allowed in the building to accommodate higher activity waste packages. All DOE sites performing decontamination and decommissioning of radioactive process equipment face challenges related to waste assay and inventory issues. This paper describes an ongoing operation, incorporating lessons learned over the life of the project to date.

  17. Hanford site tank waste remediation system programmatic environmental review report

    Energy Technology Data Exchange (ETDEWEB)

    Haass, C.C.

    1998-09-03

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  18. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  19. Consolidation and Centralization of Waste Operations Business Systems - 12319

    Energy Technology Data Exchange (ETDEWEB)

    Newton, D. Dean [Oak Ridge Operations, Oak Ridge, TN 37830 (United States)

    2012-07-01

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidation into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate

  20. Socio-technical systems analysis of waste to energy from municipal solid waste in developing economies: a case for Nigeria

    Directory of Open Access Journals (Sweden)

    Iyamu Hope O.

    2017-01-01

    Full Text Available Waste generation is an inevitable by-product of human activity, and it is on the rise due to rapid urbanisation, industrialisation, increased wealth and population. The composition of municipal solid waste (MSW in developed and developing economies differ, especially with the organic fraction. Research shows that the food waste stream of MSW in developing countries is over 50%. The case study for this investigation, Nigeria, has minimal formal recycling or resource recovery programs. The average composition of waste from previous research in the country is between 50–70% putrescible and 30–50% non-putrescible, presenting significant resource recovery potential in composting and biogas production. Waste-to-energy (WtE is an important waste management solution that has been successfully implemented and operated in most developed economies. This contribution reports the conditions that would be of interest before WtE potentials of MSW is harnessed, in an efficient waste management process in a developing economy like Nigeria. The investigation presents a set of socio-technical parameters and transition strategy model that would inform a productive MSW management and resource recovery, in which WtE can be part of the solution. This model will find application in the understanding of the interactions between the socio-economic, technical and environmental system, to promote sustainable resource recovery programs in developing economies, among which is WtE.

  1. A rating system for determination of hazardous wastes.

    Science.gov (United States)

    Talinli, Ilhan; Yamantürk, Rana; Aydin, Egemen; Başakçilardan-Kabakçi, Sibel

    2005-11-11

    Although hazardous waste lists and their classification methodologies are nearly the same in most of the countries, there are some gaps and subjectiveness in determining the waste as hazardous waste. A rating system for the determination of waste as a hazardous waste is presented in this study which aims to overcome the problems resulted from the existing methodologies. Overall rating value (ORV) calculates and quantifies the waste as regular, non-regular or hazardous waste in an "hourglass" scale. "ORV" as a cumulative-linear formulation in proposed model consists of components such as ecological effects of the waste (Ee) in terms of four main hazard criteria: ignitability, reactivity, corrosivity and toxicity; combined potential risk (CPR) including carcinogenic effect, toxic, infectious and persistence characteristics; existing lists and their methodology (L) and decision factor (D) to separate regular and non-regular waste. Physical form (f) and quantity (Q) of the waste are considered as factors of these components. Seventeen waste samples from different sources are evaluated to demonstrate the simulation of the proposed model by using "hourglass" scale. The major benefit of the presented rating system is to ease the works of decision makers in managing the wastes.

  2. Pilot study on continous composting processing system for food waste%餐厨垃圾连续堆肥处理系统中试研究

    Institute of Scientific and Technical Information of China (English)

    李小建; 周振鹏; 谢锡龙; 王德汉

    2013-01-01

    餐厨垃圾是影响城市环境重要的污染源,其处理尤其是就地堆肥处理近年来受到重视.为了利用园林绿化基质作为餐厨垃圾堆肥的水分调节材料,按照1:1体积比进行连续堆肥,研究添加园林绿化基质对餐厨垃圾堆肥过程中理化指标的影响,为餐厨垃圾无害化处理提供科学依据和技术指导.结果表明,物料堆肥升温启动迅速,第3天就达到50℃,高温持续10 d以上,达到无害化要求;堆肥最终减容率达到53%以上,减量化效果明显;物料总氮和总磷含量呈升高趋势,总有机质含量降低,肥料营养元素含量在6%以上,符合有机肥国家标准(NY525-2002).总的来说,园林绿化基质作为调理剂与餐厨垃圾联合堆肥方法可行,减量化效果好,品质符合标准.%Food waste is a major souce of pollution affecting the urban environment. The treatment of food waste, especially the in-situ composting, got more attention in recent years. Landscape matrix was used as food waste composing moisture regulating material in accordance with the 1: 1 volume ratio, and continuous composting was carried out. Effects of adding landscape matrix on compost physicochemical indexs were studied to provide a scientific basis and technologial guide for harmless treatment of food waste. The results show that food waste compost temperature started quickly, reached 50℃ at the third day, high temperature sustained for 10 days, and met the sound requirements. The final reduction rate of food waste aerobic composting reaches 53% or more, so reduction effect is obvious. Total nitrogen and phosphorous content show the trend of increasing, and total organic matter content tends to decrease, and nutrient content of fertilizer is above 6% , and this is consistent with national standards of organic fertilizer. Overall, landscape matrix as a conditioner combines with food waste composting method is feasible, reduction effect is good.

  3. Waste Information Management System with 2012-13 Waste Streams - 13095

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  4. Management of the radioactive waste of European Spallation Source within the Swedish waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Ene, Daniela [European Spallation Source AB, ESS-AB (Sweden); Forsstroem, H. [Svensk Kaernbraenslehantering AB, SKB (Sweden)

    2014-07-01

    The European Spallation Source AB (ESS) is the European common effort in designing and building a next generation large-scale user facility for studies of the structure and dynamics of materials. The proposed schematic layout of the ESS facility is based on a linear driver (linac) directing the proton beam (5 MW of 2.5 GeV) of 2.8 ms long pulses with a 20 Hz on a tungsten target where neutrons are produced via spallation reactions. Further the neutrons will be moderated to thermal and sub-thermal energies in a couple of moderators placed around the target. The moderators feed 22 beam-lines guiding the neutrons to the scattering instruments, mainly for neutron scattering research, as has been previously mentioned. The ESS will generate specific types of radioactive waste. This waste should be handled and disposed of within the Swedish radioactive waste management system, which is owned and operated by Svensk Kaernbraenslehantering AB, (SKB). The main objectives of this work are: i) To estimate types and quantities of waste that the ESS project will generate at different stages: commission, operation, decommissioning; ii) To allocate the waste to specific disposal route; iii) To assess the disposal volumes needed and to ensure that the ESS waste may safely be accommodated within the Swedish disposal system, SKB The amounts of ESS waste and classifications were derived using: i) precise Monte Carlo calculations ii) scaling the activity from the operation experience of the existing spallation source installations for waste such it is difficult to predict level of activation or for components of the facility in stage of the pre-conceptual model. Associated waste treatment/conditioning options were further analyzed in order to define the waste type and packet descriptions in agreement with Swedish regulations and policy. The potential final disposal routes for high activated components were decided via the comparison of the activity levels of the isotopes inside the

  5. System requirements specification for waste information and control system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.R.

    1994-09-01

    This document defines the requirements for the Waste Information and Control System (WICS). The document defines the functions, constraints, and objectives that pertain to WICS. This shall serve as the baseline document to ensure the needs of the Hazardous Material Control group (HMC) at 222-S Laboratory are met with regard to assurance of accuracy and quality of data taken with WICS.

  6. System requirements specification for waste information and control system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.R.

    1994-09-01

    This document defines the requirements for the Waste Information and Control System (WICS). The document defines the functions, constraints, and objectives that pertain to WICS. This shall serve as the baseline document to ensure the needs of the Hazardous Material Control group (HMC) at 222-S Laboratory are met with regard to assurance of accuracy and quality of data taken with WICS.

  7. Physical-Chemical Solid Waste Processing for Space Missions at Ames Research Center

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Moran, Mark; Wignarajah, K.; Tleimat, Maher; Pace, Greg

    2001-01-01

    As space missions become longer in duration and reach out to more distant locations such as Mars, solids waste processing progresses from storage technologies to reclamation technologies. Current low Earth orbit technologies consist of store-and dispose to space or return to Earth. Fully regenerative technologies recycle wastes. The materials reclaimed from waste can be used to provide the basic materials to support plant growth for food including carbon dioxide, water, and nutrients. Other products can also be reclaimed from waste such as hydrocarbons and activated carbon. This poster describes development at Ames Research Center of a process to make activated carbon from space mission wastes and to make an incineration system that produces clean flue gas. Inedible biomass and feces contain hydrocarbons in a form that can be pyrolyzed and converted to activated carbon. The activated carbon can then be used to clean up contaminants from various other life support systems; in particular, the activated carbon can be used regeneratively to remove NOx from incinerator flue gas. Incinerator flue gas can also be cleaned up by the use of reductive and oxidative catalysts. A catalytic incinerator flue gas cleanup system has been developed at ARC that produces flue gas clean enough (with the exception of carbon dioxide) to meet the Space Minimum Allowable Concentration limits for human exposure.

  8. Development of automated information system for domestic waste logistics management (by the example of Apatity town

    Directory of Open Access Journals (Sweden)

    Ladik A. S.

    2016-03-01

    Full Text Available A software system for management information support of domestic waste logistics (by the example of Apatity town has been developed for management information support efficiency enhancement of domestic waste collection and transportation processes in the municipal systems subject to hygiene and sanitary norms and standards. The system is implemented as an interactive multilogic web-service. The system provides computational procedure execution of financial expenditure and ecological damage in the issue of domestic waste collection and transportation and environmental risk minimization on the basis of proposed algorithms for automated synthesis of adaptive journey routes in comparison with existing prototypes

  9. Assessing the addition of mineral processing waste to green waste-derived compost: an agronomic, environmental and economic appraisal.

    Science.gov (United States)

    Jones, D L; Chesworth, S; Khalid, M; Iqbal, Z

    2009-01-01

    The overall aim of this study was to evaluate the benefit of mixing two large volume wastes, namely mineral processing waste and source-segregated green waste compost, on the growth performance of plants targeted towards high (horticulture/agriculture) and low (amenity/restoration) value markets. The secondary aims were to evaluate the influence of mineral waste type on plant growth performance and to undertake a simple economic analysis of the use of mineral-compost mixtures in land restoration. Our results showed that in comparison to organic wastes, mineral wastes contained a low available nutrient content which reduces compost quality. This is supported by growth trials with tomato, wheat and grass which showed that, irrespective of mineral source, plants performed poorly in compost blended with mineral waste in comparison to those grown in green waste or peat-based compost alone. In terms of consumer confidence, unlike other wastes (e.g. biosolids and construction/demolition waste) the mineral quarry wastes can be expected to be free of potentially toxic elements, however, the production costs of compost-mineral waste mixtures and subsequent transport costs may limit its widespread use. In addition, handling of the material can be difficult under wet conditions and effective blending may require the purchase of specialist equipment. From our results, we conclude that mineral fines may prove useful for low quality, low value landscaping activities close to the source of production but are unsuited to high value markets.

  10. Environmentally and economically efficient utilization of coal processing waste.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2017-11-15

    High concentrations of hazardous anthropogenic emissions (sulfur, nitrogen and carbon oxides) from solid fuel combustion in coal burning plants cause environmental problems that have been especially pressing over the last 20-30 years. A promising solution to these problems is a switch from conventional pulverized coal combustion to coal-water slurry fuel. In this paper, we pay special attention to the environmental indicators characterizing the combustion of different coal ranks (gas, flame, coking, low-caking, and nonbaking coals) and coal-water slurry fuels based on the coal processing waste - filter cakes. There have been no consistent data so far on the acceptable intervals for the anthropogenic emissions of sulfur (SOx), nitrogen (NOx) and carbon (CO, CO2) oxides. Using a specialized combustion chamber and gas analyzing system, we have measured the concentrations of typical coal and filter-cake-based CWS combustion products. We have also calculated the typical combustion heat of the fuels under study and measured the ratio between environmental and energy attributes. The research findings show that the use of filter cakes in the form of CWS is even better than coals in terms of environment and economy. Wide utilization of filter cakes solves many environmental problems: the areas of contaminated sites shrink, anthropogenic emissions decrease, and there is no need to develop new coal mines anymore. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  12. Computer simulation for designing waste reduction in chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, S.K. [Oak Ridge Inst. for Science and Technology, TN (United States); Cabezas, H.; Bare, J.C. [Environmental Protection Agency, Cincinnati, OH (United States)

    1996-12-31

    A new methodology has been developed for implementing waste reduction in the design of chemical processes using computer simulation. The methodology is based on a generic pollution balance around a process. For steady state conditions, the pollution balance equation is used as the basis to define a pollution index with units of pounds of pollution per pound of products. The pollution balance has been modified by weighing the mass of each pollutant by a chemical ranking of environmental impact. The chemical ranking expresses the well known fact that all chemicals do not have the same environmental impact, e.g., all chemicals are not equally toxic. Adding the chemical ranking effectively converts the pollutant mass balance into a balance over environmental impact. A modified pollution index or impact index with units of environmental impact per mass of products is derived from the impact balance. The impact index is a measure of the environmental effects due to the waste generated by a process. It is extremely useful when comparing the effect of the pollution generated by alternative processes or process conditions in the manufacture of any given product. The following three different schemes for the chemical ranking have been considered: (i) no ranking, i.e., considering that all chemicals have the same environmental impact, (ii) a simple numerical ranking of wastes from 0 to 3 according to the authors judgement of the impact of each chemical, and (iii) ranking wastes according to a scientifically derived combined index of human health and environmental effects. Use of the methodology has been illustrated with an example of production of synthetic ammonia. 3 refs., 2 figs., 1 tab.

  13. Optimization of magnetite carrier precipitation process for transuranic waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Slater, S.A.; Chamberlain, D.B.; Aase, S.A.; Babcock, B.D.; Conner, C.; Sedlet, J.; Vandegrift, G.F. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-12-31

    Transuranic (TRU) waste that is being generated at Argonne National Laboratory has a TRU activity ranging from 10{sup 2} to 10{sup 7} nCi/g with a wide variety of chemical compositions. Currently, the waste is stored in highly acidic solutions that must be neutralized for intermediate storage. A magnetite carrier precipitation process has been adapted to concentrate TRU isotopes in a noncorrosive solid phase. In this paper, the authors report the results of a series of laboratory tests done to optimize the process. The parameters they optimized included (1) magnetite concentration used to precipitate the TRUs from solution, (2) formation of magnetite (in situ or ex situ), (3) processing pH, and (4) temperature and mixing time of the carrier precipitation. They also studied the effects of anions, cations, and complexing agents in the waste solutions on the carrier precipitation and the effect of magnetite solids loading on the filtration equipment. An overview is given of the planned full-scale process, which will be operated in a glovebox.

  14. Properties of waste stillage from shochu distillery and waste water occurred sosei paper production process

    OpenAIRE

    山内, 正仁; 平田, 登基男; 前野, 祐二; 三原, めぐみ; 松藤, 康司

    1999-01-01

    As an effective utilization of waste stillage, which will be banned from being dumped into sea from the year of 2001, authors have been studied and succeeded to make the sosei paper by using waste stillage form shochu distillery. This research is tried to consider the property of waste stillage from shochu distillery ( sweet potato waste stillage and barley waste stillage) and the weight and property of waste water in compressing samples added some amount of old newspaper to waste stillage. F...

  15. Properties of waste stillage from shochu distillery and waste water occurred sosei paper production process

    OpenAIRE

    山内, 正仁; 平田, 登基男; 前野, 祐二; 三原, めぐみ; 松藤, 康司

    1999-01-01

    As an effective utilization of waste stillage, which will be banned from being dumped into sea from the year of 2001, authors have been studied and succeeded to make the sosei paper by using waste stillage form shochu distillery. This research is tried to consider the property of waste stillage from shochu distillery ( sweet potato waste stillage and barley waste stillage) and the weight and property of waste water in compressing samples added some amount of old newspaper to waste stillage. F...

  16. Application of expert system technology to nondestructive waste assay - initial prototype model

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.K.; Determan, J.C. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1997-11-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs.

  17. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    Science.gov (United States)

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  18. Optimization of use of waste in the future energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2011-01-01

    Alternative uses of waste for energy production become increasingly interesting when considered from two perspectives, that of waste management and the energy system perspective. This paper presents the results of an enquiry into the use of waste in a future energy system. The analysis...... was performed using the energy system analysis model, Balmorel. The study is focused on Germany and the Nordic countries and demonstrates the optimization of both investments and production within the energy systems. The results present cost optimization excluding taxation concerning the use of waste for energy...... production in Denmark in a 2025 scenario with 48% renewable energy. Investments in a range of waste conversion technologies are facilitated, including waste incineration, co-combustion with coal, anaerobic digestion, and gasification. The most economically feasible solutions are found to be incineration...

  19. Hydrogen storage systems from waste Mg alloys

    Science.gov (United States)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  20. Engineered waste-package-system design specification

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

  1. Benchmarking of DFLAW Solid Secondary Wastes and Processes with UK/Europe Counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Elvie E. [Hanford Site (HNF), Richland, WA (United States); Swanberg, David J. [Hanford Site (HNF), Richland, WA (United States); Surman, J. [Hanford Site (HNF), Richland, WA (United States); Kay, R. [Hanford Site (HNF), Richland, WA (United States); Williams, K. [Hanford Site (HNF), Richland, WA (United States)

    2017-05-08

    This report provides information and background on UK solid wastes and waste processes that are similar to those which will be generated by the Direct-Feed Low Activity Waste (DFLAW) facilities at Hanford. The aim is to further improve the design case for stabilizing and immobilizing of solid secondary wastes, establish international benchmarking and review possibilities for innovation.

  2. A system dynamics approach for hospital waste management.

    Science.gov (United States)

    Chaerul, Mochammad; Tanaka, Masaru; Shekdar, Ashok V

    2008-01-01

    Healthcare services provided by hospitals may generate some infectious wastes. Although a large percentage of hospital waste is classified as general waste, which has similar nature as that of municipal solid waste and, therefore, could be disposed in municipal landfills, a small portion of infectious waste has to be managed in the proper manner in order to minimize risk to public health. Many factors involved in the hospital waste management system often link to one another, which require a comprehensive analysis to determine the role of each factor in the system. In this paper, we present a hospital waste management model based on system dynamics to determine the interaction among factors in the system using a software package, Stella. A case study of the City of Jakarta, Indonesia is selected. The hospital waste generation is affected by various factors including the number of beds in the hospitals and the NIMBY (not in my back yard) syndrome. To minimize the risk to public health, we found that waste segregation, as well as infectious waste treatment prior to disposal, has to be conducted properly by the hospital management, especially when scavenging takes place in landfill sites in developing countries.

  3. Mixing Processes in High-Level Waste Tanks - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F.

    1999-05-24

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments.

  4. Environmental and economic analysis of management systems for biodegradable waste

    Energy Technology Data Exchange (ETDEWEB)

    Sonesson, U. [Department of Agricultural Engineering, Swedish University of Agricultural Sciences, P.O. Box 7033, S-750 07 Uppsala (Sweden); Bjoerklund, A. [Department of Chemical Engineering and Technology/Industrial Ecology, Royal Institute of Technology, S-100 44 Stockholm (Sweden); Carlsson, M. [Department of Economics, Swedish University of Agricultural Sciences, P.O. Box 7013, S-750 07 Uppsala (Sweden); Dalemo, M. [Swedish Institute of Agricultural Engineering, P.O. Box 7033, S-750 07 Uppsala (Sweden)

    2000-01-01

    The management system for solid and liquid organic waste affects the environment and surrounding technical systems in several ways. In order to decrease the environmental impact and resource use, biological waste treatment and alternative solutions for sewage treatment are often advocated. These alternatives include increased agricultural use of waste residuals. To analyse whether such proposed systems indicate improvements for the environment and its sustainability, systems analysis is a useful method. The changes in environmental impact and resource use is not only a result of changes in waste treatment methods, but also largely a result of changes in surrounding systems (energy and agriculture) caused by changes in waste management practices. In order to perform a systems analysis, a substance-flow simulation model, the organic waste research model (ORWARE), has been used. The results are evaluated by using methodology from life cycle assessment (LCA). An economic analysis was also performed on three of the studied scenarios. The management system for solid organic waste and sewage in the municipality of Uppsala, Sweden, was studied. Three scenarios for different treatments of solid waste were analysed: incineration with heat recovery, composting, and anaerobic digestion. These three scenarios included conventional sewage treatment. A fourth scenario reviewed was anaerobic digestion of solid waste, using urine-separating toilets and separate handling of the urine fraction. The results are only valid for the case study and under the assumptions made. In this case study anaerobic digestion result in the lowest environmental impact of all the solid waste management systems, but is costly. Economically, incineration with heat recovery is the cheapest way to treat solid waste. Composting gives environmental advantages compared to incineration methods, without significantly increased costs. Urine separation, which may be implemented together with any solid waste

  5. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    Science.gov (United States)

    2016-12-01

    AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM 5. FUNDING NUMBERS 6...release. Distribution is unlimited. ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM Aaron R. VanDenBerg Lieutenant, United...HEAT RECOVERY DEVICES Ships mainly extract heat and energy from exhaust gases by using a waste heat boiler located in the actual exhaust duct. The

  6. Implementation plan for the processing of shredder waste; Implementatieplan verwerking shredderafval

    Energy Technology Data Exchange (ETDEWEB)

    Nauta, J.P.; Reijnders, H.P.E.M.; Oudhuis, A.B.J. [ECN Energie Efficiency, Petten (Netherlands)

    1998-10-01

    Scenarios for the future processing of (automobile) shredder waste in the Netherlands are discussed. The composition of shredder waste and the supply of such wastes in the Netherlands is dealt with in chapter 2, In chapter 3 processing techniques are presented. Possible sites and organizations to process shredder wastes are outlined in chapter 4, while in chapter 5 licensing and legal aspects are discussed. In chapter 6 the most appropriate processing scenarios are listed

  7. The Ceramic Waste Form Process at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ken Bateman; Stephen Priebe

    2006-08-01

    The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form (MWF). The CWF is a composite of sodalite and glass, which stabilizes the active fission products (alkali, alkaline earths, and rare earths) and transuranic (TRU) elements. Reactive metal fuel constituents, including all the TRU metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is dried in a mechanically-fluidized dryer to about 0.1 wt% moisture and ground to a particle-size range of 45µ to 250µ. The salt and zeolite are mixed in a V-mixer and heated to 500°C for about 18 hours. During this process, the salt occludes into the structure of the zeolite. The salt-loaded zeolite (SLZ) is cooled and then mixed with borosilicate glass frit with a comparable particle-size range. The SLZ/glass mixture is transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form. During the last several years, changes have occurred to the process, including: particle size of input materials and conversion from hot isostatic pressing to pressureless consolidation, This paper is intended to provide the current status of the CWF process focusing on the adaptation to pressureless consolidation. Discussions will include impacts of particle size on final waste form and the pressureless consolidation cycle. A model will be presented that shows the heating and cooling cycles and the effect of radioactive decay heat on the amount of fission products that can be incorporated into the CWF.

  8. Characterization of solid-waste conversion and cogeneration systems

    Energy Technology Data Exchange (ETDEWEB)

    Ritschard, R.L.; Haven, K.F.; Henriquez, M.; Kay, J.; Walzer, W.

    1978-08-15

    Recovery of municipal solid wastes (MSW) can reduce the mass of landfilled wastes by as much as 95% and can tap a vast new energy resource. The yearly collection of MSW is estimated to be 125 million tons nationwide. Three basic technologies for recovering energy from MSW are considered, namely: direct combustion using a waterwall incinerator in which heat from burning refuse is converted to steam by circulating water in steel tubes jacketing the interior of the incinerator; manufacture of a relatively uniform shredded, pulverized, or pelleted refuse-derived fuel for supplemental firing in a utility boiler; and pyrolysis or destructive distillation of MSW to extract a low-Btu fuel gas. While resource and energy recovery systems can be installed independently, the processes described here include both energy and resource-recovery systems as well as necessary pollution-control equipment for gaseous emissions. Three end-use applications of cogeneration systems are characterized, including: fluidized-bed cogeneration systems for use in the pulp and paper industry; diesel system using the digested sewage gas of a sewage treatment plant for electricity generation as well as heating and pumping; and an enhanced oil recovery system. Comparisons are made of system inputs per 10/sup 12/ Btu steam output for Landguard pyrolysis, Garrett flash pyrolysis, Union Carbide Purox process, direct combustion, refuse-derived fuels, fluidized-bed cogeneration, diesel cogeneration, and enhanced oil recovery (cogeneration). The RFD system is by far the cheapest to build and is also the most efficient in terms of energy recovery per ton of MSW. The fluidized-bed system has the highest overall system efficiency. However, the PUROX system uses the least ancillary energy and is the only system not requiring an input water flow. Thus the RFD is the most favorable for capital inputs and the PUROX is the most favorable for operational inputs.

  9. Conceptual modular description of the high-level waste management system for system studies model development

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1992-08-01

    This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

  10. Evaluation of key driver categories influencing sustainable waste management development with the analytic hierarchy process (AHP): Serbia example.

    Science.gov (United States)

    Tot, Bojana; Srđević, Bojan; Vujić, Bogdana; Russo, Mário Augusto Tavares; Vujić, Goran

    2016-08-01

    The problems of waste management have become increasingly complex in recent decades. The increasing amount of generated waste, adopted legislation in the field of waste management, administrative issues, economic impacts and social awareness are important drivers in achieving a sustainable waste management system. However, in practice, there are many other drivers that are often mutually in conflict. The purpose of this research is to define the precise driver and their corresponding sub-drivers, which are relevant for developing a waste management system and, on the basis of their importance, to determine which has the predominant influence on the slow development of a waste management system at the national and regional level, within the Republic of Serbia and similar countries of southeast Europe. This research presents two levels of decision making: the first is a pair-wise comparison of the drivers in relation to the goal and the second is a pair-wise comparison of the sub-drivers in relation to the driver and in relation to the goal. Results of performed analyses on the waste management drivers were integrated via the decision-making process supported by an analytic hierarchy process (AHP). The final results of this research shows that the Institutional-Administrative driver is the most important for developing a sustainable waste management system.

  11. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    Science.gov (United States)

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)).

  12. Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes.

    Energy Technology Data Exchange (ETDEWEB)

    Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

    1980-04-01

    This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices.

  13. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  14. VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    R. NAKAOKA; G. VEAZEY; ET AL

    2001-05-01

    A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations of H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.

  15. A Study of Recycling Operation Process from the Waste Selective Collection of Itu/SP City

    Directory of Open Access Journals (Sweden)

    Délvio Venanzi

    2015-06-01

    Full Text Available This present work is the result of a survey in a solid waste sorting area COMAREI - Cooperative of Recyclable Materials in the city of Itu. Due to the unbridled consumption and increase in the amount of household waste, cooperatives have the need for improvement in their separation processes and disposal of such waste. New techniques allow to process more material and to accelerate the process of collecting and allocating a larger amount of material. The objective of this study was to analyse the overall functioning of the Cooperative screening system. The methodology was field research with visits to monitor the workflow of employees, their observation procedures and spontaneous conversations with members, as well as bibliographic research and collection of secondary data. As a result it can be observed that the cooperative members have difficulty in screening, because the population does not rule out the material properly; preventing a better use of time and result in the screening process. The operation of the semi-mechanized system works with the separation of seven types of waste, of which only five of these are guaranteed marketing.

  16. Critical assessment of methods for treating airborne effluents from high-level waste solidification processes

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.D.; Pence, D.T.

    1977-06-01

    Off-gas treatment systems are reviewed for high-temperature processes which are being developed for the solidification of high-level liquid wastes from nuclear fuel reprocessing plants. A brief description of each of the processes is given and detailed analyses are made of the expected magnitudes of airborne effluent release rates from each system. The estimated release rates of the various processes are compared with present and anticipated regulatory limits. A number of recommendations are made for additional development studies to better understand and control certain airborne effluents from the solidification processes.

  17. Treatment of phosphogypsum waste produced from phosphate ore processing

    Energy Technology Data Exchange (ETDEWEB)

    El-Didamony, H. [Chemistry Department, Faculty of Science, Zagazig University, El Sharqia (Egypt); Gado, H.S. [Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo (Egypt); Awwad, N.S. [Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt); Fawzy, M.M., E-mail: mfawzynma@yahoo.com [Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo (Egypt); Attallah, M.F. [Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    2013-01-15

    Highlights: ► Purification of phosphogypsum waste by separating the contaminated radionuclides. ► Separation process depends on leaching of wastes using suitable organic extractants. ► Costs treatment of PG depending on the type and quality of the used reagents. -- Abstract: Phosphogypsum (PG), primary byproduct from phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. Phosphogypsum is a technologically enhanced naturally occurring radioactive material (TE-NORM) that contains radionuclides from {sup 238}U and {sup 232}Th decay series which are of most radio-toxicity. The reduction in concentration of radionuclides content from PG was based on leaching of {sup 226}Ra, {sup 210}Pb, {sup 238}U and {sup 40}K using tri-butyl phosphate (TBP) and tri-octyl phosphine oxide (TOPO) in kerosene. The factors which affect the leaching process such as contact time, concentration of the solvent and temperature were optimized. Based on the experimental results, about 92.1, 88.9, 83.4, 94.6% of {sup 226}Ra, {sup 210}Pb, {sup 238}U and {sup 40}K respectively were successfully removed from the PG. The reduction in the concentration of radionuclides was accompanied by reduction in the concentration of rare earth elements (∑REE) equals to 80.1%. Using the desired organic extractant under optimum conditions for treatment of the PG waste leads to obtain a decontaminated product that can be safely used in many industrial applications.

  18. Development of an automated system for the decentral fractioning of municipal wastes

    Directory of Open Access Journals (Sweden)

    Heiko Vesper

    2012-03-01

    Full Text Available Background: There is a growing problem of the increasing amount of unsorted municipal wastes with the resulting consequences for the environment. The aim of this study was to present a new solutions of the system for the decentral fractioning of municipal wastes, which enable simplification and improvement of the process together with the reduction of total costs. Methods: The description of  the problem of the increasing amount of unsorted municipal wastes with the resulting consequences for the environment as well as an alternative solution for the decentral fractioning of such wastes was presented. The influence onto the environment as well as the efficiency of the costly mechanical sorting of wastes was queried. The nowadays used principles of sorted and unsorted waste disposal were elucidated and their advantages and disadvantages evaluated. Results and conclusions: Based on this evaluation an innovative and future oriented development of an automated system for the decentral fractioning of municipal wastes was presented. The new developed systems aim at the achievement of an easier, less costly and environment-friendlier process for the disposal of municipal wastes from apartment buildings.

  19. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    Science.gov (United States)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  20. A comparative study on per capita waste generation according to a waste collecting system in Korea.

    Science.gov (United States)

    Oh, Jung Hwan; Lee, Eui-Jong; Oh, Jeong Ik; Kim, Jong-Oh; Jang, Am

    2016-04-01

    As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.

  1. A BIM-based system for demolition and renovation waste estimation and planning.

    Science.gov (United States)

    Cheng, Jack C P; Ma, Lauren Y H

    2013-06-01

    Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry

  2. Application of pyrolysis process in processing of mixed food wastes

    National Research Council Canada - National Science Library

    Barbora Grycová; Ivan Koutník; Adrian Pryszcz; Miroslav Kaloč

    2016-01-01

    .... The concentration of hydrogen was measured in the range from 22 to 40 vol.%. The resulting iodine numbers of samples CHFO, DS, DSFW reach values that indicate the possibility of using them to produce the so-called “disposable sorbents” in wastewater treatment. The WC condensate can be directed to further processing and upgrading for energy use.

  3. Ensilage of pineapple processing waste for methane generation.

    Science.gov (United States)

    Rani, D Swaroopa; Nand, Krishna

    2004-01-01

    Pineapple peel wastes, which are seasonal, comprise of peels and rags. Their disposal poses a serious environmental pollution problem. Since pineapple peel is rich in cellulose, hemicellulose and other carbohydrates it was found to be a potential substrate for methane generation by anaerobic digestion. Ensilaging of pineapple peel resulted in the conversion of 55% carbohydrates into volatile fatty acids. The ensilage of pineapple processing wastes reduced the biological oxygen demand by 91%. Biogas digester fed with ensilaged pineapple peel resulted in the biogas yield of 0.67 m3/kg volatile solids (VS) added with methane content of 65% whereas fresh and dried pineapple peels gave biogas yields of 0.55% and 0.41 m3/kg VS added and methane content of 51% and 41% respectively.

  4. Composite materials based on wastes of flat glass processing.

    Science.gov (United States)

    Gorokhovsky, A V; Escalante-Garcia, J I; Gashnikova, G Yu; Nikulina, L P; Artemenko, S E

    2005-01-01

    Glass mirrors scrap and poly (vinyl) butiral waste (PVB) obtained from flat glass processing plants were investigated as raw materials to produce composites. The emphasis was on studying the influence of milled glass mirror waste contents on properties of composites produced with PVB. The characterization involved: elongation under rupture, water absorption, tensile strength and elastic modulus tests. The results showed that the composite containing 10 wt% of filler powder had the best properties among the compositions studied. The influence of the time of exposure in humid atmosphere on the composite properties was investigated. It was found that the admixture of PVB iso-propanol solution to the scrap of glass mirrors during milling provided stabilization of the properties of the composites produced.

  5. Joint optimisation of the future Danish waste and energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Pizarro, Amalia Rosa; Salvucci, Raffaele

    2015-01-01

    In this article the impact of the future development of the energy system on the feasibility of waste treatment options is analysed. In the article two different optimization tools are used: a regional electricity model (Balmorel) and a national waste treatment and district heating model (OptiWaste......). When performing optimization by minimizing the socio-economic costs, into future energy systems with high wind power production, it proves feasible primarily to incinerate waste in large scale combined heat and power (CHP) plants, whereas more incineration takes place in decentralized CHP plants...... in future scenarios with higher biomass consumption, where the average heat prices are higher. In both scenarios, biogas produced from organic waste is upgraded and fed into the natural gas grid and waste is incinerated rather than being centrally sorted in a material recovery facility....

  6. Preparation of sulfurized powdered activated carbon from waste tires using an innovative compositive impregnation process.

    Science.gov (United States)

    Yuan, Chung-Shin; Lin, Hsun-Yu; Wu, Chun-Hsin; Liu, Ming-Han; Hung, Chung-Hsuang

    2004-07-01

    The objective of this study is to develop an innovative compositive impregnation process for preparing sulfurized powdered activated carbon (PAC) from waste tires. An experimental apparatus, including a pyrolysis and activation system and a sulfur (S) impregnation system, was designed and applied to produce sulfurized PAC with a high specific surface area. Experimental tests involved the pyrolysis, activation, and sulfurization of waste tires. Waste-tire-derived PAC (WPAC) was initially produced in the pyrolysis and activation system. Experimental results indicated that the Brunauer-Emmett-Teller (BET) surface area of WPAC increased, and the average pore radius of WPAC decreased, as water feed rate and activation time increased. In this study, a conventional direct impregnation process was used to prepare the sulfurized PAC by impregnating WPAC with sodium sulfide (Na2S) solution. Furthermore, an innovative compositive impregnation process was developed and then compared with the conventional direct impregnation process. Experimental results showed that the compositive impregnation process produced the sulfurized WPAC with high BET surface area and a high S content. A maximum BET surface area of 886 m2/g and the S content of 2.61% by mass were obtained at 900 degrees C and at the S feed ratio of 2160 mg Na2S/g C. However, the direct impregnation process led to a BET surface area of sulfurized WPAC that decreased significantly as the S content increased.

  7. A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand.

    Science.gov (United States)

    Sukholthaman, Pitchayanin; Sharp, Alice

    2016-06-01

    Municipal solid waste has been considered as one of the most immediate and serious problems confronting urban government in most developing and transitional economies. Providing solid waste performance highly depends on the effectiveness of waste collection and transportation process. Generally, this process involves a large amount of expenditures and has very complex and dynamic operational problems. Source separation has a major impact on effectiveness of waste management system as it causes significant changes in quantity and quality of waste reaching final disposal. To evaluate the impact of effective source separation on waste collection and transportation, this study adopts a decision support tool to comprehend cause-and-effect interactions of different variables in waste management system. A system dynamics model that envisages the relationships of source separation and effectiveness of waste management in Bangkok, Thailand is presented. Influential factors that affect waste separation attitudes are addressed; and the result of change in perception on waste separation is explained. The impacts of different separation rates on effectiveness of provided collection service are compared in six scenarios. 'Scenario 5' gives the most promising opportunities as 40% of residents are willing to conduct organic and recyclable waste separation. The results show that better service of waste collection and transportation, less monthly expense, extended landfill life, and satisfactory efficiency of the provided service at 60.48% will be achieved at the end of the simulation period. Implications of how to get public involved and conducted source separation are proposed.

  8. Short communication: a food-systems approach to assessing dairy product waste.

    Science.gov (United States)

    Ridoutt, B G; Baird, D L; Bastiaans, K; Darnell, R; Hendrie, G A; Riley, M; Sanguansri, P; Syrette, J; Noakes, M; Keating, B A

    2014-10-01

    Concern about world population increase, food security, and the environmental burdens of food production have made food-waste reduction a social and environmental priority. In this context, the quantification of dairy product waste is especially difficult due to the varied means of disposal, by solid and liquid waste streams, and due to inclusion as an ingredient in many processed foods. In this study, food intake data from the Australian National Nutrition Survey (>13,000 participants; >4,500 food items) were disaggregated into basic foods and total national dairy product intake was expressed in whole-milk equivalents. This result was compared with total domestic milk supply, indicating a level of waste of 29% for dairy products in the Australian food system. With national food-waste reduction targets becoming increasingly common, reliable estimates of food waste at the national scale are important for goal setting, baseline reporting, and performance monitoring. For this purpose, the systems approach to assessing food waste demonstrated in this project is deemed to have advantages over other common methods of food-waste assessment, such as bin audits, waste diaries, and surveys. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. DEVELOPMENT AND DEMONSTRATION OF POLYMER MICROENCAPSULATION OF MIXED WASTE USING KINETIC MIXER PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    LAGERAAEN,P.R.; KALB,P.D.; MILIAN,L.W.; ADAMS,J.W.

    1997-11-01

    Thermokinetic mixing was investigated as an alternative processing method for polyethylene microencapsulation, a technology well demonstrated for treatment of hazardous, low-level radioactive and low-level mixed wastes. Polyethylene encapsulation by extrusion has been previously shown to be applicable to a wide range of waste types but often pretreatment of the wastes is necessary due to process limitations regarding the maximum waste moisture content and particle size distribution. Development testing was conducted with kinetic mixing in order to demonstrate technology viability and show improved process applicability in these areas. Testing to establish process capabilities and relevant operating parameters was performed with waste surrogates including an aqueous evaporator concentrate and soil. Using a pilot-scale kinetic mixer which was installed and modified for this program, the maximum waste moisture content and particle size was determined. Following process development with surrogate wastes, the technology was successfully demonstrated at BNL using actual mixed waste.

  10. High level radioactive waste vitrification process equipment component testing

    Energy Technology Data Exchange (ETDEWEB)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

  11. Differentiated collection of wastes - Component of an integrated system

    Energy Technology Data Exchange (ETDEWEB)

    Butta, R.

    1989-04-01

    Effective measures to contrast enviromental pollution are seen as complementary to the control over materials and energy; a correct planning of urban and industrial waste disposal operations ensures that, where practicable, waste materials are recovered and recycled. It is necessary to activate a serious strategy even before waste materials are produced. With reference to a timely selection of waste materials, this article makes a fundamental distinction between those portions that offer immediate opportunities of recycling, provided that disposal is carried out to satisfactory standards, and other portions that may be dangerously polluting, unless they are carefully processed.

  12. 废液处理系统冷却器热工水力计算研究%The Research of Thermal-hydraulic Calculation for Waste Processing System Cooler

    Institute of Scientific and Technical Information of China (English)

    孙圣权; 刘宇昊; 高峰; 马贞钦; 陈先林; 徐江

    2016-01-01

    As one of the key equipment is cooler radioactive in waste processing system,which will determine whether the system is capable of stable operation. In this paper, a mathematical model based on thermal-hydraulic calculation,by calculation and verification,to ensure that the system can meet the key equipment cooler design and use requirements,this method is similar to the equipment design and testing provided useful experience.%冷却器作为放射性废液处理系统中的关键设备之一,直接决定了系统是否能够稳定运行,本文建立基于热工水力计算的数学模型,通过计算与校核,确保系统关键设备冷却器能够满足设计和使用要求,该方法为类似设备的设计和试验提供了可借鉴的经验。

  13. Integration of thermal and food processing residuals into a system for commercial culture of freshwater shrimp. (power plant waste heat utilization in aquaculture). Volume II. Final report Jul 74--Oct 76

    Energy Technology Data Exchange (ETDEWEB)

    Eble, A.F.

    1977-01-01

    It has been demonstrated that all life-cycle stages of the tropical freshwater prawn, Macrobrachium rosenbergii, can be cultured successfully using waste-heat effluents of the Mercer Generating Station, Trenton, N.J. Further, high-density culture of the prawn is possible and practical. Rainbow trout (Salmo gairdneri) culture has also been successfully demonstrated utilizing the waste-heat discharges of an electric generating station. Efficient systems have been designed for intensive annual two-crop production. Postlarval prawns are grown in indoor heated nurseries in early spring, and placed in outdoor ponds in mid-May at sizes of 5 to 6cm and harvested in late October as 11 to 12cm adults. Experiments culturing the American eel (Anguilla rostrata) in waste-heat discharge waters of the generating system have been successful. Presented in Volume 2 is the research work conducted in this study. (Portions of this document are not fully legible)

  14. MANAGEMENT OF PROCESSING AND RECOVERY OF LEATHER WASTE

    Directory of Open Access Journals (Sweden)

    STAN Ovidiu Valentin

    2014-05-01

    Full Text Available The leather and leather goods industry development is conditioned by the development of the supply of raw materials - animal husbandry and chemical industries, sectors that tend to develop intensive on vertical - which causes a shortage of raw materials in relation with the market demand for quality products. The leather is the basic raw material of the leather and leather goods industry, this raw material is the most substantial contribution to downstream sectors, giving them a competitive advantage and it is known that the leather has the greatest potential to add value to the products in which it is incorporated. The advantages of using leather are many, the most important qualities are its hygienic properties, flexibility and adaptability to a wide variety of applications. Leather is manufactured on demand for each type of application, such as shoes, clothes, gloves, handbags, furniture upholstery or car interiors, yachts and planes. It requires better use of raw materials by using new technologies and manufacturing processes based on non-invasive methods on the environment leading to increase the product life cycle. The leather and leather goods industry is a supplier of large amounts of waste from the production cycle, waste that has the same properties and qualities as raw material used in the base product. Leather waste represents a loss for the companies, an additional cost related to storage and environmental protection.

  15. Development of a test system for high level liquid waste partitioning

    Directory of Open Access Journals (Sweden)

    Duan Wu H.

    2015-01-01

    Full Text Available The partitioning and transmutation strategy has increasingly attracted interest for the safe treatment and disposal of high level liquid waste, in which the partitioning of high level liquid waste is one of the critical technical issues. An improved total partitioning process, including a tri-alkylphosphine oxide process for the removal of actinides, a crown ether strontium extraction process for the removal of strontium, and a calixcrown ether cesium extraction process for the removal of cesium, has been developed to treat Chinese high level liquid waste. A test system containing 72-stage 10-mm-diam annular centrifugal contactors, a remote sampling system, a rotor speed acquisition-monitoring system, a feeding system, and a video camera-surveillance system was successfully developed to carry out the hot test for verifying the improved total partitioning process. The test system has been successfully used in a 160 hour hot test using genuine high level liquid waste. During the hot test, the test system was stable, which demonstrated it was reliable for the hot test of the high level liquid waste partitioning.

  16. New Catalyst Reduces Wasted Carbon in Biofuel Process, Lowers Cost

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    Researchers at NREL recently developed a catalyst formulation that incorporates more hydrogen into the DME-to-high-octane gasoline process, resulting in a higher yield to gasoline-range products. Further, the researchers developed a secondary process that efficiently couples a portion of the gasoline-range product to yield jet/diesel fuels. The modified catalyst doubles the conversion rate of DME, which can be produced from biomass, to the high-octane gasoline product and significantly decreases the formation of wasted byproducts. For the distillate-range product, 80% of the mixture is in line with ASTM standards for use as a jet fuel blendstock. The increased productivity of high-octane gasoline and the development of a value-added distillate blendstock process further improve the economic viability toward commercially implementing this renewable fuels process.

  17. Quantifying uncertainty in LCA-modelling of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Guyonnet, D.; Christensen, Thomas Højlund

    2012-01-01

    Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present...... the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining...

  18. Redesign and modernization of radioactive waste administration systems in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Nieder-Westermann, Gerald H.; Walther, Thorsten; Krone, Juergen [DBE Technology GmbH, Peine (Germany)

    2016-06-15

    The European Commission (EC) has undertaken a series of projects to render assistance to Ukraine in modernizing and redesigning the Ukrainian approach to the administration, management and ultimately disposal of all forms of radioactive waste, including waste associated with the Chornobyl accident as well as waste generated as part of the Ukrainian energy infrastructure and from industrial and medical applications. One of the most recently completed projects focused on modernizing Ukraine's management and administrative systems responsible for the disposal of radioactive waste.

  19. Engineering Greener Processes--Laser Cutter Transforms Printing Waste

    Science.gov (United States)

    Xu, Renmei; Flowers, Jim

    2011-01-01

    Many of today's students have embraced an environmental ethic and are motivated by efforts to reduce waste or to remanufacture waste into viable products. In-class efforts to reuse and remanufacture waste can be especially motivating. They can also help students develop a better understanding of life-cycle analysis, waste-stream management,…

  20. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never

  1. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  2. Valorization of Tomato Processing Waste for Lycopene Extraction

    Directory of Open Access Journals (Sweden)

    Rim Driouich

    2016-11-01

    Full Text Available Lycopene is one of the most powerful antioxidants and singlet oxygen quenching agents. It has been found to be of great medical importance with various anti cancer effects, cardiovascular diseases effective agent and with its ability to be an important carotenoid in preventive medicine. In Tunisia, we note a real consumption of tomato paste. With 28 production units for double and triple concentrated tomato, noting a significant production of waste (approximately 30000 Tonne/year consisting of skins pulp and seeds, which could be an important source of lycopene. Our study is concerned with three solid-phase extraction process: assisted by ultrasonic, by microwave and by homogenizer heating at moderate temperature. Their efficiency for the extraction of lycopene contained in the tomato waste was elaborated. The effect of the main process variables (including solvent polarity, solid-to-liquid ratio, temperature and time on lycopene recovery have been investigated. The yield of the isolated lycopene was determined using UV-Visible spectrophotometry and UPLC-DAD quantification methods. Lycopene-rich extract was obtained from the dried and milled tomatoes waste using ethanol as a food grade extraction solvent and employing microwave assisted extraction process. The optimum conditions were 30 min total extraction time at 50°C temperature and 1bar pressure. The degradation of extracted lycopene through air oxidation and day light effect were also tested. Lycopene is stable when mixed with olive oil as a natural antioxidant. Up to 80% of lycopene degradated when exposed for one month to day light at 25°C.

  3. Socio-cultural models as an important element of the site selection process in rural waste management

    Directory of Open Access Journals (Sweden)

    Nenković-Riznić Marina

    2011-01-01

    Full Text Available The problem of waste management in rural areas has not been the subject of detailed specific researches since most of the research has been directed towards the study of means, mechanisms and procedures of waste elimination in urban settlements. The reason for the reduced scope of research in this field lies in the fact that rural settlements cannot be considered as "grateful" subjects due to usual deficiency of specific data (population number, fluctuations, amount of waste, waste composition, methods of waste elimination, etc.. In addition, for several decades the villages have primarily eliminated waste spontaneously. This has proven difficult to research because of the variations of methods applied to each specific locale, as well as different environmental variables. These criteria are based on patterns of behavior, customs and habits of the local population, but they also insist on absolute participation of local stakeholders in waste management. On the other hand, although Serbia has a legislative frame which is fully harmonized with European laws, there is a problem within unclearly defined waste management system which is oriented mainly on rural areas. The reason for this is the fact that waste management in rural areas is the part of regional waste management, and does not operate independently from the system in "urban" areas. However, since rural areas require the construction of recycling yards, this paper will present a new methodology, which equally valuates techno-economic criteria and social criteria in determining waste elimination locations. This paper will also point out varieties of actors in the process of waste elimination in rural areas, as well as the possibility of their participation.

  4. The Role of the Engineered Barrier System in Safety Cases for Geological Radioactive Waste Repoitories: An NEA Initiaive in Co-Operations with the EC, Process Issues and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    D.G. Bennett; A.J. Hooper; S. Voinis; H. Umeki; A.V. Luik; J. Alonso

    2006-02-07

    The Integration Group for the Safety Case (IGSC) of the Nuclear Energy Agency (NEA) Radioactive Waste Management Committee in co-operation with the European Commission (EC) is conducting a project to develop a greater understanding of how to achieve the necessary integration for successful design, construction, testing, modeling, and assessment of engineered barrier systems. The project also seeks to clarify the role that the EBS plays in assuring the overall safety of a repository. A framework for the EBS Project is provided by a series of workshops that allow discussion of the wide range of activities necessary for the design, assessment and optimization of the EBS, and the integration of this information into the safety case. The topics of this series of workshops have been planned so that the EBS project will work progressively through the main aspects comprising one cycle of the design and optimization process. This paper seeks to communicate key results from the EBS project to a wider audience. The paper focuses on two topics discussed at the workshops: process issues and the role of modeling.

  5. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  6. State Waste Discharge Permit application: 400 Area Septic System

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

  7. Sustainability of Solid Waste Management System in Urban Areas of Pakistan: Stakeholders Perspective

    Directory of Open Access Journals (Sweden)

    Shoaib Muhammad

    2017-03-01

    Full Text Available Sustainability of solid waste management system in Pakistan like other developing countries is a growing challenge. Stakeholders are vital for the successful running of solid waste management system and timely inclusion of stakeholders’ perspective can contribute to attain sustainability of solid waste management system. Therefore, stakeholders’ subjectivities and perspectives towards the sustainability of solid waste management system were studied in this research program. . Five components of the sustainable solid waste management system, that is, Technical, Environmental, Economic, Social and Institutional, were considered based on literature review. Nature of these components being part of an integrated system makes the system multicriteria. Relative importance of these components leading to define priorities for planning and execution of such system is the need for planning, development, and running of such systems. To acquire these priorities based on stakeholders input the stakeholders were classified into two major categories i.e. Technical and Social. A survey was undertaken in which the afore-mentioned stakeholders were asked to provide their input in the form of a pair wise comparison among the various components of the sustainable solid waste management system (SSWM. Analytical Hierarchy Process, a Multi Criteria Decision Analysis (MCDA tool was used to quantify the relative importance of various components of SSWM. Environmental component of the sustainability came out to be the top priority of the stakeholders as it was given the highest weight by the stakeholders

  8. Feed Composition for Sodium-Bearing Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.

    2000-10-30

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

  9. Remote operation of Defense Waste Processing Facility sampling stations

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, D E; Gunnels, D L

    1985-01-01

    A full-scale liquid sampling station mockup for the Defense Waste Processing Facility (DWPF) at the Savannah River Laboratory (SRL) demonstrated successful remote operation and replacement of all valves and instruments using master/slave manipulators in a clean atmosphere before similar stations are placed in a radioactive cell. Testing of the sample stations demonstrated the limitations of the manipulators which resulted in minor design changes that were easily accomplished in a clean cell. These same changes would have been difficult and very costly to make in a radioactive environment. 6 figs.

  10. INEL test plan for evaluating waste assay systems

    Energy Technology Data Exchange (ETDEWEB)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  11. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Geological Disposal Options for the Radioactive Wastes from a Recycling Process of Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Choi, H. J.; Lee, M. S.; Jeong, J. T.; Choi, J. W.; Kim, S. K.; Cho, D. K.; Kuk, D. H.; Cha, J. H

    2008-10-15

    The electricity from the nuclear power plants is around 40 % of total required electricity in Korea and according to the energy development plan, the proportion will be raised about 60 % in near future. To implement this plan, the most important factor is the back-end fuel cycle, namely the safe management of the spent fuel or high level radioactive wastes from the nuclear power plants. Various researches are being carried out to manage the spent fuel effectively in the world. In our country, as one of the management alternatives which is more effective and non-proliferation, pyro-processing method is being developed actively to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a Nuclear power plant. This is a new dry recycling process. In this report, the amount of various wastes and their characteristics are estimated in a Pyro-process. Based on these information, the geological disposal alternatives are developed. According to the amount and the characteristics of each waste, the concepts of waste packages and the disposal container are developed. And also from the characteristics of the radioactivity and the heat generation, multi-layer of the depth is considered to dispose these wastes. The proposed various alternatives in this report can be used as input data for design of the deep geological disposal system. And they will be improved through the application of the real site data and safety assessment in the future. After then, the final disposal concept will be selected with various assessment and the optimization will be carried out.

  13. Melt processing of radioactive waste: A technical overview

    Energy Technology Data Exchange (ETDEWEB)

    Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

    1997-04-01

    Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.

  14. On Application of a Video Surveillance System in Waste Electrical and Electronic Product Processing Enterprises%浅析废弃电器电子产品处理企业视频监控系统

    Institute of Scientific and Technical Information of China (English)

    秦峥; 王冬梅

    2015-01-01

    The Video Surveillance System for Waste Electrical and Electronic Product Processing Enterprises in Tianjin is mainly applied to the monitoring of the city’s corresponding enterprises by the municipal environmental protection admini-stration agency. This paper gives an overview of the system and analyzes its existing problems,such as to-be-upgraded im-age quality,unstable power supply to the front camera and unstable network transmission. In the end,it presents coping measures and development suggestions.%“天津市废弃电器电子产品处理企业视频监控系统”主要用于天津市环境保护管理部门对天津市的废弃电器电子产品处理企业生产过程进行视频监控。介绍了系统概况,从图像质量有待提高、前端摄像头供电不稳、网络传输不稳定等方面分析了系统存在的问题,并提出了解决方法和发展建议。

  15. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayancsik, B.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-10-13

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200 West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.

  16. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  17. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  18. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    OpenAIRE

    Debere Mesfin Kote; Gelaye Kassahun Alemu; Alamdo Andamlak Gizaw; Trifa Zemedu Mehamed

    2013-01-01

    Abstract Background Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Methods Six hospitals in Addis Ababa, (three private and three public), were selected using s...

  19. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    Science.gov (United States)

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  20. Planning waste cooking oil collection systems.

    Science.gov (United States)

    Ramos, Tânia Rodrigues Pereira; Gomes, Maria Isabel; Barbosa-Póvoa, Ana Paula

    2013-08-01

    This research has been motivated by a real-life problem of a waste cooking oil collection system characterized by the existence of multiple depots with an outsourced vehicle fleet, where the collection routes have to be plan. The routing problem addressed allows open routes between depots, i.e., all routes start at one depot but can end at the same or at a different one, depending on what minimizes the objective function considered. Such problem is referred as a Multi-Depot Vehicle Routing Problem with Mixed Closed and Open Inter-Depot Routes and is, in this paper, modeled through a mixed integer linear programming (MILP) formulation where capacity and duration constraints are taken into account. The model developed is applied to the real case study providing, as final results, the vehicle routes planning where a decrease of 13% on mileage and 11% on fleet hiring cost are achieved, when comparing with the current company solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  2. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    Science.gov (United States)

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  3. Development of A Web based GIS Waste Disposal Management System for Nigeria

    Directory of Open Access Journals (Sweden)

    Adebayo P. Idowu

    2012-07-01

    Full Text Available Waste management has to do with handling of solid refuse from their sources of generation through storage, collection, transportation, recovery and treatment processes to disposal This research developed a web based GIS waste disposal management system, with aim of achieving an effective waste management system and a spatial view of waste collection locations in any local government area in Nigeria. The system was developed using Extensive Hypertext Markup Language and Cascading Style Sheet (XHTML/CSS, and Asynchronous Java Scripting with XML (AJAX and the software packages used for the development of the application are Adobe Dreamweaver and Adobe Fireworks, MySQL, Apache Server and PHP scripting. With this waste management system, the locations of all the waste collection tanks in any location will be, monitored, managed and maintained. The use of this system will ease the job of the waste management unit of the local government areas in Nigeria in achieving a clean environment and mitigate the spread of epidemic in a way to ensure safety of all and sundry.

  4. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  5. A systems study of the waste management system in Gothenburg. Part of the project: Thermal and biological waste treatment in a systems perspective; Systemstudie Avfall i Goeteborg. Delprojekt i Termisk och biologisk avfallsbehandling i ett systemperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Sundberg, Johan; Haraldsson, Maarten; Norrman Eriksson, Ola

    2010-07-01

    The purpose of the project A system study of waste management in Gothenburg is to evaluate new waste treatment options for municipal and industrial waste from a system perspective. The project has been carried out as a part of the project Thermal and biological waste treatment in a systems perspective - WR21. The focus is set to the waste and district heating system in Gothenburg. The project has been running for 2,5 years with an active group consisting of persons from Renova, Kretsloppskontoret, Goeteborg Energi, Gryaab and Profu. The work on development of models and of methods of handling strategic questions within the field has gone back and forth within the group. This report focuses on presenting the final results from the project, which means that the process in which we've excluded several treatment options and scenarios are only briefly described

  6. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  7. Part II--the effect of data on waste behaviour: the South African waste information system.

    Science.gov (United States)

    Godfrey, Linda; Scott, Dianne; Difford, Mark; Trois, Cristina

    2012-11-01

    Combining the process of learning and the theory of planned behaviour into a new theoretical framework provides an opportunity to explore the impact of data on waste behaviour, and consequently on waste management, in South Africa. Fitting the data to the theoretical framework shows that there are only three constructs which have a significant effect on behaviour, viz experience, knowledge, and perceived behavioural control (PBC). Knowledge has a significant influence on all three of the antecedents to behavioural intention (attitude, subjective norm and PBC). However, it is PBC, and not intention, that has the greatest influence on waste behaviour. While respondents may have an intention to act, this intention does not always manifest as actual waste behaviour, suggesting limited volitional control. The theoretical framework accounts for 53.7% of the variance in behaviour, suggesting significant external influences on behaviour not accounted for in the framework. While the theoretical model remains the same, respondents in public and private organisations represent two statistically significant sub-groups in the data set. The theoretical framework accounts for 47.8% of the variance in behaviour of respondents in public waste organisations and 57.6% of the variance in behaviour of respondents in private organisations. The results suggest that respondents in public and private waste organisations are subject to different structural forces that shape knowledge, intention, and resultant waste behaviour. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Automated process planning system

    Science.gov (United States)

    Mann, W.

    1978-01-01

    Program helps process engineers set up manufacturing plans for machined parts. System allows one to develop and store library of similar parts characteristics, as related to particular facility. Information is then used in interactive system to help develop manufacturing plans that meet required standards.

  9. Analysis of data from radioactive wastes treatment process and implementation of a data management applied program

    Energy Technology Data Exchange (ETDEWEB)

    Jeo, H. S.; Son, J. S.; Kim, T. K.; Kang, I. S.; Lee, Y. H [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    As for the generated radioactive waste, a nuclide and a form are various, and by small quantity occurs the irregular times in KAERI. Record management of a radioactive waste personal history is an important element in disposal. A data collection of a liquid / solid radioactive waste treatment process of a research organization became necessary while developing the RAWMIS which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by treatment process. Data on the actual treatment process that is not limited experiment improve by a document, human traces, saving of material resources and improve with efficiency of tracking about a radioactive waste and a process and give help to radioactive waste material valance and inventory study.

  10. Extraction of Am(III) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a 'green' approach for radioactive waste processing

    NARCIS (Netherlands)

    Sengupta, A; Mohapatra, P.K.; Iqbal, M.; Verboom, Willem; Huskens, Jurriaan; Godbole, S.V.

    2012-01-01

    Extraction of Am3+ from acidic feed solutions was investigated using novel solvent systems containing a tripodal diglycolamide (T-DGA) in three room temperature ionic liquids (RTIL), viz. [C4mim][NTf2], [C6mim][NTf2] and [C8mim][NTf2]. Compared to the results obtained with N,N,N′,N′-tetra-n-octyl

  11. Final Regulatory Determination for Special Wastes From Mineral Processing (Mining Waste Exclusion) - Federal Register Notice, June 13, 1991

    Science.gov (United States)

    This action presents the Agency's final regulatory determination required by section 3001(b)(3)(C) of the Resource Conservation and Recovery Act (RCRA) for 20 special wastes from the processing of ores and minerals.

  12. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, R.G.

    1983-08-01

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day based upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.

  13. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  14. Degradation of morphine in opium poppy processing waste composting.

    Science.gov (United States)

    Wang, Yin Quan; Zhang, Jin Lin; Schuchardt, Frank; Wang, Yan

    2014-09-01

    To investigate morphine degradation and optimize turning frequency in opium poppy processing waste composting, a pilot scale windrow composting trial was run for 55 days. Four treatments were designed as without turning (A1), every 5 days turning (A2), every 10 days turning (A3) and every 15 days turning (A4). During composting, a range of physicochemical parameters including the residual morphine degradation, temperature, pH, and the contents of total C, total N, total P and total K were investigated. For all treatments, the residual morphine content decreased below the detection limit and reached the safety standards after day 30 of composting, the longest duration of high temperature (⩾50 °C) was observed in A3, pH increased 16.9-17.54%, total carbon content decreased 15.5-22.5%, C/N ratio reduced from 46 to 26, and the content of total phosphorus and total potassium increased slightly. The final compost obtained by a mixture of all four piles was up to 55.3% of organic matter, 3.3% of total nutrient (N, P2O5 and K2O) and 7.6 of pH. A turning frequency of every ten days for a windrow composting of opium poppy processing waste is recommended to produce homogenous compost.

  15. Waste-to-methanol: Process and economics assessment.

    Science.gov (United States)

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-07-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. LCA comparison of container systems in municipal solid waste management.

    Science.gov (United States)

    Rives, Jesús; Rieradevall, Joan; Gabarrell, Xavier

    2010-06-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80l to containers of 2400l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60l or 80l) had most impact while systems using big steel containers (2400l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Multibarrier system preventing migration of radionuclides from radioactive waste repository

    Directory of Open Access Journals (Sweden)

    Olszewska Wioleta

    2015-09-01

    Full Text Available Safety of radioactive waste repositories operation is associated with a multibarrier system designed and constructed to isolate and contain the waste from the biosphere. Each of radioactive waste repositories is equipped with system of barriers, which reduces the possibility of release of radionuclides from the storage site. Safety systems may differ from each other depending on the type of repository. They consist of the natural geological barrier provided by host rocks of the repository and its surroundings, and an engineered barrier system (EBS. The EBS may itself comprise a variety of sub-systems or components, such as waste forms, canisters, buffers, backfills, seals and plugs. The EBS plays a major role in providing the required disposal system performance. It is assumed that the metal canisters and system of barriers adequately isolate waste from the biosphere. The evaluation of the multibarrier system is carried out after detailed tests to determine its parameters, and after analysis including mathematical modeling of migration of contaminants. To provide an assurance of safety of radioactive waste repository multibarrier system, detailed long term safety assessments are developed. Usually they comprise modeling of EBS stability, corrosion rate and radionuclide migration in near field in geosphere and biosphere. The principal goal of radionuclide migration modeling is assessment of the radionuclides release paths and rate from the repository, radionuclides concentration in geosphere in time and human exposure to ionizing radiation

  18. Optimization of the Enzymatic Saccharification Process of Milled Orange Wastes

    Directory of Open Access Journals (Sweden)

    Daniel Velasco

    2017-08-01

    Full Text Available Orange juice production generates a very high quantity of residues (Orange Peel Waste or OPW-50–60% of total weight that can be used for cattle feed as well as feedstock for the extraction or production of essential oils, pectin and nutraceutics and several monosaccharides by saccharification, inversion and enzyme-aided extraction. As in all solid wastes, simple pretreatments can enhance these processes. In this study, hydrothermal pretreatments and knife milling have been analyzed with enzyme saccharification at different dry solid contents as the selection test: simple knife milling seemed more appropriate, as no added pretreatment resulted in better final glucose yields. A Taguchi optimization study on dry solid to liquid content and the composition of the enzymatic cocktail was undertaken. The amounts of enzymatic preparations were set to reduce their impact on the economy of the process; however, as expected, the highest amounts resulted in the best yields to glucose and other monomers. Interestingly, the highest content in solid to liquid (11.5% on dry basis rendered the best yields. Additionally, in search for process economy with high yields, operational conditions were set: medium amounts of hemicellulases, polygalacturonases and β-glucosidases. Finally, a fractal kinetic modelling of results for all products from the saccharification process indicated very high activities resulting in the liberation of glucose, fructose and xylose, and very low activities to arabinose and galactose. High activity on pectin was also observed, but, for all monomers liberated initially at a fast rate, high hindrances appeared during the saccharification process.

  19. GIS based solid waste management information system for Nagpur, India.

    Science.gov (United States)

    Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A

    2013-01-01

    Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.

  20. An environmental friendly animal waste disposal process with ammonia recovery and energy production: Experimental study and economic analysis.

    Science.gov (United States)

    Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa

    2017-10-01

    Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm(3)). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hazardous waste characterization among various thermal processes in South Korea: a comparative analysis.

    Science.gov (United States)

    Shin, Sun Kyoung; Kim, Woo-Il; Jeon, Tae-Wan; Kang, Young-Yeul; Jeong, Seong-Kyeong; Yeon, Jin-Mo; Somasundaram, Swarnalatha

    2013-09-15

    Ministry of Environment, Republic of Korea (South Korea) is in progress of converting its current hazardous waste classification system to harmonize it with the international standard and to set-up the regulatory standards for toxic substances present in the hazardous waste. In the present work, the concentrations along with the trend of 13 heavy metals, F(-), CN(-) and 19 PAH present in the hazardous waste generated among various thermal processes (11 processes) in South Korea were analyzed along with their leaching characteristics. In all thermal processes, the median concentrations of Cu (3.58-209,000 mg/kg), Ni (BDL-1560 mg/kg), Pb (7.22-5132.25mg/kg) and Zn (83.02-31419 mg/kg) were comparatively higher than the other heavy metals. Iron & Steel thermal process showed the highest median value of the heavy metals Cd (14.76 mg/kg), Cr (166.15 mg/kg) and Hg (2.38 mg/kg). Low molecular weight PAH (BDL-37.59 mg/kg) was predominant in sludge & filter cake samples present in most of the thermal processes. Comparatively flue gas dust present in most of the thermal processing units resulted in the higher leaching of the heavy metals.

  2. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  3. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.P.

    2000-03-22

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

  4. Environmental-benefit analysis of two urban waste collection systems.

    Science.gov (United States)

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO2-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. Copyright © 2013 Elsevier B.V. All

  5. Resource-saving technologies of making advanced cast and deformable superalloys with allowance for processing all types of wastes

    Science.gov (United States)

    Kablov, E. N.; Sidorov, V. V.; Kablov, D. E.; Min, P. G.; Rigin, V. E.

    2016-12-01

    The results of thermodynamic analysis of the vacuum-melt-ceramic system and experimental investigations of using up to 100% wastes during vacuum-induction melting are presented. An important role of rare-earth and alkaline-earth metals and heat treatment is shown for effective refining of a melt from impurities and gases. As a result, a resource-saving technology of making advanced cast and deformable nickel superalloys is developed with allowance for processing all types of wastes, including off-grade wastes. The developed technology of refining wastes under vacuum makes it possible to manufacture the alloys that fully meet the requirements of alloy specifications from 100% wastes. This technology is now used for the mass production of nickel superalloys in a research complex at FGUP VIAM.

  6. Waste pretreatment and interfacing system dynamic simulation model (ITHINK model) FY-96 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, R.W.

    1996-09-30

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation (ITHINK) Model (see WHC-SD-WM-DR-013) was originally created to investigate the required pretreatment facility processing rates required to meet the Tri-Party Agreement (TPA) waste vitrification milestones. The TPA milestones are satisfied by retrieving the TX tank farm (salt cake) single-shell tanks (SSTs)first and by utilizing a relatively constant retrieval rate to the year 2018 when retrieval is completed.

  7. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste.

    Science.gov (United States)

    Giudicianni, Paola; Bozza, Pio; Sorrentino, Giancarlo; Ragucci, Raffaele

    2015-10-01

    In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment or condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of the common domestic appliances. Finally, the evaluation of the energy recovered in the final product per unit weight of raw material shows that in most cases it is comparable to the energy required from the treatment.

  8. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  9. Assessment and development of an industrial wet oxidation system for burning waste and low upgrade fuels. Final report, Phase 2B: Pilot demonstration of the MODAR supercritical water oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Stone & Webster Engineering Corporation is Project Manager for the Development and Demonstration of an Industrial Wet Oxidation System for Burning Wastes and Low Grade Fuel. This program has been ongoing through a Cooperative Agreement sponsored by the Department of Energy, initiated in June 1988. This report presents a comprehensive discussion of the results of the demonstration project conducted under this cooperative agreement with the overall goal of advancing the state-of-the-art in the practice of Supercritical Water Oxidation (SCWO). In recognition of the Government`s support of this project, we have endeavored to include all material and results that are not proprietary in as much detail as possible while still protecting MODAR`s proprietary technology. A specific example is in the discussion of materials of construction where results are presented while, in some cases, the specific materials are not identified. The report presents the results chronologically. Background material on the earlier phases (Section 2) provide an understanding of the evolution of the program, and bring all reviewers to a common starting point. Section 3 provides a discussion of activities from October 1991 through July 1992, during which the pilot plant was designed; and various studies including computational fluid dynamic modeling of the reactor vessel, and a process HAZOP analyses were conducted. Significant events during fabrication are presented in Section 4. The experimental results of the test program (December 1992--August 1993) are discussed in Section 5.

  10. Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste

    DEFF Research Database (Denmark)

    Razi Parjikolaei, Behnaz; El-Houri, Rime Bahij; Fretté, Xavier

    2015-01-01

    In this work, sunflower oil (SF) and methyl ester of sunflower oil (ME-SF) were introduced as two green solvents for extracting astaxanthin (ASX) from shrimp processing waste. The effects of temperature (25, 45, 70 °C), solvent to waste ratio (3, 6, 9), waste particle size (0.6 and 2.5 mm...

  11. ARSENIC LEACHING FROM IRON RICH MINERAL PROCESSING WASTE: INFLUENCE OF PH AND REDOX POTENTIAL

    Science.gov (United States)

    This paper presents the effect of pH and redox potential on the potential mobility of arsenic (As) from a contaminated mineral processing waste. The selected waste contained about 0.47 g kg-1 of As and 66.2 g kg-1 of iron (Fe). The characteristic of the wast...

  12. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  13. Operational wastes management - 'wet oxidation' - an innovative process to manage radiological spent resins

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Maggini, F.; Mazzoni, C.; Orlandi, S.; Ricci, C. [Nuclear System Engineering Department, Ansaldo Nucleare S.p.A., Corso Perrone 25, 16161 Genova (Italy)

    2010-07-01

    A new system using the wet-oxidation process has been studied for the treatment of the organic radioactive waste such spent ion exchange resins. The purpose of the process is to enable a high degree of volume reduction of the waste and compared with various processes for treating sludge and resin, the wet-oxidation system is rather simple and it works in mild conditions. Verification tests have been performed in a large scale pilot plant with not contaminated ion exchange resin samples similar to those ones used in NPPs. (authors)

  14. Recent advances of annular centrifugal extractor for hot test of nuclear waste partitioning process

    Institute of Scientific and Technical Information of China (English)

    HeXiang-Ming; YanYu-Shun; 等

    1998-01-01

    Advances are being made in the design of the annular centrifugal extractor fornuclear fuel reprocessing extraction process studies.The extractors have been built and tested.Twelve stages of this extractor and 50 stages are used toimplement the TRPO process for the cleanup ofcommercial and defense nuclear waste liquids,respectively.Following advances are available:(1) simple way of assembly and disassembly between rotor part and housing part of extractor,ease of manipulator operation;(2)automatic sampling from housing of extractor in hot cell;(3) compact multi-stage housing system;(4) easy interstage link;(5) computer data acquisition and monitoring system of speed.

  15. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    from the LCAs of full waste management systems revealed that capital goods should be included in future LCAs. The impact share of capital goods was highest for resource depletion and the impacts of toxicity on humans and ecosystems. To evaluate the quality and consistency of available data...... for the primary and secondary production of materials, 366 datasets were gathered. The materials in focus were: paper, newsprint, cardboard, corrugated board, glass, aluminium, steel and plastics (HDPE, LDPE, LLDPE, PET, PS, PVC). Only one quarter of these data concerned secondary production, thus underlining...... a severe lack of data for these production processes. The results showed large variations in CO2 emissions from the production of each of the evaluated materials. An evaluation of the data revealed that energy systems are central to impacts and are thereby important to specify as background information...

  16. High Level Waste System Impacts from Acid Dissolution of Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KETUSKY, EDWARD

    2006-04-20