WorldWideScience

Sample records for waste phase ii

  1. Sample Exchange Evaluation (SEE) Report - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I.

    1994-09-28

    This report describes the results from Phase II of the Sample Exchange Evaluation (SEE) Program, a joint effort to compare analytical laboratory performance on samples from the Hanford Site`s high-level waste tanks. In Phase II, the program has been expanded to include inorganic constituents in addition to radionuclides. Results from Phase II that exceeded 20% relative percent difference criteria are identified.

  2. Sample Exchange Evaluation (SEE) Report - Phase II

    International Nuclear Information System (INIS)

    Winters, W.I.

    1994-01-01

    This report describes the results from Phase II of the Sample Exchange Evaluation (SEE) Program, a joint effort to compare analytical laboratory performance on samples from the Hanford Site's high-level waste tanks. In Phase II, the program has been expanded to include inorganic constituents in addition to radionuclides. Results from Phase II that exceeded 20% relative percent difference criteria are identified

  3. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  4. Aging and Phase Stability of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tammy S. Edgecumble Summers

    2001-08-23

    This Analysis Model Report (AMR) was prepared in accordance with the Work Direction and Planning Document, ''Aging and Phase Stability of Waste Package Outer Barrier'' (CRWMS M&O 1999a). ICN 01 of this AMR was developed following guidelines provided in TWP-MGR-MD-000004 REV 01, ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001, Addendum B). It takes into consideration the Enhanced Design Alternative II (EDA II), which has been selected as the preferred design for the Engineered Barrier System (EBS) by the License Application Design Selection (LADS) program team (CRWMS M&O 1999b). The salient features of the EDA II design for this model are a waste package (WP) consisting of an outer barrier of Alloy 22 and an inner barrier of Type 316L stainless steel. This report provides information on the phase stability of Alloy 22l, the current waste-package-outer-barrier (WPOB) material. These phase stability studies are currently divided into three general areas: (1) Long-range order reactions; (2) Intermetallic and carbide precipitation in the base metal; and (3) Intermetallic and carbide precipitation in welded samples.

  5. The NEA Forum on Stakeholder Confidence - Phase I Lessons and Phase II Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter [Natural Resources Canada, Ottawa (Canada). Uranium and Radioactive Waste Div.; Pescatore, Claudio [Nuclear Energy Agency, Paris (France)

    2006-09-15

    The Forum on Stakeholder Confidence (FSC) was created under a mandate from the OECD Nuclear Energy Agency (NEA) Radioactive Waste Management Committee (RWMC) to facilitate the sharing of international experience in addressing the societal dimension of radioactive waste management. It explores means of ensuring an effective dialogue with the public, and considers ways to strengthen confidence in decision-making processes. The Forum was launched in August 2000 and completed its first phase in 00 . Major findings and principles for action were published under the title of 'Learning and Adapting to Societal Requirements'. Activities of the FSC were also reported at Valdor 2003. In the second mandate of the FSC, there is continued use of a variety of tools and formats to allow dialogue among stakeholders in an atmosphere of mutual trust: national workshops and community visits, topical sessions, and desk and interview studies. In Phase II, the FSC is exploring: the link between research, development and demonstration and stakeholder confidence; cultural and organisational changes in RWM institutions; the role of media relations and outreach opportunities; tools and processes to help society prepare and manage decisions through stakeholder involvement; and increasing the value of waste management facilities to local communities. Workshops have been held in Germany and Spain. A large set of publications makes both Phase I and Phase II findings widely available.

  6. The NEA Forum on Stakeholder Confidence - Phase I Lessons and Phase II Activities

    International Nuclear Information System (INIS)

    Brown, Peter

    2006-01-01

    The Forum on Stakeholder Confidence (FSC) was created under a mandate from the OECD Nuclear Energy Agency (NEA) Radioactive Waste Management Committee (RWMC) to facilitate the sharing of international experience in addressing the societal dimension of radioactive waste management. It explores means of ensuring an effective dialogue with the public, and considers ways to strengthen confidence in decision-making processes. The Forum was launched in August 2000 and completed its first phase in 00 . Major findings and principles for action were published under the title of 'Learning and Adapting to Societal Requirements'. Activities of the FSC were also reported at Valdor 2003. In the second mandate of the FSC, there is continued use of a variety of tools and formats to allow dialogue among stakeholders in an atmosphere of mutual trust: national workshops and community visits, topical sessions, and desk and interview studies. In Phase II, the FSC is exploring: the link between research, development and demonstration and stakeholder confidence; cultural and organisational changes in RWM institutions; the role of media relations and outreach opportunities; tools and processes to help society prepare and manage decisions through stakeholder involvement; and increasing the value of waste management facilities to local communities. Workshops have been held in Germany and Spain. A large set of publications makes both Phase I and Phase II findings widely available

  7. Waste Isolation Pilot Plant disposal phase: Draft supplemental Environmental Impact Statement

    International Nuclear Information System (INIS)

    1996-11-01

    Purpose of this SEIS-II is to provide information on environmental impacts regarding DOE's proposed disposal operations at WIPP. To that end, SEIS-II was prepared to assess the potential impacts of continuing the phased development of WIPP as a geologic repository for the safe disposal of transuranic (TRU) waste. SEIS-II evaluates a Proposed Action, three Action Alternatives, and two No Action Alternatives. The Proposed Action describes the treatment and disposal of the Basic Inventory of TRU waste over a 35-year period. SEIS-II evaluates environmental impacts resulting from the various treatment options; transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with implementation of the alternatives are discussed

  8. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    Science.gov (United States)

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.

  9. Test Plan for Hydrogen Getters Project - Phase II

    International Nuclear Information System (INIS)

    Mroz, G.

    1999-01-01

    Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

  10. Trial storage of high-level waste in the Asse II salt mine

    International Nuclear Information System (INIS)

    1984-01-01

    This report covers a second phase of the work performed by GSF and KfK in the Asse II salt mine, with a view to disposal of radioactive waste in salt formations. New items of the research were geophysical investigations of the behaviour of heated salt and preparation of a trial storage in the Asse II salt mine

  11. Final waste forms project: Performance criteria for phase I treatability studies

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide open-quotes proof-of-principleclose quotes data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.)

  12. Final waste forms project: Performance criteria for phase I treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M. [Oak Ridge National Lab., TN (United States); Hutchins, D.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Chodak, P. III [Massachusetts Institute of Technology (United States)

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  13. NNWSI Phase II materials interaction test procedure and preliminary results

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating the volcanic tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. This report describes a test method (Phase II) that has been developed to measure the release of radionuclides from the waste package under simulated repository conditions, and provides information on materials interactions that may occur in the repository. The results of 13 weeks of testing using the method are presented, and an analog test is described that investigates the relationship between the test method and expected repository conditions. 9 references, 10 figures, 11 tables

  14. Small Business Innovation Research GRC Phase I, Phase II, and Post-Phase II Opportunity Assessment for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report outlines the 2015 Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Phase I, Phase II, and Post-Phase II opportunity contract award results associated with NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD) for NASA Glenn Research Center. The report also highlights the number of Phase I, Phase II, and Post-Phase II contracts awarded by mission directorate. The 2015 Phase I contract awards to companies in Ohio and their corresponding technologies are also discussed.

  15. Metal waste forms from treatment of EBR-II spent fuel

    International Nuclear Information System (INIS)

    Abraham, D. P.

    1998-01-01

    Demonstration of Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel is currently being conducted on irradiated, metallic driver fuel and blanket fuel elements from the Experimental Breeder Reactor-II (EBR-II) in Idaho. The residual metallic material from the electrometallurgical treatment process is consolidated into an ingot, the metal waste form (MWF), by employing an induction furnace in a hot cell. Scanning electron microscopy (SEM) and chemical analyses have been performed on irradiated cladding hulls from the driver fuel, and on samples from the alloy ingots. This paper presents the microstructures of the radioactive ingots and compares them with observations on simulated waste forms prepared using non-irradiated material. These simulated waste forms have the baseline composition of stainless steel - 15 wt % zirconium (SS-15Zr). Additions of noble metal elements, which serve as surrogates for fission products, and actinides are made to that baseline composition. The partitioning of noble metal and actinide elements into alloy phases and the role of zirconium for incorporating these elements is discussed in this paper

  16. Transport of Zn (II by TDDA-Polypropylene Supported Liquid Membranes and Recovery from Waste Discharge Liquor of Galvanizing Plant of Zn (II

    Directory of Open Access Journals (Sweden)

    Hanif Ur Rehman

    2017-01-01

    Full Text Available The facilitated passage of Zn (II across flat sheet supported liquid membrane saturated with TDDA (tri-n-dodecylamine in xylene membrane phase has been investigated. The effect of acid and metal ion concentration in the feed solution, the carrier concentration in membrane phase, stripping agent concentration in stripping phase, and coions on the extraction of Zn (II was investigated. The stoichiometry of the extracted species, that is, complex, was investigated on slope analysis method and it was found that the complex (LH2·Zn(Cl2 is responsible for transport of Zn (II. A mathematical model was developed for transport of Zn (II, and the predicted results strongly agree with experimental ones. The mechanism of transport was determined by coupled coion transport mechanism with H+ and Cl− coupled ions. The optimized SLM was effectively used for elimination of Zn (II from waste discharge liquor of galvanizing plant of Zn (II.

  17. Radioactive and industrial waste water collection system study, Phase I

    International Nuclear Information System (INIS)

    1993-01-01

    Phase I of the Radioactive Liquid Waste (RLW) Collection System Study has been completed, and the deliverables for this portion of the study are enclosed. The deliverables include: The Work Break-down Structure (WBS) for Phase II; The Annotated Outline for the Collection Study Report; The Process Flow Diagrams (PFD) of the RLW collection system based on current literature and knowledge; The Configuration database; The Reference Index, listing all currently held documents of the RLW collection system; The Reference Drawing Index listing all currently held, potentially applicable, drawings reviewed during the PFD development; The Regulation Identification Document for RCRA and CWA; The Regulation Database for RCRA and CWA; The Regulation Review Log, including statements justifying the non-applicability of certain regulations; Regulation Library, including the photocopied regulations with highlighted text for RCRA and CWA; The summary of RTG's waste water treatment plant design experience and associated regulations on which RTG based the design of these treatment facilities; TA-50 Influent Database; Radioactive Liquid Waste Stream Characterization Database

  18. Application of PCT to the EBR II ceramic waste form

    International Nuclear Information System (INIS)

    Ebert, W. L.; Lewis, M. A.; Johnson, S. G.

    2002-01-01

    We are evaluating the use of the Product Consistency Test (PCT) developed to monitor the consistency of borosilicate glass waste forms for application to the multiphase ceramic waste form (CWF) that will be used to immobilize waste salts generated during the electrometallurgical conditioning of spent sodium-bonded nuclear fuel from the Experimental Breeder Reactor No. 2 (EBR II). The CWF is a multiphase waste form comprised of about 70% sodalite, 25% borosilicate glass binder, and small amounts of halite and oxide inclusions. It must be qualified for disposal as a non-standard high-level waste (HLW) form. One of the requirements in the DOE Waste Acceptance System Requirements Document (WASRD) for HLW waste forms is that the consistency of the waste forms be monitored.[1] Use of the PCT is being considered for the CWF because of the similarities of the dissolution behaviors of both the sodalite and glass binder phases in the CWF to borosilicate HLW glasses. This paper provides (1) a summary of the approach taken in selecting a consistency test for CWF production and (2) results of tests conducted to measure the precision and sensitivity of the PCT conducted with simulated CWF

  19. Phase 2, Solid waste retrieval strategy

    International Nuclear Information System (INIS)

    Johnson, D.M.

    1994-01-01

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve

  20. Phase 2, Solid waste retrieval strategy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.M.

    1994-09-29

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  1. Waste Isolation Pilot Plant disposal phase supplemental environmental impact statement. Implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Implementation Plan for the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (SEIS-II) has two primary purposes: (1) To report on the results of the scoping process (2) To provide guidance for preparing SEIS-II SEIS-II will be the National Environmental Policy Act (NEPA) review for WIPP`s disposal phase. Chapter 1 of this plan provides background on WIPP and this NEPA review. Chapter 2 describes the purpose and need for action by the Department of Energy (hereafter DOE or the Department), as well as a description of the Proposed Action and alternatives being considered. Chapter 3 describes the work plan, including the schedule, responsibilities, and planned consultations with other agencies and organizations. Chapter 4 describes the scoping process, presents major issues identified during the scoping process, and briefly indicates how issues will be addressed in SEIS-II.

  2. Waste Isolation Pilot Plant disposal phase supplemental environmental impact statement. Implementation plan

    International Nuclear Information System (INIS)

    1996-05-01

    The Implementation Plan for the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (SEIS-II) has two primary purposes: (1) To report on the results of the scoping process (2) To provide guidance for preparing SEIS-II SEIS-II will be the National Environmental Policy Act (NEPA) review for WIPP's disposal phase. Chapter 1 of this plan provides background on WIPP and this NEPA review. Chapter 2 describes the purpose and need for action by the Department of Energy (hereafter DOE or the Department), as well as a description of the Proposed Action and alternatives being considered. Chapter 3 describes the work plan, including the schedule, responsibilities, and planned consultations with other agencies and organizations. Chapter 4 describes the scoping process, presents major issues identified during the scoping process, and briefly indicates how issues will be addressed in SEIS-II

  3. TRU waste certification and TRUPACT-II payload verification

    International Nuclear Information System (INIS)

    Hunter, E.K.; Johnson, J.E.

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) established a policy (subsequently confirmed and required by DOE Order 5820.2A, Radioactive Waste Management, September 1988) that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. In this manner, problems that would arise if WAC violations were discovered at the receiver, where corrective facilities are not available, are avoided. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance (C of C) issued by the NRC which invokes the SAR requirements. 1 fig

  4. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  5. Pipe Overpack Container Fire Testing: Phase I & II

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Victor G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ammerman, Douglas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lopez, Carlos [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the fire environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. However, POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a new series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016, and described herein, were done in two phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. This report will describe the various tests conducted in phase I and II, present preliminary results from these tests, and discuss implications for the POCs.

  6. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ''as low as reasonably achievable'' (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford's OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types

  7. Options Study - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  8. Mixed Waste Focus Area integrated technical baseline report, Phase 1: Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet the Department's commitments for treatment of mixed low-level and transuranic wastes. The mission of the MWFA is to provide acceptable treatment systems, developed in partnership with users and with participation of stakeholders, tribal governments, and regulators, that are capable of treating DOE's mixed waste. These treatment systems include all necessary steps such as characterization, pretreatment, and disposal. To accomplish this mission, a technical baseline is being established that forms the basis for determining which technology development activities will be supported by the MWFA. The technical baseline is the prioritized list of deficiencies, and the resulting technology development activities needed to overcome these deficiencies. This document presents Phase I of the technical baseline development process, which resulted in the prioritized list of deficiencies that the MWFA will address. A summary of the data and the assumptions upon which this work was based is included, as well as information concerning the DOE Office of Environmental Management (EM) mixed waste technology development needs. The next phase in the technical baseline development process, Phase II, will result in the identification of technology development activities that will be conducted through the MWFA to resolve the identified deficiencies

  9. WASTES II: Waste System Transportation and Economic Simulation. Version II. User's guide

    International Nuclear Information System (INIS)

    Shay, M.R.; Buxbaum, M.E.

    1986-02-01

    The WASTES II model was developed to provide detailed analyses beyond the capabilities of other available models. WASTES uses discrete event simulation techniques to model the generation of commercial spent nuclear fuel, the buildup of spent fuel inventories within the system, and the transportation requirements for the movement of radioactive waste throughout the system. The model is written in FORTRAN 77 as an extension to the SLAM commercial simulation language package. In addition to the pool storage and dry storage located at the reactors, the WASTES model provides a choice of up to ten other storage facilities of four different types. The simulation performed by WASTES may be controlled by a combination of source- and/or destination-controlled transfers that are requested by the code user. The user supplies shipping cask characteristics for truck or rail shipment casks. As part of the facility description, the user specifies which casks the facility can use. Shipments within the system can be user specified to occur optimally, or proximally. Optimized shipping can be used when exactly two destination facilities of the same facility type are open for receipt of fuel. Optimized shipping selects source/destination pairs so that the total shipping distance or total shipping costs in a given year are minimized when both facilities are fully utilized. Proximity shipping sequentially fills the closest facility to the source according to the shipment priorities without regard for the total annual shipments. This results in sub-optimal routing of waste material but can be used to approximate an optimal shipping strategy when more than two facilities of the same type are available to receive waste. WASTES is currently able to analyze each of the commercial spent fuel logistics scenarios specified in the 1985 DOE Mission Plan

  10. Biodegradation testing of TMI-2 EPICOR-II waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; McConnell, J.W. Jr.

    1988-06-01

    ASTM biodegradation tests were conducted on waste forms containing high specific activity ion exchange resins from EPICOR-II prefilters. Those tests were part of a program to test waste forms in accordance with the NRC Branch Technical Position on Waste Form. Small waste forms were manufactured using two different solidification agents, Portland Type I-II cement and vinyl ester-styrene (VES). Ion exchange material was taken from two EPICOR-II prefilters; PF-7, which contained all organic material, and PF-20, which contained organic resins and a layer of inorganic zeolites. Test results showed that the VES waste forms supported microbial growth, while cement waste forms did not support that growth. Growth was also observed adjacent to some VES waste forms. Radiation levels found in the ion exchange resins used in this study were not found to inhibit microbial growth. The extent of degradation of the waste forms could not be determined using the ASTM tests specified by the NRC Branch Technical Position on Waste Form. As a result of this work, a different testing methodology is recommended, which would provide direct verification of waste form capabilities. That methodology would evaluate solidification materials without using the ASTM procedures or subsequent compression testing. The proposed tests would provide exposure to a wide range of microbial species, use appropriately sized specimens, provide for possible use of alternate carbon sources, and extend the test length. Degradation would be determined directly by measuring metabolic activity or specimen weight loss. 16 refs., 15 figs., 3 tabs

  11. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 1: Title II design report

    International Nuclear Information System (INIS)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 1 provides a comprehensive narrative description of the proposed facility and systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title II design. The intent of the system description presented is to provide WHC an understanding of the facilities and equipment provided and the A/E's perspective on how these systems will operate

  12. Test phase plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase

  13. Design of Phase II Non-inferiority Trials.

    Science.gov (United States)

    Jung, Sin-Ho

    2017-09-01

    With the development of inexpensive treatment regimens and less invasive surgical procedures, we are confronted with non-inferiority study objectives. A non-inferiority phase III trial requires a roughly four times larger sample size than that of a similar standard superiority trial. Because of the large required sample size, we often face feasibility issues to open a non-inferiority trial. Furthermore, due to lack of phase II non-inferiority trial design methods, we do not have an opportunity to investigate the efficacy of the experimental therapy through a phase II trial. As a result, we often fail to open a non-inferiority phase III trial and a large number of non-inferiority clinical questions still remain unanswered. In this paper, we want to develop some designs for non-inferiority randomized phase II trials with feasible sample sizes. At first, we review a design method for non-inferiority phase III trials. Subsequently, we propose three different designs for non-inferiority phase II trials that can be used under different settings. Each method is demonstrated with examples. Each of the proposed design methods is shown to require a reasonable sample size for non-inferiority phase II trials. The three different non-inferiority phase II trial designs are used under different settings, but require similar sample sizes that are typical for phase II trials.

  14. Pretest Predictions for Phase II Ventilation Tests

    International Nuclear Information System (INIS)

    Yiming Sun

    2001-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M and O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M and O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M and O 2000a)

  15. Pipe Overpack Container Fire Testing: Phase I II & III.

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Victor G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ammerman, Douglas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lopez, Carlos [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the fire environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016 were done in three phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. The goal of the third phase was to see if surrogate aerosol gets released from the PC when the drum lid is off. This report will describe the various tests conducted in phase I, II, and III, present preliminary results from these tests, and discuss implications for the POCs.

  16. Evaluation of Wet Chemical ICP-AES Elemental Analysis Methods using Simulated Hanford Waste Samples-Phase I Interim Report

    International Nuclear Information System (INIS)

    Coleman, Charles J.; Edwards, Thomas B.

    2005-01-01

    The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL). Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less turnaround

  17. Effects of heat treatment and formulation on the phase composition and chemical durability of the EBR-II ceramic waste form

    International Nuclear Information System (INIS)

    Ebert, W. E.; Dietz, N. L.; Janney, D. E.

    2006-01-01

    High-level radioactive waste salts generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel from the Experimental Breeder Reactor-II will be immobilized in a ceramic waste form (CWF). Tests are being conducted to evaluate the suitability of the CWF for disposal in the planned federal high-level radioactive waste repository at Yucca Mountain. In this report, the results of laboratory tests and analyses conducted to address product consistency and thermal stability issues called out in waste acceptance requirements are presented. The tests measure the impacts of (1) variations in the amounts of salt and binder glass used to make the CWF and (2) heat treatments on the phase composition and chemical durability of the waste form. A series of CWF materials was made to span the ranges of salt and glass contents that could be used during processing: between 5.0 and 15 mass% salt loaded into the zeolite (the nominal salt loading is 10.7%, and the process control range is 10.6 to 11.2 mass%), and between 20 and 30 mass% binder glass mixed with the salt-loaded zeolite (the nominal glass content is 25% and the process control range is 20 to 30 mass%). In another series of tests, samples of two CWF products made with the nominal salt and glass contents were reheated to measure the impact on the phase composition and durability: long-term heat treatments were conducted at 400 and 500 C for durations of 1 week, 4 weeks, 3 months, 6 months, and 1 year; short-term heat treatments were conducted at 600, 700, 800, and 850 C for durations of 4, 28, 52, and 100 hours. All of the CWF products that were made with different amounts of salt, zeolite, and glass and all of the heat-treated CWF samples were analyzed with powder X-ray diffraction to measure changes in phase compositions and subjected to 7-day product consistency tests to measure changes in the chemical durability. The salt loading had the greatest impact on phase composition and durability. A

  18. Centrifuge workers study. Phase II, completion report

    International Nuclear Information System (INIS)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom

  19. Centrifuge workers study. Phase II, completion report

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  20. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  1. Enginnering development of coal-fired high performance power systems phase II and III

    International Nuclear Information System (INIS)

    1998-01-01

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates 65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R ampersand D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update

  2. Military Family Coping Project - Phase II

    Science.gov (United States)

    2015-05-01

    Anxiety, Life Satisfaction , Addiction, Trauma 4 The Military Family Coping Project reflects two phases. The first consisted of a series of focus...need for and guided the work of the Military Family Coping Project Phase II funded by TATRC. The Military Family Coping Project Phase II was...solidarity. For the purposes of family functioning analyses, married and unmarried soldiers were analyzed separately because marital status affects

  3. Phase II clinical development of new drugs

    CERN Document Server

    Ting, Naitee; Ho, Shuyen; Cappelleri, Joseph C

    2017-01-01

    This book focuses on how to appropriately plan and develop a Phase II program, and how to design Phase II clinical trials and analyze their data. It provides a comprehensive overview of the entire drug development process and highlights key questions that need to be addressed for the successful execution of Phase II, so as to increase its success in Phase III and for drug approval. Lastly it warns project team members of the common potential pitfalls and offers tips on how to avoid them.

  4. Final project report, TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1992-01-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project, including Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 m 3 of low-level solid radioactive waste and 5 m 3 of mixed waste

  5. Aerospace Systems Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Title: Aerospace Systems Monitor PHASE 1 Technical Abstract: This Phase II STTR project will continue development and commercialization of the Aerospace...

  6. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    International Nuclear Information System (INIS)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters

  7. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters.

  8. Horonobe Underground Research Laboratory project. Plans of investigations during shaft and drift excavation (Construction of underground facilities: Phase II)

    International Nuclear Information System (INIS)

    2005-06-01

    Horonobe Underground Research Laboratory Project is planned for over 20 years to establish the scientific and technical basis for the underground disposal of high-level radioactive wastes in Japan. The investigations are conducted by JNC in three phases, from the surface (Phase I), during the construction of the underground facilities (Phase II), and using the facilities (Phase III). This report concerns the investigation plans for Phase II. During excavation of shafts and drifts, detailed geological and borehole investigation will be conducted and the geological model constructed in Phase I is evaluated and revised by newly acquired data of geophysical and geological environment. Detailed in-situ experiments, as well as the effects of shaft excavation, are also done to study long-term changes, rock properties, groundwater flow and chemistry to ensure the reliability of repository technology and establish safety assessment methodology. (S. Ohno)

  9. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  10. Status of Gerda Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of {sup 76}Ge. In Phase I of the experiment a background index (BI) of 10{sup -2} cts/(keV.kg.yr) was reached. No signal has been found and a lower limit on the half-life of 2.1.10{sup 25} yr (at 90% C.L.) is extracted. The aim of Phase II is to double the Ge mass and further reduce the BI by an order of magnitude to explore half-lives of about 10{sup 26} yr. Thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by an active veto to read out argon scintillation light. The Phase II commissioning showed that two of the major background components, external γ-rays from {sup 214}Bi and {sup 208}Tl decays, can be suppressed up to two orders of magnitude. This talk presents the current status of the GERDA Phase II upgrade.

  11. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste

  12. Test plan: Effects of phase separation on waste loading for high level waste glasses

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    As part of the Tanks Focus Area's (TFA) effort to increase waste loading for high-level waste (HLW) vitrification at various facilities in the Department of Energy (DOE) complex, the occurrence of phase separation in waste glasses spanning the Savannah River Site (SRS) and Idaho National Engineering and Environmental Laboratory (INEEL) composition ranges were studied during FY99. The type, extent, and impact of phase separation on glass durability for a series of HLW glasses, e.g., SRS-type and INEEL-type, were examined

  13. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  14. Test of GERDA Phase II detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias; Gusev, Konstantin [Technische Universitaet Muenchen (Germany); Schwingenheuer, Bernhard; Wagner, Victoria [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    The GERDA experiment searches for the lepton number violating neutrinoless double beta decay (0νββ) of {sup 76}Ge. The experiment uses HPGe detectors enriched in {sup 76}Ge as source and detection material. In GERDA Phase I five BEGe detectors were operated successfully. These detectors are distinguished for improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. In Phase II additional 25 BEGe detectors will be installed. New electronics and radio-pure low-mass holders were specially designed for Phase II. Prior to the installation in GERDA all BEGe detectors are tested in their final assembly in the LNGS underground laboratory. This talk presents the mechanics and performance of the GERDA Phase II detector assembly.

  15. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-28

    quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.

  16. Product evaluation phase 1 report

    International Nuclear Information System (INIS)

    Kearsey, H.A.; Hornby, J.

    1984-01-01

    This report concerns the intermediate-level radioactive waste arisings from the reprocessing of irradiated nuclear fuel at BNFL Sellafield. Headings are: general introduction (origin of waste; current stocks and future arisings); characteristics of the waste stream; alternative matrices (for solidification of waste in form suitable for disposal); waste simulation; relevance of other Phase II studies. (U.K.)

  17. Transuranic (TRU) Waste Phase I Retrieval Plan

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A', the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-I13 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1,4,20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1,20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  18. Transuranic (TRU) Waste Phase I Retrieval Plan

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    2000-01-01

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1, 4, 20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1 , 20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  19. Data Quality Objective Summary Report for Phase II of the 105-F and DR Reactor Buildings

    International Nuclear Information System (INIS)

    Bauer, R.G.

    1998-01-01

    This data quality objective (DQO) process is to support planning and decision-making activities of Phase II decontamination and decommissioning (D and D) activities for the 105-F and 105-DR Reactor Buildings.The objective of this DQO is to determine the survey and characterization requirements for these rooms to provide the necessary information for worker safety, waste designation, recycle, reuse, and clean landfill disposal decisions during D and D

  20. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    International Nuclear Information System (INIS)

    Dabbs, Daniel M.; Aksay, Ilhan A.

    2005-01-01

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations

  1. 129I Interlaboratory comparison: phase I and phase II

    International Nuclear Information System (INIS)

    Caffee, M. W.; Roberts, M. L.

    1999-01-01

    An interlaboratory comparison exercise for 129 I was organized and conducted. Nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, 11 samples were measured. The suite of samples contained both synthetic ''standard type'' materials (i.e., AgI) and environmental materials. The isotopic 129 I/ 127 I ratios of the samples varied from 10 -8 to 10 -14 . In this phase, each laboratory was responsible for its own chemical preparation of the samples. In Phase I, the 129 I AMS measurements for prepared AgI were in good agreement. However, large discrepancies were seen in 129 I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I 129 I intercomparison, a subsequent study was conducted. In Phase II of the 129 I intercomparison, three separate laboratories prepared AgI from two environmental samples (IAEA 375 soil and maples leaves). Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then re-distributed to the participating 129 I AMS facilities and 129 I/ 127 I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented

  2. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  3. Upgrade for Phase II of the Gerda experiment

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaïdic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2018-05-01

    The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of ^{76}Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain "background-free" up to its design exposure (100 kg year). It will reach thereby a half-life sensitivity of more than 10^{26} year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.

  4. Product evaluation phase 1 report

    International Nuclear Information System (INIS)

    Kearsey, H.A.; Page, R.J.

    1984-01-01

    This report concerns the intermediate-level radioactive waste arisings from the reprocessing of irradiated nuclear fuel at BNFL Sellafield. The graphite waste arises from the reprocessing of CAGR fuel assemblies. Headings are: introduction (origin of waste; future arisings); waste characterisation; initial evaluation of encapsulation options - evaluation of potential matrices for encapsulation of waste in form suitable for disposal; waste simulation; relevance to other phase II studies. (UK)

  5. Technical summary of Groundwater Quality Protection Program at Savannah River Plant. Volume II. Radioactive waste

    International Nuclear Information System (INIS)

    Stone, J.A.; Christensen, E.J.

    1983-12-01

    This report (Volume II) presents representative monitoring data for radioactivity in groundwater at SRP. Four major groups of radioactive waste disposal sites and three minor sites are described. Much of the geohydrological and and other background information given in Volume I is applicable to these sites and is incorporated by reference. Several of the sites that contain mixed chemical and radioactive wastes are discussed in both Volumes I and II. Bulk unirradiated uranium is considered primarily a chemical waste which is addressed in Volume I, but generally not in Volume II

  6. 40 CFR 72.73 - State issuance of Phase II permits.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false State issuance of Phase II permits. 72.73 Section 72.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.73 State issuance of Phase II permits...

  7. Turnable Semiconductor Laser Spectroscopy in Hollow Optical Waveguides, Phase II SBIR

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. Fetzer, Ph.D.

    2001-12-24

    In this study a novel optical trace gas sensor based on a perforated hollow waveguide (PHW) was proposed. The sensor has been given the acronym ESHOW for Environmental Sensor using Hollow Optical Waveguides. Realizations of the sensor have demonstrated rapid response time (<2s), low minimum detection limits (typically around 3 x 10-5 absorbance). Operation of the PHW technology has been demonstrated in the near-infrared (NIR) and mid0infrared (MIR) regions of the spectrum. Simulation of sensor performance provided in depth understanding of the signals and signal processing required to provide high sensitivity yet retain rapid response to gas changes. A dedicated sensor electronics and software foundation were developed during the course of the Phase II effort. Commercial applications of the sensor are ambient air and continuous emissions monitoring, industrial process control and hazardous waste site monitoring. There are numerous other applications for such a sensor including medical diagnosis and treatment, breath analysis for legal purposes, water quality assessment, combustion diagnostics, and chemical process control. The successful completion of Phase II resulted in additional funding of instrument development by the Nations Institute of Heath through a Phase I SBIR grant and a strategic teaming relationship with a commercial manufacture of medical instrumentation. The purpose of the NIH grant and teaming relationship is to further develop the sensor to monitor NO in exhaled breath for the purposes of asthma diagnosis.

  8. Status of the Gerda phase II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda experiment searches for the neutrinoless double beta decay (0νββ) in {sup 76}Ge. The first phase of the experiment collected 21.6 kg. yr of exposure with a background index (BI) of 0.01 cts/(keV . kg . yr). No signal was observed and a lower limit for the 0νββ half-life was set to T{sup 0νββ}{sub 1/2} < 2.1 . 10{sup 25} yr (90% C.L). The apparatus has now been upgraded to the Phase II configuration. In Phase II 38 kg of HPGe detectors will be operated to reach an exposure of 100 kg . yr. The goal of Gerda Phase II is to lower the BI to 10{sup -3} cts/(keV . kg . y), in order to reach the sensitivity for T{sup 0νββ}{sub 1/2} = O(10{sup 26}) yr. The additional target mass is constituted of 30 custom made BEGe detectors with higher energy resolution and better pulse shape discrimination performance. The detectors are operated in new radio-pure low-mass holders. The liquid argon surrounding the detectors has been instrumented to veto the background events which produce scintillation light. In this talk the current status and the performance of the Gerda Phase II are presented.

  9. Lunar Health Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  10. 78 FR 76789 - Additional Connect America Fund Phase II Issues

    Science.gov (United States)

    2013-12-19

    ... inspection and copying during normal business hours in the FCC Reference Information Center, Portals II, 445... Phase I to Phase II. 2. Timing of Phase II Support Disbursements. In the USF/ICC Transformation Order... language in paragraph 180 of the USF/ICC Transformation Order. We now seek to more fully develop the record...

  11. Estimated dose to in-tank equipment: Phase 1 waste feed delivery

    International Nuclear Information System (INIS)

    Claghorn, R.D.

    1998-01-01

    This analysis estimates the radiation dose to the equipment that will be submerged in double-shell tank waste. The results of this analysis are intended to be the basis for specifications for in-tank equipment. The scope of this analysis is limited to the new equipment required for the delivery of waste feed to Phase 1 private contractors. Phase 1 refers to the first of a two-phase plan to privatize the remediation of Hanford's tank waste. The focus of this analysis is on waste feed delivery because of the extraordinarily high cost of any failure that would lead to the interruption of a steady flow of feed to the private contractors

  12. Final project report: TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1993-02-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project including, Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 M 3 of mixed waste

  13. Probability of success for phase III after exploratory biomarker analysis in phase II.

    Science.gov (United States)

    Götte, Heiko; Kirchner, Marietta; Sailer, Martin Oliver

    2017-05-01

    The probability of success or average power describes the potential of a future trial by weighting the power with a probability distribution of the treatment effect. The treatment effect estimate from a previous trial can be used to define such a distribution. During the development of targeted therapies, it is common practice to look for predictive biomarkers. The consequence is that the trial population for phase III is often selected on the basis of the most extreme result from phase II biomarker subgroup analyses. In such a case, there is a tendency to overestimate the treatment effect. We investigate whether the overestimation of the treatment effect estimate from phase II is transformed into a positive bias for the probability of success for phase III. We simulate a phase II/III development program for targeted therapies. This simulation allows to investigate selection probabilities and allows to compare the estimated with the true probability of success. We consider the estimated probability of success with and without subgroup selection. Depending on the true treatment effects, there is a negative bias without selection because of the weighting by the phase II distribution. In comparison, selection increases the estimated probability of success. Thus, selection does not lead to a bias in probability of success if underestimation due to the phase II distribution and overestimation due to selection cancel each other out. We recommend to perform similar simulations in practice to get the necessary information about the risk and chances associated with such subgroup selection designs. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Oxygen-Methane Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  15. OSAS Surgery and Postoperative Discomfort: Phase I Surgery versus Phase II Surgery

    Directory of Open Access Journals (Sweden)

    Giulio Gasparini

    2015-01-01

    Full Text Available Introduction. This study aims to investigate the reasons that discourage the patients affected by OSAS to undergo orthognathic surgery and compares the postoperative discomfort of phase I (soft tissue surgery and phase II (orthognathic surgery procedures for treatment of OSAS. Material and Methods. A pool of 46 patients affected by OSAS was divided into two groups: “surgery patients” who accepted surgical treatments of their condition and “no surgery patients” who refused surgical procedures. The “surgery patients” group was further subdivided into two arms: patients who accepted phase I procedures (IP and those who accepted phase II (IIP. To better understand the motivations behind the refusal of II phase procedures, we asked the patients belonging to both the IP group and “no surgery” group to indicate the main reason that influenced their decision to avoid II phase procedures. We also monitored and compared five parameters of postoperative discomfort: pain, painkiller assumption, length of hospitalization, foreign body sensation, and diet assumption following IP and IIP procedures. Results. The main reason to avoid IIP procedures was the concern of a more severe postoperative discomfort. Comparison of the postoperative discomfort following IP versus IIP procedures showed that the former scored worse in 4 out of 5 parameters analyzed. Conclusion. IIP procedures produce less postoperative discomfort. IIP procedures, namely, orthognathic surgery, should be the first choice intervention in patients affected by OSAS and dentoskeletal malformation.

  16. Barriers to participation in a phase II cardiac rehabilitation programme.

    Science.gov (United States)

    Mak, Y M W; Chan, W K; Yue, C S S

    2005-12-01

    To identify barriers to participation in a phase II cardiac rehabilitation programme and measures that may enhance participation. Prospective study. Regional hospital, Hong Kong. Cardiac patients recruited for a phase I cardiac rehabilitation programme from July 2002 to January 2003. Reasons for not participating in a phase II cardiac rehabilitation programme. Of the 193 patients recruited for a phase I cardiac rehabilitation programme, 152 (79%) patients, with a mean age of 70.3 years (standard deviation, 11.9 years), did not proceed to phase II programme. Eleven (7%) deaths occurred before commencement of phase II and 74 (49%) patients were considered physically unfit. Reasons for the latter included fractures, pain, or degenerative changes in the lower limbs (24%), and co-morbidities such as cerebrovascular accident (19%), chronic renal failure (11%), congestive heart failure (9%), and unstable angina (8%). Phase II rehabilitation was postponed until after completion of scheduled cardiac interventions in 13% of patients. Failure of physicians to arrange the pre-phase II exercise stress test as per protocol was reported in 7% of patients. Other reasons were reported: work or time conflicts (16%), non-compliance with cardiac treatment (5%), financial constraints (4%), self-exercise (3%), fear after exercise stress testing (3%), and patients returning to their original cardiologists for treatment (3%). A significant (79%) proportion of patients did not proceed to a phase II cardiac rehabilitation programme for a variety of reasons. These included physical unfitness, work or time conflicts, and need to attend scheduled cardiac interventions. Further studies are required to determine how to overcome obstacles to cardiac rehabilitation.

  17. Municipal solid waste development phases: Evidence from EU27.

    Science.gov (United States)

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. © The Author(s) 2015.

  18. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3β Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Congcong Shen

    2017-02-01

    Full Text Available While angiotensin II (ang II has been implicated in the pathogenesis of cardiac cachexia (CC, the molecules that mediate ang II's wasting effect have not been identified. It is known TNF-α level is increased in patients with CC, and TNF-α release is triggered by ang II. We therefore hypothesized that ang II induced muscle wasting is mediated by TNF-α. Ang II infusion led to skeletal muscle wasting in wild type (WT but not in TNF alpha type 1 receptor knockout (TNFR1KO mice, suggesting that ang II induced muscle loss is mediated by TNF-α through its type 1 receptor. Microarray analysis identified cholesterol 25-hydroxylase (Ch25h as the down stream target of TNF-α. Intraperitoneal injection of 25-hydroxycholesterol (25-OHC, the product of Ch25h, resulted in muscle loss in C57BL/6 mice, accompanied by increased expression of atrogin-1, MuRF1 and suppression of IGF-1/Akt signaling pathway. The identification of 25-OHC as an inducer of muscle wasting has implications for the development of specific treatment strategies in preventing muscle loss.

  19. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  20. Phenomenological studies of two-phase flow processes for nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.; Finsterle, S.; Persoff, P.; Oldenburg, C.

    1994-01-01

    The US civilian radioactive waste management program is unique in its focus on a site in the unsaturated zone, at Yucca Mountain, Nevada. Two-phase flow phenomena can also play an important role in repositories beneath the water table where gas is generated by corrosion, hydrolysis, and biological degradation of the waste packages. An integrated program has been initiated to enhance our understanding of two-phase flow behavior in fractured rock masses. The studies include two-phase (gas-liquid) flow experiments in laboratory specimens of natural rock fractures, analysis and modeling of heterogeneity and instability effects in two-phase flow, and design and interpretation of field experiments by means of numerical simulation. We present results that identify important aspects of two-phase flow behavior on different space and time scales which are relevant to nuclear waste disposal in both unsaturated and saturated formations

  1. First results from GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    Gerda is designed for a background-free search of 76Ge neutrinoless double-β decay, using bare Ge detectors in liquid Ar. The experiment was upgraded after the successful completion of Phase I to double the target mass and further reduce the background. Newly-designed Ge detectors were installed along with LAr scintillation sensors. Phase II of data-taking started in Dec 2015 with approximately 36 kg of Ge detectors and is currently ongoing. The first results based on 10.8 kg· yr of exposure are presented. The background goal of 10-3 cts/(keV· kg· yr) is achieved and a search for neutrinoless double-β decay is performed by combining Phase I and II data. No signal is found and a new limit is set at T1/20ν > 5.3 \\cdot {1025} yr (90% C.L.).

  2. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    Science.gov (United States)

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. SIMMER-II analysis of transition-phase experiments

    International Nuclear Information System (INIS)

    Wehner, T.R.; Bell, C.R.

    1985-01-01

    Analyses of Los Alamos transition-phase experiments with the SIMMER-II computer code are reported. These transient boilup experiments simulated the recriticality-induced transient motion of a boiling pool of molten fuel, molten steel and steel vapor, within a subassembly duct in a liquid-metal fast breeder reactor during the transition phase of a core-disruptive accident. The two purposes of these experiments were to explore and reach a better understanding of fast reactor safety issues, and to provide data for SIMMER-II verification. Experimental data, consisting of four pressure traces and a high-speed movie, were recorded for four sets of initial conditions. For three of the four cases, SIMMER-II-calculated pressures compared reasonably well with the experimental pressures. After a modification to SIMMER-II's liquid-vapor drag correlation, the comparison for the fourth case was reasonable also. 12 refs., 4 figs

  4. 40 CFR 73.20 - Phase II early reduction credits.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Phase II early reduction credits. 73.20 Section 73.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Allocations § 73.20 Phase II early reduction credits...

  5. Pig major acute-phase protein and haptoglobin serum concentrations correlate with PCV2 viremia and the clinical course of postweaning multisystemic wasting syndrome

    DEFF Research Database (Denmark)

    Grau-Roma, Llorenc; Heegaard, Peter M. H.; Hjulsager, Charlotte Kristiane

    2009-01-01

    -PMWS affected pigs. In addition, evidence of infection with other pathogens and its relation with variations in APP's concentrations was also assessed. Fourteen independent batches of 100 to 154 pigs were monitored from birth to PMWS outbreak occurrence in 11 PMWS affected farms. Pigs displaying PMWS-like signs......The aim of the present longitudinal study was to assess the evolution of two acute phase proteins (APPs), pig-major acute phase protein (pig-MAP) and haptoglobin (HPT), in serum from pigs that developed postweaning multisystemic wasting syndrome (PMWS) in comparison to healthy and wasted non...... and age-matched healthy controls were euthanized during the clinical outbreak. PMWS was diagnosed according to internationally accepted creteria and pigs were classified as: i)PMWS cases, ii) wasted non-PMWS cases and iii) healthy pigs. At the moment of PMWS occurrence, pig-MAP and HPT concentration...

  6. TRUPACT-II, a regulatory perspective

    International Nuclear Information System (INIS)

    Gregory, P.C.; Spooner, O.R.

    1995-01-01

    The Transuranic Package Transporter II (TRUPACT-II) is a US Nuclear Regulatory Commission (NRC) certified Type B packaging for the shipment of contact-handled transuranic (CH-TRU) material by the US Department of Energy (DOE). The NRC approved the TRUPACT-II design as meeting the requirements of Title 10, Code of Federal Regulations, Part 71 (10 CFR 71) and issued Certificate of Compliance (CofC) Number 9218 to the DOE. There are currently 15 certified TRUPACT-IIs. Additional TRUPACT-IIs will be required to make more than 15,000 shipments of CH-TRU waste to the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico. The TRUPACT-II may also be used for the DOE inter-site and intra-site shipments of CH-TRU waste. The Land Withdrawal Act (Public Law 102-579), enacted by the US Congress, October 30, 1992, and an agreement between the DOE and the State of New Mexico, signed August 4, 1987, both stipulate that only NRC approved packaging may be used for shipments of TRU waste to the WIPP. Early in the TRUPACT-II development phase it was decided that the transportation system (tractor, trailer, and TRUPACT-II) should be highway legal on all routes without the need for oversize and/or overweight permits. In large measure, public acceptance of the DOE's efforts to safely transport CH-TRU waste depends on the public's perception that the TRUPACT-II is in compliance with all applicable regulations, standards, and quality assurance requirements. This paper addresses some of the numerous regulations applicable to Type B packaging, and it describes how the TRUPACT-II complies with these regulations

  7. The Gerda Phase II detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Schwingenheuer, Bernhard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    Phase II of the Gerda (Germanium Detector Array) experiment will continue the search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Prerequisites for Phase II are an increased target mass and a reduced background index of < 10 {sup -3} cts/(keV.kg.yr). Major hardware upgrades to achieve these requirements are scheduled for 2013. They include the deployment of a new radio pure low mass detector assembly. The structural properties of available radio-pure materials and reduction of mass necessitate a change of the electrical contacting used to bias and read-out the detectors. The detector assembly design and the favored contacting solution are presented.

  8. Glass formulation for phase 1 high-level waste vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B 2 O 3 content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B 2 O 3 and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume

  9. Glass formulation for phase 1 high-level waste vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B{sub 2}O{sub 3} content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B{sub 2}O{sub 3} and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume.

  10. Design of clinical trials Phase I and II with radiopharmaceuticals

    International Nuclear Information System (INIS)

    Giannone, C.A.; Soroa, V.E.

    2015-01-01

    We presented some usual designs for clinical studies in Phase I and Phase II. For Phase I we considered the 3 + 3 Classic design, designs with accelerated titration and those with dose escalation schemes with overdose control (EWOC). For Phase II designs with efficacy outcomes are presented. The design proposed by Fleming is discussed as well as those with inclusion of patients in two stages: Gehan’s design and the Optimal two–stage Simon’s design. We also discussed the design of combined endpoints of efficacy and safety of Bryant and Day with an application example of therapeutically Lu-177. Finally some proposals for phase II trials with control group are considered. (authors) [es

  11. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  12. Product evaluation phase 1 report

    International Nuclear Information System (INIS)

    Kearsey, H.A.; Hornby, J.

    1984-01-01

    This report concerns the intermediate-level radioactive waste arisings from the reprocessing of irradiated nuclear fuel at BNFL Sellafield. The waste arises from the reprocessing of uranium from overseas PWR type reactors and is the solid dissolver waste remaining after the fuel has been extracted. Headings are: general introduction (origin, current stocks and future arisings); characteristics of the waste stream; alternative matrices - evaluation of potential matrices for encapsulation of waste in form suitable for disposal; waste simulation; relevance of other phase II studies. (U.K.)

  13. Product evaluation phase 1 report

    International Nuclear Information System (INIS)

    Kearsey, H.A.; Page, R.J.

    1984-01-01

    This report concerns the intermediate-level radioactive waste arisings from the reprocessing of irradiated nuclear fuel at BNFL Sellafield. The waste arises from the reprocessing of CAGR fuel assemblies, which consist of fuel pins held inside a graphite sleeve by means of stainless steel support grids and braces. Headings are: introduction (origin of waste and future arisings); waste characterisation; initial evaluation of encapsulation options - evaluation of potential matrices for encapsulation of waste in form suitable for disposal; waste simulation; relevance of other phase II studies. (U.K.)

  14. Product evaluation phase 1 report

    International Nuclear Information System (INIS)

    Kearsey, H.A.; Hornby, J.

    1984-01-01

    This report concerns the intermediate-level radioactive waste arisings from the reprocessing of irradiated nuclear fuel at BNFL Sellafield. The waste arises from the reprocessing of uranium from overseas BWR type reactors and is the solid dissolver waste remaining after the fuel has been extracted. Headings are: general introduction (origin, current stocks and future arisings); characteristics of the waste stream; alternative matrices - evaluation of potential matrices for encapsulation of waste in form suitable for disposal; waste simulation; relevance of other phase II studies. (U.K.)

  15. HPC Benchmark Suite NMx, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In the phase II effort, Intelligent Automation Inc., (IAI) and University of Central Florida (UCF) propose to develop a comprehensive numerical test suite for...

  16. Horonobe Underground Research Laboratory project. Synthesis of phase II (construction phase) investigations to a depth of 350 m

    International Nuclear Information System (INIS)

    Sato, Toshinori; Sasamoto, Hiroshi; Ishii, Eiichi; Matsuoka, Toshiyuki; Hayano, Akira; Miyakawa, Kazuya; Fujita, Tomoo; Tanai, Kenji; Nakayama, Masashi; Takeda, Masaki; Yokota, Hideharu; Aoyagi, Kazuhei; Ohno, Hirokazu; Shigeta, Naotaka; Hanamuro, Takahiro; Ito, Hiroaki

    2017-03-01

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. This report summarizes the results of the Phase II investigations carried out from April 2005 to June 2014 to a depth of 350 m. Integration of work from different disciplines into a 'geosynthesis' ensures that the Phase II goals have been successfully achieved and identifies key issues that need to be addressed in the Phase II investigations. Efforts are made to summarize as many lessons learnt from the Phase II investigations and other technical achievements as possible to form a 'knowledge base' that will reinforce the technical basis for both implementation and the formulation of safety regulations. (author)

  17. Crew Cerebral Oxygen Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposal is aimed at developing a non-invasive, optical method for monitoring crew member state of awareness in operational environments. All...

  18. Transuranic (TRU) Waste Phase I Retrieval Plan

    CERN Document Server

    McDonald, K M

    2000-01-01

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval ...

  19. Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schuknecht, Nate [Project Manager; White, David [Principle Investigator; Hoste, Graeme [Research Engineer

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  20. Improved Metal-Polymeric Laminate Radiation Shielding, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase II program, builds on the phase I feaibility where a multifunctional lightweight radiation shield composite was developed and fabricated. This...

  1. Development of the stored waste autonomous mobile inspector (SWAMI II)

    International Nuclear Information System (INIS)

    Peterson, K.D.; Ward, C.R.

    1995-01-01

    A mobile robot system called the Stored Waste Autonomous Mobile Inspector (SWAMI) is under development by the Savannah River Technology Center (SRTC) Robotics Group of Westinghouse Savannah River Company (WSRC) to perform mandated inspections of waste drums stored in warehouse facilities. The system will reduce personnel exposure to potential hazards and create accurate, high-quality documentation to ensure regulatory compliance and enhance waste management operations. Development work is coordinated among several Department of Energy (DOE), academic, and commercial entities in accordance with DOE's technology transfer initiative. The prototype system, SWAMI I, was demonstrated at Savannah River Site (SRS) in November, 1993. SWAMI II is now under development for field trials at the Fernald site

  2. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr

    2015-12-15

    Highlights: • Waste Lyocell fiber was chemically modified into cellulose xanthate. • The sorbent showed high affinity for Pb(II), Cd(II) and Cu(II) ions. • The sorbent also showed strong Cu(II) selectivity in Pb(II)–Cd(II)–Cu(II) ternary metal solutions. - Abstract: In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29 ± 0.28 mg/g, 505.64 ± 0.21 mg/g, and 123.08 ± 0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  3. Performance of BEGe detectors for GERDA Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    After the end of the data-taking for GERDA Phase I, the apparatus has been upgraded to fulfill the requirements of the second phase. Phase II sensitivity will be driven by 30 custom made BEGe detectors. This detectors are now available and can be operated in phaseII configuration in the GERDA cryostat together with the liquid argon scintillation veto. The performances of BEGe detectors in liquid argon are presented in this talk. Besides the spectroscopy capability, the focus will be placed on the expectations in terms of background rejection via pulse shape discrimination (PSD). In particular the main goal the BEGe's pulse shape analysis is to discriminate surface events produced by beta emitters (e.g. {sup 42}K) present in the liquid Ar.

  4. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    Science.gov (United States)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  5. Innovation in the Sky, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II proposal presents a scope of work to develop reliable Sense and Avoid for BVLOS Unmanned Aerial Vehicle [UAV] operations. We first analyze a) the...

  6. Kursk Operation Simulation and Validation Exercise - Phase II (KOSAVE II)

    National Research Council Canada - National Science Library

    Bauman, Walter

    1998-01-01

    ... (KOSAVE) Study (KOSAVE II) documents, in this report a statistical record of the Kursk battle, as represented in the KDB, for use as both a standalone descriptive record for historians, and as a baseline for a subsequent Phase...

  7. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  8. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  9. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  10. Torrefaction Processing of Human Fecal Waste, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — New technology is needed to collect, stabilize, safen, recover useful materials, and store human fecal waste for long duration missions. The current SBIR Phase I...

  11. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  12. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    Energy Technology Data Exchange (ETDEWEB)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  13. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  14. Secondary phases formed during nuclear waste glass-water interactions: Thermodynamic and derived properties

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-08-01

    The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases

  15. Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas R. Soelberg

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

  16. First results of GERDA Phase II and consistency with background models

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode1, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-01-01

    The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase II of data-taking started in Dec 2015 and is currently ongoing. In Phase II 35 kg of germanium detectors enriched in 76Ge including thirty newly produced Broad Energy Germanium (BEGe) detectors is operating to reach an exposure of 100 kg·yr within about 3 years data taking. The design goal of Phase II is to reduce the background by one order of magnitude to get the sensitivity for T1/20ν = O≤ft( {{{10}26}} \\right){{ yr}}. To achieve the necessary background reduction, the setup was complemented with LAr veto. Analysis of the background spectrum of Phase II demonstrates consistency with the background models. Furthermore 226Ra and 232Th contamination levels consistent with screening results. In the first Phase II data release we found no hint for a 0νββ decay signal and place a limit of this process T1/20ν > 5.3 \\cdot {1025} yr (90% C.L., sensitivity 4.0·1025 yr). First results of GERDA Phase II will be presented.

  17. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables

  18. Applying Lean Techniques to Reduce Intravenous Waste Through Premixed Solutions and Increasing Production Frequency.

    Science.gov (United States)

    Lin, Alex C; Penm, Jonathan; Ivey, Marianne F; Deng, Yihong; Commins, Monica

    This study aims to use lean techniques and evaluate the impact of increasing the use of premixed IV solutions and increased IV production frequency on IV waste. Study was conducted at a tertiary hospital pharmacy department in three phases. Phase I included evaluation of IV waste when IV production occurred three times a day and eight premixed IV products were used. Phase II increased the number of premixed IV products to 16. Phase III then increased IV production to five times a day. During Phase I, an estimate of 2,673 IV doses were wasted monthly, accounting for 6.14% of overall IV doses. This accounted for 688 L that cost $60,135. During Phase II, the average monthly IV wastage reduced significantly to 1,069 doses (2.84%), accounting for 447 L and $34,003. During Phase III, the average monthly IV wastage was further decreased to 675 doses (1.69%), accounting for 78 L and $3,431. Hence, a potential annual saving of $449,208 could result from these changes. IV waste was reduced through the increased use of premixed solutions and increasing IV production frequency.

  19. Treatment of plutonium contamined solid wastes by electrogenerated Ag(II)

    International Nuclear Information System (INIS)

    Saulze, J.L.

    1990-01-01

    A process for the treatment of plutonium contaminated solid wastes is designed. Two types of wastes have been studied; incineration ashes (COGEMA UP1) and sludges produced in the cryotreatment facility in Cadarache Center (France). The principle of the process is based on the rapid dissolution of PuO 2 (contained in the wastes) under the action of aggressive Ag(II) species, regenerated electrochemically. In the case of the treatment of incinerator ashes an electrochemical pretreatment is necessary if the chloride ion content of the ashes is high. The feasibility of the decontamination process has been proved for the two types of plutonium contaminated solid wastes at a pilot level; for example 1 Kg of ashes (or 0.75 Kg of sludges) has been treated in one experiment, and 97% (or 95%) of the total plutonium was dissolved at the end of the experiment. Industrial applications of this new process are underway [fr

  20. Naturally occurring crystalline phases: analogues for radioactive waste forms

    International Nuclear Information System (INIS)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included

  1. Naturally occurring crystalline phases: analogues for radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  2. Evaluation of mercury in liquid waste processing facilities - Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. E. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. E. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  3. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, B. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  4. Combination of sawdust from teak wood and rice husk activated carbon as adsorbent of Pb(II) ion and its analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Saputro, S.; Mahardiani, L.; Wulandari, D. A.

    2018-03-01

    This research aimed to know the usage of sawdust of teak wood and rice husk waste as Pb (II) ion adsorbents in simulated liquid waste, the combined optimum mass required adsorbent to adsorb Pb(II) ion, the sensitivity of the solid-phase spectrophotometry (sps) method in determining the decrease of Pb (II) metal ion levels in the μg/L level. This research was conducted by experimental method in laboratory. Adsorbents used in this study were charcoal of sawdust sawdust activated using 15% ZnCl2 solution and activated rice husk using 2 N NaOH solution. The adsorption processes of sawdust and rice husk with Pb(II) solution was done by variation of mass combination with a ratio of 1: 0; 0: 1; 1: 1; 1: 2; and 2: 1. Analysis of Pb(II) ion concentration using SPS and characterization of sawdust and rice husk adsorbent ads using FTIR. The results showed that activated charcoal from sawdust of teak wood and rice husks can be used as Pb (II) metal ion adsorbents with adsorption capacity of 0.86 μg/L, charcoal from sawdust of teak wood and rice husk adsorbent with a combination of optimum mass contact of sawdust and rice husk is 2:1 as much as 3 grams can adsorb 42.80 μg/L. Solid-phase spectophotometry is a sensitive method for analysis of concentration decreasing levels of Pb(II) ion, after it was absorbed by sawdust of teak wood and rice husk with high sensitivity and has the limit of detection (LOD) of 0.06 μg/L.

  5. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  6. WIPP [Waste Isolation Pilot Plant] test phase plan: Performance assessment

    International Nuclear Information System (INIS)

    1990-04-01

    The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes. This document describes the first of the following two major programs planned for the Test Phase of WIPP: Performance Assessment -- determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard; and Operations Demonstration -- evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. 120 refs., 19 figs., 8 tabs

  7. Sorption of copper(II) from aqueous phase by waste biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nagendra Rao, C.R. (Government Polytechnic, Anantapur (India)); Iyengar, L.; Venkobachar, C. (Indian Inst. of Tech., Kanpur (India))

    The objective of the present investigation is to compare three biomasses for copper uptake under different experimental conditions so as to choose the most suitable one for scaleup purposes. Ganoderma lucidum is a macrofungi, growing widely in tropical forests. Sorbent preparation requires its collection from the field. Asperigillus niger is obtained as a waste biomass from the fermentation industry. Activated sludge biomass is available from the biological waste treatment plants. The results of their potential to remove copper are presented. The copper uptake by biosorbents though, varied significantly, showed an increased trend in the range of pH 4 to 6. The increase in metal binding after alkali treatment was marginal for G. lucidum, significant for A. niger, and dramatic for sludge. Copper sorption capacities of M and M[sub c] were much higher than for other sorbents at pH 5.0. The effect of anionic ligands, like acetate and tartrate on copper uptake by raw and alkali treated biosorbents, was negligible as the predominant species in the presence of these ligands is divalent copper ion. Pyrophosphate, citrate, and EDTA had varying degrees of adverse effects on metal uptake. Thus, among the sorbents G. lucidum in its raw form is best suited for the practical application of copper removal from industrial effluents.

  8. Single Electron Transistor Platform for Microgravity Proteomics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II program builds from the successful Phase I efforts to demonstrate that Quantum Logic Devices' nanoelectronic platform for biological detection could...

  9. U10 : Trusted Truck(R) II (phase B).

    Science.gov (United States)

    2009-01-01

    Phase B of the Trusted Truck II project built on the system developed in Phase A (or Year 1). For the implementation portion of the project, systems were added to the trailer to provide additional diagnostic trailer data that can be sent to the TTM...

  10. Durability of lightweight concrete : Phase II : wetting and drying tests, Phase III : freezing and thawing tests.

    Science.gov (United States)

    1966-12-01

    This report describes a laboratory research program on the durability of lightweight concrete. Two phases of a three phase study are covered by this report, while the remaining phase is still under study. The two phases being reported are Phase II - ...

  11. Murine Automated Urine Sampler (MAUS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort involves the development of a novel rodent spaceflight habitat, focusing on care and monitoring of mice for gravitational physiology...

  12. Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms

    International Nuclear Information System (INIS)

    Domene, Xavier; Alcaniz, Josep M.; Andres, Pilar

    2008-01-01

    Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids. - Comparison of solid-phase and eluate bioassays for organic waste testing

  13. High Resolution Autostereoscopic Cockpit Display, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase II program Dimension Technologies Inc. (DTI) proposes to design and build an autostereoscopic (glasses-free 3D) LCD based aircraft cockpit display...

  14. Draft plan for the Waste Isolation Pilot Plant test phase: Performance assessment and operations demonstration

    International Nuclear Information System (INIS)

    1989-04-01

    The mission of the Waste Isolation Pilot Plant (WIPP) Project is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes resulting from United States defense programs. With the Construction Phase of the WIPP facility nearing completion, WIPP is ready to initiate the next phase in its development, the Test Phase. The purpose of the Test Phase is to collect the necessary scientific and operational data to support a determination whether to proceed to the Disposal Phase and thereby designate WIPP a demonstration facility for the disposal of TRU wastes. This decision to proceed to the Disposal Phase is scheduled for consideration by September 1994. Development of the WIPP facility is the responsibility of the United States Department of Energy (DOE), whose Albuquerque Operations Office has designated the WIPP Project Office as Project Manager. This document describes the two major programs to be conducted during the Test Phase of WIPP: (1) Performance Assessment for determination of compliance with the Environmental Protection Agency Standard and (2) Operations Demonstration for evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP facility. 42 refs., 38 figs., 14 tabs

  15. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Silver Biocide Analysis & Control Device, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid, accurate measurement and process control of silver ion biocide concentrations in future space missions is needed. The purpose of the Phase II program is to...

  17. Performance of the LAr scintillation veto of Gerda Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wiesinger, Christoph [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay in {sup 76}Ge. Results of Phase I have been published in summer 2013 and Gerda has been upgraded to Phase II. To reach the aspired background index of ∝10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques are applied, including an active liquid argon (LAr) veto. It has been demonstrated with the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium detectors, which simultaneously deposit energy in the LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during Phase II start-up is reported.

  18. Climate accounting for waste management, Phase I and II. Summary: Phase 1: Glass Packaging, Metal packaging, paper, cardboard, plastic and wet organic waste. Phase 2: Wood waste and residual waste from households; Klimaregnskap for avfallshaandtering, Fase I og II. Sammendrag: Fase 1: Glassemballasje, metallemballasje, papir, papp, plastemballasje og vaatorganisk avfall. Fase 2: Treavfall og restavfall fra husholdninger

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche; Modahl, Ingunn Saur; Lyng, Kari-Anne

    2009-09-15

    Background. On the basis of an increased focus on emissions of greenhouse gases in general, Waste Norway wanted to prepare a climate accounting for waste management in Norway. Oestfoldforskning was engaged to undertake the project. The aim of the project has been to develop a model for the calculation of net greenhouse gas emissions from different waste types of waste glass containers, metal containers, paper, cardboard, plastic, wet organic waste, wood waste and residual waste. The model is based on life cycle methodology and is used to calculate the net greenhouse gas emissions per kg of waste for the various waste management options and waste types, as well as to calculate the net greenhouse gas emissions for waste management for including waste types and quantities of 2006. There is an emphasis on developing a model so that municipalities / waste companies or regions can develop their own climate accounting for waste management in their region, based on site-specific conditions associated with types and amounts of waste, transport distances, type of treatment, exploitation and use of waste generated energy etc. The model can also be used as the basis for the preparation of useful documentation as the basis for information about waste systems utility in general, and as a basis for strategic reviews for Waste Norway and the waste sector in particular. Conclusions: The main conclusions from the project can be summarized as follows: 1. The results of the study clearly shows that to consider only one environmental indicator is too narrow approach to form the basis for decision making for selection of waste management solutions. 2. Net greenhouse gas emissions for waste management varies greatly, both between the different types of waste and treatment methods which are reviewed. The main results of the ranking of management methods in relation to the net greenhouse effect associated with the waste types and treatment methods are as follows: Recycling of materials

  19. II Meeting of R and D in radioactive waste management, Madrid 14-16 June, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The second meeting of R and D in radioactive waste management was organized by ENRESA on 14-16 June 1995 The main objective was to disseminate the most relevant works within the 2nd R and d plan, and to establish and adequate form involved for discussion R and D radioactive waste management. The meeting was articulated in 50 sessions: I.- Low and medium radioactive wastes. II.- High level radioactive wastes: activities of ENRESA III.- High level radioactive wastes: near field. IV.- Biosphere, radiological protection, behaviour evaluation. V.- Dismantling and decommissioning nuclear facilities VI.- Geosphere

  20. Investigation of waste incineration of fluorotelomer-based polymers as a potential source of PFOA in the environment.

    Science.gov (United States)

    Taylor, P H; Yamada, T; Striebich, R C; Graham, J L; Giraud, R J

    2014-09-01

    In light of the widespread presence of perfluorooctanoic acid (PFOA) in the environment, a comprehensive laboratory-scale study has developed data requested by the U.S. Environmental Protection Agency (EPA) to determine whether municipal and/or medical waste incineration of commercial fluorotelomer-based polymers (FTBPs) at end of life is a potential source of PFOA that may contribute to environmental and human exposures. The study was divided into two phases (I and II) and conducted in accordance with EPA Good Laboratory Practices (GLPs) as described in the quality assurance project plan (QAPP) for each phase. Phase I testing determined that the PFOA transport efficiency across the thermal reactor system to be used in Phase II was greater than 90%. Operating at 1000°C over 2s residence time with 3.2-6.6mgdscm(-1) hydrogen fluoride (HF), corrected to 7% oxygen (O2), and continuously monitored exhaust oxygen of 13%, Phase II testing of the FTBP composites in this thermal reactor system yielded results demonstrating that waste incineration of fluorotelomer-based polymers does not result in the formation of detectable levels of PFOA under conditions representative of typical municipal waste combustor (MWC) and medical waste incinerator (MWI) operations in the U.S. Therefore, waste incineration of these polymers is not expected to be a source of PFOA in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Determination of Lead(II), Cadmium(II) and Copper(II) in Waste-Water and Soil Extracts on Mercury Film Screen-Printed Carbon Electrodes Sensor

    International Nuclear Information System (INIS)

    Mohd Fairulnizal Md Noh; Tothill, I.E.

    2011-01-01

    A sensor incorporating a three electrodes configuration have been fabricated using low cost screen-printing technology. These electrodes couples with Square Wave Stripping Voltammetry (SWSV) has provided a convenient screening tool for on-site detection of trace levels of Pb(II), Cd(II) and Cu(II). Modification of the graphite carbon surface based on in situ deposition of mercury film has been carried out. By appropriate choice of supporting medium and optimized parameters setting such as amount of mercury used the deposition potential, deposition time, frequency and scan rate, well resolved and reproducible response for Pb(II), Cd(II) and Cu(II) were obtained. The performance characteristics of the developed mercury film screen printed carbon electrode (MFSPCE) for 120 s deposition time showed that the linear range for Cd(II), Pb(II) and Cu(II) were 10 to 200 μg L -1 . The detection limit recorded for Cd(II), Pb(II) and Cu(II) were 2, 1 and 5 μg L -1 with relative standard deviation (RSD) of 6.5 %, 6.9 % and 7.5 %, respectively. Successful applications of the sensing device to waste-water and extracted soil samples were demonstrated. (author)

  2. Waste area Grouping 2 Phase I remedial investigation: Sediment and Cesium-137 transport modeling report

    International Nuclear Information System (INIS)

    Clapp, R.B.; Bao, Y.S.; Moore, T.D.; Brenkert, A.L.; Purucker, S.T.; Reece, D.K.; Burgoa, B.B.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow-up information to the Phase I Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that may present immediate risk to public health at the Clinch River and ecological risk within WAG 2 at ORNL. A sixth report, on groundwater, in the series documenting WAG 2 RI Phase I results were part of project activities conducted in FY 1996. The five reports that complete activities conducted as part of Phase I of the Remedial Investigation (RI) for WAG 2 are as follows: (1) Waste Area Grouping 2, Phase I Task Data Report: Seep Data Assessment, (2) Waste Area Grouping 2, Phase I Task Data Report: Tributaries Data Assessment, (3) Waste Area Grouping 2, Phase I Task Data Report: Ecological Risk Assessment, (4) Waste Area Grouping 2, Phase I Task Data Report: Human Health Risk Assessment, (5) Waste Area Grouping 2, Phase I Task Data Report: Sediment and 137 Cs Transport Modeling In December 1990, the Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory was issued (ORNL 1990). The WAG 2 RI Plan was structured with a short-term component to be conducted while upgradient WAGs are investigated and remediated, and a long-term component that will complete the RI process for WAG 2 following remediation of upgradient WAGs. RI activities for the short-term component were initiated with the approval of the Environmental Protection Agency, Region IV (EPA), and the Tennessee Department of Environment and Conservation (TDEC). This report presents the results of an investigation of the risk associated with possible future releases of 137 Cs due to an extreme flood. The results are based on field measurements made during storms and computer model simulations

  3. PBFA [Particle Beam Fusion Accelerator] II: The pulsed power characterization phase

    International Nuclear Information System (INIS)

    Martin, T.H.; Turman, B.N.; Goldstein, S.A.

    1987-01-01

    The Particle Beam Fusion Accelerator II, PBFA II, is now the largest pulsed power device in operation. This paper summarizes its first year and a half of operation for the Department of Energy (DOE) Inertial Confinement Fusion (ICF) program. Thirty-six separate modules provide 72 output pulses that combine to form a 100 TW output pulse at the accelerator center. PBFA II was successfully test fired for the first time on December 11, 1985. This test completed the construction phase (Phase 1) within the expected schedule and budget. The accelerator checkout phase then started (Phase 2). The first priority during checkout was to bring the Phase 1 subsystems into full operation. The accelerator was first tested to determine overall system performance. Next, subsystems that were not performing adequately were modified. The accelerator is now being used for ion diode studies. 32 refs

  4. DOE evaluates nine alternative thermal technologies for treatment of mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In June 1993, the U.S. Department of Energy's (DOE's) Office of Technology Development commissioned a study to evaluate 19 thermal technologies for treating DOE's mixed waste. The study was divided into two phases: Phase I evaluated ten conventional incineration techniques (primarily rotary kiln), and Phase II looked at nine innovative, alternative thermal treatment technologies. The treatment processes were evaluated as part of an integrated waste treatment system, which would include all of the facilities, equipment, and methods required to treat and dispose DOE mixed waste. The relative merits and life-cycle costs were then developed for each of the 19 waste treatment systems evaluated. The study also identified the additional research and development, demonstration, and testing/evaluation steps that would be necessary for the waste treatment systems to successfully treat DOE mixed waste. 3 tabs., 2 refs

  5. A fuzzy controlled three-phase centrifuge for waste separation

    International Nuclear Information System (INIS)

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge

  6. Slurry-phase biodegradation of weathered oily sludge waste.

    Science.gov (United States)

    Machín-Ramírez, C; Okoh, A I; Morales, D; Mayolo-Deloisa, K; Quintero, R; Trejo-Hernández, M R

    2008-01-01

    We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.

  7. Titanium Heat Pipe Thermal Plane, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  8. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  9. Malignant pleural mesothelioma: a phase II trial with docetaxel.

    Science.gov (United States)

    Vorobiof, D A; Rapoport, B L; Chasen, M R; Abratt, R P; Cronje, N; Fourie, L; McMichael, G; Hacking, D

    2002-03-01

    Current cytotoxic therapy has been of limited benefit to patients with malignant pleural mesothelioma. Single agent chemotherapy has been extensively evaluated in small series of phase II clinical trials, with disappointing responses. Docetaxel, an effective taxane in the treatment of advanced breast cancer and non-small-cell lung cancer, was administered intravenously at a dose of 100 mg/m2 every 3 weeks to 30 chemotherapy naive patients with malignant pleural mesothelioma in a prospective multi-institutional phase II clinical trial. An objective response rate (partial responses) of 10% was documented. Additionally, 21% of the patients had minor responses (intention-to-treat analysis). Three patients died within 2 weeks post-first cycle of therapy, although only one patient's death was directly attributed to the investigational drug, whilst in the majority of the patients, manageable and treatable toxicities were encountered. In this phase II clinical trial, docetaxel proved to be mildly effective in the treatment of patients with malignant pleural mesothelioma.

  10. Conversion of Phase II Unsteady Aerodynamics Experiment Data to Common Format; TOPICAL

    International Nuclear Information System (INIS)

    Hand, M. M.

    1999-01-01

    A vast amount of aerodynamic, structural, and turbine performance data were collected during three phases of the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment (UAE). To compare data from the three phases, a similar format of engineering unit data is required. The process of converting Phase II data from a previous engineering unit format to raw integer counts is discussed. The integer count files can then be input to the new post-processing software, MUNCH. The resulting Phase II engineering unit files are in a common format with current and future UAE engineering unit files. An additional objective for changing the file format was to convert the Phase II data from English units to SI units of measurement

  11. Phase 1 immobilized low-activity waste operational source term

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1998-01-01

    This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study

  12. Kilowatt isotope power system. Phase II plan. Volume I. Phase II program plan

    International Nuclear Information System (INIS)

    1978-01-01

    The development of a Kilowatt Isotope Power System (KIPS) was begun in 1975 for the purpose of satisfying the power requirements of satellites in the 1980's. The KIPS is a 238 PuO 2 -fueled organic Rankine cycle turbine power system to provide a design output of 500 to 2000 W. Phase II of the overall 3-phase KIPS program is described. This volume presents a program plan for qualifying the organic Rankine power system for flight test in 1982. The program plan calls for the design and fabrication of the proposed flight power system; conducting a development and a qualification program including both environmental and endurance testing, using an electrical and a radioisotope heat source; planning for flight test and spacecraft integration; and continuing ground demonstration system testing to act as a flight system breadboard and to accumulate life data

  13. Reclaimable Thermally Reversible Polymers for AM Feedstock, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG proposes to continue efforts from the 2016 NASA SBIR Phase I topic H5.04 Reclaimable Thermally Reversible Polymers for AM Feedstock. In Phase II, CRG will refine...

  14. Low-activity waste envelope definitions for the TWRS Privatization Phase I Request For Proposal

    International Nuclear Information System (INIS)

    Patello, G.K.; Lauerhass, L.; Myers, R.L.; Wiemers, K.D.

    1996-11-01

    Radioactive waste has been stored in large underground storage tanks at the Hanford Site since 1944. Approximately 212 million liters of waste containing approximately 240,000 metric tons of processed chemicals and 177 mega-curies of radionuclides are now stored in 177 tanks. These caustic wastes are in the form of liquids, slurries, saltcakes, and sludge. In 1991, the Tank Waste Remediation System (TWRS) Program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, environmentally sound, and cost-effective manner. The Department of Energy (DOE) has believes that it is feasible to privatize portions of the TWRS Program. Under the privatization strategy embodied in the Request for Proposal (RFP), DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price contract. Phase I of the TWRS privatization strategy is a proof-of-concept/commercial demonstration-scale effort. The objectives of Phase I are to demonstrate the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process, and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. Three low-activity waste (LAW) envelopes are identified for Phase I of the privatization contract and are representative of the range of Hanford double-shelled tank (DST) waste

  15. Low-activity waste envelope definitions for the TWRS Privatization Phase I Request For Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Lauerhass, L.; Myers, R.L.; Wiemers, K.D.

    1996-11-01

    Radioactive waste has been stored in large underground storage tanks at the Hanford Site since 1944. Approximately 212 million liters of waste containing approximately 240,000 metric tons of processed chemicals and 177 mega-curies of radionuclides are now stored in 177 tanks. These caustic wastes are in the form of liquids, slurries, saltcakes, and sludge. In 1991, the Tank Waste Remediation System (TWRS) Program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, environmentally sound, and cost-effective manner. The Department of Energy (DOE) has believes that it is feasible to privatize portions of the TWRS Program. Under the privatization strategy embodied in the Request for Proposal (RFP), DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price contract. Phase I of the TWRS privatization strategy is a proof-of-concept/commercial demonstration-scale effort. The objectives of Phase I are to demonstrate the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process, and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. Three low-activity waste (LAW) envelopes are identified for Phase I of the privatization contract and are representative of the range of Hanford double-shelled tank (DST) waste.

  16. SRNL PHASE 1 Assessment Of The WTP Waste Qualification Program

    International Nuclear Information System (INIS)

    Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

    2012-01-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the

  17. Use of Iron (II Salts and Complexes for the Production of Soil Amendments from Organic Solid Wastes

    Directory of Open Access Journals (Sweden)

    Amerigo Beneduci

    2012-01-01

    Full Text Available A method to obtain rapidly stabilized composts for crops from solid organic wastes is evaluated. Here we used a laboratory scale reaction chamber where solid waste treatment was performed under strictly controlled temperature and pressure conditions. The row organic waste was mixed with acid solutions containing iron (II ions either in the fully hydrated form or in the form of complexes with the diethylentriaminopentaacetic acid. Data from elemental analysis distribution and GC/MS analysis of the polar and non polar dissolved organic matter, clearly showed that Fe(II ions significantly enhance organic substrate oxidation of the initial solid waste, compared to a material obtained without the addition of the Fe(II ions to the raw organic matrix. These results suggest that Fe(II ions might be involved in a catalytic oxidation pathway that would be activated under the experimental conditions used. The extent of the oxidation process was evaluated by the value of the C/N ratio and, qualitatively, by the molecular composition of the dissolved organic matter. After about 6 hours of incubation, dark-brown and dry organic matrices were obtained with C/N ratio as low as 12 and a high degree of oxidative decomposition into low-molecular-weight compounds at high oxidation state.

  18. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    Energy Technology Data Exchange (ETDEWEB)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  19. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1998-01-01

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization

  20. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 3: Comment response document

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program. This volume provides responses to public comments on the Draft SEIS-II. Comments are related to: Alternatives; TRU waste; DOE credibility; Editorial; Endorsement/opposition; Environmental justice; Facility accidents; Generator site operations; Health and safety; Legal and policy issues; NEPA process; WIPP facilities; WIPP waste isolation performance; Purpose and need; WIPP operations; Site characterization; Site selection; Socioeconomics; and Transportation

  1. Neutrinoless double beta decay in GERDA Phase II

    International Nuclear Information System (INIS)

    Macolino, C.

    2014-01-01

    The GERmanium Detector Array, GERDA, is designed to search for neutrinoless double beta (0νββ) decay of 76 Ge and it is installed in the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, Italy. The GERDA experiment has completed the Phase I with a total collected exposure of 21.6 kg yr and a background index (BI) of the order of BI ≃ 10 −2 cts/(keVkg yr). No excess of events from 0νββ decay has been observed and a lower limit on the half-life on the 0νββ decay for 76 Ge has been estimated: T 0ν 1 /2 > 2.1·10 25 yr at 90% CL. The goal of GERDA Phase II is to reach the target sensitivity of T 0ν 1 /2 ≃ 1.4 · 10 26 yr, with an increased total mass of the enriched material and a reduced background level. In this paper the results from GERDA Phase I and the major improvements planned for Phase II are discussed.

  2. A steerable/distance enhanced penetrometer delivery system: Phase II. Topical report

    International Nuclear Information System (INIS)

    Amini, A.; Shenhar, J.; Lum, K.D.

    1996-05-01

    This report summarizes the phase II work on the Position Location Device (POLO) for penetrometers. Phase II was carried out to generate an integrated design of a full-scale steerable/distance enhanced penetrometer delivery system. Steering provides for the controlled and directional use of the penetrometer, while vibratory thrusting can provide greater penetration ability

  3. Aging and Phase Stability of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    F. Wong

    2004-09-28

    This report was prepared in accordance with ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 22, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate. The aging and phase stability model, which is based on fundamental thermodynamic and kinetic concepts and principles, will be used to provide predictive insight into the long-term metallurgical stability of Alloy 22 under relevant repository conditions. The results of this model are used by ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' as reference-only information. These phase stability studies are currently divided into three general areas: Tetrahedrally close-packed (TCP) phase and carbide precipitation in the base metal; TCP and carbide precipitation in welded samples; and Long-range ordering reactions. TCP-phase and carbide precipitates that form in Alloy 22 are generally rich in chromium (Cr) and/or molybdenum (Mo) (Raghavan et al. 1984 [DIRS 154707]). Because these elements are responsible for the high corrosion resistance of Alloy 22, precipitation of TCP phases and carbides, especially at grain boundaries, can lead to an increased susceptibility to localized corrosion in the alloy. These phases are brittle and also tend to embrittle the alloy (Summers et al. 1999 [DIRS 146915]). They are known to form in Alloy 22 at temperatures greater than approximately 600 C. Whether these phases also form at the lower temperatures expected in the repository during the 10,000-year regulatory period must be determined. The kinetics of this precipitation will be determined for both the base metal and the weld heat-affected zone (HAZ). The TCP

  4. Aging and Phase Stability of Waste Package Outer Barrier

    International Nuclear Information System (INIS)

    F. Wong

    2004-01-01

    This report was prepared in accordance with ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 22, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate. The aging and phase stability model, which is based on fundamental thermodynamic and kinetic concepts and principles, will be used to provide predictive insight into the long-term metallurgical stability of Alloy 22 under relevant repository conditions. The results of this model are used by ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' as reference-only information. These phase stability studies are currently divided into three general areas: Tetrahedrally close-packed (TCP) phase and carbide precipitation in the base metal; TCP and carbide precipitation in welded samples; and Long-range ordering reactions. TCP-phase and carbide precipitates that form in Alloy 22 are generally rich in chromium (Cr) and/or molybdenum (Mo) (Raghavan et al. 1984 [DIRS 154707]). Because these elements are responsible for the high corrosion resistance of Alloy 22, precipitation of TCP phases and carbides, especially at grain boundaries, can lead to an increased susceptibility to localized corrosion in the alloy. These phases are brittle and also tend to embrittle the alloy (Summers et al. 1999 [DIRS 146915]). They are known to form in Alloy 22 at temperatures greater than approximately 600 C. Whether these phases also form at the lower temperatures expected in the repository during the 10,000-year regulatory period must be determined. The kinetics of this precipitation will be determined for both the base metal and the weld heat-affected zone (HAZ). The TCP phases (P, μ, and σ) are present in

  5. X-ray diffraction study of phase transitions in iron(II) trisnioximate hexadecylboronate clathrochelate complex

    International Nuclear Information System (INIS)

    Vorontsov, I.I.; Antipin, M.Yu.; Dubovik, I.I.; Papkov, V.S.; Potekhin, K.A.; Voloshin, Ya.Z.; Stash, A.I.; Belsky, V.K.

    2001-01-01

    Crystals of the iron(II) nioximate hexadecylboronate clathrochelate complex-FeNx 3 (BHd ) 2 [tris(μ-1,2-cyclohexanedionedioximato-O:O ' )di-n-hexadecyldiborato(2-) - N,'''N''',N''',N''',N''',N ' ]iron(II) - are investigated by differential scanning calorimetry and X-ray diffraction. Two structural phase transitions are revealed at T cr1 = 290(3) K and T cr2 = 190(3) K. The crystal structures of phases I, II, and III are determined by X-ray diffraction analysis at 303, 243, and 153 K, respectively. It is demonstrated that the I ↔ II phase transition is due to a change in the system of translations, and the II ↔ III phase transition is accompanied only by a jumpwise change in the unit cell parameters. The possible mechanisms of phase transitions are discussed in terms of geometry and molecular packing of FeNx 3 (BHd) 2 in all three phases

  6. High Performance Wafer-Based Capillary Electrochromatography, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II research comprises designing, constructing, and testing a chip-based capillary electrochromatography (CEC) prototype for separation and analysis of...

  7. Pavement performance evaluation, phase II : data collection.

    Science.gov (United States)

    2008-12-01

    Phase I and II of this study tested approximately 1500 rehabilitated pavements (asphalt and PCC) : throughout the State. These pavements ranged from 5 to 15 years old and were intended to develop a : snapshot of how various rehabilitations were perfo...

  8. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  9. Dead layer and active volume determination for GERDA Phase II detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern [TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERDA experiment investigates the neutrinoless double beta decay of {sup 76}Ge and is currently running Phase I of its physics program. Using the same isotope as the Heidelberg Moscow (HDM) experiment, GERDA aims to directly test the claim of observation by a subset of the HDM collaboration. For the update to Phase II of the experiment in 2013, the collaboration organized the production of 30 new Broad Energy Germanium (BEGe) type detectors from original 35 kg enriched material and tested their performance in the low background laboratory HADES in SCK.CEN, Belgium. With additional 20 kg of detectors, GERDA aims to probe the degenerated hierarchy scenario. One of the crucial detector parameters is the active volume (AV) fraction which directly enters into all physics analysis. This talk presents the methodology of dead layer and AV determination with different calibration sources such as {sup 241}Am, {sup 133}Ba, {sup 60}Co and {sup 228}Th and the results obtained for the new Phase II detectors. Furthermore, the AV fraction turned out to be the largest systematic uncertainty in the analysis of Phase I data which makes it imperative to reduce its uncertainty for Phase II. This talk addresses the major contributions to the AV uncertainty and gives an outlook for improvements in Phase II analysis.

  10. Reassessing Phase II Heart Failure Clinical Trials: Consensus Recommendations

    Science.gov (United States)

    Butler, Javed; Hamo, Carine E.; Udelson, James E.; O’Connor, Christopher; Sabbah, Hani N.; Metra, Marco; Shah, Sanjiv J.; Kitzman, Dalane W.; Teerlink, John; Bernstein, Harold S.; Brooks, Gabriel; Depre, Christophe; DeSouza, Mary M.; Dinh, Wilfried; Donovan, Mark; Frische-Danielson, Regina; Frost, Robert J.; Garza, Dahlia; Gohring, Udo-Michael; Hellawell, Jennifer; Hsia, Judith; Ishihara, Shiro; Kay-Mugford, Patricia; Koglin, Joerg; Kozinn, Marc; Larson, Christopher J.; Mayo, Martha; Gan, Li-Ming; Mugnier, Pierrre; Mushonga, Sekayi; Roessig, Lothar; Russo, Cesare; Salsali, Afshin; Satler, Carol; Shi, Victor; Ticho, Barry; van der Laan, Michael; Yancy, Clyde; Stockbridge, Norman; Gheorghiade, Mihai

    2017-01-01

    The increasing burden and the continued suboptimal outcomes for patients with heart failure underlines the importance of continued research to develop novel therapeutics for this disorder. This can only be accomplished with successful translation of basic science discoveries into direct human application through effective clinical trial design and execution that results in a substantially improved clinical course and outcomes. In this respect, phase II clinical trials play a pivotal role in determining which of the multitude of potential basic science discoveries should move to the large and expansive registration trials in humans. A critical examination of the phase II trials in heart failure reveals multiple shortcomings in their concept, design, execution, and interpretation. To further a dialogue regarding the challenges and potential for improvement and the role of phase II trials in patients with heart failure, the Food and Drug Administration facilitated a meeting on October 17th 2016 represented by clinicians, researchers, industry members, and regulators. This document summarizes the discussion from this meeting and provides key recommendations for future directions. PMID:28356300

  11. Product Evaluation Task Force Phase Two report for BWR/PWR dissolver wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1990-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce an adequate data base to justify the preferred matrices. This report details the work carried out, under Phase 2 of the Product Evaluation Task Force programme, on BWR/PWR Dissolver Wastes. Three possible types of encapsulants for BWR/PWR Dissolver Wastes:- Inorganic cements, Polymer cements and Polymers are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie Storage, Transport, handling and emplacement, Disposal and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of three parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC), is recommended for Phase 3 studies on BWR/PWR Dissolver Wastes. (author)

  12. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2006-01-01

    In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.

  13. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. This volume contains the following appendices: Waste inventory; Summary of the waste management programmatic environmental impact statement and its use in determining human health impacts at treatment sites; Air quality; Life-cycle costs and economic impacts; Transportation; Human health; Facility accidents; Long-term consequence analysis for proposed action and action alternatives; Long-term consequence analysis for no action alternative 2; and Updated estimates of the DOE's transuranic waste volumes

  14. Forensic relevance of glucuronidation in phase-II-metabolism of alcohols and drugs.

    Science.gov (United States)

    Kaeferstein, Herbert

    2009-04-01

    Forensic toxicology means detecting toxic or pharmacologically active substances in body fluids and organs and the evaluation and judgement of the respective results. In the legal judgement, not only the taken in active drugs, but also their metabolites are to be included. Regarding metabolism one distinguishes phase-I- and phase-II-metabolism. In the phase-I-metabolism, active substances are converted by oxidation, reduction or hydrolysis, but influencing the polarity of more lipophilic substances often not decisively. The pharmacological activity is often preserved or even increased. In phase-II-metabolism a highly hydrophilic substance--mostly glucuronic acid--is coupled to the active substances or the respective phase-I-metabolites. This reaction step decisively increases hydrophilicity of lipophilic substances, thus enhancing renal elimination and often also abolishing pharmacologically and/or toxicologically effects. Nevertheless the interaction of different drugs and alcohols in glucuronidation and the glucuronides of phase-II-metabolism still do not play a substantial role in the forensic-toxicological analysis and interpretation of results so far. However, in vitro investigations since 1999 in our lab show that such interactions are not unlikely. For valid interpretation of complex cases in the future it may become necessary not only to quantify drugs and the phase-I-metabolites but also the phase-II-metabolites and discuss possible interactions in the metabolism.

  15. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  16. Pressure Controlled Heat Pipe for Precise Temperature Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The principal Phase II objective is to refine and further develop the prototype PCHP into a useful thermal management tool. The Phase I program established the...

  17. Toward an Integrated Psychological Approach - Phase II

    International Development Research Centre (IDRC) Digital Library (Canada)

    Trauma, Development and Peacebuilding : Toward an Integrated Psychological Approach - Phase II. Over the past decade, the peace, conflict and development community has begun to question the value of medicalized approaches such as post-traumatic stress disorder (PTSD) in dealing with aftermath of political violence ...

  18. Diagnosis-Driven Prognosis for Decision Making, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II, the QSI-Vanderbilt team seeks to develop a system-level diagnostics and prognostic process that incorporates a "sense and respond capability," which...

  19. Novel Instrumentation for Rocket Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase II program is to develop, deploy and deliver novel laser-based instruments that provide rapid, in situ, simultaneous...

  20. PRESTO-II, Low Level Radioactive Waste Transport and Risk Assessment

    International Nuclear Information System (INIS)

    1990-01-01

    1 - Description of program or function: PRESTO-II evaluates possible health effects from shallow-land and waste-disposal trenches. The model is intended to serve as a non- site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population fora 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion, surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach developed by EPA (CCC-422/RADRISK). The DARTAB model is used in modified form to generate human health risk estimates from radionuclide concentrations and intake values. 2 - Method of solution: PRESTO-II tracks radionuclide transport through surface and subsurface pathways and human exposures through external exposure, inhalation, and ingestion with a resolution of 1 y. The methodology is mechanistic, and physical transport processes are modeled separately and in detail. PRESTO-II computes infiltration through the trench cap from experimentally determined permeability and hourly precipitation values. Watershed infiltration is determined using a parametric evapotranspiration equation requiring input values for several site variables. A finite element approach is used to compute trench water balance. 3 - Restrictions on the complexity of the problem: The PRESTO-II model is most appropriately used as a

  1. Tank waste source term inventory validation. Volume II. Letter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document comprises Volume II of the Letter Report entitled Tank Waste Source Term Inventory Validation. This volume contains Appendix C, Radionuclide Tables, and Appendix D, Chemical Analyte Tables. The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories.

  2. Tank waste source term inventory validation. Volume II. Letter report

    International Nuclear Information System (INIS)

    1995-04-01

    This document comprises Volume II of the Letter Report entitled Tank Waste Source Term Inventory Validation. This volume contains Appendix C, Radionuclide Tables, and Appendix D, Chemical Analyte Tables. The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories

  3. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  4. Compact 2-Micron Transmitter for Remote Sensing Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort we propose to work with NASA to extend the Phase I achievements, which focused on design and development of very compact master and...

  5. Compact, High Accuracy CO2 Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  6. (EFB) for mercury [Hg(II)] removal from aqueous solution

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... United Nations are coal-burning power plants and waste incinerators. They account for approximately .... of 100 rpm, the barrier between the solid-liquid phases was overcome. Agitation at this speed led ... tance at the boundary layer between solid-liquid phases. Effect of contact time on the uptake of Hg(II) ...

  7. Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling.

    Science.gov (United States)

    Ye, Tingting; Li, Xiang; Zhang, Ting; Su, Yinglong; Zhang, Wenjuan; Li, Jun; Gan, Yanfei; Zhang, Ai; Liu, Yanan; Xue, Gang

    2018-03-20

    Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu 2+ /g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu 2+ /g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Surface reaction of SnII on goethite (α-FeOOH): surface complexation, redox reaction, reductive dissolution, and phase transformation.

    Science.gov (United States)

    Dulnee, Siriwan; Scheinost, Andreas C

    2014-08-19

    To elucidate the potential risk of (126)Sn migration from nuclear waste repositories, we investigated the surface reactions of Sn(II) on goethite as a function of pH and Sn(II) loading under anoxic condition with O2 level redox state and surface structure were investigated by Sn K edge X-ray absorption spectroscopy (XAS), goethite phase transformations were investigated by high-resolution transmission electron microscopy and selected area electron diffraction. The results demonstrate the rapid and complete oxidation of Sn(II) by goethite and formation of Sn(IV) (1)E and (2)C surface complexes. The contribution of (2)C complexes increases with Sn loading. The Sn(II) oxidation leads to a quantitative release of Fe(II) from goethite at low pH, and to the precipitation of magnetite at higher pH. To predict Sn sorption, we applied surface complexation modeling using the charge distribution multisite complexation approach and the XAS-derived surface complexes. Log K values of 15.5 ± 1.4 for the (1)E complex and 19.2 ± 0.6 for the (2)C complex consistently predict Sn sorption across pH 2-12 and for two different Sn loadings and confirm the strong retention of Sn(II) even under anoxic conditions.

  9. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Ensafi, Ali A; Shiraz, A Zendegi

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  10. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Shiraz, A. Zendegi

    2008-01-01

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL -1 Pb(II). The adsorption capacity of the solid phase was 0.20 mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method

  11. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: Ensafi@cc.iut.ac.ir; Shiraz, A. Zendegi [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL{sup -1} Pb(II). The adsorption capacity of the solid phase was 0.20 mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  12. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs)

  13. Biogasification of solid wastes by two-phase anaerobic fermentation

    International Nuclear Information System (INIS)

    Ghosh, S.; Vieitez, E.R.; Liu, T.; Kato, Y.

    1997-01-01

    Municipal, industrial and agricultural solid wastes, and biomass deposits, cause large-scale pollution of land and water. Gaseous products of waste decomposition pollute the air and contribute to global warming. This paper describes the development of a two-phase fermentation system that alleviates methanogenic inhibition encountered with high-solids feed, accelerates methane fermentation of the solid bed, and captures methane (renewable energy) for captive use to reduce global warming. The innovative system consisted of a solid bed reactor packed with simulated solid waste at a density of 160 kg/m 3 and operated with recirculation of the percolated culture (bioleachate) through the bed. A rapid onset of solids hydrolysis, acidification, denitrification and hydrogen gas formation was observed under these operating conditions. However, these fermentative reactions stopped at a total fatty acids concentration of 13,000 mg/l (as acetic) at pH 5, with a reactor head-gas composition of 75 percent carbon dioxide, 20 percent nitrogen, 2 percent hydrogen and 3 percent methane. Fermentation inhibition was alleviated by moving the bioleachate to a separate methane-phase fermenter, and recycling methanogenic effluents at pH 7 to the solid bed. Coupled operation of the two reactors promoted methanogenic conversion of the high-solids feed. (author)

  14. Phase II beam lines at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1984-06-01

    The expansion of the National Synchrotron Light Source has been funded by the US Department of Energy. The Phase II program consists of both increased conventional facilities and six new beam lines. In this paper, an overview of the six beam lines which will be constructed during Phase II is presented. For five of the lines special radiation sources are necessary and the designs of four of the devices are complete. The relevant parameters of the insertion devices under construction and development are presented

  15. Sears Point Tidal Marsh Restoration Project: Phase II

    Science.gov (United States)

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase II, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  16. Differential thermal, Thermogravimetric and X-ray diffraction investigation of hydration phases in cementitious waste form

    International Nuclear Information System (INIS)

    Khalil, M.Y.; Nagy, M.E.; El-Sourougy, M.R.; Zaki, A.A.

    1996-01-01

    Hydration phases of cement determine the final properties of the product. Adding other components to the cement paste may alter the final phases formed and affect properties of the hardened products. In this work ordinary portland cement and/or blast furnace slag cement were hardened with low-or intermediate-level radioactive liquid wastes and different additives. Hydration phases were investigated using differential thermal, thermogravimetric, and X-ray diffraction techniques. Low-and intermediate-level liquid wastes were found not to affect the hydration phases of cement. The addition of inorganic exchangers and latex were found to affect the hydration properties of the cement waste system. This resulted in a reduction of compressive strength. On the contrary, addition of epoxy also affected the hydration causing increase in compressive strength. 10 figs., 2 tabs

  17. Biosorption of Cu (II onto chemically modified waste mycelium of Aspergillus awamori: Equilibrium, kinetics and modeling studies

    Directory of Open Access Journals (Sweden)

    ZDRAVKA VELKOVA

    2012-01-01

    Full Text Available The biosorption potential of chemically modified waste mycelium of industrial xylanase-producing strain Aspergillus awamori for Cu (II removal from aqueous solutions was evaluated. The influence of pH, contact time and initial Cu (II concentration on the removal efficiency was evaluated. Maximum biosorption capacity was reached by sodium hydroxide treated waste fungal mycelium at pH 5.0. The Langmuir adsorption equation matched very well the adsorption equilibrium data in the studied conditions. The process kinetic followed the pseudo-firs order model.

  18. Study of the GERDA Phase II background spectrum

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    The Gerda experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy, searches for the neutrinoless double beta (0νββ) decay of 76Ge. Gerda Phase II is aiming to reach a sensitivity for the 0νββ half life of 1026 yr in ˜ 3 years of physics data taking with 100 kg·yr of exposure and a background index of ˜ 10-3 cts/(keV·kg·yr). After 6 months of acquisition a first data release with 10.8 kg·yr of exposure is performed, showing that the design background is achieved. In this work a study of the Phase II background spectrum, the main spectral structures and the background sources will be presented and discussed.

  19. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Park, Hwan Seo; Kim, Hwan Young; Lee, Han Soo; Kim, In Tae

    2010-01-01

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  20. Status report of the Gerda Phase II startup

    Science.gov (United States)

    D'Andrea, Valerio; Gerda Collaboration

    2017-01-01

    The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge . Germanium diodes enriched to ˜ 86 % in the double beta emitter 76Ge ( enrGe are exposed being both source and detector of 0νββ decay. This process is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, at the completion of the first experimental phase (Phase I), the GERDA setup has been upgraded to perform its next step (Phase II). The aim is to reach a sensitivity to the 0νββ decay half-life larger than 10^{26} yr in about 3 years of physics data taking, exposing a detector mass of about 35 kg of enrGe with a background index of about 10^{-3} cts/(keV . kg . yr). One of the main new implementations is the liquid argon (LAr) scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper the GERDA Phase II expected goals, the upgraded items and few selected features from the first 2016 physics and calibration runs will be presented. The main Phase I achievements will be also reviewed.

  1. UltraSail Solar Sail Flight Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A team of CU Aerospace, the University of Illinois, and ManTech SRS Technologies proposes Phase II development of a 3 kg CubeSat spacecraft for initial flight test...

  2. Sampling and analysis plan for phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study, and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that impact ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of media testing. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetlands. This plan will be implemented as part of the BCV Phase II Treatability Study Best Management Practices Plan and in conjunction with the BCV Phase II Treatability Study Health and Safety Plan and the BCV Phase II Treatability Study Waste Management Plan

  3. Waste retrieval sluicing system vapor sampling and analysis plan for evaluation of organic emissions, process test phase III

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    1999-01-01

    This sampling and analysis plan identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained to address vapor issues related to the sluicing of tank 241-C-106. Sampling will be performed in accordance with Waste Retrieval Sluicing System Emissions Collection Phase III (Jones 1999) and Process Test Plan Phase III, Waste Retrieval Sluicing System Emissions Collection (Powers 1999). Analytical requirements include those specified in Request for Ecology Concurrence on Draft Strategy/Path Forward to Address Concerns Regarding Organic Emissions from C-106 Sluicing Activities (Peterson 1998). The Waste Retrieval Sluicing System was installed to retrieve and transfer high-heat sludge from tank 241-C-106 to tank 241-AY-102, which is designed for high-heat waste storage. During initial sluicing of tank 241-C-106 in November 1998, operations were halted due to detection of unexpected high volatile organic compounds in emissions that exceeded regulatory permit limits. Several workers also reported smelling sharp odors and throat irritation. Vapor grab samples from the 296-C-006 ventilation system were taken as soon as possible after detection; the analyses indicated that volatile and semi-volatile organic compounds were present. In December 1998, a process test (phase I) was conducted in which the pumps in tanks 241-C-106 and 241-AY-102 were operated and vapor samples obtained to determine constituents that may be present during active sluicing of tank 241-C-106. The process test was suspended when a jumper leak was detected. On March 7, 1999, phase I1 of the process test was performed; the sluicing system was operated for approximately 7 hours and was ended using the controlled shutdown method when the allowable amount of solids were transferred to 241-AY-102. The phase II test was successful, however, further testing is required to obtain vapor samples at higher emission levels

  4. Status of the GERDA Phase II upgrade

    Science.gov (United States)

    Wagner, Victoria

    2016-06-01

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of 76Ge. In Phase I of the experiment a background index of 10-2 cts/(keV.kg.yr) was reached. A lower limit on the half-life of the 0νββ decay of 76Ge was set to 2.1.1025 yr (at 90% C.L.). The aim of Phase II is to reach a sensitivity of the half-life of about 1026 yr. To increase the exposure thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by a light instrumentation to read out argon scintillation light. In April 2015 the light instrumentation together with eight BEGe detectors has been successfully deployed in the GERDA cryostat. In a commissioning run it was shown that two of the major background components, external γ-rays from 214Bi and 208Tl decays, were suppressed up to two orders of magnitude. We are confident to reach a background index of 10-3 cts/(keV.kg.yr) which is the design goal for GERDA Phase II.

  5. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

    International Nuclear Information System (INIS)

    1996-01-01

    This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers' Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided

  6. Functional requirements for the Tumulus I and II cap Waste Area Grouping 6 Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Cox, L.C.

    1991-06-01

    The tumulus method of solid low-level waste (LLW) disposal began in 1989 with the Tumulus Disposal Demonstration (TDD) project, conducted on Tumulus I. LLW is contained in 4-ft x 4-ft x 6-ft boxes which are placed into precast concrete casks. The annular space around the box is grouted with a cementious grout before the lid is installed. The LLW does not contain RCRA materials or liquids. The casks are then stacked two high on the concrete tumulus pad. Prior to filling Tumulus I to capacity Tumulus II was constructed. Tumulus II will be filled to capacity by the end of 1991 at which time the Interim Waste Management Facility (IWMF) will have been constructed and will provide approximately six years of LLW disposal capacity. This project will provide interim closure of the Tumulus I and II by designing and constructing a multilayered cap, with monitoring capabilities, which will be consistent in purpose with the requirements of a Record of Decision (ROD) which will result from the Waste Area Group (WAG) 6 closure and remediation effort. Capping Tumulus I and II has been a part of the overall tumulus disposal plan since inception in the Low Level Waste Disposal, Development and Demonstration (LLWDDD) program strategy issued in 1988. This project consists of the design and construction of a low permeability cap over the Tumulus I and II disposal units. The cap shall incorporate a drainage system and be maintainable. The monitoring systems now in place will be modified and be utilized for post-closure monitoring of the pads and groundwater. The capability for performance assessment monitoring will be included in the design

  7. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Celal [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Gundogdu, Ali [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Giresun Faculty of Art and Science, Karadeniz Technical University, 28049 Giresun (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Art and Science, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Art and Science, Pamukkale University, 20020 Denizli (Turkey); Sentuerk, Hasan Basri [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuefekci, Mehmet [Department of Chemistry, Faculty of Art and Science, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L{sup -1} HNO{sub 3} in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 {mu}g L{sup -1}. The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  8. Comparative waste forms study

    International Nuclear Information System (INIS)

    Wald, J.W.; Lokken, R.O.; Shade, J.W.; Rusin, J.M.

    1980-12-01

    A number of alternative process and waste form options exist for the immobilization of nuclear wastes. Although data exists on the characterization of these alternative waste forms, a straightforward comparison of product properties is difficult, due to the lack of standardized testing procedures. The characterization study described in this report involved the application of the same volatility, mechanical strength and leach tests to ten alternative waste forms, to assess product durability. Bulk property, phase analysis and microstructural examination of the simulated products, whose waste loading varied from 5% to 100% was also conducted. The specific waste forms investigated were as follows: Cold Pressed and Sintered PW-9 Calcine; Hot Pressed PW-9 Calcine; Hot Isostatic Pressed PW-9 Calcine; Cold Pressed and Sintered SPC-5B Supercalcine; Hot Isostatic pressed SPC-5B Supercalcine; Sintered PW-9 and 50% Glass Frit; Glass 76-68; Celsian Glass Ceramic; Type II Portland Cement and 10% PW-9 Calcine; and Type II Portland Cement and 10% SPC-5B Supercalcine. Bulk property data were used to calculate and compare the relative quantities of waste form volume produced at a spent fuel processing rate of 5 metric ton uranium/day. This quantity ranged from 3173 L/day (5280 Kg/day) for 10% SPC-5B supercalcine in cement to 83 L/day (294 Kg/day) for 100% calcine. Mechanical strength, volatility, and leach resistance tests provide data related to waste form durability. Glass, glass-ceramic and supercalcine ranked high in waste form durability where as the 100% PW-9 calcine ranked low. All other materials ranked between these two groupings

  9. Ultraflat Tip-Tilt-Piston MEMS Deformable Mirror, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a Phase II SBIR project to develop high-resolution, ultraflat micromirror array devices using advanced silicon surface micromachining...

  10. Steam generator tube integrity program: Phase II, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

    1988-08-01

    The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted.

  11. Steam generator tube integrity program: Phase II, Final report

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

    1988-08-01

    The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted

  12. Reconfigurable L-band Radar Transceiver using Digital Signal Synthesis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II proposal, builds upon the extensive research and digital radar design that has been successfully completed during the Phase I contract. Key innovations...

  13. Study on the management of radioactive solid wastes for the KRR-I and II dismantling activities

    International Nuclear Information System (INIS)

    Lee, D. G.; Kim, H. R.; Park, S. K.; Lee, B. J.; Jung, K. H.; Baek, S. T.; Jung, U. S.; Jung, K. J.

    2000-01-01

    KRR-1(TRIGA Mark II) and KRR-2(TRIGA Mark-III) have been operated 33 years and 23 years, respectively, and now are about to be decommissioned as they reach the end of their useful lives. In the decommissioning of the reactors, the treatment of radioactive wastes is practical issues and, therefore, the plan on it has to be essentially established prior to the actual decontamination and decommissioning activities. In the present study, the classification, radiological status, classification criteria and package on the radioactive solid wastes in the TRIGA Mark-II and III are investigated for the investigated for the purpose of the effective management plan of them

  14. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging Phase I SBIR successes, in Phase II, a single photon sensitive LIDAR receiver will be fabricated and delivered to NASA. In Phase I, high-gain,...

  15. Status report of the Gerda Phase II startup

    International Nuclear Information System (INIS)

    D’Andrea, Valerio

    2017-01-01

    The GERmanium Detector Array (Gerda) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of "7"6Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter "7"6Ge ("e"n"rGe) are exposed being both source and detector of 0νββ decay. This process is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, at the completion of the first experimental phase (Phase I), the Gerda setup has been upgraded to perform its next step (Phase II). The aim is to reach a sensitivity to the 0νββ decay half life larger than 10"2"6 yr in about 3 years of physics data taking, exposing a detector mass of about 35 kg of "e"n"rGe with a background index of about 10"−"3cts/(keV·kg·yr). One of the main new implementations is the liquid argon (LAr) scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper the Gerda Phase II expected goals, the upgraded items and few selected features from the first 2016 physics and calibration runs will be presented. The main Phase I achievements will be also reviewed.

  16. LHC Experiments Phase II - TDRs Approval Process

    CERN Document Server

    Forti, F

    2017-01-01

    The overall review process and steps of Phase II were described in CERN-LHCC-2015-077. As experiments submit detailed technical design reports (TDRs), the LHCC and UCG work in close connection to ensure a timely review of the scientific and technical feasibility as well as of the budget and schedule of the upgrade programme.

  17. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  18. Assessment of gas flammability in transuranic waste container

    International Nuclear Information System (INIS)

    Connolly, M.J.; Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R.

    1995-01-01

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions

  19. Status of the GERDA Phase II upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck-Insitut für Kernphysik, Heidelberg (Germany)

    2016-06-21

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of {sup 76}Ge. In Phase I of the experiment a background index of 10{sup −2} cts/(keV·kg·yr) was reached. A lower limit on the half-life of the 0νββ decay of {sup 76}Ge was set to 2.1·10{sup 25} yr (at 90% C.L.). The aim of Phase II is to reach a sensitivity of the half-life of about 10{sup 26} yr. To increase the exposure thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by a light instrumentation to read out argon scintillation light. In April 2015 the light instrumentation together with eight BEGe detectors has been successfully deployed in the GERDA cryostat. In a commissioning run it was shown that two of the major background components, external γ-rays from {sup 214}Bi and {sup 208}Tl decays, were suppressed up to two orders of magnitude. We are confident to reach a background index of 10{sup −3} cts/(keV·kg·yr) which is the design goal for GERDA Phase II.

  20. Status of the GERDA Phase II upgrade

    International Nuclear Information System (INIS)

    Wagner, Victoria

    2016-01-01

    The GERDA experiment is designed to search for neutrinoless double beta (0νββ) decay of "7"6Ge. In Phase I of the experiment a background index of 10"−"2 cts/(keV·kg·yr) was reached. A lower limit on the half-life of the 0νββ decay of "7"6Ge was set to 2.1·10"2"5 yr (at 90% C.L.). The aim of Phase II is to reach a sensitivity of the half-life of about 10"2"6 yr. To increase the exposure thirty new Broad Energy Germanium (BEGe) detectors have been produced. These detectors are distinct for their improved energy resolution and enhanced pulse shape discrimination of signal from background events. Further background reduction will be reached by a light instrumentation to read out argon scintillation light. In April 2015 the light instrumentation together with eight BEGe detectors has been successfully deployed in the GERDA cryostat. In a commissioning run it was shown that two of the major background components, external γ-rays from "2"1"4Bi and "2"0"8Tl decays, were suppressed up to two orders of magnitude. We are confident to reach a background index of 10"−"3 cts/(keV·kg·yr) which is the design goal for GERDA Phase II.

  1. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  2. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  3. High Radiation Resistance Inverted Metamorphic Solar Cell, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this SBIR Phase II project is the development of a unique triple junction inverted metamorphic technology (IMM), which will enable the...

  4. Recent Advances in Understanding of Kinetic Interplay Between Phase II Metabolism and Efflux Transport.

    Science.gov (United States)

    Wang, Shuai; Xing, Huijie; Zhao, Mengjing; Lu, Danyi; Li, Zhijie; Dong, Dong; Wu, Baojian

    2016-01-01

    Mechanistic understanding of the metabolism-transport interplay assumes great importance in pharmaceutical fields because the knowledge can help to interpret drug/xenobiotic metabolism and disposition studies as well as the drug-drug interactions in vivo. About 10 years ago, it started to recognize that cellular phase II metabolism is strongly influenced by the excretion (efflux transport) of generated metabolites, a kinetic phenomenon termed "phase II metabolism-transport interplay". This interplay is believed to have significant effects on the pharmacokinetics (bioavailability) of drugs/chemicals undergoing phase II metabolism. In this article, we review the studies investigating the phase II metabolism-transport interplay using cell models, perfused rat intestine, and intact rats. The potential confounding factors in exploring such interplay is also summarized. Moreover, the mechanism underlying the phase II metabolism-transport interplay is discussed. Various studies with engineered cells and rodents have demonstrated that there is an interaction (interplay) between phase II enzymes and efflux transporters. This type of interplay mainly refers to the dependence of phase II (conjugative) metabolism on the activities of efflux transporters. In general, inhibiting efflux transporters or decreasing their expression causes the reductions in metabolite excretion, apparent excretion clearance (CLapp) and total metabolism (fmet), as well as an increase in the intracellular level of metabolite (Ci). The deconjugation mediated by hydrolase (acting as a "bridge") is essential for the interplay to play out based on pharmacokinetic modeling/simulations, cell and animal studies. The hydrolases bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof (a bridging effect). Without the bridge, metabolite formation is independent on its downstream process excretion, thus impact of metabolite excretion on its formation is impossible

  5. Multi-Channel Tunable Source for Atomic Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR will seek to develop a prototype laser source suitable for atomic interferometry from compact, robust, integrated components. AdvR's design is...

  6. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass

    International Nuclear Information System (INIS)

    Iftikhar, Abdur Rauf; Bhatti, Haq Nawaz; Hanif, Muhammad Asif; Nadeem, Razyia

    2009-01-01

    Distillation waste of rose petals was used to remove Cu(II) and Cr(III) from aqueous solutions. The results demonstrated the dependency of metal sorption on pH, sorbent dose, sorbent size, initial bulk concentration, time and temperature. A dosage of 1 g/L of rose waste biomass was found to be effective for maximum uptake of Cu(II) and Cr(III). Optimum sorption temperature and pH for Cu(II) and Cr(III) were 303 ± 1 K and 5, respectively. The Freundlich regression model and pseudo-second-order kinetic model were resulted in high correlation coefficients and described well the sorption of Cu(II) and Cr(III) on rose waste biomass. At equilibrium q max (mg/g) of Cu(II) and Cr(III) was 55.79 and 67.34, respectively. The free energy change (ΔG o ) for Cu(II) and Cr(III) sorption process was found to be -0.829 kJ/mol and -1.85 kJ/mol, respectively, which indicates the spontaneous nature of sorption process. Other thermodynamic parameters such as entropy change (ΔS o ), enthalpy (ΔH o )and activation energy (ΔE) were found to be 0.604 J mol -1 K -1 , -186.95 kJ/mol and 68.53 kJ/mol, respectively for Cu(II) and 0.397 J mol -1 K -1 , -119.79 kJ/mol and 114.45 kJ/mol, respectively for Cr(III). The main novelty of this work was the determination of shortest possible sorption time for Cu(II) and Cr(III) in comparison to earlier studies. Almost over 98% of Cu(II) and Cr(III) were removed in only first 20 min at an initial concentration of 100 mg/L

  7. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  8. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste

    International Nuclear Information System (INIS)

    Zheng Wei; Li Xiaoming; Yang Qi; Zeng Guangming; Shen Xiangxin; Zhang Ying; Liu Jingjin

    2007-01-01

    Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1 mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl 2 , NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper

  9. Geotechnical properties of municipal solid waste at different phases of biodegradation

    International Nuclear Information System (INIS)

    Reddy, Krishna R.; Hettiarachchi, Hiroshan; Gangathulasi, Janardhanan; Bogner, Jean E.

    2011-01-01

    Highlights: → Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. → Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. → Hydraulic conductivity decreased by two orders of magnitude due to degradation. → Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. → Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35 o for fresh MSW to 28 o for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1 o to 9 o , respectively, while the effective strength parameters, cohesion

  10. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    International Nuclear Information System (INIS)

    Ghaedi, Mehrorang; Shokrollahi, Ardeshir; Niknam, Khodabakhsh; Niknam, Ebrahim; Najibi, Asma; Soylak, Mustafa

    2009-01-01

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L -1 HNO 3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL -1 for Cd 2+ , Pb 2+ , Pd 2+ and Ag + along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd 2+ , Pb 2+ , Pd 2+ and Ag + , respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  11. Demonstration of GTS Duratek Process for Stabilizing Mercury Contaminated (<260 ppm) Mixed Wastes. Mixed Waste Focus Area. OST Reference No. 2409

    International Nuclear Information System (INIS)

    1999-01-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities, totaling approximately 6,000 m 3 . Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. They must also be proven feasible in terms of economics, operability, and safety. This report summarizes the findings from a stabilization technology demonstration conducted by GTS Duratek, Inc. Phase I of the study involved receipt and repackaging of the material, followed by preparations for waste tracking. Phase II examined the bench-scale performance of grouting at two different loadings of waste to grouted mass. Phase III demonstrated in-drum mixing and solidification using repackaged drums of sludge. Phase IV initially intended to ship final residues to Envirocare for disposal. The key results of the demonstration are as follows: (1) Solidification tests were performed at low and high waste loading, resulting in stabilization of mercury to meet the Universal Treatment Standard of 0.025 mg/L at the low loading and for two of the three runs at the high loading. The third high-loading run had a Toxicity Characteristic Leaching Procedure (TCLP) of 0.0314 mg/L. (2) Full-drum stabilization using the low loading formula was demonstrated. (3) Organic compound levels were discovered to be higher than originally reported, including the presence of some pesticides. Levels of some radionuclides were much higher than initially reported. (4

  12. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  13. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation.

    Science.gov (United States)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2015-12-15

    Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of "sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil" was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na2CO3) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Recession-Tolerant Sensors for Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will develop a suite of diagnostic sensors using Direct Write technology to measure temperature, surface recession depth, and heat flux of an...

  15. Hazardous waste management programs; Florida: authorization for interim authorization phase I--Environmental Protection Agency. Notice of final determination.

    Science.gov (United States)

    1982-05-07

    The State of Florida has applied for interim Authorization Phase I. EPA has reviewed Florida's application for Phase I and has determined that Florida's hazardous waste program is substantially equivalent to the Federal program covered by Phase I. The State of Florida is, hereby, granted Interim Authorization for Phase I to operate the State 's hazardous waste program, in lieu of the Federal program.

  16. Development of ceramics based fuel, Phase II; Razvoj goriva na bazi keramike, II faza

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-12-15

    Phase II of this task covers the following: testing the changes of UO{sub 2} properties during sintering; interpretation of results obtained from the analysis of the sintering process kinetics; fabrication of UO{sub 2} samples with cladding by vibrational compacting.

  17. Ground Processing Optimization Using Artificial Intelligence Techniques, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal is the automation of a large amount of KSC's planning, scheduling, and execution decision making. Phase II will result in a complete full-scale...

  18. Lightweight Metal RubberTM Sensors and Interconnects, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Phase II program is to develop and increase the Technology Readiness Level of multifunctional Metal RubberTM (MRTM) materials that can be...

  19. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT- CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.

    2013-02-26

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  20. Performance of the LAr scintillation veto of GERDA Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wiesinger, Christoph [Technische Universitaet Muenchen, Physik Dept. E15, James-Franck-Strasse, 85748 Garching (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay in {sup 76}Ge. Results of Phase I have been published in summer 2013 and Gerda is upgraded to Phase II. To reach the aspired background index of ≤ 10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques are applied, including an active liquid argon (LAr) veto. It has been demonstrated with the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in the LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon multipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during the commissioning runs are reported.

  1. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 1, Chapters 1--6

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. Chapters 1--6 include an introduction, background information, description of the proposed action and alternatives, description of the affected environments, environmental impacts, and consultations and permits

  2. The SafeBoosC phase II clinical trial

    DEFF Research Database (Denmark)

    Riera, Joan; Hyttel-Sorensen, Simon; Bravo, María Carmen

    2016-01-01

    BACKGROUND: The SafeBoosC phase II randomised clinical trial recently demonstrated the benefits of a combination of cerebral regional tissue oxygen saturation (rStO2) by near-infrared spectroscopy (NIRS) and a treatment guideline to reduce the oxygen imbalance in extremely preterm infants. AIMS: ...

  3. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review

    International Nuclear Information System (INIS)

    Gougar, M.L.D.; Scheetz, B.E.; Roy, D.M.

    1996-01-01

    The formation, structure and chemistry of the ettringite and C-S-H phases of Portland cement have been reviewed as they relate to waste ion immobilization. The purpose of this review was to investigate the use of Portland cement as a host for priority metallic pollutants as identified by the Environmental Protection Agency and as a host for radioactive waste ions as identified in 40 CFR 191. Ettringite acts as host to a number of these ions in both the columnar and channel sections of the crystal structure. Substitutions have been made at the calcium, aluminum, hydroxide and sulfate sites. C-S-H also hosts a number of the waste species in both ionic and salt form. Immobilization mechanisms for C-S-H include sorption, phase mixing and substitution. The following ions have not apparently been reported as specifically immobilized by one of these phases: Ag, Am, Np, Pu, Ra, Tc, Th and Sn; however, some of these ions are immobilized by Portland cement

  4. Advanced Technology Cloud Particle Probe for UAS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II SPEC will design, fabricate and flight test a state-of-the-art combined cloud particle probe called the Hawkeye. Hawkeye is the culmination of two...

  5. Composite Structure Monitoring using Direct Write Sensors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II project seeks to develop and demonstrate a suite of sensor products to monitor the health of composite structures. Sensors will be made using...

  6. Improved Lunar and Martian Regolith Simulant Production, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of the Phase II project is to provide a more complete investigation of the long-term needs of the simulant community based on the updated...

  7. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis

    International Nuclear Information System (INIS)

    DYKES, A.A.

    2000-01-01

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O and M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis

  8. TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.

    1999-04-15

    This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004

  9. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  10. Characterization of Jamaican agro-industrial wastes. Part II, fatty acid profiling using HPLC: precolumn derivatization with phenacyl bromide.

    Science.gov (United States)

    Bailey-Shaw, Y A; Golden, K D; Pearson, A G M; Porter, R B R

    2012-09-01

    This paper describes the determination of fatty acid composition of coffee, citrus and rum distillery wastes using reversed-phase high-performance liquid chromatography (RP-HPLC). Lipid extracts of the waste samples are derivatized with phenacyl bromide and their phenacyl esters are separated on a C8 reversed-phase column by using continuous gradient elution with water and acetonitrile. The presence of saturated and unsaturated fatty acids in quantifiable amounts in the examined wastes, as well as the high percentage recoveries, are clear indications that these wastes have potential value as inexpensive sources of lipids. The HPLC procedures described here could be adopted for further analysis of materials of this nature.

  11. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  12. Waste and decontamination services FY 94 Multi-Year Program Plan Phase II WBS No. 1.2.3

    International Nuclear Information System (INIS)

    Cruz, E.A.

    1994-05-01

    During the remediation of the Hanford Site large volumes of radioactive and mixed solid waste are expected to be produced, thus creating the need for subsequent decontamination, treatment, storage, and/or waste disposal. The program mission is to manage current and future contaminated solid waste streams in a safe, responsible, cost effective and legally compliant manner. This document presents the strategy and technical requirements, along with key objectives and deliverables for the waste and decontamination services program for fiscal year 1994. Time schedules, cost estimates, and justification for each proposed activity are given in tables and charts

  13. Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads.

    Science.gov (United States)

    Dakova, Ivanka; Karadjova, Irina; Ivanov, Ivo; Georgieva, Ventsislava; Evtimova, Bisera; Georgiev, George

    2007-02-12

    Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2'-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 micromol g(-1) of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO(3). The selectivity coefficients (S(Cu/Me)) for Me=Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 micromol L(-1) (3sigma) and 0.003 micromol L(-1) (6sigma), respectively.

  14. South Bay Salt Pond Restoration, Phase II at Ravenswood

    Science.gov (United States)

    Information about the South Bay Salt Pond Restoration Project: Phase II Construction at Ravenswood, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  15. InGaN High Temperature Photovoltaic Cells, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this Phase II project are to develop InGaN photovoltaic cells for high temperature and/or high radiation environments to TRL 4 and to define the...

  16. Cash Impact of the Consumable Item Transfer, Phase II

    National Research Council Canada - National Science Library

    1998-01-01

    ...). This report is the third in a series of reports regarding the consumable item transfer (CIT), phase II. The Deputy Secretary of Defense directed the transfer of the management of consumable items to Defense Logistics Agency...

  17. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    Science.gov (United States)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    as talc, but it has discontinuities and inversion of the silica sheets, which give rise to structural tunnels and blocks. In the inner blocks, all corners of the silica tetrahedral are connected to adjacent blocks, but in the outer blocks, some of the corners are Si atoms bound to hydroxyls (Si-OH). This unique structure allows the penetration of organic and inorganic species into the structure and assigns sepiolite an industrial importance in adsorption. The objective of the present study is to investigate the feasibility of using sepiolite for the adsorptive removal of Cu (II) from the industrial waste leachate. The adsorption capacities and sorption efficiencies are determined. The pseudo first order, the pseudo-second order, Elovich and the intra particle diffusion kinetic models are used to describe the kinetic data to estimate the rate constants. The adsorption of Cu (II) from the aqueous leachate of industrial wastes onto sepiolite was performed using a batch equilibrium technique. At first stage, one-factor-at-a-time experiments were performed to see the individual effects of initial pH, adsorbent dosage and contact time. The adsorption of Cu (II) was favorably influenced by an increase in the adsorbent dosage. The maximum percent removal of Cu (II) were observed at pH>6, and significantly decreased at lower pH value. The optimum contact time is found as 10 min. for the removal of Cu (II). The increment in contact time from 10 min. to 120 min. did not show a significant effect on efficiency. The maximum Cu (II) adsorption efficiencies were obtained at 94.45%. The pseudo second order kinetic model agrees very well with the dynamical behavior for the adsorption of Cu (II) from aqueous leachate of industrial waste onto sepiolite. The results indicate that the use of sepiolite that is locally available and almost free of cost as an adsorbent could be a viable alternative to activated carbon for the removal of Cu (II) ions from aqueous solutions.

  18. A Tool for Predicting Regulatory Approval After Phase II Testing of New Oncology Compounds.

    Science.gov (United States)

    DiMasi, J A; Hermann, J C; Twyman, K; Kondru, R K; Stergiopoulos, S; Getz, K A; Rackoff, W

    2015-11-01

    We developed an algorithm (ANDI) for predicting regulatory marketing approval for new cancer drugs after phase II testing has been conducted, with the objective of providing a tool to improve drug portfolio decision-making. We examined 98 oncology drugs from the top 50 pharmaceutical companies (2006 sales) that first entered clinical development from 1999 to 2007, had been taken to at least phase II development, and had a known final outcome (research abandonment or regulatory marketing approval). Data on safety, efficacy, operational, market, and company characteristics were obtained from public sources. Logistic regression and machine-learning methods were used to provide an unbiased approach to assess overall predictability and to identify the most important individual predictors. We found that a simple four-factor model (activity, number of patients in the pivotal phase II trial, phase II duration, and a prevalence-related measure) had high sensitivity and specificity for predicting regulatory marketing approval. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  19. The management system for the disposal of radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    industry. Appendix I provides recommendations on issues relating to the management system that are specific to the operation, closure and active institutional control phases of waste disposal facilities. Appendix II provides recommendations on issues relating to the management system that are specific to the design, testing and application of, and change control processes for, computer modelling that will be used in all phases of activities relating to waste disposal. Appendices I and II are indexed separately

  20. Mechanical Engineering and Design of the LHC Phase II Collimators

    CERN Document Server

    Bertarelli, A; Gentini, L; Mariani, N; Perret, R; Timmins, M A

    2010-01-01

    Phase II collimators will complement the existing system to improve the expected high RF impedance and limited efficiency of Phase I jaws. An international collaborative effort has been launched to identify novel advanced materials responding to the very challenging requirements of the new collimators. Complex numerical calculations simulating extreme conditions and experimental tests are in progress. In parallel, an innovative modular design concept of the jaw assembly is being developed to allow fitting in alternative materials, minimizing the thermally induced deformations, withstanding accidents and accepting high radiation doses. Phase II jaw assembly is made up of a molybdenum back-stiffener ensuring high geometrical stability and a modular jaw split in threes sectors. Each sector is equipped with a high-efficiency independent cooling circuit. Beam position monitors (BPM) are embedded in the jaws to fasten setup time and improve beam monitoring. An adjustment system will permit to fine-tune the jaw flat...

  1. Site investigations for final disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Aeikaes, T.; Laine, T.

    1982-12-01

    Research concerning disposal of high-level nuclear waste of the Industrial Power Company Ltd has focused on deep underground disposal in Finnish precambrian bedrock. The present target is to have a repository for high-level waste in operation by 2020. Selection of the repository site is based on site investigations. In addition to geosciences, selection of appropriate site includes many branches of studies; engineering, safety analysis, ecology, transport, demography etc. The investigations required for site selection for high-level waste have been arranged in a sequence of four phases. The aim of the phases is that investigations become more and more detailed as the selection process continues. Phase I of the investigations is the characterization of potential areas. This comprises establishment of criteria for site selection and identification of areas that meet selection criteria. Objective of these studies is to determine areas for phase II field investigations. The studies are largely made by reviewing existing data and remote-sensing techniques. Phase II field investigations will be undertaken between 1986-1992. The number of potential candidates for repository site is reduced to few preferred areas by preceeding generic study. The site selection process culminates in phase III in site confirmation studies carried out at 2...3 most suitable sites during 1992-2010. This is then followed by phase IV, which comprises very detailed investigations at the selected site. An alternative for these investigations is to undertake them by using pilot shaft and drifts. Active development is taking place in all phases concerning investigation methods, criteria, parameters, data processing and modelling. The applicability of the various investigation methods and techniques is tested in a deep borehole in phase I. The co-operation with countries with similar geological conditions makes it possible to compare results obtained by different techniques

  2. Waste Management Effluent Treatment Facility: Phase I. CAC basic data

    International Nuclear Information System (INIS)

    Gemar, D.W.; O'Leary, C.D.

    1984-01-01

    In order to expedite design and construction of the Waste Management Effluent Treatment Facility (WMETF), the project has been divided into two phases. Phase I consists of four storage basins and the associated transfer lines, diversion boxes, and control rooms. The design data pertaining to Phase I of the WMETF project are presented together with general background information and objectives for both phases. The project will provide means to store and decontaminate wastewater streams that are currently discharged to the seepage basins in F Area and H Area. This currently includes both routine process flows sent directly to the seepage basins and diversions of contaminated cooling water or storm water runoff that are stored in the retention basins before being pumped to the seepage basins

  3. SRNL Phase 1 Assessment Of The WAC/DQO And Unit Operations For The WTP Waste Qualification Program

    International Nuclear Information System (INIS)

    Peeler, D.; Adamson, D.; Bannochie, C.; Cozzi, A.; Eibling, R.; Hay, M.; Hansen, E.; Herman, D.; Martino, C.; Nash, C.; Pennebaker, F.; Poirier, M.; Reboul, S.; Stone, M.; Taylor-Pashow, K.; White, T.; Wilmarth, B.

    2012-01-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is currently transitioning its emphasis from a design and construction phase toward start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements related to actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program to be implemented to support the WTP. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS), based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested the utilization of subject matter experts from SRNL to support a technology exchange to perform a review of the WTP waste qualification program, discuss the general qualification approach at SRS, and to identify critical lessons learned through the support of DWPF's sludge batch qualification efforts. As part of Phase 1, SRNL subject matter experts in critical technical and/or process areas reviewed specific WTP waste qualification information. The Phase 1 review was a collaborative, interactive, and iterative process between the two organizations. WTP provided specific analytical procedures, descriptions of equipment, and general documentation as baseline review material. SRNL subject matter experts reviewed the information and, as appropriate, requested follow-up information or clarification to specific areas of interest. This process resulted in multiple teleconferences with key technical contacts from both organizations resolving technical issues that lead to the results presented in this report. This report provides the results of SRNL's Phase 1 review of the WAC-DQO waste acceptance criteria and processability parameters, and the specific unit operations which are required to support WTP waste qualification efforts. The review resulted in SRNL providing concurrence, alternative methods, or gap identification

  4. SRNL PHASE 1 ASSESSMENT OF THE WAC/DQO AND UNIT OPERATIONS FOR THE WTP WASTE QUALIFICATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.; Adamson, D.; Bannochie, C.; Cozzi, A.; Eibling, R.; Hay, M.; Hansen, E.; Herman, D.; Martino, C.; Nash, C.; Pennebaker, F.; Poirier, M.; Reboul, S.; Stone, M.; Taylor-Pashow, K.; White, T.; Wilmarth, B.

    2012-05-16

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is currently transitioning its emphasis from a design and construction phase toward start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements related to actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program to be implemented to support the WTP. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS), based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested the utilization of subject matter experts from SRNL to support a technology exchange to perform a review of the WTP waste qualification program, discuss the general qualification approach at SRS, and to identify critical lessons learned through the support of DWPF's sludge batch qualification efforts. As part of Phase 1, SRNL subject matter experts in critical technical and/or process areas reviewed specific WTP waste qualification information. The Phase 1 review was a collaborative, interactive, and iterative process between the two organizations. WTP provided specific analytical procedures, descriptions of equipment, and general documentation as baseline review material. SRNL subject matter experts reviewed the information and, as appropriate, requested follow-up information or clarification to specific areas of interest. This process resulted in multiple teleconferences with key technical contacts from both organizations resolving technical issues that lead to the results presented in this report. This report provides the results of SRNL's Phase 1 review of the WAC-DQO waste acceptance criteria and processability parameters, and the specific unit operations which are required to support WTP waste qualification efforts. The review resulted in SRNL providing concurrence, alternative methods, or gap

  5. PRELIMINARY STUDY OF CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Billings, A.; Brinkman, K.; Marra, J.

    2010-09-22

    The Savannah River National Laboratory (SRNL) developed a series of ceramic waste forms for the immobilization of Cesium/Lanthanide (CS/LN) and Cesium/Lanthanide/Transition Metal (CS/LN/TM) waste streams anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores, zirconolite, and other minor metal titanate phases. Identification of excess Al{sub 2}O{sub 3} via X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. XRD and SEM/EDS results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD, and had phase assemblages that were closer to the initial targets. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms. Initial studies of radiation damage tolerance using ion beam irradiation at Los

  6. Post Process Characterization of Friction Stir Welded Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes in this STTR Phase II project to continue development and validation of Luna's amplitude-dependent, nonlinear ultrasonic...

  7. LAr instrumentation for Gerda phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently the commissioning of Gerda Phase II is ongoing. To reach the aspired background index of ≤10{sup -3} cts/(keV.kg.yr) active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon multipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during the commissioning runs are reported.

  8. Reliability and safety program plan outline for the operational phase of a waste isolation facility

    International Nuclear Information System (INIS)

    Ammer, H.G.; Wood, D.E.

    1977-01-01

    A Reliability and Safety Program plan outline has been prepared for the operational phase of a Waste Isolation Facility. The program includes major functions of risk assessment, technical support activities, quality assurance, operational safety, configuration monitoring, reliability analysis and support and coordination meetings. Detailed activity or task descriptions are included for each function. Activities are time-phased and presented in the PERT format for scheduling and interactions. Task descriptions include manloading, travel, and computer time estimates to provide data for future costing. The program outlined here will be used to provide guidance from a reliability and safety standpoint to design, procurement, construction, and operation of repositories for nuclear waste. These repositories are to be constructed under the National Waste Terminal Storage program under the direction of the Office of Waste Isolation, Union Carbide Corp. Nuclear Division

  9. Using copper hexacyanoferrate (II) impregnated zeolite for cesium removal from radioactive liquid waste

    International Nuclear Information System (INIS)

    Fumio, K.; Kenji, M.

    1982-01-01

    Experiments were performed to obtain fundamental data on cesium ion removal characteristics of metal hexacyanoferrate (II) impregnated zeolite in radioactive liquid waste containing a large amount of sodium sulfate. Copper hexacyanoferrate (II) impregnated zeolite (CuFZ) was prepared and showed a high selectivity for cesium ion. The material was suitable for use in an ion exchange column. This exchanger could selectively and efficiently remove the cesium even if there is 15 wt% Na 2 SO 4 in the solution. Cesium removal ability and stability of CuFZ were excellent over a wide pH range between 1.5 and 10. The cesium ion exchange ability was not influenced by the presence of the alkali metal ions, calcium and magnesium, and carbonate ions even at concentrations 25 times greater than the cesium ion. However, since ammonium ion behaves similarly to cesium ion and interrupts latter ion adsorption, the presence of ammonium ion is not desirable. The CuFZ offers the possibility of separating and removing cesium from liquid wastes produced in facilities handling radioactive materials

  10. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M.J.; Liekhus, K.J. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R. [Benchmark Environmental Corp. (United States)

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  11. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  12. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  13. Multifunctional Metal/Polymer Composite Fiber for Space Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovation Research Phase II Program, Syscom Technology, Inc. will implement an integrated processing scheme to fabricate a conductive...

  14. National Environmental/Energy Workforce Assessment, Phase II, Post-Secondary Education Profile: Solid Waste.

    Science.gov (United States)

    National Field Research Center Inc., Iowa City, IA.

    Educational programs in solid waste management offered by 16 schools in 9 states were surveyed. These programs represent a sample, only, of the various programs available nationwide. Enrollment and graduate statistics are presented. Overall, 116 full-time and 124 part-time faculty were involved in the programs surveyed. Curricula and sources of…

  15. Taking into account dismantling and decommissioning waste management in conception and operation phases

    International Nuclear Information System (INIS)

    Poncet, Philippe

    2016-01-01

    Managing waste during the Dismantling and Decommissioning (D and D) phase is quite specific and different from what it was during the operation phase. Indeed, waste generated during dismantling could present some analogy especially with regards to the radionuclides spectrum and contents. However waste from dismantling and cleanup could actually presents a lower level of radiologic activity but produced in much larger quantities, which requires new solutions. Moreover the characteristics and quantities of waste to be managed during D and D are highly depending on the way the facility was designed and also how it was actually operated during its life time. Taking future D and D into consideration in the early design as well as during the operation of new facilities is becoming more and more mandatory. It is now an explicit requirement set by safety authorities, to provide - in the license application for news plants - a description of design provisions and future plans for D and D as well as anticipated technical and financial impacts,. Two major aspects are driving the cost and complexity of future D and D operations: waste volumes by categories and occupational exposure while performing the work. To reduce such impacts, key approaches are to maintain areas clean, segregate the waste types and provide appropriate provisions in the design. The paper's first part describes the related design and operation concepts derived from lessons learned, and illustrations by examples are presented in a second part. (author)

  16. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C. [ed.

    1995-05-31

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  17. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace

  18. A Nanodroplet Processor for Advanced Microencapsulated Drug Formulations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase II program we propose to build on the key aspects of the nanodroplet encapsulation technology to demonstrate optimized formulation and...

  19. Spectrophotometric determination of cobalt(II), nickel(II) and copper (II) with 1-(2 pyridylazo)-2-naphthol in micellar medium

    International Nuclear Information System (INIS)

    Shar, G.A.; Soomro, G.A.

    2004-01-01

    Spectrophotometric determination of cobalt(II), nickel(II) and copper(II) is carried out with 1-(2 pyridylazo)-2-naphthol as a complexing reagent in aqueous phase using non-ionic surfactant Tween 80. Beer's law is obeyed for Co(II), Ni(II) and Cu(II) over the range 0.5 - 4.0, 0.5 - 4.0 and 0.5 - 3.0 ngmL/sup -1/ with detection limit (2 σ) of 6.7, 3.2 and 3.9 ngmL/sup -1/. The max molar absorption, molar absorptivity, Sandell's sensitivity of Co(II), Ni(II) and Cu(II) are 580 nm, 570 nm and 555 nm; max (104 mol/sup -1/ cm /sup -1/) is 0.87, 1.8 and 1.6 and 6.8, 3.3 and 3.9 ng cm-2 respectively. The pH at which complex is formed for Co(II), Ni(II) and Cu(II) is 5, 5.5 and 6.5 respectively. The critical micelle concentration (CMC) of Tween 80 is 5%. The present method is compared with that of atomic absorption spectroscopy and no significant difference is noted between the two methods at 95% confidence level. The method has been applied to the determination of Co(II), Ni(II) and Cu(II) in industrial waste water and pharmaceutical samples. (author)

  20. Project NOAH: Regulating modern sea-level rise. Phase II: Jerusalem Underground

    Science.gov (United States)

    Newman, Walter S.; Fairbridge, Rhodes W.

    This proposal builds a high-speed inter-urban express between Jerusalem and Tel Aviv, generates 1500 megawatts of hydroelectric energy, curtails littoral erosion, builds a port along the Israeli Mediterranean coast and demands peaceful cooperation on both sides of the Jordan River. Phase II represents a pilot project demonstrating the feasibility of continuing to regulate world sea-level by a new series of water regulation schemes. Phase I previously described all those projects already completed or underway which have inadvertently and/or unintentionally served the purpose of sea-level regulation. These forms of Phase I sea-level regulation include large and small reservoirs, irrigation projects, water infiltration schemes, farm ponds, and swimming and reflecting pools. All these water storage projects have already exercised a very appreciable brake on 20th century sea-level rise. Phase II outlines a high-visibility proposal which will serve to illustrate the viability of “Project NOAH”.

  1. FALSIRE Phase II. CSNI project for Fracture Analyses of Large-Scale International Reference Experiments (Phase II). Comparison report

    International Nuclear Information System (INIS)

    Sievers, J.; Schulz, H.; Bass, R.; Pugh, C.; Keeney, J.

    1996-11-01

    A summary of Phase II of the Project for Fracture Analysis of Large-Scale International Reference Experiments (FALSIRE) is presented. A FALSIRE II Workshop focused on analyses of reference fracture experiments. More than 30 participants representing 22 organizations from 12 countries took part in the workshop. Final results for 45 analyses of the reference experiments were received from the participating analysts. For each experiment, analysis results provided estimates of variables that include temperature, crack-mouth-opening displacement, stress, strain, and applied K and J values. The data were sent electronically to the Organizing Committee, who assembled the results into a comparative data base using a special-purpose computer program. A comparative assessment and discussion of the analysis results are presented in the report. Generally, structural responses of the test specimens were predicted with tolerable scatter bands. (orig./DG)

  2. Multifunctional Aerogel Thermal Protection Systems for Hypersonic Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase II project is to develop lightweight reinforced aerogel materials for use as the core structural insulation material in...

  3. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Niknam, Ebrahim; Najibi, Asma [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL{sup -1} for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +} along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +}, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  4. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger R.; Flach, Greg [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States); Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Dixon, Paul; Moulton, J. David [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States); Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Marble, Justin [Department of Energy, 19901 Germantown Road, Germantown, MD 20874-1290 (United States)

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  5. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    International Nuclear Information System (INIS)

    Seitz, Roger R.; Flach, Greg; Freshley, Mark D.; Freedman, Vicky; Gorton, Ian; Dixon, Paul; Moulton, J. David; Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan; Marble, Justin

    2013-01-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  6. Phase I and II feasibility study report for the 300-FF-5 operable unit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The purpose of this Phase I/II feasibility study is to assemble and screen a list of alternatives for remediation of the 300-FF-5 operable site on the Hanford Reservation. This screening is based on information gathered in the Phase I Remedial Investigation (RI) and on currently available information on remediation technologies. The alternatives remaining after screening provide a range of response actions for remediation. In addition, key data needs are identified for collection during a Phase II RI (if necessary). This Phase I/II FS represents a primary document as defined by the Tri-Party Agreement, but will be followed by a Phase III FS that will further develop the alternatives and provide a detailed evaluation of them. The following remedial action objectives were identified for the 300-FF-5 operable unit: Limit current human exposure to contaminated groundwater in the unit; Limit discharge of contaminated groundwater to the Columbia River; Reduce contaminant concentrations in groundwater below acceptable levels by the year 2018.

  7. Phase I and II feasibility study report for the 300-FF-5 operable unit

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this Phase I/II feasibility study is to assemble and screen a list of alternatives for remediation of the 300-FF-5 operable site on the Hanford Reservation. This screening is based on information gathered in the Phase I Remedial Investigation (RI) and on currently available information on remediation technologies. The alternatives remaining after screening provide a range of response actions for remediation. In addition, key data needs are identified for collection during a Phase II RI (if necessary). This Phase I/II FS represents a primary document as defined by the Tri-Party Agreement, but will be followed by a Phase III FS that will further develop the alternatives and provide a detailed evaluation of them. The following remedial action objectives were identified for the 300-FF-5 operable unit: Limit current human exposure to contaminated groundwater in the unit; Limit discharge of contaminated groundwater to the Columbia River; Reduce contaminant concentrations in groundwater below acceptable levels by the year 2018

  8. Deployable Engine Air-Brake for Drag Management Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc., (ATA) proposes a Phase II SBIR program to demonstrate an innovative engine air-brake (EAB) technology that uses a deployable swirl vane...

  9. Small Business Innovation Research, Post-Phase II Opportunity Assessment

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report outlines current Small Business Innovation Research (SBIR) Post-Phase II opportunity contract award results for the SBIR technology program from 2007 to 2011 for NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD). The report provides guidelines for incorporating SBIR technology into NASA programs and projects and provides a quantitative overview of the post-Phase II award patterns that correspond with each mission directorate at NASA Glenn Research Center (GRC). In recent years, one of NASA's goals has been to not only transfer SBIR technologies to commercial industries, but to ensure that NASA mission directorates incorporate SBIR technologies into their program and project activities. Before incorporating technologies into MD programs, it is important to understand each mission directorate structure because each directorate has different objectives and needs. The directorate program structures follow.

  10. RadSTraM: Radiological Source Tracking and Monitoring, Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Tracy A [ORNL; Walker, Randy M [ORNL; Hill, David E [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Abercrombie, Robert K [ORNL

    2008-12-01

    This report focuses on the technical information gained from the Radiological Source Tracking and Monitoring (RadSTraM) Phase II investigation and its implications. The intent of the RadSTraM project was to determine the feasibility of tracking radioactive materials in commerce, particularly International Atomic Energy Agency (IAEA) Category 3 and 4 materials. Specifically, Phase II of the project addressed tracking radiological medical isotopes in commerce. These categories of materials are susceptible to loss or theft but the problem is not being addressed by other agencies.

  11. RadSTraM: Radiological Source Tracking and Monitoring, Phase II Final Report

    International Nuclear Information System (INIS)

    Warren, Tracy A.; Walker, Randy M.; Hill, David E.; Gross, Ian G.; Smith, Cyrus M.; Abercrombie, Robert K.

    2008-01-01

    This report focuses on the technical information gained from the Radiological Source Tracking and Monitoring (RadSTraM) Phase II investigation and its implications. The intent of the RadSTraM project was to determine the feasibility of tracking radioactive materials in commerce, particularly International Atomic Energy Agency (IAEA) Category 3 and 4 materials. Specifically, Phase II of the project addressed tracking radiological medical isotopes in commerce. These categories of materials are susceptible to loss or theft but the problem is not being addressed by other agencies

  12. Tank waste remediation system retrieval and disposal mission phase 1 financial analysis

    International Nuclear Information System (INIS)

    Wells, M.W.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Phase 1 Financial Analysis is to provide a quantitative and qualitative cost and schedule risk analysis of HNF-1946, Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (Swita et al. 1998). The Updated Baseline (Section 3.0) is compared to the current TWRS Project Multi-Year Work Plan (MYWP) for fiscal year (FY) 1998 and target budgets for FY 1999 through FY 2011 (Section 4.1). The analysis then evaluates the executability of HNF-1946 (Sections 4.2 through 4.5) and recommends a path forward for risk mitigation (Sections 4.6, 4.7, and 5.0). A sound systems engineering approach was applied to understand and analyze the Phase 1B Retrieval and Disposal mission. Program and Level 1 Logics were decomposed to Level 8 of the Work Breakdown Structure (WBS) where logic was detailed, scope was defined, detail durations and estimates prepared, and resource loaded schedules developed. Technical Basis Review (TBR) packages were prepared which include this information and, in addition, defined the enabling assumptions for each task, and the risks associated with performance. This process is discussed in Section 2.1. Detailed reviews at the subactivity within the Level 1 Logic TBR levels were conducted to provide the recommended solution to the Phase 1B Retrieval and Disposal Mission. Independent cost analysis and risk assessments were performed by members of the Lockheed Martin Hanford Corporation (LMHC) Business Management and Chief Financial Officer organization along with specialists in risk analysis from TRW, Inc. and Lockheed Martin Energy Systems. The process evaluated technical, schedule, and cost risk by category (program specific fixed and variable, integrated program, and programmatic) based on risk certainly from high probability well defined to very low probability that is not bounded or priceable as discussed in Section 2.2. The results have been

  13. Formation of secondary phases during the corrosion of vitrified nuclear waste

    International Nuclear Information System (INIS)

    Zimmer, P.

    2003-11-01

    The first aim of this work was the examination of the formation and long-term stability of secondary phases that form during an aquatic attack on simulated, vitrified nuclear waste. In the glasses used for the investigations actinides had been replaced by rare earth elements (chemical analogues), other radionuclides by inactive isotopes. For predictions about the long-term safety of nuclear waste disposals it is important to identify secondary phases that have formed during the glass corrosion process and to determine their stability. Two different saline solutions (rich in MgCl 2 and in NaCl, respectively) are relevant as a corrosion medium for waste disposals. It showed that in such an environment sulfates, silicates and molybdates represent the main new formations of minerals after 7.5 years of corrosion. However, the formation, long-term stability and sorption characteristics of those minerals regarding rare earth elements depend to a high degree on the corrosion medium as well as on changes in the geochemical environment in the course of the experiment. By means of SEM/EDX barytes of different morphology with up to 15% w/w Sr ((Ba,Sr)SO 4 ) were identified in both corrosion media; they were capable of binding long-term stable radionuclides like Sr. Furthermore, pure rare earth (RE) sulfates were observed in the saline solution rich in MgCl 2 . This formation of RE-sulfates has not been described in the literature so far. Depending on the saline solution, the secondary silicate and molybdate minerals that formed on the glass surfaces differed noticeably in their sorption characteristics and their stability. Another focus of the work was a more profound understanding of the glass corrosion mechanism in the presence of metallic iron since steel jackets are used as technical barriers for the vitrified nuclear waste in nuclear waste disposals. Another important point in connection with the mobilization and immobilization of radionuclides released during glass

  14. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  15. A sensitivity analysis of the WIPP disposal room model: Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Labreche, D.A.; Beikmann, M.A. [RE/SPEC, Inc., Albuquerque, NM (United States); Osnes, J.D. [RE/SPEC, Inc., Rapid City, SD (United States); Butcher, B.M. [Sandia National Labs., Albuquerque, NM (United States)

    1995-07-01

    The WIPP Disposal Room Model (DRM) is a numerical model with three major components constitutive models of TRU waste, crushed salt backfill, and intact halite -- and several secondary components, including air gap elements, slidelines, and assumptions on symmetry and geometry. A sensitivity analysis of the Disposal Room Model was initiated on two of the three major components (waste and backfill models) and on several secondary components as a group. The immediate goal of this component sensitivity analysis (Phase I) was to sort (rank) model parameters in terms of their relative importance to model response so that a Monte Carlo analysis on a reduced set of DRM parameters could be performed under Phase II. The goal of the Phase II analysis will be to develop a probabilistic definition of a disposal room porosity surface (porosity, gas volume, time) that could be used in WIPP Performance Assessment analyses. This report documents a literature survey which quantifies the relative importance of the secondary room components to room closure, a differential analysis of the creep consolidation model and definition of a follow-up Monte Carlo analysis of the model, and an analysis and refitting of the waste component data on which a volumetric plasticity model of TRU drum waste is based. A summary, evaluation of progress, and recommendations for future work conclude the report.

  16. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Science.gov (United States)

    2010-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  17. Environmental monitoring of uranium mining wastes using geophysical techniques-Phase 1

    International Nuclear Information System (INIS)

    Koch, R.R.

    1996-08-01

    Monitoring of contaminants, from uranium mine waste management facilities, is primarily done by drilling test holes and installing piezometers to sample the subsurface soil and the groundwater. Protocols using geophysical methods of monitoring the migration of acidic leachate from uranium mine waste rock piles and tailings facilities need to be developed. Shallow surface geophysics that include methods such as Electromagnetic (conductivity) and DC Resistivity surveys are less expensive, can locate contaminant plumes both laterally and with depth, providing an areal 'snapshot' of the site at any given time. Cluff Lake Mine, a wholly owned Cogema Resources Inc. of Sakatoon was selected as the research demonstration site. To study the effects of acidic mine drainage a multi-year program is envisioned. The first phase, the subject of this report, involved the testing of various off-the-shelf elctromagnetic and restivity equipment over several site locations. Additional phases are required to monitor temporal changes by carrying out repeat surveys to verify the first phase results. Other methods such as ground penetrating radar may be used to supplement the conductivity and restivity surveys. Electromagnetic surveys identified three conductive zones in the vicinity of the Claude waste rock pile. These anomalies appear to be confined to within 100-150 meters of the pile. A significant area of high conductivity was identified adjacent to the liquid tailings pond on the ED-TDAM-1 grid. Conductivity zones were not detected on grids in the vicinity of the OP waste rock pile and the STS ponds site. The imaged pseudosections of apparent resistivity not only correlate well with the apparent conductivity data at the same locations, but supply information with the anomalies in the third (depth) dimension. On Line 25W of EV-TDAM-1 site the restivity survey indicates that the main anomaly A (450N) has a depth of > 6 metres. Computer assisted inversion and interpretation of sounding

  18. Waste disposal of HYLIFE II structure: Issues and assessment

    International Nuclear Information System (INIS)

    Lee, J.D.

    1992-01-01

    Initial analysis has shown that by using 304 stainless steel (SS) a significant fraction (92 wt%) of the structural mass in the initial HYLIFE-II design could be disposed of by shallow burial. And if all the structural components are mixed together and treated as one entity, all of it could be disposed of by shallow burial. Two other types of SSs assessed, Mn-modified 316 and Prime Candidate Alloy (PCA), were found to require disposal by deep geologic burial of most of the structural mass. The presents of Nb and Mo in Mn-modified 316 and Prime Candidate Alloy (PCA), were found to dominate the generation of long term wastes produced and their presence should be avoided

  19. Performance of GERDA phase II BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Victoria [Max-Planck Institut fuer Kernphysik (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The GERDA experiment searches for the lepton number violating neutrinoless double beta (0νββ) decay of {sup 76}Ge. GERDA uses HPGe detectors enriched in {sup 76}Ge as source and detection material. The experiment proceeds in two phases. In Phase I a background index of 10{sup -2} cts/(keV.kg.yr) was reached and a new lower limit on the half-life of the 0νββ decay of {sup 76}Ge was set to 2.1.10{sup 25} yr (at 95% C.L.). In Phase II the background index will be lowered by an order of magnitude and a sensitivity of 10{sup 26} yr will be reached. In order to achieve this goal 30 new custom-made broad energy germanium (BEGe) detectors and a liquid argon scintillation light veto will be deployed. Five BEGe detectors have been operated successfully in Phase I and demonstrated their improved energy resolution and enhanced pulse shape discrimination (PSD) against background events. Special designed electronics will further improve energy resolution and PSD performance. The first results from commissioning of the new BEGe detectors are presented in this talk.

  20. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    International Nuclear Information System (INIS)

    Burgard, K.C.

    1998-01-01

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis

  1. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  2. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Jager, de A.G.; Willems, F.P.T.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  3. Industrial waste needs assessment. Phase 1

    International Nuclear Information System (INIS)

    Radel, R.J.; Willis, M.P.

    1993-10-01

    In January of 1992 a team was put together to begin the process of assessing the industrial waste needs of the Tennessee Valley. The team consisted of representatives from the various TVA Resource Group organizations. This initial team recommended as a starting point in the process a two-phase market research effort. A second team was then commissioned to conduct the first phase of this market research effort. The first phase of that marketing effort is now complete. This report contains an analysis of the data obtained through interviews of more than 168 individuals representing a similar number of organizations. A total of 37 TVA Resource Group employees were involved in the contact process from various organizations. In addition, the appendices provide summaries of the data used in designing the process and the reports of the Contact Coordinators (who were responsible for a series of visits). As a result of the data analysis, the Review Team makes the following recommendations: 1. Publish this report and distribute to the new management within TVA Resource Group as well as to all those participating as contacts, visitors, and contact coordinators. 2. The Resource Group management team, or management teams within each of the respective organizations within Resource Group, appoint Phase 2 assessement teams for as many of the problem areas listed in Table III as seem appropriate. We further recommend that, where possible, cross-organizational teams be used to examine individual problem areas. 3. Make this report available within Generating and Customer Groups, especially to the Customer Service Centers. 4. Establish a process to continue follow up with each of the contacts made in this assessment

  4. Industrial waste needs assessment. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Radel, R.J.; Willis, M.P. [eds.

    1993-10-01

    In January of 1992 a team was put together to begin the process of assessing the industrial waste needs of the Tennessee Valley. The team consisted of representatives from the various TVA Resource Group organizations. This initial team recommended as a starting point in the process a two-phase market research effort. A second team was then commissioned to conduct the first phase of this market research effort. The first phase of that marketing effort is now complete. This report contains an analysis of the data obtained through interviews of more than 168 individuals representing a similar number of organizations. A total of 37 TVA Resource Group employees were involved in the contact process from various organizations. In addition, the appendices provide summaries of the data used in designing the process and the reports of the Contact Coordinators (who were responsible for a series of visits). As a result of the data analysis, the Review Team makes the following recommendations: 1. Publish this report and distribute to the new management within TVA Resource Group as well as to all those participating as contacts, visitors, and contact coordinators. 2. The Resource Group management team, or management teams within each of the respective organizations within Resource Group, appoint Phase 2 assessement teams for as many of the problem areas listed in Table III as seem appropriate. We further recommend that, where possible, cross-organizational teams be used to examine individual problem areas. 3. Make this report available within Generating and Customer Groups, especially to the Customer Service Centers. 4. Establish a process to continue follow up with each of the contacts made in this assessment.

  5. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  6. Search for neutrinoless double beta decay with GERDA phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knies, J.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-10-01

    The GERmanium Detector Array (gerda) experiment, located at the Gran Sasso underground laboratory in Italy, is one of the leading experiments for the search of 0νββ decay. In Phase II of the experiment 35.6 kg of enriched germanium detectors are operated. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allowed to reduce the background index to the intended level of 10-3 cts/(keV.kg.yr). In the first five month of data taking 10.8 kg yr of exposure were accumulated. No signal has been found and together with data from Phase I a new limit for the neutrinoless double beta decay half-life of 76Ge of 5.3 . 1025 yr at 90% C.L. was established in June 2016. Phase II data taking is ongoing and will allow the exploration of half-lifes in the 1026 yr regime. The current status of data taking and an update on the background index are presented.

  7. State Waste Discharge Permit application, 183-N Backwash Discharge Pond

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE91NM-177 requires a series of permitting activities for liquid effluent discharges. Liquid effluents on the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams. The Consent Order No. DE91NM-177 establishes milestones for State Waste Discharge Permit application submittals for all Phase I and Phase II streams, as well as the following 11 Miscellaneous Streams as identified in Table 4 of the Consent Order No. DE91NM-177.

  8. Development of a high integrity container for storage, transportation, and disposal of radioactive wastes from Three Mile Island unit II

    International Nuclear Information System (INIS)

    Holzworth, R.E.; Chapman, R.L.; Burton, H.M.; Bixby, W.W.

    1981-01-01

    The EPICOR II ion exchange system used to decontaminate approximately 1900 m 3 of contaminated water in the Auxiliary and Fuel Handling Building (AFHB) generated 50 highly loaded and 22 lesser loaded organic resin liners. The 22 lesser loaded resins were shipped to a commercial disposal site, but the highly loaded liners have been stored on the island since their generation. One highly loaded liner, or prefilter, was shipped to Battelle Columbus Laboratories (BCL) in May, 1981 as part of the United States Department of Energy (DOE) Three Mile Island Information and Examination Program. The prefilter is being characterized to determine the behavior of the waste form with respect to time and the internal environment and to provide an information base for use in management and regulatory decisions relative to the storage, processing, and disposal of these wastes. Due to the unique characteristics of these wastes, the US DOE is sponsoring programs, such as the BCL Sorbent Experiments Program, to evaluate their characteristics and to provide a High Integrity Container (HIC) Development Program which would improve waste suitability for disposal at a land burial facility. This paper addresses regulatory considerations, establishment of design criteria, proposed design concepts, system demonstration, and status of the HIC Development Program for storage, transportation, and disposal of high specific activity, low level radioactive wastes from Three Mile Island Unit II as typified by EPICOR II ion exchange media and liners

  9. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  10. An Experimental Evaluation of Hyperactivity and Food Additives. 1977-Phase II.

    Science.gov (United States)

    Harley, J. Preston; And Others

    Phase II of a study on the effectiveness of B. Feingold's recommended diet for hyperactive children involved the nine children (mean age 9 years) who had shown the "best" response to diet manipulation in Phase I. Each child served as his own control and was challenged with specified amounts of placebo and artificial color containing food…

  11. Searching Neutrinoless Double Beta Decay with GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D’Andrea, V.; Demidova, E. V.; di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Giordano, M.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hahne, C.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Holl, P.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kermaidic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Sala, E.; Salamida, F.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schweisshelm, B.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    An observation of neutrinoless double beta (0νββ) decay would allow to shed light onto the nature of neutrinos. GERDA (GERmanium Detector Array) aims to discover this process in a background-free search using 76Ge. The experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. Bare, isotopically enriched, high purity germanium detectors are operated in liquid argon. GERDA follows a staged approach. In Phase II 35.6 kg of enriched germanium detectors are operated since December 2015. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allows to reduce the background index to the intended level of 10‑3 cts/(keVṡkgṡyr). No evidence for the 0νββ decay has been found in 23.2 kgṡyr of Phase II data, and together with data from Phase I the up-to-date most stringent half-life limit for this process in 76Ge has been established, at a median sensitivity of 5.8ṡ1025yr the 90% C.L. lower limit is 8.0ṡ1025yr.

  12. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  13. PWR steam generator chemical cleaning. Phase II. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively

  14. The SafeBoosC Phase II Randomised Clinical Trial

    DEFF Research Database (Denmark)

    Pellicer, Adelina; Greisen, Gorm; Benders, Manon

    2013-01-01

    Near-infrared spectroscopy-derived regional tissue oxygen saturation of haemoglobin (rStO2) reflects venous oxygen saturation. If cerebral metabolism is stable, rStO2 can be used as an estimate of cerebral oxygen delivery. The SafeBoosC phase II randomised clinical trial hypothesises that the bur...

  15. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Science.gov (United States)

    2010-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  16. Irisin is Associated with Urotensin II and Protein Energy Wasting in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Wan-Yu He

    2016-02-01

    Full Text Available Aims/Introduction: Irisin is a newly identified myokine which can promote energy expenditure. Urotensin II (UII is identified as the most potent mammalian vasoconstrictor to date. Previous studies showed that UII can aggravate insulin resistance while irisin alleviate insulin resistance. Through this study, it is our aim to elucidate if UII can induce insulin resistance and also have an association with the irisin level in hemodialysis (HD patients. Materials and Methods: One hundred and twenty-eight patients on maintenance hemodialysis treatment and forty healthy subjects were enrolled in this study. Blood irisin concentrations and UII concentrations were measured by ELISA and RIA respectively. The body composition was analyzed by bioelectrical impedance. Results: The serum irisin levels and UII levels were both significantly lower in HD patients in comparison to that of the healthy subjects. The serum irisin levels were lower in HD patients with protein energy wasting than those of the patients without protein energy wasting. The independent determinants of circulating Ln (irisin (the natural logarithm of irisin were UII lean body mass and patients with protein energy wasting. Conclusions: Our results are the first to provide the clinical evidence of the association among irisin, UII, and protein energy wasting. Our results hint that UII and protein energy wasting might inhibit the release or synthesis of irisin from skeletal muscles in HD patients.

  17. An FPGA-based trigger for the phase II of the MEG experiment

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, A. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Bemporad, C.; Cei, F. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Galli, L.; Grassi, M.; Morsani, F. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Nicolò, D., E-mail: donato.nicolo@pi.infn.it [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Ritt, S. [Paul Scherrer Institut, Villigen AG (Switzerland); Venturini, M. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy)

    2016-07-11

    For the phase II of MEG, we are going to develop a combined trigger and DAQ system. Here we focus on the former side, which operates an on-line reconstruction of detector signals and event selection within 450 μs from event occurrence. Trigger concentrator boards (TCB) are under development to gather data from different crates, each connected to a set of detector channels, to accomplish higher-level algorithms to issue a trigger in the case of a candidate signal event. We describe the major features of the new system, in comparison with phase I, as well as its performances in terms of selection efficiency and background rejection. - Highlights: • A new, two-level trigger scheme for the phase-II of the MEG experiment is presented. • Improvements with respect to phase-I are underlined. • The role of detector upgrades and the use of a new generation of FPGA as well are emphasized.

  18. Finite Element Models for Electron Beam Freeform Fabrication Process, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...

  19. WASTES: Wastes system transportation and economic simulation: Version 2, Programmer's reference manual

    International Nuclear Information System (INIS)

    Buxbaum, M.E.; Shay, M.R.

    1986-11-01

    The WASTES Version II (WASTES II) Programmer's Reference Manual was written to document code development activities performed under the Monitored Retrievable Storage (MRS) Program at Pacific Northwest Laboratory (PNL). The manual will also serve as a valuable tool for programmers involved in maintenance of and updates to the WASTES II code. The intended audience for this manual are experienced FORTRAN programmers who have only a limited knowledge of nuclear reactor operation, the nuclear fuel cycle, or nuclear waste management practices. It is assumed that the readers of this manual have previously reviewed the WASTES II Users Guide published as PNL Report 5714. The WASTES II code is written in FORTRAN 77 as an extension to the SLAM commercial simulation package. The model is predominately a FORTRAN based model that makes extensive use of the SLAM file maintenance and time management routines. This manual documents the general manner in which the code is constructed and the interactions between SLAM and the WASTES subroutines. The functionality of each of the major WASTES subroutines is illustrated with ''block flow'' diagrams. The basic function of each of these subroutines, the algorithms used in them, and a discussion of items of particular note in the subroutine are reviewed in this manual. The items of note may include an assumption, a coding practice that particularly applies to a subroutine, or sections of the code that are particularly intricate or whose mastery may be difficult. The appendices to the manual provide extensive detail on the use of arrays, subroutines, included common blocks, parameters, variables, and files

  20. A review of phase separation in borosilicate glasses, with reference to nuclear fuel waste immobilization

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-08-01

    This report reviews information on miscibility limits in borosilicate glass-forming systems. It includes both a literature survey and an account of experimental work performed within the Canadian Nuclear Fuel Waste Management Program. Emphasis is placed on the measurement and depiction of miscibility limits in multicomponent (mainly quaternary) systems, and the effects of individual components on the occurrence of phase separation. The behaviour of the multicomponent system is related to that of simpler (binary and ternary) glass systems. The possible occurrence of phase separation, as well as its avoidance, during processing of nuclear waste glasses is discussed

  1. Radioactive waste management plan during the TRIGA Mark II and III decommissioning

    International Nuclear Information System (INIS)

    Jung, K.J.; Park, S.K.; Geong, G.H.; Lee, K.W.; Chung, U.S.; Paik, S.T.

    2001-01-01

    The decontamination and decommissioning (D and D) project of TRIGA Mark-I and Mark-II (KRR 1 and 2) was started in January 1997 and will be completed by December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of the Korea Institute of Nuclear Safety (KINS). In the second year, Hyundai Engineering Company (HEC) with British Nuclear Fuels pie (BNFL) as technical assisting partner was designated as the contractor to do design and licensing documentation for the D and D of both reactors. After pre-design, a hazard and operability (HAZOP) study checked each step of the work. At the end of 1998, the decommissioning plan documentation including environmental impact assessment report was finished and submitted to the Ministry of Science and Technology (MOST) for licensing. It is expected to be issued by the end of September 1999. Practical work will then be started around the end of 1999. The safe treatment and management of the radioactive waste arising from the D and D activities is of utmost importance for successful completion of the practical dismantling work. This paper summarizes general aspects of radioactive waste treatment and management plan for the TRIGA Mark-I and II decommissioning work. (author)

  2. GTS Duratek, Phase I Hanford low-level waste melter tests: 100-kg melter offgas report

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the 100-kg melter offgas report on testing performed by GTS Duratek, Inc., in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The document contains the complete offgas report on the 100-kg melter as prepared by Parsons Engineering Science, Inc. A summary of this report is also contained in the GTS Duratek, Phase I Hanford Low-Level Waste Melter Tests: Final Report (WHC-SD-WM-VI-027)

  3. Identification of phase-II metabolites of flavonoids by liquid chromatography-ion-mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Chalet, Clément; Hollebrands, Boudewijn; Janssen, Hans-Gerd; Augustijns, Patrick; Duchateau, Guus

    2018-01-01

    Flavonoids are a class of natural compounds with a broad range of potentially beneficial health properties. They are subjected to an extensive intestinal phase-II metabolism, i.e., conjugation to glucuronic acid, sulfate, and methyl groups. Flavonoids and their metabolites can interact with drug transporters and thus interfere with drug absorption, causing food-drug interactions. The site of metabolism plays a key role in the activity, but the identification of the various metabolites remains a challenge. Here, we developed an analytical method to identify the phase-II metabolites of structurally similar flavonoids. We used liquid chromatography-ion-mobility spectrometry-mass spectrometry (LC-IMS-MS) analysis to identify phase-II metabolites of flavonols, flavones, and catechins produced by HT29 cells. We showed that IMS could bring valuable structural information on the different positional isomers of the flavonols and flavones. The position of the glucuronide moiety had a strong influence on the collision cross section (CCS) of the metabolites, with only minor contribution of hydroxyl and methyl moieties. For the catechins, fragmentation data obtained from MS/MS analysis appeared more useful than IMS to determine the structure of the metabolites, mostly due to the high number of metabolites formed. Nevertheless, CCS information as a molecular fingerprint proved to be useful to identify peaks from complex mixtures. LC-IMS-MS thus appears as a valuable tool for the identification of phase-II metabolites of flavonoids. Graphical abstract Structural identification of phase-II metabolites of flavonoids using LC-IMS-MS.

  4. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 5: Design validation assessments and lists

    International Nuclear Information System (INIS)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. The following Code Evaluation analyzes the applicable sections of the National Fire Protection Association (NFPA) 101, Life Safety Code, 1994 Edition and the 1994 Edition of the Uniform Building Code (UBC) to the W113 Trench Enclosure. A Building Code Analysis generally establishes four primary design criteria: occupancy classification; separation requirements; egress requirements; and construction type. The UBC establishes requirements for all criteria. This analysis is limited to the Trench Enclosure Building. The General Office Building and the Retrieval Staff Change Building is not within the scope of this analysis

  5. Quality of reporting in oncology phase II trials: A 5-year assessment through systematic review.

    Science.gov (United States)

    Langrand-Escure, Julien; Rivoirard, Romain; Oriol, Mathieu; Tinquaut, Fabien; Rancoule, Chloé; Chauvin, Frank; Magné, Nicolas; Bourmaud, Aurélie

    2017-01-01

    Phase II clinical trials are a cornerstone of the development in experimental treatments They work as a "filter" for phase III trials confirmation. Surprisingly the attrition ratio in Phase III trials in oncology is significantly higher than in any other medical specialty. This suggests phase II trials in oncology fail to achieve their goal. Objective The present study aims at estimating the quality of reporting in published oncology phase II clinical trials. A literature review was conducted among all phase II and phase II/III clinical trials published during a 5-year period (2010-2015). All articles electronically published by three randomly-selected oncology journals with Impact-Factors>4 were included: Journal of Clinical Oncology, Annals of Oncology and British Journal of Cancer. Quality of reporting was assessed using the Key Methodological Score. 557 articles were included. 315 trials were single-arm studies (56.6%), 193 (34.6%) were randomized and 49 (8.8%) were non-randomized multiple-arm studies. The Methodological Score was equal to 0 (lowest level), 1, 2, 3 (highest level) respectively for 22 (3.9%), 119 (21.4%), 270 (48.5%) and 146 (26.2%) articles. The primary end point is almost systematically reported (90.5%), while sample size calculation is missing in 66% of the articles. 3 variables were independently associated with reporting of a high standard: presence of statistical design (p-value <0.001), multicenter trial (p-value = 0.012), per-protocol analysis (p-value <0.001). Screening was mainly performed by a sole author. The Key Methodological Score was based on only 3 items, making grey zones difficult to translate. This literature review highlights the existence of gaps concerning the quality of reporting. It therefore raised the question of the suitability of the methodology as well as the quality of these trials, reporting being incomplete in the corresponding articles.

  6. Advanced materials for future Phase II LHC collimators

    CERN Document Server

    Dallocchio, A; Arnau Izquierdo, G; Artoos, K

    2009-01-01

    Phase I collimators, equipped with Carbon-Carbon jaws, effectively met specifications for the early phase of LHC operation. However, the choice of carbon-based materials is expected to limit the nominal beam intensity mainly because of the high RF impedance and limited efficiency of the collimators. Moreover, C/C may be degraded by high radiation doses. To overcome these limitations, new Phase II secondary collimators will complement the existing system. Their extremely challenging requirements impose a thorough material investigation effort aiming at identifying novel materials combining very diverse properties. Relevant figures of merit have been identified to classify materials: Metal-diamonds composites look a promising choice as they combine good thermal, structural and stability properties. Molybdenum is interesting for its good thermal stability. Ceramics with non-conventional RF performances are also being evaluated. The challenges posed by the development and industrialization of these materials are ...

  7. How competitive are EU electricity markets? An assessment of ETS Phase II

    International Nuclear Information System (INIS)

    Castagneto-Gissey, Giorgio

    2014-01-01

    This paper studies the interactions between electricity and carbon allowance prices in the year-ahead energy markets of France, Germany, United Kingdom and the Nordic countries, during Phase II of the EU ETS. VAR and Granger-causality methods are used to analyze causal interfaces, whereas the volatility of electricity prices is studied with basic and asymmetric AR-GARCH models. Among the main results, the marginal rate at which carbon prices feed into electricity prices is shown to be ca. 135% in the EEX and Nord Pool markets, where electricity and carbon prices display bidirectional causality, and 109% in the UK. Therefore, generators in these markets internalized the cost of freely allotted emission allowances into their electricity prices considerably more than the proportionate increase in costs justified by effective carbon intensity. Moreover, electricity prices in France are found to Granger-cause the carbon price. This study also shows how European electricity prices are deeply linked to coal prices among other factors, both in terms of levels and volatility, regardless of the underlying fuel mix, and that coal was marginally more profitable than gas for electricity generation. EU policies aimed at increasing the carbon price are likely to be crucial in limiting the externalities involved in the transition to a low-carbon system. - Highlights: • The interactions between electricity and carbon prices during Phase II are investigated. • This work also studies the determinants of EU electricity price levels and volatilities. • Nord Pool, APX UK and EEX carbon cost pass-through rates emphasize low electricity market competitiveness. • Powernext electricity prices Granger-cause the Phase II carbon price. • Coal was marginally more profitable than gas during Phase II

  8. Fiber Coupled Pulse Shaper for Sub-Nanosecond Pulse Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II effort will develop an all-diode laser and fiber optic based, single frequency, sub-nanosecond pulsed laser source...

  9. Mission Plan for the Civilian Radioactive Waste Management Program. Volume I. Part I. Overview and current program plans; Part II. Information required by the Nuclear Waste Policy Act of 1982

    International Nuclear Information System (INIS)

    1985-06-01

    The Misson Plan is divided into two parts. Part I describes the overall goals, objectives, and strategy for the disposal of spent nuclear fuel and high-level waste. It explains that, to meet the directives of the Nuclear Waste Policy Act, the DOE intends to site, design, construct, and start operating a mined geologic repository by January 31, 1998. The Act specifies that the costs of these activities will be borne by the owners and generators of the waste received at the repository. Part I further describes the other components of the waste-management program - monitored retrievable storage, Federal interim storage, and transportation - as well as systems integration activities. Also discussed are institutional plans and activities as well as the program-management system being implemented by the Office of Civilian Radioactive Waste Management. Part II of the Mission Plan presents the detailed information required by Section 301(a) of the Act - key issues and information needs; plans for obtaining the necessary information; potential financial, institutional, and legal issues; plans for the test and evaluation facility; the principal results obtained to date from site investigations; information on the site-characterization programs; information on the waste package; schedules; costs; and socioeconomic impacts. In accordance with Section 301(a) of the Act, Part II is concerned primarily with the repository program

  10. RIP Input Tables from WAPDEG for LA Design Selection: Enhanced Design Alternative II-3

    International Nuclear Information System (INIS)

    A.M. Monib

    1999-01-01

    The purpose of this calculation is to document (1) the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b. ''Software Routine Report for WAPDEG'' (Version 3.09)) simulations used to analyze degradation and failure of 2-cm thick titanium grade 7 corrosion resistant material (CRM) drip shields (that are placed over waste packages composed of a 2-cm thick Alloy 22 corrosion resistant material (CRM) as the outer barrier and an unspecified material to provide structural support as the inner barrier) as well as degradation and failure of the waste packages themselves, and (2) post-processing of these results into tables of drip shield/waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems (RIP) version 5.19.01 (Golder Associates 1998) computer code. This calculation supports Performance Assessment analysis of the License Application Design Selection (LADS) Enhanced Design Alternative (EDA) II-3. The aging period in the EDA II design (CRWMS M and O 1999f. ''Design Input Request for LADS Phase II EDA Evaluations'', Item 1 Row 9 Column 3) was replaced in the case of EDA II-3 with 25 years preclosure ventilation, leading to a total of 50 years preclosure ventilation. The waste packages are line loaded in the repository and no backfill is used

  11. An integrated approach to geological disposal of UK wastes containing carbon-14

    International Nuclear Information System (INIS)

    Vines, Sarah; Lever, David

    2013-01-01

    Carbon-14 is a key radionuclide in the assessment of the safety of a geological disposal facility for radioactive waste because of the calculated assessment of the radiological consequences of gaseous carbon-14 bearing species [i]. It may be that such calculations are based on overly conservative assumptions and that better understanding could lead to considerably reduced assessment of the radiological consequences from these wastes. Alternatively, it may be possible to mitigate the impact of these wastes through alternative treatment, packaging or design options. The Radioactive Waste Management Directorate of the UK's Nuclear Decommissioning Authority (NDA RWMD) has established an integrated project team in which the partners are working together to develop a holistic approach to carbon-14 management in the disposal system [ii]. For a waste stream containing carbon-14 to be an issue: There must be a significant inventory of carbon-14 in the waste stream; and That waste stream has to generate carbon-14 bearing gas; and a bulk gas phase has to entrain the carbon-14 bearing gas: and these gases must migrate through the engineered barriers in significant quantities; and these gases must migrate through the overlying geological environment (either as a distinct gas phase or as dissolved gas); and these gases must interact with materials in the biosphere (i.e. plants) in a manner that leads to significant doses and risks to exposed groups or potentially exposed groups. The project team has developed and used this 'and' approach to structure and prioritise the technical work and break the problem down in a manageable way. We have also used it to develop our approach to considering alternative treatment, packaging and design options. For example, it may be possible to pre-treat some wastes to remove some of the inventory or to segregate other wastes so that they are removed from any bulk gas phase which might facilitate migration through the geosphere

  12. An integrated approach to geological disposal of UK wastes containing carbon-14

    Energy Technology Data Exchange (ETDEWEB)

    Vines, Sarah [Nuclear Decommissioning Authority, Harwell, Oxfordshire (United Kingdom); Lever, David [AMEC, Harwell, Oxfordshire (United Kingdom)

    2013-07-01

    Carbon-14 is a key radionuclide in the assessment of the safety of a geological disposal facility for radioactive waste because of the calculated assessment of the radiological consequences of gaseous carbon-14 bearing species [i]. It may be that such calculations are based on overly conservative assumptions and that better understanding could lead to considerably reduced assessment of the radiological consequences from these wastes. Alternatively, it may be possible to mitigate the impact of these wastes through alternative treatment, packaging or design options. The Radioactive Waste Management Directorate of the UK's Nuclear Decommissioning Authority (NDA RWMD) has established an integrated project team in which the partners are working together to develop a holistic approach to carbon-14 management in the disposal system [ii]. For a waste stream containing carbon-14 to be an issue: There must be a significant inventory of carbon-14 in the waste stream; and That waste stream has to generate carbon-14 bearing gas; and a bulk gas phase has to entrain the carbon-14 bearing gas: and these gases must migrate through the engineered barriers in significant quantities; and these gases must migrate through the overlying geological environment (either as a distinct gas phase or as dissolved gas); and these gases must interact with materials in the biosphere (i.e. plants) in a manner that leads to significant doses and risks to exposed groups or potentially exposed groups. The project team has developed and used this 'and' approach to structure and prioritise the technical work and break the problem down in a manageable way. We have also used it to develop our approach to considering alternative treatment, packaging and design options. For example, it may be possible to pre-treat some wastes to remove some of the inventory or to segregate other wastes so that they are removed from any bulk gas phase which might facilitate migration through the geosphere

  13. Appropriate conditions for applying NaOH-pretreated two-phase olive milling waste for codigestion with food waste to enhance biogas production.

    Science.gov (United States)

    Al-Mallahi, Jumana; Furuichi, Toru; Ishii, Kazuei

    2016-02-01

    The high methane gas production potential of two phase olive milling waste (2POMW) makes its application to biogas plants in business an economical process to increase the productivity of the plants. The objective of this study was to investigate the appropriate conditions for the codigestion of NaOH-pretreated 2POMW with food waste. NaOH pretreatment can increase the methane production by increasing the soluble chemical oxygen demand (sCOD), but it may cause inhibition because of higher levels of alkalinity, sodium ion, volatile fatty acids and long chain fatty acids (LCFAs). Therefore, the first experimental phase of this study aimed to investigate the effect of different mixing ratios of 2POMW to food waste. A continuous stirred tank reactor experiment with different mixing ratios of 3%, 4.3%, 5.7% and 8.3% (2POMW: food waste) was conducted. NaOH pretreatment in the range of 6-20% was used. A mixing ratio up to 4.3%, when 10% NaOH pretreatment was used, caused no inhibition and increased methane production by 445.9mL/g-VS(2POMW). For this mixing ratio an additional experimental phase was conducted with the 20% NaOH pretreatment as the 20% NaOH pretreatment had the highest sCOD. The methane gas production was increased by 503.6mL/g-VS(2POMW). However, pH adjustment was required for applying this concentration of the high alkalinity 20% NaOH-pretreated 2POMW. Therefore, we consider using 10% NaOH pretreatment in a mixing ratio of 4.3% to be more applicable. The increase in methane gas production was correlated to the oleic acid concentration inside the reactors. The high oleic acid concentration of 61.8mg/L for the 8.3% mixing ratio was responsible for the strong inhibition. This study showed that adjusting the appropriate mixing ratio of the NaOH-pretreated 2POMW could increase the electricity production of a reactor that regularly receives food waste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An Instrument for Inspecting Aspheric Optical Surfaces and Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a Phase II SBIR proposal to develop an extremely versatile optical inspection tool for aspheric optical components and optics that are not easily inspected...

  15. Conditioning of tritiated wastes. Part II

    International Nuclear Information System (INIS)

    Hawthorne, S.H.

    1984-01-01

    Work is continuing on the development of conditioning systems for low and intermediate level tritiated liquid and solid wastes which will prevent loss of tritium for at least 150 years. This portion of the program has concentrated on solidification and encapsulation of tritiated aqueous wastes, development of techniques, for the measurement of tritium loss in air and water, and identification and evaluation of encapsulation materials. Solidification of tritiated aqueous wastes by water extendible polyester or cements resulted in average tritium releases of approximately 1-4x10 -1 α/day with that from water extendible polyester being the lowest. The daily release rate is independent of initial tritium concentration in the waste form and can be reduced by a factor of 1000 by encapsultation of the waste within a 10 mm layer of water extendible polyester. Water extendible polyester is the preferred material for solidification and encapsulation of aqueous tritiated wastes and encapsulation of tritiated solids permitting release of only 3x10 -3 % of the original activity over 150 years. It is expected that this program which was originally scheduled for three years can now be completed in two years with complete definition of the conditioning system including the outer package

  16. 2-Phase NSGA II: An Optimized Reward and Risk Measurements Algorithm in Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Seyedeh Elham Eftekharian

    2017-11-01

    Full Text Available Portfolio optimization is a serious challenge for financial engineering and has pulled down special attention among investors. It has two objectives: to maximize the reward that is calculated by expected return and to minimize the risk. Variance has been considered as a risk measure. There are many constraints in the world that ultimately lead to a non–convex search space such as cardinality constraint. In conclusion, parametric quadratic programming could not be applied and it seems essential to apply multi-objective evolutionary algorithm (MOEA. In this paper, a new efficient multi-objective portfolio optimization algorithm called 2-phase NSGA II algorithm is developed and the results of this algorithm are compared with the NSGA II algorithm. It was found that 2-phase NSGA II significantly outperformed NSGA II algorithm.

  17. Central interstate low-level radioactive waste compact region site exclusionary screening study. Phase I. Final report

    International Nuclear Information System (INIS)

    1985-06-01

    The Low-Level Radioactive Waste Policy Act of 1980 assigns to the states the responsibility for disposal of the low-level radioactive waste generated within their boundaries. It also provides for regional compacts among states to address their needs on a broader basis and permits restriction of the use of regional disposal facilities after January 1, 1986, to generators of low-level waste within the region. Each state, either individually or as a member of a compact, must therefore consider the establishment of a low-level radioactive waste disposal facility within its borders. The states of Arkansas, Kansas, Louisiana, Nebraska, and Oklahoma adopted the Central Interstate Low-Level Waste Compact (CILLWC) and legislation was submitted to Congress for consent in June of 1983 legislation is being reintroduced in the 99th Congress. In August of 1984, the CILLWC selected and contracted Dames and Moore to conduct a Phase I-Site Suitability Screening Study for a low-level radioactive waste disposal facility in the five-state region. This report presents the results of the Phase I Screening Study. Dames and Moore reported to the Technical Advisory Committee (TAC) of the CILLWC which provided guidance and comment on work progress and direction

  18. TWRS Privatization Phase I waste characterization data evaluation for the request for proposal

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Wiemers, K.D.

    1996-09-01

    Radioactive wastes have been stored in large underground tanks at Hanford since 1944. In 1991, The Tank Waste Remediation System (TWRS) program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, effective manner. DOE believes that it is feasible to privatize portions of the TWRS program. Under the Privatization strategy embodied in the request for proposal, DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price type of contract. Phase I is a proof-of- concept/commercial demonstration-scale effort. Method used to achieve the objective of producing a technically reviewed inventory is outlined. Organic speciation and physical properties were gathered for the tank wastes and may be found in the individual tank section of this document; reference reviews and tank volume and sampling summary graphs are also provided for each tank.

  19. TWRS Privatization Phase I waste characterization data evaluation for the request for proposal

    International Nuclear Information System (INIS)

    Patello, G.K.; Wiemers, K.D.

    1996-09-01

    Radioactive wastes have been stored in large underground tanks at Hanford since 1944. In 1991, The Tank Waste Remediation System (TWRS) program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, effective manner. DOE believes that it is feasible to privatize portions of the TWRS program. Under the Privatization strategy embodied in the request for proposal, DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price type of contract. Phase I is a proof-of- concept/commercial demonstration-scale effort. Method used to achieve the objective of producing a technically reviewed inventory is outlined. Organic speciation and physical properties were gathered for the tank wastes and may be found in the individual tank section of this document; reference reviews and tank volume and sampling summary graphs are also provided for each tank

  20. Alternatives generation and analysis for the phase 1 high-level waste pretreatment process selection

    International Nuclear Information System (INIS)

    Manuel, A.F.

    1997-01-01

    This report evaluates the effects of enhanced sludge washing and sludge washing without caustic leaching during the preparation of the Phase 1 high-level waste feeds. The pretreatment processing alternatives are evaluated against their ability to satisfy contractual, cost minimization, and other criteria. The information contained in this report is consistent with, and supplemental to, the Tank Waste Remediation System Operation and Utilization Plan (Kirkbride et al. 1997)

  1. Alternatives generation and analysis for the phase 1 high-level waste pretreatment process selection

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, A.F.

    1997-10-02

    This report evaluates the effects of enhanced sludge washing and sludge washing without caustic leaching during the preparation of the Phase 1 high-level waste feeds. The pretreatment processing alternatives are evaluated against their ability to satisfy contractual, cost minimization, and other criteria. The information contained in this report is consistent with, and supplemental to, the Tank Waste Remediation System Operation and Utilization Plan (Kirkbride et al. 1997).

  2. Differential roles of phase I and phase II enzymes in 3,4-methylendioxymethamphetamine-induced cytotoxicity.

    NARCIS (Netherlands)

    Antolino Lobo, I.; Meulenbelt, J.; Nijmeijer, S.M.; Scherpenisse, P.; van den Berg, M.; van Duursen, M.B.M.

    2010-01-01

    Metabolism plays an important role in the toxic effects caused by 3,4-methylenedioxymethamphetamine (MDMA). Most research has focused on the involvement of CYP2D6 enzyme in MDMA bioactivation, and less is known about the contribution of other cytochrome P450 (P450) and phase II metabolism. In this

  3. Phased Retrofits in Existing Homes in Florida Phase II: Shallow Plus Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, K. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Parker, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Martin, E. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Chasar, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Amos, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-02-03

    The BAPIRC team and Florida Power and Light (FPL) electric utility pursued a pilot phased energy-efficiency retrofit program in Florida by creating detailed data on the energy and economic performance of two levels of retrofit - simple and deep. For this Phased Deep Retrofit (PDR) project, a total of 56 homes spread across the utility partner's territory in east central Florida, southeast Florida, and southwest Florida were instrumented between August 2012 and January 2013, and received simple pass-through retrofit measures during the period of March 2013 - June 2013. Ten of these homes received a deeper package of retrofits during August 2013 - December 2013. A full account of Phase I of this project, including detailed home details and characterization, is found in Parker et al, 2015 (currently in draft). Phase II of this project, which is the focus of this report, applied the following additional retrofit measures to select homes that received a shallow retrofit in Phase I: a) Supplemental mini-split heat pump (MSHP) (6 homes); b) Ducted and space coupled Heat Pump Water Heater (8 homes); c) Exterior insulation finish system (EIFS) (1 homes); d) Window retrofit (3 homes); e) Smart thermostat (21 homes: 19 NESTs; 2 Lyrics); f) Heat pump clothes dryer (8 homes); g) Variable speed pool pump (5 homes).

  4. Impact of phase stability on the corrosion behavior of the austenitic candidate materials for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Bullen, D.B.; Gdowski, G.E.; McCright, R.D.

    1987-10-01

    The Nuclear Waste Management Program at Lawrence Livermore National Laboratory is responsible for the development of the waste package design to meet the Nuclear Regulatory Commission licensing requirements for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The metallic container component of the waste package is required to assist in providing substantially complete containment of the waste for a period of up to 1000 years. Long term phase stability of the austenitic candidate materials (304L and 316L stainless steels and alloy 825) over this time period at moderate temperatures (100-250 0 C) can impact the mechanical and corrosion behavior of the metal barrier. A review of the technical literature with respect to phase stability of 304L, 316L and 825 is presented. The impact of martensitic transformations, carbide precipitation and intermediate (σ, chi, and eta) phase formation on the mechanical properties and corrosion behavior of these alloys at repository relevant conditions is discussed. The effect of sensitization on intergranular stress corrosion cracking (IGSCC) of each alloy is also addressed. A summary of the impact of phase stability on the degradation of each alloy in the proposed repository environment is included. 32 refs., 6 figs

  5. Testes de toxicidade aguda através de bioensaios no extrato solubilizado dos resíduos classe II A - não inertes e classe II B - inertes Acute toxicity tests by bioassays applied to the solubilized extracts of solid wastes class II A - non inerts and class II B - inerts

    Directory of Open Access Journals (Sweden)

    Nébora Liz Vendramin Brasil Rodrigues

    2007-03-01

    Full Text Available A grande diversidade de substâncias potencialmente tóxicas contribuem para a deterioração do meio ambiente. O objetivo deste trabalho foi propor a utilização de bioensaios, através de testes de toxicidade aguda com Daphnia magna e Vibrio fischeri, como mais um parâmetro a ser analisado no extrato solubilizado dos resíduos que, segundo a NBR 10004/04 fossem classificados como classe II A - não inertes ou classe II B - inertes. Realizaram-se, também, testes de toxicidade no drenado dos aterros classe II A e II B. Verificou-se que a toxicidade foi constatada nos extratos solubilizados dos 18 resíduos analisados e que, apenas três das amostras estariam próprias para lançamento, ou seja os resíduos 04, 14 e 15. Já, a toxicidade encontrada no drenado dos aterros, ficou muito superior do que a toxicidade de cada extrato solubilizado analisado separadamente.A great diversity of substances potencially toxic contributes to the deterioration of the environment. The aim of this research was to propose the use of bioassays using Daphnia magna and Vibrio fischeri, as another parameter to be analyzed in the solubilized extraction of waste according to NBR 10004/04 and classified as class II A - non inerts or class II B - inerts. Besides, another test was performed to measure the level of toxicity in the drainage of the landfill class II A and II B. It was verified that the toxicity found in the solubilized extracts of the 18 wastes analysed.Only 3 wastes (04, 14 and 15 were within the emission limits. On the other hand the toxicity found in the drainage of the landfill, from which all the samples came from, was much higher than the individual one.

  6. Caelyx (TM) in malignant mesothelioma : A phase II EORTC study

    NARCIS (Netherlands)

    Baas, P; van Meerbeeck, J; Groen, H; Schouwink, H; Burgers, S; Daamen, S; Giaccone, G

    Background: The use of doxorubicin has shown some activity in malignant mesothelioma but prolonged administration is hampered by cardiotoxicity. Caelyx(TM), a new liposomal and pegylated form of doxorubicin has shown a better pharmacokinetic and toxic profile then doxorubicin. In a phase II study,

  7. TRU Waste Sampling Program: Volume I. Waste characterization

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies

  8. Research on radionuclide migration under subsurface geochemical conditions. JAERI/AECL Phase II Collaborative Program Year 1 (joint research)

    International Nuclear Information System (INIS)

    1998-11-01

    A radionuclide migration experiment program for fractured rocks was performed under the JAERI/AECL Phase-II Collaborative Program on research and development in radioactive waste management. The program started in the fiscal year 1993, as a five-year program consists of Quarried block radionuclide migration program, Speciation of long-lived radionuclides in groundwater, Isotopic hydrogeology and Groundwater flow model development. During the first year of the program (Program Year 1: March 18, 1994 - September 30, 1994), a plan was developed to take out granite blocks containing part of natural water-bearing fracture from the wall of the experimental gallery at the depth of 240 m, and literature reviews were done in the area of the speciation of long-lived radionuclides in groundwater, isotopic hydrogeology and the groundwater flow model development to proceed further work for the Program Year 2. (author)

  9. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

  10. A case study of packaging waste collection systems in Portugal - Part II: Environmental and economic analysis.

    Science.gov (United States)

    Pires, Ana; Sargedas, João; Miguel, Mécia; Pina, Joaquim; Martinho, Graça

    2017-03-01

    An understanding of the environmental impacts and costs related to waste collection is needed to ensure that existing waste collection schemes are the most appropriate with regard to both environment and cost. This paper is Part II of a three-part study of a mixed packaging waste collection system (curbside plus bring collection). Here, the mixed collection system is compared to an exclusive curbside system and an exclusive bring system. The scenarios were assessed using life cycle assessment and an assessment of costs to the waste management company. The analysis focuses on the collection itself so as to be relevant to waste managers and decision-makers who are involved only in this step of the packaging life cycle. The results show that the bring system has lower environmental impacts and lower economic costs, and is capable of reducing the environmental impacts of the mixed system. However, a sensitivity analysis shows that these results could differ if the curbside collection were to be optimized. From economic and environmental perspectives, the mixed system has few advantages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, G.E.; Wilson, C.N.

    1996-02-21

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described.

  12. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    International Nuclear Information System (INIS)

    Stegen, G.E.; Wilson, C.N.

    1996-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described

  13. Phase equilibrium measurements and the tuning behavior of new sII clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woongchul; Park, Seongmin; Ro, Hyeyoon; Koh, Dong-Yeun; Seol, Jiwoong [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Lee, Huen, E-mail: h_lee@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of EEWS, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-01-15

    Graphical abstract: Pyrrolidine and piperidine act as sII clathrate hydrate formers under methane gas. Highlights: > New sII clathrate hydrate formers were proposed: pyrrolidine and piperidine. > Formation of gas hydrate with methane as help gas was confirmed. > NMR, Raman, and XRD patterns were analyzed to identify the hydrate structures. > We measured (L + H + V) phase equilibrium with proposed hydrate formers. > Tuning phenomena increase gas storage in (pyrrolidine + CH{sub 4}) clathrate hydrates. - Abstract: We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. {sup 13}C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).

  14. Phase equilibrium measurements and the tuning behavior of new sII clathrate hydrates

    International Nuclear Information System (INIS)

    Shin, Woongchul; Park, Seongmin; Ro, Hyeyoon; Koh, Dong-Yeun; Seol, Jiwoong; Lee, Huen

    2012-01-01

    Graphical abstract: Pyrrolidine and piperidine act as sII clathrate hydrate formers under methane gas. Highlights: → New sII clathrate hydrate formers were proposed: pyrrolidine and piperidine. → Formation of gas hydrate with methane as help gas was confirmed. → NMR, Raman, and XRD patterns were analyzed to identify the hydrate structures. → We measured (L + H + V) phase equilibrium with proposed hydrate formers. → Tuning phenomena increase gas storage in (pyrrolidine + CH 4 ) clathrate hydrates. - Abstract: We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. 13 C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).

  15. Alternate form and placement of short lived reactor waste and associated fuel hardware for decommissioning of EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Planchon, H.P.; Singleterry, R.C. Jr.

    1995-12-01

    Upon the termination of EBR-II operation in 1994, the mission has progressed to decommissioning and waste cleanup of the facility. The simplest method to achieve this goal is to bury the raw fuel and activated steel in an approved burial ground or deep geologic repository. While this might be simple, it could be very expensive, consume much needed burial space for other materials, and leave large amounts of fissile easily available to future generations. Also, as with any operation, an associated risk to personnel and the public from the buried waste exists. To try and reduce these costs and risks, alternatives to burial are sought. One alternative explored here for EBR-II is to condition the fuel and store the fission products and steel either permanently or temporarily in the sealed primary boundary of the decommissioned reactor. The first problem is to identify which subassemblies are going to be conditioned and their current composition and decay time. The next problem is to identify the conditioning process and determine the composition and form of the waste streams. The volume, mass, heat, and curie load of the waste streams needs to be determined so a waste-assembly can be designed. The reactor vessel and internals need to be analyzed to determine if they can handle these loads. If permanent storage is the goal, then mechanisms for placing the waste-assembly in the reactor vessel and sealing the vessel are needed. If temporary storage is the goal, then mechanisms for waste-assembly placement and retrieval are needed. This paper answers the technical questions of volume, mass, heat, and curie loads while just addressing the other questions found in a safety analysis. The final conclusion will compare estimated risks from the burial option and this option.

  16. F/H Area Effluent Treatment Facility. Phase II. CAC basic data

    International Nuclear Information System (INIS)

    Collins, W.W.; O'Leary, C.D.

    1984-01-01

    Project objectives and requirements are listed for both Phase I and II. Schedule is listed with startup targeted for 1989. Storage facilities will be provided for both chemical and radioactive effluents. 8 figs., 19 tabs

  17. Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1994-01-01

    The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits

  18. Dual Use Packaging, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA calculation that over a kg of packaging waste are generated per day for a 6 member crew. This represents over 1.5 metric tons of waste during a Mars mission....

  19. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  20. MULTIFUNCTIONAL, SELF-HEALING HYBRIDSIL MATERIALS FOR EVA SPACE SUIT PRESSURE GARMENT SYSTEMS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A Phase II SBIR transition of NanoSonic's high flex HybridSil space suit bladder and glove materials will provide a pivotal funding bridge toward Phase III...

  1. Administrative, institutional and legislative issues on agricultural waste exploitation in Turkey

    International Nuclear Information System (INIS)

    Kaya, Durmus; Baban, Ahmet; Dikec, Stephanie; Canka Kilic, Fatma

    2008-01-01

    In this study, the influence of non-technical issues on the exploitation of agricultural waste in Turkey was investigated in accordance with the work program requirements for the project entitled ''Exploitation of Agricultural Waste in Turkey'' under the EU Life Third Countries Program. The study has been organized and presented according to the following four phases: (i) study of existing Turkish legislation and the administrative and institutional framework, (ii) review and analysis of the EU policy and legislation relevant to agricultural waste, including identification of potential market instruments, (iii) identification of barriers to the promotion of agricultural waste exploitation in Turkey, and (iv) Identification of gaps and formulation of recommendations. An ultimate objective of this study is to transfer the European experience and practices relative to the overall framework of managing agricultural waste. (author)

  2. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II effort will develop a 1 x 10 prototype non-mechanical fiber optic switch for use with high power lasers. The proposed optical device is a...

  3. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  4. Site characterization report for the basalt waste isolation project. Volume II

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment

  5. Prospera Digital Phase II: Financial inclusion for low-income women ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Prospera Digital Phase II: Financial inclusion for low-income women in Mexico ... a research network in Latin America, to identify barriers and opportunities to scale up ... Call for new OWSD Fellowships for Early Career Women Scientists now open ... conference of McGill's Institute for the Study of International Development.

  6. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  7. Waste incineration models for operation optimization. Phase 1: Advanced measurement equipment for improved operation of waste fired plants; Affaldsforbraendingsmodeller til driftsoptimering. Fase 1: Avanceret maeleudstyr til forbedret drift af affaldsfyrede anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    This report describes results from the PSO projects ELTRA-5294 and ELTRA-5348: Waste incineration models for operation optimization. Phase 1, and Advanced measurement equipment for improved operation of waste fired plants. Phase 1. The two projects form the first step in a project course build on a long-term vision of a fully automatic system using a wide range of advanced measurement data, advanced dynamic models for prediction of operation and advanced regulation methods for optimization of the operation of waste incinerator plants. (BA)

  8. Phase II cancer clinical trials for biomarker-guided treatments.

    Science.gov (United States)

    Jung, Sin-Ho

    2018-01-01

    The design and analysis of cancer clinical trials with biomarker depend on various factors, such as the phase of trials, the type of biomarker, whether the used biomarker is validated or not, and the study objectives. In this article, we demonstrate the design and analysis of two Phase II cancer clinical trials, one with a predictive biomarker and the other with an imaging prognostic biomarker. Statistical testing methods and their sample size calculation methods are presented for each trial. We assume that the primary endpoint of these trials is a time to event variable, but this concept can be used for any type of endpoint.

  9. Causalities between CO2, electricity, and other energy variables during phase I and phase II of the EU ETS

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Mansanet-Bataller, Maria

    2010-01-01

    The topic of this article is the analysis of the interplay between daily carbon, electricity and gas price data with the European Union Emission Trading System (EU ETS) for CO 2 emissions. In a first step we have performed Granger causality tests for Phase I of the EU ETS (January 2005 until December 2007) and the first year of Phase II of the EU ETS (2008). The analysis includes both spot and forward markets - given the close interactions between the two sets of markets. The results show that during Phase I coal and gas prices, through the clean dark and spark spread, impacted CO 2 futures prices, which in return Granger caused electricity prices. During the first year of the Phase II, the short-run rent capture theory (in which electricity prices Granger cause CO 2 prices) prevailed. On the basis of the qualitative results of the Granger causality tests we obtained the formulation testable equations for quantitative analysis. Standard OLS regressions yielded statistically robust and theoretically coherent results. (author)

  10. The first preparative solution phase synthesis of melanotan II

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available Melanotan II is a synthetic cyclic heptapeptide used to prevent a sunlight-induced skin cancer by stimulating the skin tanning process. In this paper we report the first solution phase synthesis of the title compound. The hexapeptide sequence has been assembled by [(2+2+1+1] scheme. After removing the orthogonal protection, a carbodiimide mediated lactamization, involving the ε-amino group of lysine and γ-carboxy group of aspartic acid, led to a cyclic intermediate. Appending N-acetylnorleucine concluded the assembly of melanotan II molecule. Protection of the lateral groups in arginine and tryptophan was omitted for atom and step economy reasons. The total synthesis of melanotan II was accomplished in 12 steps with 2.6% overall yield, affording >90% pure peptide without using preparative chromatography.

  11. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  12. Phase II test plan for the evaluation of the performance of container filling systems

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The PHMC will provide tank wastes for final treatment by BNFL from Hanford's waste tanks. Concerns about the ability for ''grab'' sampling to provide large volumes of representative waste samples has led to the development of a nested, fixed-depth sampling system. Preferred concepts for filling sample containers that meet RCRA organic sample criteria were identified by a PHMC Decision Board. These systems will replace the needle based sampling ''T'' that is currently on the sampling system. This test plan document identifies cold tests with simulants that will demonstrate the preferred bottle filling concepts abilities to provide representative waste samples and will meet RCRA criteria. Additional tests are identified that evaluate the potential for cross-contamination between samples and the ability for the system to decontaminate surfaces which have contacted tank wastes. These tests will be performed with kaolidwater and sand/water slurry simulants in the test rig that was used by AEAT to complete Phase 1 tests in FY 1999

  13. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1994-01-01

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200 West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above

  14. Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    von Stackelberg, Arend; Locatelli, Franco; Zugmaier, Gerhard; Handgretinger, Rupert; Trippett, Tanya M; Rizzari, Carmelo; Bader, Peter; O'Brien, Maureen M; Brethon, Benoît; Bhojwani, Deepa; Schlegel, Paul Gerhardt; Borkhardt, Arndt; Rheingold, Susan R; Cooper, Todd Michael; Zwaan, Christian M; Barnette, Phillip; Messina, Chiara; Michel, Gérard; DuBois, Steven G; Hu, Kuolung; Zhu, Min; Whitlock, James A; Gore, Lia

    2016-12-20

    Purpose Blinatumomab is a bispecific T-cell engager antibody construct targeting CD19 on B-cell lymphoblasts. We evaluated the safety, pharmacokinetics, recommended dosage, and potential for efficacy of blinatumomab in children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Methods This open-label study enrolled children treatment cycles. Primary end points were maximum-tolerated dosage (phase I) and complete remission rate within the first two cycles (phase II). Results We treated 49 patients in phase I and 44 patients in phase II. Four patients had dose-limiting toxicities in cycle 1 (phase I). Three experienced grade 4 cytokine-release syndrome (one attributed to grade 5 cardiac failure); one had fatal respiratory failure. The maximum-tolerated dosage was 15 µg/m 2 /d. Blinatumomab pharmacokinetics was linear across dosage levels and consistent among age groups. On the basis of the phase I data, the recommended blinatumomab dosage for children with relapsed/refractory ALL was 5 µg/m 2 /d for the first 7 days, followed by 15 µg/m 2 /d thereafter. Among the 70 patients who received the recommended dosage, 27 (39%; 95% CI, 27% to 51%) achieved complete remission within the first two cycles, 14 (52%) of whom achieved complete minimal residual disease response. The most frequent grade ≥ 3 adverse events were anemia (36%), thrombocytopenia (21%), and hypokalemia (17%). Three patients (4%) and one patient (1%) had cytokine-release syndrome of grade 3 and 4, respectively. Two patients (3%) interrupted treatment after grade 2 seizures. Conclusion This trial, which to the best of our knowledge was the first such trial in pediatrics, demonstrated antileukemic activity of single-agent blinatumomab with complete minimal residual disease response in children with relapsed/refractory BCP-ALL. Blinatumomab may represent an important new treatment option in this setting, requiring further investigation in curative indications.

  15. The status of world biosphere modelling for waste disposal assessments following BIOMOVS II

    International Nuclear Information System (INIS)

    Klos, R.; Reid, J.A.K.; Santucci, P.; Bergstrom, U.

    1996-01-01

    Biosphere modelling for radioactive waste disposal assessments faces unique problems. Models for such applications tend to be quite distinct from other similar environmental assessment tools. Over the past few years, two of the Working Groups in the second international biosphere model validation study (BIOMOVS II) have been considering the special requirements for such models. The BIOMOVS II Reference Biospheres Working Group has concentrated on the elaboration of the methodology for the definition of models for such assessments. lie Complementary Studies Working Group has dealt with how the Features, Events and Processes (FEPS) included in the participating models are represented, in the context of the representation of a temperate inland biosphere. The aim of Complementary Studies was to move forward from the first phase of BIOMOVS, with the analysis going further and deeper into principles on which the participating models are based. Ten of the leading models from around the world have participated in the Complementary Studies model intercomparison exercise. This paper presents some key findings using the international biosphere FEP-list produced by the Reference Biospheres Working Group as a framework for discussing the current state-of-the-art. Common features of the models as well as reasons for the model differences are discussed. Areas where the international community could benefit from a harmonisation of approaches are also identified, setting out possible future requirements and developments. In the Complementary Studies intercomparison, the hypothetical release of radionuclides to an inland valley biosphere was considered. The radionuclides considered in the study were selected because of their relevance for underground repositories for long-lived radioactive wastes and because their individual properties made them suitable probes for many of the important Features, Events and Processes (FEPS) in long timescale biosphere modelling. The data

  16. Lightweight Design of an HTS Coil for the VASIMR Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR contract Tai-Yang Research Company of Tennessee proposes to design, fabricate, and test an ultra-lightweight High Temperature Superconducting...

  17. [Study on the phase II metabolites of phenoprolamine hydrochloride in rat bile by LC/DAD/MSD].

    Science.gov (United States)

    Ding, L; Zhang, Z X; Ni, P Z; Wang, G J; An, D K

    2001-06-01

    To study the phase II metabolites of phenoprolamine hydrochloride (DDPH) in rat bile. DDPH was administered by i.p. to bile duct-cannulated rats. Bile samples were collected before drug administration and up to 12 h after drug administration. After being purified and enriched with C-18 SPE columns the rat bile samples were analyzed by LC/DAD/MSD to identify the peaks of phase II metabolites. The fractions of phase II metabolites were prepared by HPLC and treated with beta-glucuronidase, and then were purified and enriched with C-18 SPE columns and analyzed by LC/DAD/MSD. The corresponding reference standards of DDPH phase I metabolites were analyzed by LC/DAD/MSD under identical conditions. The peaks M7, M8 and M9 in the chromatograms of rat bile samples were the phase II metabolites of DDPH and the enzymatic hydrolysates of M7, M8 and M9 were 1-(2, 6-dimethyl-4-hydroxyphenoxy)-2-(3, 4-methoxyphenylethylamino)-propane (M3), 1-(2, 6-dimethyl-3-hydroxyphenoxy)-2-(3, 4-methoxyphenylethylamino)-propane (M2) and 1-(2,6-dimethylphenoxy)-2-(3-methoxy-4-hydroxyphenylethyl-amino)-propane (M1) respectively. beta-1-O-[3,5-dimethyl-4-[-2-methyl-2-(3,4-dimethoxy-phenylethylamino)- ethoxy]-phenyl]-glucuronic acid (M7, glucuronide of M3), beta-1-O-[2, 4-dimethyl-3-[2-methyl-2-(3, 4-dimethoxy-phenylethylamino)-ethoxy]-phenyl]-glucuronic acid (M8, glucuronide of M2) and beta-1-O-[2-methoxy-4-[1-methyl-2-(2, 6-dimethylphenoxy)-ethylamino-ethyl]-phenyl]-glucuronic acid (M9, glucuronide of M1) were the phase II metabolites of DDPH in rat bile.

  18. Life cycle and economic efficiency analysis phase II : durable pavement markings.

    Science.gov (United States)

    2011-04-01

    This report details the Phase II analysis of the life cycle and economic efficiency of inlaid tape : and thermoplastic. Waterborne paint was included as a non-durable for comparison purposes : only. In order to find the most economical product for sp...

  19. Magnetic sensor for nondestructive evaluation of deteriorated prestressing strand : phase II.

    Science.gov (United States)

    2011-08-01

    This report gives an account of the execution and achievements in Phase II of the project completed through August 2011. The main objective of this project is to advance the practical development of a nondestructive testing and evaluation method usin...

  20. Phase-II Associative Memory ASIC Specifications

    CERN Document Server

    Stabile, Alberto; Warren, Matthew; Green, Barry; Konstantinidis, Nikolaos; Motuk, Halil Erdem; Frontini, Luca; Liberali, Valentino; Crescioli, Francesco; Fedi, Giacomo; Sotiropoulou, Calliope-louisa; De Canio, Francesco; Traversi, Gianluca; Shojaii, Seyed Ruhollah; Kubota, Takashi; Calderini, Giovanni; Palla, Fabrizio; Checcucci, Bruno; Spiller, Laurence Anthony; Mcnamara, Peter Charles

    2018-01-01

    This documents defines the specifications for the Associative Memory ASIC for Phase-II. The work-flow toward the final ASIC is organized in the following three steps • AM08 prototype: small area MPW prototype to test all the full custom features, the VHDL logic and the I/O. This chip must be fully functional with smaller memory area than the final ASIC; • AM09pre pre-production: full area ASIC to be fabricated with a full-mask set pilot run. Production corner wafers will be created; • AM09 production: full area ASIC with refinements for the mass production. The AM09 will be developed built on the AM08 extending the memory area, therefore the specification of both versions must be compatible.

  1. Purification and H-1 NMR spectroscopic characterization of phase II metabolites of tolfenamic acid

    DEFF Research Database (Denmark)

    Sidelmann, U. G.; Christiansen, E.; Krogh, L.

    1997-01-01

    samples obtained on days 7 to 10 from a human volunteer after oral administration of 200 mg of the drug three times per day (steady-state plasma concentration). The metabolites of tolfenamic acid were initially concentrated by preparative solid phase extraction (PSPE) chromatography, thereby removing...... the endogenous polar compounds that are present in the urine. The individual metabolites were purified by preparative high performance liquid chromatography (HPLC) and then identified using H-1 NMR, Both one- and two-dimensional NMR experiments were performed to identify the phase II metabolites of tolfenamic......), and N-(2-methyl-4-hydroxyphenyl)-anthranilic acid (11) were identified. The phase II metabolites (5-11) had not previously been identified in urine from humans administered tolfenamic acid. The phase I metabolites of the glucuronides 7, 8, 10, and 11 were identified here for the first time. An HPLC...

  2. Resource conversation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume II contains attachments for Module II and Module III. Attachments for Module II are: part A permit application; examples of acceptable documentation; Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program; inspection schedule and monitoring schedule; inspection log forms; personnel training course outlines; hazardous waste job position training requirements; contingency plan; closure plan; and procedures for establishing background for the underground units. One attachment, facility process information, is included for Module III. Remaining attachments for this module are in Volume III

  3. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase II: Final Report.

    Science.gov (United States)

    Walker, Bonnie L.

    This report describes Phase II of a project which developed a system for delivering fire safety training to board and care providers who serve adults with developmental disabilities. Phase II focused on developing and pilot testing a "train the trainers" workshop for instructors and field testing the provider's workshop. Evaluation of…

  4. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    Science.gov (United States)

    Kunzevitzky, Noelia; Guttridge, Denis C.; Khuri, Sawsan; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2011-01-01

    Background Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Methodology/Principal Findings Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. Conclusions/Significance These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such

  5. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's Phase II proposal calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life capabilities. To...

  6. OrFPGA: An Empirical Performance Tuning Tool for FPGA Designs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II STTR project, RNET and its subcontractors are proposing to fully develop an empirical performance optimization tool called OrFPGA that efficiently...

  7. Battery Separator Membrane Having a Selectable Thermal Shut-Down Temperature, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal to NASA requests $596,750.96 support for Policell Technologies, Inc. to develop a series of separator...

  8. Efficient Integration, Validation and Troubleshooting in Multimodal Distributed Diagnostic Schemes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In general, development and validation of diagnostic models for complex safety critical systems are time and cost intensive jobs. The proposed Phase-II effort will...

  9. Plasma-wall Interaction Studies in the Start-up Phase of TJ-II

    International Nuclear Information System (INIS)

    De la Cal, E.; Tabares, F.L.; Tafalla, D.

    1998-01-01

    The aim of this work is to present some first plasma-wall interaction studies made during the first experimental campaign of TJ-II. The different sections contain independent contributions presented orally in the fusion division of the Euratom-Ciemat association during 1998: I. Density limit during the start-up phase of TJ-II : are we limited by radiation?. II. Temporal evolution of oxygen in the plasma during an experimental day. III. The contribution of helium to the plasma electron density IV. First studies of the S.O.L. diffusion coefficient and its dependence with the boundary plasma parameters. (Author) 3 refs

  10. Solid waste retrieval. Phase 1, Operational basis

    International Nuclear Information System (INIS)

    Johnson, D.M.

    1994-01-01

    This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose

  11. Solid waste retrieval. Phase 1, Operational basis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.M.

    1994-09-30

    This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

  12. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  13. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  14. Scaled Model Technology for Flight Research of General Aviation Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Our proposed future Phase II activities are aimed at developing a scientifically based "tool box" for flight research using scaled models. These tools will be of...

  15. Coordinated Control of Multi-Agent Systems in Rapidly Varying Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this Phase II STTR project is to develop advanced control algorithms that enable multiple autonomous agents to perform complex tasks in rapidly...

  16. Administrative, institutional and legislative issues on agricultural waste exploitation in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Baban, Ahmet; Dikec, Stephanie [TUBITAK MRC Chemistry and Enviorenment Institute, P.O. Box 21, 41470 Gebze-Kocaeli (Turkey); Canka Kilic, Fatma [Kocaeli University, KMYO, Department of Air Conditioning and Refrigeration, Kullar/Kocaeli (Turkey)

    2008-02-15

    In this study, the influence of non-technical issues on the exploitation of agricultural waste in Turkey was investigated in accordance with the work program requirements for the project entitled ''Exploitation of Agricultural Waste in Turkey'' under the EU Life Third Countries Program. The study has been organized and presented according to the following four phases: (i) study of existing Turkish legislation and the administrative and institutional framework, (ii) review and analysis of the EU policy and legislation relevant to agricultural waste, including identification of potential market instruments, (iii) identification of barriers to the promotion of agricultural waste exploitation in Turkey, and (iv) Identification of gaps and formulation of recommendations. An ultimate objective of this study is to transfer the European experience and practices relative to the overall framework of managing agricultural waste. (author)

  17. Process for treating fission waste

    International Nuclear Information System (INIS)

    Rohrmann, C.A.; Wick, O.J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste

  18. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    Science.gov (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  19. [Fungal community structure in phase II composting of Volvariella volvacea].

    Science.gov (United States)

    Chen, Changqing; Li, Tong; Jiang, Yun; Li, Yu

    2014-12-04

    To understand the fungal community succession during the phase II of Volvariella volvacea compost and clarify the predominant fungi in different fermentation stages, to monitor the dynamic compost at the molecular level accurately and quickly, and reveal the mechanism. The 18S rDNA-denaturing gradient gel electrophoresis (DGGE) and sequencing methods were used to analyze the fungal community structure during the course of compost. The DGGE profile shows that there were differences in the diversity of fungal community with the fermentation progress. The diversity was higher in the stages of high temperature. And the dynamic changes of predominant community and relative intensity was observed. Among the 20 predominant clone strains, 9 were unknown eukaryote and fungi, the others were Eurotiales, Aspergillus sp., Melanocarpus albomyces, Colletotrichum sp., Rhizomucor sp., Verticillium sp., Penicillium commune, Microascus trigonosporus and Trichosporon lactis. The 14 clone strains were detected in the stages of high and durative temperature. The fungal community structure and predominant community have taken dynamic succession during the phase II of Volvariella volvacea compost.

  20. Simultaneous Removal of Hg(II and Phenol Using Functionalized Activated Carbon Derived from Areca Nut Waste

    Directory of Open Access Journals (Sweden)

    Lalhmunsiama

    2017-07-01

    Full Text Available Areca nut waste was utilized to obtain high surface area activated carbon (AC, and it was further functionalized with succinic anhydride under microwave irradiation. The surface morphology and surface functional groups of the materials were discussed with the help of scanning electron microscope(SEM images and fourier transform infra-red (FT-IR analysis. The specific surface area of the AC and functionalized-AC was obtained by the Brunauer-Emmett-Teller (BET method, and found to be 367.303 and 308.032 m2/g, respectively. Batch experiments showed that higher pH favoured the removal of Hg(II, whereas the phenol removal was slightly affected by the changes in the solution pH. The kinetic data followed pseudo-first order kinetic model, and intra-particle diffusion played a significant role in the removal of both pollutants. The maximum sorption capacity of Hg(II and phenol were evaluated using Langmuir adsorption isotherms, and found to be 11.23 and 5.37 mg/g, respectively. The removal of Hg(II was significantly suppressed in the presence of chloride ions due to the formation of a HgCl2 species. The phenol was specifically adsorbed, forming the donor–acceptor complexes or π–π electron interactions at the surface of the solid. Further, a fixed-bed column study was conducted for both Hg(II and phenol. The loading capacity of the column was estimated using the nonlinear Thomas equation, and found to be 2.49 and 2.70 mg/g, respectively. Therefore, the study showed that functionalized AC obtained from areca nut waste could be employed as a sustainable adsorbent for the simultaneous removal of Hg(II and phenol from polluted water.

  1. Development and Validation of Methodology to Model Flow in Ventilation Systems Commonly Found in Nuclear Facilities - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Strons, Philip [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Davis, John [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, James [Argonne National Lab. (ANL), Argonne, IL (United States); Hlotke, John [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    In this report we present the results of the Phase II analysis and testing of the flow patterns encountered in the Alpha Gamma Hot Cell Facility (AGHCF), as well as the results from an opportunity to expand upon field test work from Phase I by the use of a Class IIIb laser. The addition to the Phase I work is covered before proceeding to the results of the Phase II work, followed by a summary of findings.

  2. Free-Piston Stirling Power Conversion Unit for Fission Power System, Phase II Final Report

    Science.gov (United States)

    Wood, J. Gary; Stanley, John

    2016-01-01

    In Phase II, the manufacture and testing of two 6-kW(sub e)Stirling engines was completed. The engines were delivered in an opposed 12-kW(sub e) arrangement with a common expansion space heater head. As described in the Phase I report, the engines were designed to be sealed both hermetically and with a bolted O-ring seal. The completed Phase II convertor is in the bolted configuration to allow future disassembly. By the end of Phase II, the convertor had passed all of the final testing requirements in preparation for delivery to the NASA Glenn Research Center. The electronic controller also was fabricated and tested during Phase II. The controller sets both piston amplitudes and maintains the phasing between them. It also sets the operating frequency of the machine. Details of the controller are described in the Phase I final report. Fabrication of the direct-current to direct-current (DC-DC) output stage, which would have stepped down the main controller output voltage from 700 to 120 V(sub DC), was omitted from this phase of the project for budgetary reasons. However, the main controller was successfully built, tested with the engines, and delivered. We experienced very few development issues with this high-power controller. The project extended significantly longer than originally planned because of yearly funding delays. The team also experienced several hardware difficulties along the development path. Most of these were related to the different thermal expansions of adjacent parts constructed of different materials. This issue was made worse by the large size of the machine. Thermal expansion problems also caused difficulties in the brazing of the opposed stainless steel sodium-potassium (NaK) heater head. Despite repeated attempts Sunpower was not able to successfully braze the opposed head under this project. Near the end of the project, Glenn fabricated an opposed Inconel NaK head, which was installed prior to delivery for testing at Glenn. Engine

  3. Large Format LW Type-II SLS FPAs for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposes to develop high performance (low dark current, high quantum efficiency, and low NEdT) infrared epitaxy materials based on Type II Strained...

  4. Valorization of Calcium Carbonate-Based Solid Wastes for the Treatment of Hydrogen Sulfide from the Gas Phase

    OpenAIRE

    Pham Xuan , Huynh; Pham Minh , Doan; Galera Martinez , Marta; Nzihou , Ange; Sharrock , Patrick

    2015-01-01

    International audience; This paper focuses on the valorization of calcium carbonate-based solid wastes for theremoval of hydrogen sulfide from gas phase. Two solid wastes taken from industrial sites for theproduction of sodium carbonate and sodium bicarbonate by the Solvay process® were analyzedby different physico-chemical methods. Calcium carbonate was found as the main component ofboth the solid wastes. Trace amounts of other elements such as Mg, Al, Fe, Si, Cl, Na etc. werealso present in...

  5. Grid-connected integrated community energy system. Phase II, Stage 1, final report. Conceptual design: pyrolysis and waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-08

    The University of Minnesota is studying and planning a grid-connected integrated community energy system to include disposal of wastes from health centers and utilizing the heat generated. Following initial definition of the 7-county metropolitan region for which the solid waste management system is to be planned, information is then necessary about the nature of the waste generated within this region. Estimates of the quantities generated, generation rates, and properties of the waste to be collected and disposed of are required in order to determine the appropriate size and capacity of the system. These estimates are designated and subsequently referred to as ''system input''. Institutional information is also necessary in designing the planned system, to be compatible with existing institutional operations and procedures, or to offer a minimum amount of problems to the participating institution in the region. Initial considerations of health care institutions generating solid waste within the defined region are made on a comprehensive basis without any attempt to select out or include feasible candidate institutions, or institutional categories. As the study progresses, various criteria are used in selecting potential candidate institutional categories and institutions within the 7-county region as offering the most feasible solid waste system input to be successfully developed into a centralized program; however, it is hoped that such a system if developed could be maintained for the entire 7-county region, and remain comprehensive to the entire health care industry. (MCW)

  6. Final Phase II report : QuickSite(R) investigation, Everest, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Research)

    2003-11-01

    this reason, the CCC/USDA is conducting an environmental site investigation to determine the source(s) and extent of the carbon tetrachloride contamination at Everest and to assess whether the contamination requires remedial action. The investigation at Everest is being performed by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. At these facilities, Argonne is applying its QuickSite{reg_sign} environmental site characterization methodology. This methodology has been applied successfully at a number of former CCC/USDA facilities in Kansas and Nebraska and has been adopted by the American Society for Testing and Materials (ASTM 1998) as standard practice for environmental site characterization. Phase I of the QuickSite{reg_sign} investigation examined the key geologic, hydrogeologic, and hydrogeochemical relationships that define potential contaminant migration pathways at Everest (Argonne 2001). Phase II of the QuickSite{reg_sign} investigation at Everest was undertaken with the primary goal of delineating and improving understanding of the distribution of carbon tetrachloride contamination in groundwater at this site and the potential source area(s) that might have contributed to this contamination. To address this goal, four specific technical objectives were developed to guide the Phase II field studies. Sampling of near-surface soils at the former Everest CCC/USDA facility that was originally planned for Phase I had to be postponed until October 2000 because of access restrictions. Viable vegetation was not available for sampling then. This period is termed the first session of Phase II

  7. Hanford Waste End Effector Phase I Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatchell, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mount, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-22

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulants to determine pumping rate, dilution factors, and screen fouling rate.

  8. Functional design criteria for project W-252, phase II liquid effluent treatment and disposal. Revision 2

    International Nuclear Information System (INIS)

    Hatch, C.E.

    1995-05-01

    This document is the Functional Design Criteria for Project W-252. Project W-252 provides the scope to provide BAT/AKART (best available technology...) to 200 Liquid Effluent Phase II streams (B-Plant). This revision (Rev. 2) incorporates a major descoping of the project. The descoping was done to reflect a combination of budget cutting measures allowed by a less stringent regulatory posture toward the Phase II streams

  9. U.S. Bureau of Mines, phase I Hanford low-level waste melter tests: Melter offgas report

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the melter offgas report on testing performed by the U.S. Department of the Interior, Bureau of Mines, Albany Research Center in Albany, Oregon. The Bureau of Mines (one of the seven vendors selected) was chosen to demonstrate carbon electrode melter technology (also called carbon arc or electric arc) under WHC subcontract number MMI-SVV-384216. The document contains the complete offgas report for the first 24-hour melter test (WHC-1) as prepared by Entropy Inc. A summary of this report is also contained in the''U.S. Bureau of Mines, Phase 1 Hanford Low-Level Waste Melter Tests: Final Report'' (WHC-SD-WM-VI-030)

  10. Matrix-encapsulated waste forms: application to idealized systems, commercial and SRP/INEL wastes, hydrated radiophases and encapsulant phases

    International Nuclear Information System (INIS)

    Roy, R.; Vance, E.R.; McCarthy, G.J.; White, W.B.

    1981-01-01

    This paper describes the encapsulation strategy as applied to microscopic-scale encapsulation in ceramics composed of micron-sized grains of possibly more leachable radiophases intimately surrounded by micron-sized grains of more insoluble phases. The encapsulation approach should be valid, almost axiomatic, for defense waste. However, there are still problems to be investigated experimentally. These are (a) because of the dilution, it is difficult to confirm the geometry of the radionuclide-bearing phases relative to that of the matrix: one almost has to use the inverse approach by making leach measurements, (b) deciding between using the highly reactive oxyhydroxide sludges themselves or sintered calcine to be coated, (c) verification of the insolubility of the encapsulant phases in a variety of groundwaters, and (d) the production of ceramics of near-zero porosity, using hot-isostatic pressing, or incorporation in either silicate or phosphate cements

  11. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples.

    Science.gov (United States)

    Gao, Ru; Hu, Zheng; Chang, Xijun; He, Qun; Zhang, Lijun; Tu, Zhifeng; Shi, Jianping

    2009-12-15

    A new sorbent 1-acylthiosemicarbazide-modified activated carbon (AC-ATSC) was prepared as a solid-phase extractant and applied for removing of trace Cu(II), Hg(II) and Pb(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 3, the maximum static adsorption capacity of Cu(II), Hg(II) and Pb(II) onto the AC-ATSC were 78.20, 67.80 and 48.56 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 3.0 mL of 2% CS(NH2)2 and 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3sigma) of this method for Cu(II), Hg(II) and Pb(II) were 0.20, 0.12 and 0.45 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=8). The prepared sorbent was applied for the preconcentration of trace Cu(II), Hg(II) and Pb(II) in certified and water samples with satisfactory results.

  12. Mobile hot cell transition design phase study for radioactive waste treatment on the Hanford reservation site

    International Nuclear Information System (INIS)

    Pons, Y.

    2010-01-01

    Full text of publication follows: At the US Department of Energy's Hanford Reservation site, 4 caissons in under ground storage contain approximately 23 cubic meters of Transuranic (TRU) waste, in over 5,000 small packages. The retrieval of these wastes presents a number of very difficult issues, including the configuration of the vaults, approximately 50,000 curies of activity, high dose rates, and damaged/degraded waste packages. The waste will require remote retrieval and processing sufficient to produce certifiable RH-TRU waste packages. This RH-TRU will be packaged for staging on site until certification by CCP is completed to authorize shipment to the Waste Isolation Pilot Plant (WIPP). The project has introduced AREVA' s innovative Hot Mobile Cell (HMC) technology to perform size reduction, sorting, characterization, and packaging of the RH waste stream at the point of generation, the retrieval site in the field. This approach minimizes dose and hazard exposure to workers that is usually associated with this operation. The HMC can also be used to provide employee protection, weather protection, and capacity improvements similar to those realized in general burial ground. AREVA TA and his partner AFS will provide this technology based on the existing HMCs developed and operated in France: - ERFB (Bituminized Waste Drum Retrieval Facility): ERFB was built specifically for retrieving the bituminized waste drums (approximately 6,000 stored in trenches in the North zone on the Marcoule site (in operation since 2001). - ERCF (Waste Drum Recovery and Packaging Facility): The ERCF was built specifically to retrieve bituminized waste drums stored in 35 pits located in the south area on Marcoule site (in operation) - FOSSEA (Legacy Waste Removal and Trench Cleanup): The FOSSEA project consists of the retrieval of waste stored on the Basic Nuclear Facility. Waste from the 56 trenches will be inspected, characterised, and if necessary processed or repackaged, and

  13. Holifield Heavy Ion Research Facility. Phase II

    International Nuclear Information System (INIS)

    Ball, J.B.; Hudson, E.D.; Lord, R.S.; Johnson, J.W.; Martin, J.A.; McNeilly, G.S.; Milner, W.T.; Mosko, S.W.; Sayer, R.O.; Robinson, R.L.

    1979-01-01

    The Holifield Heavy Ion Research Facility, with the completion of Phase I in late 1979, will include the Oak Ridge Isochronous Cyclotron (ORIC) and associated research areas, the new 25 MV tandem accelerator with new research areas for tandem beams, and modifications to utilize the ORIC as a booster accelerator. The combination of the tandem and ORIC will provide beam energies of 25 MeV/A for light heavy ions and 6 MeV/A up to A = 160. This paper discusses plans for a Phase II expansion of the facility to include an isochronous cyclotron with superconducting magnet and reconfiguration of the existing research areas and the ORIC vault to handle the higher energy beams from the new cyclotron. The new booster cyclotron is a low-flutter high-spiral design patterned after the MSU K = 800 design, with a central magnetic field of about 5 tesla and an extraction radius of 1 meter. The new beam transport system will incorporate an rf beam-splitter system that will be able to deliver successive beam pulses to two or three experiment areas

  14. NASA's GeneLab Phase II: Federated Search and Data Discovery

    Science.gov (United States)

    Berrios, Daniel C.; Costes, Sylvain V.; Tran, Peter B.

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate 'open science' biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics ('omics') data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  15. NASAs GeneLab Phase II: Federated Search and Data Discovery

    Science.gov (United States)

    Berrios, Daniel C.; Costes, Sylvain; Tran, Peter

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate open science biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics (omics) data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  16. Waste retrieval plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ''bin tests'' and ''alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met

  17. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    Science.gov (United States)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  18. 76 FR 55947 - Industrial Relations Promotion Project, Phase II in Vietnam

    Science.gov (United States)

    2011-09-09

    ... DEPARTMENT OF LABOR Office of the Secretary Industrial Relations Promotion Project, Phase II in... to perform the type of activity to be funded.. DAI, through its Industrial Relations Promotion... provided a letter in support of continued funding of DAI/IRRP based, on part, on the importance of the...

  19. The STAR beam energy scan phase II physics and upgrades

    Czech Academy of Sciences Publication Activity Database

    Yang, C.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Vértési, Robert

    2017-01-01

    Roč. 967, č. 11 (2017), s. 800-803 ISSN 0375-9474 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * BES-II * detector upgrade * QCD phase diagram * physics oppotrunity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.916, year: 2016

  20. Polymer-Reinforced, Nonbrittle, Lightweight Cryogenic Insulation for Reduced Life-Cycle Costs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR project focuses to continue developing cryogenic insulation foams that are flexible, deforming under compression. InnoSense LLC (ISL) demonstrated...

  1. Development of Diamond Vacuum Differential Amplifier for Harsh Environment Power Electronics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed Phase II, Scientic and Vanderbilt University will develop a novel vacuum field emission differential amplifier (VFEDA) using low electron affinity...

  2. The role of technology in reducing health care costs. Phase II and phase III.

    Energy Technology Data Exchange (ETDEWEB)

    Cilke, John F.; Parks, Raymond C.; Funkhouser, Donald Ray; Tebo, Michael A.; Murphy, Martin D.; Hightower, Marion Michael; Gallagher, Linda K.; Craft, Richard Layne, II; Garcia, Rudy John

    2004-04-01

    In Phase I of this project, reported in SAND97-1922, Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. The effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements and an economic analysis model for development of care pathway costs for two conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Phases II and III of this project, which are presented in this report, were directed at detailing the parameters of telemedicine that influence care delivery costs and quality. These results were used to identify and field test the communication, interoperability, and security capabilities needed for cost-effective, secure, and reliable health care via telemedicine.

  3. Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation

    Energy Technology Data Exchange (ETDEWEB)

    W Um; H Chang; J Icenhower; W Lukens; R Serne; N Qafoku; J Westsik Jr.; E Buck; S Smith

    2011-12-31

    During the nuclear waste vitrification process volatilized {sup 99}Tc will be trapped by melter off-gas scrubbers and then washed out into caustic solutions, and plans are currently being contemplated for the disposal of such secondary waste. Solutions containing pertechnetate [{sup 99}Tc(VII)O{sub 4}{sup -}] were mixed with precipitating goethite and dissolved Fe(II) to determine if an iron (oxy)hydroxide-based waste form can reduce Tc(VII) and isolate Tc(IV) from oxygen. The results of these experiments demonstrate that Fe(II) with goethite efficiently catalyzes the reduction of technetium in deionized water and complex solutions that mimic the chemical composition of caustic waste scrubber media. Identification of the phases, goethite + magnetite, was performed using XRD, SEM and TEM methods. Analyses of the Tc-bearing solid products by XAFS indicate that all of the Tc(VII) was reduced to Tc(IV) and that the latter is incorporated into goethite or magnetite as octahedral Tc(IV). Batch dissolution experiments, conducted under ambient oxidizing conditions for more than 180 days, demonstrated a very limited release of Tc to solution (2-7 {micro}g Tc/g solid). Incorporation of Tc(IV) into the goethite lattice thus provides significant advantages for limiting reoxidation and curtailing release of Tc disposed in nuclear waste repositories.

  4. Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; van Lith, Simone Cornelia; Frandsen, Flemming

    2010-01-01

    The release to the gas phase of inorganic elements such as alkali metals. Cl, S, and heavy metals in Waste-to-Energy (WtE) boilers is a challenge. Besides the risk of harmful emissions to the environment, inorganic elements released from the grate may cause severe ash deposition and corrosion...... and the link to the formation of fly ash and aerosols in full-scale waste incinerators. The release of metals, S and Cl from four dedicated waste fractions was quantified as a function of temperature in a lab-scale fixed-bed reactor. The waste fractions comprised chromated copper arsenate (CCA) impregnated....... The lab-scale release results were then compared with results from a related, full-scale partitioning study, in which test runs with the addition of similar, dedicated waste fractions to a base-load waste had been performed in a grate-fired WtE boiler. In general, the elements Al, Ca, Cr, Cu, Fe, Mg, Si...

  5. National radioactive waste repository site selection study. Phase 2. A report on public comment

    International Nuclear Information System (INIS)

    1995-11-01

    Agreement was reached in principle between State/Territory and the Commonwealth of Australia Governments that a suitable site for a radioactive wastes repository must be found. The discussion papers resulting from the Phase 1 and Phase 2 of the site selection study were released for public comment. The national repository will be for disposal of low level and short-lived intermediate level radioactive wastes streaming from the medical, research and industrial use of radioisotopes in Australia. The purpose of this report is to summarise and respond in general terms to comment received on the discussion paper -Phase 2 of the study. Forty five submissions were received. Of these: 18 supported the Phase 2 study approach and the concept of a national repository; 13 did not state a clear position but either requested more information or provided constructive comment on the siting process; 7 supported the site selection approach and the repository concept but suggested that the repository should not be sited in a particular area; 3 opposed the siting of the repository in their vicinity but not necessarily the repository concept and site selection approach; 4 opposed the concept of a national repository. This compares with 124 submissions on Phase 1 of the study, of which 57 opposed the national repository concept (52 of these were from letters elicited by Greenpeace) and 48 supported the establishment of a national repository and the site selection approach proposed. 3 figs

  6. Microbial Dark Matter Phase II: Stepping deeper into unknown territory

    Energy Technology Data Exchange (ETDEWEB)

    Jarett, Jessica; Dunfield, Peter; Peura, Sari; Wielen, Paul van der; Hedlund, Brian; Elshahed, Mostafa; Kormas, Konstantinos; Stott, Andreas Teske8, Matt; Birkeland, Nils-Kare; Zhang, Chuanlun; Rengefors, Karin; Lindemann, Stephen; Ravin, Nikolai V.; Spear, John; Hallam, Steven; Crowe, Sean; Steele, Jillian; Goudeau, Danielle; Malmstrom, Rex; Kyrpides, Nikos; Stepanauskas, Ramunas; Woyke, Tanja

    2014-10-27

    Currently available microbial genomes are of limited phylogenetic breadth due to our historical inability to cultivate most microorganisms in the laboratory. The first phase of the Microbial Dark Matter project used single-cell genomics to sequence 201 single cells from uncultivated lineages, and was able to resolve new superphyla and reveal novel metabolic features in bacteria and archaea. However, many fundamental questions about the evolution and function of microbes remain unanswered, and many candidate phyla remain uncharacterized. Phase II of the Microbial Dark Matter project will target candidate phyla with no sequenced representatives at a variety of new sites using a combination of single-cell sequencing and shotgun metagenomics approaches.

  7. Phase behavior and radiation effects in high level waste class

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.

    1977-02-01

    Results are presented that demonstrate that detailed and reproducible data can be obtained for complex waste glasses. For the major glass composition examined, thermal treatment was shown to cause formation of several crystalline phases which contribute to an increased leachability. Although not discussed in detail here, Zn 2 SiO 4 formation results in microcracking due to a thermal expansion mismatch with the glass matrix, and SrMoO 4 has a higher leachability than the glass matrix. The temperature dependence describing equilibrium concentrations of these two phases and a qualitative understanding of ingrowth kinetics have been established, hence conditions necessary to eliminate their formation during processing and early storage, are known. Radiation damage effects, when extrapolated to long times, suggest energy storage of approximately 50 cal/gram and either positive or negative density changes occur (depending on the glass composition) in the 1 percent range. No radiation damage-related changes of serious concern have been found for homogeneous glasses by 244 Cm doping experiments now approaching a simulated damage time of approximately 10 3 years (for UO 2 fuel wastes). More work is needed concerning heterogeneous damage which will occur in devitrified glasses. As a final point, the complications with respect to understanding behavior of polyphase systems with respect to either radiation damage or leaching behavior, are self evident. Homogeneous glasses with improved leach resistance, and thermal and radiation stability are clear objectives for future glass development

  8. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  9. Phase 1 and 2 feasibility study report for the 300-FF-1 Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The 300-FF-1 Operable Unit (OU) feasibility study (FS) presented in this document completes the FS process only through the first two study phases: Phase I, Remedial Alternatives Development, and Phase II, Remedial Alternatives Screening in accordance with CERCIA guidance for performing Remedial Investigations and Feasibility Studies (RI/FS) (EPA 1988a). This Phase I/II study provides a generalized view of workable remedial technologies as applied to the site contamination problems as a whole. Phase III, Detailed Analysis of Alternatives, will be performed at a later date to further evaluate screened alternatives based on the nine criteria in the CERCLA RI/FS guidance. The purpose of this Phase I/II FS is to develop and screen a range of alternatives for remediation of contamination present in the vadose zone of the 300-FF-1 OU. The scope of work for this Phase I/II FS includes five primary tasks: 1. Review existing documents and their associated data from relevant investigations and studies; 2. Establish remedial action objectives (RAO) and general response actions (GRA); 3. Identify applicable or relevant and appropriate requirements (ARARS) pertinent to all general response actions (including waste disposal); 4. Develop remedial alternatives (Phase I) applicable to the 300-FF-1 OU including identification and screening of technologies and process options, and assembly of remedial alternatives from representative technology types; 5. Screen alternatives (Phase II) developed in Phase I for implementability, effectiveness, and cost to identify those alternatives which warrant advancement to the detailed analysis phase (Phase III) of the FS.

  10. Management of actinide waste inventories in nuclear phase-out scenarios

    International Nuclear Information System (INIS)

    Cometto, M.; Wydler, P.; Chawla, R.

    2008-01-01

    The improvement of the 'radiological cleanliness' of nuclear energy is a primary goal in the development of advanced reactors and fuel cycles. The multiple recycling of actinides in advanced nuclear systems with fast neutron spectra represents a key option for reducing the potential hazard from high-level waste, especially when the fuel cycle is fully closed. Such strategies, however, involve large inventories of radiotoxic, transuranic (TRU) nuclides in the nuclear park, both in-pile and out-of-pile. The management of these inventories with the help of actinide burners is likely to become an important issue, if nuclear energy systems are eventually phased out, i.e. replaced by other types of energy systems. The present paper compares phase-out scenarios for two transmutation strategies involving fast reactors (FRs) and accelerator-driven systems (ADSs), respectively, operating in symbiosis with conventional light water reactors (LWRs). Particular objectives are to evaluate and compare the TRU reduction performance of the systems as a function of the phase-out time and to determine the appropriate phase-out length for different phase-out criteria. In this connection, an interesting aspect concerns the continuous optimisation of the fuel cycle to counterbalance the reactivity decrease due to the depletion of the fissile isotopes in the fuel. It will be shown that both FRs and ADSs can achieve the goal, provided that the phase-out operation can be continued for about a hundred years

  11. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    Energy Technology Data Exchange (ETDEWEB)

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  12. Advanced Nongray Radiation Module in the LOCI Framework for Combustion CFD, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiative heat fluxes are important in the design of launch vehicles for Project Constellation. In this Phase II STTR, CFDRC and its partner Mississippi State...

  13. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    International Nuclear Information System (INIS)

    1995-11-01

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology

  14. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology.

  15. Clinical effects of Angelica dahurica dressing on patients with I-II phase pressure sores.

    Science.gov (United States)

    Gong, Fen; Niu, Junzhi; Pei, Xing

    2016-11-02

    Angelica dahurica is a well-known traditional Chinese Medicine (TCM), while little information is available about its effects on pressure sores. We aimed to investigate the clinical effect of Angelica dahurica on patients with I-II phase pressure sores, as well as the underlying mechanism. Patients (n = 98) with phase I and phase II pressure sores were enrolled and randomly assigned to control and treated groups. In addition to holistic nursing, patients in the control group received compound clotrimazole cream, while patients in the treated group received continuous 4 weeks of external application of Angelica dahurica dressing. Therapeutic effect was recorded, along with the levels of interleukin-8 (IL-8), epidermal growth factor (EGF), transforming growth factor (TGF)-β, and vascular endothelial growth factor (VEGF). Besides, HaCaT cells were cultured with different concentrations of Angelica dahurica, and then cell viability, clone formation numbers, cell cycle, and levels of cyclin D1 and cyclin-dependent kinase (CDK) 2 were determined. The total effective rate in the treated group was significantly higher than in the control group. Levels of IL-8, EGF, TGF-β, and VEGF were statistically increased by Angelica dahurica. In addition, the cell viability and clone formation numbers were significantly upregulated by Angelica dahurica in a dose-dependent manner. Also, the percentage of cells in G0/G1 phase, and levels of cyclin D1 and CDK2 were significantly elevated. Our results suggest that Angelica dahurica may provide an effective clinical treatment for I-II phase pressure sores.

  16. X-ray and neutron single crystal diffraction on (NH4)3H(SO4)2. II. Refinement of crystal structure of phase II at room temperature

    International Nuclear Information System (INIS)

    Reehuis, M.; Wozniak, K.; Dominiak, P.; Smirnov, L.S.; Natkaniec, I.; Baranov, A.I.; Dolbinina, V.V.

    2006-01-01

    The (NH 4 ) 3 H(SO 4 ) 2 is of special interest due to the possible influence of ammonium ions on a series of phase transitions: I => II => III => IV => V => VII. Earlier, the X-ray single crystal diffraction study of phase II of (NH 4 ) 3 H(SO 4 ) 2 showed that the crystal structure of this compound has two crystallographically independent groups of ammonium ions NH 4 (1) and NH 4 (2), but orientational positions of these ammonium ions were not determined exactly. The refinement of NH 4 (1) and NH 4 (2) orientational positions in phase II is carried out with the help of the X-ray and neutron single crystal diffraction study. The analyses of differential Fourier maps of electron charge density and nuclear density point out the possibility of disordering of NH 4 (2) ammonium ions

  17. VTAE Equity Staff Development Workshops and Services--Phase II. Final Report.

    Science.gov (United States)

    Baldus, Lorayne; Nelson, Orville

    The Phase II Equity Staff Development project was revised in response to a need to develop an equity strategic planning model with a vision statement, goals, and objectives. The Equity Strategic Planning Model was presented to administrators of Wisconsin Vocational, Technical, and Adult Education (VTAE) colleges for their use in district strategic…

  18. Social Security in Zimbabwe : Phase II: Zunde raMambo and Burial ...

    African Journals Online (AJOL)

    In Phase II of this study the Zimbabwean team selected the Zunde raMambo and burial societies for an in-depth study. Four provinces were selected and key informants were interviewed from senior officials to members of these organizations at the grassroots. Zunde raMambo, which provide for the contingency of famine ...

  19. Purification, crystallization, X-ray diffraction analysis and phasing of an engineered single-chain PvuII restriction endonuclease

    International Nuclear Information System (INIS)

    Meramveliotaki, Chrysi; Kotsifaki, Dina; Androulaki, Maria; Hountas, Athanasios; Eliopoulos, Elias; Kokkinidis, Michael

    2007-01-01

    PvuII is the first type II restriction endonuclease to be converted from its wild-type homodimeric form into an enzymatically active single-chain variant. The enzyme was crystallized and phasing was successfully performed by molecular replacement. The restriction endonuclease PvuII from Proteus vulgaris has been converted from its wild-type homodimeric form into the enzymatically active single-chain variant scPvuII by tandemly joining the two subunits through the peptide linker Gly-Ser-Gly-Gly. scPvuII, which is suitable for the development of programmed restriction endonucleases for highly specific DNA cleavage, was purified and crystallized. The crystals diffract to a resolution of 2.35 Å and belong to space group P4 2 , with unit-cell parameters a = b = 101.92, c = 100.28 Å and two molecules per asymmetric unit. Phasing was successfully performed by molecular replacement

  20. A phase II study of gemcitabine in patients with malignant pleural mesothelioma

    NARCIS (Netherlands)

    van Meerbeeck, JP; Bass, P; Debruyne, C; Groen, HJ; Manegold, C; Ardizzoni, A; Gridelli, C; van Marck, EA; Lentz, M; Giaccone, G

    1999-01-01

    BACKGROUND, Gemcitabine has shown activity in patients with less chemosensitive solid tumors. Phase II screening of novel drugs is an accepted method with which to investigate new therapies in malignant mesothelioma. The European Organization for Research and Treatment of Cancer-Lung Cancer

  1. Generic FMS Platform for Evaluation of Autonomous Trajectory-Based Operation Concepts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II work is to develop a generic, advanced Flight Management System (FMS) for the evaluation of autonomous 4D-trajectory based operations...

  2. Best management practices plan for Phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    The Oak Ridge Y-12 Plant site is currently under a Federal Facilities Agreement to define soil and groundwater contamination and develop remedies to protect human health and the environment. The western end of the site is known to have a former nitric acid disposal pit that has been remediated and capped. Remedial investigation data indicate this pit was a source of nitrate, uranium, technetium, and other metals contamination in groundwater. The downgradient receptor of this contamination includes Bear Creek and its tributaries. A feasibility study is underway to develop a remedy to prevent further contaminant migration to this receptor. To support the feasibility study, a treatability study is being completed to examine groundwater treatment at the S-3 site. This document serves as the top level command medium for Phase II and as such will be the primary resource for management and implementation of field activities. Many of the details and standard operating procedures referred within this document can be found in other Lockheed Martin Energy Systems (Energy Systems) documents. Several supporting documents specific to this project are also cited. These include the Sampling and Analysis Plan (SAP), the Health and Safety Plan (HASP), and the Waste Management Plan (WMP). Section 1 describes the results of Phase I efforts. Section 2 describes the objectives of Phase II. Section 3 provides details of field testing. Section 4 addresses the HASP. Section 5 describes the SAP. Section 6 introduces the WMP. Environmental compliance issues are discussed in Section 7, and sediment and erosion control is addressed in Section 8. Information about the project team is provided in Section 9

  3. High level waste at Hanford: Potential for waste loading maximization

    International Nuclear Information System (INIS)

    Hrma, P.R.; Bailey, A.W.

    1995-09-01

    The loading of Hanford nuclear waste in borosilicate glass is limited by phase-related phenomena, such as crystallization or formation of immiscible liquids, and by breakdown of the glass structure because of an excessive concentration of modifiers. The phase-related phenomena cause both processing and product quality problems. The deterioration of product durability determines the ultimate waste loading limit if all processing problems are resolved. Concrete examples and mass-balance based calculations show that a substantial potential exists for increasing waste loading of high-level wastes that contain a large fraction of refractory components

  4. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  5. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    International Nuclear Information System (INIS)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well

  6. Pharmacokinetic interplay of phase II metabolism and transport: a theoretical study.

    Science.gov (United States)

    Wu, Baojian

    2012-01-01

    Understanding of the interdependence of cytochrome P450 enzymes and P-glycoprotein in disposition of drugs (also termed "transport-metabolism interplay") has been significantly advanced in recent years. However, whether such "interplay" exists between phase II metabolic enzymes and efflux transporters remains largely unknown. The objective of this article is to explore the role of efflux transporters (acting on the phase II metabolites) in disposition of the parent drug in Caco-2 cells, liver, and intestine via simulations utilizing a catenary model (for Caco-2 system) and physiologically based pharmacokinetic (PBPK) models (for the liver and intestine). In all three models, "transport-metabolism interplay" (i.e., inhibition of metabolite efflux decreases the metabolism) can be observed only when futile recycling (or deconjugation) occurred. Futile recycling appeared to bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof. Without futile recycling, metabolite formation was independent on its downstream process excretion, thus impact of metabolite excretion on its formation was impossible. Moreover, in liver PBPK model with futile recycling, impact of biliary metabolite excretion on the exposure of parent drug [(systemic (reservoir) area under the concentration-time curve (AUC(R1))] was limited; a complete inhibition of efflux resulted in AUC(R1) increases of less than 1-fold only. In intestine PBPK model with futile recycling, even though a complete inhibition of efflux could result in large elevations (e.g., 3.5-6.0-fold) in AUC(R1), an incomplete inhibition of efflux (e.g., with a residual activity of ≥ 20% metabolic clearance) saw negligible increases (interplay between phase II enzymes and efflux transporters. Those studying such "interplay" are encouraged to adequately consider potential consequences of inhibition of efflux transporters in humans. Copyright © 2011 Wiley-Liss, Inc.

  7. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)

  8. Waste Feed Delivery System Phase 1 Preliminary RAM Analysis [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    DYKES, A.A.

    2000-10-11

    This report presents the updated results of the preliminary reliability, availability, and maintainability (RAM) analysis of selected waste feed delivery (WFD) operations to be performed by the Tank Farm Contractor (TFC) during Phase I activities in support of the Waste Treatment and Immobilization Plant (WTP). For planning purposes, waste feed tanks are being divided into five classes in accordance with the type of waste in each tank and the activities required to retrieve, qualify, and transfer waste feed. This report reflects the baseline design and operating concept, as of the beginning of Fiscal Year 2000, for the delivery of feed from three of these classes, represented by source tanks 241-AN-102, 241-AZ-101 and 241-AN-105. The preliminary RAM analysis quantifies the potential schedule delay associated with operations and maintenance (OBM) field activities needed to accomplish these operations. The RAM analysis is preliminary because the system design, process definition, and activity planning are in a state of evolution. The results are being used to support the continuing development of an O&M Concept tailored to the unique requirements of the WFD Program, which is being documented in various volumes of the Waste Feed Delivery Technical Basis (Carlson. 1999, Rasmussen 1999, and Orme 2000). The waste feed provided to the WTP must: (1) meet limits for chemical and radioactive constituents based on pre-established compositional envelopes (i.e., feed quality); (2) be in acceptable quantities within a prescribed sequence to meet feed quantities; and (3) meet schedule requirements (i.e., feed timing). In the absence of new criteria related to acceptable schedule performance due to the termination of the TWRS Privatization Contract, the original criteria from the Tank Waste Remediation System (77443s) Privatization Contract (DOE 1998) will continue to be used for this analysis.

  9. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia's Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93

  10. Phase I to II cross-induction of xenobiotic metabolizing enzymes: A feedforward control mechanism for potential hormetic responses

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2009-01-01

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  11. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses.

    Science.gov (United States)

    Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  12. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  13. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  14. Expert's statement on the research reactor Munich II (FRM-II); Gutachterliche Stellungnahme zum Forschungsreaktor Muenchen II (FRM-II)

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Friess, Friederike; Gufler, Klaus; Arnold, Nikolaus [Univ. fuer Bodenkultur (BOKU), Wien (Austria). Inst. fuer Sicherheits- und Risikowissenschaften (ISR)

    2017-12-15

    The Expert's statement on the research reactor FRM-II covers the following issues: The situation in Germany with respect to HEU (highly enriched uranium) fuel elements, the proliferation problems related to HEU fuel and the generated high-level radioactive wastes, possible safety hazards of an interim storage of HEU containing wastes, for instance in the interim storage facility Ahaus, possible safety hazards of final disposal of HEU containing radioactive wastes, possibilities to avoid the use of HEU fuel in order to prevent further production of these wastes, requirement of processing spent HEU containing fuel elements for final disposal.

  15. Evaluation of Waste-to-Energy Potential of Domestic Solid Wastes in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    waste in the metropolis ends up on illegal waste dumpsites. The aim of this paper was to investigate the waste-to-energy potentials of domestic solid wastes in Benin metropolis, Nigeria using a three-phase study plan - study of current waste management activities, characterization of domestic solid waste and determination ...

  16. Numerical modeling of rock stresses within a basaltic nuclear waste repository. Final report

    International Nuclear Information System (INIS)

    Hardy, M.P.; Hocking, G.

    1978-01-01

    The modeling undertaken during this project incorporated a wide range of problems that impact the design of the waste repository. Interaction of groundwater, heat and stress were considered on a regional scale, whereas on the room and canister scale thermo-mechanical analyses were undertaken. In the Phase II report, preliminary guidelines for waste densities were established based primarily on short-term stress criteria required to maintain stability during the retrievability period. Additional analyses are required to evaluate the effect of joints, borehole linings, room support and ventilation on these preliminary waste loading densities. The regional analyses did not indicate any adverse effect that could control the allowable waste loading densities. However, further refinements of geologic structure, hydrologic models, seismicity and possible induced seismicity are required before firm estimates of the loading densities can be made

  17. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  18. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  19. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-01-01

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g -1 for 10 g L -1 of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (ΔG o ), enthalpy (ΔH o ), and entropy (ΔS o ) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 o C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  20. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri [Department of Chemistry, Karadeniz Technical University, Faculty of Arts and Sciences, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Erciyes University, Faculty of Arts and Sciences, 38039 Kayseri (Turkey)

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g{sup -1} for 10 g L{sup -1} of a-WM concentration. Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 {sup o}C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  1. Physics Detector Simulation Facility Phase II system software description

    International Nuclear Information System (INIS)

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment

  2. Background suppression in Gerda Phase II and its study in the LArGe low background set-up

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    In Phase II of the Gerda experiment additional ∝20 kg of BEGe-type germanium detectors, enriched in {sup 76}Ge, will be deployed in liquid argon (LAr) to further increase the sensitivity for the half-life of neutrinoless double beta (0νββ) decay of {sup 76}Ge to > 2 . 10{sup 26} yr. To reduce background by a factor of 10 to the required level of < 10{sup -3} cts/(keV.kg.yr), it is necessary to employ active background-suppression techniques, including anti-Compton veto using scintillation light detection from LAr and pulse shape discrimination exploiting the characteristic electrical field distribution inside BEGe detectors. The latter technique can identify single-site events (typical for 0νββ) and efficiently reject multi-site events (mainly from γ-rays), as well as different types of background events from detector surfaces. The combined power of these techniques was studied for {sup 42}K and other background sources at the low background facility LArGe. Together with extensive simulations, the information from tracking of the Phase II detector material exposure to cosmic rays and based on the background contributions observed in Phase I, the expected background level in Phase II in the region of interest at 2039 keV, the Q{sub ββ} energy of {sup 76}Ge, is estimated. The preliminary analysis shows that contributions from all expected background components after all cuts are in line with the goal of Gerda Phase II.

  3. 40 CFR 300.305 - Phase II-Preliminary assessment and initiation of action.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Phase II-Preliminary assessment and initiation of action. 300.305 Section 300.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... the OSC is informed of their activities in natural resource damage assessment that may affect response...

  4. Effects of S/V on secondary phase formation on waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Buck, E.C.; Bates, J.K.; Gong, M.; Dietz, N.L.; Pegg, I.L.

    1994-01-01

    Simulated West Valley high-level nuclear waste glass, WV205, was leached with and without buffered media in both deuterated and ordinary water at glass surface area to solution volumes (S/N) of 200--6000 m -1 . Examination of the glass surface after testing for 14 days indicated that the S/V-induced pH change plays a dominant role in the development of the altered surface layer and the secondary phases formed. The changes due to SN-induced pH determine the rate of surface layer formation, the element distribution in the surface layer, and possibly, the identities of the secondary phases. Changes due to SN-induced elemental concentration also influence glass reaction rate in terms of the layer thickness and the elemental distribution in the surface layers

  5. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Rangaraj [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Sousbie, Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lugardon, Aurelien [Naskeo Environnment, 52 rue Paul Vaillant Couturier, F-92240 Malakoff (France); Steyer, Jean Philippe; Delgenes, Jean Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2014-05-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of

  6. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    International Nuclear Information System (INIS)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-01-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m 3 d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m 3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m 3 d and then achieved stable performance at 7.0 kg VS/m 3 d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m 3 CH 4 /kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the

  7. PHASE II VAULT TESTING OF THE ARGONNE RFID SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Willoner, T.; Turlington, R.; Koenig, R.

    2012-06-25

    The U.S. Department of Energy (DOE) (Environmental Management [EM], Office of Packaging and Transportation [EM-45]) Packaging and Certification Program (DOE PCP) has developed a Radio Frequency Identification (RFID) tracking and monitoring system, called ARG-US, for the management of nuclear materials packages during transportation and storage. The performance of the ARG-US RFID equipment and system has been fully tested in two demonstration projects in April 2008 and August 2009. With the strong support of DOE-SR and DOE PCP, a field testing program was completed in Savannah River Site's K-Area Material Storage (KAMS) Facility, an active Category I Plutonium Storage Facility, in 2010. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault for operational testing. This latest version (Mark III) of the Argonne RFID system now has the capability to measure radiation dose and dose rate. This paper will report field testing progress of the ARG-US RFID equipment in KAMS, the operability and reliability trend results associated with the applications of the system, and discuss the potential benefits in enhancing safety, security and materials accountability. The purpose of this Phase II K Area test is to verify the accuracy of the radiation monitoring and proper functionality of the ARG-US RFID equipment and system under a realistic environment in the KAMS facility. Deploying the ARG-US RFID system leads to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including environmental condition monitoring and radiation monitoring. The successful completion of the testing program will provide field data to support a future development and testing. This will increase Operation efficiency and cost effectiveness for vault operation. As the next step

  8. Phase II Vault Testing of the Argonne RFID System

    International Nuclear Information System (INIS)

    Willoner, T.; Turlington, R.; Koenig, R.

    2012-01-01

    The U.S. Department of Energy (DOE) (Environmental Management (EM), Office of Packaging and Transportation (EM-45)) Packaging and Certification Program (DOE PCP) has developed a Radio Frequency Identification (RFID) tracking and monitoring system, called ARG-US, for the management of nuclear materials packages during transportation and storage. The performance of the ARG-US RFID equipment and system has been fully tested in two demonstration projects in April 2008 and August 2009. With the strong support of DOE-SR and DOE PCP, a field testing program was completed in Savannah River Site's K-Area Material Storage (KAMS) Facility, an active Category I Plutonium Storage Facility, in 2010. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault for operational testing. This latest version (Mark III) of the Argonne RFID system now has the capability to measure radiation dose and dose rate. This paper will report field testing progress of the ARG-US RFID equipment in KAMS, the operability and reliability trend results associated with the applications of the system, and discuss the potential benefits in enhancing safety, security and materials accountability. The purpose of this Phase II K Area test is to verify the accuracy of the radiation monitoring and proper functionality of the ARG-US RFID equipment and system under a realistic environment in the KAMS facility. Deploying the ARG-US RFID system leads to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including environmental condition monitoring and radiation monitoring. The successful completion of the testing program will provide field data to support a future development and testing. This will increase Operation efficiency and cost effectiveness for vault operation. As the next step (Phase

  9. Phase I Report, US DOE GRED II Program

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank Engineering Ltd.

    2003-04-23

    Noramex Corporation Inc, a Nevada company, owns a 100% interest in geothermal leases at the Blue Mountain Geothermal Area, Humboldt County, Nevada. The company is exploring the site for a geothermal resource suitable for development for electric power generation or In the spring of 2002, Noramex drilled the first geothermal observation hole at Blue Mountain, under a cost-share program with the U.S Department of Energy (DOE), under the DOE's Geothermal Exploration and Resource Definition (GRED) program, (Cooperative Agreement No. DE-FC04-00AL66972). DEEP BLUE No.1 was drilled to a total depth of 672.1 meters (2205 feet) and recorded a maximum temperature of 144.7 C (292.5 F). Noramex Corporation will now drill a second slim geothermal observation test hole at Blue Mountain, designated DEEP BLUE No.2. The hole will be drilled under a cost-share program with the DOE, under the DOE's Geothermal Exploration and Resource Definition II (GRED II) program, (Cooperative Agreement No. DE-FC04-2002AL68297). This report comprises Phase I of Cooperative Agreement No. DE-FC04-2002AL68297 of the GRED II program. The report provides an update on the status of resource confirmation at the Blue Mountain Geothermal Area, incorporating the results from DEEP BLUE No.1, and provides the technical background for a second test hole. The report also outlines the proposed drilling program for slim geothermal observation test hole DEEP BLUE No.2.

  10. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  11. Hollow fiber liquid-phase microextraction of cadmium(II) using an ionic liquid as the extractant

    International Nuclear Information System (INIS)

    Chen, Hui; Wang, Yun; Hu, Yutao; Ni, Liang; Liu, Yingying; Kang, Wenbing; Liu, Yan; Han, Juan

    2014-01-01

    A method is presented for hollow fiber liquid-phase microextraction (HF-LPME) of cadmium(II), which is chelated with 1-(2-pyridylazo)-2-naphthol (PAN) to obtain a hydrophobic complex which then is extracted into a polypropylene hollow fiber containing an ionic liquid in its pores which acts as the membrane phase. EDTA is then injected into the lumen of the membrane as an acceptor phase to trap the analyte. The extraction time (20 min), agitation (400 rpm at 25 °C), pH value (10.0), and the concentrations of PAN (2.5 ng mL −1 ) and EDTA (250 ng mL −1 ) were optimized. With a sample volume of 50 mL and a stripping volume of 15 μL, the enrichment factor is 162. Cadmium(II) was then quantified by graphite furnace AAS. The limit of detection is 0.12 pg mL −1 , the relative standard deviation is 5.2 %, and the linear working range extends from 4 to 45 pg mL −1 . The method was successfully applied to the determination of Cd(II) in environmental and food samples. (author)

  12. Plasma resistance behavior during the linear decay phase of RFPs in ETA BETA II

    International Nuclear Information System (INIS)

    Nalesso, G.F.

    1982-01-01

    In the aided-reversal mode RFP discharges produced in ETA BETA II, the plasma current is characterized by a linear decay phase, which follows an approximately exponential phase. During the same period the measured toroidal voltage is negative and initially increasing in absolute value (exponential phase) and then decreasing to almost zero during the linear phase before the current termination. The same behavior of the current has been observed in the quiescent phase in Zeta where a negative toroidal electric field was also observed. In this note we present a model that can explain the linear decay phase and fits with the experimental parameters and allows us to estimate the plasma resistance behavior during the linear phase of slow reversed field pinch discharges

  13. Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for Single-Shell Tank (SST) Waste Management Areas

    International Nuclear Information System (INIS)

    MCCARTHY, M.M.

    1999-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly

  14. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  15. Reactor physics studies in the GCFR phase-II critical assembly

    International Nuclear Information System (INIS)

    Pond, R.B.

    1976-09-01

    The reactor physics studies performed in the gas cooled fast reactor (GCFR) mockup on ZPR-9 are covered. This critical assembly, designated Phase II in the GCFR program, had a single zone PuO 2 -UO 2 core composition and UO 2 radial and axial blankets. The assembly was built both with and without radial and axial stainless steel reflectors. The program included the following measurements: small-sample reactivity worths of reactor constituent materials (including helium); 238 U Doppler effect; uranium and plutonium reaction rate distributions; thorium, uranium, and plutonium α and reactor kinetics. Analysis of the measurements used ENDF/B-IV nuclear data; anisotropic diffusion coefficients were used to account for neutron streaming effects. Comparison of measurements and calculations to GCFR Phase I are also made

  16. Phase I/II trial of concurrent use of S-1 and radiation therapy for T2 glottic cancer

    International Nuclear Information System (INIS)

    Nakayama, Meijin; Hayakawa, Kazushige; Okamoto, Makito; Niibe, Yuzuru; Ishiyama, Hiromichi; Kotani, Shouko

    2010-01-01

    A Phase I/II study of S-1 combined radiation therapy was conducted in patients with Stage II (T2N0) glottic cancer. The purpose of the Phase I study was to identify the maximum tolerated dose, the recommended dose and the dose limiting toxicity. The objectives in the phase II study were to estimate the local control and the overall survival, and the incidence of adverse events. In Phase I, S-1 was administered orally in a split-course fashion as two doses of 40 mg/m 2 , for a total daily dose of 80 mg/m 2 . The course involved a 2-week rest after a 2-week administration (Level 1) and a 1-week rest after a 3-week administration (Level 2). Radiation therapy was administered in 2-Gy daily (total 60-Gy) standard fractionation. Seven patients were enrolled in the Phase I, and 19 in the Phase II study. Mucositis was the most common toxicity encountered. All 26 patients completed radiation therapy without delay. The overall response rate was 100% (26/26) with all patients showing a complete response. One patient developed a local recurrence 28 months after the treatment. The 3-year local control and overall survival rates were 94.7 and 85.4%, respectively (limited to 22 patients from Level 2). The use of S-1 at 80 mg/m 2 per day in a split-course with 1-week rest during the course of radiation therapy was safe and effective for Stage II glottic cancer. The treatment strategy employing orally available S-1 proved to be beneficial over the conventional injection of antitumor agents for maintaining the patients' quality of life. (author)

  17. Identification of efficient chelating acids responsible for Cesium, Strontium and Barium complexes solubilization in mixed wastes

    International Nuclear Information System (INIS)

    Borai, E.H.

    2007-01-01

    The present paper is focused to characterize the available multi dentate ligand species and their metal ion complexes of cesium (Cs), strontium (Sr) and barium (Ba) formed with the parent chelators, complexing agents and its fragment products in mixed waste filtrate. The developed separation programs of different ligands by different mobile phases were based on the decrease of the effective charge of the anionic species in a differentiated way hence, the retention times on the stationary phases (AS-4A and AS-12A) are changed. Ion chromatographic (IC) analysis of the metal complexes showed that the carboxylic acids that are responsible for solubilizing Cs, Sr and Ba in the waste filtrate are NTA, Citrate and PDCA, respectively. Therefore, the predominant metal complexes in the filtrate at high ph are Cs (I)-NTA, Sr (IT)-Citrate and Ba (IT)-PDCA. Identification of the metal ion complexes responsible for solubilizing Cs, Sr and Ba was applied on the fresh and aged waste filtrates, to monitor their chemical behavior, which leads to increased control of the waste treatment process. Although, concentration measurements of both fresh and aged filtrates confirmed that the degradation process has occurred mainly due to a harsh chemical environment, the concentration of Cs(I), Sr(II) and Ba(II) increased slightly in the aged filterate compared with the fresh filtrate. This is due to the decomposition and/or degradation of their metal complexes and hence leads to free metal ion species in the filtrate. These observations indicate that the organic content of mixed waste filtrate is dynamic and need continuous analytical monitoring

  18. Results of Washington's phase two study on closure requirements for the Hanford commercial low-level waste facility

    International Nuclear Information System (INIS)

    Anderson, D.C.; Hana, S.L.

    1989-01-01

    This paper reports on the closure design objectives and cover alternatives resulting from the state of Washington's phase two study on closure and long-term care for the Hanford commercial low-level radioactive waste disposal facility. Four approaches to dealing with subsidence and two cover design alternatives are discussed in this paper, along with information on each layer of each cover. Objectives for closure of the Hanford low-level waste facility are also discussed

  19. Large-Area, Multi-Junction, Epitaxial Lift-Off Solar Cells with Backside Contacts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II program we propose to develop a manufacturable production process to introduce backside contacts to MicroLink Devices? large-area, multi-junction...

  20. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  1. Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nonlinear Dynamic Flight Simulation (NL-DFS) system will be developed in the Phase II project by combining the classical nonlinear rigid-body flight dynamics...

  2. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue.

    Science.gov (United States)

    Ensafi, Ali A; Ghaderi, Ali R

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  3. Kilowatt isotope power system, Phase II Plan. Volume IV. Teledyne FSCD vs GDS

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-15

    This Volume contains Teledyne's input to the Kilowatt Isotope Power System Phase II Plan. Included is a description of the Flight System Heat Generation System, Flight System Radiator, Thermal Insulation Stability, GDS Heat Generation System and GDS Radiator.

  4. TRUPACT-II 157 Examination Report

    International Nuclear Information System (INIS)

    Barry H. O'Brien; Jeffrey M. Lacy; Kip E. Archibald

    2003-01-01

    This report presents the results of examination and recovery activities performed on the TRUPACT-II 157 shipping container. The container was part of a contact-handled transuranic waste shipment being transported on a truck to the Waste Isolation Pilot Plant in New Mexico when an accident occurred. Although the transport vehicle sustained only minor damage, airborne transuranic contamination was detected in air samples extracted from inside TRUPACT-II 157 at the Waste Isolation Pilot Plant. Consequently, the shipping container was rejected, resealed, and returned to the Idaho National Engineering and Environmental Laboratory where the payload was disassembled, examined, and recovered for subsequent reshipment to the Waste Isolation Pilot Plant. This report documents the results of those activities

  5. TRUPACT-II 157 Examination Report

    Energy Technology Data Exchange (ETDEWEB)

    Barry H. O& #39; Brien; Jeffrey M. Lacy; Kip E. Archibald

    2003-12-01

    This report presents the results of examination and recovery activities performed on the TRUPACT-II 157 shipping container. The container was part of a contact-handled transuranic waste shipment being transported on a truck to the Waste Isolation Pilot Plant in New Mexico when an accident occurred. Although the transport vehicle sustained only minor damage, airborne transuranic contamination was detected in air samples extracted from inside TRUPACT-II 157 at the Waste Isolation Pilot Plant. Consequently, the shipping container was rejected, resealed, and returned to the Idaho National Engineering and Environmental Laboratory where the payload was disassembled, examined, and recovered for subsequent reshipment to the Waste Isolation Pilot Plant. This report documents the results of those activities.

  6. 40 CFR 76.8 - Early election for Group 1, Phase II boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Early election for Group 1, Phase II boilers. 76.8 Section 76.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.8 Early election for Group 1...

  7. Rigid Polyurethane Foam (RPF) Technology for Countermines (Sea) Program Phase II

    Energy Technology Data Exchange (ETDEWEB)

    WOODFIN,RONALD L.; FAUCETT,DAVID L.; HANCE,BRADLEY G.; LATHAM,AMY E.; SCHMIDT,C.O.

    1999-10-01

    This Phase II report documents the results of one subtask initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of Rigid Polyurethane Foams for neutralization of mines and barriers in amphibious assault was the objective of the tasking. This phase of the program concentrated on formation of RPF in water, explosive mine simulations, and development of foam and fabric pontoons. Field experimentation was done primarily at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM between February 1996 and September 1998.

  8. Search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge: GERDA Phase II commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    After successful completion of Phase I the Gerda (Germanium Detector Array) experiment underwent a major upgrade of the experimental apparatus. These upgrades include additional 20 kg of custom-made detectors with improved background rejection capabilities, accompanied by improved front-end electronics and an active liquid argon scintillation light veto. A sensitivity on the neutrinoless double beta decay half-life (T{sub 1/2}{sup 0ν}) of 10{sup 26} yr should be reached after a few years of data taking (Phase II). First results of Phase II commissioning and latest results from Phase I analyses are presented in this talk.

  9. Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation

    International Nuclear Information System (INIS)

    Willner, Jochen; Vordermark, Dirk; Schmidt, Michael; Gassel, Andreamaria; Flentje, Michael; Wirtz, Hubert

    2003-01-01

    Purpose: Type II cells and the surfactant system have been proposed to play a central role in pathogenesis of radiation pneumonitis. We analyzed the secretory function and proliferation parameters of alveolar type II cells in the early (until 24 h) and late phase (1-5 weeks) after irradiation (RT) in vitro and in vivo. Methods and Materials: Type II cells were isolated from rats according to the method of Dobbs. Stimulation of secretion was induced with terbutaline, adenosine triphosphate (ATP), and 12-O-tetradecanoylphorbol-13-acetate (TPA) for a 2-h period. Determination of secretion was performed using 3 H-labeled phosphatidylcholine. For the early-phase analysis, freshly isolated and adherent type II cells were irradiated in vitro with 9-21 Gy (stepwise increase of 3 Gy). Secretion stimulation was initiated 1, 6, 24, and 48 h after RT. For late-phase analysis, type II cells were isolated 1-5 weeks after 18 Gy whole lung or sham RT. Each experiment was repeated at least fivefold. Flow cytometry was used to determine cell cycle distribution and proliferating cell nuclear antigen index. Results: During the early-phase (in vitro) analysis, we found a normal stimulation of surfactant secretion in irradiated, as well as unirradiated, cells. No change in basal secretion and no dose effect were seen. During the late phase, 1-5 weeks after whole lung RT, we observed enhanced secretory activity for all secretagogues and a small increase in basal secretion in Weeks 3 and 4 (pneumonitis phase) compared with controls. The total number of isolated type II cells, as well as the rate of viable cells, decreased after the second post-RT week. Cell cycle alterations suggesting an irreversible G 2 /M block occurred in the second post-RT week and did not resolve during the observation period. The proliferating cell nuclear antigen index of type II cells from irradiated rats did not differ from that of controls. Conclusion: In contrast to literature data, we observed no direct

  10. Phase I (or phase II) dose-ranging clinical trials: proposal of a two-stage Bayesian design.

    Science.gov (United States)

    Zohar, Sarah; Chevret, Sylvie

    2003-02-01

    We propose a new design for phase I (or phase II) dose-ranging clinical trials aiming at determining a dose of an experimental treatment to satisfy safety (respectively efficacy) requirements, at treating a sufficiently large number of patients to estimate the toxicity (respectively failure) probability of the dose level with a given reliability, and at stopping the trial early if it is likely that no dose is safe (respectively efficacious). A two-stage design was derived from the Continual Reassessment Method (CRM), with implementation of Bayesian criteria to generate stopping rules. A simulation study was conducted to compare the operating characteristics of the proposed two-stage design to those reached by the traditional CRM. Finally, two applications to real data sets are provided.

  11. Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sumit [GE Global Research Center, Niskayuna, NY (United States); Krok, Michael [GE Global Research Center, Niskayuna, NY (United States)

    2011-02-08

    This document constitutes GE’s final report for the Microgrid Design, Development and Demonstration program for DOE’s Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energy’s Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

  12. Phase II drugs currently being investigated for the treatment of hypogonadism.

    Science.gov (United States)

    Udedibia, Emeka; Kaminetsky, Jed

    2014-12-01

    Hypogonadism is the most common endocrine disorder, which affects men of all age groups. Recent shifts in public awareness, increased screening and recognition of symptoms and updated diagnostic criteria have led to an increase in men diagnosed as hypogonadal, including middle-aged and older men who previously would have been considered eugonadal. The increase in testosterone replacement therapy (TRT) has paralleled an increase in advancements of treatment options. Although current therapies are highly efficacious for many men, there remains a need for newer therapies that are more cost-effective, preserve ease of use and administration, mitigate undesirable effects and closely mimic physiological levels of testosterone. In this review, the authors discuss current TRTs and therapies in development for the treatment of hypogonadism. The focus is on therapies under Phase II investigation or those who have recently completed Phase II study. With several new therapies in development, the authors expect advancements in achieving treatment benchmarks that meet the needs of the individual symptomatic hypogonadal male. Increased public awareness of hypogonadism and TRT has led to a welcomed expansion in the choice of TRT options. These include new delivery systems, formulations, routes of administration and non-testosterone modalities.

  13. Immobilization in ceramic waste forms of the residues from treatment of mixed wastes

    International Nuclear Information System (INIS)

    Oversby, V.M.; van Konynenburg, R.A.; Glassley, W.E.; Curtis, P.G.

    1993-11-01

    The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc D as a starting point and varying the phase assemblage to accommodate the differences in chemistry between the treatment process residues and the defense waste for which Synroc D was developed. Two basic formulations are used, one for low ash residues resulting from treatment of organic materials contaminated with RCRA metals, and one for high ash residues generated from the treatment of plastics and paper products. Treatment process residues are mixed with ceramic precursor materials, dried, calcined, formed into pellets at room temperature, and sintered at 1150 to 1200 degrees C to produce the final waste form. This paper discusses the chemical composition of the waste streams and waste forms, the phase assemblages that serve as hosts for inorganic waste elements, and the changes in waste form characteristics as a function of variation in process parameters

  14. Human Rights and Peace Audit on Partition in South Asia - Phase II ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    3 févr. 2009 ... Human Rights and Peace Audit on Partition in South Asia - Phase II. In South Asia, people's social, political and cultural aspirations often get articulated as movements for territorially defined political change. Very often, these movements find resolution in partition or in an ethnic group/nationality getting ...

  15. Odor Control in Spacecraft Waste Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  16. Report of the Secretary of Defense Task Force on DoD Nuclear Weapons Management. Phase II: Review of the DoD Nuclear Mission

    National Research Council Canada - National Science Library

    Schlesinger, James R; Carns, Michael P; Crouch, II, J. D; Gansler, Jacques S; Giambastiani, Jr., Edmund P; Hamre, John J; Miller, Franklin C; Williams, Christopher A; Blackwell, Jr, James A

    2008-01-01

    ...). This report covers Phase II findings and recommendations. In Phase II, the Task Force found that the lack of interest in and attention to the nuclear mission and nuclear deterrence, as discussed in our Phase I report, go well beyond the Air...

  17. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  18. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  19. Highly Efficient Fecal Waste Incinerator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  20. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    International Nuclear Information System (INIS)

    Honeyman, J.O.

    1998-01-01

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined