WorldWideScience

Sample records for waste processing plants

  1. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  2. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  3. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  4. Solid municipal waste processing plants: Cost benefit analysis

    International Nuclear Information System (INIS)

    Gerardi, V.

    1992-01-01

    This paper performs cost benefit analyses on three solid municipal waste processing alternatives with plants of diverse daily outputs. The different processing schemes include: selected wastes incineration with the production of refuse derived fuels; selected wastes incineration with the production of refuse derived fuels and compost; pyrolysis with energy recovery in the form of electric power. The plant daily outputs range from 100 to 300 tonnes for the refuse derived fuel alternatives, and from 200 to 800 tonnes for the pyrolysis/power generation scheme. The cost analyses consider investment periods of fifteen years in duration and interest rates of 5%

  5. Processing of transuranic waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Gruber, L.M.; Mentrup, S.J.

    1986-01-01

    Transuranic wastes at the Savannah River Plant (SRP) have been retrievably stored on concrete pads since early 1972. This waste is stored primarily in 55-gallon drums and large carbon steel boxes. Higher activity drums are placed in concrete culverts. In support of a National Program to consolidate and permanently dispose of this waste, a major project is planned at SRP to retrieve and process this waste. This project, the TRU Waste Facility (TWF), will provide equipment and processes to retrieve TRU waste from 20-year retrievable storage and prepare it for permanent disposal at the Waste Isolation Pilot Plant (WIPP) geological repository in New Mexico. This project is an integral part of the SRP Long Range TRU Waste Management Program to reduce the amount of TRU waste stored at SRP. The TWF is designed to process 15,000 cubic feet of retrieved waste and 6200 cubic feet of newly generated waste each year of operation. This facility is designed to minimize direct personnel contact with the waste using state-of-the-art remotely operated equipment

  6. Increasing operational efficiency in a radioactive waste processing plant - 16100

    International Nuclear Information System (INIS)

    Turner, T.W.; Watson, S.N.

    2009-01-01

    The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively de-licensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to de-licensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990's, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as 'lean' and 'kaizen' have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant

  7. Processing and solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Kelley, J.A.

    1981-01-01

    The entire flowsheet for processing and solidification of Savannah River Plant (SRP) high-level wastes has been demonstrated. A new small-scale integrated pilot plant is operating with actual radioactive wastes, and large-scale equipment is being demonstrated with nonradioactive simulated wastes. Design of a full-scale waste solidification plant is in progress. Plant construction is expected to begin in 1983, and startup is anticipated in 1988. The plant will poduce about 500 cans of glass per year with each can containing about 1.5 tons of glass

  8. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  9. Radioactive waste processing method for a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kuriyama, O

    1976-06-04

    Object is to subject radioactive liquid waste in a nuclear power plant to reverse permeation process after which it is vaporized and concentrated thereby decreasing the quantity of foam to be used to achieve effective concentration of the liquid waste. Liquid waste containing a radioactive material produced from a nuclear power plant is first applied with pressure in excess of osmotic pressure by a reverse permeation device and is separated into clean water and concentrated liquid by semi-permeable membrane. Next, the thus reverse-permeated and concentrated waste is fed to an evaporator which control foaming by the foam and then further reconcentrated for purification of the liquid waste.

  10. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  11. Improved liquid waste processing system of PWR plant

    International Nuclear Information System (INIS)

    Suehiro, Kazuyasu

    1977-01-01

    Mitsubishi Heavy Industries, Ltd. has engaged in the improvement and enhancement of waste-processing facilities for PWR power stations, and recently established the improved processing system. With this system, it becomes possible to contain radioactive waste gas semi-permanently within plants and to recycle waste liquid after the treatment, thus to make the release of radioactive wastes practically zero. The improved system has the following features, namely the recycling system is adopted, drain is separated and each separated drain is treated by specialized process, the reboiler type evaporator and the reverse osmosis equipment are used, and the leakless construction is adopted for the equipments. The radioactive liquid wastes in PWR power stations are classified into coolant drain, drain from general equipments, chemical drain and cleaning water. The outline of the improved processing system and the newly developed equipments such as the reboiler type evaporator and the reverse osmosis equipment are explained. With the evaporator, the concentration rate of waste liquid can be raised to about three times, and foaming waste can be treated efficiently. The decontamination performance is excellent. The reverse osmosis treatment is stable and reliable method, and is useful for the treatment of cleaning water. It is also effective for concentrating treatment. The unmanned automatic operation is possible. (Kako, I.)

  12. Hanford Waste Vitrification Plant - the project and process systems

    International Nuclear Information System (INIS)

    Swenson, L.D.; Miller, W.C.; Smith, R.A.

    1990-01-01

    The Hanford Waste Vitrification Plant (HWVP) project is scheduled to start construction on the Hanford reservation in southeastern Washington State in 1991. The project will immobilize the liquid high-level defense waste stored there. The HWVP represents the third phase of the U.S. Department of Energy (DOE) activities that are focused on the permanent disposal of high-level radioactive waste, building on the experience of Defense Waste Processing Facility (DWPF) at the Savannah River site, South Carolina, and of the West Valley Demonstration Plant (WVDP), New York. This sequential approach to disposal of the country's commercial and defense high-level radioactive waste allows HWVP to make extensive use of lessons learned from the experience of its predecessors, using mature designs from the earlier facilities to achieve economies in design and construction costs while enhancing operational effectiveness

  13. Management of radioactive liquid waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bendixsen, C.L.

    1992-01-01

    Highly radioactive liquid wastes (HLLW) are routinely produced during spent nuclear fuel processing at the Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL). This paper discusses the processes and safe practices for management of the radioactive process waste streams, which processes include collection, concentration, interim storage, calcination to granular solids, and long-term intermediate storage. Over four million gallons of HLLW have been converted to a recoverable granular solid form through waste liquid injection into a high-temperature, fluidized bed wherein the wastes are converted to their respective solid oxides. The development of a glass ceramic solid for the long-term permanent disposal of the high level waste (HLW) solids is also described

  14. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    Science.gov (United States)

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  15. Liquid radioactive waste processing system for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard sets forth design, construction, and performance requirements, with due consideration for operation, of the Liquid Radioactive Waste Processing System for pressurized water reactor plants for design basis inputs. For the purpose of this Standard, the Liquid Radioactive Waste Processing System begins at the interfaces with the reactor coolant pressure boundary and the interface valve(s) in lines from other systems, or at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material; and it terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system, and at the point of recycle back to storage for reuse

  16. EPRI waste processing projects

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    The Electric Power Research Institute (EPRI) manages research for its sponsoring electric utilities in the United States. Research in the area of low level radioactive waste (LLRW) from light water reactors focuses primarily on waste processing within the nuclear power plants, monitoring of the waste packages, and assessments of disposal technologies. Accompanying these areas and complimentary to them is the determination and evaluation of the sources of nuclear power plants radioactive waste. This paper focuses on source characterization of nuclear power plant waste, LLRW processing within nuclear power plants, and the monitoring of these wastes. EPRI's work in waste disposal technology is described in another paper in this proceeding by the same author. 1 reference, 5 figures

  17. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  18. Codigestion of manure and industrial organic waste at centralized biogas plants: process imbalances and limitations

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Angelidaki, Irini

    2008-01-01

    The present study focuses on process imbalances in Danish centralized biogas plants treating manure in combination with industrial waste. Collection of process data from various full-scale plants along with a number of interviews showed that imbalances occur frequently. High concentrations...... of ammonia or long chain fatty acids is in most cases expected to be the cause of microbial inhibitions/imbalances while foaming in the prestorage tanks and digesters is the most important practical process problem at the plants. A correlation between increased residual biogas production (suboptimal process...... conditions) and high fractions of industrial waste in the feedstock was also observed. The process imbalances and suboptimal conditions are mainly allowed to occur due to 1) inadequate knowledge about the waste composition, 2) inadequate knowledge about the waste degradation characteristics, 3) inadequate...

  19. A new semi-mobile plant for radiation processing of waste

    International Nuclear Information System (INIS)

    Iacoboni, V.; Liccione, G.; Schwarz, M.; Tata, A.; Fantini, M.

    1998-01-01

    A new pilot/demonstrative semi-mobile irradiation plant, named TRIRIS (TRIsaia-RIfiuti-Sterilizzazione, namely ''Trisaia Res. Center - Wastes - Sterilization''), has been designed and erected in order to propose and explore new technological opportunities, based on in ''in-situ'' effective cleaning process. The main general goal is to face increased problems and concerns related to the treatment/disposal of different solid-liquid wastes, particularly with reference to emergency situation (e.g. need of quick environment restoring operation following an accident with groundwater pollution). The project, which was jointly carried out by ENEA and Hitesys Co., an Italian electron accelerators manufacturer, foresees a LINAC type EB-machine (s band) having 4-6 MeV and till 1000 W as beam features. A highly flexible automatic system allows materials (solid or liquid wastes) transporting and handling to be equipped with a belt conveyor and a piping net. Scattered radiation shielding is performed by a water pool surrounding the EB-machine head, filled up before operations. Auxiliary systems, control console and analytical chemical laboratories are hosted in suitable containers near the plant and are easily transportable. The whole plant and annexed systems disassembling and reassembling in a new site can be easily carried out in a short time (few days). The plant, located at ENEA-Trisaia Res. Center (Basilicata, southern Italy), allows a large operative flexibility: groundwater and wastewater decontamination (1800 to 70 kg/h in the 1 to 25 kGy dose range), organic and chlorinated waste streams (25 kg/h at 75 kGy), solid hospital wastes (50 kg/h at 35 kGy) or hazardous wastes like polycyclic aromatic compounds (180 to 35 kg/h in the 10 to 50 kGy dose range). The paper describes and illustrates the plant in details and presents the first available operating results so far performed by the installed plant

  20. Defense waste processing facility at Savannah River Plant. Instrument and power jumpers

    International Nuclear Information System (INIS)

    Heckendorm, F.M. II.

    1983-06-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant is in the final design stage. Development of equipment interconnecting devices or jumpers for use within the remotely operated processing canyon is now complete. These devices provide for the specialized instrument and electrical requirements of the DWPF process for low-voltage, high-frequency, and high-power interconnections

  1. Defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.; Maher, R.; Mellen, J.B.; Shafranek, L.F.; Stevens, W.R. III.

    1984-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures

  2. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  3. A new semi-mobile plant for radiation processing of waste

    International Nuclear Information System (INIS)

    Tata, A.

    1998-04-01

    A new pilot/demonstrative semi-mobile irradiation plant, named TRIRIS (TRIsaia-RIfiuti-Sterilizzazione, namely 'Trisaia Res. Center - Wastes- Sterilization') has been designed and erected. The plant goal is recognized in proposing and exploring new technological opportunities, based on an 'in-situ' effective processing of solid or liquid waste, mainly with reference to emergency situations (e.g. need of a quick environmental restoring operation following an accidental groundwater pollution). The project, which was jointly carried out by ENEA and Hitesys Co. and Italian electrons accelerators manufacturer, foresees a LINAC type EB-machine (s band) having 4-6 M e V and till 1000 W as beam features. Scattered radiation shielding is performed by a water pool surrounding the EB-machine head, filled up before operations. The plant, that is to be located at ENEA-Trisaia Res. Center (Basilicata southern of Italy), allows a large operative flexibility: groundwater and wastewater decontamination (1800 to 70 kg/h in the 1 to 25 kGy does range), organic and chlorinated waste streams (25 kg/h at 75 kGy), solid hospital wastes (50 kg/h at 35 kGy) or hazardous wastes like polycyclic aromatic compounds (180 to 35 kg/h in the 10 to 50 kGy dose range) [it

  4. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  5. Hanford Waste Vitrification Plant Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Facility currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. This Vitrification Plant Dangerous Waste Permit Application, Revision 2, consists of both a Part A and a Part B permit application. An explanation of the Part A revisions, including Revision 4 submitted with this application, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987)

  6. Hanford Waste Vitrification Plant: Preliminary description of waste form and canister

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1986-01-01

    In July 1985, the US Department of Energy's Office of Civilian Radioactive Waste Management established the Waste Acceptance Process as the means by which defense high-level waste producers, such as the Hanford Waste Vitrification Plant, will develop waste acceptance requirements with the candidate geologic repositories. A complete description of the Waste Acceptance Process is contained in the Preliminary Hanford Waste Vitrification Plant Waste Form Qualification Plan. The Waste Acceptance Process defines three documents that high-level waste producers must prepare as a part of the process of assuming that a high-level waste product will be acceptable for disposal in a geologic repository. These documents are the Description of Waste Form and Canister, Waste Compliance Plan, and Waste Qualification Report. This document is the Hanford Waste Vitrification Plant Preliminary Description of Waste Form and Canister for disposal of Neutralized Current Acid Waste. The Waste Acceptance Specifications for the Hanford Waste Vitrification Plant have not yet been developed, therefore, this document has been structured to corresponds to the Waste Acceptance Preliminary Specifications for the Defense Waste Processing Facility High-Level Waste Form. Not all of the information required by these specifications is appropriate for inclusion in this Preliminary Description of Waste Form and Canister. Rather, this description is limited to information that describes the physical and chemical characteristics of the expected high-level waste form. The content of the document covers three major areas: waste form characteristics, canister characteristics, and canistered waste form characteristics. This information will be used by the candidate geologic repository projects as the basis for preliminary repository design activities and waste form testing. Periodic revisions are expected as the Waste Acceptance Process progresses

  7. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  8. Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant

    International Nuclear Information System (INIS)

    Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

    1998-07-01

    The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality

  9. Low-level radioactive waste processing at nuclear power plants

    International Nuclear Information System (INIS)

    1992-12-01

    The Solid Radwaste Processing Source Book is presented as a supplement to the Liquid Radwaste Source Book released in 1990 and updated in 1991. The publication is the result of an industry-wide survey, and is intended as a resource for technical and managerial decisions involving of the processing of solid radioactive waste including ''wet'' and ''dry'' active waste as found at both Pressurized and Boiling Water Reactor sites. In addition to information on processes, vendors, volumes, and in-plant management activities, technology under consideration for future use and computer applications are listed. Together with key personnel and contact information contained in the Liquid Source Books, the collected data will be of great use when seeking specific, unbiased experience on which to base decisions related to so processing, disposal policy, or potential economic and regulatory impact

  10. Evaluation of alternative flow sheets for upgrade of the Process Waste Treatment Plant

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1991-04-01

    Improved chemical precipitation and/or ion-exchange (IX) methods are being developed at the Oak Ridge National Laboratory (ORNL) in an effort to reduce waste generation at the Process Waste Treatment Plant (PWTP). A wide variety of screening tests were performed on potential precipitation techniques and IX materials on a laboratory scale. Two of the more promising flow sheets have been tested on pilot and full scales. The data were modeled to determine the operating conditions and waste generation at plant-scale and used to develop potential flow sheets for use at the PWTP. Each flow sheet was evaluated using future-valve economic analysis and performance ratings (where numerical values were assigned to costs, process flexibility and simplicity, stage of development, waste reduction, environmental and occupational safety, post-processing requirements, and final waste form). The results of this study indicated that several potential flow sheets should be considered for further development, and more detailed cost estimates should be made before a final selection is made for upgrade of the PWTP. 19 refs., 52 figs., 22 tabs

  11. Design criteria for the new waste calcining facility at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Anderson, F.H.; Bingham, G.E.; Buckham, J.A.; Dickey, B.R.; Slansky, C.M.; Wheeler, B.R.

    1976-01-01

    The New Waste Calcining Facility (NWCF) at the Idaho Chemical Processing Plant (ICPP) is being built to replace the existing fluidized-bed, high-level waste calcining facility (WCF). Performance of the WCF is reviewed, equipment failures in WCF operation are examined, and pilot-plant studies on calciner improvements are given in relation to NWCF design. Design features of the NWCF are given with emphasis on process and equipment improvements. A major feature of the NWCF is the use of remote maintenance facilities for equipment with high maintenance requirements, thereby reducing personnel exposures during maintenance and reducing downtime resulting from plant decontamination. The NWCF will have a design net processing rate of 11.36 m 3 of high-level waste per day, and will incorporate in-bed combustion of kerosene for heating the fluidized bed calciner. The off-gas cleaning system will be similar to that for the WCF

  12. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Liquid radioactive waste processing improvement of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Nery, Renata Wolter dos Reis; Martinez, Aquilino Senra; Monteiro, Jose Luiz Fontes

    2005-01-01

    The study evaluate an inorganic ion exchange to process the low level liquid radwaste of PWR nuclear plants, so that the level of the radioactivity in the effluents and the solid waste produced during the treatment of these liquid radwaste can be reduced. The work compares two types of ion exchange materials, a strong acid cation exchange resin, that is the material typically used to remove radionuclides from PWR nuclear plants wastes, and a mordenite zeolite. These exchange material were used to remove cesium from a synthetic effluent containing only this ion and another effluent containing cesium and cobalt. The breakthrough curves of the zeolite and resin using a fix bed reactor were compared. The results demonstrated that the zeolite is more efficient than the resin in removing cesium from a solution containing cesium and cobalt. The results also showed that a bed combining zeolite and resin can process more volume of an effluent containing cesium and cobalt than a bed resin alone. (author)

  14. Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Henze, H.

    1986-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory (INEL) was built to convert transuranic contaminated solid waste into a form acceptable for disposal at the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico. There are about 2.0 million cubic ft of transuranic waste stored at the Transuranic Storage Area of the INEL's Radioactive Waste Management Complex (RWMC). The Stored Waste Examination Pilot Plant (SWEPP) located at the RWMC will examine this stored transuranic waste to determine if the waste is acceptable for direct shipment to and storage at WIPP, or if it requires shipment to PREPP for processing before shipment to WIPP. The PREPP process shreds the waste, incinerates the shredded waste, and cements (grouts) the shredded incinerated waste in new 55-gal drums. Unshreddable items are repackaged and returned to SWEPP. The process off-gas is cleaned prior to its discharge to the atmosphere, and complies with the effluent standards of the State of Idaho, EPA, and DOE. Waste liquid generated is used in the grouting operation

  15. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  16. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  17. Waste processing plant eco-auditing system for minimization of environmental risk: European Communities regulatory proposal

    International Nuclear Information System (INIS)

    Brunetti, N.

    1993-01-01

    This paper delineates a system of process control and monitoring checks to be applied to municipal-industrial waste processing and disposal plants to ensure their energy efficient, environmentally safe and reliable operation. In line with European Communities environmental protection strategies, this eco-auditing system requires the preparation of environmental impacts statements on a regular basis during plant operation, as well as, prior to plant start-up. Continuous plant environmental compatibility evaluations are to ascertain: material and energy inputs and outputs; the composition and amounts of exhaust gases released into the atmosphere and the integrity of treatment liquids; control and monitoring instrumentation reliability. The implementation of the auditing system is to be carried out under the supervision of authorized auditing personnel. Waste processing and disposal plants are to make maximum use of energy and materials recovery processes so as to minimize energy consumption and risk to the environment

  18. Low and medium level liquid waste processing at the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Alexandre, D.

    1986-05-01

    Reprocessing of spent nuclear fuels produces low and medium activity liquid wastes. These radioactive wastes are decontamined before release in environment. The new effluent processing plant, which is being built at La Hague, is briefly described. Radionuclides are removed from liquid wastes by coprecipitation. The effluent is released after decantation and filtration. Insoluble sludges are conditioned in bitumen [fr

  19. Vitrification process testing for reference HWVP waste

    International Nuclear Information System (INIS)

    Perez, J.M. Jr.; Goles, R.W.; Nakaoka, R.K.; Kruger, O.L.

    1991-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify high-level radioactive wastes stored on the Hanford site. The vitrification flow-sheet is being developed to assure the plant will achieve plant production requirements and the glass product will meet all waste form requirements for final geologic disposal. The first Hanford waste to be processed by the HWVP will be a neutralized waste resulting from PUREX fuel reprocessing operations. Testing is being conducted using representative nonradioactive simulants to obtain process and product data required to support design, environmental, and qualification activities. Plant/process criteria, testing requirements and approach, and results to date will be presented

  20. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  1. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  2. Decontamination process applied to radioactive solid wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Franco, Milton B.; Kastner, Geraldo F.; Monteiro, Roberto Pellacani G.

    2009-01-01

    The process of decontamination is an important step in the economic operation of nuclear facilities. A large number of protective clothing, metallic parts and equipment get contaminated during the handling of radioactive materials in laboratory, plants and reactors. Safe and economic operation of these nuclear facilities will have a bearing on the extent to which these materials are reclaimed by the process of decontamination. The most common radioactive contaminants are fission products, corrosion products, uranium and thorium. The principles involved in decontamination are the same as those for an industrial cleaning process. However, the main difference is in the degree of cleaning required and at times special techniques have to be employed for removing even trace quantities of radioactive materials. This paper relate decontaminations experiences using acids and acids mixtures (HCl, HF, HNO 3 , KMnO 4 , C 2 H 2 O 4 , HBF 4 ) in several kinds of radioactive solid wastes from nuclear power plants. The result solutions were monitored by nuclear analytical techniques, in order to contribute for radiochemical characterization of these wastes. (author)

  3. Process of liquid radioactive waste treatment in nuclear power plant and development trend

    International Nuclear Information System (INIS)

    Liu Jiean; Wang Xin; Liu Dan; Zhu Laiye; Chen Bin

    2014-01-01

    The popular liquid radioactive waste treatment methods in nuclear power plants (NPP) are Chemical precipitation, evaporation, ion exchange, membrane treatment, chemical coagulation and activated carbon absorption and so on. 'Filter + activated carbon absorption (Chemical coagulation) + ion exchange' has a good prospect for development, as its simple process, high decontamination factor, low energy consumption and smaller secondary wastes. Also the process is used in Sanmen and Haiyang Projects. The severe incident in NPP set an even higher demand on liquid radioactive waste treatment. The new type treatment materials, optimization of the existed treatment, combination of treatment and the mobile treatment facility is the development trend in liquid radioactive waste treatment in NPP. (authors)

  4. Ceramic process and plant design for high-level nuclear waste immobilization

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; De Wames, R.E.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    In the last 3 years, significant advances in ceramic technology for high-level nuclear waste solidification have been made. Product quality in terms of leach-resistance, compositional uniformity, structural integrity, and thermal stability promises to be superior to borosilicate glass. This paper addresses the process effectiveness and preliminary designs for glass and ceramic immobilization plants. The reference two-step ceramic process utilizes fluid-bed calcination (FBC) and hot isostatic press (HIP) consolidation. Full-scale demonstration of these well-developed processing steps has been established at DOE and/or commercial facilities for processing radioactive materials. Based on Savannah River-type waste, our model predicts that the capital and operating cost for the solidification of high-level nuclear waste is about the same for the ceramic and glass options. However, when repository costs are included, the ceramic option potentially offers significantly better economics due to its high waste loading and volume reduction. Volume reduction impacts several figures of merit in addition to cost such as system logistics, storage, transportation, and risk. The study concludes that the ceramic product/process has many potential advantages, and rapid deployment of the technology could be realized due to full-scale demonstrations of FBC and HIP technology in radioactive environments. Based on our finding and those of others, the ceramic innovation not only offers a viable backup to the glass reference process but promises to be a viable future option for new high-level nuclear waste management opportunities

  5. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    International Nuclear Information System (INIS)

    Raskovic, P.; Anastasovski, A.; Markovska, Lj.; Mesko, V.

    2010-01-01

    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six phases, and the primary tool used for the design of heat recovery network was Pinch Analysis. Performance of preliminary design are obtained by targeting procedure, for three process stream sets, and evaluated by the economic criteria. The results of process integration study are presented in the form of heat exchanger networks which fulfilled the utilization of waste heat and enable considerable savings of energy in short payback period.

  6. Y-12 Plant waste minimization strategy

    International Nuclear Information System (INIS)

    Kane, M.A.

    1987-01-01

    The 1984 Amendments to the Resource Conservation and Recovery Act (RCRA) mandate that waste minimization be a major element of hazardous waste management. In response to this mandate and the increasing costs for waste treatment, storage, and disposal, the Oak Ridge Y-12 Plant developed a waste minimization program to encompass all types of wastes. Thus, waste minimization has become an integral part of the overall waste management program. Unlike traditional approaches, waste minimization focuses on controlling waste at the beginning of production instead of the end. This approach includes: (1) substituting nonhazardous process materials for hazardous ones, (2) recycling or reusing waste effluents, (3) segregating nonhazardous waste from hazardous and radioactive waste, and (4) modifying processes to generate less waste or less toxic waste. An effective waste minimization program must provide the appropriate incentives for generators to reduce their waste and provide the necessary support mechanisms to identify opportunities for waste minimization. This presentation focuses on the Y-12 Plant's strategy to implement a comprehensive waste minimization program. This approach consists of four major program elements: (1) promotional campaign, (2) process evaluation for waste minimization opportunities, (3) waste generation tracking system, and (4) information exchange network. The presentation also examines some of the accomplishments of the program and issues which need to be resolved

  7. Process technology for vitrification of defense high-level waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.

    1984-01-01

    Vitrification in borosilicate glass is now the leading worldwide process for immobilizing high-level radioactive waste. Each vitrification project, however, has its unique mission and technical challenges. The Defense Waste Vitrification Facility (DWPF) now under construction at the Savannah River Plant will concentrate and vitrify a large amount of relatively low-power alkaline waste. Process research and development for the DWPF have produced significant advances in remote chemical operations, glass melting, off-gas treatment, slurry handling, decontamination, and welding. 6 references, 1 figure, 5 tables

  8. Development of new treatment process for low level radioactive waste at Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Horiguchi, Kenichi; Sugaya, Atsushi; Saito, Yasuo; Tanaka, Kenji; Akutsu, Shigeru; Hirata, Toshiaki

    2009-01-01

    The Low-level radioactive Waste Treatment Facility (LWTF) was constructed at the Tokai Reprocessing Plant (TRP) and cold testing has been carried out since 2006. The waste which will be treated in the LWTF is combustible/incombustible solid waste and liquid waste. In the LWTF, the combustible/incombustible solid waste will be incinerated. The liquid waste will be treated by a radio-nuclides removal process and subsequently solidified in cement. This report describes the essential technologies of the LWTF and results of R and D work for the nitrate-ion decomposition technology for the liquid waste. (author)

  9. Hanford Waste Vitrification Plant technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  10. Hanford Waste Vitrification Plant technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version

  11. Chemical mode control in nuclear power plant decommissioning during operation of technologies in individual radioactive waste processing plants

    International Nuclear Information System (INIS)

    Horvath, J.; Dugovic, L.

    1999-01-01

    Sewage treatment of nuclear power plant decommissioning is performed by system of sewage concentration in evaporator with formation of condensed rest, it means radioactive waste concentrate and breeding steam. During sewage treatment plant operation department of chemical mode performs chemical and radiochemical analysis of sewage set for treatment, chemical and radiochemical analysis of breeding steam condensate which is after final cleaning on ionization filter and fulfilling the limiting conditions released to environment; chemical and radiochemical analysis of heating steam condensate which is also after fulfilling the limiting conditions released to environment. Condensed radioactive concentrate is stored in stainless tanks and later converted into easy transportable and chemically stable matrix from the long term storage point of view in republic storage Mochovce. The article also refer to bituminous plant, vitrification plant, swimming pool decontamination plant of long term storage and operation of waste processing plant Bohunice

  12. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  13. Hanford Waste Vitrification Plant applied technology plan

    International Nuclear Information System (INIS)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs

  14. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  15. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  16. Hanford Waste Vitrification Plant technology progress

    International Nuclear Information System (INIS)

    Wolfe, B.A.; Scott, J.L.; Allen, C.R.

    1989-10-01

    The Hanford Waste Vitrification Plant (HWVP) is currently being designed to safely process and temporarily store immobilized defense liquid high-level wastes from the Hanford Site. These wastes will be immobilized in a borosilicate glass waste form in the HWVP and stored onsite until a qualified geologic waste repository is ready for permanent disposal. Because of the diversity of wastes to be disposed of, specific technical issues are being addressed so that the plant can be designed and operated to produce a waste form that meets the requirements for permanent disposal in a geologic repository. This paper reports the progress to date in addressing these issues. 2 figs., 3 tabs

  17. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    International Nuclear Information System (INIS)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented

  18. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs

  19. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  20. Waste management at the Ardennes power plant

    International Nuclear Information System (INIS)

    Abraham, J.P.

    1979-01-01

    In 1976, the SENA (with the participation of EDF, CEA and CEC in the framework of a research program on the management and storage of radioactive wastes) has developed an industrial pilot plant for the encapsulation of wastes in thermosetting polyester resins. The industrial putting in operation of the plant will enable most of the wastes from the nuclear station to be processed. The quality of products will be improved and the volume and processing cost reduced

  1. Development of process simulation code for reprocessing plant and process analysis for solvent degradation and solvent washing waste

    International Nuclear Information System (INIS)

    Tsukada, Tsuyoshi; Takahashi, Keiki

    1999-01-01

    We developed a process simulation code for an entire nuclear fuel reprocessing plant. The code can be used on a PC. Almost all of the equipment in the reprocessing plant is included in the code and the mass balance model of each item of equipment is based on the distribution factors of flow-out streams. All models are connected between the outlet flow and the inlet flow according to the process flow sheet. We estimated the amount of DBP from TBP degradation in the entire process by using the developed code. Most of the DBP is generated in the Pu refining process by the effect of α radiation from Pu, which is extracted in a solvent. On the other hand, very little of DBP is generated in the U refining process. We therefore propose simplification of the solvent washing process and volume reduction of the alkali washing waste in the U refining process. The first Japanese commercial reprocessing plant is currently under construction at Rokkasho Mura, Recently, for the sake of process simplification, the original process design has been changed. Using our code, we analyzed the original process and the simplified process. According our results, the volume of alkali waste solution in the low-level liquid treatment process will be reduced by half in the simplified process. (author)

  2. Pre design processing of waste of ex-resin without materials matrix from nuclear power plant type PWR 1000 MW

    International Nuclear Information System (INIS)

    Cerdas Tarigan

    2010-01-01

    Have been done pre design processing of waste ex-resin without capacities matrix materials from nuclear power plant type PWR 1000 MW During the time radioactive waste of ex-resin processed to use process of immobilization use matrix materials like mixture cement and epoxy resin and then conditioning. This process is not effective and efficient because end result volume of end product bigger than volume early operation system and maintenance of its installation more difficult. To overcome this created a design of technology processing of waste of ex- resin without matrix materials through process of strainer, drying and conditioning represent technological innovation newly processing of radioactive waste of ex-resin. Besides this process more effective and efficient, volume of end product waste much more small from volume early and operation system and maintenance of its easier installation. Pre design is expected to be used as a basis to make conceptual of pre design installation of strainer, drying and conditioning for the processing of waste of ex-resin from nuclear power plant type PWR 1000 MW. (author)

  3. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    OpenAIRE

    Joanna Kazimierowicz

    2014-01-01

    Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  4. On The Cusp of the New Spatial Challenges - The Thermal Waste Processing Plant as an Element of Urban Space

    Science.gov (United States)

    Wójtowicz-Wróbel, Agnieszka

    2017-10-01

    The goal of this paper is to answer the question about the current importance of structures associated with the thermal processing of waste within the space of Polish cities and what status can they have in the functional and spatial structure of Polish cities in the future. The construction of thermal waste processing plants in Poland is currently a new and important problem, with numerous structures of this type being built due to increasing care for the natural environment, with the introduction of legal regulations, as well as due to the possibility of obtaining large external funding for the purposes of undertaking pro-environmental spatial initiatives, etc. For this reason, the paper contains research on the increase in the number of thermal waste processing plants in Poland in recent years. The abovementioned data was compared with similar information from other European Union member states. In the group containing Polish thermal waste processing plants, research was performed regarding the stage of the construction of a plant (operating plant, plant under construction, design in a construction phase, etc.). The paper also contains a listing of the functions other than the basic form of use, which is the incineration of waste - similarly to numerous foreign examples - that the environmentally friendly waste incineration plants fulfil in Poland, dividing the additional forms of use into "hard" elements (at the design level, requiring the expansion of a building featuring new elements that are not directly associated with the basic purpose of waste processing) and soft (social, educational, promotional actions, as well as other endeavours that require human involvement, but that do not entail significant design work on the buildings itself, expanding its form of use, etc.) as well as mixed activity, which required design work, but on a relatively small scale. Research was also conducted regarding the placement of thermal waste processing plants within the

  5. Development of an integrated facility for processing transuranium solid wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.; Hootman, H.E.; Permar, P.H.

    1978-01-01

    An integrated facility is being designed for processing solid wastes contaminated with long-lived alpha emitting (TRU) nuclides; this waste has been stored retrievably at the Savannah River Plant since 1965. The stored waste, having a volume of 10 4 m 3 and containing 3x10 5 Ci of transuranics, consists of both mixed combustible trash and failed and obsolete equipment primarily from transuranic production and associated laboratory operations. The facility for processing solid transuranic waste will consist of five processing modules: 1) unpackaging, sorting, and assaying; 2) treatment of combustibles by controlled air incineration; 3) size reduction of noncombustibles by plasma-arc cutting followed by decontamination by electropolishing; 4) fixation of the processed waste in cement; and 5) packaging for shipment to a federal repository. The facility is projected for construction in the mid-1980's. Pilot facilities, sized to manage currently generated wastes, will also demonstrate the key process steps of incineration of combustibles and size reduction/decontamination of noncombustibles; these facilities are projected for 1980-81. Development programs leading to these extensive new facilities are described

  6. Development of an integrated facility for processing TRU solid wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.; Hootman, H.E.; Permar, P.H.

    1977-01-01

    An integrated facility is being designed for processing solid wastes contaminated with long-lived alpha emitting (TRU) nuclides; this waste has been stored retrievably at the Savannah River Plant since 1965. The stored waste, having a volume of 10 4 m 3 and containing 3 x 10 5 Ci of transuranics, consists of both mixed combustible trash and failed and obsolete equipment primarily from transuranic production and associated laboratory operations. The facility for processing solid transuranic waste will consist of five processing modules: (1) unpackaging, sorting, and assaying; (2) treatment of combustibles by controlled air incineration; (3) size reduction of noncombustibles by plasma-arc cutting followed by decontamination by electropolishing; (4) fixation of the processed waste in cement; and (5) packaging for shipment to a federal repository. The facility is projected for construction in the mid-1980's. Pilot facilities, sized to manage currently generated wastes, will also demonstrate the key process steps of incineration of combustibles and size reduction/decontamination of noncombustibles; these facilities are projected for 1980-81. Development programs leading to these extensive new facilities are described

  7. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2014-04-01

    Full Text Available Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  8. Management of radioactive waste from reprocessing plants

    International Nuclear Information System (INIS)

    Kanwar Raj

    2010-01-01

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  9. Solid radioactive waste processing system for light water cooled reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Design, construction and performance requirements are given for the operation of the solid radioactive waste processing system for light water-cooled reactor plants. All radioactive or contaminated materials, including spent air and liquid filter elements, spent bead resins, filter sludge, spent powdered resins, evaporator and reverse osmosis concentrates, and dry radioactive wastes are to be processed in appropriate portions of the system. Sections of the standard cover: overall system requirements; equipment requirement; controls and instrumentation; physical arrangement; system capacity and redundancy; operation and maintenance; and system construction and testing. Provisions contained in this standard are to take precedence over ANS-51.1-1973(N18.2-1973) and its revision, ANS-51.8-1975(N18.2a-1975), Sections 2.2 and 2.3. The product resulting from the solid radioactive waste processing system must meet criteria imposed by standards and regulations for transportation and burial (Title 10, Code of Federal Regulations, Part 71, Title 49, Code of Federal Regulations, Parts 100 to 199). As a special feature, all statements in this standard which are related to nuclear safety are set off in boxes

  10. Polonium-210 in the environment around a radioactive waste disposal area and phosphate ore processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, III, W J; Markham, O D

    1984-04-01

    Polonium-210 concentrations were determined for soil, vegetation and small mammal tissues collected at a solid radioactive waste disposal area, near a phosphate ore processing plant and at two rural areas in southeastern Idaho. Polonium concentrations in media sampled near the radioactive waste disposal facility were equal to or less than values from rural area samples, indicating that disposal of solid radioactive waste at the Idaho National Engineering Laboratory Site has not resulted in increased environmental levels of polonium. Concentrations of /sup 210/Po in soils, deer mice hide and carcass samples collected near the phosphate processing plant were statistically greater than the other sampling locations; however, the mean /sup 210/Po concentration in soils and small mammal tissues from sampling areas near the phosphate plant were only four and three times greater, respectively, than control values. No statistical difference was observed for /sup 210/Po concentrations in vegetation among any of the sampling locations.

  11. Selection of an interim upgrade strategy for the Process Waste Treatment Plant at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kent, T.E.; Villiers-Fisher, J.F.; Harrington, F.E.

    1991-01-01

    The principal aim of current changes in the liquid waste handling systems at the Oak Ridge National Laboratory (ORNL) is to reduce liquid low-level waste (LLLW) volumes and to meet increasingly stringent discharge regulations. Proposed improvements at the facility's Process Waste Treatment Plant (PWTP) will have a significant impact on the amount of LLLW generated at ORNL. These improvements will also be important for ensuring that the plant operates under the reduced discharge limits for radionuclides imposed by Department of Energy (DOE) Order 5400.5. Construction of a new PWTP that will completely decouple the process waste and LLLW systems is being proposed. Because of the time required to fund and construct a new PWTP, the existing plant must be improved to reduce waste generation, to expand capacity, and to comply with the lower discharge limits. The economic evaluation performed in this study guided the decision to upgrade the PWTP by improving the existing softening/ion-exchange system for 90 Sr removal and adding a zeolite system for 137 Cs removal. This strategy will reduce LLLW produced at the PWTP by as much as 70% and increase the amount of solid waste produced by about 30%. Disposal costs are expected to decrease by over 50%. 17 refs., 10 figs., 2 tabs

  12. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification

    International Nuclear Information System (INIS)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program

  13. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  14. Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine

    International Nuclear Information System (INIS)

    Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

    1993-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described

  15. New plant improves radwaste processing at the Tokai-2 BWR

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    New plant for radiowaste processing at the Tokaj-2 NPP, put in operation in September, 1986, is described. The plant includes five systems providing processing of drianage water, solid waste combustion, decrease of volume and solidification of concentrated wastes, waste storage and flushing water processing. Pressed tablets represent the final product of the waste processing. New plant enables to reduce sufficiently the volume of radioactive wastes

  16. Solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Stevens, W.R. III.

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures

  17. Demonstrating compliance with WAPS 1.3 in the Hanford waste vitrification plant process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to immobilize transuranic and high-level radioactive waste in borosilicate glass. This document describes the statistical procedure to be used in verifying compliance with requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS, USDOE 1993). WAPS 1.3 is a specification for ``product consistency,`` as measured by the Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium, and boron. Properties of a process batch and the resulting glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values, including PCT results, from data on feed composition. These models will be used in conjunction with measurements of feed composition to control the HLW vitrification process and product.

  18. Development of waste minimization and decontamination technologies at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Ferguson, R.L.; Archibald, K.E.; Demmer, R.L.

    1995-01-01

    Emphasis on the minimization of decontamination secondary waste has increased because of restrictions on the use of hazardous chemicals and Idaho Chemical Processing Plant (ICPP) waste handling issues. The Lockheed Idaho Technologies Co. (LITCO) Decontamination Development Subunit has worked to evaluate and introduce new performed testing, evaluations, development and on-site demonstrations for a number of novel decontamination techniques that have not yet previously been used at the ICPP. This report will include information on decontamination techniques that have recently been evaluated by the Decontamination Development Subunit

  19. Processing and certification of defense transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cargo, C.H.; McKinley, K.B.; Smith, T.H.; Anderson, B.C.

    1984-01-01

    Since 1970, defense-generated transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the US Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste form the INEL. To support this objective, the Stored Waste Examination Pilot Plant (SWEPP) and the Process Experimental Pilot Plant (PREPP) are currently being constructed. SWEPP will certify waste, using nondestructive examination techniques, for shipment to the Waste Isolation Pilot Plant (WIPP). PREPP will process uncertifiable waste into a certifiable waste form. 3 references

  20. Conceptual project of waste treatment plant of CDTN

    International Nuclear Information System (INIS)

    Gabriel, J.L.; Astolfi, D.

    1983-01-01

    This paper presents the conceptual project of the waste treatment plant of CDTN. Several areas, such as: process area, material entrance and exit area are studied. The treatment processes are: evaporation, filtration, cementation, cutting and processing of solid wastes. (C.M.)

  1. Unit operations used to treat process and/or waste streams at nuclear power plants

    International Nuclear Information System (INIS)

    Godbee, H.W.; Kibbey, A.H.

    1980-01-01

    Estimates are given of the annual amounts of each generic type of LLW [i.e., Government and commerical (fuel cycle and non-fuel cycle)] that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials [liquids (e.g., oils or solvents) and/or solids], could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends

  2. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  3. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  4. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  5. Processability analysis of candidate waste forms

    International Nuclear Information System (INIS)

    Gould, T.H. Jr.; Dunson, J.B. Jr.; Eisenberg, A.M.; Haight, H.G. Jr.; Mello, V.E.; Schuyler, R.L. III.

    1982-01-01

    A quantitative merit evaluation, or processability analysis, was performed to assess the relative difficulty of remote processing of Savannah River Plant high-level wastes for seven alternative waste form candidates. The reference borosilicate glass process was rated as the simplest, followed by FUETAP concrete, glass marbles in a lead matrix, high-silica glass, crystalline ceramics (SYNROC-D and tailored ceramics), and coated ceramic particles. Cost estimates for the borosilicate glass, high-silica glass, and ceramic waste form processing facilities are also reported

  6. Improving the environmental sustainability of a waste processing plant

    International Nuclear Information System (INIS)

    Turner, Tom; Watson, Stuart

    2013-01-01

    This paper describes how the level of environmental sustainability at the Solid Waste Processing plant at Research Sites Restoration Ltd (RSRL) Harwell was measured and improved. It provides reasons to improve environmental performance in an organisation, states best practice on how improvement should be conducted, and gives first-hand experience on how changes were implemented. In this paper sustainability is defined as 'meeting the needs of the present without compromising the ability of future generations to meet their own needs'. A baseline for environmental sustainability was created, by looking at multiple attributes. From this, a matrix was created to show how the baseline environmental performance compared to best practice, and a gap analysis was performed. Results from this analysis showed areas for potential systematic improvement, and actions were created. Nearly all actions were implemented within one year, and environmental sustainability improved significantly. Most improvements cost no money to implement, and the few that did had to pass criteria in a business case. Results from a company-wide survey showed that the vast majority of employees felt that environmental issues were important, and that they were willing to help improve performance. Environmental awareness training was given to everyone in the department, and individuals were given measurable improvement targets. A focus group was set up and met regularly to agree improvements and monitor results. Environmental performance was publicised regularly to highlight successes and seek further engagement and improvement. Improvement ideas were encouraged and managed in a transparent way which showed clear prioritisation and accountability. The culture of environmental improvement changed visibly and results at the end of the first year showed that electricity consumption had reduced by 12.5%, and gas consumption had reduced by 7.3%. In less than two years over UK Pound 60,000 was saved

  7. Improving the environmental sustainability of a waste processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Tom [AREVA RMC, Abingdon, Oxfordshire (United Kingdom); Watson, Stuart [RSRL, Harwell, Oxfordshire (United Kingdom)

    2013-07-01

    This paper describes how the level of environmental sustainability at the Solid Waste Processing plant at Research Sites Restoration Ltd (RSRL) Harwell was measured and improved. It provides reasons to improve environmental performance in an organisation, states best practice on how improvement should be conducted, and gives first-hand experience on how changes were implemented. In this paper sustainability is defined as 'meeting the needs of the present without compromising the ability of future generations to meet their own needs'. A baseline for environmental sustainability was created, by looking at multiple attributes. From this, a matrix was created to show how the baseline environmental performance compared to best practice, and a gap analysis was performed. Results from this analysis showed areas for potential systematic improvement, and actions were created. Nearly all actions were implemented within one year, and environmental sustainability improved significantly. Most improvements cost no money to implement, and the few that did had to pass criteria in a business case. Results from a company-wide survey showed that the vast majority of employees felt that environmental issues were important, and that they were willing to help improve performance. Environmental awareness training was given to everyone in the department, and individuals were given measurable improvement targets. A focus group was set up and met regularly to agree improvements and monitor results. Environmental performance was publicised regularly to highlight successes and seek further engagement and improvement. Improvement ideas were encouraged and managed in a transparent way which showed clear prioritisation and accountability. The culture of environmental improvement changed visibly and results at the end of the first year showed that electricity consumption had reduced by 12.5%, and gas consumption had reduced by 7.3%. In less than two years over UK Pound 60,000 was saved

  8. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  9. Renewable energy in Switzerland - Potential of waste-water treatment plants, waste-incineration plants and drinking water supply systems - Strategical decisions in politics

    International Nuclear Information System (INIS)

    Kernen, M.

    2006-01-01

    This article discusses how waste-water treatment plants, waste-incineration plants and drinking water supply systems make an important contribution to the production of renewable energy in Switzerland. Financing by the 'Climate-Cent' programme, which finances projects involving the use of renewable energy, is discussed. Figures are quoted on the electrical energy produced in waste-water treatment plants, waste-incineration plants and combined heat and power generation plant. Eco-balances of the various systems are discussed. Political efforts being made in Switzerland, including the 'Climate Cent', are looked at and promotion provided by new energy legislation is discussed. Eco-power and the processing of sewage gas to meet natural gas quality standards are discussed, as are energy analysis, co-operation between various research institutions and external costs

  10. Waste management in reprocessing plants

    International Nuclear Information System (INIS)

    Mortreuil, M.

    1982-01-01

    This lecture will give a survey of the French policy for the management of wastes in reprocessing plants. In consideration of their radioactivity, they must be immobilized in matrix in such a manner that they are stored under optimal safety conditions. A general review on the nature, nucleide content and quantity of the various wastes arising from thermal nuclear fuel reprocessing is given in the light of the French plants UP1 at Marcoule and UP2 at La Hague. The procedures of treatment of such wastes and their conditioning into inert packages suitable for temporary or terminal storage are presented, especially concerning the continuous vitrification process carried out for fission product solutions. The requirements of each option are discussed and possible alternative solutions are exposed. (orig./RW)

  11. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  12. Improving plant performance through efficient nuclear waste management - The French experience

    International Nuclear Information System (INIS)

    Peterson, C.H.

    1986-01-01

    This paper discusses high and low level waste management and its effect on Plant Performance. In France, high level waste policy is an improtant factor in plant performance. The LLW section of the paper discusses the role of French Industry organization as well as the benefits of standard plants with standard practices. The regulation of the production of waste and the waste processing by utilities is covered

  13. Obtaining zeolites from slags and ashes from a waste combustion plant in an autoclave process

    Directory of Open Access Journals (Sweden)

    Grela Agnieszka

    2017-01-01

    Full Text Available Waste combustion is associated with the generation of post-processing solid products – waste such as slag and ash. One of the promising technologies in waste management and processing is the synthesis of zeolites and other materials exhibiting sorption properties. The aim of this study was to characterise and assess the physicochemical properties of the waste and the products synthesised from it. This paper presents the possibility of synthesis zeolites from the slag and ash from two waste combustion plants. The investigated waste is classified as hazardous waste and denoted by the EWC code 190111*. The paper presents the results of physicochemical studies of these materials. As a result of synthesis in an autoclave at 140°C with the use of 2 M NaOH, and other compounds, such zeolite forms as chabazite and sodalite were obtained. Textural studies and ion-exchange capacity investigations carried out allowed characterisation of the sorption properties of the materials. It was found that the materials obtained are characterised by the BET specific surface areas of 25.45 m2/g and 16.79 m2/g.

  14. Technical and economic evaluation of processes being developed for solid waste processing

    International Nuclear Information System (INIS)

    Tittlova, E.; Hladky, E.

    1985-01-01

    An analysis was made of the economic benefits of two developed processes for reducing the volume of solid radioactive wastes prior to disposal, namely compacting and incineration. Input data were obtained from the actual production of solid radioactive wastes at the V-1 nuclear power plant, from compacting on site, and the operation of an experimental incineration plant. The two WWER-440 units of the V-1 nuclear power plant generate ca 200 m 3 of wastes per annum (not including air filters and wood) of which 69% is assumed to be incinerable and 27% compactable. The rest is disposed of without prior volume reduction. Disposal costs are assessed at 7,500 Czechoslovak crowns per 1 m 3 of wastes, representing a total of 1.5 million crowns per annum. As compared with the disposal of unprocessed wastes the compacting of 95% of wastes generated, reduces the costs of transport and disposal to 25%. With both compacting and incineration, the costs represent 16 to 25% of the initial sum, depending on the ratio of the two processes. The high capital costs of building the incineration plant will thus be offset by the reduction in costs of the radioactive waste disposal. From the technical point of view the analysis did not make a detailed comparison of the properties of the compacted incinerable wastes and ash with regard to stability and leachability of radionuclides. It did also not take into account operating costs and the technological challenge of the two waste volume redution processes. (Z.M.)

  15. Treatment and processing of the effluents and wastes (other than fuel) produced by a 900 MWe nuclear power plant

    International Nuclear Information System (INIS)

    Giraud

    1983-01-01

    Effluents produced by a 900 MWe power plant, are of three sorts: gaseous, liquid and solid. According to their nature, effluents are either released or stored for decaying before being released to the atmosphere. The non-contaminated reactor coolant effluents are purified (filtration, gas stripping) and treated by evaporation for reuse. Depending upon their radioactive level, liquid waste is either treated by evaporation or discharged after filtration. Solid waste issuing from previous treatments (concentrates, resins, filters) is processed in concrete drums using an encapsulation process. The concrete drum provides biological self-protection consistent with the national and international regulations pertaining to the transport of radioactive substance. Finally, the various low-level radioactive solid waste collected throughout the plant, is compacted into metal drums. Annual estimates of the quantity of effluents (gaseous, liquid) released in the environment and the number of drums (concrete, metal) produced by the plant figure in the conclusion

  16. Waste immobilization process development at the Savannah River Plant

    International Nuclear Information System (INIS)

    Charlesworth, D.L.

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed

  17. The Stored Waste Examination Pilot Plant program at the INEL

    International Nuclear Information System (INIS)

    McKinley, K.B.; Anderson, B.C.; Clements, T.L.; Hinckley, J.P.; Mayberry, J.L.; Smith, T.H.

    1983-01-01

    Since 1970, defense transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the U.S. Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste from the INEL. The January 1981 DOE Record of Decision on the Waste Isolation Pilot Plant (WIPP) stated, ''The WIPP facility will dispose of defense transuranic waste stored retrievably at the Idaho National Engineering Laboratory.'' After retrieval and before shipment, processing may be necessary to prepare the waste for acceptance, handling, and enhanced long-term isolation in the WIPP. However, some of the waste is certifiable to the WIPP waste acceptance criteria without container opening or waste processing. To minimize costs, the Stored Waste Examination Pilot Plant (SWEPP) is being developed to certify INEL stored transuranic waste without container opening or waste processing. The SWEPP certification concept is based on records assessment, nondestructive examination techniques, assay techniques, health physics examinations, and limited opening of containers at another facility for quality control

  18. Pretreatment of Hanford purex plant first-cycle waste

    International Nuclear Information System (INIS)

    Gibson, M.W.; Gerboth, D.M.; Peters, B.B.

    1987-01-01

    A process has been developed to pretreat neutralized, first-cycle high-level waste from the fuels reprocessing facility (PUREX Plant) at the Hanford Site. The process separates solids from the supernate liquid, which contains soluble salts. The solids, including most of the fission products and transuranic elements, may then be vitrified for disposal, while the low-level supernate stream may be processed into a less expensive grout waste form. The process also includes ion exchange treatment of the separated supernate stream to remove radiocesium. A flow sheet based on these operations was completed to support a planned demonstration of the process in the Hanford site B Plant canyon facility

  19. Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update

    International Nuclear Information System (INIS)

    1994-09-01

    The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF ampersand WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF ampersand WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal

  20. Biogas plants: Utilization of microorganisms for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, E A; Trieu, C

    1984-05-01

    The continuous realisation of the basic principles of environmental conservation and compatability demands concern about the problems of eliminating wastes in an industrialised society. Biogas- and therefore technical plants for methane generation by anaerobic fermentation have promoted to effective means of environmental protection and sources of alternate energy from organic wastes. Methane fermentation has been employed for the stabilisation of sludges at municipal waste treatment plants for decades. However, the anaerobic digestion process shows promising applications both for industrial effluents and agricultural wastes as well as municipal solid wastes and covered waste deposits. In view of the advances achieved interdisciplinary cooperation the actual potential and perspective of methane fermentation technology with respect to the solution of the increasing problems of waste management and energy supply is discussed.

  1. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  2. Radioactive wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Huppert, K.L.

    1977-01-01

    The lecture deals with definition, quantity and type of radioactive waste products occurring in a fuel reprocessing plant. Solid, liquid and gaseous fission and activation products are formed during the dissolution of the fuel and during the extraction process, and they must be separated from the fissionalble uranium and plutonium not spent. The chemical behaviour of these products (Zr, Ru, Np, gaseous substances, radiolysis products), which is sometimes very problematic, necessitates careful process control. However, the lifetime of nuclides is just as important for the conditions of the reprocessing procedure. The types of waste obtained after reprocessing are classified according to their state of aggregation and level of activity and - on the basis of the operational data of a prototype plant - they are quantitatively extrapolated for the operation of a large-scale facility of 1,400 tons of fuel annually. (RB) [de

  3. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    International Nuclear Information System (INIS)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-01-01

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  4. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  5. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  6. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  7. Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan

    International Nuclear Information System (INIS)

    1993-09-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m 3 ) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF ampersand WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF

  8. Waste minimization through process optimization/integration and resource management at eco-friendly Heavy Water Plants

    International Nuclear Information System (INIS)

    Nageshri, Jagdish; Gupta, S.K.

    2004-01-01

    Heavy Water Board has celebrated 2003 as Environmental Conservation Year captivating a range of enviro-friendly measures. This article attempts to give a brief overview of the outcome of systems and adapted procedures for waste minimization through process integration and resource management at Heavy Water Plants

  9. Management of abnormal radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    As with any other industrial activity, a certain level of risk is associated with the operation of nuclear power plants and other nuclear facilities. That is, on occasions nuclear power plants or nuclear facilities may operate under conditions which were not specifically anticipated during the design and construction of the plant. These abnormal conditions and situations may cause the production of abnormal waste, which can differ in character or quantity from waste produced during normal routine operation of nuclear facilities. Abnormal waste can also occur during decontamination programmes, replacement of a reactor component, de-sludging of storage ponds, etc. The management of such kinds of waste involves the need to evaluate existing waste management systems in order to determine how abnormal wastes should best be handled and processed. There are no known publications on this subject, and the IAEA believes that the development and exchange of such information among its Member States would be useful for specialists working in the waste management area. The main objective of this report is to review existing waste management practices which can be applied to abnormal waste and provide assistance in the selection of appropriate technologies and processes that can be used when abnormal situations occur. Naturally, the subject of abnormal waste is complex and this report can only be considered as a guide for the management of abnormal waste. Refs, figs and tabs.

  10. The Plasco Process for energy from waste

    Energy Technology Data Exchange (ETDEWEB)

    Bryden, R.M. [Plasco Energy Group, Ottawa, ON (Canada)

    2006-07-01

    Plasco Energy Group (Plasco) has a patented process that provides a way of recycling products that are difficult or uneconomic for conventional recycle programs. This presentation included information on the Plasco PGP system that can process energy from waste. The specifications and benefits of the Plasco process were discussed, notably that no energy supplements such as coal or natural gas are required for the process. The amount of power consumed by households and in a Plasco plant were identified. The amounts of waste processed and converted by the Plasco plant were also provided along with sketches of Plasco's Ottawa demonstration facility and Plasco gasification converter. Last, the presentation addressed the cooperative solution involving several partners such as the city of Ottawa, province of Ontario and Plasco. The waste recycling opportunities for communities were also highlighted. 1 tab., figs.

  11. Waste incinerating plant

    Energy Technology Data Exchange (ETDEWEB)

    1972-12-01

    This plant is provided with a NKK-Ferunst type reciprocating stage fire lattice which has a good ventilating effect and a proper stirring and loosening effect, achieving a high combustion rate, and has also a gas flow system by which gas can flow in the reverse direction to adjust its flow for seasonal variations in the quality of waste. Also, a room in which the exhaust gas is mixed is provided in this plant as a help for the complete neutralization and combustion of acid gas such as hydrogen chloride and imperfect combustion gas from plastic waste contained in wastes. In this system, waste can accept a sufficient radiant heat from the combustion gas, the furnace wall, and the ceiling; even on the post combustion fire lattice the ashes are given heat enough to complete the post combustion, so that it can be completely reduced to ashes. For these reasons, this type of incinerator is suitable for the combustion of low-calorie wastes such as city wastes. The harmful gases resulting from the combustion of wastes are treated completely by desulfurization equipment which can remove the oxides of sulfur. This type of plant also can dispose of a wide variety of wastes, and is available in several capacities from 30 tons per 8 hr to 1,200 tons per 24 hr.

  12. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  13. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2002-01-01

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming

  14. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  15. Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report

    International Nuclear Information System (INIS)

    Herbst, A.K.

    1996-09-01

    The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch

  16. Making Plant-Support Structures From Waste Plant Fiber

    Science.gov (United States)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  17. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    International Nuclear Information System (INIS)

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed

  18. Removal of dissolved and suspended radionuclides from Hanford Waste Vitrification Plant liquid wastes

    International Nuclear Information System (INIS)

    Sharp, S.D.; Nankani, F.D.; Bray, L.A.; Eakin, D.E.; Larson, D.E.

    1990-12-01

    It was determined during Preliminary Design of the Hanford Waste Vitrification Plant that certain intermediate process liquid waste streams should be decontaminated in a way that would permit the purge of dissolved chemical species from the process recycle shop. This capability is needed to ensure proper control of product glass chemical composition and to avoid excessive corrosion of process equipment. This paper discusses the process design of a system that will remove both radioactive particulates and certain dissolved fission products from process liquid waste streams. Supporting data obtained from literature sources as well as from laboratory- and pilot-scale tests are presented. 3 refs., 1 fig., 3 tabs

  19. Engineering evaluation of selective ion-exchange radioactive waste processing at Susquehanna Nuclear Power Plant: Final report

    International Nuclear Information System (INIS)

    Vance, J.N.

    1989-01-01

    This final report describes the work performed of an engineering feasibility evaluation of the use and benefits of a selective ion exchange treatment process in the Susquehanna radwaste system. The evaluation addressed operability and processing capability concerns, radiological impacts of operating in the radwaste discharge mode, required hardware modifications to the radwaste and plant make-up systems, impacts on plant water quality limits and impacts on higher waste classifications. An economic analysis is also reported showing the economic benefit of the use of selective ion exchange. 1 ref., 4 figs., 13 tabs

  20. Reuse of process water in a waste-to-energy plant: An Italian case of study.

    Science.gov (United States)

    Gardoni, Davide; Catenacci, Arianna; Antonelli, Manuela

    2015-09-01

    The minimisation of water consumption in waste-to-energy (WtE) plants is an outstanding issue, especially in those regions where water supply is critical and withdrawals come from municipal waterworks. Among the various possible solutions, the most general, simple and effective one is the reuse of process water. This paper discusses the effectiveness of two different reuse options in an Italian WtE plant, starting from the analytical characterisation and the flow-rate measurement of fresh water and process water flows derived from each utility internal to the WtE plant (e.g. cooling, bottom ash quenching, flue gas wet scrubbing). This census allowed identifying the possible direct connections that optimise the reuse scheme, avoiding additional water treatments. The effluent of the physical-chemical wastewater treatment plant (WWTP), located in the WtE plant, was considered not adequate to be directly reused because of the possible deposition of mineral salts and clogging potential associated to residual suspended solids. Nevertheless, to obtain high reduction in water consumption, reverse osmosis should be installed to remove non-metallic ions (Cl(-), SO4(2-)) and residual organic and inorganic pollutants. Two efficient solutions were identified. The first, a simple reuse scheme based on a cascade configuration, allowed 45% reduction in water consumption (from 1.81 to 0.99m(3)tMSW(-1), MSW: Municipal Solid Waste) without specific water treatments. The second solution, a cascade configuration with a recycle based on a reverse osmosis process, allowed 74% reduction in water consumption (from 1.81 to 0.46m(3)tMSW(-1)). The results of the present work show that it is possible to reduce the water consumption, and in turn the wastewater production, reducing at the same time the operating cost of the WtE plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  2. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Ikeda, Takashi; Funabashi, Kiyomi; Chino, Koichi.

    1992-01-01

    In a waste processing device for solidifying, pellets formed by condensing radioactive liquid wastes generated from a nuclear power plant, by using a solidification agent, sodium chloride, sodium hydroxide or sodium nitrate is mixed upon solidification. In particular, since sodium sulfate in a resin regenerating liquid wastes absorbs water in the cement upon cement solidification, and increases the volume by expansion, there is a worry of breaking the cement solidification products. This reaction can be prevented by the addition of sodium chloride and the like. Accordingly, integrity of the solidification products can be maintained for a long period of time. (T.M.)

  3. Solid waste processing and compaction in the AD2 workshop of the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Singer, B.M.; Vigreux, B.

    1987-01-01

    The AD2 workshop of the new spent nuclear fuel reprocessing plant at La Hague in France will process and package dry solid wastes. The waste packages will be segregated according to their activity levels and stored at temporary on-site facilities. Full commissioning is scheduled for end-1988. However, operation of the TO dry spent field unloading and receiving unit at La Hague required early availability of some waste processing functions and part of the AD2 workshop was commissioned towards the end of 1986. The new La Hague plant is organized into four main zones: - zone 1 is an uncontrolled area with no permanent contamination and zero risk of accidental contamination, - zone 2 is a controlled are with no permanent contamination and low risk of accidental minor contamination, - zone 3 is a controlled area with no permanent contamination but a risk of minor contamination due to various incidents, - zone 4 is a controlled area with permanent contamination. The AD2 workshop will handle all dry solid wastes from zones 2, 3 and 4. It will also: characterize the resulting waste packages (contents, mass, alpha, beta and gamma activity, dose equivalent rate) and check for absence of surface contamination; transfer the packages to temporary on-site storage facilities; store and administer mobile handling tasks and transporters

  4. Defense-Waste-Processing Faclity, Savannah River Plant, Aiken, SC: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1981-09-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Energy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  5. Defense Waste Processing Facility: Savannah River Plant, Aiken, SC. Final environmental impact statement

    International Nuclear Information System (INIS)

    1982-02-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Envgy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  6. Characterization of past and present solid waste streams from the plutonium finishing plant

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.; Mayancsik, B.A. [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I. [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  7. Characterization of past and present solid waste streams from the plutonium finishing plant

    International Nuclear Information System (INIS)

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE)

  8. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  9. Method of processing concentrated liquid waste in nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, Kazuyuki; Kitsukawa, Ryozo; Ohashi, Satoru.

    1988-01-01

    Purpose: To reduce the oxidizable material in the concentrated liquid wastes discharged from nuclear power plants. Constitution: Nitrate bacteria are added to liquid wastes in a storage tank for temporarily storing concentrated liquid wastes or relevant facilities thereof. That is, nitrites as the oxidizable material contained in the concentrated liquid wastes are converted into nitrate non-deleterious to solidification by utilizing biological reaction of nitrate bacteria. For making the conversion more effectively, required time for the biological reaction of the nitrate bacteria is maintained from the injection of nitrate bacteria to solidification, thereby providing advantageous conditions for the propagation of the nitrate bacteria. In this way, there is no problem for the increase of the volume of the powdery wastes formed by the addition of inhibitor for the effect of oxidizable material. Further, heating upon solidification which is indispensable so far is no more necessary to simplify the facility and the operation. Furthermore, the solidification inhibiting material can be reduced stably and reliably under the same operation conditions even if the composition of the liquid wastes is charged or varied. (Kamimura, M.)

  10. Liquid waste processing device

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Obe, Etsuji; Wakamatsu, Toshifumi.

    1989-01-01

    In a liquid waste processing device for processing living water wastes discharged from nuclear power plant facilities through a filtration vessel and a sampling vessel, a filtration layer disposed in the filtration vessel is divided into a plurality of layers along planes vertical to the direction of flow and the size of the filter material for each of the divided layers is made finer toward the downstream. Further, the thickness of the filtration material in each of the divided layers is also reduced toward the downstream. The filter material is packed such that the porosity in each of the divided layers is substantially identical. Further, the filtration material is packed in a mesh-like bag partitioned into a desired size and laid with no gaps to the planes vertical to the direction of the flow. Thus, liquid wastes such as living water wastes can be processed easily and simply so as to satisfy circumstantial criteria without giving undesired effects on the separation performance and life time and with easy replacement of filter. (T.M.)

  11. Use of fixation techniques in processing radioactive wastes from nuclear power plants in Czechoslovakia

    International Nuclear Information System (INIS)

    Seliga, M.

    1977-01-01

    The current state of radioactive waste disposal from the Bohunice nuclear power plant is described. The method of vacuum cementation was chosen for solidifying liquid radioactive wastes. This method makes it possible to obtain a product whose properties, namely strength, leachability, and radiation stability allow for the production of blocks without packing material. Also solved was the fixation of liquid radioactive waste using bituminization based on mixing liquid radioactive waste with aqueous bitumen emulsion in a film evaporator in which the mixture of liquid radioactive wastes and bitumen emulsion evaporate producing solid bitumen. The parameters are given of the cementation and bituminization lines which are designed for use in nuclear power plants with WWER type reactors. (J.B.)

  12. Solid waste processing experience at Susquehanna Steam Electric Station

    International Nuclear Information System (INIS)

    Phillips, J.W.; Granus, M.W.

    1984-01-01

    This paper reviews the first year's operation at the Susquehanna Steam Electric Station (SSES) with respect to the Westinghouse Hittman Nuclear Incorporated (Hittman) mobile solidification system and the dry activated waste generation, handling and processing. Experiences pertinent to the mobile solidification system are reviewed with emphasis on the integration of the system into the plant, problems associated with unexpected waste properties and the myriad of operating procedures that had to be prepared. The processing history for 1983 is reviewed in terms of the volume of waste, including solidified wastes, dewatered wastes an DAW. Factors that must be considered in evaluating processing alternatives, i.e., dewatering vs. solidification; steel liners vs. HICs, are discussed. Actions taken by Hittman and SSES to maximize the processing economics are also discussed. Finally, recommendations are provided to the utility considering implementing mobile solification services to ensure a smooth and timely integration of services into the plant

  13. Acceptable knowledge document for INEEL stored transuranic waste - Rocky Flats Plant waste. Revision 2

    International Nuclear Information System (INIS)

    1998-01-01

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems

  14. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  15. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Timo Pittmann

    2017-06-01

    Full Text Available This work describes the production of polyhydroxyalkanoates (PHA as a side stream process on a municipal waste water treatment plant (WWTP and a subsequent analysis of the production potential in Germany and the European Union (EU. Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT and withdrawal (WD in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR of 1913 mgVFA/(L×d and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016 could be produced on European waste water treatment plants.

  16. Processing of nuclear power plant waste streams containing boric acid

    International Nuclear Information System (INIS)

    1996-10-01

    Boric acid is used in PWR type reactor's primary coolant circuit to control the neutron flux. However, boric acid complicates the control of water chemistry of primary coolant and the liquid radioactive waste produced from NPP. The purpose of this report is to provide member states with up-to-date information and guidelines for the treatment and conditioning of boric acid containing wastes. It contains chapters on: (a) characteristics of waste streams; (b) options for management of boric acid containing waste; (c) treatment/decontamination of boric acid containing waste; (d) concentration and immobilization of boric acid containing waste; (e) recovery and re-use of boric acid; (f) selected industrial processes in various countries; and (g) the influence of economic factors on process selection. 72 refs, 23 figs, 5 tabs

  17. Electrochemical processing of low-level waste solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Ebra, M.A.

    1987-01-01

    The feasibility of treating low-level Savannah River Plant (SRP) waste solutions by an electrolytic process has been demonstrated. Although the economics of the process are marginal at the current densities investigated at the laboratory scale, there are a number of positive environmental benefits. These benefits include: (1) reduction in the levels of nitrate and nitrite in the waste, (2) further decontamination of 99 Tc and 106 Ru, and (3) reduction in the volume of waste

  18. Waste Treatment Plant - 12508

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Olds, Erik [US DOE (United States)

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration

  19. Denitration of Savannah River Plant waste streams

    International Nuclear Information System (INIS)

    Orebaugh, E.G.

    1976-07-01

    Partial denitration of waste streams from Savannah River Plant separations processes was shown to significantly reduce the quantity of waste solids to be stored as an alkaline salt cake. The chemical processes involved in the denitration of nonradioactive simulated waste solutions were studied. Chemical and instrumental analytical techniques were used to define both the equilibrium concentrations and the variation of reactants and products in the denitration reaction. Mechanisms were proposed that account for the complicated chemical reactions observed in the simulated waste solutions. Metal nitrates can be denitrated by reaction with formic acid only by the release of nitric acid from hydrolysis or formate complexation of metal cations. However, eventual radiolysis of formate salts or complexes results in the formation of biocarbonate and makes complexation-denitration a nonproductive means of reducing waste solids. Nevertheless, destruction of nitrate associated with free acid and easily hydrolyzable cations such as iron, mercury, and zirconium can result in greater than 30 percent reduction in waste solids from five SRP waste streams

  20. Low-level waste minimization at the Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Koger, J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    The Y-12 Development Waste Minimization Program is used as a basis for defining new technologies and processes that produce minimum low-level wastes (hazardous, mixed, radioactive, and industrial) for the Y-12 Plant in the future and for Complex-21 and that aid in decontamination and decommissioning (D and D) efforts throughout the complex. In the past, the strategy at the Y-12 Plant was to treat the residues from the production processes using chemical treatment, incineration, compaction, and other technologies, which often generated copious quantities of additional wastes and, with the exception of highly valuable materials such as enriched uranium, incorporated very little recycle in the process. Recycle, in this context, is defined as material that is put back into the process before it enters a waste stream. Additionally, there are several new technology drivers that have recently emerged with the changing climate in the Nuclear Weapons Complex such as Complex 21 and D and D technologies and an increasing number of disassemblies. The hierarchies of concern in the waste minimization effort are source reduction, recycle capability, treatment simplicity, and final disposal difficulty with regard to Complex 21, disassembly efforts, D and D, and, to a lesser extent, weapons production. Source reduction can be achieved through substitution of hazardous substances for nonhazardous materials, and process changes that result in less generated waste.

  1. Startup and operation of a plant-scale continuous glass melter for vitrification of Savannah River Plant simulated waste

    International Nuclear Information System (INIS)

    Willis, T.A.

    1980-01-01

    The reference process for disposal of radioactive waste from the Savannah River Plant is vitrification of the waste in borosilicate glass in a continuous glass melter. Design, startup, and operation of a plant-scale developmental melter system are discussed

  2. Process and technological wastes compaction through a fluidized bed incineration process

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1993-01-01

    The various fluidized bed systems (dense or circulating) are reviewed and the advantages of the circulation fluidized bed are highlighted (excellent combustion performance, clean combustion, large operating range, poly-functionality with regards to waste type, ...). Applications to contaminated graphite (with the problem of ash management) and to plant process wastes (ion exchangers, technological wastes, aqueous effluents); study of the neutralization and chlorine emission

  3. INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)

    Science.gov (United States)

    AbstractWastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...

  4. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site's defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site's N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX's physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail

  5. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  6. Technical assessment of processing plants as exemplified by the sorting of beverage cartons from lightweight packaging wastes

    NARCIS (Netherlands)

    Feil, A.; Thoden van Velzen, E.U.; Jansen, M.; Vitz, P.; Go, N.; Pretz, T.

    2016-01-01

    The recovery of beverage cartons (BC) in three lightweight packaging waste processing plants (LP) was analyzed with different input materials and input masses in the area of 21-50. Mg. The data was generated by gravimetric determination of the sorting products, sampling and sorting analysis.

  7. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  8. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  9. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  10. Nuclear waste processing

    International Nuclear Information System (INIS)

    Nienhuys, K.; Noordegraaf, D.

    1977-04-01

    This report is composed with a view to the discussions around the selection of a site in F.R.Germany near the Netherlands' border for a fuel reprocessing plant. Most of the scientific data available are placed side by side, especially those which are contradictory in order to promote better judgement of affairs before governmental decisions are made. The report comprises a brief introduction to nuclear power plants, fuel cycle, radioactive materials and their properties. Next the transportation of wastes from the nuclear power plants to the reprocessing plants is dealt with more extensively, including the processing and the effluents of as well as the experiences with operational reprocessing plants. The hazards from manipulation of radioactive materials accidents and theft are outlined in each case, followed by a problem discussion. The appendix illustrates the German concept of 'industrial park for after-treatment and disposal'

  11. Insight into economies of scale for waste packaging sorting plants

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik; Maul, Anja

    2015-01-01

    of economies of scale and discussed complementary relations occurring between capacity size, technology level and operational practice. Processing costs (capital and operational expenditure) per unit waste input were found to decrease from above 100 € for small plants with a basic technology level to 60......This contribution presents the results of a techno-economic analysis performed for German Materials Recovery Facilities (MRFs) which sort commingled lightweight packaging waste (consisting of plastics, metals, beverage cartons and other composite packaging). The study addressed the importance......-70 € for large plants employing advanced process flows. Typical operational practice, often riddled with inadequate process parameters was compared with planned or designed operation. The former was found to significantly influence plant efficiency and therefore possible revenue streams from the sale of output...

  12. Microbiological air quality in an urban solid waste selection plant

    Directory of Open Access Journals (Sweden)

    Angela Del Cimmuto

    2010-03-01

    Full Text Available

    Background: Exposure to bioaerosols may pose health risks to workers operating in the processing of Urban Solid Waste (USW. The aim of this study is to evaluate microbiological air quality within an USW selection facility.

    Methods: Nine sampling points in an USW selection plant situated in central-southern Italy were selected. One outdoor sampling point provided the background data. Sampling was performed on a yearly basis (2005 – 2009 upon request by the management of the selection plant. Total Mesophilic Counts (TMC, as well as fungal and Gram-negative concentrations were determined.

    Results: The highest viable fungal particles concentrations (medians were found in waste delivery areas (about 20000 CFU/m3, while the lowest were found in the control rooms (485 – 967 CFU/m3. TMC (median was highest (6116 CFU/m3 at the delivery pit, followed by the machine shop (3147 CFU/m3, where no waste processing takes place. Medians of Gram-negative bacteria are below the suggested Occupational Exposure Limit of 1000 CFU/m3, although this limit was exceeded at several single time-points in the waste delivery areas, and also in a personnel resting room. The lowest Gram-negative contamination was found in the control rooms (medians <1 CFU/m3.

    Conclusions: Some areas within a USW selection plant act as internal sources of contamination towards those areas where partially processed waste, or no waste at all, is present. Well-designed air flows, or carefullythought positioning of areas that are not directly involved in waste processing are necessary and effective in obtaining

  13. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...

  14. Polymer solidification of mixed wastes at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-01-01

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene

  15. Decontamination of irradiated-fuel processing waste using manganese dioxide hydrate

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Gaudier, J.F.

    1969-01-01

    The 'manganese dioxide' process is designed to replace the 'calcium carbonate' treatment for low and medium activity wastes. The objective to attain during the research for a new process was the diminution of the volume of the sludge without decreasing the decontamination factor of the wastes. The new process involves addition in series of twice over 100 ppm of Mn 2+ in the waste which has previously been made basic and oxidizing; the precipitate formed in situ is separated after each addition. The process has the advantage of increasing the decontamination of strontium. The treatment can be used in a plant including two decantation units and has given effective results when applied in such a plant. (author) [fr

  16. PRIMING OF A LOW CAPACITY WASTE WATER TREATEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-12-01

    Full Text Available In wastewater treatment plants, secondary biologic treatment is generally compulsory for the localities having less than 10,000 equivalent inhabitants, with a supplementary removal of nutrients if the area is a sensitive one. For the areas which are not suitable for centralized household used water collecting network individual treatment devices or collective low capacity devices are recommended. For certain settlements, for instance for the mountainous dispersed villages, or for detached individual households or farms the collective devices can not be an economic solution as involves high maintenance costs and exploiting problems due to long pipes for low flow rates. Priming is one of the starting up processes of a waste water treatment plant. This is not a very difficult process and requires no specialized staff. However, for helping the owners of a low capacity treatment plant, priming of ORM 5 type mechanical - biological equipment consisting in a tank with four compartments, designed for five equivalent inhabitants was studied inside the plant of Timisoara municipality. For the experimental tests waste water from the Timisoara city sewage network was used. This is mixed waste water resulted from faecal/domestic, industrial and rain water. The study comprised tests in unfavorable technological conditions. The conclusions of the monitoring process underline the need of control of the aeration process and the negative technological and consequently the negative economic effect of the less effective process control.

  17. The Defense Waste Processing Facility, from vision to reality

    International Nuclear Information System (INIS)

    Randall, C.T.

    2000-01-01

    When the Savannah River Plant began operation in the early 1950's producing nuclear materials for the National defense, liquid, highly radioactive waste was generated as a by-product. Since that time the waste has been stored in large, carbon steel tanks that are buried underground. In 1960 one of the tanks developed a leak, and before recovery measures could be taken, about 25-gallons of radioactive salt solution had overflowed the secondary liner and seeped into the soil surrounding the tank. Significant improvements to the tanks were made, but constant surveillance was still required. Thus, the opinion began forming that storage of the mobile, highly radioactive waste in tanks was not a responsible long-term practice. So in the late 1960's the Savannah River Laboratory began research to find a suitable long-term solution to the waste disposal problem. Several alternative waste forms were evaluated, and in 1972 the first Savannah River waste was vitrified on a laboratory scale. By the mid-1970's, the DuPont Company, prime contractor at the Savannah River Plant, began to develop a vision of constructing America's first vitrification plant to immobilize the high level radioactive waste in borosilicate glass. This vision was later championed by DuPont in the form of a vitrification plant called the Defense Waste Processing Facility (DWPF). Today, the DWPF processes Savannah River High Level Waste sludge turning it into a solid, durable waste form of borosilicate glass. The DWPF is the world's largest vitrification facility. It was brought to reality through over 25-years of research and 13-years of careful construction, tests, and reviews at a cost of approximately $3 billion dollars

  18. Description of a ceramic waste form and canister for Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Butler, J.L.; Allender, J.S.; Gould, T.H. Jr.

    1982-04-01

    A canistered ceramic waste form for possible immobilization of Savannah River Plant (SRP) high-level radioactive wastes is described. Characteristics reported for the form include waste loading, chemical composition, heat content, isotope inventory, mechanical and thermal properties, and leach rates. A conceptual design of a potential production process for making this canistered form are also described. The ceramic form was selected in November 1981 as the primary alternative to the reference waste form, borosilicate glass, for making a final waste form decision for SRP waste by FY-1983. 11 tables

  19. A process for separating aggregate from concrete waste during the dismantlement of nuclear power plants

    International Nuclear Information System (INIS)

    Koga, Yasuo; Inoue, Toshikatsu; Tateyashiki, Hisashi; Sukekiyo, Mitsuaki; Okamoto, Masamichi; Asano, Touichi.

    1997-01-01

    The decommissioning and dismantling of nuclear power plants will produce a large quantity of non-active waste concrete. From the viewpoint of recycling of this waste concrete the recovery of aggregate contained in concrete at 80% and reuse of it into a new plant construction are envisioned. For these purposes we have studied the recovery process of aggregate from concrete composed of a heating step followed by a milling step onto waste concrete blocks. We have found that higher operation temperature brings a better effect for the separation of aggregate from a concrete body, however too high temperature may reversely degrade a quality of recovered aggregate itself. The most effective heating temperature which is considered not to give the damage to a quality of aggregate stays between 200-500degC. The effect of a duration at such temperature zone is relatively small. As a conclusion we have found that 300degC of heating temperature and 30-120 minutes of a duration in a rod mill with high efficiency of rubbing work for getting coarse aggregate and an agitate mill for fine aggregate might be proper operating conditions under which we can recover both coarse and fine aggregate with the quality within JASS 5N standard. (author)

  20. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  1. Waste Immobilisation Plant (WIP), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Waste Immobilization Plant (WIP), Trombay is designed and constructed for the management of radioactive liquid wastes generated during reprocessing of spent nuclear fuel from research reactors at Bhabha Atomic Research Centre. In common with such facilities elsewhere, the objective here is to manage the wastes in such a way as to protect human health and the environment and to limit any burden on future generations. The plant has several facilities for the handling and treatment of the three classes of waste, viz., high, intermediate and low level, a classification based on their radioactivity content. In keeping with the general objective of radioactive waste management, the focus is on concentration and confinement of radioactivity. Strict adherence to the universal principles of radiation protection during operation of the plant ensures that radiation exposure is always kept as low as reasonably achievable (ALARA) under the prescribed limits

  2. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  3. From mineral processing to waste treatment: an open-mind process simulator

    International Nuclear Information System (INIS)

    Guillaneau, J.C.; Brochot, S.; Durance, M.V.; Villeneuve, J.; Fourniguet, G.; Vedrine, H.; Sandvik, K.; Reuter, M.

    1999-01-01

    More than two hundred companies are using the USIM PAC process simulator within the mineral industry world-wide. Either for design or plant adaptation, simulation is increasingly supporting the process Engineer in his activities. From the mineral field, new domains have been concerned by this model-based approach as new models are developed and new applications involving solid waste appears. Examples are presented in bio-processing, steel-making flue dust treatment for zinc valorisation, soil decontamination or urban waste valorisation (sorting, composting and incineration). (author)

  4. Treatment of tributyl phosphate wastes by extraction cum pyrolysis process

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Ramaswamy, M.; Kartha, P.K.S.; Kutty, P.V.E.; Ramanujam, A.

    1989-01-01

    For the treatment of spent tri n-butyl phospate (TBP) wastes from Purex process, a method involving extraction of TBP with phosphoric acid followed by pyrolysis of TBP - phosphoric acid phase was investigated. The process was examined with respect to simulated waste, process solvent wastes and aged organic waste samples. These studies seem to offer a simple treatment method for the separation of bulk of diluent from spent solvent wastes. The diluent phase needs further purification for reuse in reprocessing plant; otherwise it can be incinerated. (author). 18 refs., 3 tabs., 6 figs

  5. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  6. The evolution of waste management processes and technologies in BNFL

    International Nuclear Information System (INIS)

    Asquith, R.W.; Fairhall, G.A.

    1997-01-01

    The treatment of wastes arising from BNFL''s nuclear fuel cycle operations can be traced through a number of phases. The first was the development of vitrification and cementation for fresh arisings. Plants utilising these technologies are now in operation. To handle the mixed, heterogeneous intermediate level wastes, retrieval, segregation and robust treatment processes are at an advanced stage of development, with all plants to be operational from 2002. BNFL is focusing attention on reducing waste management lifetime costs including reducing waste volumes of source. Technologies aimed at significant reductions are now being developed. The final phase, now in progress, recognizes the need for an integrated approach to advanced fuel cycle processes which incorporates BNFL''s holistic concept. (author)

  7. The evolution of waste management processes and technologies in BNFL

    International Nuclear Information System (INIS)

    Asquith, R. W.; Fairhall, G. A.

    1997-01-01

    The treatment of wastes arising from BNFL's nuclear fuel cycle operations can be traced through a number of phases. The first was the development of vitrification and cementation for fresh arising and plants are now in operation. To handle the mixed, heterogeneous intermediate level wastes, retrieval, segregation and robust treatment processes are at an advanced stage of development, with all plants to be operational from 2002. BNFL is focusing attention on reducing waste management lifetime costs including reducing waste volumes of source. Technologies aimed at significant reductions are now being developed. The final phase, now in progress, recognizes the need for an integrated approach to advanced fuel cycle processes which incorporates BNFL holistic concept. (author) 6 refs., 1 fig

  8. Liquid waste management at nuclear power plant with WWER

    International Nuclear Information System (INIS)

    Sabouni, Zahra.

    1995-07-01

    Management of radioactive wastes have become an area of ever increasing important in nuclear power plants. This is due to the fact that national and international regulations will only allow activity release to the environment based on ALARA principles. Radioactive liquids in the nuclear power plant originate as leakage from equipment, as drains from reactor and auxiliary systems, from decontamination and cleaning operations, from active laundry and from personnel showers. They will collected through the controlled zone of the plant in sumps and automatically pumped to large tanks and then to treatment system. The radioactive wastes are separated and categorized according to their main physical and chemical properties. Methods most frequently applied for low and intermediate level; liquid wastes are: chemical treatment (precipitation), ion exchange, and evaporation, and the decontamination ors are a few hundred, 10 2 -10 4 and 10 3 -10 6 , respectively. As a result of the treatment of radioactive liquids by mentioned methods a concentration of activity takes place in filter media, ion exchange resins, and evaporator concentrates. Before the semi-solid wastes shipped for storage, it has to be solidified in order to handle and transport in easier way. The solidification of wastes can take place by different methods. The general methods are: cementation, and bituminization processes. The selection of each process will depend on many factors which should be considered during the design phase. (author)

  9. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  10. Q Fever Outbreak among Workers at a Waste-Sorting Plant.

    Directory of Open Access Journals (Sweden)

    Eva Alonso

    Full Text Available An outbreak of Q fever occurred in February-April 2014 among workers at a waste-sorting plant in Bilbao (Spain. The outbreak affected 58.5% of investigated employees, 47.2% as confirmed cases (PCR and/or serology and 11.3% as probable cases (symptoms without laboratory confirmation. Only employees who had no-access to the waste processing areas of the plant were not affected and incidence of infection was significantly higher among workers not using respiratory protection masks. Detection by qPCR of Coxiella burnetii in dust collected from surfaces of the plant facilities confirmed exposure of workers inside the plant. Animal remains sporadically detected among the residues received for waste-sorting were the most probable source of infection. After cleaning and disinfection, all environmental samples tested negative. Personal protection measures were reinforced and made compulsory for the staff and actions were taken to raise farmers' awareness of the biological risk of discharging animal carcasses as urban waste.

  11. Hazardous waste management plan, Savannah River Plant

    International Nuclear Information System (INIS)

    Phifer, M.A.

    1984-06-01

    All SRP waste storage, disposal, and recycling facilities that have received hazardous waste, low-level radioactive hazardous waste (mixed waste) or process waste since 1980 have been evaluated by EPA standards. Generally the waste storage areas meet all applicable standards. However, additional storage facilities currently estimated at $2 million and waste disposal facilities currently estimated at $20 million will be required for proper management of stored waste. The majority of the disposal facilities are unlined earthen basins that receive hazardous or process wastes and have or have the potential to contaminate groundwater. To come into compliance with the groundwater standards the influents to the basins will be treated or discontinued, the basins will be decommissioned, groundwater monitoring will be conducted, and remedial actions will be taken as necessary. The costs associated with these basin actions are not completely defined and will increase from present estimates. A major cost which has not been resolved is associated with the disposal of the sludge produced from the treatment plants and basin decommissioning. The Low-Level Radioactive Burial Ground which is also a disposal facility has received mixed waste; however, it does not meet the standards for hazardous waste landfills. In order to properly handle mixed wastes additional storage facilities currently estimated at $500,000 will be provided and options for permanent disposal will be investigated

  12. Methods for separating actinides from reprocessing and refabrication plant wastes

    International Nuclear Information System (INIS)

    Tedder, D.W.; Finney, B.C.; Blomeke, J.O.

    1979-01-01

    Chemical processing flowsheets have been developed to partition actinides from all actinide-bearing LWR fuel reprocessing and refabrication plant wastes. These wastes include high-activity-level liquids, scrap recovery liquors, HEPA filters and incinerator ashes, and chemical salt wastes such as sodium carbonate scrub solutions, detergent cleanup streams, and alkaline off-gas scrubber liquors. The separations processes that were adopted for this study are based on solvent extraction, cation exchange chromatography, and leaching with Ce 4+ -HNO 3 solution

  13. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  14. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  15. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  16. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  17. Reverse osmosis: experience of cold commissioning trials in waste immobilisation plant, Trombay

    International Nuclear Information System (INIS)

    Anand, G.; Bose, Aditi; Verma, B.B.

    1999-01-01

    Industrial scale reverse osmosis plant for low level radioactive waste put up in Waste Immobilisation Plant (WIP), Trombay is the first of its kind in India. The performance test with inactive simulated waste is meeting the desired performance. The preliminary treatment of LLW stream at W.I.P., Trombay is proposed to be carried out with reverse osmosis membrane separation process. The design, recovery and rejection ratio of LLW is described

  18. Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Damiani, Silvestro

    2018-02-01

    The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.

  19. Hanford Waste Vitrification Plant capacity increase options

    International Nuclear Information System (INIS)

    Larson, D.E.

    1996-04-01

    Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package

  20. Six-year experiences in the operation of a low level liquid waste treatment plant

    International Nuclear Information System (INIS)

    Wen, S.-J.; Hwang, S.-L.; Tsai, C.-M.

    1980-01-01

    The operation of a low level liquid waste treatment plant is described. The plant is designed for the disposal of liquid waste produced primarily by a 40 MW Taiwan Research Reactor as well as a fuel fabrication plant for the CANDU type reactor and a radioisotopes production laboratory. The monthly volume treated is about 600-2500 ton of low level liquid waste. The activity levels are in the range of 10 -5 -10 -3 μCi/cm 3 . The continuous treatment system of the low level liquid waste treatment plant and the treatment data collected since 1973 are discussed. The advantages and disadvantages of continuous and batch processes are compared. In the continuous process, the efficiency of sludge treatment, vermiculite ion exchange and the adsorption of peat are investigated for further improvement. (H.K.)

  1. Development of recycling techniques for nuclear power plant decommissioning waste

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Oguri, Daiichiro; Abe, Seiji; Ohnishi, Kazuhiko

    2003-01-01

    Recycling of concrete and metal waste will provide solution to reduce waste volume, contributing to save the natural resources and to protect the environment. Nuclear Power Engineering Corporation has developed techniques of concrete and metal recycling for decommissioning waste of commercial nuclear power plants. A process of radioactive concrete usage for mortar solidification was seen to reduce concrete waste volume by 2/3. A concrete reclamation process for high quality aggregate was confirmed that the reclaimed aggregate concrete is equivalent to ordinary concrete. Its byproduct powder was seen to be utilized various usage. A process of waste metal casting to use radioactive metal as filler could substantially decrease the waste metal volume when thinner containers are applied. A pyro-metallurgical separation process was seen to decrease cobalt concentration by 1/100. Some of these techniques are finished of demonstration tests for future decommissioning activity. (author)

  2. Municipal waste processing: Technical/economic comparison of composting and incineration options

    International Nuclear Information System (INIS)

    Bertanza, G.

    1993-01-01

    The first part of this paper which assessed the state-of-the-art of municipal waste composting and incineration technologies indicated that the advanced level of available technologies in this field now allows the realization of reliable and safe plants. This second part of the paper deals with the economics of the composting and incineration options. Cost benefit analyses using the discounted cash flow method are made for waste processing plants featuring composting alone, incineration only and mixed composting and incineration. The economic analyses show that plants employing conventional composting techniques work well for the case of exclusively organic waste materials. Incineration schemes are shown to be economically effective when they incorporate suitable energy recovery systems. The integrated composting-incineration waste processing plant appears to be the least attractive option in terms of economics. Current R ampersand D activities in this field are being directed towards the development of systems with lower environmental impacts and capital and operating costs

  3. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  4. Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes

    International Nuclear Information System (INIS)

    Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

    1980-04-01

    This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices

  5. Characterization of Savannah River Plant waste glass

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria

  6. Advanced liquid waste processing technologies: Theoretical versus actual application

    International Nuclear Information System (INIS)

    Barker, Tracy A.

    1992-01-01

    This paper provides an overview of Chem-Nuclear Systems, Inc. (CNSI) experience with turn-key chromate removal at the Maine Yankee Nuclear Plant. Theoretical and actual experiences are addressed on topics such as processing duration, laboratory testing, equipment requirements, chromate removal, waste generation, and waste processing. Chromate salts are used in industrial recirculation cooling water systems as a corrosion inhibitor. However, chromates are toxic at concentrations necessary for surface inhibition. As a result, Chem-Nuclear was contracted to perform turn-key chromate removal and waste disposal by demineralization. This project was unique in that prior to on-site mobilization, a composite sample of chromated waste was shipped to CNSI laboratories for treatment through a laboratory scale system. Removal efficiency, process media requirements, and waste processing methodology were determined from this laboratory testing. Samples of the waste resulting from this testing were processed by dewatering and solidification, respectively. TCLP tests were performed on the actual processed waste, and based on the TCLP results, pre-approval for media waste disposal was obtained. (author)

  7. Radioactive waste management plan for the PBMR (Pty) Ltd fuel plant

    International Nuclear Information System (INIS)

    Makgae, Mosidi E.

    2009-01-01

    The Pebble Bed Modular Reactor (Pty) Ltd Fuel Plant (PFP) radioactive waste management plan caters for waste from generation, processing through storage and possible disposal. Generally, the amount of waste that will be generated from the PFP is Low and Intermediate Level Waste. The waste management plan outlines all waste streams and the management options for each stream. It also discusses how the Plant has been designed to ensure radioactive waste minimisation through recycling, recovery, reuse, treatment before considering disposal. Compliance to the proposed plan will ensure compliance with national legislative requirements and international good practice. The national and the overall waste management objective is to ensure that all PFP wastes are managed appropriately by utilising processes that minimize, reduce, recover and recycle without exposing employees, the public and the environment to unacceptable impacts. Both International Atomic Energy Agency (IAEA) and Department of Minerals and Energy (DME) principles act as a guide in the development of the strategy in order to ensure international best practice, legal compliance and ensuring that the impact of waste on employees, environment and the public is as low as reasonably achievable. The radioactive waste classification system stipulated in the Radioactive Waste Management Policy and Strategy 2005 will play an important role in classifying radioactive waste and ensuring that effective management is implemented for all waste streams, for example gaseous, liquid or solid wastes.

  8. Disposal of slightly contaminated radioactive wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    With regard to the disposal of solid wastes, nuclear power plants basically have two options, disposal in a Part 61 licensed low-level waste site, or receive approval pursuant to 20.2002 for disposal in a manner not otherwise authorized by the NRC. Since 1981, the staff has reviewed and approved 30 requests for disposal of slightly contaminated radioactive materials pursuant to Section 20.2002 (formerly 20.302) for nuclear power plants located in non-Agreement States. NRC Agreement States have been delegated the authority for reviewing and approving such disposals (whether onsite or offsite) for nuclear power plants within their borders. This paper describes the characteristics of the waste disposed of, the review process, and the staff`s guidelines.

  9. Waste Isolation Pilot Plant RH TRU waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-06-01

    This report documents the results of the Waste Isolation Pilot Plant (WIPP) Remote-Handled Transuranic (RH TRU) Waste Preoperational Checkout. The primary objective of this checkout was to demonstrate the process of handling RH TRU waste packages, from receipt through emplacement underground, using equipment, personnel, procedures, and methods to be used with actual waste packages. A further objective was to measure operational time lines to provide bases for confirming the WIPP design through put capability and for projecting operator radiation doses. Successful completion of this checkout is a prerequisite to the receipt of actual RH TRU waste. This checkout was witnessed in part by members of the Environmental Evaluation Group (EEG) of the state of New Mexico. Further, this report satisfies a key milestone contained in the Agreement for Consultation and Cooperation with the state of New Mexico. 4 refs., 26 figs., 4 tabs

  10. Low-level radioactive waste processing at nuclear power plants

    International Nuclear Information System (INIS)

    1992-12-01

    This survey was limited to systems and materials used to process waste liquids contaminated with radionuclides. Since the chemical and radiological character of collected liquids may change dramatically, the survey describes waste and cleanup process streams encountered during normal outage or power production conditions. Influents containing specific organic compounds, salts, or solids common to local sources, and the special techniques developed to remove or concentrate these materials are not detailed in this report. The names and phone numbers of the individuals responsible for investigating and solving these problems, however, provides easy access to data which will save time and expense when facing abnormal processing, purchasing, or engineering challenges. The Liquid Radwaste Source Book contains information collected from 31 of 36 BWR's as well as contact information from all licensed commercial units. Since some sites share common radwaste processing facilities, not all units are represented by individual data sheets

  11. Decontamination of Savannah River Plant waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant (SRP) liquid, high-level radioactive waste into a solid form, such as borosilicate glass. The outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF to prevent the spread of radioactivity. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated byproducts which are difficult to immobilize by vitrification

  12. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  13. A big picture prospective for wet waste processing management

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1996-01-01

    This paper provides an overview of general observations made relative to the technical and economical considerations being evaluated by many commercial nuclear power plants involving their decision making process for implementation of several new wet waste management technologies. The waste management processes reviewed include the use of, Reverse Osmosis, Non-Precoat Filters, Resin Stripping ampersand Recycling, Evaporation ampersand Calcination (RVR trademark, ROVER trademark ampersand Thermax trademark), Compression Dewatering (PressPak trademark), Incineration (Resin Express trademark), Survey ampersand Free Release (Green Is Clean) and Quantum Catalytic Extraction Processing (QCEP trademark). These waste management processes are reviewed relative to their general advantages and disadvantages associated with the processing of various wet waste streams including: reactor make-up water, floor drain sludges and other liquid waste streams such as boric acid concentrates and steam generator cleaning solutions. A summary of the conclusions generally being derived by most utilities associated with the use of these waste management processes is also provided

  14. Pretreatment of Hanford PUREX Plant first-cycle waste

    International Nuclear Information System (INIS)

    Gibson, M.W.; Gerboth, D.M.; Peters, B.B.

    1987-04-01

    A process has been developed to pretreat neutralized, first-cycle high-level waste from the fuels reprocessing facility at the Hanford Site. The process separates solids from the supernate liquid, which contains soluble salts. The solids, including most of the fission products and transuranic elements, may then be vitrified for disposal, while the low-level supernate stream may be processed into a less expensive grout waste form. The process also includes ion exchange treatment of the separated supernate stream to remove radiocesium. A flow sheet based on these operations was completed to support a planned demonstration of the process in the Hanford Site B Plant canyon facility. 5 refs., 2 figs., 5 tabs

  15. Survey of minipower plant for municipal solid waste firing

    International Nuclear Information System (INIS)

    Merkkiniemi, R.; Hyoety, P.; Saiha, E.

    1999-01-01

    Dumping of municipal waste to disposal areas has caused environmental problems, and this has led to more sophisticated disposal systems and high prices. That and a general demand to reduce the quantity of waste require new solutions, and a question has been arisen whether combustion could be used to treat waste. This project is concentrating to bum waste in a small-scale power plant. The background is one 10-MW pilot in Tampere city based on smelting furnace and a 0.3-MW pyrolyse furnace. The results of these from the viewpoint of operation and effluent were satisfactory and the burning process used is in line with the latest regulations. The second aspect is the economy of waste handling. The minipower plant is designed for reasonable small municipalities, abt 20 000 inhabitants or 1 - 20 MW heat input. According to several feasibility studies this method is the cheapest way to handle waste. A local heat demand is used to support the economy. The prices of products, heat and power, and cost are of the same level as the market prices. Thus, we expect a economical and environmentally safe operation with the minipower plant and it will also give a hint to solve a higher capacity demand of one unit. (orig.)

  16. Results of two years' operation of the waste processing cell PROLIXE

    International Nuclear Information System (INIS)

    Lecomte, M.; Madic, C.; Broudic, J.C.

    1990-01-01

    Solid wastes, contaminated by alpha, beta, gamma radioisotopes, are produced by spent fuel reprocessing and isotope production. The PROLIXE plant, prototype for leaching and encapsulation was put into operation in March 1988 for waste management with the following aims: development of decontamination by oxidative leaching of alpha wastes, to obtain less than 0.1 Ci/t for surface storage; recycling radioactive isotope recovered especially transuranium elements; define a versatile process for various solid radioactive waste for an industrial plant [fr

  17. Neutron interrogator assay system for the Idaho Chemical Processing Plant waste canisters and spent fuel: preliminary description and operating procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.; Close, D.A.; Speir, L.G.

    1978-05-01

    A neutron interrogation assay system is being designed for the measurement of waste canisters and spent fuel packages at the new Idaho Chemical Processing Plant to be operated by Allied Chemical Corp. The assay samples consist of both waste canisters from the fluorinel dissolution process and spent fuel assemblies. The assay system is a 252 Cf ''Shuffler'' that employs a cyclic sequence of fast-neutron interrogation with a 252 Cf source followed by delayed-neutron counting to determine the 235 U content

  18. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid

  19. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Bergh, Niklas; Hedin, Gunnar

    2013-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  20. Process evaluation for treatment of aluminium bearing declad waste

    International Nuclear Information System (INIS)

    Banerjee, D.; Rao, Manjula A.; Srinivas, C.; Wattal, P.K.

    2012-01-01

    Declad waste generated by the process of chemical decladding of Al-cladded uranium metal fuel is characterized by highly alkaline, high Al bearing intermediate level waste. It was found that the process developed and adopted in India for plant scale treatment of alkaline intermediate level waste (ILW) is unsuitable for treatment of declad waste. This is mainly due to its exotic characteristics, notably substantial amounts of aluminium in the declad waste. As part of development of treatment scheme for this waste, 137 Cs removal by RFPR has been demonstrated earlier and the present paper reports the results of further processing of the Cs-lean effluent. The waste simulated with respect to the major chemical constituents of stored Al-bearing alkaline ILW after 137 Cs and 90 Sr removal by ion exchange, is used in this study

  1. Feasibility of large volume casting cementation process for intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Chen Zhuying; Chen Baisong; Zeng Jishu; Yu Chengze

    1988-01-01

    The recent tendency of radioactive waste treatment and disposal both in China and abroad is reviewed. The feasibility of the large volume casting cementation process for treating and disposing the intermediate level radioactive waste from spent fuel reprocessing plant in shallow land is assessed on the basis of the analyses of the experimental results (such as formulation study, solidified radioactive waste properties measurement ect.). It can be concluded large volume casting cementation process is a promising, safe and economic process. It is feasible to dispose the intermediate level radioactive waste from reprocessing plant it the disposal site chosen has resonable geological and geographical conditions and some additional effective protection means are taken

  2. Waste receiving and processing plant control system; system design description

    Energy Technology Data Exchange (ETDEWEB)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  3. Waste receiving and processing plant control system; system design description

    International Nuclear Information System (INIS)

    LANE, M.P.

    1999-01-01

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1

  4. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  5. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  6. Advanced techniques for analytic liquid wastes management in the Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Madic, C.; Moulin, J.P.; Runge, S.; Schott, R.; Kashiwai, T.; Hayashi, M.

    1991-01-01

    The JNFS Rokkasho reprocessing plant is a large scale commercial reprocessing plant. Liquid waste treatment relies on concentration by evaporation. The management of liquid wastes is rather sophisticated and implies, beside the organic wastes, sorting out between process and non-process, acidic and salt-bearing, tritiated and low tritiated streams and also according to their level of activity. A particular attention had to be paid to the analytical wastes, as their particularity is to contain not only a significant amount of radioactivity but also some fissile material and exotic chemicals which are useful for analytical purpose but unwanted in the main process mainly because of their corrosive and chelating properties. The analytical wastes are sorted out according to their activity level and fissile material content. On the one hand, a specific process has been developed to recover the bulk of plutonium from the analytical wastes. On the other hand, the foreseeable amount of unwanted chemicals (such as chloride ions) has been drastically reduced by carefully selecting all the analytical methods either by modification of already known methods or in some cases by working out new methods

  7. Saltstone processing startup at the Savannah River Plant

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Langton, C.A.; Sturm, H.F.; Hooker, R.L.; Occhipinti, E.S.

    1988-01-01

    High-level nuclear wastes are stored in large underground tanks at the Savannah River Plant. Processing of this waste in preparation for ultimate disposal will begin in 1988. The waste will be processed to separate the high-level radioactive fraction from the low-level radioactive fraction. The separation will be made in existing waste tanks by a process combining precipitation, adsorption, and filtration. The high-level fraction will be vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) for permanent disposal in a federal repository. The low-level fraction (decontaminated salt solution) will be mixed with a cementitious slag-flyash blend. The resulting wasteform, saltstone, will be disposed of onsite by emplacement in an engineered facility. Waste properties, disposal facility details, and wasteform characteristics are discussed. In particular, details of saltstone processing, focusing on experience obtained from facility startup, are presented

  8. Process and plant for manipulating radioactive waste

    International Nuclear Information System (INIS)

    Baatz, H.; Rittscher, D.

    1979-01-01

    To prepare waste for engineered storage, it is vitrified or calcined (pelleted) into solid pieces in a hot cell. Subsequently the pieces are filled into a radiation protection container made of spherulite cast iron, in which there is a liquid metal. The pieces are embedded in this metal matrix. During the embedding process, the radiation protection container may be heated externally or internally (lost heat device). (DG) [de

  9. Process arrangement options for Defense waste immobilization

    International Nuclear Information System (INIS)

    1980-02-01

    Current plans are to immobilize the SRP high-level liquid wastes in a high integrity form. Borosilicate glass was selected in 1977 as the reference waste form and a mjaor effort is currently underway to develop the required technology. A large new facility, referred to as the Defense Waste Processing Facility (DWPF) is being designed to carry out this mission, with project authorization targeted for 1982 and plant startup in 1989. However, a number of other process arrangements or manufacturing strategies, including staging the major elements of the project or using existing SRP facilities for some functions, have been suggested in lieu of building the reference DWPF. This study assesses these various options and compares them on a technical and cost basis with the DWPF. Eleven different manufacturing options for SRP defense waste solidification were examined in detail. These cases are: (1) vitrification of acid waste at current generation rate; (2) vitrification of current rate acid waste and caustic sludge; (3 and 4) vitrification of the sludge portion of neutralized waste; (5) decontamination of salt cake and storage of concentrated cesium and strontium for later immobilization; (6) processing waste in a facility with lower capacity than the DWPF; (7) processing waste in a combination of existing and new facilities; (8) waste immobilization in H Canyon; (9) vitrification of both sludge and salt; (10) DWPF with onsite storage; (11) deferred authorization of DWPF

  10. French industrial plant AVM for continuous vitrification of high level radioactive wastes

    International Nuclear Information System (INIS)

    Bonniaud, Roger; Sombret, Claude; Barbe, Alain

    1975-01-01

    The A.V.M. plant is a continuous process plant now under construction at Marcoule and intended for vitrifying the whole of fission product solutions from the C.E.A. (Commissariat a l'Energie Atomique) - Marcoule reprocessing plant. The outset of the construction took place in the second 1974 half year; the first radioactive run is scheduled in July 1977. The two steps of the process are shown: first a continuous calcination then a continuous glass making from the calcined product and suitable additives. The plant consists in two parts: vitrification and storage facilities. Some wastes will be continuously produced day after day due to gas clean up and worn out materials. Characteristics of the solutions processed, calcined products, glass composition, and expected liquid wastes are given in tables [fr

  11. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  12. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  13. Method of controlling radioactive waste processing systems

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Sato, Takao.

    1981-01-01

    Purpose: To minimize the pellet production amount, maximize the working life of a solidifying device and maintaining the mechanical strength of pellets to a predetermined value irrespective of the type and the cycle of occurrence of the secondary waste in the secondary waste solidifying device for radioactive waste processing systems in nuclear power plants. Method: Forecasting periods for the type, production amount and radioactivity level of the secondary wastes are determined in input/output devices connected to a control system and resulted signals are sent to computing elements. The computing elements forecast the production amount of regenerated liquid wastes after predetermined days based on the running conditions of a condensate desalter and the production amounts of filter sludges and liquid resin wastes after predetermined days based on the liquid waste processing amount or the like in a processing device respectively. Then, the mass balance between the type and the amount of the secondary wastes presently stored in a tank are calculated and the composition and concentration for the processing liquid are set so as to obtain predetermined values for the strength of pellets that can be dried to solidify, the working life of the solidifying device itself and the radioactivity level of the pellets. Thereafter, the running conditions for the solidifying device are determined so as to maximize the working life of the solidifying device. (Horiuchi, T.)

  14. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    Science.gov (United States)

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  15. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE DECOMMISSIONG AND DECONTAMINATION OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-01

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place

  16. Processing method of radioactive metal wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Urata, Megumu; Sato, Masao.

    1985-01-01

    Purpose: To reduce the volume and increase the density of radioactive metal wastes easily while preventing scattering of radioactivity and process them into suitable form to storage and treatment. Method: Metal wastes mainly composed of zirconium are discharged from nuclear power plants or fuel re-processing plants, and these metals such as zirconium and titanium vigorously react with hydrogen and rapidly diffuse as hydrides. Since the hydrides are extremely brittle and can be pulverized easily, they can be volume-reduced. However, since metal hydrides have no ductility, dehydrogenation is applied for the molding fabrication in view of the subsequent storage and processing. The dehydrogenation is easy like the hydrogenation and fine metal pieces can be molded in a small compression device. For the dehydrogenation, a temperature is slightly increased as compared with that in the hydrogenation, pressure is reduced through the vacuum evacuation system and the removed hydrogen is purified for reuse. The upper limit for the temperature of the hydrogenation is 680 0 C in order to prevent the scttering of radioactivity. (Kamimura, M.)

  17. Waste Isolation Pilot Plant Overview

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-27

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  18. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  19. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  20. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  1. Effects of feed process variables on Hanford Vitrification Plant performance

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Peterson, M.E.; Wagner, R.N.

    1987-01-01

    As a result of nuclear defense activities, high-level liquid radioactive wastes have been generated at the Hanford Site for over 40 yr. The Hanford Waste Vitrification Plant (HWVP) is being proposed to immobilize these wastes in a waste form suitable for disposal in a geologic repository. Prior to vitrification, the waste will undergo several conditioning steps before being fed to the melter. The effect of certain process variables on the resultant waste slurry properties must be known to assure processability of the waste slurry during feed preparation. Of particular interest are the rheological properties, which include the yield stress and apparent viscosity. Identification of the rheological properties of the slurry is required to adequately design the process equipment used for feed preparation (agitators, mixing tanks, concentrators, etc.). Knowledge of the slurry rheological properties is also necessary to establish processing conditions and operational limits for maximum plant efficiency and reliability. A multivariable study was performed on simulated HWVP feed to identify the feed process variables that have a significant impact on rheology during processing. Two process variables were evaluated in this study: (a) the amount of formic acid added to the feed and (b) the degree of shear encountered by the feed during processing. The feed was physically and rheologically characterized at various stages during feed processing

  2. Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste

    International Nuclear Information System (INIS)

    Langton, C.A.

    1984-01-01

    Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNO 3 , NaOH, Na 2 SO 4 , and NaNO 2 . After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses. The disposal system for the DWPF salt waste includes reconstitution of the crystallized salt as a solution containing 32 wt % solids. This solution will be decontaminated to remove 137 Cs and 90 Sr and then stabilized in a cement-based waste form. Laboratory and field tests indicate that this stabilization process greatly reduces the mobility of all of the waste constitutents in the surface and near-surface environment. Engineered trenches for subsurface burial of the saltstone have been designed to ensure compatibility between the waste form and the environment. The total disposal sytem, saltstone-trench-surrounding soil, has been designed to contain radionuclides, Cr, and Hg by both physical encapsulation and chemical fixation mechanisms. Physical encapsulation of the salts is the mechanism employed for controlling N and OH releases. In this way, final disposal of the SRP low-level waste can be achieved and the quality of the groundwater at the perimeter of the disposal site meets EPA drinking water standards

  3. Hanford Waste Vitrification Plant Technology Plan

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1988-06-01

    The reference Hanford plan for disposal of defense high-level waste is based on waste immobilization in glass by the vitrification process and temporary vitrified waste storage at the Hanford Site until final disposal in a geologic repository. A companion document to the Hanford Waste Management Plan (HWMP) is the Draft, Interim Hanford Waste Management Technology Plan (HWMTP), which provides a description of the technology that must be developed to meet the reference waste management plan. One of the issues in the HWMTP is DST-6, Immobilization (Glass). The HWMTP includes all expense funding needed to complete the Hanford Waste Vitrification Plant (HWVP) project. A preliminary HWVP Technology Plan was prepared in 1985 as a supporting document to the HWMTP to provide a more detailed description of the technology needed to construct and operate a vitrification facility. The plan was updated and issued in 1986, and revised in 1987. This document is an annual update of the plan. The HWVP Technology Plan is limited in scope to technology that requires development or confirmation testing. Other expense-funded activities are not included. The relationship between the HWVP Technology Plan and other waste management issues addressed in the HWMTP is described in section 1.6 of this plan. 6 refs., 4 figs., 34 tabs

  4. Processing of radioactive waste solutions in a vacuum evaporator-crystallizer

    International Nuclear Information System (INIS)

    Petrie, J.C.; Donovan, R.I.; Van der Cook, R.E.; Christensen, W.R.

    1975-01-01

    Results of the first 18 months' operation of Hanford's vacuum evaporator-crystallizer are reported. This process reduces the volume of radioactive waste solutions and simultaneously converts the waste to a less mobile salt cake. The evaporator-crystallizer is operating at better than design production rates and has reduced the volume of radioactive wastes by more than 15 million gallons. A process description, plant performance data, mechanical difficulties, and future operating plans are discussed. Also discussed is a computer model of the evaporator-crystallizer process

  5. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program

  6. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.

  7. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  8. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  9. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  10. Tomatoes in oil recovery. [Plant waste additives improve yield

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The waste from processing tomato, squash and pepper stalks found unexpected use in recovery of oil. Even a negligible amount thereof in an aqueous solution pumped into an oil-bearing formation turned out to be sufficient to increase the yield. Substances of plant origin, which improve dramatically the oil-flushing properties of water, not only increase the recovery of oil, but reduce the volume of fluid to be pumped into the stratum. The staff of the Institute of Deep Oil and Gas Deposits of the Azerbaijan Academy of Sciences, who proved the technological and economical advantages of using the waste from plant processing, transmitted their findings to the oil workers of Baku. The scientists have concluded that there is a good raw material base in this republic for utilizing this method on oil-bearing formations.

  11. Resource conversation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume II contains attachments for Module II and Module III. Attachments for Module II are: part A permit application; examples of acceptable documentation; Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program; inspection schedule and monitoring schedule; inspection log forms; personnel training course outlines; hazardous waste job position training requirements; contingency plan; closure plan; and procedures for establishing background for the underground units. One attachment, facility process information, is included for Module III. Remaining attachments for this module are in Volume III

  12. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    International Nuclear Information System (INIS)

    Joglekar, R.D.; Feltcorn, E.M.; Ortiz, A.M.

    2003-01-01

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public

  13. Preliminary analysis of treatment strategies for transuranic wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Ross, W.A.; Schneider, K.J.; Swanson, J.L.; Yasutake, K.M.; Allen, R.P.

    1985-07-01

    This document provides a comparison of six treatment options for transuranic wastes (TRUW) resulting from the reprocessing of commercial spent fuel. Projected transuranic waste streams from the Barnwell Nuclear Fuel Plant (BNFP), the reference fuel reprocessing plant in this report, were grouped into the five categories of hulls and hardware, failed equipment, filters, fluorinator solids, and general process trash (GPT) and sample and analytical cell (SAC) wastes. Six potential treatment options were selected for the five categories of waste. These options represent six basic treatment objectives: (1) no treatment, (2) minimum treatment (compaction), (3) minimum number of processes and products (cementing or grouting), (4) maximum volume reduction without decontamination (melting, incinerating, hot pressing), (5) maximum volume reduction with decontamination (decontamination, treatment of residues), and (6) noncombustible waste forms (melting, incinerating, cementing). Schemes for treatment of each waste type were selected and developed for each treatment option and each type of waste. From these schemes, transuranic waste volumes were found to vary from 1 m 3 /MTU for no treatment to as low as 0.02 m 3 /MTU. Based on conceptual design requirements, life-cycle costs were estimated for treatment plus on-site storage, transportation, and disposal of both high-level and transuranic wastes (and incremental low-level wastes) from 70,000 MTU. The study concludes that extensive treatment is warranted from both cost and waste form characteristics considerations, and that the characteristics of most of the processing systems used are acceptable. The study recommends that additional combinations of treatment methods or strategies be evaluated and that in the interim, melting, incineration, and cementing be further developed for commercial TRUW. 45 refs., 9 figs., 32 tabs

  14. Preliminary analysis of treatment strategies for transuranic wastes from reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Schneider, K.J.; Swanson, J.L.; Yasutake, K.M.; Allen, R.P.

    1985-07-01

    This document provides a comparison of six treatment options for transuranic wastes (TRUW) resulting from the reprocessing of commercial spent fuel. Projected transuranic waste streams from the Barnwell Nuclear Fuel Plant (BNFP), the reference fuel reprocessing plant in this report, were grouped into the five categories of hulls and hardware, failed equipment, filters, fluorinator solids, and general process trash (GPT) and sample and analytical cell (SAC) wastes. Six potential treatment options were selected for the five categories of waste. These options represent six basic treatment objectives: (1) no treatment, (2) minimum treatment (compaction), (3) minimum number of processes and products (cementing or grouting), (4) maximum volume reduction without decontamination (melting, incinerating, hot pressing), (5) maximum volume reduction with decontamination (decontamination, treatment of residues), and (6) noncombustible waste forms (melting, incinerating, cementing). Schemes for treatment of each waste type were selected and developed for each treatment option and each type of waste. From these schemes, transuranic waste volumes were found to vary from 1 m/sup 3//MTU for no treatment to as low as 0.02 m/sup 3//MTU. Based on conceptual design requirements, life-cycle costs were estimated for treatment plus on-site storage, transportation, and disposal of both high-level and transuranic wastes (and incremental low-level wastes) from 70,000 MTU. The study concludes that extensive treatment is warranted from both cost and waste form characteristics considerations, and that the characteristics of most of the processing systems used are acceptable. The study recommends that additional combinations of treatment methods or strategies be evaluated and that in the interim, melting, incineration, and cementing be further developed for commercial TRUW. 45 refs., 9 figs., 32 tabs.

  15. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Krause, H.

    1984-01-01

    The importance of radioactive wastes from nuclear power plants (NPPs) results primarily from their large amounts. In NPPs more radioactive wastes arise than in all other plants of the nuclear fuel cycle, with the exception of uranium mills. Although the volume is great, NPP wastes are relatively low in activity and radiotoxicity and short in half-life. Several methods for treatment of NPP wastes are available that meet all the relevant requirements and they have attained high technical standards and are highly reliable. Consequently, the discharge of radionuclides with liquid and gaseous effluents and the resulting dose commitment to the general public are far below established limits. The quality of the conditioned wastes conforms to the requirements for ultimate disposal. The final disposal of NPP wastes has already been demonstrated successfully in several places and the feasibility of NPP decommissioning and management of the wastes arising in this process have been proved. The problems associated with the management of radioactive wastes from NPPs have been solved both scientifically and technically; there is no urgent need for improvement. This is why for new developments cost-benefit aspects must be considered, including the dose commitment to the operating staff and general aspects such as public acceptance and socio-ethical questions. Spectacular new developments are not to be expected in the near future. However, by continuous improvement of details and optimization of the whole system useful contributions can still be made to develop nuclear technology further. (author)

  16. Process Testing Results and Scaling for the Hanford Waste Treatment and Immobilization Plant (WTP) Pretreatment Engineering Platform - 10173

    International Nuclear Information System (INIS)

    Kurath, Dean E.; Daniel, Richard C.; Baldwin, David L.; Rapko, Brian M.; Barnes, Steven M.; Gilbert, Robert A.; Mahoney, Lenna A.; Huckaby, James L.

    2010-01-01

    The U.S. Department of Energy-Office of River Protections Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanfords 177 underground waste storage tanks at Richland, Washington. In support of this effort, engineering-scale tests at the Pretreatment Engineering Platform (PEP) have been completed to confirm the process design and provide improved projections of system capacity. The PEP is a 1/4.5-scale facility designed, constructed, and operated to test the integrated leaching and ultrafiltration processes being deployed at the WTP. The PEP replicates the WTP leaching processes with prototypic equipment and control strategies and non-prototypic ancillary equipment to support the core processing. The testing approach used a nonradioactive aqueous slurry simulant to demonstrate the unit operations of caustic and oxidative leaching, cross-flow ultrafiltration solids concentration, and solids washing. Parallel tests conducted at the laboratory scale with identical simulants provided results that allow scale-up factors to be developed between the laboratory and PEP performance. This paper presents the scale-up factors determined between the laboratory and engineering-scale results and presents arguments that extend these results to the full-scale process.

  17. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  18. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  19. Radioactive air emissions notice of construction and application for approval to construct the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    1992-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy, Richland Field Office. The Hanford Site manages and produces dangerous waste and mixed waste. (containing both radioactive and dangerous components). The US Department of Energy, Richland Field Office, currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. Emissions from the Hanford Waste Vitrification Plant will be regulated by both the federal and state Clean Air Acts. The proposed Hanford Waste Vitrification Plant represents a new source of radioactive air emissions. Construction of the plant will require approval from both federal and state agencies. The Notice of Construction and Application for Approval to Construct the Hanford Waste Vitrification Plant contains information required under Title 40 of the Code of Federal Regulations, Chapter 61; and Chapter 246-247 of the Washington Administrative Code for a proposed new source of radioactive air emissions. The document contents are based on information contained in the Hanford Waste Vitrification Plant Reference Conceptual Design Report, the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report, Revision 0, and subsequent design changes made before August 1, 1992. The contents of this document may be modified to include more specific information generated during subsequent detailed design phases. Modifications will be submitted for regulatory review and approval, as appropriate

  20. Description of processes for the immobilization of selected transuranic wastes

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1980-12-01

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet

  1. WIPP: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1984-01-01

    The following aspects of the Waste Isolation Pilot Plant are discussed briefly: history and site selection; salt as a disposal medium; transporting waste materials; early key events; impacts on New Mexico; project organization; and site certification profile

  2. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  3. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables

  4. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  5. A waste to energy plant for an industrial districts

    International Nuclear Information System (INIS)

    Floreani, M.; Meneghetti, A.; Nardin, G.; Rocco, A.

    2001-01-01

    Industrial districts show characteristics that can be exploited by developing plant solutions studied for their special configuration and not simply extended from single unit models. In the paper a waste-to-energy plant for the chair industrial district in Friuli Venezia Giulia (North Eastern Italy) is described. It has been designed directly involving the University of Udine and can be considered an example of how technology innovation can be promoted by universities, especially in the case of small firms which have limited R and D resources. It is shown how industrial refuse becomes a chance of competitive advantage for the whole district due to its energy recovery in a plant unique for the type of waste processed. Input, combustion, energy recovery and cleaning sections are described in details, underlining innovative approaches and solutions [it

  6. The Waste Treatment Plant, a Work in Progress

    International Nuclear Information System (INIS)

    Hamel, W. F. Jr.; Duncan, G. M.

    2006-01-01

    There are many challenges in the design and construction of Department of Energy's (DOE) Waste Treatment and Immobilization Plant (WTP) at the Hanford site. The plant is being built to process some 55 million gallons of radioactive waste from 177 underground tanks. Engineering and construction are progressing on this largest project in the DOE complex. This paper describes some of WTP's principal recent challenges and opportunities and how they are being addressed to minimize impact on the project, enhance the capabilities of the facilities, and reduce risk. A significant new development in 2005 was the need to account for higher seismic accelerations than originally specified for the facility structures and equipment. Efforts have centered on continuing design and construction with minimal risk, while the final seismic design spectra was developed. Other challenges include development of an alternative cesium ion exchange resin to minimize the risk from reliance on a single product, implementing advanced analytical techniques to improve laboratory performance, adopting a thinner walled high level waste (HLW) canister to reduce waste volume and mission duration, and commissioning a comprehensive external flowsheet review of the design, along with its underpinning technologies, and projected plant operability. These challenges make it clear that WTP is a work in progress, but the challenges are being successfully resolved as the design and construction move on to completion. (authors)

  7. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  8. Technical study for the automation and control of processes of the chemical processing plant for liquid radioactive waste at Racso Nuclear Center

    International Nuclear Information System (INIS)

    Quevedo D, M.; Ayala S, A.

    1997-01-01

    The purpose of this study is to introduce the development of an automation and control system in a chemical processing plant for liquid radioactive waste of low and medium activity. The control system established for the chemical processing plant at RACSO Nuclear Center is described. It is an on-off sequential type system with feedback. This type of control has been chosen according to the volumes to be treated at the plant as processing is carried out by batches. The system will be governed by a programmable controller (PLC), modular, with a minimum of 24 digital inputs, 01 analog input, 16 digital outputs and 01 analog input. Digital inputs and outputs are specifically found at the level sensors of the tanks and at the solenoid-type electro valve control. Analog inputs and outputs have been considered at the pH control. The comprehensive system has been divided into three control bonds, The bonds considered for the operation of the plant are described, the plant has storing, fitting, processing and clarifying tanks. National Instruments' Lookout software has been used for simulation, constituting an important tool not only for a design phase but also for a practical one since this software will be used as SCADA system. Finally, the advantages and benefits of this automation system are analyzed, radiation doses received by occupationally exposed workers are reduced and reliability on the operation on the system is increased. (authors)

  9. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  10. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that ∼5,500 m 3 of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste

  11. High performance biological process for waste water treatment proven in operation

    International Nuclear Information System (INIS)

    Timm, C.; Wienands, H.; Brauch, G.; Schlaeger, M.

    1993-01-01

    A BIOMEMBRAT plant has been in operation for over one year at the Thor Chemie GmbH facility at Speyer, Germany. The process is particularly suitable for waste water with a high organic content and with degradation-resistant components or high nitrogen contents. This article presents the operating results obtained so far with the waste water treatment plant and the operator's experience. (orig.) [de

  12. Harmful Waste Process

    International Nuclear Information System (INIS)

    Ki, Mun Bong; Lee, Shi Jin; Park, Jun Seok; Yoon, Seok Pyo; Lee, Jae Hyo; Jo, Byeong Ryeol

    2008-08-01

    This book gives descriptions of processing harmful waste, including concerned law and definition of harmful waste, current conditions and generation of harmful waste in Korea, international condition of harmful waste, minimizing of generation of harmful waste, treatment and storage. It also tells of basic science for harmful waste disposal with physics, chemistry, combustion engineering, microbiology and technique of disposal such as physical, chemical, biological process, stabilizing and solidification, incineration and waste in landfill.

  13. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    International Nuclear Information System (INIS)

    Wasan, Darsh T.; Nikolov, Alex D.; Lamber, D.P.; Calloway, T. Bond; Stone, M.E.

    2005-01-01

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays

  14. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described

  15. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  16. Operation of a plant for waste combustion in the dim frames and the national and Europe legislation in the case of the solid waste combustion plant Rugenberger-Dam in Hamburg

    International Nuclear Information System (INIS)

    Menke, D.; Zwahr, D.

    2000-01-01

    The difficulties in the operation of a waste processing plant are demonstrated on the example of the waste combustion facility Rudenberger-Dam in Hamburg. The installation and processes are described in details. The produced in the process 30% HCL is in compliance with the requirements for a commercial product, but since it is produced as a result from the processing of waste gases, it is treated as a waste product. Similar problems occur in other installations. German and European legislation in the field of waste management are unnecessary complicated. The introduction of technical frame conditions in the laws often presents an obstacle for the application of new technologies. It is pointed out that the time for changes in the environment legislation has come

  17. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  18. Management of low level wastes at Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Moriya, N.; Ochi, E.

    2006-01-01

    Full text: At Rokkasho Reprocessing Plant (RRP), after start-up of the commercial operation, radioactive wastes will be generated. Wastes generated from a reprocessing plant generally consist of many kinds of characteristics in view of ''activity level'', ''nuclide composition'', ''chemical properties'', ''physical properties'', and so on. For stable operation of a reprocessing plant, we should t reat , ''condition'' and ''dispose'' these wastes considering these wastes characteristics. To contribute to the nuclear fuel cycle project, it is important to evaluate technologies such as, ''Treatment'', ''Conditioning'' and ''Final Disposal'', not only for technical but also for economical aspects. Considering the final disposal in the future, the basic policy in ''Treatment'' and ''Conditioning'' at RRP is shown below: Recover and reuse chemicals (such as nitric acid and TBP, etc.) in plant; Radioactive waste shall be divided, classified and managed according to activity level, nuclide composition, the radiation level, its physical properties, chemical properties, etc.; Treat them based on ''classification'' management with proper combination; Condition them as intermediate forms in order to keep flexibility in the future disposal method; Original volume of annually generated wastes at RRP is estimated as 5600m3 except highly radioactive vitrified waste, and these wastes shall be treated in the following units, which are now under commisioning, in order to reduce and stabilize wastes. Low-level concentrated liquid waste to be treated with a ''Drying and peptization'' unit; Spent solvent to be treated with a ''Pyrolysis and hydrothermal solidification'' unit; Relatively low-level non-alfa flammable wastes to be treated with a ''Incineration and hydrothermal solidification'' unit; CB/BP (Channel Box and Burnable Poison) to be processed with a ''Cutting'' unit; Other wastes to be kept as their generated state with a ''Intermediate storage''. As a result of these

  19. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  20. Selected problems of minimization and management of radioactive wastes from nuclear power plant decommissioning. Part 2

    International Nuclear Information System (INIS)

    Kyrs, M.; Moravec, A.

    1988-06-01

    The processing prior to storage of radioactive wastes produced in nuclear power plant decommissioning is described as are the types of containers employed for waste transport and/or disposal. Data are summarized on exposure of personnel to radioactivity resulting from nuclear power plant decommissioning activities, and accessible data are collected on the costs of nuclear power plant decommissioning and of waste management. Potential directions of research in this field under Czechoslovak conditions are specified. (author)

  1. Treatment of fuel oil contaminated waste water from liquid fuel processing plants associated to thermal power plants or heat and power cogeneration plants

    International Nuclear Information System (INIS)

    Petrescu, S.

    1996-01-01

    According to the statistical data presented in the most important European and world meetings on environmental protection, the oil product amounts which pollute the surface water is estimated to be of about 6 mill. tones yearly out of which 35 %, 10 %, and 1 % come from oil tanks, natural sources, and offshore drilling, respectively, while 54 % reach seas and oceans trough rivers, rains a.o. Among the water consumers and users of Romania, the thermal power plants, belonging to RENEL (Romanian Electricity Authority), are the greatest. A part of the water with modified chemical-physical parameters, used for different technological processes, have to be discharged from the user precinct directly towards natural agents or indirectly through public sewage networks as domestic and industrial waste water. These waste waters need an adequate treatment before discharging as to meet the requirements imposed by the norms and regulations related to environment protection. For this purpose, before discharging, after using, the water must be circulated through the treatment plants designed and operated as to ensure the correction of the inadequate values of the residual water parameters. The paper presents the activities developed in the Institute for Power Studies and Design concerning the environmental protection against pollution produced by the entire power generation circuit, from the design phase up to product supplying. (author). 1 tab., 2 refs

  2. High-level waste processing and conditioning: vitrification

    International Nuclear Information System (INIS)

    Bonniaud, R.

    1981-02-01

    The vitrification process used to treat fission product solutions at the Marcoule Vitrification Plant is described. The type of waste processed is characterized by its very high activity and the long lifetimes of some of the emitters that it contains. The performance obtained with this process is given together with the future developments envisaged. The storage of glasses is described as well as their behavior with time [fr

  3. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-11-01

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  4. Waste heat recovery options in a large gas-turbine combined power plant

    Science.gov (United States)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  5. Vitrification of liquid waste from nuclear power plants

    International Nuclear Information System (INIS)

    Sheng Jiawei; Choi, Kwansik; Song, Myung-Jae

    2001-01-01

    Glass is an acceptable waste form to solidify the low-level waste from nuclear power plants (NPPs) because of the simplicity of processing and its unique ability to accept a wide variety of waste streams. Vitrification is being considered to solidify the high-boron-containing liquid waste generated from Korean NPPs. This study dealt with the development of a glass formulation to solidify the liquid waste. Studies were conducted in a borosilicate glass system. Crucible studies have been performed with surrogate waste. Several developed glass frits were evaluated to determine their suitability for vitrifying the liquid waste. The results indicated that the 20 wt% waste oxides loading required could not be obtained using these glass frits. Flyash produced from coal-burning electric power stations, whose major components are SiO 2 and Al 2 O 3 , is a desirable glass network former. Detailed product evaluations including waste loading, homogeneity, chemical durability and viscosity, etc., were carried out on selected formulations using flyash. Up to 30 wt% of the waste oxides was successfully solidified into the flyash after the addition of 5-10 wt% Na 2 O at 1200 deg. C

  6. Sustainable waste management: Waste to energy plant as an alternative to landfill

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano; Gastaldi, Massimo

    2017-01-01

    Highlights: • WTE plant is a reasonable and sustainable alternative technology to landfill. • A 150 kt plant in the only electrical configuration for Abruzzo region. • The percentage of energy recovery ranges from 21% to 25% in examined scenarios. • Financial Net Present Value is equal to 25.4 € per kiloton of treated waste. • The annual reduction of emissions is equal to 370 kgCO_2eq per ton of treated waste. - Abstract: The management of municipal solid waste (MSW) has been identified as one of the global challenges that must be carefully faced in order to achieve sustainability goals. European Union (EU) has defined as Waste to Energy (WTE) technology is able to create synergies with EU energy and climate policy, without compromising the achievement of higher reuse and recycling rates. The methodology used in this paper is based on two levels. A strategy analysis defines the amount of waste to incinerate with energy recovery considering different approaches based on unsorted waste, landfilled waste and separated collection rate, respectively. Consequently, it is evaluated the sustainability of a WTE plant as an alternative to landfill for a specific area. Two indicators are used: the Reduction of the Emissions of equivalent Carbon Dioxide (ER_C_O_2_e_q) and Financial Net Present Value (FNPV). Furthermore, a social analysis is conducted through interviews to identify the most critical elements determining the aversion toward the WTE realization. The obtained results show the opportunity to realize a 150 kt plant in the only electrical configuration. In fact, the cogenerative configuration reaches better environmental performances, but it is not profitable for this size. Profits are equal to 25.4 € per kiloton of treated waste and 370 kgCO_2eq per ton of treated waste are avoided using a WTE plant as an alternative to landfill. In this way, the percentage of energy recovery ranges from 21% to 25% in examined scenarios and disposal waste is minimised

  7. The Environmental Protection Agency's waste isolation pilot plant certification process: The steps leading to our decision

    International Nuclear Information System (INIS)

    Wene, C.; Kruger, M.

    1999-01-01

    On May 13, 1998, the United States Environmental Protection Agency (EPA) issued its 'final certification decision' to certify that the U. S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) will comply with the radioactive waste disposal regulations set and the WIPP Compliance Criteria set forth at 40 CFR Parts 191 (US EPA, 1993) and 194 (US EPA, 1996) respectively. The WIPP will be the nation's first deep underground disposal facility for transuranic (TRU) radioactive waste generated as a result of defence activities. Since WIPP is a first-of-a-kind facility EPA's regulatory program contains an abundance of unique technical questions, as well as controversial policy considerations and legal issues. This paper presents the process that EPA undertook to reach its final decision. Oversight of the WIPP facility by EPA is governed by the WIPP Land Withdrawal Act (WIPP LWA), passed initially by Congress in 1992 and amended in 1996. The LWA required EPA to evaluate whether the WIPP will comply with Subparts B and C of 40 CFR Part 191, known as the disposal regulations. The EPA's final certification of compliance will allow the emplacement of radioactive waste in the WIPP to begin, provided that all other applicable health and safety standards have been met. The certification also allows Los Alamos National Laboratory (LANL) to strip TRU waste from specific waste streams for disposal at the WIPP. However, the certification is subject to several conditions, most notably that EPA must approve site-specific waste characterisation measures and quality assurance plans before allowing sites other than LANL to ship waste for disposal at the WIPP

  8. TRUEX process: a new dimension in management of liquid TRU wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1986-01-01

    The TRUEX process is one of the, if not the, most exciting and potentially useful nuclear separations processes to be developed since the PUREX process was developed and applied in the 1950s. Attesting to its potential widespread use, Rockwell Hanford and ANL investigators, in a joint effort, are developing and testing TRUEX process flow sheets for removal of TRU elements from several Hanford Site wastes including the Plutonium Finishing Plant and complexed concentrate wastes. The TRUEX process also appears to be well suited to removal of plutonium and Am from aqueous chloride wastes generated during plutonium processing operations at the Los Alamos National Lab. (LANL); collaborative efforts between LANL and ANL scientists to develop and demonstrate TRUEX process flow sheets for treatment of LANL site chloride wastes are currently under way

  9. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  10. Fissile material holdup monitoring in the PREPP [Process Experimental Pilot Plant] process

    International Nuclear Information System (INIS)

    Becker, G.K.; Pawelko, R.J.

    1989-01-01

    The Process Experimental Pilot Plant (PREPP) is an incineration system designed to thermally process mixed transuranic (TRU) waste and TRU contaminated low-level waste. The TRU isotopic composition is that of weapons grade plutonium (Pu) which necessitates that criticality prevention measures by incorporated into the plant design and operation. Criticality safety in the PREPP process is assured through the utilization of mass and moderation control in conjunction with favorable vessel geometries. The subject of this paper concerns the Pu mass holdup instrumentation system which is an integral part of the inprocess mass control strategy. Plant vessels and components requiring real-time mass holdup measurements were selected based on their evaluated potential for achieving physically credible Pu mass loadings and associated parameters which could lead to a criticality event. If the parameters requisite to a criticality occurrence could not physically be achieved under credible plant conditions, the particular location only required periodic portable holdup monitoring. Based on these analyses five real-time holdup monitoring locations were identified for criticality assurance purposes. An additional real-time instrument is part of the system but serves primarily in the capacity of providing operational support data. 1 fig

  11. Recovery and removal of uranium by using plant wastes

    International Nuclear Information System (INIS)

    Nakajima, Akira; Sakaguchi, Takashi

    1990-01-01

    The uranium-adsorbing abilities of seven plant wastes were investigated. High abilities to adsorb uranium from non-saline water containing 10 mg dm -3 of uranium were observed with a number of plant wastes tested. However, with seawater supplemented with 10 mg dm -3 of uranium, similar results were found only with chestnut residues. When the plant wastes were immobilized with formaldehyde, their ability to adsorb uranium was increased. Uranium and copper ions were more readily adsorbed by all plant wastes tested than other metal ions from a solution containing a mixture of seven different heavy metals. The selective adsorption of heavy metal ions differs with different species of plant wastes. The immobilization of peanut inner skin, orange peel and grapefruit peel increased the selectivity for uranium. (author)

  12. Hazardous Waste Landfill Siting using GIS Technique and Analytical Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Ozeair Abessi

    2010-07-01

    Full Text Available Disposal of large amount of generated hazardous waste in power plants, has always received communities' and authori¬ties attentions. In this paper using site screening method and Analytical Hierarchy Process (AHP a sophisticated approach for siting hazardous waste landfill in large areas is presented. This approach demonstrates how the evaluation criteria such as physical, socio-economical, technical, environmental and their regulatory sub criteria can be introduced into an over layer technique to screen some limited appropriate zones in the area. Then, in order to find the optimal site amongst the primary screened site utilizing a Multiple Criteria Decision Making (MCDM method for hierarchy computations of the process is recommended. Using the introduced method an accurate siting procedure for environmental planning of the landfills in an area would be enabled. In the study this approach was utilized for disposal of hazardous wastes of Shahid Rajaee thermal power plant located in Qazvin province west central part of Iran. As a result of this study 10 suitable zones were screened in the area at first, then using analytical hierarchy process a site near the power plant were chosen as the optimal site for landfilling of the hazardous wastes in Qazvin province.

  13. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company's (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP

  14. Waste Disposition Issues and Resolutions at the TRU Waste Processing Center at Oak Ridge TN

    International Nuclear Information System (INIS)

    Gentry, R.

    2009-01-01

    This paper prepared for the Waste Management Conference 2009 provides lessons learned from the Transuranic (TRU) Waste Processing Center (TWPC) associated with development of approaches used to certify and ensure disposition of problematic TRU wastes at the Waste Isolation Pilot Plant (WIPP) site. The TWPC is currently processing the inventory of available waste TRU waste at the Oak Ridge National Lab (ORNL). During the processing effort several waste characteristics were identified/discovered that did not conform to the normal standards and processes for disposal at WIPP. Therefore, the TWPC and ORNL were challenged with determining a path forward for this problematic, special case TRU wastes to ensure that they can be processed, packaged, and shipped to WIPP. Additionally, unexpected specific waste characteristics have challenged the project to identify and develop processing methods to handle problematic waste. The TWPC has several issues that have challenged the projects ability to process RH Waste. High Neutron Dose Rate resulting from both Californium and Curium in the waste stream challenge the RH-TRU 72-B limit for dose rate measured from the side of the package under normal conditions of transport, as specified in Chapter 5.0 of the RH-TRU 72-B SAR (i.e., ≤10 mrem/hour at 2 meters). Difficult to process waste in the hot cell has introduced processing and handling difficulties included problems associated with the disposition of prohibited items that fall out of the waste stream such as liquids, aerosol cans, etc. Lastly, multiple waste streams require characterization and AK challenge the ability to generate dose-to curie models for the waste. Repackaging is one solution to the high neutron dose rate issue. In parallel, an effort is underway to request a change to the TRAMPAC requirements to allow shielding in the drum or canister to reduce the impact of the high neutron dose rates. Due diligence on supporting AK efforts is important in ensuring adequate

  15. New solutions for waste management centers of new Russian-type nuclear power plant designs

    International Nuclear Information System (INIS)

    Buettner, Klaus

    2010-01-01

    There has been a change of mind with respect to waste management among power plant operators in Russia and planners of the new VVER reactor line. Solid waste no longer is to be stored on the site of the power plant; instead, a functioning direct method of treatment of the different categories of waste arising in operation is favored. Waste conditioning and reduced storage volumes are indispensable arguments in selling reactor technology to markets outside Russia. Reference often is made to the internationally discussed volume of 50 m 3 of waste per reactor unit and year, which is then defined as a target. NUKEM Technologies verified existing technical concepts and worked out proposals of improved waste management. One project proposal accepted by ASE (Atomstroyexport) was elaborated to the Technical Project (corresponding to Basic Design) status. Specific management of materials flows, the use of processes tailored to the waste stream, and adaptation of the throughputs of these plants to the waste arisings actually expected are able to reduce clearly both the volume of conditioned waste to be stored and the capital costs. (orig.)

  16. Steam generation by combustion of processed waste fats

    Energy Technology Data Exchange (ETDEWEB)

    Pudel, F.; Lengenfeld, P. [OEHMI Forschung und Ingenieurtechnik GmbH, Magdeburg (Germany)

    1993-12-31

    The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.

  17. Liquid radioactive waste processing improvement of PWR nuclear power plants; Melhorias no processamento de rejeitos liquidos radioativos de usinas nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Nery, Renata Wolter dos Reis; Martinez, Aquilino Senra; Monteiro, Jose Luiz Fontes [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: wolter@eletronuclear.gov.br; monteiro@peq.coppe.ufrj.br; aquilinosenra@lmp.ufrj.br

    2005-07-01

    The study evaluate an inorganic ion exchange to process the low level liquid radwaste of PWR nuclear plants, so that the level of the radioactivity in the effluents and the solid waste produced during the treatment of these liquid radwaste can be reduced. The work compares two types of ion exchange materials, a strong acid cation exchange resin, that is the material typically used to remove radionuclides from PWR nuclear plants wastes, and a mordenite zeolite. These exchange material were used to remove cesium from a synthetic effluent containing only this ion and another effluent containing cesium and cobalt. The breakthrough curves of the zeolite and resin using a fix bed reactor were compared. The results demonstrated that the zeolite is more efficient than the resin in removing cesium from a solution containing cesium and cobalt. The results also showed that a bed combining zeolite and resin can process more volume of an effluent containing cesium and cobalt than a bed resin alone. (author)

  18. Waste isolation pilot plant disposal room model

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  19. Waste isolation pilot plant disposal room model

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the open-quotes Disposal Room Model,close quotes describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized

  20. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  1. Radioactive waste management for German nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Methling, D.; Sappok, M.

    1996-01-01

    In Germany, back-end fuel cycle provisions must be made for the twenty nuclear power plants currently run by utilities with an aggregate installed power of 23.4 GWe, and the four nuclear power plants already shut down. In addition, there are the shut down nuclear power plants of the former German Democratic Republic, and a variety of decommissioned prototype nuclear power plants built with the participation of the federal government and by firms other than utilities. The nuclear power plants operated by utilities contribute roughly one third of the total electricity generation in public power plants, thus greatly ensuring a stable energy supply in Germany. The public debate in Germany, however, focuses less on the good economic performance of these plants, and the positive acceptance at their respective sites, but rather on their spent fuel and waste management which, allegedly, is not safe enough. The spent fuel and waste management of German nuclear power plants is planned on a long-term basis, and executed in a responsible way by proven technical means, in the light of the provisions of the Atomic Act. Each of the necessary steps of the back end of the fuel cycle is planned and licensed in accordance with German nuclear law provisions. The respective facilities are built, commissioned, and monitored in operation with the dedicated assistance of expert consultants and licensing authorities. Stable boundary conditions are a prerequisite in ensuring the necessary stability in planning and running waste management schemes. As producers of waste, nuclear power plants are responsible for safe waste management and remain the owners of that waste until it has been accepted by a federal repository. (orig./DG) [de

  2. The remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is a complete production area being constructed at the Savannah River Plant for the immobilization of nuclear waste in glass. The remote handling of canisters filled with nuclear waste in glass is an essential part of the process of the DWPF at the Savannah River Plant. The canisters are filled with nuclear waste containing up to 235,000 curies of radioactivity. Handling and movement of these canisters must be accomplished remotely since they radiate up to 5000 R/h. Within the Vitrification Building during filling, cleaning, and sealing, canisters are moved using standard cranes and trolleys and a specially designed grapple. During transportation to the Glass Waste Storage Building, a one-of-a-kind, specially designed Shielded Canister Transporter (SCT) is used. 8 figs

  3. Waste-to-energy plants - a solution for a cleaner future

    International Nuclear Information System (INIS)

    Pfeiffer, J.

    2007-01-01

    Waste-to-energy plants reduce the municipal solid waste volume by about 80% and convert it into residue. The residue quality naturally depends on the burned waste quality and also on the combustion parameters. Hence, tighter control of the plant can improve the residue quality. The generated combustion energy is regarded as renewable energy and is typically used to feed a turbine to generate electricity. Waste-to-energy furnaces react slowly on changing waste charge, so they are not used for peak load generation. The generated electrical power is a plant by product and is sold as base load generation. Usually the waste is burned on a grate which limits the plant size to about 160,000 tons of waste per year or 20 tons of waste per hour or about 28 MW. More recent technology utilizes fluidized bed combustion, which allows larger plant sizes up to 50 MW. Due to the unknown waste composition and stringent environmental standards involved, waste-to-energy plants employ sophisticated flue gas cleaning devices for emission control. ABB's Performance Monitoring continuously compares actual plant and equipment performance to expected performance. This includes the on-line calculation of the waste calorific heat allowing operator decision support and automated control system responses. Dedicated reports offer detailed data on operations, maintenance and emissions to plant management staff. ABB combustion optimization solutions use model based predictive control techniques to reliably find the most suitable set-points for improving the heat rate and reducing emissions like NO x . (author)

  4. Report of conceptual design for TRU solid waste facilities adjacent to 200H Area: Savannah River Plant

    International Nuclear Information System (INIS)

    1978-02-01

    Facilities for consolidating Savannah River Plant solid transuranic (TRU) waste and placing in long-term safe, retrievable storage have been designed conceptually. A venture guidance appraisal of cost for the facilities has been prepared. The proposed site of the new processing area is adjacent to existing H Area facilities. The scopes of work comprising the conceptual design describe facilities for: exhuming high-level TRU waste from buried and pad-stored locations in the plant burial ground; opening, emptying, and sorting waste containers and their contents within shielded, regulated enclosures; volume-reducing the noncombustibles by physical processes and decontaminating the metal waste; burning combustibles; fixing the consolidated waste forms in a concrete matrix within a double-walled steel container; placing product containers in a retrievable surface storage facility adjacent to the existing plant burial ground; and maintaining accountability of all special nuclear materials. Processing, administration, and auxiliary service buildings are to be located adjacent to existing H Area facilities where certain power and waste liquid services will be shared

  5. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  6. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). DOE plans to conduct experiments in the WIPP during a Test Phase of approximately 5 years. These experiments will be conducted to reduce the uncertainties associated with the prediction of several processes (e.g., gas generation) that may influence repository performance. The results of the experiments will be used to assess the ability of the WIPP to meet regulatory requirements for the long-term protection of human health and the environment from the disposal of TRU wastes. 37 refs., 25 figs., 18 tabs

  7. Application of ion exchange in liquid radioactive waste management of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Puskar; Chopra, S K; Sharma, P D [Nuclear Power Corporation, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The operation of nuclear power plants would necessarily result in generation of gaseous, liquid and solid radioactive wastes. The wastes are treated/conditioned to ensure that the permissible discharge limits laid down by Atomic Energy Regulatory Board of India are complied with. The wastes are segregated on activity levels, types of radioisotopes present and chemical nature of liquid streams. The basic philosophy of various treatment techniques is to concentrate and contain as much activity as possible. It is of utmost importance that the wastes are effectively treated by proven methods/processes. The radiochemical nature of waste generated is one of the parameters to select a treatment/conditioning method. The paper presents an outline of various processes adopted for treatment of liquid waste and ion exchange processes, their application in liquid waste management in detail. Projected quantities of liquid wastes for the current designs are included. (author). 2 tabs.

  8. Disposal of Savannah River Plant waste salt

    International Nuclear Information System (INIS)

    Dukes, M.D.

    1982-01-01

    Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble wastes (primarily NaNO 3 , NaNO 2 , and NaOH) stored in the waste tanks will be decontaminated by ion exchange and solidified in concrete. The resulting salt-concrete mixture, saltcrete, will be placed in a landfill on the plantsite such that all applicable federal and state disposal criteria are met. Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrate salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill will meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system

  9. The thermoelectric generators use for waste heat utilization from cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Production often entails the formation of by-product which is waste heat. One of the equipment processing heat into electricity is a thermoelectric generator. Its operation is based on the principle of thermoelectric phenomenon, which is known as a Seebeck phenomenon. The simplicity of thermoelectric phenomena allows its use in various industries, in which the main waste product is in the form of heat with the temperature of several hundred degrees. The study analyses the possibility of the thermoelectric systems use for the waste heat utilization resulting in the cement production at the cement plant. The location and design of the thermoelectric system that could be implemented in cement plant is chosen. The analysis has been prepared in the IPSEpro software.

  10. Radiation protection at UKAEA's solid waste plant at Harwell

    International Nuclear Information System (INIS)

    Gallacher, G.; Tierney, T.

    2006-01-01

    The paper provides an overview of the solid waste plant at Harwell ( United Kingdom)Examples of waste streams, processes and the supporting health physics measures have been briefly described. It is clear that all waste operations involve close team work between staff from U.K.A.E.A. (United Kingdom Atomic Energy Authority) operations and health physics staff from both U.K.A.E.A. and RWE NUKEM (RWE NUKEM is one of the health physics support contractors). Work must be planned carefully, and radiological conditions monitored to ensure that the job is progressing smoothly and workplace exposure remains as low as reasonably practicable. (authors)

  11. Separation of americium and plutonium from nuclear wastes by the TRUEX process

    International Nuclear Information System (INIS)

    Leonard, R.A.; Vandegrift, G.F.; Manry, C.W.

    1986-01-01

    Americium and plutonium can be removed from a transuranic (TRU) waste stream to <10 nCi/g by the TRUEX process. The resulting waste is nontransuranic, greatly reducing disposal costs. An overview is given of the TRUEX process and of centrifugal contactors used to implement this process. Then, a plan for the deployment of TRUEX at the Hanford Site is discussed. Finally, details are given on the proposed use of TRUEX to treat the liquid wastes from the Plutonium Finishing Plant at the Hanford Site

  12. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  13. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  14. Composting of tobacco plant waste by manual turning and forced aeration system

    OpenAIRE

    Nonglak Saithep

    2009-01-01

    The efficiency of tobacco plant waste composting, by the manual turning and the forced aeration system, was compared. Tobacco plant waste, cow manure, urea fertiliser, and a compost inoculum mixture at a 100:10:0.2:0.01 ratio respectively, with 60% (w/v) moisture content, were set up in piling forms. The piles of the manual turning system were provided with turning aeration by hand at intervals of 7 days during the composting process. For the forced aeration system, each pile was aerated by a...

  15. Solid Waste from the Operation and Decommissioning of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn Ann [Georgia Inst. of Technology, Atlanta, GA (United States); D' Arcy, Daniel [Georgia Inst. of Technology, Atlanta, GA (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Isha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Yufei [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-01-05

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  16. The waste isolation pilot plant regulatory compliance program

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Kehrman, R.F.

    1996-01-01

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation's transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  17. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  18. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  19. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  20. Additional methods for the processing of solid radioactive wastes

    International Nuclear Information System (INIS)

    Tittlova, E.; Svrcek, A.; Hazucha, E. at el.

    1989-01-01

    An account is given of the work performed within the A 01-159-812/05 State Project concerned with the technology of and technical means for the processing of solid wastes arising during the operation of nuclear power plants. This included the development of the incineration equipment, development of the process of air filter disposal and equipment therefor, manufacture of a saw for fragmentation of wood, manufacture of a sorting box, ultimate solution of the problem of waste sorting, and use of high-pressure compression technology. (author). 1 tab., 9 refs

  1. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  2. Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

    Science.gov (United States)

    Luo, Keqin

    1999-11-01

    The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained. This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner. The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and

  3. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  4. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  5. Sampling, characterisation and processing of solid recovered fuel production from municipal solid waste: An Italian plant case study.

    Science.gov (United States)

    Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo

    2017-08-01

    This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).

  6. Remote viewing of melter interior Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  7. Waste-to-methanol: Process and economics assessment.

    Science.gov (United States)

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-11-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    Energy Technology Data Exchange (ETDEWEB)

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  9. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  10. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    International Nuclear Information System (INIS)

    Rosnick, C.K.

    1996-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  11. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    International Nuclear Information System (INIS)

    Brann, E.C. II.

    1994-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  12. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  13. Seismic scoping evaluation of high level liquid waste tank vaults at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Uldrich, E.D.; McGee, W.D.

    1991-01-01

    A seismic scoping evaluation of buried vaults enclosing high level liquid waste storage tanks at the Idaho Chemical Processing Plant has been performed. The objective of this evaluation was to scope out which of the vaults could be demonstrated to be seismically adequate against the Safe Shutdown Earthquake (SSE). Using approximate analytical methods, earthquake experience data, and engineering judgement, this study determined that one vault configuration would be expected to meet ICPP seismic design criteria, one would not be considered seismically adequate against the SSE, and one could be shown to be seismically adequate against the SSE using nonlinear analysis

  14. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    Science.gov (United States)

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Structural radioactive waste from 'retubing/refurbishment' of Embalse nuclear power plant. Regulatory perspective

    International Nuclear Information System (INIS)

    Alvarez, Daniela E.; Lee Gonzales, Horacio M.; Medici, Marcela A.; Piumetti, Elsa H.

    2009-01-01

    Unlike the building of a new nuclear reactor, the 'retubing / refurbishment' of nuclear reactors that have been in operation for many years, involves the replacement of components in a radioactive environment. This requires a carefully planned radiation protection program to ensure protection of workers, the public and the environment as well as a radioactive waste management program for those radioactive waste generated during the process, which go beyond those generated during the normal operation and maintenance of the plant. Nucleoelectrica Argentina Sociedad Anonima (NA-SA) is scheduled to conduct the Life Extension Process of Embalse Nuclear Power Plant (CNE) which essentially consist of 'retubing / refurbishment' of the installation. The Nuclear Regulatory Authority (ARN) will then have an important activity related to the above process. In particular, this paper will describe some points of interest related to the generation and management of radioactive waste during the 'retubing / refurbishment' of the CNE, from the regulatory point of view. (author)

  16. High Level Waste plant operation and maintenance concepts. Final report, March 27, 1995

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1995-01-01

    The study reviews and evaluates worldwide High Level Waste (HLW) vitrification operating and maintenance (O ampersand M) philosophies, plant design concepts, and lessons learned with an aim towards developing O ampersand M recommendations for either, similar implementation or further consideration in a HLW vitrification facility at Hanford. The study includes a qualitative assessment of alternative concepts for a variety of plant and process systems and subsystems germane to HLW vitrification, such as, feed materials handling, melter configuration, glass form, canister handling, failed equipment handling, waste handling, and process control. Concept evaluations and recommendations consider impacts to Capital Cost, O ampersand M Cost, ALARA, Availability, and Reliability

  17. Economic evaluation of radiation processing in urban solid wastes treatment

    Science.gov (United States)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  18. Evaluation of rice and cassava processing wastes for suitability as ...

    African Journals Online (AJOL)

    OGBO

    plants, good moisture absorption capacity and amenability to processing and ... wastes as animal feed (cassava peel) and fuel (rice husk) have been .... Saccharomyces cerevisae and Lactobacillus sp. solid media fermentation techniques.

  19. Hanford Waste Vitrification Plant hydrogen generation

    International Nuclear Information System (INIS)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H 2 . CO 2 , N 2 0, NO, and NH 3 . For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H 2 , CO, CO 2 , N 2 , N 2 O and NO

  20. Basic TRUEX process for Rocky Flats Plant

    International Nuclear Information System (INIS)

    Leonard, R.A.; Chamberlain, D.B.; Dow, J.A.; Farley, S.E.; Nunez, L.; Regalbuto, M.C.; Vandegrift, G.F.

    1994-08-01

    The Generic TRUEX Model was used to develop a TRUEX process flowsheet for recovering the transuranics (Pu, Am) from a nitrate waste stream at Rocky Flats Plant. The process was designed so that it is relatively insensitive to changes in process feed concentrations and flow rates. Related issues are considered, including solvent losses, feed analysis requirements, safety, and interaction with an evaporator system for nitric acid recycle

  1. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  2. Department of Energy's process waste assessment graded approach methodology

    International Nuclear Information System (INIS)

    Pemberton, S.E.

    1994-03-01

    As the initial phase of the formal waste minimization program, the Department of Energy requires assessments of all its waste-generating operations. These assessments, called process waste assessments (PWAs), are a tool which helps achieve the pollution prevention goals. The DOE complex is comprised of numerous sites located in many different states. The facilities as a whole represent a tremendous diversity of technologies, processes, and activities. Due to this diversity, there are also a wide variety and number of waste streams generated. Many of these waste streams are small, intermittent, and not of consistent composition. The PWA graded approach methodology addresses these complexities and recognizes that processes vary in the quantity of pollution they generate, as well as in the perceived risk and associated hazards. Therefore, the graded approach was developed to provide a cost-effective and flexible methodology which allows individual sites to prioritize their local concerns and align their efforts with the resources allocated. This presentation will describe a project sponsored by the DOE Office of Environmental Restoration and Waste Management, Waste Minimization Division, which developed a graded approach methodology for use throughout the DOE. This methodology was initiated in FY93 through a combined effort of the following DOE/Defense Program sites: Kansas City Plant, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National Laboratories. This presentation will describe the process waste assessment tool, benefits achieved through the completion of PWAs, DOE's graded approach methodology, and an update on the project's current status

  3. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  4. Waste Isolation Pilot Plant (WIPP) startup plan

    International Nuclear Information System (INIS)

    1988-03-01

    To allow the Waste Isolation Pilot Plant (WIPP) to transition from a Major System Acquisition to an operating demonstration facility, the Acquisition Executive and the Energy System Acquisition Advisory Board (ESAAB) must concur in the facility's readiness to receive waste. This action, designated in DOE Order 4700.1 as Key Decision Four, concludes with the Chairman of the ESAAB issuing a Record of Decision. Since the meeting leading to the Record of Decision is scheduled for August 1988, plans must be made to ensure all activities contributing to that decision are completed in a clear and well-coordinated process. To support that effort, this Start-Up Plan was prepared to identify and track key events necessary to verify WIPP's readiness to receive waste; this provides a management/scheduling/tracking tool for the DOE WIPP Project Office (WPO) and a tracking mechanism for the DOE Albuquerque Operations Office (DOE-AL) and for DOE Headquarters (DOE-HQ); and describe the process to ensure readiness is documented by providing relevant data and reports to the cognizant decision makers. The methods by which these two purposes are achieved are discussed in further detail in the remainder of this plan

  5. Aqueous Waste Treatment Plant at Aldermaston

    International Nuclear Information System (INIS)

    Keene, D.; Fowler, J.; Frier, S.

    2006-01-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  6. Waste Isolation Pilot Plant, Land Management Plan

    International Nuclear Information System (INIS)

    1993-01-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives

  7. Waste Isolation Pilot Plant, Land Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  8. A FEASIBILITY STUDY OF PLANT FOR COMPOSTING ORGANIC WASTE IN THE CITY OF KRAGUJEVAC

    Directory of Open Access Journals (Sweden)

    Nebojša Jovičić

    2009-09-01

    Full Text Available Growing of waste quantity, its harmful influence on natural environments and world experiences has had so far impose the necessity for the analyses of techno-economic possibilities of the processes for treating the organic fraction of municipal solid waste stream, in our region. In this paper, problematic of treatment solid waste and composting process, which represents one of the most acceptable options for the processing of solid waste, are given. Composting involves the aerobic biological decomposition of organic materials to produce a stable humus-like product. Base of composting process, review of composting feedstock, use of compost, benefits of composting process and concrete proposal for composting process realization, with techno-economic analysis for the construction of composting plant on territory community Kragujevac, are given in this paper, too.

  9. Borosilicate glass as a matrix for the immobilization of Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wicks, G.G.; Bibler, N.E.

    1982-01-01

    The reference waste form for immobilization of Savannah River Plant (SRP) waste is borosilicate glass. In the reference process, waste is mixed with glass-forming chemicals and melted in a Joule-heated ceramic melter at 1150 0 C. Waste glass made with actual or simulated waste on a small scale and glass made with simulated waste on a large scale confirm that the current reference process and glass-former composition are able to accommodate all SRP waste compositions and can produce a glass with: high waste loading; low leach rates; good thermal stability; high resistance to radiation effects; and good impact resistance. Borosilicate glass has been studied as a matrix for the immobilization of SRP waste since 1974. This paper reviews the results of extensive characterization and performance testing of the glass product. These results show that borosilicate glass is a very suitable matrix for the immobilization of SRP waste. 18 references, 3 figures, 10 tables

  10. Management of uranium mining and processing wastes at Turamdih project

    International Nuclear Information System (INIS)

    Puri, R.C.; Verma, R.P.

    1991-01-01

    Based on environmental impact assessment, comprehensive plan for management of wastes has been drawn up. No solid waste from the mine is being disposed off outside the project area. The quantity of waste generated after processing of ore is large because of low content of uranium in the ore. A big tailings pond has been planned in specially selected suitable valley near the plant. No liquid effluents are to be discharged into general surrounding environment. Mine water is to be fed to the process plant. Effluents from tailings pond will be collected in a storage cum evaporation pond. All water from different zones of the project shall be collected in zonal ponds and then pumped to tailings effluent storage pond. All the ponds will be provided with requisite impervious liners. The effluents of the storage pond will be treated for removal of radium and manganese and discharged into monitoring pond. Large surface areas for various ponds are envisaged to take advantage of evaporation with aim for zero discharge. To reduce impact from gaseous emissions, high efficiency dust suppression and extraction systems shall be provided. High stacks have been incorporated for DG set, boiler plants, sulphuric acid plant and dust extraction systems for crushing and grinding section and the quality of discharges will be very much within the prescribed limits. The paper describes the management plan in detail. (author)

  11. Advanced Purex process and waste minimization at La Hague

    International Nuclear Information System (INIS)

    Masson, H.; Nouguier, H.; Bernard, C.; Runge, S.

    1993-01-01

    After a brief recall of the different aspects of the commercial irradiated fuel reprocessing, this paper presents the achievements of the recently commissioned UP3 plant at La Hague. The advanced Purex process implemented with a total waste management results in important waste volume minimization, so that the total volume of high-level and transuranic waste is lower than what it would be in a once-through cycle. Moreover, further minimization is still possible, based on an improved waste management. Cogema has launched the necessary program, which will lead to an overall volume of HLW and TRU wastes of less than 1 m 3 /t by the end of the decade, the maximum possible activity being concentrated in the glass

  12. Hanford Waste Vitrification Plant quality assurance program description: Overview and applications

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1990-12-01

    This document describes the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository. The Hanford Waste Vitrification Plant Quality Assurance Program is comprised of this Quality Assurance Program Description as well as the associated contractors' quality assurance programs. The objective of this Quality Assurance Program Description is to provide the Hanford Waste Vitrification Plant Project participants with guidance and direction for program implementation while satisfying the US Department of Energy Office of Civilian Radioactive Waste Management needs in repository licensing activities with regard to canistered waste forms. To accomplish this objective, this description will be prepared in three parts: Part 1 - Overview and applications document; Part 2 - Development and qualification of the canistered waste form; Part 3 - Production of canistered waste forms. Part 1 describes the background, strategy, application, and content of the Hanford Waste Vitrification Plant Quality Assurance Program. This Quality Assurance Program Description, when complete, is designed to provide a level of confidence in the integrity of the canistered waste forms. 8 refs

  13. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  14. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    International Nuclear Information System (INIS)

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems

  15. Savannah River Plant Separations Department mixed waste program

    International Nuclear Information System (INIS)

    Wierzbicki, W.M.

    1988-01-01

    The Department of Energy's (DOE) Savannah River Plant (SRP) generates radioactive and mixed waste as a result of the manufacture of nuclear material for the national defense program. The radioactive portion of the mixed waste and all nonhazardous radioactive wastes would continue to be regulated by DOE under the Atomic Energy Act. The Separations Department is the largest generator of solid radioactive waste at the Savannah River Plant. Over the last three years, the Separations Department has developed and implemented a program to characterize candidate mixed-waste streams. The program consisted of facility personnel interviews, a waste-generation characterization program and waste testing to determine whether a particular waste form was hazardous. The Separations Department changed waste-handling practices and procedures to meet the requirements of the generator standards. For each Separation Department Facility, staging areas were established, inventory and reporting requirements were developed, operating procedures were revised to ensure proper waste handling, and personnel were provided hazardous waste training. To emphasize the importance of the new requirements, a newsletter was developed and issued to all Separations supervisory personnel

  16. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    International Nuclear Information System (INIS)

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to ''review process technology issues preventing start up of the DWPF.'' This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992

  17. Chemical and mechanical decontamination processes to minimize secondary waste decommissioning

    International Nuclear Information System (INIS)

    Enda, M.; Ichikawa, N.; Yaita, Y.; Kanasaki, T.; Sakai, H.

    2008-01-01

    In the decommissioning of commercial nuclear reactors in Japan, prior to the dismantling of the nuclear power plants, there are plans to use chemical techniques to decontaminate reactor pressure vessels (RPVs), internal parts, primary loop recirculation systems (PLRs), reactor water clean up systems (RWCUs), etc., so as to minimize radiation sources in the materials to be disposed of. After dismantling the nuclear power plants, chemical and mechanical decontamination techniques will then be used to reduce the amounts of radioactive metallic waste. Toshiba Corporation has developed pre-dismantling and post-dismantling decontamination systems. In order to minimize the amounts of secondary waste, the T-OZON process was chosen for decontamination prior to the dismantling of nuclear power plants. Dismantling a nuclear power plant results in large amounts of metallic waste requiring decontamination; for example, about 20,000 tons of such waste is expected to result from the dismantling of a 110 MWe Boiling Water Reactor (BWR). Various decontamination methods have been used on metallic wastes in preparation for disposal in consideration of the complexity of the shapes of the parts and the type of material. The materials in such nuclear power plants are primarily stainless steel and carbon steel. For stainless steel parts having simple shapes, such as plates and pipes, major sources of radioactivity can be removed from the surface of the parts by bipolar electrolysis (electrolyte: H 2 SO 4 ). For stainless steel parts having complicated shapes, such as valves and pumps, major sources of radioactivity can be removed from the surfaces by redox chemical decontamination treatments (chemical agent: Ce(IV)). For carbon steel parts having simple shapes, decontamination by blasting with zirconia grit is effective in removing major sources of radioactivity at the surface, whereas for carbon steel parts having complicated shapes, major sources of radioactivity can be removed from

  18. New Mexico waste plant sits idle amid controversy

    International Nuclear Information System (INIS)

    Lovejoy, L.A. Jr.

    1994-01-01

    The Department of Energy (DOE) hopes to permanently dispose of radioactive waste from its weapons program at a Waste Isolation Pilot Plant about 26 miles from Carlsbad, New Mexico. The plant has been plagued by problems, according to Lindsay A. Lovejoy, Jr., an assistant attorney general of New Mexico. Among them are cracks in the walls of some of the underground rooms slated for storage of radioactive waste. Meanwhile, above-ground problems involve DOE's struggle toward regulatory compliance. The Environmental Protection Agency (EPA), under the Resource Conservation Recovery Act, has assumed a regulatory role over DOE's radioactive waste-disposal efforts, which is a new role for the agency. Lovejoy proposes that EPA, in its regulation of the New Mexico plant, develop compliance criteria and involve DOE and the public in ongoing open-quotes dialogue aimed at ferreting out any and all problems before a single scrap of radioactive waste is deposited into the earth beneath new Mexico.close quotes

  19. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    International Nuclear Information System (INIS)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-01-01

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment ''systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs

  20. State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants

    International Nuclear Information System (INIS)

    1980-04-01

    A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report

  1. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  2. Small-scale integrated demonstration of high-level radioactive waste processing and vitrification using actual SRP waste

    International Nuclear Information System (INIS)

    Woolsey, G.B.; Baumgarten, P.K.; Eibling, R.E.; Ferguson, R.B.

    1981-01-01

    A small-scale pilot plant for chemical processing and vitrification of actual high-level waste has been constructed at the Savannah River Laboratory (SRL). This fully integrated facility has been constructed in six shielded cells and has eight major unit operations. Equipment performance and processing characteristics of the unit operations are reported

  3. A methodical approach for the assessment of waste sorting plants

    NARCIS (Netherlands)

    Feil, Alexander; Pretz, Thomas; Vitz, Philipp; Thoden van Velzen, Ulphard

    2017-01-01

    A techno-economical evaluation of the processing result of waste sorting plants should at least provide a realistic assessment of the recovery yields of valuable materials and of the qualities of the obtained products. This practical data is generated by weighing all the output products and

  4. The Waste Isolation Pilot Plant Performance Assessment Program

    International Nuclear Information System (INIS)

    Myers, J.; Coons, W.E.; Eastmond, R.; Morse, J.; Chakrabarti, S.; Zurkoff, J.; Colton, I.D.; Banz, I.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment Program involves a comprehensive analysis of the WIPP project with respect to the recently finalized Environmental Protection Agency regulations regarding the long-term geologic isolation of radioactive wastes. The performance assessment brings together the results of site characterization, underground experimental, and environmental studies into a rigorous determination of the performance of WIPP as a disposal system for transuranic radioactive waste. The Program consists of scenario development, geochemical, hydrologic, and thermomechanical support analyses and will address the specific containment and individual protection requirements specified in 40 CFR 191 sub-part B. Calculated releases from these interrelated analyses will be reported as an overall probability distribution of cumulative release resulting from all processes and events occurring over the 10,000 year post-closure period. In addition, results will include any doses to the public resulting from natural processes occurring over the 1,000 year post-closure period. The overall plan for the WIPP Performance Assessment Program is presented along with approaches to issues specific to the WIPP project

  5. Dechlorane Plus (DP) in air and plants at an electronic waste (e-waste) site in South China

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shejun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tian Mi; Wang Jing; Shi Tian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Luo Yong [Guangdong Forestry Survey and Planning Institute, Guangzhou 510520 (China); Luo Xiaojun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Mai Bixian, E-mail: nancymai@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-05-15

    Air and foliage samples (Eucalyptus spp. and Pinus massoniana Lamb.) were collected from e-waste and reference sites in South China and analyzed for Dechlorane Plus (DP) and two dechlorinated DPs. DP concentrations in the air were 13.1-1794 pg/m{sup 3} for the e-waste site and 0.47-35.7 pg/m{sup 3} for the reference site, suggesting the recycling of e-waste is an important source of DP to the environment. Plant DP, with concentrations of 0.45-51.9 ng/g dry weight at the e-waste site and 0.09-2.46 ng/g at the reference site, exhibited temporal patterns similar to the air DP except for pine needle at the reference site. The air-plant exchange of DP could be described with the two-compartment model. Anti-Cl{sub 11} DP was measured in most air and plant samples from the e-waste site. The ratios of anti-Cl{sub 11} DP to anti-DP in the air and plants may indicate the preferential uptake of dechlorinated DP by plant compared with DP. - Highlights: > Dechlorane Plus was widely present in the air and plants in South China. > Temporal patterns of the plant DP could be described with the two-compartment model. > Plant uptake can efficiently reduce air DP concentration at the reference site. > Anti-Cl{sub 11} DP was measured in most air and plant samples from the e-waste site. - E-waste recycling in South China results in wide occurrence of DP in the air and plant.

  6. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    International Nuclear Information System (INIS)

    Butcher, B.M.; Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C.

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs

  7. Managing nuclear waste from power plants

    International Nuclear Information System (INIS)

    Keeney, R.L.; Winterfeldt, D. von

    1994-01-01

    National strategies to manage nuclear waste from commercial nuclear power plants are analyzed and compared. The current strategy is to try to operate a repository at Yucca Mountain, Nevada, to dispose storage at a centralized facility or next to nuclear power plants. If either of these is pursued now, the analysis assumes that a repository will be built in 2100 for waste not subsequently put to use. The analysis treats various uncertainties: whether a repository at Yucca Mountain would be licensed, possible theft and misuse of the waste, innovations in repository design and waste management, the potential availability of a cancer cure by 2100, and possible future uses of nuclear waste. The objectives used to compare alternatives include concerns for health and safety, environmental and socioeconomic impacts, and direct economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs to electricity ratepayers, federal government responsibility to manage nuclear waste, and implications of theft and misuse of nuclear waste. The analysis shows that currently building an underground repository at Yucca Mountain is inferior to other available strategies by the equivalent of $10,000 million to $50,000 million. This strongly suggests that this policy should be reconsidered. A more detailed analysis using the framework presented would help to define a new national policy to manage nuclear waste. 36 refs., 3 figs., 17 tabs

  8. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    International Nuclear Information System (INIS)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-01-01

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential

  9. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  10. Laboratory plant for the separation of cesium from waste solutions of the PUREX process

    International Nuclear Information System (INIS)

    Richter, M.; Eckert, B.; Riemenschneider, J.; Mallon, C.; Mann, D.

    1983-01-01

    A laboratory plant for the separation of cesium from a fission product waste solution of the fuel reprocessing is described. The plant consists of two stages. In the first stage cesium is adsorbed on ammonium molybdatophosphate (AMP). Then the adsorbent is dissolved. From the solution cesium is adsorbed on a cationic ion exchanger in the second stage. Then AMP can be reproduced from this solution. For the elution of cesium in the second stage a NH 4 NO 3 solution (3 m) is used. Flow sheet, construction and the control device of the plant are described and the results of tests with a model solution are given. (author)

  11. Solid forms for Savannah River Plant radioactive wastes

    International Nuclear Information System (INIS)

    Wallace, R.M.; Hale, W.H.; Bradley, R.F.; Hull, H.L.; Kelley, J.A.; Stone, J.A.; Thompson, G.H.

    1976-01-01

    Methods are being developed to immobilize Savannah River Plant wastes in solid forms such as cement, asphalt, or glass. 137 Cs and 90 Sr are the major biological hazards and heat producers in the alkaline wastes produced at SRP. In the conceptual process being studied, 137 Cs removed from alkaline supernates, together with insoluble sludges that contain 90 Sr, will be incorporated into solid forms of high integrity and low volume suitable for storage in a retrievable surface storage facility for about 100 years, and for eventual shipment to an off-site repository. Mineralization of 137 Cs, or its fixation on zeolite prior to incorporation into solid forms, is also being studied. Economic analyses to reduce costs and fault-tree analyses to minimize risks are being conducted. Methods are being studied for removal of sludge from (and final decontamination of) waste tanks

  12. Improvements of radioactive waste management at WWER nuclear power plants

    International Nuclear Information System (INIS)

    2006-04-01

    This report is part of a systematic IAEA effort to improve waste management practices at WWER plants and to make them consistent with the current requirements and standards for safe and reliable operation of nuclear power plants. The report reviews the wet and dry solid waste management practices at the various types of WWER nuclear power plants (NPP) and describes approaches and recent achievements in waste minimization. Waste minimization practices in use at western PWRs are reviewed and compared, and their applicability at WWER plants is evaluated. Radioactive waste volume reduction issues and waste management practices are reflected in many IAEA publications. However, aspects of waste minimization specific to individual WWER nuclear power plant designs and WWER waste management policies are not addressed extensively in those publications. This report covers the important aspects applicable to the improvement of waste management at WWER NPP, including both plant-level and country-level considerations. It is recognized that most WWER plants are already implementing many of these concepts and recommendations with varying degrees of success; others will benefit from the included considerations. The major issues addressed are: - Review of current waste management policies and practices related to WWERs and western PWRs, including the influence of the original design concepts and significant modifications, liquid waste discharge limits and dry solid waste clearance levels applied in individual countries, national policies and laws, and other relevant aspects affecting the nature and quantities of waste arisings; - Identification of strategies and methods for improving the radioactive waste management generated in normal operation and maintenance at WWERs. This report is a composite (combination) of the two separate initiatives mentioned above. The first draft report was prepared at the meeting 26-30 May 1997 by five consultants. The draft was improved during an

  13. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Code of Practice defines the minimum requirements for the design and operation of structures, systems and components important for the management of radioactive wastes from thermal neutron nuclear power plants. The topics covered include design and operation of gaseous, liquid and solid waste systems, waste transport, storage and disposal, decommissioning wastes and wastes from unplanned events

  14. Mechanisms governing the direct removal of wastes from the Waste Isolation Pilot Plant repository caused by exploratory drilling

    International Nuclear Information System (INIS)

    Berglund, J.W.

    1992-12-01

    Two processes are identified that can influence the quantity of wastes brought to the ground surface when a waste disposal room of the Waste Isolation Pilot Plant is inadvertently penetrated by an exploratory borehole. The first mechanism is due to the erosion of the borehole wall adjacent to the waste caused by the flowing drilling fluid (mud); a quantitative computational model based upon the flow characteristics of the drilling fluid (laminar or turbulent) and other drilling parameters is developed and example results shown. The second mechanism concerns the motion of the waste and borehole spall caused by the flow of waste-generated gas to the borehole. Some of the available literature concerning this process is discussed, and a number of elastic and elastic-plastic finite-difference and finite-element calculations are described that confirm the potential importance of this process in directly removing wastes from the repository to the ground surface. Based upon the amount of analysis performed to date, it is concluded that it is not unreasonable to expect that volumes of waste several times greater than that resulting from direct cutting of a gauge borehole could eventually reach the ground surface. No definitive quantitative model for waste removal as a result of the second mechanism is presented; it is concluded that decomposed waste constitutive data must be developed and additional experiments performed to assess further the full significance of this latter mechanism

  15. Management of radioactive wastes from the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Hawickhorst, W.

    1997-01-01

    A prerequisite for the acceptance of the nuclear energy system is the effective management of the rad-wastes. Among the wastes to be considered, there are the wastes from the operation and decommissioning of nuclear power plants, as well as those from the nuclear fuel cycle. For the management of operating wastes, processes and facilities optimized in the course of several decades, are available, with which the raw solid and liquid wastes can be reduced in volume and turned into products which are physically and chemically stable and thus suitable for final disposal. The management of spent fuel can be done either by direct final disposal or reprocessing. The required interim storage facilities are ready for operation. The methods and a facility for packaging spent fuel for direct final disposal are in an advanced stage of development and construction. If fuel assemblies are to be reprocessed abroad, the wastes generated from the process must be taken back. Decommissioning wastes have technical properties which correspond essentially to the various groups of operating wastes and can thus be processed with similar methods; however since large quantities of them are generated in relatively short times, they present particular logistic problems. All waste types end up in final disposal sites to be built under the responsibility of the federal government. A final disposal site for low level wastes is in operation. In addition, two final disposal projects for accommodating higher level wastes including spent fuel for direct disposal and vitrified wastes from reprocessing, are being pursued. (orig.)

  16. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2015-01-01

    the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification process can compete......Municipal solid waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by their use it is possible to reduce the waste...... storage in landfills and devote these spaces to other human activities. It is also important to point out that this kind of renewable energy suffers significantly less availability which characterizes other type of renewable energy sources such as in wind and solar energy.In a gasification process, waste...

  17. Evaluating the feasibility of biological waste processing for long term space missions

    Science.gov (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  18. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    Clark, R.E.

    1994-01-01

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  19. Experience and projects concerning treatment, conditioning and storage of all radioactive wastes from Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Fukuda, G.; Matsumoto, K.; Miyahara, K.

    1984-01-01

    The active operation of Tokai reprocessing plant started in September 1977, and about 170 t U of spent fuel were reprocessed between then and December 1982. During this period, the low-level waste processing plant reduced the amount of radioactivity discharged into the environment. For radioactive liquid waste, the treatment procedures consist mainly of evaporation to keep the discharge into the sea at a low level. For combustible low-level solid waste and the solvent waste, which is of low tributyl phosphate content, incineration has been used successfully (burned: about 150 t of combined LLSW, about 50 m 3 of solvent waste, i.e. diluent waste). Most of the past R and D work was devoted to reducing the activity discharged into the environment. Current R and D work is concerned with the treatment of solvent waste, the conditioning of solid wastes, the bituminization of low-level liquid waste and the vitrification of high-level liquid waste. The paper describes present practices, R and D work and future aspects of the treatment, conditioning and storage of all radioactive wastes from Tokai reprocessing plant. (author)

  20. Melt processing of radioactive waste: A technical overview

    International Nuclear Information System (INIS)

    Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

    1997-01-01

    Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations

  1. Thermal treatment of high-caloric waste in fluidized bed incineration plants in Austria

    International Nuclear Information System (INIS)

    Ragossnig, A.M.

    2001-05-01

    The importance of thermal treatment of waste and residues in Austria is expected to rise due to the current changes of the legal situation in waste management. Assessing the rank order of different thermal treatment processes for waste management it has been shown that - especially caused by the rising importance of the mechanical treatment step in the mechanical-biological residual waste treatment and the subsequent necessity of the thermal treatment of a high-caloric preprocessed waste stream - the importance of the fluidized bed technology will increase. The main advantages are the high existing capacities as well as the flexibility of this technology in regard of fuel properties and further on the fact of the lacking influence of the ash towards the quality of a product. This is true although the thermal treatment in fluidized bed incinerators requires some processing of the waste. This doctoral thesis also contains a thorough physical and chemical characterization of various waste fuels - especially those which have been used during full scale incineration experiments. This characterization includes a comparison with fossil fuel. The practical part contains the documentation and balancing of full scale incineration experiments. A comparison of a reference experiment with experiments when waste fuel has been thermally utilized showed that a significant increase of emissions to the atmosphere has not been observed. Based on the incineration experiments conclusions in regard of waste fuels as well as different categories of thermal treatment plants are being stated. Finally, a recommendation of the assignation of various waste streams to different categories of thermal treatment plants is being made. (author)

  2. Subsides for optimization of transfer of radioactive liquid waste from 99MO production plant to the waste treatment facility

    International Nuclear Information System (INIS)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro

    2013-01-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of 99 Mo from fission of low enriched uranium targets. In order to meet the present demand of 99m Tc generators the planned 'end of irradiation' activity of 99 Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of 99 Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the 99 Mo production facility. (author)

  3. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form

  4. Molten metal technologies advance waste processing systems for liquid radioactive waste treatment for PWRs and BWRs

    International Nuclear Information System (INIS)

    Strand, Gary; Vance, Jene N.

    1997-01-01

    Molten Metal Technologies (MMT) has recently acquired a proprietary filtration process for specific use in radioactive liquid waste processing systems. The filtration system has been incorporated in to a PWR liquid radwaste system which is currently being designed for the ComEd Byron Nuclear Station. It has also been adopted as the prefiltration step up from of the two RO systems which were part of the VECTRA acquisition and which are currently installed in the ComEd Dresden and Lacily Nuclear Stations. The filtration process has been successfully pilot-tested at both Byron and Dresden and is currently being tested at LaSalle. The important features of the filtration process are the high removal efficiencies for particulates, including colloidal particles, and the low solid waste volume generation per gallon filtered which translates into very small annual solid waste volumes. This filtration process system has been coupled with the use of selective ion exchange media in the PWR processing system to reduce the solid waste volumes generated compared to the current processing methods and to reduce the curie quantities discharged to the environs. In the BWR processing system, this filtration method allows the coupling of an RO system to provide for recycling greater than 95% of the liquid radwaste back to the plant for reuse while significantly reducing the solid waste volumes and operating costs. This paper discusses the process system configurations for the MMT Advanced Waste Processing Systems for both PWRs and BWRs. In addition, the pilot test data and full-scale performance projections for the filtration system are discussed which demonstrate the important features of the filtration process

  5. Idaho Chemical Processing Plant Site Development Plan

    International Nuclear Information System (INIS)

    Ferguson, F.G.

    1994-02-01

    The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope

  6. Development of quality assurance and performance testing for the Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Dole, L.R.; McDaniel, E.W.; Robinson, S.M.

    1984-08-01

    The Process Experimental Pilot Plant (PREPP) is planned for operation by EG and G Idaho, Inc., to demonstrate a full-scale, cement-based, disposal process for transuranic (TRU) wastes. Procedures need to be developed to determine the quality of the waste product during processing and the durability of the final waste form produced in this facility. This report summarizes basic guidelines for the selection of the waste form composition and process conditions that affect product performance. Physical property tests that may be applicable for quality assurance during processing are also described. Approaches to accelerated performance tests needed to predict the performance of the cement-based waste form are identified, and suggestions are made for the development of processing tests to ensure the quality of the final waste-host product. 29 references, 3 figures, 4 tables

  7. Development of quality assurance and performance testing for the Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Dole, L.R.; McDaniel, E.W.; Robinson, S.M.

    1984-06-01

    The Process Experimental Pilot Plant (PREPP) is planned for operation by EG and G Idaho, Inc., to demonstrate a full-scale, cement-based, disposal process for transuranic (TRU) wastes. Procedures need to be developed to determine the quality of the waste product during processing and the durability of the final waste form produced in this facility. This report summarizes basic guidelines for the selection of the waste form composition and process conditions that affect product performance. Physical property tests that may be applicable for quality assurance during processing are also described. Approaches to accelerated performance tests needed to predict the performance of the cement-based waste form are identified, and suggestions are made for the development of processing tests to assure the quality of the final waste-host product. 29 references, 3 figures, 3 tables

  8. Preliminary tests of an infrared process monitor for polyethylene encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Wright, S.L.; Jones, R.W.; McClelland, J.F.; Kalb, P.D.

    1996-01-01

    Polyethylene encapsulation is a process that is being investigated for the solidification of radioactive nitrate salts at Brookhaven National Laboratory and Rocky Flats Plant. In the encapsulation process, radioactive-salt waste is mixed with polyethylene pellets, heated, and extruded as a molten stream. Upon cooling, the mixture solidifies to a monolithic waste form with excellent properties for long-term waste storage. This paper describes a novel method to monitor the composition of the salt/polymer stream as it exits the extruder. The monitor is based on a technique known as transient infrared spectroscopy (TIRS). The TIRS monitor is able to capture the real-time mid-infrared spectrum of the processed waste stream as it exits the extruder. The wealth of chemical information contained in a mid-infrared spectrum makes this technique very appealing for on-line monitoring and process control. Data from the monitor can be used to guide processing, minimize waste volume, and certify the composition of the final waste form

  9. Centralized management for LA and MA waste selection and optimization of processes

    International Nuclear Information System (INIS)

    Medal, G.

    1985-01-01

    The procedure currently used for removal of process waste produced by EDF Nuclear Power Plants consists in the local embedding of the waste on each EDF site, the embedded waste is then shipped to a National Final Storage Center. The method used is a financial limitation of opportunities for amendment of containement and volume reduction techniques. The work made by the Commissariat a l'Energie Atomique and its subsidiary TECHNICATOME on behalf of the French Electricite Board (EDF) aim at the removal of waste ''in bulk'' with minimum possible pretreatment in compliance with transport regulation, treatment and conditioning taking place in a centralized waste treatment station so as to allow final storage. This method enables: optimization of the management of waste, selection of safe treatment-processes, storage volume reduction, lower investment and operating costs [fr

  10. CHARACTERISTICS OF MUNICIPAL WASTE BIODEGRADABLE FRACTION AND EVALUATION OF ITS PROCESSING

    Directory of Open Access Journals (Sweden)

    Edward Meller

    2015-11-01

    Full Text Available A growing interest in Renewable Energy Sources initiated the use of biogas as an energy generating material. Biodegradable waste coming from different streams is an important resource for biogas production. The studies were conducted on 20–80 mm fraction of municipal waste separated by rotary screen in the technological process of The Waste Recovery and Storage Plant in Leśno Górne. Morphological composition of the examined waste and their parameters determining their usefulness for composting and fermentation were analysed. On the basis of organic carbon content, the amount of biogas that may be produced from 1 kg of waste was estimated. An approximate amount of biogas which can be obtained in the process of methane fermentation from energy piles, formed from 10 000 Mg of waste was also calculated. Depending on the temperature it was from. 2.8 to 3.8 mln m3.

  11. Demonstration of a remotely operated TRU waste size-reduction and material handling process

    International Nuclear Information System (INIS)

    Stewart, J.A. III; Schuler, T.F.; Ward, C.R.

    1986-01-01

    Noncombustible Pu-238 and Pu-239 waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the site. As part of the long-term plan to process the stored waste and current waste for permanent disposal, a remote size-reduction and material handling process is being tested at Savannah River Laboratory to provide design support for the plant TRU Waste Facility scheduled to be completed in 1993. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator, or Telerobot. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system were completed. Initial Telerobot run-in and system evaluation was completed. User software was evaluated and modified to support complete menu-driven operation. Telerobot prototype size-reduction tooling was designed and successfully tested. Complete nonradioactive testing of the equipment is scheduled to be completed in 1987

  12. Pilot plant experience on high-level waste solidification and design of the engineering prototype VERA

    Energy Technology Data Exchange (ETDEWEB)

    Guber, W; Diefenbacher, W; Hild, W; Krause, H; Schneider, E; Schubert, G

    1972-11-01

    In the present paper the solidification process for highly active waste solutions as developed in the Karlsruhe Nuclear Research Center is presented. Its principal steps are: denitration, calcination in a spray calciner operated with superheated steam, melting of the calcine with appropriate additives to borosilicate glass in an induction-heated melting furnace. The operational experiences gained so far in the inactive 1:1 pilot plant are reported. Furthermore, a description is given of the projected multi-purpose experimental facility VERA 2 which is provided for processing the highly active waste solutions from the first German reprocessing plant WAK.

  13. Radioactive-waste isolation pilot plant

    International Nuclear Information System (INIS)

    Weart, W.D.

    1977-01-01

    The objective of the Waste Isolation Pilot Plant (WIPP) program is to demonstrate the suitability of bedded salt, specifically, the bedded salt deposits in the Los Medanos area of southeastern New Mexico, as a disposal medium for radioactive wastes. Our program responsibilities include site selection considerations, all aspects of design and development, technical guidance of facility operation, environmental impact assessment, and technical support to ERDA for developing public understanding of the facility

  14. First operational experiences with the new biological waste water treatment plant at HKM; Erste Betriebserfahrungen mit der neuen biologischen Abwasserbehandlungsanlage der HKM

    Energy Technology Data Exchange (ETDEWEB)

    R. Wendt; L. Nelles

    2002-07-01

    The common process of coke oven gas purification in by-product plant produces process water that is namely composed of excess flushing water from the crude tar decantation and waste water from NH{sub 3} and H{sub 2}S scrubbers. In 1959, the coke plant at HKM (formerly Mannesmann Huettenwerken Huckingen AG) was commissioned. This plant made use of the phenol removal process. Utilizing the phenolsolvan method the phenols toxic to microbes were removed from ammonia waste water and crude phenol recovered. The process water was subsequently steam stripped in strippers and deacidifiers. After more than 40 years of operation the need for modernization of the phenol removal plant arose. As a consequence of more stringent limits on coke plant effluents that have already been in place for several years the HKM came to a resolution to construct a new biological waste water treatment plant instead of renewing the phenol removal plant.

  15. Microbial contamination level of air in animal waste utilization plants.

    Science.gov (United States)

    Chmielowiec-Korzeniowska, Anna; Tymczyna, Leszek; Drabik, Agata; Krzosek, Łukasz

    2016-01-01

    The aim of this research was evaluation of microbial contamination of air within and in the vicinity of animal waste disposal plants. Air samples were analyzed to determine total bacterial and fungal counts as well as microbial species composition. Measurements of climate conditions (temperature, humidity, air motion) and total dust concentration were also performed. Total numbers of bacteria and fungi surpassed the threshold limit values for production halls. The most abundant bacteria detected were those consisting of physiological microflora of animal dermis and mucosa. Fungal species composition proved to be most differentiated in the air beyond the plant area. Aspergillus versicolor, a pathogenic and allergenic filamentous fungus, was isolated only inside the rendering plant processing hall. The measurement results showed a low sanitary-hygienic state of air in the plant processing halls and substantial air pollution in its immediate vicinity.

  16. Savannah River Plant low-level waste incinerator: Operational results and technical development

    International Nuclear Information System (INIS)

    Irujo, M.J.; Bucci, J.R.

    1987-04-01

    Volume reduction of solid and liquid low-level waste has been demonstrated at the Savannah River Plant (SRP) in the Waste Management Beta-Gamma Incinerator facility (BGI). The BGI uses a two-stage, controlled-air incinerator capable of processing 180 kg/hr (400 lbs/hr) of solid waste or 150 liters/hr (40 gal/hr) of liquid waste. These wastes are pyrolyzed in a substoichiometric air environment at 900 to 1100 degrees Celsius in the primary chamber. Products of partial combustion from the primary chamber are oxidized at 950 to 1150 degrees Celsius in the secondary chamber. A spray dryer, baghouse,and HEPA filter unit cool and filter the incinerator offgases. 2 refs., 9 tabs

  17. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  18. Process and technological aspects of municipal solid waste gasification. A review

    International Nuclear Information System (INIS)

    Arena, Umberto

    2012-01-01

    Highlights: ► Critical assessment of the main commercially available MSW gasifiers. ► Detailed discussion of the basic features of gasification process. ► Description of configurations of gasification-based waste-to-energy units. ► Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  19. Preparation of Grinding Aid Using Waste Acid Residue from Plasticizer Plant

    Science.gov (United States)

    Li, Lingxiao; Feng, Yanchao; Liu, Manchao; Zhao, Fengqing

    2017-09-01

    The grinding aid for granulated blast-furnace slag were prepared from waste acid residue from plasticizer plant through neutralization, de-methanol and granulation process. In this process, sulfuric acid was transformed into gypsum which has much contribution for grinding effect by combined use with the glycerol and poly glycerin in the waste. Fly ash was used for granulation for the composite grinding aid. Methanol can be recycled in the process. The result showed that the suitable addition of grinding aid is 0.03 % of granulated blast-furnace slag (mass). In this case, the specific surface area is 14% higher than that of the blank. Compared with the common grinding aids, it has excellent performance and low cost.

  20. Modern technologies of processing municipal solid waste: investing in the future

    Science.gov (United States)

    Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.

    2017-06-01

    The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.

  1. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    at the right time is key to both lower plant electricity costs and actively help to balance the energy system. Predictions of the WWTP and sewer system operation could help a model based controller to adapt power consumption and production according to the energy system flexibility needs; incentivized through......, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment...... of the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy...

  2. Mercury reduction and removal during high-level radioactive waste processing and vitrification

    International Nuclear Information System (INIS)

    Eibling, R.E.; Fowler, J.R.

    1981-01-01

    A reference process for immobilizing the high-level radioactive waste in borosilicate glass has been developed at the Savannah River Plant. This waste contains a substantial amount of mercury from separations processing. Because mercury will not remain in borosilicate glass at the processing temperature, mercury must be removed before vitrification or must be handled in the off-gas system. A process has been developed to remove mercury by reduction with formic acid prior to vitrification. Additional benefits of formic acid treatment include improved sludge handling and glass melter redox control

  3. Waste Isolation Pilot Plant Strategic Plan

    International Nuclear Information System (INIS)

    1993-03-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Strategic Plan is to provide decision makers, project participants, and the public with a high-level overview of the objectives, issues, and strategiesthat impact a decision on the suitability of WIPP as a permanent, safe disposal facility for transuranic (TRU) waste that has resulted from defense activities. This document is a component of an integrated planning process and is a key management tool that is coordinated and consistent with the Secretary's Disposal Decision Plan and the Environmental Restoration and Waste Management (EM) Five-Year Plan. This documentsupports other US Department of Energy (DOE) planning efforts, including the TRU Waste Program. The WIPP Strategic Plan addresses the WIPP Program Test Phase, Disposal Decision, Disposal Phase, and Decommissioning Phase (decontamination and decommissioning). It describes the actions and activities that the DOE will conduct to ensure that WIPP will comply with applicable, relevant, and appropriate requirements of the US Environmental Protection Agency (EPA), State of New Mexico, and other applicable federal and state regulations. It also includes the key assumptions under which the strategy was developed. A comprehensive discussion of the multitude of activities involved in the WIPP Program cannot be adequately presented in this document. The specific details of these activities are presented in other, more detailed WIPP planningdocuments

  4. Solidification of Savannah River Plant high level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Kelley, J.A.; Zeyfang, R.W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY 83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quantity of existing high level nuclear wastes can be safely and permanently immobilized. Early demonstration will both expedite and facilitate rational decision making on this aspect of the nuclear program. Delay in providing these facilities will result in significant DOE expenditures at SRP for new tanks just for continued temporary storage of wastes, and would probably result in dissipation of the intellectual and planning momentum that has built up in developing the project

  5. Incineration plant for low active waste at Inshass, LAWI

    International Nuclear Information System (INIS)

    Krug, W.; Thoene, L.; Schmitz, H.J.; Abdelrazek, I.D.

    1993-10-01

    The LAWI (Low Active Waste Incinerator) prototype incinerating plant was devised and constructed according to the principle of the Juelich thermoprocess and installed at the Egyptian research centre Inshass. In parallel, AEA Cairo devised and constructed their own operations building for this plant with all the features, infrastructural installations and rooms required for operating the plant and handling and treating low-level radioactive wastes. The dimensions of this incinerator were selected so as to be sufficient for the disposal of solid, weakly radioactive combustible wastes from the Inshass Research Centre and the environment (e.g. Cairo hospitals). (orig./DG) [de

  6. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  7. SFW-Funk process for gasification of solid urban and industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Hummelsiep, H; Heinrich, F

    1982-01-01

    It was the purpose of the R+D-project, to develop the SFW-Funk process for gasification of solid urban and industrial waste for commercial plants. On the base of a literature study and some experiments on a laboratory plant, a demonstration plant was designed and built. The test runs can be divided into two sections. During the first, problems of the enlarging of the plant were examined and solved. In the second section, gasification tests where run under several conditions. During the period of run, different input-materials (domestic waste of different composition, grain size and closeners of grain, rubber and wood) were gasified at varying operating conditions (composition, quantity and constitution of the oxidant) with good results. The experiments showed, that, unless the reactor was optimized during the period of run, it is possible to optimize some further elements of the gasification plant.

  8. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    International Nuclear Information System (INIS)

    Paff, S. W; Doody, S.

    2003-01-01

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, the goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  9. Co-combustor: the solid waste thermal treatment plant in MINT

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Mohd Azman Che Mat Isa; Sivapalan Kathiravale; Mohd Fairus Abdul Farid; Mohamad Puad Hj Abu; Rosli Darmawan; Muhd Noor Muhd Yunus

    2005-01-01

    MINT has geared up into the field of solid waste thermal treatment processing back in 1999 when a new unit known as MIREC was established. Since then, a fast progress has taken place including the design and construction of a pilot scale incinerator, named as the Co-Combustor. The Co-combustor was designed and developed based on the gasification principles, which employs combustion in starved air condition. In year 2001, this plant was commissioned. To date, it has been running quite well according to its design values. Several test runs were also performed in order to collect and gather data, which serve as a background or backtrack record for upgrading purposes and optimizing its performance in future. On going research is also conducted on this plant especially on the study of the waste's behaviors under combustion. Besides the typical RND activities, the Co-combustor is also currently being used to burn waste paper especially to dispose restricted and confidential documents. This paper will highlight on the design, performance, application and usage of the co-combustor. The direction for research and development activities for this plant is also discussed in this paper so as to strengthen the knowledge and build up expertise in the field of incineration

  10. Process innovations to minimize waste volumes at Savannah River

    International Nuclear Information System (INIS)

    Doherty, J.P.

    1986-01-01

    In 1983 approximately 1.6 x 10 3 m 3 (427,000 gallons) of radioactive salt solution were decontaminated in a full-scale demonstration. The cesium decontamination factor (DF) was in excess of 4 x 10 4 vs. a goal of 1 x 10 4 . Data from this test were combined with pilot data and used to design the permanent facilities currently under construction. Startup of the Salt Decontamination Process is scheduled for 1987 and will decontaminate 2 x 10 4 m 3 (5.2 million gallons) of radioactive salt solution and generate 2 x 10 3 m 3 (520,000 gallons) of concentrated and washed precipitate per year. The Defense Waste Processing Facility (DWPF) will begin processing this concentrate in the Precipitate Hydrolysis Process starting in 1989. Laboratory data using simulated salt solution and nonradioactive cesium are being used to design this process. A 1/5-scale pilot plant is under construction and will be used to gain large-scale operating experience using nonradioactive simulants. This pilot plant is scheduled to startup in early 1987. The incentives to reduce the volume of waste that must be treated are self-evident. At Savannah River process development innovations to minimize the DWPF feed volumes have directly improved the economics of the process. The integrity of the final borosilicate glass water form has not been compromised by these developments. Many of the unit operations are familiar to chemical engineers and were put to use in a unique environment. As a result, tax dollars have been saved, and the objective of safely disposing of the nation's high-level defense waste has moved forward

  11. Subsides for optimization of transfer of radioactive liquid waste from {sup 99}MO production plant to the waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro, E-mail: maria.eugenia@ipen.br, E-mail: rvicente@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of {sup 99}Mo from fission of low enriched uranium targets. In order to meet the present demand of {sup 99m}Tc generators the planned 'end of irradiation' activity of {sup 99}Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of {sup 99}Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the {sup 99}Mo production facility. (author)

  12. Waste management plan - plant plan

    International Nuclear Information System (INIS)

    Gaudet, F.

    2008-01-01

    The author summarizes the nuclear activity of the Pierre Fabre Research Institute (sites, used radionuclides, radioprotection organisation), indicates the applied regulation, gives a brief analytical overview of the waste collection, sorting and elimination processes, of the management process for short period wastes and for long period wastes, and of the traceability and control procedures. He briefly presents some characteristics of the storing premises

  13. GIS-based modelling of odour emitted from the waste processing plant: case study

    Directory of Open Access Journals (Sweden)

    Sόwka Izabela

    2017-01-01

    Full Text Available The emission of odours into the atmospheric air from the municipal economy and industrial plants, especially in urbanized areas, causes a serious problem, which the mankind has been struggling with for years. The excessive exposure of people to odours may result in many negative health effects, including, for example, headaches and vomiting. There are many different methods that are used in order to evaluate the odour nuisance. The results obtained through those methods can then be used to carry out a visualization and an analysis of a distribution of the odour concentrations in a given area by using the GIS (Geographic Information System. By their application to the spatial analysis of the impact of odours, we can enable the assessment of the magnitude and likelihood of the occurrence of odour nuisance. Modelling using GIS tools and spatial interpolation like IDW method and kriging can provide an alternative to the standard modelling tools, which generally use the emission values from sources that are identified as major emitters of odours. The work presents the result, based on the odour measurements data from waste processing plant, of the attempt to connect two different tools – the reference model OPERAT FB and GIS-based dispersion modelling performed using IDW method and ordinary kriging to analyse their behaviour in terms of limited observation values.

  14. Degradation of plant wastes by anaerobic process using rumen bacteria.

    Science.gov (United States)

    Seon, J; Creuly, C; Duchez, D; Pons, A; Dussap, C G

    2003-01-01

    An operational reactor has been designed for the fermentation of a pure culture of Fibrobacter succinogenes with the constraints of strict anaerobic condition. The process is controlled by measurements of pH, redox, temperature and CO2 pressure; it allows an efficient degradation (67%) of lignocellulosic wastes such as a mixture of wheat straw, soya bean cake and green cabbage.

  15. Alternative processes for managing existing commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    1976-04-01

    A number of alternatives are discussed for managing high-level radioactive waste presently stored at the West Valley, New York, plant owned by Nuclear Fuel Services, Inc. These alternatives (liquid storage, conversion to cement, shale fracturing, shale cement, calcination, aqueous silicate, conversion to glass, and salt cake) are limited to concepts presently under active investigation by ERDA. Each waste management option is described and examined regarding the status of the technology; its applications to managing NFS waste; its advantages and disadvantages; the research and development needed to implement the option; safety considerations; and estimated costs and time to implement the process

  16. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific ''problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs

  17. Radiation protection at UKAEA's solid waste plant at Harwell

    Energy Technology Data Exchange (ETDEWEB)

    Gallacher, G. [RWE NUKEM, Harwell (United Kingdom); Tierney, T. [UKAEA, Harwell (United Kingdom)

    2006-07-01

    The paper provides an overview of the solid waste plant at Harwell ( United Kingdom)Examples of waste streams, processes and the supporting health physics measures have been briefly described. It is clear that all waste operations involve close team work between staff from U.K.A.E.A. (United Kingdom Atomic Energy Authority) operations and health physics staff from both U.K.A.E.A. and RWE NUKEM (RWE NUKEM is one of the health physics support contractors). Work must be planned carefully, and radiological conditions monitored to ensure that the job is progressing smoothly and workplace exposure remains as low as reasonably practicable. (authors)

  18. Method of processing liquid waste containing fission product

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Kawamura, Fumio; Matsuda, Masami; Komori, Itaru; Miura, Eiichi.

    1988-01-01

    Purpose: To prepare solidification products of low surface dose by removing cesium which is main radioactive nuclides from re-processing plants. Method: Liquid wastes containing a great amount of fission products are generated accompanying the reprocessing for spent nuclear fuels. After pH adjustment, the liquid wastes are sent to a concentrator to concentrate the dissolved ingredients. The concentrated liquid wastes are pumped to an adsorption tower in which radioactive cesium contributing much to the surface dose is removed. Then, the liquid wastes are sent by way of a surge tank to a mixing tank, in which they are mixed under stirring with solidifying agents such as cements. Then, the mixture is filled in a drum-can and solidified. According to this invention, since radioactive cesium is removed before solidification, it is possible to prepare solidification products at low surface dose and facilitate the handling of the solidification products. (Horiuchi, T.)

  19. U.S. Experience and practices associated with the use of centralized rad waste processing centers

    International Nuclear Information System (INIS)

    Gibson, James D.

    1994-01-01

    This paper presents the experience and current practices employed within the United States (US) associated with the use of Centralized Rad waste Processing Centers for the processing of Low Level Radioactive Wastes (LLRW). Information is provided on the methods, technologies, and practices employed by Scientific Ecology Group, Inc. (SEG), which is the worlds largest processor of LLRW. SEG processes over 80,000 cubic meters of waste annually and achieves an overall volume reduction of 12 : 1. LLRW processing in the United States is currently performed primarily at Centralized Rad waste Processing Centers, such as SEG's Central Volume Reduction Facility (CVRF) in Oak Ridge, Tennessee. This is primarily due to the superior economical application of advanced waste processing technologies, equipment, and personnel maintained at these centers. Information is provided on how SEG uses supercompaction, incineration, metals recycling, vitrification, and various other waste processing techniques to process both dry and wet wastes from over 90 commercial nuclear power plants, government operated facilities, hospitals, universities, and various small generators of radioactive waste

  20. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    International Nuclear Information System (INIS)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A.; Duncan, D.R.

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO 3 ) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities

  1. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  2. Radiological characterization of waste products at a Catalan drinking water treatment plant - Radiological characterization of waste products of one Catalan drinking water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, A.; Montana, M.; Serrano, I.; Blazquez, S.; Duch, M.A. [Institut de Tecniques Energetiques. Universitat Politecnica de Catalunya, ETSEIB. Diagonal 647. 08028 Barcelona (Spain); Montes, S.; Ganzer, M.; Devesa, R. [Aigues de Barcelona, AGBAR. Laboratory, General Batet, 5-7, 08028 Barcelona (Spain)

    2014-07-01

    Conventional Drinking Water Treatment Plants (DWTP) have a fairly standard sequence of processes which essentially consist in solids separation using physical processes such as settling and filtration, and chemical processes such as coagulation and disinfection. Consequently large quantities of solid wastes or sludge are generated every year by DWTP. These solid wastes may contain all kind of pollutants, including significant levels of radioactivity and may cause a radiological impact on the operating personnel, but also on the public if the waste is recycled, e.g. the use of sludge as fertilizer or cement manufacturing. In this work it has been studied the radioactivity content of waste products of one DWTP. The selected DWTP treats water mainly taken from the Llobregat River and also ground water. The treatment plant has a maximum treatment capacity of 5.5 m{sup 3}/s, and provides almost 50% of the annual drinking water in Barcelona metropolitan area (population equivalent of the plant: 4,856,579). This plant has been selected taking into account both variations in water source and the treatment applied. During the period July 2007 - March 2009 a temporal study of radio-nuclides present in sludge produced by the decanter cleaning process was conducted. The temporal study was made taking into account the particular weather conditions in Spain, at least one sampling campaign per season. In these samples naturally gamma emitters from the {sup 238}U and {sup 232}Th series were detected with activities similar to the arithmetic mean found in Spanish soils so no increase in natural radiation are produced by the uses of these sludge. Furthermore, no seasonal tendency could be observed in the studied period for both series within the uncertainties associated with the results. Radiological hazard effects were also evaluated by the external hazard index because one of the end-uses of this sludge is the cement manufacturing. In 2009 the treatment plant was modified and

  3. Anaerobic digestion of organic waste in RDF process - an initial investigation

    International Nuclear Information System (INIS)

    Khaironie Mohd Takip; Muhd Noor Muhd Yunus; Mohamad Puad Abu

    2004-01-01

    Disposing of municipal solid waste (MSW) into a landfill is a method of the past and creates the negative environmental impact. Growing awareness of this negative impact induced the development of Refuse Derived Fuel (RDF) from MSW RDF is not simply converting waste into energy but also enable waste to be recycled into heat and power. However, during the production of RDF, there are some spillages or rejects consist of organic fraction that still can be recovered. One of the options to treat these wastes is by biological treatment, the anaerobic digestion (AD). AD process could occur either naturally or in a controlled environment such as a biogas plant. The process produces a flammable gas known as biogas that can be used for processing heating, power generation, and in internal combustion engines. In general, the process provides not only pollution prevention but can also convert a disposal problem into a new profit centre. This paper will highlight the use of anaerobic technology to treat rejects derived from the RDF production process. (Author)

  4. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  5. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    Science.gov (United States)

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  6. Experimental program plan for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

  7. Experimental program plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1994-01-01

    The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included

  8. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  9. Thermal properties of fly ash substituted slag cement waste forms for disposal of Savannah River Plant salt waste

    International Nuclear Information System (INIS)

    Roy, D.M.; Kaushal, S.; Licastro, P.H.; Langton, C.A.

    1985-01-01

    Waste processing at the Savannah River Plant will involve reconstitution of the salts (NaNO 3 , NaNO 2 , NaOH, etc.) into a concentrated solution (32 weight percent salts) followed by solidification in a cement-based waste form for burial. The stability and mechanical durability of such a 'saltstone monolith' will depend largely on the temperature reached due to heat of hydration and the thermal properties of the waste form. Fly ash has been used as an inexpensive constituent and to moderate the hydration and setting processes so as to avoid reaching prohibitively high temperatures which could cause thermal stresses. Both high-calcium and low-calcium fly ashes have been studied for this purpose. Other constituents of these mixes include granulated blast furnace slag and finely crushed limestone. Adiabatic temperature increase and thermal conductivity of these mixes have been studied and related x-ray diffraction and scanning electron microscopy studies carried out to understand the hydration process

  10. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  11. Solid radioactive waste processing facility of the NPP Leningrad

    International Nuclear Information System (INIS)

    Weichard, Swetlana

    2008-01-01

    On behalf of the Russian Company Rosenergoatom NUKEM Technologies GmbH is planning and constructing a complete facility for the processing of solid low- and medium-active radioactive wastes. The NPP Leningrad comprises 4 units of RBMK-1000 reactors, the plant life has been extended by 15 years, the first unit is to be decommissioned in 2018. The construction of four new units is planned. NUKEM is in charge of planning, manufacture, construction and startup of the following facilities: sorting, internal transport, combustion and waste gas cleaning, emission surveillance, compacting, packaging and radiological measurement.

  12. Experience gained in the management of radioactive waste from maintenance, decontamination and partial decommissioning of a reprocessing plant and conclusions resulting for the management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Hild, W.

    1983-01-01

    After a short description of the historical background of Eurochemic, its main tasks and the various operational phases, a detailed description of the waste management principles applied is presented. The practical experience in the waste treatment is reported for both the operational phase of the reprocessing plant and its decontamination and partial decommissioning after shutdown. Based on this experience and the presented data, an assessment of the practical operations is made and conclusions are drawn. Finally, recommendations are formulated both for the general waste management policy and the practical waste treatment processes in nuclear power reactors. (author)

  13. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  14. Radioactive waste treatment technology at Czech nuclear power plants

    International Nuclear Information System (INIS)

    Kulovany, J.

    2001-01-01

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  15. Radioprotection and physical surveillance during activities of liquid wastes of high and low activity in italian ITREC plant

    International Nuclear Information System (INIS)

    Petagna, Edoardo; Tortorelli, Pietro

    1997-03-01

    Many studies were made in ITREC Plant, located in ENEA - Trisaia Research Center, in the field of the nuclear fuel reprocessing, in the past years. During these activities liquid wastes of high and low activity were yielded and stored in the special area of tanks named Waste-1. In order to condition the low activity liquid wastes, essentially fission products, beta and gamma emitters, was built the SIRTE Plant (Integrate System for the Raise and Effluents Treatment) based on cementation process. In the present work, the radiological monitoring performed within the plant during the first campaign of cementation, is showed

  16. The production of pig iron from crushing plant waste using hot blast cupola

    Directory of Open Access Journals (Sweden)

    Kusno Isnugroho

    2018-03-01

    Full Text Available A production of pig iron has been conducted from crushing plant waste. The process of preparing pig iron was using hot blast cupola (HBC furnace which was injected with charcoal powder to improve temperature process and reduction zone in the furnace. The process was started by washing process and magnetic separation of raw material as an effort to improve iron content degree from crushing plant waste. The next process was preparing the composite pellet with the particle size of −80 + 100 mesh and with the composition of 80% iron ore, 15% wood charcoal, and 5% bentonite. The result of pellet size was 2.5–4.0 mm. The experiment was continued to reduce pellet composite in the HBC furnace. The pig iron produced from this process contained of 93.62%Fe, 3.5%C, 1.55%Si, 0.87%Mn, 0.05%P, and 0.087%S.With this result, the pig iron produced already fulfill the metallurgical specification to be used in smelting industry. Keywords: Pig iron, Pellet, Injection, Charcoal, Hot blast cupola

  17. Quality Assistance Objectives for Nondestructive Assay at the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    CANTALOUB, M.G.

    2000-01-01

    The Waste Receiving and Processing (WRAP) facility, located on the Word Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE/WIPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed

  18. Methods and Production of Cementation Materials for Immobilisation into Waste Form. Research of Cementation Processes for Specific Liquid Radioactive Waste Streams of Radiochemical Plants

    International Nuclear Information System (INIS)

    Sukhanov, L.P.

    2013-01-01

    In the near future Russian Federation is planning to use industrial cementation facilities at two radiochemical combines - PA 'Mayak' and Mountain Chemical Combine. Scope of the research within the IAEA CRP contact No. 14176 included the development of cementation processes for specfic liquid radioactive waste streams that are present in these enterprisers. The research on cementation of liquid waste from spent nuclear fuel reprocessing at PA 'Mayak' allowed obtaining experimental data characterizing the technological process and basic characteristics of the produced cement compounds (e.g. mechanical strength, water resistance, frost resistance, flowability, etc.) immobilizing different streams of waste (e.g. hydrated-salt sludges, filter material pulps, mixture of hydrated salt slurries and filter material pulps, tritium liquid waste). Determined optimum technological parameters will allow industrial scale production of cement compound with required quality and higher flowability that is necessary for providing uniform filling of compartments of storage facilities at these sites. The research has been also carried out for the development of cementation technology for immobilization of pulps from storage tanks of Mountain Chemical Combine radiochemical plant. Cementation of such pulps is a difficult technological task because pulps are of complex chemical composition (e.g. hydroxides of manganese, iron, nickel, etc., as well as silicon oxide) and a relatively high activity. The research of cementation process selection for these pulps included studies of the impact of sorbing additive type and content on cement compounds leachability, flowability, impact of cement compound age to its mechanical strength, heat generation of cement compounds and others. The research results obtained allowed testing of cementation facility with a pulse type mixer on the full-scale. Use of such mixer for pulp cementation makes possible to prepare a homogeneous cement compound with the

  19. Design features of a reverse osmosis demonstration plant for treatment of low level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, P; Nath, Sudesh; Gandhi, P M; Mishra, S D [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Reverse osmosis, a novel process in the field of nuclear waste management, is under evaluation globally. Its application is basically considered for the treatment of low level waste; yet references are found for its possible use to treat specific intermediate level waste streams, if segregated at source. The process of reverse osmosis (RO) is proposed for use in conjunction with other conventional processes like chemical treatment, ion exchange and evaporation. Flow sheets have been developed wherein RO can come as a replacement of one of these processes or is used as a pre or post treatment stage. The emphasis is on reducing the secondary wastes so as to realize an optimum levelised cost of treatment. This paper outlines the design basis for an RO plant for treating low level radioactive wastes based on the studies carried out on laboratory as well as bench scale. (author). 3 figs., 3 tabs.

  20. Design features of a reverse osmosis demonstration plant for treatment of low level radioactive waste

    International Nuclear Information System (INIS)

    Shekhar, P.; Sudesh Nath; Gandhi, P.M.; Mishra, S.D.

    1994-01-01

    Reverse osmosis, a novel process in the field of nuclear waste management, is under evaluation globally. Its application is basically considered for the treatment of low level waste; yet references are found for its possible use to treat specific intermediate level waste streams, if segregated at source. The process of reverse osmosis (RO) is proposed for use in conjunction with other conventional processes like chemical treatment, ion exchange and evaporation. Flow sheets have been developed wherein RO can come as a replacement of one of these processes or is used as a pre or post treatment stage. The emphasis is on reducing the secondary wastes so as to realize an optimum levelised cost of treatment. This paper outlines the design basis for an RO plant for treating low level radioactive wastes based on the studies carried out on laboratory as well as bench scale. (author)

  1. Development of bitumization plant of radioactive waste

    International Nuclear Information System (INIS)

    Lee, S.H.; Chun, K.S.; Song, H.Y.; Park, S.H.; Park, W.J.; Ryoo, R.; Cho, W.J.; Wee, K.S.; Lee, J.D.

    1981-01-01

    This study is to develop the bitumization techniques of radioactive waste concentrates from nuclear power plants (PWR), Cold-run and hot-run bitumization pilot plant were designed and constructed, and testing was carried out. The results show that the range of pH 7 to 8, in which a soluble product could form, is suitable for feeding in the waste and for its incorporation into asphalt, domestic blown asphalt is suitable up to an exposure of 10 8 rad. The estimated viscosity of the asphalt/waste product is about 14 poises at 175 0 C and the asphalt/wastes products in simulated sea-water for three weeks showed no evidence of swelling. The leaching rate from the spent resin/asphalt products in distilled water less than 1/1000 of that from the cement-products. It is considered that the resin content which is suitable for the incorporation of spent resin into asphalt is less than 50 wt%

  2. Cement-based processes for the immobilization of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Brown, D.J.; Lee, D.J.; Price, M.S.T.; Smith, D.L.G.

    1985-01-01

    Increasing attention is being paid to the use of cement-based materials for the immobilisation of intermediate level wastes. Various cementitious materials are surveyed and the use of blast furnace slag is shown to be advantageous. The properties of cemented wastes are surveyed both during processing and as solid products. The application of Winfrith Cementation Laboratory technology to plant and flowsheet development for Winfrith Reactor sludge immobilisation is described. (author)

  3. Thermal treatment of radioactive wastes by the PLASMARC process

    International Nuclear Information System (INIS)

    Hoffelner, W.; Haefeli, V.; Fuenfschilling, M.R.

    1996-01-01

    The plasma plant for the thermal treatment of radioactive wastes to be supplied to ZWILAG is briefly described and the results of experiments with simulated waste are provided. The experiments led to the conclusion that the plant is well suited for handling low- and intermediate level radioactive wastes. (author) 1 fig., 3 tabs

  4. Application and design of an economizer for waste heat recovery in a cogeneration plant

    Directory of Open Access Journals (Sweden)

    Martić Igor I.

    2016-01-01

    Full Text Available Energy increase cost has required its more effective use. However, many industrial heating processes generate waste energy. Use of waste-heat recovery systems decreases energy consumption. This paper presents case study of waste heat recovering of the exhaust flue gas in a 1415 kWe cogeneration plant. This waste heat can be recovered by installing an economizer to heat the condensed and fresh water in thermal degasification unit and reduce steam use for maintaining the temperature of 105˚C for oxygen removal. Design methodology of economizer is presented.

  5. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  6. Waste Isolation Pilot Plant No-migration variance petition

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program

  7. Method for processing coal-enrichment waste with solid and volatile fuel inclusions

    Science.gov (United States)

    Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.

    2017-10-01

    The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.

  8. Succession change of microorganisms on plant waste decomposition in simulation modelling field experiment

    Science.gov (United States)

    Vinogradova, Julia; Perminova, Evgenia; Khabibullina, Fluza; Kovaleva, Vera; Lapteva, Elena

    2016-04-01

    Plant waste decomposition processes are closely associated with living activity of soil microbiota in aboveground ecosystems. Functional activity of microorganisms and soil invertebrates determines plant material transformation rate whereby changes in plant material chemical composition during destruction - succession change of soil biota. The purpose of the work was revealing the mechanism of microorganisms succession change during plant waste decomposition in middle-taiga green-moss spruce forests and coniferous-deciduous secondary stands formed after earlier cut bilberry spruce forests. The study materials were undisturbed bilberry spruce forest (Sample Plot 1 - SP1) and coniferous-deciduous secondary stands which were formed after tree cutting activities of 2001-2002 (SP2) and 1969 and 1970 (SP3). Plant material decomposition intensity was determined in microcosms isolated into kapron bags with cell size of 1 mm. At SP1 and SP2, test material was living mosses and at SP3 - fallen birch and aspen leaves. Every test material was exposed for 2 years. Destruction rate was calculated as a weight loss for a particular time period. Composition of micromycetes which participated in plant material decomposition was assessed by the method of inoculation of soil extract to Getchinson's medium and acidified Czapek's medium (pH=4.5). Microbe number and biomass was analyzed by the method of luminescent microscopy. Chemical analysis of plant material was done in the certified Ecoanalytical Laboratory of the Institute of Biology Komi SC UrD RAS. Finally, plant material destruction intensity was similar for study plots and comprised 40-44 % weight loss for 2 years. The strongest differences in plant material decomposition rate between undisturbed spruce forests and secondary after-cut stands were observed at first stages of destruction process. In the first exposition year, mineralizing processes were most active in undisturbed spruce forest. Decomposition rate in cuts at that

  9. Technical-and-economic analysis and optimization of the full flow charts of processing of radioactive wastes on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of fast reactors

    Science.gov (United States)

    Gupalo, V. S.; Chistyakov, V. N.; Kormilitsyn, M. V.; Kormilitsyna, L. A.; Osipenko, A. G.

    2015-12-01

    When considering the full flow charts of processing of radioactive wastes (RAW) on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of NIIAR fast reactors, we corroborate optimum technical solutions for the preparation of RAW for burial from a standpoint of heat release, dose formation, and technological storage time with allowance for technical-and-economic and ecological indices during the implementation of the analyzed technologies and equipment for processing of all RAW fluxes.

  10. Preliminary Hanford Waste Vitrification Plan Waste Form Qualification Plan

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1987-09-01

    This Waste Form Qualification Plan describes the waste form qualification activities that will be followed during the design and operation of the Hanford Waste Vitrification Plant to ensure that the vitrified Hanford defense high-level wastes will meet the acceptance requirements of the candidate geologic repositories for nuclear waste. This plan is based on the defense waste processing facility requirements. The content of this plan is based on the assumption that the Hanford Waste Vitrification Plant high-level waste form will be disposed of in one of the geologic repository projects. Proposed legislation currently under consideration by Congress may change or delay the repository site selection process. The impacts of this change will be assessed as details of the new legislation become available. The Plan describes activities, schedules, and programmatic interfaces. The Waste Form Qualification Plan is updated regularly to incorporate Hanford Waste Vitrification Plant-specific waste acceptance requirements and to serve as a controlled baseline plan from which changes in related programs can be incorporated. 10 refs., 5 figs., 5 tabs

  11. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  12. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  13. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  14. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  15. Food-Processing Wastes.

    Science.gov (United States)

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  16. [Seroprevalence of brucelosis in the workers of a plant of treatment of sanitary wastes].

    Science.gov (United States)

    López Hernández, Begoña; Almagro Nievas, Diego; Cabrera Castillo, María José

    2003-03-22

    The management of biosanitary (hospital) waste, while being a key issue in the prevention of public health risks, involves professional risks as well. The objective of this study was to analyze the risks of infection and their relation with the various works within a cluster of brucellosis detected in an infectious waste plant. Cross-descriptive study of the total of 24 employees at the waste plant. A survey was carried out taking into account personal as well as professional items and serological tests. Both bivariant (contingency charts and mean comparison) and multivariant (logistic regression) analyses were carried out. The seroprevalence of brucella infection was 45.93% (CI95%, 26.17-66.76). The estimated risk (OR) for processing workers was 33.72 (CI95%, 2.73-415.96). The permanence within the posts was not different among groups. Infection seroprevalence was higher than that found in endemic populations. The post of processing was found to hold a relation with the contact with Brucella sp.

  17. Retrieval of canistered experimental waste at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Stinebaugh, R.E.

    1979-07-01

    To assess the suitability of bedded salt for nuclear waste disposal, an extensive experimental program will be implemented at the Waste Isolation Pilot Plant. In order to evaluate experimental results, it will be necessary to recover certain of these experiments for postmortem examination and analysis. This document describes the equipment and procedures used to effect recovery of one category of WIPP experiments

  18. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  19. An update on the quality assurance for the waste vitrification plants

    Energy Technology Data Exchange (ETDEWEB)

    Caplinger, W.H.; Shugars, D.L.; Carlson, M.K.

    1990-01-01

    Immobilization of high-level defense production wastes is an important step in environmental restoration. The best available technology for immobilization of this waste currently is by incorporation into borosilicate glass, i.e., vitrification. Three US sites are active in the design, construction, or operation of vitrification facilities. The status, facility description and Quality Assurance (QA) development for each facility was presented at the 1989 Energy Division Conference. This paper presents the developments since that time. The West Valley Demonstration Project (WVDP) in northwestern New York State has demonstrated the technology. At the Savannah River Site (SRS) in South Carolina the Defense Waste Processing Facility (DWPF) has completed design, construction is essentially complete, and preparation for operation is underway. The Hanford Waste Vitrification Plant (HWVP) in Washington State is in initial Detailed Design. 4 refs.

  20. An update on the quality assurance for the waste vitrification plants

    International Nuclear Information System (INIS)

    Caplinger, W.H.; Shugars, D.L.; Carlson, M.K.

    1990-01-01

    Immobilization of high-level defense production wastes is an important step in environmental restoration. The best available technology for immobilization of this waste currently is by incorporation into borosilicate glass, i.e., vitrification. Three US sites are active in the design, construction, or operation of vitrification facilities. The status, facility description and Quality Assurance (QA) development for each facility was presented at the 1989 Energy Division Conference. This paper presents the developments since that time. The West Valley Demonstration Project (WVDP) in northwestern New York State has demonstrated the technology. At the Savannah River Site (SRS) in South Carolina the Defense Waste Processing Facility (DWPF) has completed design, construction is essentially complete, and preparation for operation is underway. The Hanford Waste Vitrification Plant (HWVP) in Washington State is in initial Detailed Design. 4 refs

  1. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    Science.gov (United States)

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Assessment of processes, facilities, and costs for alternative solid forms for immobilization of SRP defense waste

    International Nuclear Information System (INIS)

    Dunson, J.B. Jr.; Eisenberg, A.M.; Schuyler, R.L. III; Haight, H.G. Jr.; Mello, V.E.; Gould, T.H. Jr.; Butler, J.L.; Pickett, J.B.

    1982-03-01

    A quantitative merit evaluation which assesses the relative difficulty of remote processing of Savannah River Plant high-level wastes for seven alternative waste forms is presented. The reference borosilicate glass process is rated as the simplest, followed by FUETAP concrete. The other processes evaluated in order of increasing complexity were: glass marbles in a lead matrix, high-silica glass, crystalline ceramic (Synroc-D and tailored ceramic), and coated ceramic particles. Cost appraisals are summarized for the borosilicate glass, high-silica glass, and ceramic waste form processing facilities

  3. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10 5 per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables

  4. Waste acceptance criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies

  5. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    Science.gov (United States)

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  6. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2001-01-01

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF

  7. Strategy for product composition control in the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Bryan, M.F.; Piepel, G.F.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize transuranic and high-level radioactive waste in borosilicate glass. The major objective of the Process/Product Model Development (PPMD) cost account of the Pacific Northwest Laboratory HWVP Technology Development (PHTD) Project is the development of a system for guiding control of feed slurry composition (which affects glass properties) and for checking and documenting product quality. This document lays out the broad structure of HWVP's product composition control system, discusses five major algorithms and technical issues relevant to this system, and sketches the path of development and testing

  8. ThermoEnergy Ammonia Recovery Process for Municipal and Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Alex G. Fassbender

    2001-01-01

    Full Text Available The Ammonia Recovery Process (ARP is an award-winning, low-cost, environmentally responsible method of recovering nitrogen, in the form of ammonia, from various dilute waste streams and converting it into concentrated ammonium sulfate. The ThermoEnergy Biogas System utilizes the new chemisorption-based ARP to recover ammonia from anaerobically digested wastes. The process provides for optimal biogas production and significantly reduced nitrogen levels in the treated water discharge. Process flows for the ammonia recovery and ThermoEnergy biogas processes are presented and discussed. A comparison with other techniques such as biological nitrogen removal is made. The ARP technology uses reversible chemisorption and double salt crystal precipitation to recover and concentrate the ammonia. The ARP technology was successfully proven in a recent large-scale field demonstration at New York City’s Oakwood Beach Wastewater Treatment Plant, located on Staten Island. This project was a joint effort with Foster Wheeler Environmental Corporation, the Civil Engineering Research Foundation, and New York City Department of Environmental Protection. Independent validated plant data show that ARP consistently recovers up to 99.9% of the ammonia from the city’s centrate waste stream (derived from dewatering of sewage sludge, as ammonium sulfate. ARP technology can reduce the nitrogen (ammonia discharged daily into local bodies of water by municipalities, concentrated animal farming operations, and industry. Recent advances to ARP enhance its performance and economic competitiveness in comparison to stripping or ammonia destruction technologies.

  9. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    Science.gov (United States)

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hanford Waste Vitrification Plant quality assurance program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-12-01

    The US Department of Energy-Office of Civilian Radioactive Waste Management has been designated the national high-level waste repository licensee and the recipient for the canistered waste forms. The Office of Waste Operations executes overall responsibility for producing the canistered waste form. The Hanford Waste Vitrification Plant Project, as part of the waste form producer organization, consists of a vertical relationship. Overall control is provided by the US Department of Energy-Environmental Restoration and Waste Management Headquarters; with the US Department of Energy-Office of Waste Operations; the US Department of Energy- Headquarters/Vitrification Project Branch; the US Department of Energy-Richland Operations Office/Vitrification Project Office; and the Westinghouse Hanford Company, operations and engineering contractor. This document has been prepared in response to direction from the US Department of Energy-Office of Civilian Radioactive Waste Management through the US Department of Energy-Richland Operations Office for a quality assurance program that meets the requirements of the US Department of Energy. This document provides guidance and direction for implementing a quality assurance program that applies to the Hanford Waste Vitrification Plant Project. The Hanford Waste Vitrification Plant Project management commits to implementing the quality assurance program activities; reviewing the program periodically, and revising it as necessary to keep it current and effective. 12 refs., 6 figs., 1 tab

  11. Process chemistry for the pretreatment of Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Swanson, J.L.; Barker, S.A.

    1992-08-01

    Current guidelines for disposing radioactive wastes stored in underground tanks at the US Department of Energy's Hanford Site call for the vitrification of high-level waste in borosilicate glass and disposal of the glass canisters in a deep geologic repository. Low-level waste is to be cast in grout and disposed of on site in shallow burial vaults. Because of the high cost of vitrification and geologic disposal, methods are currently being developed to minimize the volume of high-level waste requiring disposal. Two approaches are being considered for pretreating radioactive tank sludges: (1) leaching of selected components from the sludge and (2) acid dissolution of the sludge followed by separation of key radionuclides. The leaching approach offers the advantage of simplicity, but the acid dissolution/radionuclide extraction approach has the potential to produce the least number of glass canisters. Four critical components (Cr, P, S, and Al) were leached from an actual Hanford tank waste-Plutonium Finishing Plant sludge. The Al, P, and S were removed from the sludge by digestion of the sludge with 0.1 M NaOH at 100 degrees C. The Cr was leached by treating the sludge with alkaline KMnO 4 at 100 degrees C. Removing these four components from the sludge will dramatically lower the number of glass canisters required to dispose of this waste. The transuranic extraction (TRUEX) solvent extraction process has been demonstrated at a bench scale using an actual Hanford tank waste. The process, which involves extraction of the transuranic elements with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), separated 99.9% of the transuranic elements from the bulk components of the waste. Several problems associated with the TRUEX processing of this waste have been addressed and solved

  12. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    1992-07-01

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluenttreatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume V, provides a comprehensive conceptual design level narrative description of the process, utility, ventilation, and plant control systems. The feeds and throughputs, design requirements, and basis for process selection are provided, as appropriate. Key DOE/WHC criteria and reference drawings are delineated

  13. Volume reduction of dry active waste by use of a waste sorting table at the Brunswick nuclear power plant

    International Nuclear Information System (INIS)

    Snead, P.B.

    1988-01-01

    Carolina Power and Light Company's Brunswick nuclear power plant has been using a National Nuclear Corporation Model WST-18 Waste Sorting Table to monitor and sort dry active waste for segregating uncontaminated material as a means of low-level waste volume reduction. The WST-18 features 18 large-area, solid scintillation detectors arranged in a 3 x 6 array underneath a sorting/monitoring surface that is shielded from background radiation. An 11-week study at Brunswick showed that the use of the waste sorting table resulted in dramatic improvements in both productivity (man-hours expended per cubic foot of waste processed) and monitoring quality over the previous hand-probe frisking method. Use of the sorting table since the study has confirmed its effectiveness in volume reduction. The waste sorting table paid for its operation in volume reduction savings alone, without accounting for the additional savings from recovering reusable items

  14. Method for the utilization of waste heat, especially from nuclear power plants, in connection with processing sewage water and industrial waste water and in connection with the generation of motional energy whilst continuous heat recovery takes place and a device for carrying out this method

    International Nuclear Information System (INIS)

    Borst, A.H.

    1977-01-01

    A method is proposed by which the waste heat for nuclear power plants is used for distilling waste water, thus creating drinking water. A pressure vessel with appropriate pipes and control elementes, in which this process is to be carried out, is described. (UWI) [de

  15. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  16. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    Science.gov (United States)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  17. Design aspects of reverse osmosis plants for rad waste treatment

    International Nuclear Information System (INIS)

    Prabhakar, S.; Panicker, S.T.; Misra, B.M.

    1993-01-01

    The potential of reverse osmosis process has been well established in the nuclear waste treatment. The nuclear wastes are characterised by chemically insignificant levels of radioactive nuclides and small amounts (a few hundred ppm) of inactive ionic species. The basic design objectives in these systems aim at higher volume reduction factors, i.e. corresponding to recovery factor of more than 0.9 and a decontamination factor of at least 10, i.e. corresponding to a solute rejection of more than 90%. In this paper, the salient aspects of the design of a reverse osmosis system for radioactive waste treatment is discussed in the light of the operating experience of an experimental plant based on plate module configuration and utilizing cellulose acetate membranes prepared in our laboratory. (author). 3 refs., 5 figs., 2 tabs

  18. Pyro-processes and the wastes

    International Nuclear Information System (INIS)

    Kurata, Masaki; Tokiwai, Moriyasu; Inoue, Tadashi; Nishimura, Tomohiro

    2000-01-01

    Reprocessing using pyrometallurgical processes is generally considered to have economical benefits comparing with conventional aqueous processes because of the combination of simpler process and equipments, less criticality, and more compact facilities. On the other hand, the pyrometallurgical processes must generate peculiar wastes and R and D on those wastes is slightly inferior, as compared with the main processes. In this paper, process flows of major pyrometallurgical processes are firstly summarized and, then, the present R and D condition on the wastes are shown. (author)

  19. Storing solid radioactive wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate

  20. Plasma technologies: applications to waste processing

    International Nuclear Information System (INIS)

    Fauchais, P.

    2007-01-01

    Since the 1990's, plasma technologies have found applications in the processing of toxic wastes of military and industrial origin, like the treatment of contaminated solids and low level radioactive wastes, the decontamination of soils etc.. Since the years 2000, this development is becoming exponential, in particular for the processing of municipal wastes and the recovery of their synthesis gas. The advantage of thermal plasmas with respect to conventional combustion techniques are: a high temperature (more than 6000 K), a pyrolysis capability (CO formation instead of CO 2 ), about 90% of available energy above 1500 K (with respect to 23% with flames), a greater energy density, lower gas flow rates, and plasma start-up and shut-down times of only few tenth of seconds. This article presents: 1 - the present day situation of thermal plasmas development; 2 - some general considerations about plasma waste processing; 3 - the plasma processes: liquid toxic wastes, solid wastes (contaminated soils and low level radioactive wastes, military wastes, vitrification of incinerators fly ash, municipal wastes processing, treatment of asbestos fibers, treatment of chlorinated industrial wastes), metallurgy wastes (dusts, aluminium slags), medical and ship wastes, perspectives; 4 -conclusion. (J.S.)

  1. Six Sigma application in a process industry for capacity waste reduction: A case study

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2017-09-01

    Full Text Available Today energy is directly related with progress or growth of any country and every event requires a huge amount of energy. In today’s global competitiveness, demand for energy is very high and India is facing a problem of very poor energy supply. So, researchers and planners are worried about very poor productivity of thermal power plant and the most critical cause for this problem is high capacity waste at these plants. This paper focuses on causes of capacity waste and for this, DMAIC approach is adopted. The study also clears some myths of Six Sigma compatibility at process industries (thermal power plant for performance improvement. After implementation of the first phase i.e. “Define”, the study confirms the competence of Six Sigma in defining the issue of capacity waste.

  2. Preliminary technical data summary defense waste processing facility stage 2

    International Nuclear Information System (INIS)

    1980-12-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 2 of the Staged Defense Waste Processing Facility (DWPF). Process changes incorporated in the staged DWPF relative to the Alternative DWPF described in PTDS No. 3 (DPSTD-77-13-3) are the result of ongoing research and development and are aimed at reducing initial capital investment and developing a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it is filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material and curie balances, material and curie balance bases, and other technical data for design of Stage 2 of the DWPF. Stage 1 technical data are presented in DPSTD-80-38

  3. Chemical dissolving of sludge from a high level waste tank at the Savannah River Plant

    International Nuclear Information System (INIS)

    Bradley, R.F.; Hill, A.J. Jr.

    1977-11-01

    The concept for decontamination and retirement of radioactive liquid waste tanks at the Savannah River Plant (SRP) involves hydraulic slurrying to remove most of the settled sludges followed by chemical dissolving of residual sludges. Dissolving tests were carried out with small samples of sludge from SRP Tank 16H. Over 95 percent of the sludge was dissolved by 8 wt percent oxalic acid at 85 0 C with agitation in a two-step dissolving process (50 hours per step) and an initial reagent-to-sludge volume of 20. Oxalic acid does not attack the waste tank material of construction, appears to be compatible with the existing waste farm processes and equipment after neutralization, and with future processes planned for fixation of the waste into a high-integrity solid for packaging and shipping

  4. Uptake by plants of radionuclides from FUSRAP waste materials

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables

  5. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  6. B Plant complex hazardous, mixed and low level waste certification plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria

  7. B Plant complex hazardous, mixed and low level waste certification plan

    Energy Technology Data Exchange (ETDEWEB)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  8. Nuclear waste form risk assessment for US defense waste at Savannah River Plant. Annual report fiscal year 1980

    International Nuclear Information System (INIS)

    Cheung, H.; Jackson, D.D.; Revelli, M.A.

    1981-07-01

    Waste form dissolution studies and preliminary performance analyses were carried out to contribute a part of the data needed for the selection of a waste form for the disposal of Savannah River Plant defense waste in a deep geologic repository. The first portion of this work provides descriptions of the chemical interactions between the waste form and the geologic environment. We reviewed critically the dissolution/leaching data for borosilicate glass and SYNROC. Both chemical kinetic and thermodynamic models were developed to describe the dissolution process of these candidate waste forms so as to establish a fundamental basis for interpretation of experimental data and to provide directions for future experiments. The complementary second portion of this work is an assessment of the impacts of alternate waste forms upon the consequences of disposal in various proposed geological media. Employing systems analysis methodology, we began to evaluate the performance of a generic waste form for the case of a high risk scenario for a bedded salt repository. Results of sensitivity analysis, uncertainty analyses, and sensitivity to uncertainty analysis are presented

  9. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  10. Optimised utilisation of existing incinerators by installation of upstream reactors for treatment of waste with high calorifica value - HYBRID waste treatment plants; Optimierte Nutzung bestehender Abfallverbrennungsanlagen durch Errichtung vorgeschalteter Reaktoren zur Behandlung heizwertreicher Abfaelle - HYBRID-Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    El Labani, M

    2000-07-01

    Waste incineration plants are based on the process of thermal waste treatment, i.e. the generation of power from the controlled conversion of organic reactive residue waste. Statutory requirements forced operators to install powerful flue gas cleaning systems into their existing waste incineration plants. This led to a tremendous increase in cost and treatment prices generating pressure to optimize the process. Currently, markets demand additional capacities for the treatment of waste of elevated heating value ({proportional_to}5,0 MWh/Mg). It is possible to treat this type of waste in a conventional waste incineration plant. However, the elevated heating value dictates a reduction in throughput with ever increasing pressure on costs. This is why current concepts consider the treatment of waste of elevated heating value in specific, so called de-centralized plants. These plants are usually of low throughput with accordingly high specific cost of developing the infrastructure. The capacity of existing waste incineration plants has been investigated in order to assess the potential for optimization. Extensive test runs at the Municipal Solid Waste Incineration Plant (MSW) Darmstadt revealed a capacity gap in the flue gas cleaning system even with the incineration unit running at full capacity. This gap could be filled with an additional incineration plant for waste of elevated heating value, whose capacity is matched accordingly. Such additional incineration plant defines in conjunction with the existing waste incineration plant a so called HYBRID Waste Treatment Plant. It is the aim of this treatise to develop an instrument to support the decision making process related to the planning of such plants. (orig.) [German] Abfallverbrennungsanlagen basieren auf dem Verfahren der thermischen Abfallbehandlung; das ist die Energieerzeugung aus der kontrollierten Umwandlung organischer, reaktionsfaehiger Restabfaelle. Aufgrund gesetzlicher Vorgaben mussten bestehende

  11. Energy efficiency improvements in sewage sludge processing plants; Energetische Optimierung der Klaerschlammaufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, H.; Burger, S.

    2006-07-01

    From October 1st, 2006, sewage sludge may no longer be used as a fertilizer by farmers in Switzerland. Mechanical dewatering and drying of the sludge are the pre-stages of incineration. Based on a monitoring campaign and the results thereof, recommendations aiming at improving the energy efficiency have been worked out for use by waste water treatment plant operators and engineers for the design of drying plants. From the energetic point of view, solar drying of sludge is the best process. However, due to the large area required and the limited drying capacity, solar drying cannot be implemented everywhere. Therefore, three further drying processes have been monitored for eleven months: the fluidized bed drying process at the waste water treatment plant (WWTP) of the Region Berne, the low temperature/air recirculation dryer at WWTP Schwyz and the middle-temperature belt dryer at WWTP Wohlen. The electric energy consumption of the three investigated sludge drying processes was between 22 and 94 kWh per ton of evaporated water. The low temperature dryer showed the lowest energy consumption. The thermal energy consumption (expressed in useful energy) was between 648 and 1'033 kWh per ton of evaporated water, with the middle temperature dryer having the lowest consumption. On the other hand, the most advantageous process is the low temperature dryer if the comparison is based on the final energy consumption. This process has the advantage of making possible the integration of low-temperature waste heat. For whole Switzerland, the energy savings potential is estimated to be 133 GWh/year for fuel and 32 GWh/year for electricity, provided the drying process with the lowest energy consumption is implemented. It is recommended to conduct another measuring campaign at the first just commissioned sludge drying plant comprising a heat pump using waste water as a heat source, to check the effective energy savings. (author)

  12. A process to remove ammonia from PUREX plant effluents

    International Nuclear Information System (INIS)

    Moore, J.D.

    1990-01-01

    Zirconium-clad nuclear fuel from the Hanford N-Reactor is reprocessed in the PUREX (Plutonium Uranium Extraction) Plant operated by the Westinghouse Hanford Comapny. Before dissolution, cladding is chemically removed from the fuel elements with a solution of ammonium fluoride-ammonium nitrate (AFAN). a solution batch with an ammonia equivalent of about 1,100 kg is added to each fuel batch of 10 metric tons. This paper reports on this decladding process, know as the 'Zirflex' process which produces waste streams containing ammonia and ammonium slats. Waste stream treatment, includes ammonia scrubbing, scrub solution evaporation, residual solids dissolution, and chemical neutralization. These processes produce secondary liquid and gaseous waste streams containing varying concentrations of ammonia and low-level concentrations of radionuclides. Until legislative restrictions were imposed in 1987, these secondary streams were released to the soil in a liquid disposal 'crib' and to the atmosphere

  13. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume I contains the following attachments for Module II: waste analysis plan; quality assurance program plan for the Waste Isolation Pilot Plant (WIPP) Experiment Waste Characterization Program(QAPP); WIPP Characterization Sampling and Analysis Guidance Manual (Plan)(SAP); and no migration Determination Requirement Summary (NMD)

  14. Process and device for processing radioactive wastes

    International Nuclear Information System (INIS)

    1974-01-01

    A method is described for processing liquid radioactive wastes. It includes the heating of the liquid wastes so that the contained liquids are evaporated and a practically anhydrous mass of solid particles inferior in volume to that of the wastes introduced is formed, then the transformation of the solid particles into a monolithic structure. This transformation includes the compressing of the particles and sintering or fusion. The solidifying agent is a mixture of polyethylene and paraffin wax or a styrene copolymer and a polyester resin. The device used for processing the radioactive liquid wastes is also described [fr

  15. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    Science.gov (United States)

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  16. Sustainability of cement kiln co-processing of wastes in India: a pilot study.

    Science.gov (United States)

    Baidya, Rahul; Ghosh, Sadhan Kumar; Parlikar, Ulhas V

    2017-07-01

    Co-processing in cement kiln achieves effective utilization of the material and energy value present in the wastes, thereby conserving the natural resources by reducing the use of virgin material. In India, a number of multifolded initiatives have been taken that take into account the potential and volume of waste generation. This paper studies the factors which might influence the sustainability of co-processing of waste in cement kilns as a business model, considering the issues and challenges in the supply chain framework in India in view of the four canonical pillars of sustainability. A pilot study on co-processing was carried out in one of the cement plant in India to evaluate the environmental performance, economical performance, operational performance and social performance. The findings will help India and other developing countries to introduce effective supply chain management for co-processing while addressing the issues and challenges during co-processing of different waste streams in the cement kilns.

  17. The Rocky Flats Plant Waste Stream and Residue Identification and Characterization Program (WSRIC): Progress and achievements

    International Nuclear Information System (INIS)

    Ideker, V.L.

    1994-01-01

    The Waste Stream and Residue Identification and Characterization (WSRIC) Program, as described in the WSRIC Program Description delineates the process knowledge used to identify and characterize currently-generated waste from approximately 5404 waste streams originating from 576 processes in 288 buildings at Rocky Flats Plant (RFP). Annual updates to the WSRIC documents are required by the Federal Facilities Compliance Agreement between the US Department of Energy, the Colorado Department of Health and the Environmental Protection Agency. Accurate determination and characterization of waste is a crucial component in RFP's waste management strategy to assure compliance with Resource Conservation and Recovery Act (RCRA) storage and treatment requirements, as well as disposal acceptance criteria. The WSRIC Program was rebaselined in September 1992, and serves as the linchpin for documenting process knowledge in RFP's RCRA operating record. Enhancements to the WSRIC include strengthening the waste characterization rationale, expanding WSRIC training for waste generators, and incorporating analytical information into the WSRIC building books. These enhancements will improve credibility with the regulators and increase waste generators' understanding of the basis for credible waste characterizations

  18. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Volume II contains uninterpreted processed lines and shotpoint maps from three seismic reflection surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant. Data interpretations will be the subject of subsequent reports

  19. Generation, characterization and reuse of solid wastes from a biodiesel production plant.

    Science.gov (United States)

    Oliveira, Fernando Jorge Santos; Santana, Daniele Dos Santos; Costa, Simone Soraya Brito; Oliveira, Lenise Diniz; Liduino, Vitor Silva; Servulo, Eliana Flávia Camporese

    2017-03-01

    The aim of this study was to identify and characterize industrial solid wastes generated by a biodiesel production plant in Brazil, as well as to present strategies for the management of these materials. This plant produces every year around 100,000tons of biodiesel from vegetable oils and animal fats. The methodology of the study included technical visits, interviews with the operational and environmental management staff as well as analysis of documents, reports and computerized data systems. An approach to reduce the generation of hazardous waste was investigated. It was take into account the amount of raw material that was processed, reduction of landfill disposal, and the maximization of the their recycling and reuse. The study also identified the sources of waste generation and accordingly prepared an evaluation matrix to determine the types of waste with the higher potential for minimization. The most important residue of the process was the filter material impregnated with oil and biodiesel, requiring, therefore, measures for its minimization. The use of these residues in the production of ceramic artefacts (light bricks) was considered to be very promising, since no significant effect on the physico-chemical and mechanical properties of the artefacts produced was observed. Phytotoxicity test using seeds of Lactuva sativa (lettuce), Brassica juncea (mustard), Abelmoschus esculentus (okra), Chrysanthemum leucanthemum (daisy), Dendranthema grandiflorum (chrysanthemum) and Allium porrum (leek) were carried out. The results clearly show incorporation of the waste material into bricks did not influence relative germination and relative root elongation in comparison to control tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  1. Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050 degrees C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 μm (finer than -30 mesh, or 215 μm Mass Median Diameter, MMD) and 180 μm (finer than 80 mesh, or 49 μm MMD)

  2. Application of stochastic dynamic simulation to waste form qualification for the HWVP vitrification process

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Westsik, J.H. Jr.

    1989-01-01

    Processing steps during the conversion of high-level nuclear waste into borosilicate glass in the Hanford Waste Vitrification Plant are being simulated on a computer by addressing transient mass balances. The results are being used to address the US Department of Energy's Waste Form Qualification requirements. The simulated addresses discontinuous (batch) operations and perturbations in the transient behavior of the process caused by errors in measurements and control actions. A collection of tests, based on process measurements, is continually checked and used to halt the simulated process when specified conditions are met. An associated set of control actions is then implemented in the simulation. The results for an example simulation are shown. 8 refs

  3. Defense Waste Processing Facility staged operations: environmental information document

    International Nuclear Information System (INIS)

    1981-11-01

    Environmental information is presented relating to a staged version of the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The information is intended to provide the basis for an Environmental Impact Statement. In either the integral or the staged design, the DWPF will convert the high-level waste currently stored in tanks into: a leach-resistant form containing about 99.9% of all the radioactivity, and a residual, slightly contaminated salt, which is disposed of as saltcrete. In the first stage of the staged version, the insoluble sludge portion of the waste and the long lived radionuclides contained therein will be vitrified. The waste glass will be sealed in canisters and stored onsite until shipped to a Federal repository. In the second stage, the supernate portion of the waste will be decontaminated by ion exchange. The recovered radionuclides will be transferred to the Stage 1 facility, and mixed with the sludge feed before vitrification. The residual, slightly contaminated salt solution will be mixed with Portland cement to form a concrete product (saltcrete) which will be buried onsite in an engineered landfill. This document describes the conceptual facilities and processes for producing glass waste and decontaminated salt. The environmental effects of facility construction, normal operations, and accidents are then presented. Descriptions of site and environs, alternative sites and waste disposal options, and environmental consultations and permits are given in the base Environmental Information Document

  4. Waste retrieval plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ''bin tests'' and ''alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met

  5. Hanford Waste Vitrification Plant Clean Air Act permit application

    International Nuclear Information System (INIS)

    1990-04-01

    This document briefly describes the Hanford Site and provides a general overview of the Hanford Waste Vitrification Plant (HWVP). Other topics include sources of emissions, facility operating parameters, facility emissions, pollutant and radionuclide control technology and air quality. The HWVP will convert mixed wastes (high-activity radioactive and hazardous liquid wastes) to a solid vitrified form (borosilicate glass) for disposal. Mixed wastes pretreated in the Hanford Site B Plant will be pumped into double- shell tanks in the 200 East Area for interim storage. This pretreated mixed waste will be batch transferred from interim storage to the HWVP facility, where the waste will be concentrated by evaporation, treated with chemicals, and mixed with glass-forming materials. The mixture will then be continuously fed into an electrically heated glass melter. The molten glass will be poured into canisters that will be cooled, sealed, decontaminated, and stored until the vitrified product can be transferred to a geologic repository. 25 refs., 18 figs., 32 tabs

  6. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  7. Idaho Chemical Processing Plant (ICPP) injection well: Operations history and hydrochemical inventory of the waste stream

    International Nuclear Information System (INIS)

    Fromm, J.; McCurry, M.; Hackett, W.; Welhan, J.

    1994-01-01

    Department of Energy (DOE), United States Geological Survey (USGS), and Idaho Chemical Processing Plant (ICPP) documents were searched for information regarding service disposal operations, and the chemical characteristics and volumes of the service waste emplaced in, and above, the Eastern Snake River Plain aquifer (ESRP) from 1953-1992. A summary database has been developed which synthesizes available, but dispersed, information. This assembled data records spatial, volumetric and chemical input patterns which will help establish the initial contaminant water characteristics required in computer modeling, aid in interpreting the monitoring well network hydrochemical information, and contribute to a better understanding of contaminant transport in the aquifer near the ICPP. Gaps and uncertainties in the input record are also identified with respect to time and type. 39 refs., 5 figs., 5 tabs

  8. Biosphere processes affecting environmnetal impacts of hazardous wastes

    International Nuclear Information System (INIS)

    Watkins, B.; Broderick, M.

    1991-01-01

    ANS Consultants Limited has reviewed and assessed a number of biosphere processes which affect the environmental impact of hazardous waste disposal. Processes examined have included the long-term effects of climate change on biosphere characteristics and the transport of toxic materials in food chains; the role of soil animals and plants roots in cycling elements from depth to the soil surface; volatisation mechanisms; the transport of elements in soil with particular reference to erosion and resuspension; mechanisms for foliar contamination via irrigation waters; and organic matter decomposition in varying environmental conditions. (au)

  9. The hot bench scale plant Ester for the vitrification of high level wastes

    International Nuclear Information System (INIS)

    Nannicini, R.; Strazzer, A.; Cantale, C; Donato, A.; Grossi, G.

    1985-01-01

    In this paper the hot bench-scale plant ESTER for the vitrification of the high-level radioactive wastes is described, and the main results of the first radioactive campaign are reported. The ESTER plant, which is placed in the ADECO-ESSOR hot cells of the C.C.R.-EURATOM-ISPRA, has been built and is operated by the ENEA, Departement of Fuel Cycle. It began operating with real radioactive wastes about 1 year ago, solidifying a total of 12 Ci of fission products into 2,02 Kg of borosilicate glass, corresponding to 757 ml of glass. During the vitrification many samples of liquid and gaseous streams have been taken and analyzed. A radioactivity balance in the plant has been calculated, as well as a mass balance of nitrates and of the 137 Cs and 106 Ru volatized in the process

  10. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  11. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    Science.gov (United States)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  12. History of Uranium-233(233U)Processing at the Rocky Flats Plant. In support of the RFETS Acceptable Knowledge Program

    International Nuclear Information System (INIS)

    Moment, R.L.; Gibbs, F.E.; Freiboth, C.J.

    1999-01-01

    This report documents the processing of Uranium-233 at the Rocky Flats Plant (Rocky Flats Environmental Technology Site). The information may be used to meet Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC)and for determining potential Uranium-233 content in applicable residue waste streams

  13. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  14. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  15. Central processing and interim storage of radioactive wastes

    International Nuclear Information System (INIS)

    Wenger, J.P.

    1996-01-01

    Within the ZWILAG project, the buildings for the temporary storage of all categories of radioactive wastes including the spent fuel elements are being readied at a central location. The intermediate storage installations are enhanced by a conditioning and burning plant for weak radioactive operating waste from the nuclear power plants and from the area of responsibility of the state. (author) 2 figs

  16. Enhanced energy efficiency in waste water treatment plants; Steigerung der Energieeffizienz auf kommunalen Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haberkern, Bernd; Maier, Werner; Schneider, Ursula [iat - Ingenieurberatung fuer Abwassertechnik, Darmstadt und Stuttgart, Darmstadt (Germany)

    2008-03-15

    In order to implement the requests of EU-IPCC-directive in a new decree for waste water treatment in Germany, best available techniques have to be defined to optimize energy efficiency in waste water treatment plants (WWTP). Therefore energy efficiency was investigated for common treatment processes and new technologies like membrane filtration, co-digestion or phosphorus recycling. In addition, the occurrence of different technologies for waste water and sludge treatment was evaluated for different size ranges of treatment plants (in population equivalents, PE) nationwide in Germany. The definition of actual and aimed values for specific energy consumption (in kWh/(PE.a)) allowed to calculate the potential energy savings in WWTP and the additional consumption due to new processes on a national level. Under consideration of the reciprocations between optimized energy consumption in WWTP and operation practice, toe-holds to increase energy efficiency according to their relevancy for the national balance could be listed. Case studies prove the feasibility of the investigated techniques and allow proposals for minimum requirements in legal regulation concerning energy efficiency in WWTP. (orig.)

  17. Addressing mixed waste in plutonium processing

    International Nuclear Information System (INIS)

    Christensen, D.C.; Sohn, C.L.; Reid, R.A.

    1991-01-01

    The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed

  18. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production

    Science.gov (United States)

    Shouche, Yogesh S.; Larsson, D. G. Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  19. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production.

    Science.gov (United States)

    Marathe, Nachiket P; Shetty, Sudarshan A; Shouche, Yogesh S; Larsson, D G Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  20. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production.

    Directory of Open Access Journals (Sweden)

    Nachiket P Marathe

    Full Text Available Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20% to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial