WorldWideScience

Sample records for waste package release

  1. Release rates from waste packages in a salt repository

    International Nuclear Information System (INIS)

    Chambre, P.L.; Hwang, Y.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    In this report we present estimates of radionuclide release rates from waste packages into salt. This conservative and bounding analysis shows that release rates from waste packages in salt are well below the US Nuclear Regulatory Commission's performance objectives for the engineered barrier system. 2 refs., 2 figs

  2. Preliminary assessment of the controlled release of radionuclides from waste packages containing borosilicate waste glass

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Apted, M.J.; Engle, D.W.; Eslinger, P.W.

    1990-06-01

    The purpose of this report is to provide a preliminary assessment of the release-rate for an engineered barriers subsystem (EBS) containing waste packages of defense high-level waste borosilicate glass at geochemical and hydrological conditions similar to the those at Yucca Mountain. The relationship between the proposed Waste Acceptance Preliminary Specifications (WAPS) test of glass- dissolution rate and compliance with the NRC's release-rate criterion is also evaluated. Calculations are reported for three hierarchical levels: EBS analysis, waste-package analysis, and waste-glass analysis. The following conclusions identify those factors that most acutely affect the magnitude of, or uncertainty in, release-rate performance

  3. Effects of sorption hysteresis on radionuclide releases from waste packages

    International Nuclear Information System (INIS)

    Barney, G.S.; Reed, D.T.

    1985-01-01

    A one-dimensional, numerical transport model was used to calculate radionuclide releases from waste packages emplaced in a nuclear waste repository in basalt. The model incorporates both sorption and desorption isotherm parameters measured previously for sorption of key radionuclides on the packing material component of the waste package. Sorption hysteresis as described by these isotherms lowered releases of some radionuclides by as much as two orders of magnitude. Radionuclides that have low molar inventories (relative to uranium), high solubility, and strongly sorbed, are most affected by sorption hysteresis. In these cases, almost the entire radionuclide inventory is sorbed on the packing material. The model can be used to help optimize the thickness of the packing material layer by comparing release rate versus packing material thickness curves with Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) release limits

  4. Release of powdered material from waste packages

    International Nuclear Information System (INIS)

    Berg, H.P.; Gruendler, D.; Peiffer, F.; Seehars, H.D.

    1990-01-01

    Possible incidents in the operational phase of the planned German repository KONRAD for radioactive waste with negligible heat production were investigated to assess the radiological consequences. For these investigations release fractions of the radioactive materials are required. This paper deals with the determination of the release of powdered material from waste packages under mechanical stress. These determinations were based on experiments. The experimental procedure and the process parameters chosen in accordance with the conditions in the planned repository will be described. The significance of the experimental results is discussed with respect to incidents in the planned repository. 8 figs., 3 tabs

  5. Sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of advective release from waste packages under dripping fractures

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.

    1996-01-01

    The first model assumed that dripping water directly contacts the waste form inside the ''failed'' waste package and radionuclides are released from the EBS by advection. The second model assumed that dripping water is diverted around the package (because of corrosion products plugging the perforations), thereby being prevented from directly contacting the waste form. In the second model, radionuclides were assumed to diffuse through the perforations, and, once outside the waste package, to be released from the EBS by advection. For the case with the second EBS release model, most radionuclides had lower peak EBS release rates than with the first model. Impacts of the alternative EBS release models were greater for the radionuclides with low solubility. The analysis indicated that the EBS release model representing advection through a ''failed'' waste package (the first model) may be too conservative; thus a ''failed'' waste package container with multiple perforations may still be an important barrier to radionuclide release

  6. Sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of advective release from waste packages under dripping fractures

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.

    1996-01-01

    Simulations were conducted to analyze the sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of the advective release from waste packages under dripping fractures. The first conceptual model assumed that dripping water directly contacts the waste form inside the 'failed' waste package, and radionuclides are released from the EBS by advection. The second conceptual model assumed that dripping water is diverted around the 'failed' waste package (because of the presence of corrosion products plugging the perforations) and dripping water is prevented from directly contacting the waste form. In the second model, radionuclides were assumed to transport through the perforations by diffusion, and, once outside the waste package, to be released from the EBS by advection. The second model was to incorporate more realism into the EBS release calculations. For the case with the second EBS release model, most radionuclides had significantly lower peak EBS release rates (from at least one to several orders of magnitude) than with the first EBS release model. The impacts of the alternative EBS release models were greater for the radionuclides with a low solubility (or solubility-limited radionuclides) than for the radionuclides with a high solubility (or waste form dissolution-limited radionuclides). The analyses indicated that the EBS release model representing advection through a 'failed' waste package (the first EBS release model) may be too conservative in predicting the EBS performance. One major implication from this sensitivity study was that a 'failed' waste package container with multiple perforations may still be able to perform effectively as an important barrier to radionuclide release. (author)

  7. Integrated performance assessment model for waste package behavior and radionuclide release

    International Nuclear Information System (INIS)

    Kossik, R.; Miller, I.; Cunnane, M.

    1992-01-01

    Golder Associates Inc. (GAI) has developed a probabilistic total system performance assessment and strategy evaluation model (RIP) which can be applied in an iterative manner to evaluate repository site suitability and guide site characterization. This paper describes one component of the RIP software, the waste package behavior and radionuclide release model. The waste package component model considers waste package failure by various modes, matrix alteration/dissolution, and radionuclide mass transfer. Model parameters can be described as functions of local environmental conditions. The waste package component model is coupled to component models for far-field radionuclide transport and disruptive events. The model has recently been applied to the proposed repository at Yucca Mountain

  8. Integrated performance assessment model for waste policy package behavior and radionuclide release

    International Nuclear Information System (INIS)

    Kossik, R.; Miller, I.; Cunnane, M.

    1992-01-01

    Golder Associates Inc. (GAI) has developed a probabilistic total system performance assessment and strategy evaluation model (RIP) which can be applied in an iterative manner to evaluate repository site suitability and guide site characterization. This paper describes one component of the RIP software, the waste package behavior and radionuclide release model. The waste package component model considers waste package failure by various modes, matrix alteration/dissolution, and radionuclide mass transfer. Model parameters can be described as functions of local environmental conditions. The waste package component model is coupled to component models for far-field radionuclide transport and disruptive events. The model has recently been applied to the proposed repository at Yucca Mountain

  9. Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O' Hara, Matthew J.; Rodriguez, Eugenio; Steele, Jackie L.

    2001-02-01

    This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.

  10. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1982

    International Nuclear Information System (INIS)

    Soo, P.

    1983-03-01

    The current effort is part of an ongoing task to evaluate the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt and basalt repositories. Chemical and mechanical failure/degradation modes for the waste package have been reviewed and the licensing data requirements to demonstrate compliance with NRC performance objectives specified

  11. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  12. Waste package performance assessment

    International Nuclear Information System (INIS)

    Lester, D.H.

    1981-01-01

    This paper describes work undertaken to assess the life-expectancy and post-failure nuclide release behavior of high-level and waste packages in a geologic repository. The work involved integrating models of individual phenomena (such as heat transfer, corrosion, package deformation, and nuclide transport) and using existing data to make estimates of post-emplacement behavior of waste packages. A package performance assessment code was developed to predict time to package failure in a flooded repository and subsequent transport of nuclides out of the leaking package. The model has been used to evaluate preliminary package designs. The results indicate, that within the limitation of model assumptions and data base, packages lasting a few hundreds of years could be developed. Very long lived packages may be possible but more comprehensive data are needed to confirm this

  13. Use of depleted uranium silicate glass to minimize release of radionuclides from spent nuclear fuel waste packages

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1996-01-01

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill the void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (a) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (b) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  14. Effects of tuff waste package components on release from 76-68 simulated waste glass: Final report

    International Nuclear Information System (INIS)

    McVay, G.L.; Robinson, G.R.

    1984-04-01

    An experimental matrix has been conducted that will allow evaluation of the effects of waste package constituents on the waste form release behavior in a tuff repository environment. Tuff rock and groundwater were used along with 304L, 316, and 1020M ferrous metals to evaluate release from uranium-doped MCC 76-68 simulated waste glass. One of the major findings was that in the absence of 1020M mild steel, tuff rock powder dominates the system. However, when 1020M mild steel is present, it appears to dominate the system. The rock-dominated system results in suppressed glass-water reaction and leaching while the 1020M-dominated system results in enhanced leaching - but the metal effectively scavenges uranium from solution. The 300-series stainless steels play no significant role in affecting glass leaching characteristics. 6 refs., 28 figs., 5 tabs

  15. An analytical one-dimensional model for predicting waste package performance

    International Nuclear Information System (INIS)

    Relyea, J.F.; Wood, M.I.

    1984-01-01

    A method for allocating waste package performance requirements among waste package components with regard to radionuclide isolation has been developed. Modification or change in this approach can be expected as the understanding of radionuclide behavior in the waste package improves. Thus, the performance requirements derived in this document are preliminary and subject to change. However, this kind of analysis is a useful starting point. It has also proved useful for identifying a small group of radionuclides which should be emphasized in a laboratory experimental program designed to characterize the behavior of specific radionuclides in the waste package environment. A simple one-dimensional, two media transport model has been derived and used to calculate radionuclide transport from the waste form-packing material interface of the waste package into the host rock. Cumulative release over 10,000 years, maximum yearly releases and release rates at the packing material-host rock interface were evaluated on a radionuclide-by radionuclide basis. The major parameters controlling radionuclide release were found to be: radionuclide solubility, porosity of the rock, isotopic ratio of the radionuclide and surface area of the waste form-packing material interface. 15 refs., 2 figs., 16 tabs

  16. Waste package performance analysis

    International Nuclear Information System (INIS)

    Lester, D.H.; Stula, R.T.; Kirstein, B.E.

    1982-01-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been applied to several package designs. The resulting preliminary assessments were intended for use in making decisions about package development programs. A computer model called BARIER estimates the package life and subsequent rate of release of selected nuclides. The model accounts for temperature, pressure (and resulting stresses), bulk and localized corrosion, and nuclide retardation by the backfill after water intrusion into the waste form. The assessment model assumes a post-closure, flooded, geologic repository. Calculations indicated that, within the bounds of model assumptions, packages could last for several hundred years. Intact backfills of appropriate design may be capable of nuclide release delay times on the order of 10 7 yr for uranium, plutonium, and americium. 8 references, 6 figures, 9 tables

  17. Waste package performance allocation system study report

    International Nuclear Information System (INIS)

    Memory, R.D.

    1994-01-01

    The Waste Package Performance Allocation system study was performed in order to provide a technical basis for the selection of the waste package period of substantially complete containment and its resultant contribution to the overall total system performance. This study began with a reference case based on the current Mined Geologic Disposal System (MGDS) baseline design and added a number of alternative designs. The waste package designs were selected from the designs being considered in detail during Advanced Conceptual Design (ACD). The waste packages considered were multi-barrier packages with a 0.95 cm Alloy 825 inner barrier and a 10, 20, or 45 cm thick carbon steel outer barrier. The waste package capacities varied from 6 to 12 to 21 Pressurized Water Reactor (PWR) fuel assemblies. The vertical borehole and in-drift emplacement modes were also considered, as were thermal loadings of 25, 57, and 114 kW/acre. The repository cost analysis indicated that the 21 PWR in-drift emplacement mode option with the 10 cm and 20 cm outer barrier thicknesses are the least expensive and that the 12 PWR in-drift case has approximately the same cost as the 6 PWR vertical borehole. It was also found that the cost increase from the 10 cm outer barrier waste package to the 20 cm waste package was less per centimeter than the increase from the 20 cm outer barrier waste package to the 45 cm outer barrier waste package. However, the repository cost was nearly linear with the outer barrier thickness for the 21 PWR in-drift case. Finally, corrosion rate estimates are provided and the relationship of repository cost versus waste package lifetime is discussed as is cumulative radionuclide release from the waste package and to the accessible environment for time periods of 10,000 years and 100,000 years

  18. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1983. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1984-08-01

    The current effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, and tuff repositories. In the current Biannual Report a section on carbon steel container corrosion has been included to complement prior work on TiCode-12 and Type 304 stainless steel. The use of crushed tuff as a packing material is discussed and waste package component interaction test data are included. Licensing data requirements to estimate the degree of compliance with NRC performance objectives are specified. 41 figures, 24 tables.

  19. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1983. Volume 5

    International Nuclear Information System (INIS)

    Soo, P.

    1984-08-01

    The current effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, and tuff repositories. In the current Biannual Report a section on carbon steel container corrosion has been included to complement prior work on TiCode-12 and Type 304 stainless steel. The use of crushed tuff as a packing material is discussed and waste package component interaction test data are included. Licensing data requirements to estimate the degree of compliance with NRC performance objectives are specified. 41 figures, 24 tables

  20. How reliable does the waste package containment have to be

    International Nuclear Information System (INIS)

    Wick, E.A.

    1985-01-01

    The final rule (10 CFR Part 60) for Disposal of High-Level Radioactive Wastes in Geologic Repositories specifies that the engineered barrier system shall be designed so that, assuming anticipated processes and events, containment of high-level radioactive wastes (HLW) will be substantially complete during the period when radiation and thermal conditions in the engineered barrier system are dominated by fission product decay. This requirement leads to the Nuclear Regulatory Commission (NRC) being asked the following questions: What is meant by ''substantially complete''. How reliable does waste package containment have to be. How many waste packages can fail. Although the NRC has not defined quantitatively the term ''substantially complete'', a numerical concept for acceptable release during the containment period is discussed. The number of containment failures that could be tolerated under the rule would depend upon the acceptable release, the time at which failure occurs and the rate of release from a failed package

  1. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages.

    Science.gov (United States)

    Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  2. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages

    Science.gov (United States)

    Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  3. Review of DOE waste package program. Subtask 1.1 - National Waste Package Program, October 1983-March 1984. Volume 6

    International Nuclear Information System (INIS)

    Soo, P.

    1985-03-01

    The present effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluation of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, tuff, and granite repositories. In the current Biannual Report a review of progress in the new crystalline repository (granite) program is described. Other foreign data for this host rock have also been outlined where relevant. The use of crushed salt, and bentonite- and zeolite-containing packing materials is discussed. The effects of temperature and gamma irradiation are shown to be important with respect to defining the localized environmental conditions around a waste package and the long-term integrity of the packing

  4. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  5. Mathematical models for diffusive mass transfer from waste package container with multiple perforations

    International Nuclear Information System (INIS)

    Lee, J.H.; Andrews, R.W.; Chambre, P.L.

    1996-01-01

    A robust engineered barrier system (EBS) is employed in the current design concept for the potential high-level nuclear waste repository at Yucca Mountain, Nevada, US. The primary component of the EBS is a multi-barrier waste package container. Simplifying the geometry of the cylindrical waste package container and the underlying invert into the equivalent spherical configuration, mathematical models are developed for steady-state and transient diffusive releases from the failed waste container with multiple perforations (or pit penetrations) at the boundary of the invert. Using the models the steady-state and transient diffusive release behaviors form the failed waste container are studied. The analyses show that the number of perforations, the size of perforation, the container wall thickness, the geometry of the waste container and invert, and the adsorption of radionuclide in the invert are the important parameters that control the diffusive release rate. It is emphasized that the failed (or perforated) waste package container can still perform as a potentially important barrier (or diffusion barrier) to radionuclide release

  6. Nuclear waste package fabricated from concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400 0 C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs

  7. Interim performance specifications for conceptual waste-package designs for geologic isolation in salt repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The interim performance specifications and data requirements presented apply to conceptual waste package designs for all waste forms which will be isolated in salt geologic repositories. The waste package performance specifications and data requirements respond to the waste package performance criteria. Subject areas treated include: containment and controlled release, operational period safety, criticality control, identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  8. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    International Nuclear Information System (INIS)

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

    1982-02-01

    In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified

  9. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

    1982-02-01

    In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

  10. WASTE PACKAGE TRANSPORTER DESIGN

    International Nuclear Information System (INIS)

    Weddle, D.C.; Novotny, R.; Cron, J.

    1998-01-01

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''

  11. Waste Package and Material Testing for the Proposed Yucca Mountain High Level Waste Repository

    International Nuclear Information System (INIS)

    Doering, Thomas; Pasupathi, V.

    2002-01-01

    Over the repository lifetime, the waste package containment barriers will perform various functions that will change with time. During the operational period, the barriers will function as vessels for handling, emplacement, and waste retrieval (if necessary). During the years following repository closure, the containment barriers will be relied upon to provide substantially complete containment, through 10,000 years and beyond. Following the substantially complete containment phase, the barriers and the waste package internal structures help minimize release of radionuclides by aqueous- and gaseous-phase transport. These requirements have lead to a defense-in-depth design philosophy. A multi-barrier design will result in a lower breach rate distributed over a longer period of time, thereby ensuring the regulatory requirements are met. The design of the Engineered Barrier System (EBS) has evolved. The initial waste package design was a thin walled package, 3/8 inch of stainless steel 304, that had very limited capacity, (3 PWR and 4 BWR assemblies) and performance characteristics, 300 to 1,000 years. This design required over 35,000 waste packages compared to today's design of just over 10,000 waste packages. The waste package designs are now based on a defense-in-depth/multi-barrier philosophy and have a capacity similar to the standard storage and rail transported spent nuclear fuel casks. Concurrent with the development of the design of the waste packages, a comprehensive waste package materials testing program has been undertaken to support the selection of containment barrier materials and to develop predictive models for the long-term behavior of these materials under expected repository conditions. The testing program includes both long-term and short-term tests and the results from these tests combination with the data published in the open literature are being used to develop models for predicting performance of the waste packages

  12. Overview of hydrothermal testing of waste-package barrier materials at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-01-01

    The current Waste Package Department (WPD) hydrothermal testing program for the Basalt Waste Isolation Project (BWIP) has followed a systematic approach for the testing of waste-barrier-basalt interactions based on sequential penetration of barriers by intruding groundwaters. Present test activities in the WPD program have focused on determining radionuclide solubility limits (or steady-state conditions) of simulated waste forms and the long-term stability of waste package barriers under site-specific hydrothermal conditions. The resulting data on solution compositions and solid alteration products have been used to evaluate waste form degradation under conditions specific to a nuclear waste repository located in basalt (NWRB). Isothermal, time-invariant compositional data on sampled solutions have been coupled with realistic hydrologic flow data for near-field and far-field modeling for the calculation of meaningful radionuclide release rates. Radionuclides that are not strongly sorbed or precipitated from solution and that, therefore, may require special attention to ensure their isolation within the waste package have been identified. Taken together, these hydrothermal test data have been used to establish design requirements for waste packages located in basalt

  13. Number of Waste Package Hit by Igneous Intrusion

    International Nuclear Information System (INIS)

    M. Wallace

    2004-01-01

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios

  14. Salt Repository Project: Waste Package Program (WPP) modeling activiteis: FY 1984 annual report

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Simonson, S.A.; Pulsipher, B.A.

    1987-03-01

    The Pacific Northwest Laboratory (PNL) is supporting the US Department of Energy's (DOE) Salt Repository Project (SRP) through its Waste Package Program (WPP). During FY 1984, the WPP continued its program of waste package component development and interactions testing and application of the resulting data base to develop predictive models describing waste package degradation and radionuclide release. Within the WPP, the Modeling Task (Task 04 during FY 1984) was conducted to interpret the tests in such a way that scientifically defensible models can be developed for use in qualification of the waste package

  15. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  16. Preclosure analysis of conceptual waste package designs for a nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Gregg, D.W.; Hockman, J.N.; Russell, E.W.; Stein, W.

    1984-01-01

    This report discusses the selection and analysis of conceptual waste package developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for possible disposal of high-level nuclear waste at a candidate site at Yucca Mountain, Nevada. The design requirements that the waste package must conform to are listed, as are several desirable design considerations. Illustrations of the reference and alternative designs are shown. Four austenitic stainless steels (316L SS, 321 SS, 304L SS and Incoloy 825 high nickel alloy) have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and ecnonmic analyses supporting the selection of the conceptual waste package designs is included. Postclosure containment and release rates are not analyzed in this report

  17. Nuclear waste package design for the Vadose zone in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Ballou, L.B.; Gregg, D.W.; Russell, E.W.

    1984-02-01

    This report presents an overview of the selection and analysis of conceptual waste package designs that will be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for disposal of high-level nuclear waste (HLW) at the proposed Yucca Mountain, Nevada Site. The design requirements that the waste packages are required to meet are listed. Concept drawings for the reference designs and one alternative package design are shown. Four metal alloys; 304L SS, 321 SS, 316L SS and Incoloy 825 have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and economic analysis supporting the selection of the conceptual waste package designs is included. Post-closure containment and release rates are not discussed in this paper. 17 references, 2 figures, 2 tables

  18. Methodologies for assessing long-term performance of high-level radioactive waste packages

    International Nuclear Information System (INIS)

    Stephens, K.; Boesch, L.; Crane, B.; Johnson, R.; Moler, R.; Smith, S.; Zaremba, L.

    1986-01-01

    Several methods the Nuclear Regulatory Commission (NRC) can use to independently assess Department of Energy (DOE) waste package performance were identified by The Aerospace Corporation. The report includes an overview of the necessary attributes of performance assessment, followed by discussions of DOE methods, probabilistic methods capable of predicting waste package lifetime and radionuclide releases, process modeling of waste package barriers, sufficiency of the necessary input data, and the applicability of probability density functions. It is recommended that the initial NRC performance assessment (for the basalt conceptual waste package design) should apply modular simulation, using available process models and data, to demonstrate this assessment method

  19. Naval Waste Package Design Report

    International Nuclear Information System (INIS)

    M.M. Lewis

    2004-01-01

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository

  20. Nuclear waste management technical support in the developmnt of nuclear waste form criteria for the NRC. Task 5. National waste package program

    International Nuclear Information System (INIS)

    Davis, M.S.

    1982-02-01

    This report assesses the need for a centrally organized waste package effort and whether the present national program meets those needs. It is the conclusion of the BNL staff that while the DOE has in principle organized a national effort to develop high-integrity waste packages for geologic disposal of high level waste, the effort has not yet produced data to demonstrate that a waste package will comply with NRC's criteria. The BNL staff feels, however, that such a package is achievable either by development of high integrity components which by themselves could comply with 1000-year containment or by the development of new waste package designs that could comply with both the containment and the controlled release criteria in the 10CFR 60 performance objectives. In terms of waste forms, high-integrity components such as pyrolytic carbon coated waste and radioactive glass coated with non-radioactive glass offer higher potential than normal borosilicate waste glass. The existing container research program has yet to produce the data base on which to assess the potential of a container material to contain the waste for 1000 years. However, there may be the potential, based on Swedish calculations and work done on titanium in the DOE program, that Ti or its alloys may satisfy this criterion. Existing data on natural backfills will not be acceptable as the sole source for satisfying containment and the long-term release rate criteria. However, a synthetic zeolite system is an example of a backfill with a potential to satisfy both criteria. In this particular case, it is the BNL staff's opinion that existing technology and data for this system indicate that major development programs may not be required to qualify this material for licensing applications. The most likely means available for satisfying 10 CFR 60 with a single package component is through the performance of a discrete backfill

  1. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-01-01

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used

  2. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  3. Waste package materials testing for a salt repository: 1983 status summary report

    International Nuclear Information System (INIS)

    Moak, D.P.

    1986-09-01

    The United States plans to safely dispose of nuclear waste in deep, stable geologic formations. As part of these plans, the US Department of Energy is sponsoring research on the designing and testing of waste packages and waste package materials. This fiscal year 1983 status report summarizes recent results of waste package materials testing in a salt environment. The results from these tests will be used by waste package designers and performance assessment experts. Release characteristics data are available on two waste forms (spent fuel and waste-containing glass) that were exposed to leaching tests at various radiation levels, temperatures, pH, glass surface area to solution volume ratios, and brine solutions simulating expected salt repository conditions. Candidate materials tested for corrosion resistance and other properties include iron alloys; TI-CODE 12, the most promising titanium alloy for containment; and nickel alloys. In component interaction testing, synergistic effects have not ruled out any candidate material. 21 refs., 37 figs., 15 tabs

  4. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  5. Naval Waste Package Design Sensitivity

    International Nuclear Information System (INIS)

    T. Schmitt

    2006-01-01

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license application design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages

  6. A mechanistic model for leaching from low-level radioactive waste packages

    International Nuclear Information System (INIS)

    Kempf, C.R.

    1988-01-01

    The development of a waste leaching model to predict radionuclide releases from porous wastes in corrodible outer containers in unsaturated conditions and/or conditions of intermittent water flow is summarized in this paper. Three major processes have been conceptualized as necessarily participating in waste leaching: infiltration of water to the waste package; interaction of this water with the waste; and exit of radionuclide-laden water from the waste package. Through the exit point, the main features of the whole leaching process ware held in common. The departure occurs in two main ways: 1) the method of entrance of the radionuclides to leachant (i.e. part of the waste-water interaction phase outlined earlier); and 2) the mode of exit from waste form/waste package (i.e., the exit of radionuclide-laden water phase). The first branching point, which occurs in relation to 1), leads to either readily soluble species directly entering leachant on contact, or to other processes - mainly expected to be diffusion, dissolution or ion exchange, or some combination thereof

  7. Safety Analysis Report for packaging (onsite) steel waste package

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2000-01-01

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A 2 s) and is a type B packaging

  8. Waste package performance criteria for deepsea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Colombo, P.; Fuhrmann, M.

    1988-07-01

    Sea disposal of low-level radioactive waste began in the United States in 1946, and was placed under the licensing authority of the Atomic Energy Commission (AEC). The practice stopped completely in 1970. Most of the waste disposed of at sea was packaged in second- hand or reconditioned 55-gallon drums filled with cement so that the average package density was sufficiently greater than that of sea water to ensure sinking. It was assumed that all the contents would eventually be released since the packages were not designed or required to remain intact for sustained periods of time after descent to the ocean bottom. Recently, there has been renewed interest in ocean disposal, both in this country and abroad, as a waste management alternative to land burial. The Marine Protection, Research and Sanctuaries Act of 1972 (PL 92-532) gives EPA the regulatory responsibility for ocean dumping of all materials, including radioactive waste. This act prohibits the ocean disposal of high-level radioactive waste and requires EPA to control the ocean disposal of all other radioactive waste through the issuance of permits. In implementing its permit authorities, EPA issued on initial set of regulations and criteria in 1973 to control the disposal of material into the ocean waters. It was in these regulations that EPA initially introduced the general requirement of isolation and containment of radioactive waste as the basic operating philosophy. 37 refs

  9. Estimation of waste package performance requirements for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Wood, B.J.

    1980-07-01

    A method of developing waste package performance requirements for specific nuclides is described, and based on federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment, a simple and conservative transport model, and baseline and potential worst-case release scenarios

  10. Safety Analysis Report for packaging (onsite) steel waste package

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  11. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  12. Waste package characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Sannen, L.; Bruggeman, M.; Wannijn, J.P

    1998-09-01

    Radioactive wastes originating from the hot labs of the Belgian Nuclear Research Centre SCK-CEN contain a wide variety of radiotoxic substances. The accurate characterisation of the short- and long-term radiotoxic components is extremely difficult but required in view of geological disposal. This paper describes the methodology which was developed and adopted to characterise the high- and medium-level waste packages at the SCK-CEN hot laboratories. The proposed method is based on the estimation of the fuel inventory evacuated in a particular waste package; a calculation of the relative fission product contribution on the fuel fabrication and irradiation footing; a comparison of the calculated, as expected, dose rate and the real measured dose rate of the waste package. To cope with the daily practice an appropriate fuel inventory estimation route, a user friendly computer programme for fission product and corresponding dose rate calculation, and a simple dose rate measurement method have been developed and implemented.

  13. Waste package characterisation

    International Nuclear Information System (INIS)

    Sannen, L.; Bruggeman, M.; Wannijn, J.P.

    1998-09-01

    Radioactive wastes originating from the hot labs of the Belgian Nuclear Research Centre SCK-CEN contain a wide variety of radiotoxic substances. The accurate characterisation of the short- and long-term radiotoxic components is extremely difficult but required in view of geological disposal. This paper describes the methodology which was developed and adopted to characterise the high- and medium-level waste packages at the SCK-CEN hot laboratories. The proposed method is based on the estimation of the fuel inventory evacuated in a particular waste package; a calculation of the relative fission product contribution on the fuel fabrication and irradiation footing; a comparison of the calculated, as expected, dose rate and the real measured dose rate of the waste package. To cope with the daily practice an appropriate fuel inventory estimation route, a user friendly computer programme for fission product and corresponding dose rate calculation, and a simple dose rate measurement method have been developed and implemented

  14. Investigation of activity release from bituminized intermediate-level waste forms under thermal stresses

    International Nuclear Information System (INIS)

    Kluger, W.; Vejmelka, P.; Koester, R.

    1983-01-01

    To determine the consequences of a fire during fabrication, intermediate storage and transport of bituminized NaNO 3 waste forms, the fractions of plutonium released from the waste forms were assessed. For this purpose, laboratory tests were made with PuO 2 -containing specimens as well as a field test with specimens containing Eu 2 O 3 . By the evaluation of plutonium release in the laboratory and by the determination of the total sodium release and the relative Eu/Na release in the field tests the plutonium release can be deduced from full-scale specimens. The results show that for bituminized waste forms with high NaNO 3 contents (approx. 36 wt%) the average plutonium release obtained in laboratory testing is 15%. In the field tests (IAEA fire test conditions) an average Eu release of 8% was found. These results justify the statement that also for waste forms in open 175 L drum inserts a maximum plutonium release of about 15% can be expected. From the time-dependence of Eu/Na release in the field tests an induction period of 15-20 minutes between the start of testing and the first Na/Eu release can be derived. The maximum differential Na/Eu release occurs after a test period of 45 to 60 minutes duration and after 90 to 105 minutes (tests K2 and K4, respectively); after that time also the highest temperatures in the products are measured. The release values were determined for products in open 175 L drum inserts which in this form are not eligible for intermediate and ultimate storage. For bituminized waste forms in concrete packages (lost concrete shieldings) a delayed increase in temperature to only 70-80 deg. C takes place (4-5 hours after extinction of the fire) if the fire lasts 45 minutes. The concrete package remains intact under test conditions. This means that activity release from bituminized waste forms packaged in this way can be ruled out in the case under consideration. (author)

  15. Waste Package Component Design Methodology Report

    International Nuclear Information System (INIS)

    D.C. Mecham

    2004-01-01

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational

  16. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  17. Initial waste package interaction tests: status report

    International Nuclear Information System (INIS)

    Shade, J.W.; Bradley, D.J.

    1980-12-01

    This report describes the results of some initial investigations of the effects of rock media on the release of simulated fission products from a sngle waste form, PNL reference glass 76-68. All tests assemblies contained a minicanister prepared by pouring molten, U-doped 76-68 glass into a 2-cm-dia stanless steel tube closed at one end. The tubes were cut to 2.5 to 7.5 cm in length to expose a flat glass surface rimmed by the canister wall. A cylindrical, whole rock pellet, cut from one of the rock materials used, was placed on the glass surface then both the canister and rock pellet were packed in the same type of rock media ground to about 75 μm to complete the package. Rock materials used were a quartz monzonite basalt and bedded salt. These packages were run from 4 to 6 weeks in either 125 ml digestion bombs or 850 ml autoclaves capable of direct solution sampling, at either 250 or 150 0 C. Digestion bomb pressures were the vapor pressure of water, 600 psig at 250 0 C, and the autoclaves were pressurized at 2000 psig with an argon overpressure. In general, the solution chemistry of these initial package tests suggests that the rock media is the dominant controlling factor and that rock-water interaction may be similar to that observed in some geothermal areas. In no case was uranium observed in solution above 15 ppB. The observed leach rates of U glass not in contact with potential sinks (rock surfaces and alteration products) have been observed to be considerably higher. Thus the use of leach rates and U concentrations observed from binary leach experiments (waste-form water only) to ascertain long-term environmental consequences appear to be quite conservative compared to actual U release in the waste package experiments. Further evaluation, however, of fission product transport behavior and the role of alteration phases as fission product sinks is required

  18. Package materials, waste form

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The schedules for waste package development for the various host rocks were presented. The waste form subtask activities were reviewed, with the papers focusing on high-level waste, transuranic waste, and spent fuel. The following ten papers were presented: (1) Waste Package Development Approach; (2) Borosilicate Glass as a Matrix for Savannah River Plant Waste; (3) Development of Alternative High-Level Waste Forms; (4) Overview of the Transuranic Waste Management Program; (5) Assessment of the Impacts of Spent Fuel Disassembly - Alternatives on the Nuclear Waste Isolation System; (6) Reactions of Spent Fuel and Reprocessing Waste Forms with Water in the Presence of Basalt; (7) Spent Fuel Stabilizer Screening Studies; (8) Chemical Interactions of Shale Rock, Prototype Waste Forms, and Prototype Canister Metals in a Simulated Wet Repository Environment; (9) Impact of Fission Gas and Volatiles on Spent Fuel During Geologic Disposal; and (10) Spent Fuel Assembly Decay Heat Measurement and Analysis

  19. Waste package reliability analysis

    International Nuclear Information System (INIS)

    Pescatore, C.; Sastre, C.

    1983-01-01

    Proof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt. 8 references, 1 table

  20. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    International Nuclear Information System (INIS)

    J.K. Knudson

    2003-01-01

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M and O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  1. Development of Specifications for Radioactive Waste Packages

    International Nuclear Information System (INIS)

    2006-10-01

    The main objective of this publication is to provide guidelines for the development of waste package specifications that comply with waste acceptance requirements for storage and disposal of radioactive waste. It will assist waste generators and waste package producers in selecting the most significant parameters and in developing and implementing specifications for each individual type of waste and waste package. This publication also identifies and reviews the activities and technical provisions that are necessary to meet safety requirements; in particular, selection of the significant safety parameters and preparation of specifications for waste forms, waste containers and waste packages using proven approaches, methods and technologies. This report provides guidance using a systematic, stepwise approach, integrating the technical, organizational and administrative factors that need to be considered at each step of planning and implementing waste package design, fabrication, approval, quality assurance and control. The report reflects the considerable experience and knowledge that has been accumulated in the IAEA Member States and is consistent with the current international requirements, principles, standards and guidance for the safe management of radioactive waste

  2. Development of Specifications for Radioactive Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-10-15

    The main objective of this publication is to provide guidelines for the development of waste package specifications that comply with waste acceptance requirements for storage and disposal of radioactive waste. It will assist waste generators and waste package producers in selecting the most significant parameters and in developing and implementing specifications for each individual type of waste and waste package. This publication also identifies and reviews the activities and technical provisions that are necessary to meet safety requirements; in particular, selection of the significant safety parameters and preparation of specifications for waste forms, waste containers and waste packages using proven approaches, methods and technologies. This report provides guidance using a systematic, stepwise approach, integrating the technical, organizational and administrative factors that need to be considered at each step of planning and implementing waste package design, fabrication, approval, quality assurance and control. The report reflects the considerable experience and knowledge that has been accumulated in the IAEA Member States and is consistent with the current international requirements, principles, standards and guidance for the safe management of radioactive waste.

  3. Waste package performance assessment for the Yucca Mountain project

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Lappa, D.A.; Thatcher, R.M.

    1989-01-01

    The authors completed a first cycle of model development from a specification to a computer program, PANDORA-1, for long-term performance assessment of waste packages. The model for one waste package at a time incorporates processes specific to the unsaturated environment at the proposed Yucca Mountain, NV, site. PANDORA-1 models the most likely processes and several modes of waste alteration and release. The development identified information needs for future models; many processes, local details, and combinations will have to be examined. Integration of ensemble performance and quantification of uncertainties are modeling steps at higher aggregation. Methodologies for these steps include sampling, which is well studied; we have focused on several open questions. The authors can now calculate the amount of variance reduction available from Latin hypercube sampling; it is a limited reduction. A new method, uncertainty analysis test-bed program compares the new with old sampling methods

  4. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    International Nuclear Information System (INIS)

    Bernot, P.

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  5. Waste package materials selection process

    International Nuclear Information System (INIS)

    Roy, A.K.; Fish, R.L.; McCright, R.D.

    1994-01-01

    The office of Civilian Radioactive Waste Management (OCRWM) of the United States Department of Energy (USDOE) is evaluating a site at Yucca Mountain in Southern Nevada to determine its suitability as a mined geologic disposal system (MGDS) for the disposal of high-level nuclear waste (HLW). The B ampersand W Fuel Company (BWFC), as a part of the Management and Operating (M ampersand O) team in support of the Yucca Mountain Site Characterization Project (YMP), is responsible for designing and developing the waste package for this potential repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) is responsible for testing materials and developing models for the materials to be used in the waste package. This paper is aimed at presenting the selection process for materials needed in fabricating the different components of the waste package

  6. Waste package performance assessment for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Lappa, D.A.; Thatcher, R.M.

    1989-02-01

    We completed a first cycle of model development from a specification to a computer program, PANDORA-1, for long-term performance assessment of waste packages. The model for one waste package at a time incorporates processes specific to the unsaturated environment at the proposed Yucca Mountain, NV, site. PANDORA-1 models the most likely processes and several modes of waste alteration and release. The development identified information needs for future models; many processes, local details, and combinations will have to be examined. Integration of ensemble performance and quantification of uncertainties are modeling steps at higher aggregation. Methodologies for these steps include sampling, which is well studied; we have focused on several open questions. We can now calculate the amount of variance reduction available from Latin hypercube sampling; it is a limited reduction. A new method, controlled sampling, provides substantial variance reduction for a broad range of model functions. An uncertainty analysis test-bed program compares the new with old sampling methods. 7 refs., 1 tab

  7. Scientific investigation plan for NNWSI WBS element 1.2.2.5.L: NNWSI waste package performance assessment: Revision 1

    International Nuclear Information System (INIS)

    Eggert, K.G.; O'Connell, W.J.; Lappa, D.A.

    1986-01-01

    Waste package performance assessment contains three broad categories of activities. These activities are: (1) development of a hydrothermal flow and transport model to test concepts to be used in establishing boundary conditions for performance calculations, and to interface EBS release calculations with total system performance calculations; (2) development of a waste package systems model to provide integrated deterministic assessments of performance and analyses of waste package designs; and (3) development of an uncertainty methodology for combination with the system model to perform probabilistic reliability and performance analysis waste package designs. The first category contains activities that aid in determining the scope of a separate, simplified set of hydrologic calculations needed to characterize the waste package environment for performance assessment calculations. The last two activity categories are directly concerned with waste package performance calculations. A rationale for each activity under these groups is presented. All of the activities of performance assessment are either code development or analyses of waste package problems

  8. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  9. Waste package/repository impact study: Final report

    International Nuclear Information System (INIS)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs

  10. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  11. Prevention policies addressing packaging and packaging waste: Some emerging trends.

    Science.gov (United States)

    Tencati, Antonio; Pogutz, Stefano; Moda, Beatrice; Brambilla, Matteo; Cacia, Claudia

    2016-10-01

    Packaging waste is a major issue in several countries. Representing in industrialized countries around 30-35% of municipal solid waste yearly generated, this waste stream has steadily grown over the years even if, especially in Europe, specific recycling and recovery targets have been fixed. Therefore, an increasing attention starts to be devoted to prevention measures and interventions. Filling a gap in the current literature, this explorative paper is a first attempt to map the increasingly important phenomenon of prevention policies in the packaging sector. Through a theoretical sampling, 11 countries/states (7 in and 4 outside Europe) have been selected and analyzed by gathering and studying primary and secondary data. Results show evidence of three specific trends in packaging waste prevention policies: fostering the adoption of measures directed at improving packaging design and production through an extensive use of the life cycle assessment; raising the awareness of final consumers by increasing the accountability of firms; promoting collaborative efforts along the packaging supply chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Development of waste packages for tuff

    International Nuclear Information System (INIS)

    Rothman, A.J.

    1982-01-01

    The objective of this program is to develop nuclear waste packages that meet the Nuclear Regulatory Commission's requirements for a licensed repository in tuff at the Nevada Test Site. Selected accomplishments for FY82 are: (1) Selection, collection of rock, and characterization of suitable outcrops (for lab experiments); (2) Rock-water interactions (Bullfrog Tuff); (3) Corrosion tests of ferrous metals; (4) Thermal modeling of waste package in host rock; (5) Preliminary fabrication tests of alternate backfills (crushed tuff); (6) Reviewed Westinghouse conceptual waste package designs for tuff and began modification for unsaturated zone; and (7) Waste Package Codes (BARIER and WAPPA) now running on our computer. Brief discussions are presented for rock-water interactions, corrosion tests of ferrous metals, and thermal and radionuclide migration modelling

  13. Waste package performance in unsaturated rock

    International Nuclear Information System (INIS)

    Pigford, T.H.; Lee, W.W.-L.

    1989-03-01

    The unsaturated rock and near-atmospheric pressure of the potential nuclear waste repository at Yucca Mountain present new problems of predicting waste package performance. In this paper we present some illustrations of predictions of waste package performance and discuss important data needs. 11 refs., 9 figs., 1 tab

  14. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  15. Impacts of cathodic protection on waste package performance

    International Nuclear Information System (INIS)

    Atkins, J.E.; Lee, J.H.; Andrews, R.W.

    1996-01-01

    The current design concept for a multi-barrier waste container for the potential repository at Yucca Mountain, Nevada, calls for an outer barrier of 100 mm thick corrosion-allowance material (CAM) (carbon steel) and an inner barrier of 20 mm thick corrosion-resistant material (CRM) (Alloy 825). Fulfillment of the NRC subsystem requirements (10 CFR 60.113) of substantially complete containment and controlled release of radionuclides from the engineered barrier system (EBS) will rely mostly upon the robust waste container design, among other EBS components. In the current waste container design, some degree of cathodic protection of CRM will be provided by CAM. This paper discusses a sensitivity case study for the impacts of cathodic protection of the inner barrier by the outer barrier on the performance of waste package

  16. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  17. Use of simple transport equations to estimate waste package performance requirements

    International Nuclear Information System (INIS)

    Wood, B.J.

    1982-01-01

    A method of developing waste package performance requirements for specific nuclides is described. The method is based on: Federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment; a simple and conservative transport model; baseline and potential worst-case release scenarios. Use of the transport model enables calculation of maximum permissible release rates within a repository in basalt for each of the scenarios. The maximum permissible release rates correspond to performance requirements for the engineered barrier system. The repository was assumed to be constructed in a basalt layer. For the cases considered, including a well drilled into an aquifer 1750 m from the repository center, little significant advantage is obtained from a 1000-yr as opposed to a 100-yr waste package. A 1000-yr waste package is of importance only for nuclides with half-lives much less than 100 yr which travel to the accessible environment in much less than 1000 yr. Such short travel times are extremely unlikely for a mined repository. Among the actinides, the most stringent maximum permissible release rates are for 236 U and 234 U. A simple solubility calculation suggests, however, that these performance requirements can be readily met by the engineered barrier system. Under the reducing conditions likely to occur in a repository located in basalt, uranium would be sufficiently insoluble that no solution could contain more than about 0.01% of the maximum permissible concentration at saturation. The performance requirements derived from the one-dimensional modeling approach are conservative by at least one to two orders of magnitude. More quantitative three-dimensional modeling at specific sites should enable relaxation of the performance criteria derived in this study. 12 references, 8 figures, 8 tables

  18. From waste packages acceptance criteria to waste packages acceptance process at the Centre de l'Aube disposal facility

    International Nuclear Information System (INIS)

    Dutzer, M.

    2003-01-01

    The Centre de l'Aube disposal facility has now been operated for 10 years. At the end of 2001, about 124,000 m3 of low and intermediate level short lived waste packages, representing 180,000 packages, have been disposed, for a total capacity of 1,000,000 m3. The flow of waste packages is now between 12 and 15,000 m3 per year, that is one third of the flow that was taken into account for the design of the repository. It confirms the efforts by waste generators to minimise waste production. This flow represents 25 to 30,000 packages, 50% are conditioned into the compaction facility of the repository, so that 17,000 packages are disposed per year. 54 disposal vaults have been closed. In 1996-1999, the safety assessment of the repository have been reviewed, taking into account the experience of operation. This assessment was investigated by the regulatory body and, subsequently, a so-called 'definitive license' to operate was granted to ANDRA on September 2, 1999 with updated licensing requirements. Another review will be performed in 2004. To ensure a better consistency with the safety assessment of the facility, Andra issued new technical requirements for waste packages at the end of 2000. Discussions with waste generators also showed that the waste package acceptance process should be improved to provide a more precise definition of operational criteria to comply with in waste conditioning facilities. Consequently, a new approach has been implemented since 2000. (orig.)

  19. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  20. Reference waste package environment report

    International Nuclear Information System (INIS)

    Glassley, W.E.

    1986-01-01

    One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of ∼230 0 C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment

  1. Waste transport and storage: Packaging refused due to failure in fulfilling QC/QA requirements

    International Nuclear Information System (INIS)

    Bruno, N.C.; Brandao, R.O.; Cavalcante, V.L.

    2001-01-01

    The Brazilian Nuclear Programme comprises several nuclear and radioactive facilities including Angra I Nuclear Power Plant, in operation since 1981, and Angra II, scheduled to start its operation by the end of 1999. Among the other ones there are uranium mining and milling facilities, four research reactors and one industrial facility of monazite sands processing. The already existing waste generation and near future ones claim to a solution regarding waste disposal. Although site selection criteria for waste repository in Brazil has already been defined, political and psychosocial aspects have strong impact. Trauma generated by Goiania's radiological accident has led to difficulties when decisions about this matter have to be taken. As a consequence, the waste generated by Angra I is still in a provisional facility at the plant's site. Wastes from the medical sources are stored in research institutes while waste generated from monazite sands is kept in a dam system. In order to overpack non-qualified packages containing waste of Angra I NPP, 70 lost concrete shielding packagings had to be provided. Based on successfully designed and tested prototype, packagings and respective lids specifications were written, approved and released for serial production. As part of packaging certification process, Brazilian Competent Authority performed a regulatory inspection and audit. Various findings, such as weaknesses in quality control and quality assurance records, unacceptable test results as well as failure in modify the concrete composition during a testified packaging manufacturing, led Competent Authority to refuse the packagings as containers until complementary tests could be performed. Further tests and evaluations led the Competent Authority to conclude that the manufacturer failed to both comply with requirements established in packaging specification and fulfill quality control/quality assurance requirements. As responsible by federal law for the reception and

  2. Engineered waste-package-system design specification

    International Nuclear Information System (INIS)

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity

  3. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    International Nuclear Information System (INIS)

    P. Bernot

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  4. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  5. DOE progress in assessing the long term performance of waste package materials

    International Nuclear Information System (INIS)

    Berusch, A.; Gause, E.

    1987-01-01

    Under the Nuclear Waste Policy Act of 1982 (NWPA)[1], the US Dept. of Energy (DOE) is conducting activities to select and characterize candidate sites suitable for the construction and operation of a geologic repository for the disposal of high-level nuclear wastes. DOE is funding three first repository projects: Basalt Waste Isolation Project, BWIP; Nevada Nuclear Waste Isolation Project, NNWSI; and Salt Repository Project Office, SRPO. It is essential in the licensing process that DOE demonstrate to the NRC that the long-term performance of the materials and design will be in compliance with the requirements of 10 CFR 60.113 on substantially complete containment within the waste packages for 300 to 1000 years and a controlled release rate from the engineered barrier system (EBS) for 10,000 years of 1 part in 10 5 per year for radionuclides present in defined quantities 100 years after permanent closure. Obviously, the time spans involved make it impractical to base the assessment of the long term performance of waste package materials on real time, prototypical testing. The assessment of performance will be implemented by the use of models that are supported by real time field and laboratory tests, monitoring, and natural analog studies. Each of the repository projects is developing a plan for demonstrating long-term waste package material performance depending on the particular materials and the package-perturbed, time-dependent environment under which the materials must function. An overview of progress in each of these activities for each of the projects is provided in the following

  6. Development of bio based plastic materials for packaging from soybeans waste

    Science.gov (United States)

    Muhammad, A.; Rashidi, A. R.; Roslan, A.; Idris, S. A.

    2017-09-01

    Demands of plastic material which increase with the increasing of human population encourage researchers to find alternative solution to replace petro based plastic. Thus, in the present study, a novel "green bioplastic" packaging was developed using soybean waste which is a major waste in soy sauce food industry. The evaluation of the effect of ratio of starch, soy waste and plasticizer in this bioplastic production was studied and their characteristics were compared with available bioplastics. Characteristics study was done in terms of burning test, water absorption capacity, thermal and tensile strength measurement and the result obtained were analyzed. The glass transition temperature (Tg) for soy waste bioplastic is 117˚C. The water absorption test shows that an increase in mass up to 114.17% which show large amount of water uptake capacity of this bioplastics. And about 38% of percentage loss was observed when compared with other novel bioplastics. The results clearly show that the amount of glycerol as a plasticizer had an inversely proportional relationship with the Glass Transition Temperature (Tg). The average maximum force value for tensile strength test is 6.71 N. The burning test show that the soy wastes bioplastic release a very faint smell of soy and glue-like substance. The flame ignited a Yellowish-Orange colour and released some sparks. Based on the overall results, soy-based have been proven to become an excellent bio-based packaging materials.

  7. TRU waste transportation package development

    International Nuclear Information System (INIS)

    Eakes, R.G.; Lamoreaux, G.H.; Romesberg, L.E.; Sutherland, S.H.; Duffey, T.A.

    1980-01-01

    Inventories of the transuranic wastes buried or stored at various US DOE sites are tabulated. The leading conceptual design of Type-B packaging for contact-handled transuranic waste is the Transuranic Package Transporter (TRUPACT), a large metal container comprising inner and outer tubular steel frameworks which are separated by rigid polyurethane foam and sheathed with steel plate. Testing of TRUPACT is reported. The schedule for its development is given. 6 figures

  8. Nuclear-waste-package materials degradation modes and accelerated testing

    International Nuclear Information System (INIS)

    1981-09-01

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  9. Thermal analysis of NNWSI conceptual waste package designs

    International Nuclear Information System (INIS)

    Stein, W.; Hockman, J.N.; O'Neal, W.C.

    1984-04-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This report discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 16 references

  10. EQ6 Calculations for Chemical Degradation of Navy Waste Packages

    International Nuclear Information System (INIS)

    S. LeStrange

    1999-01-01

    The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package. The water may gradually leach the fissile components and neutron absorbers out of the waste package. In addition, the accumulation of silica (SiO 2 ) in the waste package over time may further affect the neutronics of the system. This study presents calculations of the long-term geochemical behavior of waste packages containing the Enhanced Design Alternative (EDA) II inner shell, Navy canister, and basket components. The calculations do not include the Navy SNF in the waste package. The specific study objectives were to determine the chemical composition of the water and the quantity of silicon (Si) and other solid corrosion products in the waste package during the first million years after the waste package is breached. The results of this calculation will be used to ensure that the type and amount of criticality control material used in the waste package design will prevent criticality

  11. EQ6 Calculations for Chemical Degradation of Navy Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    S. LeStrange

    1999-11-15

    The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package. The water may gradually leach the fissile components and neutron absorbers out of the waste package. In addition, the accumulation of silica (SiO{sub 2}) in the waste package over time may further affect the neutronics of the system. This study presents calculations of the long-term geochemical behavior of waste packages containing the Enhanced Design Alternative (EDA) II inner shell, Navy canister, and basket components. The calculations do not include the Navy SNF in the waste package. The specific study objectives were to determine the chemical composition of the water and the quantity of silicon (Si) and other solid corrosion products in the waste package during the first million years after the waste package is breached. The results of this calculation will be used to ensure that the type and amount of criticality control material used in the waste package design will prevent criticality.

  12. Low-level waste packaging--a managerial perspective

    International Nuclear Information System (INIS)

    Motl, G.P.; Hebbard, L.B. Jr.

    1980-01-01

    This paper emphasizes managerial responsibility for assuring that facility waste is properly packaged. Specifically, existing packaging regulations are summarized, several actual violations are reviewed and, lastly, some recommendations are made to assist managerial personnel in fulfilling their responsibility to ensure that low-level waste is packaged safely and properly before shipment to the disposal site

  13. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    Science.gov (United States)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  14. Nanotechnology for the Solid Waste Reduction of Military Food Packaging

    Science.gov (United States)

    2016-06-01

    WP-200816) Nanotechnology for the Solid Waste Reduction of Military Food Packaging June 2016 This document has been cleared for public release...NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01/06/2016 Cost and Performance Report 04/01/2008 - 01/01/2015 Nanotechnology for...Soldier Research, Development and Engineering Center Robin Altmeyer - AmeriQual U.S. Army Natick Soldier Research, Development and Engineering

  15. Estimates of radionuclide release from glass waste forms in a tuff repository and the effects on regulatory compliance

    International Nuclear Information System (INIS)

    Aines, R.D.

    1986-04-01

    This paper discusses preliminary estimates of the release of radionuclides from waste packages containing glass-based waste forms under the expected conditions at Yucca Mountain. These estimates can be used to evaluate the contribution of waste package performance toward meeting repository regulatory restrictions on radionuclide release. Glass waste will be held in double stainless steel canisters. After failure of the container sometime after the 300 to 1000 year containment period, the open headspace in these cans will provide the only area where standing water can accumulate and react with the glass. A maximum release rate of 0.177 g/m 2 x year or 1.3 grams per year was obtained. Normalized loss of 1.3 grams per year corresponds to 0.08 parts in 100,000 per year of the 1660 kg reference weight of DWPF glass

  16. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  17. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes

  18. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  19. WIPP waste package testing on simulated DHLW: emplacement

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1984-01-01

    Several series of simulated (nonradioactive) defense high-level waste (DHLW) package tests have been emplaced in the WIPP, a research and development facility authorized to demonstrate the safe disposal of defense-related wastes. The primary purpose of these 3-to-7 year duration tests is to evaluate the in situ materials performance of waste package barriers (canisters, overpacks, backfills, and nonradioactive DHLW glass waste form) for possible future application to a licensed waste repository in salt. This paper describes all test materials, instrumentation, and emplacement and testing techniques, and discusses progress of the various tests. These tests are intended to provide information on materials behavior (i.e., corrosion, metallurgical and geochemical alterations, waste form durability, surface interactions, etc.), as well as comparison between several waste package designs, fabrications details, and actual costs. These experiments involve 18 full-size simulated DHLW packages (approximately 3.0 m x 0.6 m diameter) emplaced in vertical boreholes in the salt drift floor. Six of the test packages contain internal electrical heaters (470 W/canister), and were emplace under approximately reference DHLW repository conditions. Twelve other simulated DHLW packages were emplaced under accelerated-aging or overtest conditions, including the artificial introduction of brine, and a thermal loading approximately three to four times higher than reference. Eight of these 12 test packages contain 1500 W/canister electrical heaters; the other four are filled with DHLW glass. 9 refs., 1 fig

  20. Shielding design of radioactive contaminated metal waste packaging

    International Nuclear Information System (INIS)

    Zou Wenhua; Dong Zhiqiang; Yao Zhenyu; Xu Shuhe; Wang Wen

    2015-01-01

    Focusing on the cylindrical source model to calculate γ dose field of waste packages with the relative formulae then derived. By comparing the calculated data of waste packages of type Ⅷ steel box with the monitoring data, it is found that the cylinder source model could accurately reflect the distributions of γ dose of the waste package. Based on the results of the cylindrical source model, a reasonable shielding technology applicable to waste package containers was designed to meet relevant requirements prescribed in standards about the transport and disposal of radioactive materials. The cylinder source model calculated dose distributions for single package in this paper is simple and easy to implement but slightly larger than the monitoring data providing a certain safety margin for the shielding design. It is suitable for radiological engineering practices. (authors)

  1. Safety evaluation for packaging (onsite) concrete-lined waste packaging

    Energy Technology Data Exchange (ETDEWEB)

    Romano, T.

    1997-09-25

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

  2. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  3. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    Arthur, S.

    2004-01-01

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  4. DHLW Glass Waste Package Criticality Analysis (SCPB:N/A)

    International Nuclear Information System (INIS)

    Davis, J.W.

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the Defense High-Level Waste (DHLW) Glass waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan (Ref. 5.1) for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objective of this evaluation is to show to what extent the concept meets the regulatory requirements or indicate additional measures that are required for the intact waste package

  5. Transportation packagings for high-level wastes and unprocessed transuranic wastes

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Romesberg, L.E.

    1982-01-01

    Packagings used for nuclear waste transport are varied in size, shape, and weight because they must accommodate a wide variety of waste forms and types. However, this paper will discuss the common characteristics among the packagings in order to provide a broad understanding of packaging designs. The paper then discusses, in some detail, a design that has been under development recently at Sandia National Laboratories (SNL) for handling unprocessed, contact-handled transuranic (CHTRU) wastes as well as a cask design for defense high-level wastes (HLW). As presently conceived, the design of the transuranic package transporter (TRUPACT) calls for inner and outer boxes that are separated by a rigid polyurethane foam. The inner box has a steel frame with stainless steel surfaces; the outer box is similarly constructed except that carbon steel is used for the outside surfaces. The access to each box is through hinged doors that are sealed after loading. To meet another waste management need, a cask is being developed to transport defense HLW. The cask, which is at the preliminary design stage, is being developed by General Atomic under the direction of the TTC. The cask design relies heavily on state-of-the-art spent-fuel cask designs though it can be much simpler due to the characteristics of the HLW. A primary purpose of this paper is to show that CHTRU waste and defense HLW currently are and will be transported in packagings designed to meet the hazards of transportation that are present in general commerce

  6. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  7. Waste Package Design Methodology Report

    International Nuclear Information System (INIS)

    D.A. Brownson

    2001-01-01

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report

  8. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    V. Delabrosse

    2003-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  9. 21-PWR Waste Package Side and End Impacts

    International Nuclear Information System (INIS)

    T. Schmitt

    2005-01-01

    The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1

  10. Generalized waste package containment model

    International Nuclear Information System (INIS)

    Liebetrau, A.M.; Apted, M.J.

    1985-02-01

    The US Department of Energy (DOE) is developing a performance assessment strategy to demonstrate compliance with standards and technical requirements of the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) for the permanent disposal of high-level nuclear wastes in geologic repositories. One aspect of this strategy is the development of a unified performance model of the entire geologic repository system. Details of a generalized waste package containment (WPC) model and its relationship with other components of an overall repository model are presented in this paper. The WPC model provides stochastically determined estimates of the distributions of times-to-failure of the barriers of a waste package by various corrosion mechanisms and degradation processes. The model consists of a series of modules which employ various combinations of stochastic (probabilistic) and mechanistic process models, and which are individually designed to reflect the current state of knowledge. The WPC model is designed not only to take account of various site-specific conditions and processes, but also to deal with a wide range of site, repository, and waste package configurations. 11 refs., 3 figs., 2 tabs

  11. Second Generation Waste Package Design Study

    International Nuclear Information System (INIS)

    Armijo, J.S.; Misra, M.; Kar, Piyush

    2007-01-01

    The following describes the objectives of Project Activity 023 ''Second Generation Waste Package Design Study'' under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion test environments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity

  12. 10 CFR 60.143 - Monitoring and testing waste packages.

    Science.gov (United States)

    2010-01-01

    ....143 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN... repository operations area, the environment of the waste packages selected for the waste package monitoring program shall be representative of the environment in which the wastes are to be emplaced. (c) The waste...

  13. Synthesis of knowledge on the long-term behaviour of concretes. Applications to cemented waste packages

    International Nuclear Information System (INIS)

    Richet, C.; Galle, C.; Le Bescop, P.; Peycelon, H.; Bejaoui, S.; Tovena, I.; Pointeau, I.; L'Hostis, V.; Levera, P.

    2004-03-01

    As stipulated in the former law of December 91 relating to 'concrete waste package', a progress report (phenomenological reference document) was first provided in 1999. The objective was to make an assessment of the knowledge acquired on the long-term behaviour of cement-based waste packages in the context of deep disposal and/or interim storage. The present document is an updated summary report. It takes into account a new knowledge assessment, considers coupled mechanisms and should contribute to the first performance studies (operational calculations). Handling and radio-nuclides (RN) confinement are the two major functional properties requested from the concrete used for the waste packages. In unsaturated environment (interim storage/disposal prior to closing), the main problem is the generation of cracks in the material. This aspect is a key parameter from the mechanical point of view (retrievability). It can have a major impact on the disposal phase (confinement). In saturated environment (disposal post-closing phase), the main concern is the chemical degradation of the waste package concrete submitted to underground waters leaching. In this context, the major thema are: the durability of the concretes under water (chemical degradation) and in unsaturated medium (corrosion of reinforcement), matter transport, RN retention, chemistry / transport / mechanical couplings. On the other hand, laboratory data on the behaviour of concretes are used to evaluate the RN source term of waste packages in function of time (concrete waste package OPerational Model, i.e. 'Concrete MOP'). The 'MOP' provides the physico-chemical description of the RN release in relationship with the waste package degradation itself. This description is based on simplified phenomenology for which only dimensioning mechanisms are taken into account. The use of Diffu-Ca code (basic module for the MOP) on the CASTEM numerical plate-form, already allows operational predictions. (authors)

  14. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  15. NWTS waste package program plan. Volume II. Program logic networks

    International Nuclear Information System (INIS)

    1981-10-01

    This document describes the work planned for developing the technology to design, test and produce packages used for the long-term isolation of nuclear waste in deep geologic repositories. Waste forms considered include spent fuel and high-level waste. The testing and selection effort for barrier materials for radionuclide containment is described. The NWTS waste package program is a design-driven effort; waste package conceptual designs are used as input for preliminary designs, which are upgraded to a final design as materials and testing data become available. Performance assessment models are developed and validated. Milestones and a detailed schedule are given for the waste package development effort. Program logic networks defining work flow, interfaces among the NWTS Projects, and interrelationships of specific activities are presented. Detailed work elements are provided for the Waste Package Program Plan subtasks - design and development, waste form, barrier materials, and performance evaluation - for salt and basalt, host rocks for which the state of waste package knowledge and the corresponding data base are advanced

  16. Development of backfill material as an engineered barrier in the waste package system. Interim topical report

    International Nuclear Information System (INIS)

    Wheelwright, E.J.; Hodges, F.N.; Bray, L.A.; Westsik, J.H. Jr.; Lester, D.H.; Nakai, T.L.; Spaeth, M.E.; Stula, R.T.

    1981-09-01

    A backfill barrier, emplaced between the containerized waste and the host rock, can both protect the other engineered barriers and act as a primary barrier to the release of radionuclides from the waste package. Attributes that a backfill should provide in order to carry out its required function have been identified. Primary attributes are those that have a direct effect upon the release and transport of radionuclides from the waste package. Supportive attributes do not directly affect radionuclide release but are necessary to support the primary attributes. The primary attributes, in order of importance, are: minimize (retard or exclude) the migration of ground water between the host rock and the waste canister system; retard the migration of selected chemical species (corrosive species and radionuclides) in the ground water; control the Eh and pH of the ground water within the waste-package environment. The supportive attributes are: self-seal any cracks or discontinuities in the backfill or interfacing host geology; retain performance properties at all repository temperatures; retain peformance properties during and after receiving repository levels of gamma radiation; conduct heat from the canister system to the host geology; retain mechanical properties and provide resistance to applied mechanical forces; retain morphological stability and compatibility with structural barriers and with the host geology for required period of time. Screening and selection of candidate backfill materials has resulted in a preliminary list of materials for testing. Primary emphasis has been placed on sodium and calcium bentonites and zeolites used in conjunction with quartz sand or crushed host rock. Preliminary laboratory studies have concentrated on permeability, sorption, swelling pressure, and compaction properties of candidate backfill materials

  17. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. 10 CFR 63.134 - Monitoring and testing waste packages.

    Science.gov (United States)

    2010-01-01

    ....134 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A... geologic repository operations area, the environment of the waste packages selected for the waste package monitoring program must be representative of the environment in which the wastes are to be emplaced. (c) The...

  19. Current status of waste package designs for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ballou, L.B.

    1989-07-01

    Conceptual designs for waste packages containing spent fuel or high-level waste glass have been developed for use in a repository at Yucca Mountain. The basis for these designs reflects the unique nature of the expected service environment associated with disposal in welded tuff in the unsaturated zone. In addition to a set of reference designs, alternative design concepts are being considered that would contain and isolate the waste radionuclides in a more aggressive service environment. Consideration is also being given to the feasibility of a concept known as ''heat tailoring'' that employs the thermal energy released by the wasteforms to enhance and extend the performance of the containers. 5 refs., 3 figs

  20. Methods for maintaining a record of waste packages during waste processing and storage

    International Nuclear Information System (INIS)

    2005-01-01

    During processing, radioactive waste is converted into waste packages, and then sent for storage and ultimately for disposal. A principal condition for acceptance of a waste package is its full compliance with waste acceptance criteria for disposal or storage. These criteria define the radiological, mechanical, physical, chemical and biological properties of radioactive waste that can, in principle, be changed during waste processing. To declare compliance of a waste package with waste acceptance criteria, a system for generating and maintaining records should be established to record and track all relevant information, from raw waste characteristics, through changes related to waste processing, to final checking and verification of waste package parameters. In parallel, records on processing technology and the operational parameters of technological facilities should adhere to established and approved quality assurance systems. A records system for waste management should be in place, defining the data to be collected and stored at each step of waste processing and using a reliable selection process carried over into the individual steps of the waste processing flow stream. The waste management records system must at the same time ensure selection and maintenance of all the main information, not only providing evidence of compliance of waste package parameters with waste acceptance criteria but also serving as an information source in the case of any future operations involving the stored or disposed waste. Records generated during waste processing are a constituent part of the more complex system of waste management record keeping, covering the entire life cycle of radioactive waste from generation to disposal and even the post-closure period of a disposal facility. The IAEA is systematically working on the preparation of a set of publications to assist its Member States in the development and implementation of such a system. This report covers all the principal

  1. Safety evaluation report for packaging (onsite) concrete-lined waste packaging

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site

  2. EVALUATION OF WASTE PACKAGE EXTERNAL ENVIRONMENTAL CONDITION STUDY

    International Nuclear Information System (INIS)

    E. N. Lindner and E. F. Dembowski

    1998-01-01

    The U. S. Department of Energy (DOE) is studying Yucca Mountain as the possible site for a permanent underground repository for disposal of spent nuclear fuel (SNF) and other high-level waste (HLW). The emplacement of high-level radioactive waste in Yucca Mountain will release a large amount of heat into the rock above and below the repository. Due to this heat, the rock temperature will rise, and then decrease when the production of decay heat falls below the rate at which heat escapes from the hot zone. In addition to raising the rock temperature, the heat will vaporize water, which will condense in cooler regions. The condensate water may drain back toward the emplacement drifts or it may ''shed'' through the pillars between emplacement drifts. Other effects, such as coupled chemical and mechanical processes, may influence the movement of water above, within, and below the emplacement drifts. This study examined near field environmental parameters that could have an effect on the waste package, including temperature, humidity, seepage rate, pH of seepage, chemistry (dissolved salts/minerals) of seepage, composition of drift atmosphere, colloids, and biota. This report is a Type I analysis performed in support of the development of System Description Documents (SDDs). A Type I analysis is a quantitative or qualitative analysis that may fulfill any of a variety of purposes associated with the Monitored Geologic Repository (MGR), other than providing direct analytical support for design output documents. A Type I analysis may establish design input, as defined in the ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998). This study establishes a technical basis for emplacement drift (i.e. at the waste package surface) environment criteria to be considered in the development of the waste package design. The information will support development of several SDDs and resolve emplacement drift external environment questions in the criteria of those

  3. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-03-01

    The main tasks performed during the period related to the influence of manufacture, transport and disposal on the design of such packages. It is deduced that decommissioning wastes will be transported under the IAEA Transport Regulations under either the Type B or Low Specific Activity (LSA) categories. If the LSA packages are self-shielded, reinforced concrete is the preferred material of construction. But the high cost of disposal implies that there is a strong reason to investigate the use of returnable shields for LSA packages and in such cases they are likely to be made of ferrous metal. Economic considerations favour the use of spheroidal graphite cast iron for this purpose. Transport operating hazards have been investigated using a mixture of desk studies, routes surveys and operations data from the railway organisations. Reference routes were chosen in the Federal Republic of Germany, France and the United Kingdom. This work has led to a description of ten accident scenarios and an evaluation of the associated accident probabilities. The effect of disposal on design of packages has been assessed in terms of the radiological impact of decommissioning wastes, an in addition corrosion and gas evolution have been examined. The inventory of radionuclides in a decommissioning waste package has low environmental impact. If metal clad reinforced concrete packages are to be used, the amount of gas evolution is such that a vent would need to be included in the design. Similar unclad packages would be sufficiently permeable to gases to prevent a pressure build-up. (author)

  4. Symmetric Rock Fall on Waste Package

    International Nuclear Information System (INIS)

    Sreten Mastilovic

    2001-01-01

    The objective of this calculation is to determine the structural response of the Naval SNF (spent nuclear fuel) Waste Package (WP) and the emplacement pallet (EP) subjected to the rock fall DBE (design basis event) dynamic loads. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities and residual stresses in the WP, and stress intensities and maximum permanent downward displacements of the EP-lifting surface. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP and EP considered in this calculation, and all obtained results are valid for those designs only. This calculation is associated with the waste package design and is performed by the Waste Package Design Section in accordance with Reference 24. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document

  5. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  6. Is radioactive mixed waste packaging and transportation really a problem

    International Nuclear Information System (INIS)

    McCall, D.L.; Calihan, T.W. III.

    1992-01-01

    Recently, there has been significant concern expressed in the nuclear community over the packaging and transportation of radioactive mixed waste under US Department of Transportation regulation. This concern has grown more intense over the last 5 to 10 years. Generators and regulators have realized that much of the waste shipped as ''low-level radioactive waste'' was in fact ''radioactive mixed waste'' and that these wastes pose unique transportation and disposal problems. Radioactive mixed wastes must, therefore, be correctly identified and classed for shipment. If must also be packaged, marked, labeled, and otherwise prepared to ensure safe transportation and meet applicable storage and disposal requirements, when established. This paper discusses regulations applicable to the packaging and transportation of radioactive mixed waste and identifies effective methods that waste shippers can adopt to meet the current transportation requirements. This paper will include a characterization and description of the waste, authorized packaging, and hazard communication requirements during transportation. Case studies will be sued to assist generators in understanding mixed waste shipment requirements and clarify the requirements necessary to establish a waste shipment program. Although management and disposal of radioactive mixed waste is clearly a critical issue, packaging and transportation of these waste materials is well defined in existing US Department of Transportation hazardous material regulations

  7. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    International Nuclear Information System (INIS)

    T.L. Mitchell

    2000-01-01

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS MandO [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS MandO 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS MandO 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS MandO 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS MandO 2000a)

  8. Study on retrievability of waste package in geological disposal

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Noda, Masaru

    2002-02-01

    Retrievability of waste packages in geological disposal of high-level radioactive waste has been investigated from a technical aspect in various foreign countries, reflecting a social concern while retrievability is not provided as a technical requirement. This study investigates the concept of reversibility and retrievability in foreign countries and a technical feasibility on retrievability of waste packages in the geological disposal concept shown in the H12 report. The conclusion obtained through this study is as follows: 1. Concept of reversibility and retrievability in foreign countries. Many organizations have reconsidered the retrievability as one option in the geological disposal to improve the reversibility of the stepwise decision-making process and provide the flexibility, even based upon the principle of the geological disposal that retrieval of waste from the repository is not intended. 2. Technical feasibility on the retrievability in disposal concept in the H12 report. It is confirmed to be able to remove the buffer and to retrieve the waste packages by currently available technologies even after the stages following emplacement of the buffer. It must be noted that a large effort and expense would be required for some activities such as the reconstruction of access route if the activities started after a stage of backfilling disposal tunnels. 3. Evaluation of feasibility on the retrievability and extraction of the issues. In the near future, it is necessary to study and confirm the practical workability and economical efficiency for the retrieving method of waste packages proposed in this study, the handling and processing method of removed buffer materials, and the retrieving method of waste packages in the case of degrading the integrity of waste packages or not emplacing the waste packages in the assumed attitude, etc. (author)

  9. Waste package designs for disposal of high-level waste in salt formations

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.; Carr, J.A.

    1984-01-01

    In the United States of America the selected method for disposal of radioactive waste is mined repositories located in suitable geohydrological settings. Currently four types of host rocks are under consideration: tuff, basalt, crystalline rock and salt. Development of waste package designs for incorporation in mined salt repositories is discussed. The three pertinent high-level waste forms are: spent fuel, as disassembled and close-packed fuel pins in a mild steel canister; commercial high-level waste (CHLW), as borosilicate glass in stainless-steel canisters; defence high-level waste (DHLW), as borosilicate glass in stainless-steel canisters. The canisters are production and handling items only. They have no planned long-term isolation function. Each waste form requires a different approach in package design. However, the general geometry and the materials of the three designs are identical. The selected waste package design is an overpack of low carbon steel with a welded closure. This container surrounds the waste forms. Studies to better define brine quantity and composition, radiation effects on the salt and brines, long-term corrosion behaviour of the low carbon steel, and the leaching behaviour of the spent fuel and borosilicate glass waste forms are continuing. (author)

  10. Challenges in packaging waste management in the fast food industry

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Teija [Digita Oy, P.O. Box 135, FI-00521 Helsinki (Finland); Haemaelaeinen, Anne [Department of Energy and Environmental Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland)

    2008-02-15

    The recovery of solid waste is required by waste legislation, and also by the public. In some industries, however, waste is mostly disposed of in landfills despite of its high recoverability. Practical experiences show that the fast food industry is one example of these industries. A majority of the solid waste generated in the fast food industry is packaging waste, which is highly recoverable. The main research problem of this study was to find out the means of promoting the recovery of packaging waste generated in the fast food industry. Additionally, the goal of this article was to widen academic understanding on packaging waste management in the fast food industry, as the subject has not gained large academic interest previously. The study showed that the theoretical recovery rate of packaging waste in the fast food industry is high, 93% of the total annual amount, while the actual recovery rate is only 29% of the total annual amount. The total recovery potential of packaging waste is 64% of the total annual amount. The achievable recovery potential, 33% of the total annual amount, could be recovered, but is not mainly because of non-working waste management practices. The theoretical recovery potential of 31% of the total annual amount of packaging waste cannot be recovered by the existing solid waste infrastructure because of the obscure status of commercial waste, the improper operation of producer organisations, and the municipal autonomy. The research indicated that it is possible to reach the achievable recovery potential in the existing solid waste infrastructure through new waste management practices, which are designed and operated according to waste producers' needs and demands. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action. (author)

  11. Radiaoctive waste packaging for transport and final disposal

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    Prior and after the conditioning of radioactive wastes is the packaging design of uppermost importance since it will be the first barrier against water and human intrusion. The choice of the proper package according waste category as well criteria utilized for final disposal are shown. (author) [pt

  12. Repository documentation rethought. A comprehensive approach from untreated waste to waste packages for final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton Philipp; Schubert, Johannes [VPC GmbH, Dresden (Germany)

    2017-11-15

    The German Act on Reorganization of Responsibility for Nuclear Disposal (Entsorgungsuebergangsgesetz (EntsorgUebG)) adopted in June 2017 provides the energy utilities with the new option of transferring responsibility for their waste packages to the Federal Government. This is conditional on the waste packages being approved for delivery to the Konrad final repository. A comprehensive approach starts with the dismantling of nuclear facilities and extends from waste disposal and packaging planning to final repository documentation. Waste package quality control measures are planned and implemented as early as in the process qualification stage so that the production of waste packages that are suitable for final deposition can be ensured. Optimization of cask and loading configuration can save container and repository volume. Workflow planning also saves time, expenditure and exposure time for personnel at the facilities. VPC has evaluated this experience and developed it into a comprehensive approach.

  13. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  14. Non-Destructive Testing for Control of Radioactive Waste Package

    Science.gov (United States)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  15. Mechanical Assessment of the Waste Package Subject to Vibratory Motion

    International Nuclear Information System (INIS)

    M. Gross

    2004-01-01

    The purpose of this document is to provide an integrated overview of the calculation reports that define the response of the waste package and its internals to vibratory ground motion. The calculation reports for waste package response to vibratory ground motion are identified in Table 1-1. Three key calculation reports describe the potential for mechanical damage to the waste package, fuel assemblies, and cladding from a seismic event. Three supporting documents have also been published to investigate sensitivity of damage to various assumptions for the calculations. While these individual reports present information on a specific aspect of waste package and cladding response, they do not describe the interrelationship between the various calculations and the relationship of this information to the seismic scenario class for Total System Performance Assessment-License Application (TSPA-LA). This report is designed to fill this gap by providing an overview of the waste package structural response calculations

  16. Mechanical Assessment of the Waste Package Subject to Vibratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-14

    The purpose of this document is to provide an integrated overview of the calculation reports that define the response of the waste package and its internals to vibratory ground motion. The calculation reports for waste package response to vibratory ground motion are identified in Table 1-1. Three key calculation reports describe the potential for mechanical damage to the waste package, fuel assemblies, and cladding from a seismic event. Three supporting documents have also been published to investigate sensitivity of damage to various assumptions for the calculations. While these individual reports present information on a specific aspect of waste package and cladding response, they do not describe the interrelationship between the various calculations and the relationship of this information to the seismic scenario class for Total System Performance Assessment-License Application (TSPA-LA). This report is designed to fill this gap by providing an overview of the waste package structural response calculations.

  17. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    Science.gov (United States)

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Computerized waste-accountability shipping and packaging system

    International Nuclear Information System (INIS)

    Jackson, J.A.; Baston, M. Jr.; DeVer, E.A.

    1981-01-01

    The Waste Accountability, Shipping and Packaging System (WASP) is a real-time computerized system designed and implemented by Mound Facility to meet the stringent packaging and reporting requirements of radioactive waste being shipped to burial sites. The system stores packaging data and inspection results for each unit and prepares all necessary documents at the time of shipment. Shipping data specific for each burial site are automatically prepared on magnetic tape for transmission to the computing center at that site. WASP has enabled Mound Facility to effectively meet the requirements of the burial sites, diminishing the possibility of being rejected from a site because of noncompliance

  19. Methodologies for certification of transuranic waste packages

    International Nuclear Information System (INIS)

    Christensen, R.N.; Kok, K.D.

    1980-10-01

    The objective of this study was to postulate methodologies for certification that a waste package is acceptable for disposal in a licensed geologic repository. Within the context of this report, certification means the overall process which verifies that a waste package meets the criteria or specifications established for acceptance for disposal in a repository. The overall methodology for certification will include (1) certifying authorities, (2) tests and procedures, and (3) documentation and quality assurance programs. Each criterion will require a methodology that is specific to that criterion. In some cases, different waste forms will require a different methodology. The purpose of predicting certification methodologies is to provide additional information as to what changes, if any, are needed for the TRU waste in storage

  20. NWTS waste package program plan. Volume I. Program strategy, description, and schedule

    International Nuclear Information System (INIS)

    1981-10-01

    This document describes the work planned for developing the technology to design, test and produce packages used for the long-term isolation of nuclear waste in deep geologic repositories. Waste forms considered include spent fuel and high-level waste. The testing and selection effort for barrier materials for radionuclide containment is described. The NWTS waste package program is a design-driven effort; waste package conceptual designs are used as input for preliminary designs, which are upgraded to a final design as materials and testing data become available. Performance assessment models are developed and validated. Milestones and a detailed schedule are given for the waste package development effort. Program logic networks defining work flow, interfaces among the NWTS Projects, and interrelationships of specific activities are presented. Detailed work elements are provided for the Waste Package Program Plan subtasks - design and development, waste form, barrier materials, and performance evaluation - for salt and basalt, host rocks for which the state of waste package knowledge and the corresponding data base are advanced

  1. Overview of the waste/barrier/rock interactions program of the basalt waste isolation project

    International Nuclear Information System (INIS)

    Salter, P.F.; Burnell, J.R.; Lane, D.L.

    1986-01-01

    The waste package waste/barrier/rock interactions testing program of the Basalt Waste Isolation Project is designed to assess the interactions between nuclear waste forms, other waste package components, and the environment in order to evaluate long-term waste package isolation (radionuclide release) behavior. The program involves reacting fully radioactive waste forms with combinations of steel or copper container material and basalt/bentonite packing material in site-specific ground water under anticipated repository conditions to obtain the steady state radionuclide concentrations required to predictively model waste package radionuclide concentrations required to predictively model waste package radionuclide releases. Both static and flow-through autoclaves are being used in the test program to determine radionuclide concentrations as a function of time and groundwater flow rate, and to evaluate the solid phase and water chemistry changes that control those concentrations. This test program, when combined with project hydrologic and geochemical testing and modeling efforts, and natural analog studies, provides the information required to evaluate long-term radionuclide mobility within a waste package emplaced in a basalt repository

  2. Swing-Down of 21-PWR Waste Package

    International Nuclear Information System (INIS)

    A.K. Scheider

    2001-01-01

    The objective of this calculation is to determine the structural response of the waste package (WP) swinging down from a horizontally suspended height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 13). AP-3.12Q, ''Calculations'' (Ref. 18) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 21-PWR WP design considered in this calculation and provides the potential dimensions and materials for the 21-PWR WP design

  3. WAPDEG Analysis of Waste Package and Drip shield Degradation

    International Nuclear Information System (INIS)

    K. Mon

    2004-01-01

    As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of scale in Section 6.3.4). The weld flaw portion of this report takes input from an engineering calculation (BSC 2004

  4. Depleted uranium oxides as spent-nuclear-fuel waste-package invert and backfill materials

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Haire, M.J.

    1997-01-01

    A new technology has been proposed in which depleted uranium, in the form of oxides or silicates, is placed around the outside of the spent nuclear fuel waste packages in the geological repository. This concept may (1) reduce the potential for repository nuclear criticality events and (2) reduce long-term release of radionuclides from the repository. As a new concept, there are significant uncertainties

  5. The packaging and transport of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Grover, J.R.; Price, M.S.T.

    1985-01-01

    Up to the present time, the majority of the radioactive waste which has been transported in the United Kingdom has been low level waste for disposal in the trenches of the shallow burial site operated by British Nuclear Fuels plc at Drigg and also the packaged waste destined for sea disposal in the annual operation. However, the main bulk of the low and intermediate level wastes which have been generated over the last quarter century remain in store at the various nuclear sites where it originated. Before significant packaging and transport of intermediate level wastes takes place it is desirable to examine the sources and types of wastes, the immobilisation and packaging processes and plants, the transport, and the problems of handling of packages at future land repositories. Optimisation of the packaging and transport must take account of both the upstream and downstream con=straints as well as the implications of complying with both the IAEA Transport Regulations and radiological protection guidelines. Packages for sea disposal must in addition comply with the requirements of the London Dumping Convention and the NEA guidelines. (author)

  6. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  7. Integrity of radioactive waste packages at the Yucca mountain repository

    International Nuclear Information System (INIS)

    Sandquist, G.; Biaglow, A.; Huber, M.; Jagmin, C.

    2004-01-01

    Several of the important physical and chemical processes that impact the integrity of the radioactive waste packages planned for disposal at the proposed Repository at Yucca Mountain are examined. These processes are described by the aerodynamic, thermodynamic, and chemical interactions associated with the waste packages. The effects of chemical corrosion, mechanical erosion, temperature distributions throughout the repository environs, interactions of air, water, and solid particles, and radiological and biological influences are addressed. Materials will be exposed to at least 3 conditions threatening the integrity of the waste package: 1) accumulated dust and particles on the package surface and suspended in the air, 2) chemical reactions from deposits on the waste package infrastructure materials and tight contact areas, and crevices, and 3) environmental factors affecting chemical reactions such as moisture, pH, Eh, and radiolysis. All 3 of these conditions can combine and produce damaging impacts upon the thin protective layer on the alloy surface of the waste package. There are certain benefits from the low-temperature operating mode with ambient temperature below 85 Celsius degrees, but the materials could be subjected to a maximum temperature of 180 Celsius degrees which might introduce stress corrosion cracking and high temperature effects

  8. Isotopic analysis of radioactive waste packages (an inexpensive approach)

    International Nuclear Information System (INIS)

    Padula, D.A.; Richmond, J.S.

    1983-01-01

    A computer printout of the isotopic analysis for all radioactive waste packages containing resins, or other aqueous filter media is now required at the disposal sites at Barnwell, South Carolina, and Beatty, Nevada. Richland, Washington requires an isotopic analysis for all radioactive waste packages. The NRC (Nuclear Regulatory Commission), through 10 CFR 61, will require shippers of radioactive waste to classify and label for disposal all radioactive waste forms. These forms include resins, filters, sludges, and dry active waste (trash). The waste classification is to be based upon 10 CFR 61 (Section 1-7). The isotopes upon which waste classification is to be based are tabulated. 7 references, 8 tables

  9. Thermal modeling of nuclear waste package designs for disposal in tuff

    International Nuclear Information System (INIS)

    Hockman, J.N.; O'Neal, W.C.

    1983-09-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This paper discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 6 references, 6 figures, 3 tables

  10. Thermal modeling of nuclear waste package designs for disposal in tuff

    International Nuclear Information System (INIS)

    Hockman, J.N.; O'Neal, W.C.

    1984-02-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This paper discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 6 references, 6 figures, 4 tables

  11. Behaviour Test with the Leaching of a Waste package

    International Nuclear Information System (INIS)

    Fischer, G.R

    1999-01-01

    bibliographic data.With the whole coefficients it was made a prediction about the time involved until the total release of the radionuclides. This work is being developed by the Radioactive Waste Management Division of Cnea and it has been included in a contract with the IAEA, which also studies the changes on the mechanical resistance of the waste package,so as the release of gases from organic wastes and the container corrosion

  12. A waste package strategy for regulatory compliance

    International Nuclear Information System (INIS)

    Stahl, D.; Cloninger, M.O.

    1990-01-01

    This paper summarizes the strategy given in the Site Characterization Plan for demonstrating compliance with the post closure performance objectives for the waste package and the Engineered Barrier System contained in the Code of Federal Regulations. The strategy consists of the development of a conservative waste package design that will meet the regulatory requirements with sufficient margin for uncertainty using a multi-barrier approach that takes advantage of the unsaturated nature of the Yucca Mountain site. 7 refs., 1 fig

  13. Containment barrier metals for high-level waste packages in a Tuff repository

    International Nuclear Information System (INIS)

    Russell, E.W.; McCright, R.D.; O'Neal, W.C.

    1983-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package project is part of the US Department of Energy's Civilian Radioactive Waste Management (CRWM) Program. The NNWSI project is working towards the development of multibarriered packages for the disposal of spent fuel and high-level waste in tuff in the unsaturated zone at Yucca Mountain at the Nevada Test Site (NTS). The final engineered barrier system design may be composed of a waste form, canister, overpack, borehole liner, packing, and the near field host rock, or some combination thereof. Lawrence Livermore National Laboratory's (LLNL) role is to design, model, and test the waste package subsystem for the tuff repository. At the present stage of development of the nuclear waste management program at LLNL, the detailed requirements for the waste package design are not yet firmly established. In spite of these uncertainties as to the detailed package requirements, we have begun the conceptual design stage. By conceptual design, we mean design based on our best assessment of present and future regulatory requirements. We anticipate that changes will occur as the detailed requirements for waste package design are finalized. 17 references, 4 figures, 10 tables

  14. Containment barrier metals for high-level waste packages in a Tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.W.; McCright, R.D.; O`Neal, W.C.

    1983-10-12

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package project is part of the US Department of Energy`s Civilian Radioactive Waste Management (CRWM) Program. The NNWSI project is working towards the development of multibarriered packages for the disposal of spent fuel and high-level waste in tuff in the unsaturated zone at Yucca Mountain at the Nevada Test Site (NTS). The final engineered barrier system design may be composed of a waste form, canister, overpack, borehole liner, packing, and the near field host rock, or some combination thereof. Lawrence Livermore National Laboratory`s (LLNL) role is to design, model, and test the waste package subsystem for the tuff repository. At the present stage of development of the nuclear waste management program at LLNL, the detailed requirements for the waste package design are not yet firmly established. In spite of these uncertainties as to the detailed package requirements, we have begun the conceptual design stage. By conceptual design, we mean design based on our best assessment of present and future regulatory requirements. We anticipate that changes will occur as the detailed requirements for waste package design are finalized. 17 references, 4 figures, 10 tables.

  15. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  16. Waste package for Yucca Mountain repository: Strategy for regulatory compliance

    International Nuclear Information System (INIS)

    Cloninger, M.; Short, D.; Stahl, D.

    1989-02-01

    This document summarizes the strategy given in the Site Characterization Plan (1) for demonstrating compliance with the post closure performance objectives for the waste package and the Engineered Barrier System (EBS) contained in the Code of Federal Regulations. The strategy consists of the development of a conservative waste package design that will meet the regulatory requirements with sufficient margin for uncertainty using a multi-barrier approach that takes advantage of the unsaturated nature of the Yucca Mountain site. This strategy involves an iterative process designed to achieve compliance with the requirements for substantially complete containment and EBS release. The strategy will be implemented in such a manner that sufficient evidence will be provided for presentation to the Nuclear Regulatory Commission (NRC) so that it may make a finding that there is ''reasonable assurance'' that these performance requirements will indeed be met. In implementing the strategy, DOE recognizes four fundamental goals: (1) protect public health and safety; (2) minimize financial and other resource commitments; (3) comply with applicable laws and regulations; and (4) maintain an aggressive schedule. The strategy is intended to be a reasonable balance of these competing goals. 7 refs., 3 figs., 1 tab

  17. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  18. WASTE PACKAGE OPERATIONS FY99 CLOSURE METHODS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    M. C. Knapp

    1999-09-23

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing.

  19. WASTE PACKAGE OPERATIONS FY-99 CLOSURE METHODS REPORT

    International Nuclear Information System (INIS)

    M. C. Knapp

    1999-01-01

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing

  20. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-01-01

    Hydrothermal waste package interaction tests were conducted with a mixture of crushed glass, basalt, and steel in methane-containing synthetic basalt groundwater. In the absence of gamma radiolysis, methane was found to have little influence on the corrosion behavior of the waste package constituents. Under gamma radiolysis, methane was found to significantly lower the solution oxidation potential when compared to identical tests without methane. In addition, colloidal hydrocarbon polymers that have been produced under the irradiation conditions of these experiments were not formed. The presence of the waste package constituents apparently inhibited the formation of the polymers. However, the mechanism which prevented their formation was not determined

  1. Packages for radiactive waste disposal

    International Nuclear Information System (INIS)

    Oliveira, R. de.

    1983-01-01

    The development of multi-stage type package for sea disposal of compactable nuclear wastes, is presented. The basic requirements for the project followed the NEA and IAEA recommendations and observations of the solutions adopted by others countries. The packages of preliminary design was analysed, by computer, under several conditions arising out of its nature, as well as their conditions descent, dumping and durability in the deep of sea. The designed pressure equalization mechanic and the effect compacting on the package, by prototypes and specific tests, were studied. These prototypes were also submitted to the transport tests of the 'Regulament for the Safe Transport of Radioactive Materials'. Based on results of the testes and the re-evaluation of the preliminary design, final indications and specifications for excuting the package design, are presented. (M.C.K.) [pt

  2. Critical review of controlled release packaging to improve food safety and quality.

    Science.gov (United States)

    Chen, Xi; Chen, Mo; Xu, Chenyi; Yam, Kit L

    2018-03-19

    Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.

  3. Mixed waste chemical compatibility with packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-01-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals

  4. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

    2013-07-01

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  5. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  6. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    Energy Technology Data Exchange (ETDEWEB)

    González Pericot, N., E-mail: natalia.gpericot@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Villoria Sáez, P., E-mail: paola.villoria@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Del Río Merino, M., E-mail: mercedes.delrio@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Liébana Carrasco, O., E-mail: oscar.liebana@uem.es [Escuela de Arquitectura, Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón (Spain)

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  7. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    International Nuclear Information System (INIS)

    González Pericot, N.; Villoria Sáez, P.; Del Río Merino, M.; Liébana Carrasco, O.

    2014-01-01

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites

  8. Transport concept of new waste management system (inner packaging system)

    International Nuclear Information System (INIS)

    Hakozaki, K.; Wada, R.

    2004-01-01

    Kobe Steel, Ltd. (KSL) and Transnuclear Tokyo (TNT) have jointly developed a new waste management system concept (called ''Inner packaging system'') for high dose rate wastes generated from nuclear power plants under cooperation with Tokyo Electric Power Company (TEPCO). The inner packaging system is designed as a total management system dedicated to the wastes from nuclear plants in Japan, covering from the wastes conditioning in power plants up to the disposal in final repository. This paper presents the new waste management system concept

  9. Peer Review of the Waste Package Material Performance Interim Report

    International Nuclear Information System (INIS)

    J. A. Beavers; T. M. Devine, Jr.; G. S. Frankel; R. H. Jones; R. G. Kelly; R. M. Latanision; J. H. Payer

    2001-01-01

    At the request of the U.S. Department of Energy, Bechtel SAIC Company, LLC, formed the Waste Package Materials Performance Peer Review Panel (the Panel) to review the technical basis for evaluating the long-term performance of waste package materials in a proposed repository at Yucca Mountain, Nevada. This is the interim report of the Panel; a final report will be issued in February 2002. In its work to date, the Panel has identified important issues regarding waste package materials performance. In the remainder of its work, the Panel will address approaches and plans to resolve these issues. In its review to date, the Panel has not found a technical basis to conclude that the waste package materials are unsuitable for long-term containment at the proposed Yucca Mountain Repository. Nevertheless, significant technical issues remain unsettled and, primarily because of the extremely long life required for the waste packages, there will always be some uncertainty in the assessment. A significant base of scientific and engineering knowledge for assessing materials performance does exist and, therefore, the likelihood is great that uncertainty about the long-term performance can be substantially reduced through further experiments and analysis

  10. Recycling potential of post-consumer plastic packaging waste in Finland.

    Science.gov (United States)

    Dahlbo, Helena; Poliakova, Valeria; Mylläri, Ville; Sahimaa, Olli; Anderson, Reetta

    2018-01-01

    Recycling of plastics is urged by the need for closing material loops to maintain our natural resources when striving towards circular economy, but also by the concern raced by observations of plastic scrap in oceans and lakes. Packaging industry is the sector using the largest share of plastics, hence packaging dominates in the plastic waste flow. The aim of this paper was to sum up the recycling potential of post-consumer plastic packaging waste in Finland. This potential was evaluated based on the quantity, composition and mechanical quality of the plastic packaging waste generated by consumers and collected as a source-separated fraction, within the mixed municipal solid waste (MSW) or within energy waste. Based on the assessment 86,000-117,000 tons (18 kg/person/a) of post-consumer plastic packaging waste was generated in Finland in 2014. The majority, 84% of the waste was in the mixed MSW flow in 2014. Due to the launching of new sorting facilities and separate collections for post-consumer plastic packaging in 2016, almost 40% of the post-consumer plastic packaging could become available for recycling. However, a 50% recycling rate for post-consumer plastic packaging (other than PET bottles) would be needed to increase the overall MSW recycling rate from the current 41% by around two percentage points. The share of monotype plastics in the overall MSW plastics fraction was 80%, hence by volume the recycling potential of MSW plastics is high. Polypropylene (PP) and low density polyethylene (LDPE) were the most common plastic types present in mixed MSW, followed by polyethylene terephthalate (PET), polystyrene (PS) and high density polyethylene (HDPE). If all the Finnish plastic packaging waste collected through the three collection types would be available for recycling, then 19,000-25,000 tons of recycled PP and 6000-8000 tons of recycled HDPE would be available on the local market. However, this assessment includes uncertainties due to performing the

  11. Shielding Calculations on Waste Packages – The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    OpenAIRE

    Adams Mike; Smalian Silva

    2017-01-01

    For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like “Monte-Carlo N-Particle Transport Code System” (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The prob...

  12. Waste Package Project quarterly report, July 1, 1995--September 30, 1995

    International Nuclear Information System (INIS)

    Ladkany, S.G.

    1995-01-01

    The following tasks are reported: overview and progress of nuclear waste package project and container design; nuclear waste container design considerations; structural investigation of multi purpose nuclear waste package canister; and design requirements of rock tunnel drift for long-term storage of high-level waste (faulted tunnel model study by photoelasticity/finite element analysis)

  13. The ATB-8K packaging for transport of radioactive waste in Sweden

    International Nuclear Information System (INIS)

    Michels, L.; Dybeck, P.

    1998-01-01

    The ATB-8K container has been developed on behalf of SKB, the Swedish nuclear fuel and waste management organization, to transport large volumes of radioactive waste conditioned in moulds and drums, or large size scrap components, from nuclear facilities to the Swedish Final Repository for radioactive waste (SFR). In most cases the waste is under LSA form, but when the dose rate at 3 meters from the unshielded object exceeds 10 mSv/h, the transport packaging must been the regulatory requirements applicable to type B(U) packages, with no fissile content. Considering the dose rate around the package, it will be transported under exclusive use. The ATB-8k packaging is therefore a type B(U) packaging, specially designed for the transportation of high activity conditioned waste. (authors)

  14. The packaging of intermediate and low level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1985-01-01

    Solid radioactive wastes will generally require some kind of packaging to prepare them for a period of storage followed probably by a land burial. In this Paper the specification of the package is discussed in relation to the properties which will facilitate those two phases of the management of the waste. It is concluded that, by adopting the philosophy of redundant barriers for the disposal phase, a suitable package can be specified for any particular waste product even before the repository site has been selected. Low water flow and an appropriate depth to reduce the risk of accidental re-exposure are the technical site parameters for which particular values will have to be assured at that stage. (author)

  15. The Role of Packaging in Solid Waste Management 1966 to 1976.

    Science.gov (United States)

    Darnay, Arsen; Franklin, William E.

    The goals of waste processors and packagers obviously differ: the packaging industry seeks durable container material that will be unimpaired by external factors. Until recently, no systematic analysis of the relationship between packaging and solid waste disposal had been undertaken. This three-part document defines these interactions, and the…

  16. Thermal Response of the 21-PWR Waste Package to a Fire Accident

    International Nuclear Information System (INIS)

    F.P. Faucher; H. Marr; M.J. Anderson

    2000-01-01

    The objective of this calculation is to evaluate the thermal response of the 21-PWR WP (pressurized water reactor waste package) to the regulatory fire event. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation (Attachment IV) is that of the potential design of the type of waste package considered in this calculation. The procedure AP-3.12Q.Calculations (Reference 1), and the Development Plan (Reference 24) are used to develop this calculation

  17. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage

    International Nuclear Information System (INIS)

    2005-01-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  18. Life cycle assessment of a packaging waste recycling system in Portugal

    International Nuclear Information System (INIS)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-01-01

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios

  19. Life cycle assessment of a packaging waste recycling system in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.; Cabral, M. [CEG-IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Simões, P. [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, R.C. [CESUR, IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  20. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Carr, J.A.; Cunnane, J.C.

    1986-01-01

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  1. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  2. Mass Transfer Model for a Breached Waste Package

    International Nuclear Information System (INIS)

    Hsu, C.; McClure, J.

    2004-01-01

    The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss

  3. Release Mathematical Model of Active Agent from Packaging Material into Food

    Directory of Open Access Journals (Sweden)

    Xiuling Huang

    2013-01-01

    Full Text Available Active packaging is an innovative packaging technology by which active compounds are released from the package to enhance the quality and microbial safety for a wide range of foods. The problem of active ingredient release through the bilayer packaging food system is studied from a theoretical viewpoint. A release model is built to provide predictions of concentration and amount of active ingredient. The equations are built based on Fickian diffusion, and numerical solutions are obtained through finite difference. Different diffusion coefficients DP and DC of active ingredient in different packaging layers, partition coefficient kCP at the interface of outer layer and inner layer, partition coefficient kFC at the interface of inner layer and food, and mass transfer coefficient hm at the interface of inner layer and food are considered in the model. The effects of kCP, thicknesses of outer layer and inner layer, CP0, DP, DC, kFC, and hm on the release are discussed. Corresponding conclusions and analysis are given.

  4. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-11-01

    Hydrothermal waste package interaction tests with methane-containing synthetic basalt groundwater have shown that in the absence of gamma radiolysis, methane has little influence on the glass dissolution rate. Gamma radiolysis tests at fluxes of 5.5 x 10 5 and 4.4 x 10 4 R/hr showed that methane-saturated groundwater was more reducing than identical experiments where Ar was substituted for CH 4 . Dissolved methane, therefore, may be beneficial to the waste package in limiting the solubility of redox sensitive radionuclides such a 99 Tc. Hydrocarbon polymers known to form under the irradiation conditions of these tests were not produced. The presence of the waste package constituents apparently inhibited the formation of the polymers, however, the mechanism which prevented their formation was not determined

  5. CH Packaging Operations for High Wattage Waste at LANL

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2002-01-01

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal

  6. CH Packaging Operations for High Wattage Waste at LANL

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2002-01-01

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal

  7. CH Packaging Operations for High Wattage Waste at LANL

    International Nuclear Information System (INIS)

    Washington TRU Solutions LLC

    2003-01-01

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal

  8. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  9. Influence of factors on release of antimicrobials from antimicrobial packaging materials.

    Science.gov (United States)

    Wu, Yu-Mei; Wang, Zhi-Wei; Hu, Chang-Ying; Nerín, Cristina

    2018-05-03

    Antimicrobial packaging materials (films or coatings) (APMs) have aroused great interest among the scientists or the experts specialized in material science, food science, packaging engineering, biology and chemistry. APMs have been used to package the food, such as dairy products, poultry, meat (e.g., beef), salmon muscle, pastry dough, fresh pasta, bakery products, fruits, vegetables and beverages. Some materials have been already commercialized. The ability of APMs to extend the shelf-life of the food depends on the release rate of the antimicrobials (AMs) from the materials to the food. The optimum rate is defined as target release rate (TRR). To achieve TRR, the influencing factors of the release rate should be considered. Herein we reviewed for the first time these factors and their influence on the release. These factors mainly include the AMs, food (or food simulant), packaging materials, the interactions among them, the temperature and environmental relative humidity (RH).

  10. Improved permeation barriers for tritiated waste packaging

    International Nuclear Information System (INIS)

    Vassallo, G.; Van Den Bergh, R.; Forcey, K.S.; Perujo, A.

    1994-01-01

    High-density polyethylene (HDPE) is extensively used as flexible bagging or packaging for soft tritiated waste in the tritium community because of its low permeability to the more radiotoxic form of tritium, i.e., tritiated water (HTO). However, HDPE does not represent a perfect barrier to HTO nor does it effectively hinder the permeation of elemental tritium, i.e, HT. This latter drawback is particularly important considering that the elemental form may readily convert to HTO outside of the waste package. The possible use of a multilayer film as packing material for the conditioning of tritiated waste is assessed, and its capability to hinder the permeation of elemental tritium is measured and compared with that of bare HDPE. The material investigated is readily available from the food industry. 5 refs., 1 tab

  11. Packaging LLW and ILW

    International Nuclear Information System (INIS)

    Flowers, R.H.; Owen, R.G.

    1991-01-01

    Low level waste (LLW) accounts for 70-80% by volume of all radioactive wastes produced by the nuclear industry. It has low specific activity, negligible actinide content and requires little, if any, shielding to protect workers. Volume reduction for LLW of high volume but low density may be achieved by incineration and compaction as appropriate, before packaging for disposal by near surface burial. Intermediate level waste (ILW) is treated and packed to convert it into a stable form to minimize any release of activity and make handling easier. The matrix chosen for immobilization, usually cement, polymers or bitumen, depends on the nature of the waste and the acceptance criteria of the disposal facility. The special case of LLW and ILW which will arise from reactor decommissioning is discussed. Packaging methods adopted by individual countries are reviewed. The range of costs involved for packaging ILW is indicated. There is no international consensus on the performance required from packaged waste to ensure its suitability both for interim storage and final disposal. (UK)

  12. Criticality Potential of Waste Packages Containing DOE SNF Affected by Igneous Intrusion

    International Nuclear Information System (INIS)

    D.S. Kimball; C.E. Sanders

    2006-01-01

    The Department of Energy (DOE) is currently preparing an application to submit to the U.S. Nuclear Regulatory Commission for a construction authorization for a monitored geologic repository. The repository will contain spent nuclear fuel (SNF) and defense high-level waste (DHLW) in waste packages placed in underground tunnels, or drifts. The primary objective of this paper is to perform a criticality analysis for waste packages containing DOE SNF affected by a disruptive igneous intrusion event in the emplacement drifts. The waste packages feature one DOE SNF canister placed in the center and surrounded by five High-Level Waste (HLW) glass canisters. The effective neutron multiplication factor (k eff ) is determined for potential configurations of the waste package during and after an intrusive igneous event. Due to the complexity of the potential scenarios following an igneous intrusion, finding conservative and bounding configurations with respect to criticality requires some additional considerations. In particular, the geometry of a slumped and damaged waste package must be examined, drift conditions must be modeled over a range of parameters, and the chemical degradation of DOE SNF and waste package materials must be considered for the expected high temperatures. The secondary intent of this calculation is to present a method for selecting conservative and bounding configurations for a wide range of end conditions

  13. Alternatives for packaging and transport of greater-than-class C low-level waste

    International Nuclear Information System (INIS)

    Smith, R.I.

    1990-06-01

    Viable methods for packaging greater-than-class C (GTCC) low-level wastes and for transporting those wastes from the waste generator sites or from an eastern interim storage site to the Yucca Mountain repository site have been identified and evaluated. Estimated costs for packaging and transporting the population of GTCC wastes expected to be accumulated through the year 2040 have been developed for three waste volume scenarios, for two preferred packaging methods for activated metals from reactor operations and from reactor decommissioning, and for two packaging density assumptions for the activated metals from reactor decommissioning. 7 refs. 7 tabs

  14. ERG review of waste package corrosion mechanisms

    International Nuclear Information System (INIS)

    Geisert, R.E.

    1988-01-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The ERG reviewed the waste package corrosion mechanisms. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG. 1 ref

  15. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    Energy Technology Data Exchange (ETDEWEB)

    Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

  16. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    International Nuclear Information System (INIS)

    Manaktala, H.K.; Interrante, C.G.

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide ''substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig

  17. Application of systems engineering to determine performance requirements for repository waste packages

    International Nuclear Information System (INIS)

    Aitken, E.A.; Stimmell, G.L.

    1987-01-01

    The waste package for a nuclear waste repository in salt must contribute substantially to the performance objectives defined by the Salt Repository Project (SRP) general requirements document governing disposal of high-level waste. The waste package is one of the engineered barriers providing containment. In establishing the performance requirements for a project focused on design and fabrication of the waste package, the systems engineering methodology has been used to translate the hierarchy requirements for the repository system to specific performance requirements for design and fabrication of the waste package, a subsystem of the repository. This activity is ongoing and requires a methodology that provides traceability and is capable of iteration as baseline requirements are refined or changed. The purpose of this summary is to describe the methodology being used and the way it can be applied to similar activities in the nuclear industry

  18. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  19. Assessment of plastic packaging waste : material origin, methods, properties

    NARCIS (Netherlands)

    Luijsterburg, B.J.; Goossens, J.G.P.

    2014-01-01

    The global plastics production has increased annually and a substantial part is used for packaging (in Europe 39%). Most plastic packages are discarded after a relatively short service life and the resulting plastic packaging waste is subsequently landfilled, incinerated or recycled. Laws of several

  20. Modelling approach to evaluate safety of LILW-SL disposal in slovenia considering different waste packaging options

    International Nuclear Information System (INIS)

    Perko, J.; Mallants, D.

    2007-01-01

    The long-term safety of radioactive waste repositories is usually demonstrated by means of a safety assessment which normally includes modelling of radionuclide release from a multi-barrier surface or deep repository to the geosphere and biosphere. The present quantitative evaluation performed emphasizes on contrasting disposal options under consideration in Slovenia and concerns siting, disposal concept (deep versus surface), and waste packaging. The assessment has identified a number of conditions that would lead to acceptable waste disposal solutions, while at the same time results also revealed options that would result in exceeding the radiological criteria. Results presented are the output of a collective effort of a Quintessa-led Consortium with SCK-CEN and Belgatom, in the framework of a recent PHARE project. The key objective of this work was to identify the preferred disposal concept and packaging option from a number of alternatives being considered by the Slovenian radioactive waste management agency (ARAO) for low and intermediate level short-lived waste (LILW-SL). The emphasis of the assessment was the consideration of several waste treatment and packaging options in an attempt to identify the minimum required containment characteristics which would result in safe disposal and the cost-benefit of additional safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes containing drums with unconditioned ion exchange resins in overpacked tube type containers (TTCs). For the former the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers. For the latter three options were foreseen. The first is overpacking of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralisation, and cementation of

  1. Full-scale testing of waste package inspection system

    International Nuclear Information System (INIS)

    Yagi, T.; Kuribayashi, H.; Moriya, Y.; Fujisawa, H.; Takebayashi, N.

    1989-01-01

    In land disposal of low-level radioactive waste (LLW) in Japan, it is legally required that the waste packages to be disposed of be inspected for conformance to applicable technical regulations prior to shipment from each existing power station. JGC has constructed a fully automatic waste package inspection system for the purpose of obtaining the required design data and proving the performance of the system. This system consists of three inspection units (for visual inspection, surface contamination/dose rate measurement and radioactivity/weight measurement), a labelling unit, a centralized control unit and a drum handling unit. The outstanding features of the system are as follows: The equipment and components are modularized and designed to be of the most compact size and the quality control functions are performed by an advanced centralized control system. The authors discuss how, as a result of the full-scale testing, it has been confirmed that this system satisfies all the performance requirements for the inspection of disposal packages

  2. Status of ERDA TRU waste packaging study

    International Nuclear Information System (INIS)

    Doty, J.W. Jr.

    1977-01-01

    This paper discusses the status of Task 3 of the TRU Waste Cyclone Drum Incinerator and Treatment System program. This task covers acceptable TRU packaging for interim storage and terminal isolation. The kind of TRU wastes generated by contractors and its transport are discussed. Both drum and box systems are desirable

  3. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  4. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  5. Management of packaging waste in Poland--development agenda and accession to the EU.

    Science.gov (United States)

    Grodzińska-Jurczak, Małgorzata; Zakowska, Hanna; Read, Adam

    2004-06-01

    In recent years the issue of the municipal waste in Poland has become increasingly topical, with a considerable rise in the waste generation, much of which can be attributed to a boom in product packaging (mainly plastic). The annual production of plastics packaging has been constantly increasing over the last 20 to 30 years, and now exceeds 3.7 million tons. Due to a lack of processing technologies and poorly developed selective segregation system, packaging waste is still treated as a part of the municipal solid waste (MSW) stream, most of which is landfilled. As a result of Poland's access to the European Union, previous legal regulations governing municipal waste management have been harmonized with those binding on the member countries. One of the main changes, the most revolutionary one, is to make entrepreneurs liable for environmental risks resulting from the introduction of packaging to the market, and for its recycling. In practice, all entrepreneurs are to ensure recovery, and recycling, of used packaging from products introduced to the market at the required level. In recent year, the required recycling levels were fulfilled for all types of materials but mainly by large institutions using grouped and transport packaging waste for that matter. Household packaging gathered in the selective segregation system at the municipalities was practically left alone. This paper is an attempt to describe the system and assess the first year of functioning of the new, revamped system of packaging waste management in Poland. Recommendations are made relating to those features that need to be included in packaging waste management systems in order to maximize their sustainability and harmonization with the EU legal system.

  6. Development of waste packages for TRU-disposal. 5. Development of cylindrical metal package for TRU wastes

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mizubayashi, Hiroshi; Asano, Hidekazu; Owada, Hitoshi; Otsuki, Akiyoshi

    2005-01-01

    Development of the TRU waste package for hulls and endpieces compression canisters, which include long-lived and low sorption nuclides like C-14 is essential and will contribute a lot to a reasonable enhancement of safety and economy of the TRU-disposal system. The cylindrical metal package made of carbon steel for canisters to enhance the efficiency of the TRU-disposal system and to economically improve their stacking conditions was developed. The package is a welded cylindrical construction with a deep drawn upper cover and a disc plate for a bottom cover. Since the welding is mainly made only for an upper cover and a bottom disc plate, this package has a better containment performance for radioactive nuclide and can reduce the cost for construction and manufacturing including its welding control. Furthermore, this package can be laid down in pile for stacking in the circular cross section disposal tunnel for the sedimentary rock, which can drastically minimize the space for disposal tunnel as mentioned previously in TRU report. This paper reports the results of the study for application of newly developed metal package into the previous TRU-disposal system and for the stacking equipment for the package. (author)

  7. Testing of the permissible inventories in radioactive waste packages

    International Nuclear Information System (INIS)

    Stegmaier, W.

    1988-01-01

    The inventories of radionuclides in waste packages which are to be stored in repositories are determined in the Waste Acceptance Requirements of the repository and in the Act on Transport of Dangerous Goods. In this report limiting values of relevant radionuclides are given in such a way that it is possible to use them in a standardized manner. The limiting values apply to single radionuclides, for handling mixtures of nuclides it is necessary to use the sum formula. The minimized number of waste packages which must be produced from a given quantity of raw waste and an inventory of radionuclides keeping all parameters can be calculated with the help of the shown calculating sheet. (orig.) [de

  8. A history of solid waste packaging at the Hanford Site

    International Nuclear Information System (INIS)

    Duncan, D.R.; Weyns-Rollosson, D.I.; Pottmeyer, J.A.; Stratton, T.J.

    1995-02-01

    Since the initiation of the defense materials product mission, a total of more than 600,000 m 3 of radioactive solid waste has been stored or disposed at the US Department of Energy's (DOE) Hanford Site, located in southeastern Washington State. As the DOE complex prepares for its increasing role in environmental restoration and waste remediation, the characterization of buried and retrievably stored waste will become increasingly important. Key to this characterization is an understanding of the standards and specifications to which waste was packaged; the regulations that mandated these standards and specifications; the practices used for handling and packaging different waste types; and the changes in these practices with time

  9. Phosphates as packaging materials for separated nuclear wastes

    International Nuclear Information System (INIS)

    Audubert, F.

    2006-10-01

    The author gives an overview of fifteen years of research activities performed within the context of the so-called Bataille bill which recommended in 1991 new investigations on the management of nuclear wastes. She presents studies aimed at the elaboration of phosphates with an apatite structure, and outlines the determination of compositions adapted to iodine, caesium and tri- or tetravalent actinide incorporation. She reports the synthesis of phosphates with a monazite structure for caesium and actinide confinement. Finally, she reports studies dealing with the waste packaging issue (elaboration of packaging matrices, properties)

  10. Quality control concept for radioactive waste packages

    International Nuclear Information System (INIS)

    Warnecke, E.; Martens, B.R.; Odoj, R.

    1990-01-01

    In the Federal Republic of Germany a contract with the BfS for the performance of quality control measures is necessary. It is principally possible to apply two alternative methods: random checks on waste packages or qualification of conditioning processes with subsequent inspections. Priority is given to the control by the process qualification. Both methods have successfully been developed in the Federal Republic of Germany and can be applied. In the course of the qualification of conditioning processes it must be demonstrated by inactive and/or active runs that waste packages are produced which fulfil the waste acceptance requirements. The qualification results in the fixation of a handbook for the operation of the respective conditioning process including the process instrumentation and the operational margins. The qualified process will be inspected to assure the compliance of the actual operation with the conditions fixed in the handbook. (orig./DG)

  11. Waste package reference conceptual designs for a repository in salt

    International Nuclear Information System (INIS)

    1986-02-01

    This report provides the reference conceptual waste package designs for the Office of Nuclear Waste Isolation to baseline these designs, thereby establishing the configuration and interface controls necessary, within the Civilian Radioactive Waste Management Program, formerly the National Waste Terminal Storage Program, to proceed in an orderly manner with preliminary design. Included are designs for the current reference defense high-level waste form from the Savannah River Plant, an optimized commercial high-level waste form, and spent fuel which has been disassembled and compacted into a circular bundle containing either 12 pressurized-water reactor or 30 boiling-water reactor assemblies. For compacted spent fuel, it appears economically attractive to standardize the waste package diameter for all fuel types. The reference waste packages consist of the containerized waste form, a low carbon steel overpack, and, after emplacement, a cover of salt. The overpack is a hollow cylinder with a flat head welded to each end. Its design thickness is the sum of the structural thickness required to resist the 15.4-MPa lithostatic pressure plus the corrosion allowance necessary to assure the required structural thickness will exist through the 1000-year containment period. Based on available data and completed analyses, the reference concepts described in this report satisfy all requirements of the US Department of Energy and the US Nuclear Regulatory Commission with reasonable assurance. In addition, sufficient design maturity exists to form a basis for preliminary design; these concepts can be brought under configuration control to serve as reference package designs. Development programs are identified that will be required to support these designs during the licensing process. 19 refs., 37 figs., 31 tabs

  12. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-08-01

    This document reports progress on a study of large transport packages for decommissioning waste and is the semi-annual report for the period 1 January - 30 June 1988. The main tasks performed during the period related to the assembly of package design criteria ie those aspects of manufacture, handling, storage, transport and disposal which impose constraints on design. This work was synthesised into a design specification for packages which formed the conclusion of that task and was the entry into the final task - the development of package design concepts. The design specifications, which concentrated on the Industrial Package category of the IAEA Transport Regulations, has been interpreted for the two main concepts (a) a self-shielded package disposed of in its entirety and (b) a package with returnable shielding. Preliminary information has been prepared on the cost of providing the package as well as transport to a repository and disposal. There is considerable uncertainty about the cost of disposal and variations of over a factor of 10 are possible. Under these circumstances there is merit in choosing a design concept which is relatively insensitive to disposal cost variations. The initial results indicate that on these grounds the package with returnable shielding is preferred. (author)

  13. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  14. Packaging waste recycling in Europe: is the industry paying for it?

    Science.gov (United States)

    da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-01

    This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and

  15. Quality assurance requirements and methods for high level waste package acceptability

    International Nuclear Information System (INIS)

    1992-12-01

    This document should serve as guidance for assigning the necessary items to control the conditioning process in such a way that waste packages are produced in compliance with the waste acceptance requirements. It is also provided to promote the exchange of information on quality assurance requirements and on the application of quality assurance methods associated with the production of high level waste packages, to ensure that these waste packages comply with the requirements for transportation, interim storage and waste disposal in deep geological formations. The document is intended to assist both the operators of conditioning facilities and repositories as well as national authorities and regulatory bodies, involved in the licensing of the conditioning of high level radioactive wastes or in the development of deep underground disposal systems. The document recommends the quality assurance requirements and methods which are necessary to generate data for these parameters identified in IAEA-TECDOC-560 on qualitative acceptance criteria, and indicates where and when the control methods can be applied, e.g. in the operation or commissioning of a process or in the development of a waste package design. Emphasis is on the control of the process and little reliance is placed on non-destructive or destructive testing. Qualitative criteria, relevant to disposal of high level waste, are repository dependent and are not addressed here. 37 refs, 3 figs, 2 tabs

  16. Effects of mixed waste simulants on transportation packaging plastic components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1994-01-01

    The purpose of hazardous and radioactive materials packaging is to, enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified. The design requirements for both hazardous and radioactive materials packaging specify packaging compatibility, i.e., that the materials of the packaging and any contents be chemically compatible with each other. Furthermore, Type A and Type B packaging design requirements stipulate that there be no significant chemical, galvanic, or other reaction between the materials and contents of the package. Based on these requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program, supported by the US Department of Energy's (DOE) Transportation Management Division, EM-261 provides the means to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. In this paper, we describe the general elements of the testing program and the experimental results of the screening tests. The implications of the results of this testing are discussed in the general context of packaging development. Additionally, we present the results of the first phase of this experimental program. This phase involved the screening of five candidate liner and six seal materials against four simulant mixed wastes

  17. Progress in waste package and engineered barrier system performance assessment and design

    International Nuclear Information System (INIS)

    Van Luik, A.; Stahl, D.; Harrison, D.

    1993-01-01

    As part of the U.S. Department of Energy's evaluation of site suitability for a potential high-level radioactive waste repository, long-term interactions between the engineered barrier system and the site must be determined. This requires a waste-package/engineered-system design, a description of the environment around the emplacement zone, and models that simulate operative processes describing these engineered/natural systems interactions. Candidate designs are being evaluated, including a more robust, multi-barrier waste package, and a drift emplacement mode. Tools for evaluating designs, and emplacement mode are the currently available waste-package/engineered-system performance assessment codes development for the project. For assessments that support site suitability, environmental impact, or licensing decisions, more capable codes are needed. Code capability requirements are being written, and existing codes are to be evaluated against those requirements. Recommendations are being made to focus waste-packaging/engineered-system code-development

  18. Secondary Waste Form Down Selection Data Package – Ceramicrete

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete

  19. Degradation modes of nickel-base alternate waste package overpack materials

    International Nuclear Information System (INIS)

    Pitman, S.G.

    1988-07-01

    The suitability of Ti Grade 12 for waste package overpacks has been questioned because of its observed susceptibility to crevice corrosion and hydrogen-assisted crack growth. For this reason, materials have been selected for evaluation as alternatives to Ti Grade 12 for use as waste package overpacks. These alternative materials, which are based on the nickel-chromium-molybdenum (Ni-Cr-Mo) alloy system, are Inconel 625, Hastelloy C-276, and Hastelloy C-22. The degradation modes of the Ni-base alternate materials have been examined at Pacific Northwest Laboratory to determine the suitability of these materials for waste package overpack applications in a salt repository. Degradation modes investigated included general corrosion, crevice corrosion, pitting, stress-corrosion cracking, and hydrogen embrittlement

  20. Operational considerations in drift emplacement of waste packages

    International Nuclear Information System (INIS)

    Benton, H.A.

    1993-01-01

    This paper discusses the operational considerations as well as the advantages and disadvantages of emplacing waste packages in drifts in a repository. The considerations apply particularly to the potential repository for spent nuclear fuel and high-level waste glass at Yucca Mountain, although most of the considerations and the advantages and disadvantages discussed in this paper do not necessarily represent the official views of the DOE or of the Management and Operations Contractor, since most of these considerations are still under active discussion and the final decisions will not be made for some time - perhaps years. This paper describes the issues, suggests some principles upon which decisions should be based, and states some of the most significant advantages and disadvantages of the emplacement modes, and the associated waste package types and thermal loadings

  1. The role of waste package specifications as a forerunner to ILW repository conditions for acceptance

    International Nuclear Information System (INIS)

    Barlow, S.V.; Palmer, J.D.

    1998-01-01

    In the absence of a finalized repository site, design or associated safety case, Nirex is not in a position to issue conditions for acceptance. Nirex has therefore developed a strategy which facilitates packaging of intermediate level waste by providing guidance through waste package specifications, supported by the formal assessment of specific packaging proposals on a case-by-case basis. The waste package specifications are comprehensive and cover all aspects of the waste package including dimensions and other key features, performance standards, wasteform, quality assurance, and data recording requirements. The waste package specifications will be subject to periodic review as repository design and safety cases are finalized and will progressively become site- and design-specific. The waste package specifications will eventually form the basis for conditions for acceptance. The strategy described in this paper has been successfully followed by Nirex and customers for the past ten years and has permitted wastes to be packaged for a deep repository with confidence in the absence of a finalized site and safety cases for the repository. Because the process has its basis in a generic repository concept, it remains robust, despite the increased uncertainty following the March 1997 Secretary of State's decision, as to the siting and time-scale of a deep waste repository, and continues to be an important component of the UK's waste management strategy. (author)

  2. Thermal analysis of Yucca Mountain commercial high-level waste packages

    International Nuclear Information System (INIS)

    Altenhofen, M.K.; Eslinger, P.W.

    1992-10-01

    The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system

  3. Influence of non-radioactive payload parameters on radioactive shipping packages

    International Nuclear Information System (INIS)

    Drez, P.E.; Murthy, D.V.S.; Temus, C.J.; Quinn, G.J.; Ozaki, C.

    1989-01-01

    The transport of radioactive waste materials in radioactive material (RAM) packages involves two components: the packaging used for transportation, and the waste which forms the payload. The payload is usually comprised of non-radioactive materials contaminated with radionuclides. The non-radionuclide payload characteristics can often be a controlling factor in determining the restrictions imposed on the certification of the package. This paper describes these package/payload interactions and the limiting parameters for the Transuranic Package Transporter-II (TRUPACT-II), designed for the transportation of Contact Handled Transuranic (CH-TRU) waste. The parameters discussed include the physical and chemical form of the payload, the configuration of the waste, and resulting gas generation and gas release phenomena. Brief descriptions of the TRUPACT-II package and its payload are presented initially

  4. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    International Nuclear Information System (INIS)

    Coles, D.G.; Peters, R.D.

    1986-04-01

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance

  5. Initial specifications for nuclear waste package external dimensions and materials

    International Nuclear Information System (INIS)

    Gregg, D.W.; O'Neal, W.C.

    1983-09-01

    Initial specifications of external dimensions and materials for waste package conceptual designs are given for Defense High Level Waste (DHLW), Commercial High Level Waste (CHLW) and Spent Fuel (SF). The designs have been developed for use in a high-level waste repository sited in a tuff media in the unsaturated zone. Drawings for reference and alternative package conceptual designs are presented for each waste form for both vertical and horizontal emplacement configurations. Four metal alloys: 304L SS, 321 SS, 316L SS and Incoloy 825 are considered for the canister or overpack; 1020 carbon steel was selected for horizontal borehole liners, and a preliminary packing material selection is either compressed tuff or compressed tuff containing iron bearing smectite clay as a binder

  6. Packaging waste recycling in Europe: Is the industry paying for it?

    International Nuclear Information System (INIS)

    Ferreira da Cruz, Nuno; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-01-01

    Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste

  7. Packaging waste recycling in Europe: Is the industry paying for it?

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Cruz, Nuno, E-mail: nunocruz@ist.utl.pt; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-15

    Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste

  8. Low and intermediate level waste in SFR-1. Reference waste inventory

    International Nuclear Information System (INIS)

    Riggare, P.; Johansson, Claes

    2001-06-01

    The objective with this report is to describe all the waste and the waste package that is expected to be deposited in SFR-1 at the time of closure. This report is a part of the SAFE project (Safety Assessment of Final Repository for Radioactive Operational Waste), i.e. the renewed safety assessment of SFR-1. The accounted waste inventory has been used as input to the release calculation that has been performed in the SAFE project. The waste inventory is based on an estimated operational lifetime of the Swedish nuclear power plants of 40 years and that closure of the SFR repository will happen in 2030. In the report, data about geometries, weights, materials, chemicals and radionuclide are given. No chemo toxic material has been identified in the waste. The inventory is based on so called waste types and the waste types reference waste package. The reference waste package combined with a prognosis of the number of waste packages to the year 2030 gives the final waste inventory for SFR-1. All reference waste packages are thoroughly described in the appendices of this report. The reference waste packages are as far as possible based on actual experiences and measurements. The radionuclide inventory is also based on actual measurements. The inventory is based on measurements of 60 Co and 137 Cs in waste packages and on measurements 239 Pu and 240 Pu in reactor water. Other nuclides in the inventory are calculated with correlation factors. In the SAFE project's prerequisites it was said that one realistic and one conservative (pessimistic) inventory should be produced. The conservative one should then be used for the release calculations. In this report one realistic and one conservative radionuclide inventory is presented. The conservative one adds up to 10 16 Bq. Regarding materials there is only one inventory given since it is not certain what is a conservative assumption

  9. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ''unpackaged'' volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste

  10. Compatibility of packaging components with simulant mixed waste

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1996-01-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the US have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation (US DOT, 49 CFR 173) and the US Nuclear Regulatory Commission (NRC, 10 CFR 71). Based on these national requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program provides a basis to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. In this paper, the authors present the results of the second phase of this testing program. The first phase screened five liner materials and six seal materials towards four simulant mixed wastes. This phase involved the comprehensive testing of five candidate liner materials to an aqueous Hanford Tank simulant mixed waste. The comprehensive testing protocol involved exposing the respective materials a matrix of four gamma radiation doses (∼ 1, 3, 6, and 40 kGy), three temperatures (18, 50, and 60 C), and four exposure times (7, 14, 28, and 180 days). Following their exposure to these combinations of conditions, the materials were evaluated by measuring five material properties. These properties were specific gravity, dimensional changes, hardness, stress cracking, and mechanical properties

  11. Expected environment for waste packages in a salt repository

    International Nuclear Information System (INIS)

    Pederson, L.R.; Clark, D.E.; Hodges, F.N.; McVay, G.L.; Rai, D.

    1983-01-01

    This paper discusses results of recent efforts to define the very near-field (within approximately 2 m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and standard brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported. 38 references, 3 figures, 2 tables

  12. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials

  13. Performance analysis of conceptual waste package designs in salt repositories

    International Nuclear Information System (INIS)

    Jansen, G. Jr.; Raines, G.E.; Kircher, J.F.

    1984-01-01

    A performance analysis of commercial high-level waste and spent fuel conceptual package designs in reference repositories in three salt formations was conducted with the WAPPA waste package code. Expected conditions for temperature, stress, brine composition, radiation level, and brine flow rate were used as boundary conditions to compute expected corrosion of a thick-walled overpack of 1025 wrought steel. In all salt formations corrosion by low Mg salt-dissolution brines typical of intrusion scenarios was too slow to cause the package to fail for thousands of years after burial. In high Mg brines judged typical of thermally migrating brines in bedded salt formations, corrosion rates which would otherwise have caused the packages to fail within a few hundred years were limited by brine availability. All of the brine reaching the package was consumed by reaction with the iron in the overpack, thus preventing further corrosion. Uniform brine distribution over the package surface was an important factor in predicting long package lifetimes for the high Mg brines. 14 references, 15 figures

  14. 77 FR 23751 - Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation...

    Science.gov (United States)

    2012-04-20

    ... States after importation of certain food waste disposers and components and packaging thereof by reason... States after importation of certain food waste disposers and components and packaging thereof by reason... importation of certain food waste disposers and components and packaging thereof that infringe the claim of U...

  15. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    International Nuclear Information System (INIS)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.; Enriquez, Alejandro E.; Carson, Peter H.

    2013-01-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste

  16. Long-term durability experiments with concrete-based waste packages in simulated repository conditions

    International Nuclear Information System (INIS)

    Ipatti, A.

    1993-03-01

    Two extensive experiments on long-term durability of waste packages in simulated repository conditions are described. The first one is a 'half-scale experiment' comprising radioactive waste product and half-scale concrete containers in site specific groundwater conditions. The second one is 'full-scale experiment' including simulated inactive waste product and full-scale concrete container stored in slowly flowing fresh water. The scope of the experiments is to demonstrate long-term behaviour of the designed waste packages in contact with moderately concrete aggressive groundwater, and to evaluate the possible interactions between the waste product, concrete container and ground water. As the waste packages are made of high-quality concrete, provisions have been made to continue the experiments for several years

  17. Radioactivity evaluation method for pre-packed concrete packages of low-level dry active wastes

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Funahashi, Tetsuo; Watabe, Kiyomi; Ozawa, Yukitoshi; Kashiwagi, Makoto

    1998-01-01

    Low-level dry active wastes of nuclear power plants are grouted with cement mortal in a container and planned to disposed into the shallow land disposal site. The characteristics of radionuclides contained in dry active wastes are same as homogeneous solidified wastes. In the previous report, we reported the applicability of the radioactivity evaluation methods established for homogeneous solidified wastes to pre-packed concrete packages. This report outlines the developed radioactivity evaluation methods for pre-packed concrete packages based upon recent data. Since the characteristics of dry active wastes depend upon the plant system in which dry active wastes originate and the types of contamination, sampling of wastes and activity measurement were executed to derive scaling factors. The radioactivity measurement methods were also verified. The applicability of non-destructive methods to measure radioactivity concentration of pre-packed concrete packages was examined by computer simulation. It is concluded that those methods are accurate enough to measure actual waste packages. (author)

  18. HORIZONTAL LIFTING OF 5 DHLW/DOE LONG, 12-PWR LONG AND 24-BWR WASTE PACKAGES

    International Nuclear Information System (INIS)

    V. de la Brosse

    2001-01-01

    The objective of this calculation was to determine the structural response of a 12-Pressurized Water Reactor (PWR) Long, a 24-Boiling Water Reactor (BWR) and a 5-Defense High Level Waste/Department of Energy (DHLW/DOE)--Long spent nuclear fuel waste packages lifted in a horizontal position. The scope of this calculation was limited to reporting the calculation results in terms of maximum stress intensities in the trunnion collar sleeves. In addition, the maximum stress intensities in the inner and outer shells of the waste packages were presented for illustrative purposes. The information provided by the sketches (Attachments I, II and III) is that of the potential design of the types of waste packages considered in this calculation, and all obtained results are valid for these designs only. This calculation is associated with the waste package design and was performed by the Waste Package Design Section in accordance with the ''Technical work plan for: Waste Package Design Description for LA'' (Ref. 7). AP-3.12Q, Calculations (Ref. 13), was used to perform the calculation and develop the document

  19. Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films.

    Science.gov (United States)

    Chen, Xi; Lee, Dong Sun; Zhu, Xuntao; Yam, Kit L

    2012-04-04

    This paper investigated the feasibility of manipulating packaging polymers with various degrees of hydrophobicity to release two antioxidants, tocopherol and quercetin, at rates suitable for long-term inhibition of lipid oxidation in food. For example, one antioxidant can be released at a fast rate to provide short-term/intermediate protection, whereas the other antioxidant can be released at a slower rate to provide intermediate/long-term protection of lipid oxidation. Controlled-release packaging films containing tocopherol and quercetin were produced using ethylene vinyl alcohol (EVOH), ethylene vinyl acetate (EVA), low-density polyethylene (LDPE), and polypropylene (PP) polymers; the release of these antioxidants to 95% ethanol (a fatty food simulant) was measured using UV-vis spectrophotometry, and Fickian diffusion models with appropriate initial and boundary conditions were used to fit the data. For films containing only quercetin, the results show that the release of quercetin was much faster but lasted for a much shorter time for hydrophilic polymers (EVOH and EVA) than for hydrophobic polymers (LDPE and PP). For binary antioxidant films containing tocopherol and quercetin, the results show that tocopherol released more rapidly but for a shorter period of time than quercetin in LDPE and EVOH films, and the difference is more pronounced for LDPE films than EVOH films. The results also show the presence of tocopherol can accelerate the release of quercetin. Although none of the films produced is acceptable for long-term lipid oxidation inhibition, the study provides encouraging results suggesting that acceptable films may be produced in the future using polymer blend films.

  20. Yucca Mountain Project waste package design for MRS [Monitored Retrievable Storage] system studies

    International Nuclear Information System (INIS)

    Nelson, T.; Russell, E.; Johnson, G.L.; Morissette, R.; Stahl, D.; LaMonica, L.; Hertel, G.

    1989-04-01

    This report, prepared by the Yucca Mountain Project, is the report for Task E of the MRS System Study. A number of assumptions were necessary prior to initiation of this system study. These assumptions have been defined in Section 2 for the packaging scenarios, the waste forms, and the waste package concepts and materials. Existing concepts were utilized because of schedule constraints. Section 3 provides a discussion of sensitivity considerations regarding the impact of different assumptions on the overall result of the system study. With the exception of rod consolidation considerations, the system study should not be sensitive to the parameters assumed for the waste package. The current reference waste package materials and concepts are presented in Section 4. Although stainless steel is assumed for this study, a container material has not yet been selected for Advanced Conceptual Design (ACD) from the six candidates currently under study. Section 5 discusses the current thinking for possible alternate waste package materials and concepts. These concepts are being considered in the event that the waste package emplacement environment is more severe than is currently anticipated. Task E also provides a concept in Section 6 for an MRS canister to contain consolidated fuel for storage at the MRS and eventual shipment to the repository. 5 refs., 14 figs., 10 tabs

  1. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  2. Factors affecting release of ethanol vapour in active modified atmosphere packaging systems for horticultural products

    Directory of Open Access Journals (Sweden)

    Weerawate Utto

    2014-04-01

    Full Text Available The active modified atmosphere packaging (active MAP system , which provides interactive postharvest control , using ethanol vapour controlled release, is one of the current interests in the development of active packaging for horticultural products. A number of published research work have discussed the relationship between the effectiveness of ethanol vapour and its concentration in the package headspace, including its effect on postharvest decay and physiological controls. This is of importance because a controlled release system should release and maintain ethanol vapour at effective concentrations during the desired storage period. A balance among the mass transfer processes of ethanol vapour in the package results in ethanol vapour accumulation in the package headspace. Key factors affecting these processes include ethanol loading, packaging material, packaged product and storage environment (temperature and relative h umidity. This article reviews their influences and discusses future work required to better understand their influences on ethanol vapour release and accumulations in active MAP.

  3. Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design.

    Science.gov (United States)

    Lavoine, Nathalie; Guillard, Valérie; Desloges, Isabelle; Gontard, Nathalie; Bras, Julien

    2016-09-20

    Cellulose nanofibers (CNFs) were recently investigated for the elaboration of new functional food-packaging materials. Their nanoporous network was especially of interest for controlling the release of active species. Qualitative release studies were conducted, but quantification of the diffusion phenomenon observed when the active species are released from and through CNF coating has not yet been studied. Therefore, this work aims to model CNF-coated paper substrates as controlled release system for food-packaging using release data obtained for two model molecules, namely caffeine and chlorhexidine digluconate. The applied mathematical model - derived from Fickian diffusion - was validated for caffeine only. When the active species chemically interacts with the release device, another model is required as a non-predominantly diffusion-controlled release was observed. From caffeine modeling data, a theoretical active food-packaging material was designed. The use of CNFs as barrier coating was proved to be the ideal material configuration that best meets specifications. Copyright © 2016. Published by Elsevier Ltd.

  4. A Probabilistic Consideration on Nuclide Releases from a Pyro-processed Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jeong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Very recently, a GoldSim template program, GSTSPA, for a safety assessment of a conceptual hybrid-typed repository system, called 'A-KRS,' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyroprocessing of PWR nuclear spent fuels, has been developed and is to be disposed of by 'separate disposal' strategies. The A-KRS is considered to be constructed at two different depths in geological media: at a 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and at a 500m depth, believed to be the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for a probabilistic total system performance assessment (TSPA) which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of a waste package and canister with associated uncertainty. To quantify the nuclide release and transport through the various possible pathways in the near- and far-fields of the A-KRS repository system under a normal groundwater flow scenario, some illustrative evaluations have been made through this study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  5. A Probabilistic Consideration on Nuclide Releases from a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    Very recently, a GoldSim template program, GSTSPA, for a safety assessment of a conceptual hybrid-typed repository system, called 'A-KRS,' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyroprocessing of PWR nuclear spent fuels, has been developed and is to be disposed of by 'separate disposal' strategies. The A-KRS is considered to be constructed at two different depths in geological media: at a 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and at a 500m depth, believed to be the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for a probabilistic total system performance assessment (TSPA) which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of a waste package and canister with associated uncertainty. To quantify the nuclide release and transport through the various possible pathways in the near- and far-fields of the A-KRS repository system under a normal groundwater flow scenario, some illustrative evaluations have been made through this study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  6. Characterization of radioactive waste forms and packages

    International Nuclear Information System (INIS)

    1997-01-01

    This publication provides a compendium of waste form, container and waste package properties which are potential importance for waste characterization to support approval for treatment/conditioning, storage and disposal methods and for predicting both short and long term waste behaviour in the repository environment. The properties to be characterized are defined in terms of the technical rationale for their control and characterization. Characterization methods for each property are described in general with reference to detailed discussions existing in the literature. Guidance as to the advantages and disadvantages of individual methods from a technical perspective is also provided where appropriate. This report deals with the characterization of all types of radioactive wastes except spent fuel intended for direct disposal. 115 refs, 17 figs, 12 tabs

  7. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, S.D.

    2007-01-01

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below

  8. Characterization of silicoaluminates for low and medium activity wastes packaging

    International Nuclear Information System (INIS)

    Rivoallan, A.; Berson, X.

    1996-01-01

    Studies are done in order to demonstrate many advantages (as an important volume reduction and a greater chemical stability) of packaging low and medium activity wastes in crystal structures compared with concrete and bitumen. In order to understand the consequences of hazardous chemical composition (especially anions) in the waste on the characteristics of the mineral packaging, a simulation study is developed with inactive concentrates. It leads to well crystallized structures which have not the same major crystallized phase. (authors)

  9. Waste package for a repository located in salt

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.

    1983-01-01

    This paper describes the current status of the waste package designs for salt repositories. The status of the supporting studies of environment definition, corrosion of containment materials, and leaching of waste forms is also presented. Emphasis is on the results obtained in FY 83 and the planned effort in FY 84. 8 references, 3 figures, 1 table

  10. Release modes and processes relevant to source-term calculations at Yucca Mountain

    International Nuclear Information System (INIS)

    Apted, M.J.

    1994-01-01

    The feasibility of permanent disposal of radioactive high-level waste (HLW) in repositories located in deep geologic formations is being studied world-wide. The most credible release pathway is interaction between groundwater and nuclear waste forms, followed by migration of radionuclide-bearing groundwater to the accessible environment. Under hydrologically unsaturated conditions, vapor transport of volatile radionuclides is also possible. The near-field encompasses the waste packages composed of engineered barriers (e.g. man-made materials, such as vitrified waste forms, corrosion-resistant containers), while the far-field includes the natural barriers (e.g. host rock, hydrologic setting). Taken together, these two subsystems define a series of multiple, redundant barriers that act to assure the safe isolation of nuclear waste. In the U.S., the Department of energy (DOE) is investigating the feasibility of safe, long-term disposal of high-level nuclear waste at the Yucca Mountain site in Nevada. The proposed repository horizon is located in non-welded tuffs within the unsaturated zone (i.e. above the water table) at Yucca Mountain. The purpose of this paper is to describe the source-term models for radionuclide release from waste packages at Yucca Mountain site. The first section describes the conceptual release modes that are relevant for this site and waste package design, based on a consideration of the performance of currently proposed engineered barriers under expected and unexpected conditions. No attempt is made to asses the reasonableness nor probability of occurrence for any specific release mode. The following section reviews the waste-form characteristics that are required to model and constrain the release of radionuclides from the waste package. The next section present mathematical models for the conceptual release modes, selected from those that have been implemented into a probabilistic total system assessment code developed for the Electric Power

  11. The role of a detailed aqueous phase source release model in the LANL area G performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Vold, E.L.; Shuman, R.; Hollis, D.K. [Los Alamos National Lab., NM (United States)] [and others

    1995-12-31

    A preliminary draft of the Performance Assessment for the Los Alamos National Laboratory (LANL) low-level radioactive waste disposal facility at Area G is currently being completed as required by Department of Energy orders. A detailed review of the inventory data base records and the existing models for source release led to the development of a new modeling capability to describe the liquid phase transport from the waste package volumes. Nuclide quantities are sorted down to four waste package release categories for modeling: rapid release, soil, concrete/sludge, and corrosion. Geochemistry for the waste packages was evaluated in terms of the equilibrium coefficients, Kds, and elemental solubility limits, Csl, interpolated from the literature. Percolation calculations for the base case closure cover show a highly skewed distribution with an average of 4 mm/yr percolation from the disposal unit bottom. The waste release model is based on a compartment representation of the package efflux, and depends on package size, percolation rate or Darcy flux, retardation coefficient, and moisture content.

  12. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  13. The market-incentive recycling system for waste packaging containers in Taiwan

    International Nuclear Information System (INIS)

    Bor Yunchang, Jeffrey; Chien, Y.-L.; Hsu, Esher

    2004-01-01

    This paper presents a new market-incentive (MI) system to recycle waste-packaging containers in Taiwan. Since most used packaging containers have no or insufficient market value, the government imposes a combined product charge and subsidy policy to provide enough economic incentive for recycling various kinds of packaging containers, such as iron, aluminum, paper, glass and plastic. Empirical results show that the new MI approach has stimulated and established the recycling market for waste-packaging containers. The new recycling system has provided 18,356 employment opportunities and generated NT$ 6.97 billion in real-production value and NT$ 3.18 billion in real GDP during the 1998 survey year. Cost-effectiveness analysis constitutes the theoretical foundation of the new scheme, whereas data used to compute empirical product charge are from two sources: marketing surveys of internal conventional costs of solid-waste collection, disposal and recycling in Taiwan, and benefit transfer of external environmental costs in the United States. The new recycling policy designed by the authors provides a reasonable solution for solid-waste management in a country with limited land resources such as Taiwan

  14. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  15. Cleanup Verification Package for the 600-259 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste

  16. Evaluation of low and intermediate level radioactive solidified waste forms and packages

    International Nuclear Information System (INIS)

    1990-10-01

    Evaluation of low and intermediate level radioactive waste forms and packages with respect to compliance with quality and safety requirements for transport, interim storage and disposal has become a very important part of the radioactive waste management strategy in many countries. The evaluation of waste forms and packages provides precise basic data for regulatory bodies to establish safety requirements, and implement quality control and quality assurance procedures for radioactive waste management programmes. The requirements depend very much upon the disposal option selected, treatment technology used, waste form characteristics, package quality and other factors. The regulatory requirements can also influence the methodology of waste form/package evaluation together with selection and analysis of data for quality control and safety assurance. A coordinated research programme started at the end of 1985 and brought together 12 participants from 11 countries. The results of the programme and each particular project were discussed at three Research Coordination Meetings held in Cairo, Egypt, in May, 1986; in Beijing, China, in April, 1998; and at Harwell Laboratory, United Kingdom, in November, 1989. This document summarises the salient features and results achieved during the four year investigation and a recommendation for future work in this area. Refs, figs and tabs

  17. Environmental release of carbon-14 gas from a hypothetical nuclear waste repository

    International Nuclear Information System (INIS)

    Lehto, M.A.; Merrell, G.B.

    1994-01-01

    Radioisotopes may form gases in a spent nuclear fuel waste package due to elevated temperatures or degradation of the fuel rods. Radioactive carbon-14, as gaseous carbon dioxide, is one of the gaseous radioisotopes of concern at an underground disposal facility for spent nuclear fuel and high-level radioactive waste. Carbon-14 dioxide may accumulate inside an intact waste container. Upon breach of the container, a potentially large pulse of carbon-14 dioxide gas may be released to the surrounding environment, followed by a lower, long-term continuous release. If the waste were disposed of in an unsaturated geologic environment, the carbon-14 gas would begin to move through the unsaturated zone to the accessible environment. This study investigates the transport of radioactive carbon-14 gas in geologic porous media using a one-dimensional analytical solution. Spent nuclear fuel emplaced in a deep geologic repository located at a generic unsaturated tuff site is analyzed. The source term for the carbon-14 gas and geologic parameters was obtained from previously published materials. The one-dimensional analytical solution includes diffusion, advection, radionuclide retardation, and radioactive decay terms. Two hypothetical sites are analyzed. One is dominated by advective transport, and the other is dominated by diffusive transport. The dominant transport mechanism at an actual site depends on the site characteristics. Results from the simulations include carbon-14 dioxide travel times to the accessible environment and the total release to the environment over a 10,000-year period. The results are compared to regulatory criteria

  18. Waste package emplacement borehole option study

    International Nuclear Information System (INIS)

    Streeter, W.S.

    1992-03-01

    This study evaluates the cost and thermal effects of various waste package emplacement configurations that differ in emplacement orientation, number of containers per borehole, and standoff distance at the potential Yucca Mountain nuclear waste repository. In this study, eight additional alternatives to the vertical and horizontal orientation options presented in the Site Characterization Plan Conceptual Design Report are considered. Typical panel layout configurations based on thermal analysis of the waste and cost estimates for design and construction, operations, and closure and decommissioning were made for each emplacement option. For the thermal analysis average waste 10 years out of reactor and the SIM code were used to determine whether the various configurations temperatures would exceed the design criteria for temperature. This study does not make a recommendation for emplacement configuration, but does provide information for comparison of alternatives

  19. Influence of Groundwater Flow Rate on Nuclide Releases from Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2011-01-01

    Since the early 2000s several template programs for the safety assessment of a high-level radioactive waste repository as well as a low- and intermediate level radioactive waste repository systems have been developed by utilizing GoldSim and AMBER at KAERI. Very recently, another template program for a conceptual hybrid-typed repository system, called 'A-KRS' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from pyroprocessing of PWR nuclear spent fuels has been developed and are to be disposed of by separate disposal strategies. The A-KRS is considered to be constructed at two different depths in geological media: 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and 500m depth, believed to be in the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of waste package and canister. To quantify a nuclide release and transport through the possible various pathways especially in the near-fields of the A-KRS repository system, some illustrative evaluations have been made through the study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  20. PACCOM: A nuclear waste packaging facility cost model: Draft technical report

    International Nuclear Information System (INIS)

    Dippold, D.G.; Tzemos, S.; Smith, D.J.

    1985-05-01

    PACCOM is a computerized, parametric model used to estimate the capital, operating, and decommissioning costs of a variety of nuclear waste packaging facility configurations. The model is based upon a modular waste packaging facility concept from which functional components of the overall facility have been identified and their design and costs related to various parameters such as waste type, waste throughput, and the number of operational shifts employed. The model may be used to either estimate the cost of a particular waste packaging facility configuration or to explore the cost tradeoff between plant capital and labor. That is, one may use the model to search for the particular facility sizes and associated cost which when coupled with a particular number of shifts, and thus staffing level, leads to the lowest overall total cost. The functional components which the model considers include hot cells and their supporting facilities, transportation, cask handling facilities, transuranic waste handling facilities, and administrative facilities such as warehouses, security buildings, maintenance buildings, etc. The cost of each of these functional components is related either directly or indirectly to the various independent design parameters. Staffing by shift is reported into direct and indirect support labor. These staffing levels are in turn related to the waste type, waste throughput, etc. 2 refs., 11 figs., 3 tabs

  1. Quality assurance of radioactive waste packages by computerized tomography

    International Nuclear Information System (INIS)

    Reimers, P.

    1992-01-01

    According to task 3 'Testing and Evaluation of Conditioned Waste and Technical Barriers' quality assurance is a main scope of research concerned with the handling of radioactive waste. It was provided to characterize medium and high active waste by standard test methods which have been developed and experienced in this contract. Quality evaluation of radioactive waste packages is preferentially done by non-destructive testing methods. The main task of this contract was the elaboration of specific non-destructive testing methods for conditioned and sealed waste packages as well as for the matrix materials themselves (e.g. bitumen, concrete, ceramics and glass). CT with X-rays turned out to be one of the best methods for the comprehensive non-destructive characterization of the physical and technical properties of the above described test objects. The method is especially suitable for the non-destructive evaluation of the absolute density value, of the density distribution, of the gamma activity distribution, of the localization of voids, cracks and inclusions, of the visualization of swelling, shrinkage and phase precipitations, as well as the detection of liquid phases in bentonite and cemented waste. 9 refs., 10 figs., 2 tabs

  2. Concept for waste package environment tests in the Yucca Mountain exploratory shaft

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1985-05-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is studying a tuffaceous rock unit located at Yucca Mountain on the western boundary of the Nevada Test Site, Nye County, Nevada. The objective is to evaluate the suitability of the volcanic rocks located above the water table at Yucca Mountain as a potential location for a repository for high level radioactive waste. As part of the NNWSI project, Lawrence Livermore National Laboratory is responsible for the design of the waste package and for determining the expected performance of the waste package in the repository environment. To design an optimal waste package system for the unsaturated emplacement environment, the mechanisms by which liquid water can return to contact the metal canister after peaking of the thermal load must be established. Definition of these flux and flow mechanisms is essential for estimating canister corrosion modes and rates. Therefore, three waste package environment tests are being designed for the in situ phase of exploratory shaft testing. These tests emphasize measurement techniques that offer the possibility of characterizing the movement of water into and through the pores and fractures of the densely welded Topopah Spring Member. Other measurement techniques will be used to examine the interactions between moisture migration and the thermomechanical rock mass behavior. Three reduced-scale heater tests will use electrical resistive heaters in a horizontal configuration. All three tests are designed to investigate moisture conditions in the rock during heating and cooling phases of a thermal cycle so that the effects of these moisture conditions on the performance of the waste package system may be established. 28 refs., 4 figs., 3 tabs

  3. Large packages for reactor decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1991-01-01

    This study was carried out jointly by the Atomic Energy Establishment at Winfrith (now called the Winfrith Technology Centre), Windscale Laboratory and Ove Arup and Partners. The work involved the investigation of the design of large transport containers for intermediate level reactor decommissioning waste, ie waste which requires shielding, and is aimed at European requirements (ie for both LWR and gas cooled reactors). It proposes a design methodology for such containers covering the whole lifetime of a waste disposal package. The design methodology presented takes account of various relevant constraints. Both large self shielded and returnable shielded concepts were developed. The work was generic, rather than specific; the results obtained, and the lessons learned, remain to be applied in practice

  4. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted

  5. Waste package transfer, emplacement and retrievability in the French deep geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Alain; Delort, Daniel; Herve, Jean Francois; Bosgiraud, Jean Michel; Guenin, Jean Jacques [Technical Department ANDRA (France)

    2009-06-15

    Safe, reliable and reversible handling of waste is a significant issue related to the design and safety assessment of deep geological repository in France. The first step taken was to study various waste handling solutions. ANDRA also decided to fabricate and demonstrate industrial scale handling equipment for HLW (since 2003) and for ILW-LL wastes (since 2008). We will review the main equipment developed for the transfer process in the repository, for both types of waste, and underline the benefits of developing industrial demonstrators within the framework of international cooperation agreements. Waste retrieval capability will be simultaneously examined. Two types of waste have to be handled underground in Andra's repository. The HLW disposal package for vitrified waste is a 2 ton carbon steel cylindrical canister with a diameter of 600 mm. The weight of ILW-LL concrete disposal packages range from a minimum of 6 tonnes to over 20 tonnes, and their volume from approximately 5 to 10 m3. The underground transfer to the disposal drift requires moving the disposal package within a shielded transfer cask placed on a trailer. Transfer cask design has evolved since 2005, due to optimisation studies and as a result of industrial feedback from SKB. For HLW handling equipment two design options have been studied. In the first solution (Andra's Dossier 2005), the waste package are emplaced, one at a time, in the disposal drift by a pushing robot. Successive steps in design and proto-typing have lead to improve the design of the equipment and to gain confidence. Recently a fully integrated process has been successfully demonstrated, at full scale, (in a 100 m long mock up drift) as part of the EC funded ESDRED Project. This demonstrator is now on display in Andra's Technology Centre at Saudron, near the Bure Underground Laboratory. The second disposal option which has been investigated is based on a concept of utilising an external apparatus to push a row of

  6. Vertical Drop of the Naval SNF Long Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic

    2006-01-01

    The purpose of this calculation is to determine the structural response of a Naval SNF (Spent Nuclear Fuel) Long Waste Package (WP) subjected to 2 m-vertical drop on unyielding surface (US). The scope of this document is limited to reporting the calculation results in terms of maximum stress intensities. This calculation is associated with the waste package design; calculation is performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element calculation is performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The result of this calculation is provided in terms of maximum stress intensities

  7. Development of a working set of waste package performance criteria for deepsea disposal of low-level radioactive waste. Final report

    International Nuclear Information System (INIS)

    Columbo, P.; Fuhrmann, M.; Neilson, R.M. Jr; Sailor, V.L.

    1982-11-01

    The United States ocean dumping regulations developed pursuant to PL92-532, the Marine Protection, Research, and Sanctuaries Act of 1972, as amended, provide for a general policy of isolation and containment of low-level radioactive waste after disposal into the ocean. In order to determine whether any particular waste packaging system is adequate to meet this general requirement, it is necessary to establish a set of performance criteria against which to evaluate a particular packaging system. These performance criteria must present requirements for the behavior of the waste in combination with its immobilization agent and outer container in a deepsea environment. This report presents a working set of waste package performance criteria, and includes a glossary of terms, characteristics of low-level radioactive waste, radioisotopes of importance in low-level radioactive waste, and a summary of domestic and international regulations which control the ocean disposal of these wastes

  8. Depleted uranium oxides as spent-nuclear-fuel waste-package fill materials

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    Depleted uranium dioxide fill inside the waste package creates the potential for significant improvements in package performance based on uranium geochemistry, reduces the potential for criticality in a repository, and consumes DU inventory. As a new concept, significant uncertainties exist: fill properties, impacts on package design, post- closure performance

  9. Environmental monitoring and deep ocean disposal of packaged radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Preston, A.

    1980-01-01

    Environmental monitoring in the context of the dumping of packaged radioactive waste in the deep ocean is discussed in detail. The principles and objectives laid down by the IAEA and the ICRP are reviewed. Monitoring and its relationships to radiation exposure, research, control measures and public information are described. Finally, the actual practice in the UK of environmental monitoring is detailed for the measurable case of liquid wastes in coastal waters and also for package waste in deep oceans which has to be calculated. It is concluded that better mathematical models are needed to predict the dose to man and that more research into oceanographic and biological transfer processes should be carried out. (UK)

  10. Uncertainty evaluation methods for waste package performance assessment

    International Nuclear Information System (INIS)

    Wu, Y.T.; Nair, P.K.; Journel, A.G.; Abramson, L.R.

    1991-01-01

    This report identifies and investigates methodologies to deal with uncertainties in assessing high-level nuclear waste package performance. Four uncertainty evaluation methods (probability-distribution approach, bounding approach, expert judgment, and sensitivity analysis) are suggested as the elements of a methodology that, without either diminishing or enhancing the input uncertainties, can evaluate performance uncertainty. Such a methodology can also help identify critical inputs as a guide to reducing uncertainty so as to provide reasonable assurance that the risk objectives are met. This report examines the current qualitative waste containment regulation and shows how, in conjunction with the identified uncertainty evaluation methodology, a framework for a quantitative probability-based rule can be developed that takes account of the uncertainties. Current US Nuclear Regulatory Commission (NRC) regulation requires that the waste packages provide ''substantially complete containment'' (SCC) during the containment period. The term ''SCC'' is ambiguous and subject to interpretation. This report, together with an accompanying report that describes the technical considerations that must be addressed to satisfy high-level waste containment requirements, provides a basis for a third report to develop recommendations for regulatory uncertainty reduction in the ''containment''requirement of 10 CFR Part 60. 25 refs., 3 figs., 2 tabs

  11. Options for reducing food waste by quality-controlled logistics using intelligent packaging along the supply chain.

    Science.gov (United States)

    Heising, Jenneke K; Claassen, G D H; Dekker, Matthijs

    2017-10-01

    Optimising supply chain management can help to reduce food waste. This paper describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on quality-controlled logistics (QCL). Intelligent packaging senses compounds in the package that correlate with the critical quality attribute of a food product. The information on the quality of each individual packaged food item that is provided by the intelligent packaging can be used for QCL. In a conceptual approach it is explained that monitoring food quality by intelligent packaging sensors makes it possible to obtain information about the variation in the quality of foods and to use a dynamic expiration date (IP-DED) on a food package. The conceptual approach is supported by quantitative data from simulations on the effect of using the information of intelligent packaging in supply chain management with the goal to reduce food waste. This simulation shows that by using the information on the quality of products that is provided by intelligent packaging, QCL can substantially reduce food waste. When QCL is combined with dynamic pricing based on the predicted expiry dates, a further waste reduction is envisaged.

  12. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    Energy Technology Data Exchange (ETDEWEB)

    French, David M. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hayes, Timothy A. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pope, Howard L. [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States); Enriquez, Alejandro E. [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Carson, Peter H. [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-07-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely

  13. Role of statistics in characterizing nuclear waste package behavior

    International Nuclear Information System (INIS)

    Bowen, W.M.

    1984-11-01

    The characterization of nuclear waste package behavior is primarily based on the outcome of laboratory tests, where components of a proposed waste package are either individually or simultaneously subjected to simulated repository conditions. At each step of a testing method, both controllable and uncontrollable factors contribute to the overall uncertainty in the final outcome of the test. If not dealt with correctly, these sources of uncertainty could obscure or distort important information that might otherwise be gleaned from the test data. This could result in misleading or erroneous conclusions about the behavior characteristic being studied. It could also preclude estimation of the individual contributions of the major sources of uncertainty to the overall uncertainty. Statistically designed experiments and sampling plans, followed by correctly applied statistical analysis and estimation methods will yield the most information possible for the time and resources spent on experimentation, and they can eliminate the above concerns. Conclusions reached on the basis of such information will be sound and defensible. This presentation is intended to emphasize the importance of correctly applied, theoretically sound statistical methodology in characterizing nuclear waste package behavior. 8 references, 1 table

  14. Aging and Phase Stability of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tammy S. Edgecumble Summers

    2001-08-23

    This Analysis Model Report (AMR) was prepared in accordance with the Work Direction and Planning Document, ''Aging and Phase Stability of Waste Package Outer Barrier'' (CRWMS M&O 1999a). ICN 01 of this AMR was developed following guidelines provided in TWP-MGR-MD-000004 REV 01, ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001, Addendum B). It takes into consideration the Enhanced Design Alternative II (EDA II), which has been selected as the preferred design for the Engineered Barrier System (EBS) by the License Application Design Selection (LADS) program team (CRWMS M&O 1999b). The salient features of the EDA II design for this model are a waste package (WP) consisting of an outer barrier of Alloy 22 and an inner barrier of Type 316L stainless steel. This report provides information on the phase stability of Alloy 22l, the current waste-package-outer-barrier (WPOB) material. These phase stability studies are currently divided into three general areas: (1) Long-range order reactions; (2) Intermetallic and carbide precipitation in the base metal; and (3) Intermetallic and carbide precipitation in welded samples.

  15. Role of statistics in characterizing nuclear waste package behavior

    International Nuclear Information System (INIS)

    Bowen, W.M.

    1984-01-01

    The characterization of nuclear waste package behavior is primarily based on the outcome of laboratory tests, where components of a proposed waste package are either individually or simultaneously subjected to simulated repository conditions. At each step of a testing method, both controllable and uncontrollable factors contribute to the overall uncertainty in the final outcome of the test. If not dealt with correctly, these sources of uncertainty could obscure or distort important information that might otherwise be gleaned form the test data. This could result in misleading or erroneous conclusions about the behavior characteristic being studied. It could also preclude estimation of the individual contributions of the major sources of uncertainty to the overall uncertainty. Statistically designed experiments and sampling plans, followed by correctly applied statistical analysis and estimation methods will yield the most information possible for the time and resources spent on experimentation, and they can eliminate the above concerns. Conclusions reached on the basis of such information will be sound and defensible. This presentation is intended to emphasize the importance of correctly applied, theoretically sound statistical methodology in characterizing nuclear waste package behavior

  16. WASTE-PRA: a computer package for probabilistic risk assessment of shallow-land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Cox, N.D.; Atwood, C.L.

    1985-12-01

    This report is a user's manual for a package of computer programs and data files to be used for probabilistic risk assessment of shallow-land burial of low-level radioactive waste. The nuclide transport pathways modeled are an unsaturated groundwater column, an aquifer, and the atmosphere. An individual or the population receives a dose commitment through shine, inhalation, ingestion, direct exposure, and/or a puncture wound. The methodology of risk assessment is based on the response surface method of uncertainty analysis. The parameters of the model for predicting dose commitment due to a release are treated as statistical variables, in order to compute statistical distributions for various contributions to the dose commitment. The likelihood of a release is similarly treated as a statistical variable. Uncertainty distributions are obtained both for the dose commitment and for the corresponding risk. Plots and printouts are produced to aid in comparing the importance of various release scenarios and in assessing the total risk of a set of scenarios. The entire methodology is illustrated by an example. Information is included on parameter uncertainties, reference site characteristics, and probabilities of release events

  17. Survey of waste package designs for disposal of high-level waste/spent fuel in selected foreign countries

    International Nuclear Information System (INIS)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1989-09-01

    This report presents the results of a survey of the waste package strategies for seven western countries with active nuclear power programs that are pursuing disposal of spent nuclear fuel or high-level wastes in deep geologic rock formations. Information, current as of January 1989, is given on the leading waste package concepts for Belgium, Canada, France, Federal Republic of Germany, Sweden, Switzerland, and the United Kingdom. All but two of the countries surveyed (France and the UK) have developed design concepts for their repositories, but none of the countries has developed its final waste repository or package concept. Waste package concepts are under study in all the countries surveyed, except the UK. Most of the countries have not yet developed a reference concept and are considering several concepts. Most of the information presented in this report is for the current reference or leading concepts. All canisters for the wastes are cylindrical, and are made of metal (stainless steel, mild steel, titanium, or copper). The canister concepts have relatively thin walls, except those for spent fuel in Sweden and Germany. Diagrams are presented for the reference or leading concepts for canisters for the countries surveyed. The expected lifetimes of the conceptual canisters in their respective disposal environment are typically 500 to 1,000 years, with Sweden's copper canister expected to last as long as one million years. Overpack containers that would contain the canisters are being considered in some of the countries. All of the countries surveyed, except one (Germany) are currently planning to utilize a buffer material (typically bentonite) surrounding the disposal package in the repository. Most of the countries surveyed plan to limit the maximum temperature in the buffer material to about 100 degree C. 52 refs., 9 figs

  18. Acceptance and tracking of waste packages from nuclear power plants at the Centre de l'Aube

    International Nuclear Information System (INIS)

    Errera, J.; Tison, J.L.

    2001-01-01

    For 30 years, the French National Agency for Radioactive Waste Management (ANDRA) is in charge of the radioactive waste management and acquired a good knowledge relating to the control of low and intermediate level waste produced by nuclear power plants (NPP), the waste characteristics and the waste conditioning. The integrated waste management system for low-level radioactive waste in France implemented by ANDRA covers all stages from waste generation to final disposal at the Centre de I'Aube near surface facility. ANDRA defined a quality assurance program for waste management that specifies the level of quality to be achieved by solidification and packaging processes, defines quality control requirements and defines waste tracking requirements, from waste generation through final disposal. Verification of quality of waste packages is implemented at three levels of the waste management system. The first one consists of inspections of waste packages at the generator's premises and audits of the quality assurance organization of the waste generator. The second level of verification consists of the waste tracking system. It allows identifying and tracking each waste package from the step it is fabricated to its final disposal at the ANDRA site. The third level of verification is obtained by mean of non-destructive and destructive assays of waste packages. These assays allow to verify generator compliance with ANDRA's technical specifications and to investigate the accuracy of physical and radioactive characteristics reported to ANDRA by the generator. (author)

  19. Generic Degraded Configuration Probability Analysis for the Codisposal Waste Package

    International Nuclear Information System (INIS)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-01-01

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M and O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k eff in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package

  20. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  1. Commercial and ERDA waste packaging criteria: possible similarities and differences

    International Nuclear Information System (INIS)

    Lowrie, B.

    1977-01-01

    The schedule calls for hot operation of two waste repositories by the end of 1985, and these facilities will have to be licensed. This licensing requirement sets the commercial program apart from the ERDA defense waste program. Packaging criteria are discussed for commercial and ERDA wastes. The different NRC, DOT, and EPA criteria are considered

  2. Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources

    Directory of Open Access Journals (Sweden)

    Songyan Yin

    2018-01-01

    Full Text Available In recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the metals industry, is still limited. In this work, an environmentally friendly approach to utilize snack packaging plastic waste as a valuable carbon resources for steel carburization is investigated. At high temperature, plastic waste could be subject to pyrolytic gasification and decompose into small molecular hydrocarbon gaseous products which have the potential to be used as carburization agents for steel. When heating some snack packaging plastic waste and a steel sample together at the carburization temperature, a considerable amount of carbon-rich reducing gases, like methane, could be liberated from the plastic waste and absorbed by the steel sample as a carbon precursor for carburization. The resulting carburization effect on steel was investigated by optical microscopy, scanning electron microscopy, electron probe microanalyzer, and X-ray photoelectron spectrometer techniques. These investigation results all showed that snack packaging plastic waste could work effectively as a valuable carbon resource for steel carburization leading to a significant increase of surface carbon content and the corresponding microstructure evolution in steel.

  3. Data Packages for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment: 2001 Version

    International Nuclear Information System (INIS)

    MANN, F.M.

    2000-01-01

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided

  4. Conceptual waste package interim product specifications and data requirements for disposal of glass commercial high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-10-01

    The conceptual waste package interim product specifications and data requirements presented are applicable to the reference glass composition described in PNL-3838 and carbon steel canister described in ONWI-438. They provide preliminary numerical values for the commercial high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses and regulatory requirements become available. 13 references, 1 figure

  5. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...... were addressed by a resin type-based sorting analysis and a washing test for plastic packaging material from Danish household waste. Preliminary results show that, for a quarter of the hand sorted material, no resin type could be identified and that Polypropylene and Polyethylene terephthalate were...... the dominating resin types in plastic packaging. The suggested washing procedure caused a decrease of 70% of the ash content of the plastic material. The analysed metals and nutrients were reduced by up to 24%...

  6. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  7. Monitoring and inspection techniques for long term storage of higher activity waste packages

    International Nuclear Information System (INIS)

    Bolton, Gary

    2013-01-01

    In 2009, following recent changes in United Kingdom (UK) Government Policy, the Nuclear Decommissioning Authority (NDA) identified a knowledge gap in the area of long term interim storage of waste packages. A cross-industry Integrated Project Team (IPT) for Interim Storage was created with responsibility for delivering Industry Guidance on the storage of packaged Higher Activity Waste (HAW) for the current UK civil decommissioning and clean-up programmes. This included a remit to direct research and development projects via the NDA's Direct Research Portfolio (DRP) to fill the knowledge gap. The IPT for Interim Storage published Industry Guidance in 2012 which established a method to define generic package performance criteria and made recommendations on monitoring and inspection. The package performance method consists of the following steps; identification of the package safety function, identification of evolutionary processes that may affect safety function performance, determination of measurable indicators of these evolutionary processes and calibration of the indicators into package performance zones. This article provides an overview of three projects funded by the NDA's DRP that the UK National Nuclear Laboratory (NNL) have completed to address monitoring and inspection needs of waste packages in interim storage. (orig.)

  8. Industrial Waste Landfill IV upgrade package

    International Nuclear Information System (INIS)

    1994-01-01

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE's Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit

  9. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    International Nuclear Information System (INIS)

    Calmus, D.B.

    1994-01-01

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length

  10. Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-05-23

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{sub eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.

  11. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    Science.gov (United States)

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Specification of safety requirements for waste packages with respect to practicable quality control measures

    International Nuclear Information System (INIS)

    Gruendler, D.; Wurtinger, W.

    1987-01-01

    Waste packages for disposal in a repository in the Federal Republic of Germany have to meet safety requirements derived from site specific safety analyses. The examination of the waste packages with regard to compliance with these requirements is the main objective of quality control measures. With respect to quality control the requirements have to be specified in a way that practicable control measures can be applied. This is dealt with for the quality control of the activity inventory and the quality control of the waste form. The paper discusses the determination of the activity of hard-to-measure radionuclides and the specification of safety related requirements for the waste form and the packaging using typical examples

  13. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  14. PROBABILISTIC ANALYSES OF WASTE PACKAGE QUANTITIES IMPACTED BY POTENTIAL IGNEOUS DISRUPTION AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    M.G. Wallace

    2005-01-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift were intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km 2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in

  15. Parametric study of the effects of thermal environment on a waste package for a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J K; Sundberg, W D; Krumhansl, J L [Sandia National Laboratories Albuquerque, NM, (USA)

    1982-12-31

    The thermal environment has been modeled in a simple reference waste package in a tuff repository for a variety of variables. The waste package was composed of the waste form, canister, overpack and backfill. The emplacement hole was 122cm dia. Waste forms used in the calculations were commercial high level waste (CHLW) and spent fuel (SF). Canister loadings varied from 50 to 100 kW/acre. Primary attention was focused on the backfill behavior in the thermal and chemical environment. Results are related to the maximum temperature calculated for the backfill. These calculations raise serious concerns about the effectiveness of the backfill within the context of the total waste package.

  16. Modeling of release of radionuclides from an engineered disposal facility for shallow-land disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Suzuki, A.

    1989-01-01

    The computer code, ENBAR-1, for the simulation of radionuclide releases from an engineered disposal facility has been developed to evaluate the source term for subsequent migration of radionuclides in and through a natural barrier. The system considered here is that a waste package (waste form and container) is placed, together with backfill materials, into a concrete pit as a disposal unit for shallow-land disposal of low-level radioactive wastes. The code developed includes the following modules: water penetration into a concrete pit, corrosion of a drum as a container, leaching of radionuclides from a waste form, migration of radionuclides in backfill materials, release of radionuclides from the pit. The code has the advantage of its simplicity of operation and presentation while still allowing comprehensive evaluation of each element of an engineered disposal facility to be treated. The performance and source term of the facility might be readily estimated with a few key parameters to define the problem

  17. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  18. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, D.S.

    2005-01-01

    The body of this document analyzes scenarios involving releases of dried tank waste from the DBVS dried waste transfer system and OGTS HEPA filters. Analyses of dried waste release scenarios from the CH-TRUM WPU are included as Appendix D

  19. Draft Technical Position Subtask 1.1: waste package performance after repository closure. Volume 1

    International Nuclear Information System (INIS)

    Davis, M.S.; Schweitzer, D.G.

    1983-08-01

    This document provides guidance to the DOE on the issues and information necessary for the NRC to evaluate waste package performance after repository closure. Minimal performance objectives of the waste package are required by proposed 10 CFR 60. This Draft Technical Position describes the various options available to the DOE for compliance and discusses advantages and disadvantages of various choices. Examples are discussed dealing with demonstrability, predictability and reasonable assurance. The types of performance are considered. The document summarizes presently identified high priority issues needed to evaluate waste package performance after repository closure. 20 references, 7 tables

  20. Development of a general model to predict the rate of radionuclide release (source term) from a low-level waste shallow land burial facility

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Kempf, C.R.; Suen, C.J.; Mughabghab, S.M.

    1988-01-01

    Federal Code of Regulations 10 CFR 61 requires that any near surface disposal site be capable of being characterized, analyzed, and modeled. The objective of this program is to assist NRC in developing the ability to model a disposal site that conforms to these regulations. In particular, a general computer model capable of predicting the quantity and rate of radionuclide release from a shallow land burial trench, i.e., the source term, is being developed. The framework for this general model has been developed and consists of four basic compartments that represent the major processes that influence release. These compartments are: water flow, container degradation, release from the waste packages, and radionuclide transport. Models for water flow and radionuclide transport rely on the use of the computer codes FEMWATER and FEMWASTE. These codes are generally regarded as being state-of-the-art and required little modification for their application to this project. Models for container degradation and release from waste packages have been specifically developed for this project. This paper provides a brief description of the models being used in the source term project and examples of their use over a range of potential conditions. 13 refs

  1. Evaluation of alternative spent fuel waste package concepts for a repository in Basalt

    International Nuclear Information System (INIS)

    Hall, G.V.B.; Nair, B.R.

    1986-01-01

    The United States government has established a program for the disposal of spent nuclear fuel and high-level radioactive waste. The Nuclear Waste Policy Act (NWPA) of 1982 requires the first nuclear waste repository to begin receiving high-level radioactive waste in 1998. One of the potentially acceptable sites currently being evaluated is the Hanford Site in the Pasco Basin in the state of Washington where the host rock is basalt. Under the direction of the United States Department of Energy (DOE), Rockwell International's Rockwell Hanford Operations (RHO) has initiated the Basalt Waste Isolation Project (BWIP). The BWIP must design waste packages for emplacement in the repository. As part of the BWIP waste package development program, several alternative designs were considered for the disposal of spent nuclear fuel. This paper describes the concepts that were evaluated, the criteria that was developed for judging their relative merits, and the methodology that was employed. The results of the evaluation show that a Pipe-In-Tunnel design, which uses a long carbon steel pipe for the containment barrier for multiple packages of consolidated spent fuel, has the highest rating. Other designs which had high ratings are also discussed

  2. Effects of actinide burning on waste disposal at Yucca Mountain

    International Nuclear Information System (INIS)

    Hirschfelder, J.

    1992-01-01

    Release rates of 15 radionuclides from waste packages expected to result from partitioning and transmutation of Light-Water Reactor (LWR) and Actinide-Burning Liquid-Metal Reactor (ALMR) spent fuel are calculated and compared to release rates from standard LWR spent fuel packages. The release rates are input to a model for radionuclide transport from the proposed geologic repository at Yucca Mountain to the water table. Discharge rates at the water table are calculated and used in a model for transport to the accessible environment, defined to be five kilometers from the repository edge. Concentrations and dose rates at the accessible environment from spent fuel and wastes from reprocessing, with partitioning and transmutation, are calculated. Partitioning and transmutation of LWR and ALMR spent fuel reduces the inventories of uranium, neptunium, plutonium, americium and curium in the high-level waste by factors of 40 to 500. However, because release rates of all of the actinides except curium are limited by solubility and are independent of package inventory, they are not reduced correspondingly. Only for curium is the repository release rate much lower for reprocessing wastes

  3. Cleanup Verification Package for the 300-18 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2005-01-01

    This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete

  4. SECOND WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: GENERATION AND EVALUATION OF INTERNAL CRITICIALITY CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    P. Gottlieb, J.R. Massari, J.K. McCoy

    1996-03-27

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having sonic or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment. The ultimate objective of this analysis is to augment the information gained from the Initial Waste Package Probabilistic Criticality Analyses (Ref. 5.8 and 5.9, hereafter referred to as IPA) to a degree which will support preliminary waste package design recommendations intended to reduce the risk of waste package criticality and the risk to total repository system performance posed by the consequences of any criticality. The IPA evaluated the criticality potential under the assumption that the waste package basket retained its structural integrity, so that the assemblies retained their initial separation, even when the neutron absorbers had been leached from the basket. This analysis is based on the more realistic condition that removal of the neutron absorbers is a consequence of the corrosion of the steel in which they are contained, which has the additional consequence of reducing the structural support between assemblies. The result is a set of more reactive configurations having a smaller spacing between assemblies, or no inter-assembly spacing at all. Another difference from the IPA is the minimal attention to probabilistic evaluation given in this study. Although the IPA covered a time horizon to 100,000 years, the lack of consideration of basket degradation modes made it primarily applicable to the first 10,000 years. In contrast, this study, by focusing on the degraded modes of the basket, is primarily

  5. Mixed waste chemical compatibility: A testing program for plastic packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1995-01-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the United States have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation (DOT, 49 CFR 173) and the US Nuclear Regulatory Commission (NRC, 10 CFR 71). The design requirements for both hazardous [49 CFR 173.24 (e)(1)] and radioactive [49 CFR 173.412 (g)] materials packaging specify packaging compatibility, i.e., that the materials of the packaging at sign d any contents be chemically compatible with each other. Furthermore, Type A [49 CFR 173.412 (g)] and Type B (10 CFR 71.43) packaging design requirements stipulate that there be no significant chemical, galvanic, or other reaction between the materials and contents of the package. Based on these requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program attempts to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. This program has been described in considerable detail in an internal SNL document, the Chemical Compatibility Test Plan ampersand Procedure Report (Nigrey 1993)

  6. ERG review of waste package container materials selection and corrosion

    International Nuclear Information System (INIS)

    Moak, D.P.; Perrin, J.S.

    1986-07-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The October 1984 meeting of the ERG reviewed the waste package container materials selection and corrosion. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  7. Melting decontamination and free release of metal waste at Studsvik RadWaste Co. in Sweden

    International Nuclear Information System (INIS)

    Kawatsuma, Shinji; Ishikawa, Keiji; Matsubara, Tatsuo; Donomae, Yasushi; Imagawa, Yasuhiro

    2006-01-01

    The Studsvik RadWaste Co. in Sweden was visited on August 29, 2005 by members of radioactive waste and decommissioning subgroup of central safety task force in old Japan Nuclear Cycle Development Institute as 'Overseas investigation'. The visit afforded us the chance to survey melting and decontaminating of metallic waste in this company and the status of free release. Domestic and foreign radioactive metallic waste is accepted in this company after 1987, and the majority of the decontaminated waste have been released freely. In the background of the big effort of this company and the strong leadership of the regulator (SSI: Swedish radiation protection Authority), prosperous operation was able to have been achieved. This survey was done based on 'Free release of radioactive metallic waste in Europe: the free release experience for 17 years at Studsvik RadWaste Co. in Sweden' by Dr. J. Lorenzen. (author)

  8. Low and intermediate level waste in SFR-1. Reference Waste Inventory 2007

    International Nuclear Information System (INIS)

    Almkvist, Lisa; Gordon, Ann

    2007-11-01

    The objective with this report is to describe all the waste and the waste package that is expected to be deposited in SFR 1 at the time of closure. The report will form the basis for the release calculation in the safety analysis for SFR 1. Three different scenarios are explored in this report; the waste inventory is based on an estimated operational lifetime of the Swedish nuclear power plants of 50 and 60 years and that closure of the SFR 1 repository will take place in 2040 or 2050 respectively. The third scenario is where the repository is full (one part where the activity adds up to 1016 Bq and one part where the repository is considered full regarding volume). In the report, data about geometries, weights, materials, chemicals and radionuclide are given. No chemotoxic material has been identified in the waste. The inventory is estimated using the Prosit-interface which extracts information from the Triumf database. The inventory is based on so called 'waste types' and the waste types' 'reference waste package'. The reference waste package combined with a prognosis of the number of waste packages to be delivered to SFR 1 gives the final waste inventory for SFR 1. All reference waste packages are thoroughly described in the appendices of this report. The reference waste packages are as far as possible based on actual experiences and measurements. The radionuclide inventory is also based on actual measurements. The inventory is based on measurements of 60 Co and 137 Cs in waste packages and on measurements of 239 Pu and 240 Pu in reactor water. Other nuclides in the inventory are calculated with correlation factors

  9. Characterization of Old Nuclear Waste Packages Coupling Photon Activation Analysis and Complementary Non-Destructive Techniques

    International Nuclear Information System (INIS)

    Carrel, Frederick; Coulon, Romain; Laine, Frederic; Normand, Stephane; Sari, Adrien; Charbonnier, Bruno; Salmon, Corine

    2013-06-01

    Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The characterization becomes crucial particularly for waste packages produced at the beginning of the French nuclear industry. For the latter, available information is often incomplete and some key parameters are sometimes missing (content of the package, alpha-activity, fissile mass...) In this case, the use of non-destructive methods, both passive and active, is an appropriate solution to characterize nuclear waste packages and to obtain all the information of interest. In this article, we present the results of a complete characterization carried out on the TE 1060 block, which is a nuclear waste package produced during the 1960's in Saclay. This characterization is part of the DEMSAC (Dismantling of Saclay's facilities) project (ICPE part). It has been carried out in the SAPHIR facility, located in Saclay and housing a linear electron accelerator. This work enables to show the great interest of active methods (photon activation analysis and high-energy imaging) as soon as passive techniques encounter severe limitations. (authors)

  10. Gas formation in drum waste packages of Paks NPP

    International Nuclear Information System (INIS)

    Molnar, M.; Palcsu, L.; Svingor, E.; Szanto, Z.; Futo, I.; Ormai, P.

    2000-01-01

    Gas composition measurements have been carried out by mass spectrometry analysis of samples taken from the headspace of ten drum waste packages generated and temporarily stored at Paks NPP. Four drums contained compacted solid waste, three drums were filled with grouted (solidified) sludge and three drums contained solid waste without compaction. The drums have been equipped with a special gas outlet system to make repeated sampling possible. Based on the first measurements significant differences in the gas composition and the rate of gas generation among the drums were found. (author)

  11. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    P.S. Domski

    2003-07-21

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The

  12. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    P.S. Domski

    2003-01-01

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The current in-package

  13. Development of characterization methods applied to radioactive wastes and waste packages

    International Nuclear Information System (INIS)

    Guy, C.; Bienvenu, Ph.; Comte, J.; Excoffier, E.; Dodi, A.; Gal, O.; Gmar, M.; Jeanneau, F.; Poumarede, B.; Tola, F.; Moulin, V.; Jallu, F.; Lyoussi, A.; Ma, J.L.; Oriol, L.; Passard, Ch.; Perot, B.; Pettier, J.L.; Raoux, A.C.; Thierry, R.

    2004-01-01

    This document is a compilation of R and D studies carried out in the framework of the axis 3 of the December 1991 law about the conditioning and storage of high-level and long lived radioactive wastes and waste packages, and relative to the methods of characterization of these wastes. This R and D work has permitted to implement and qualify new methods (characterization of long-lived radioelements, high energy imaging..) and also to improve the existing methods by lowering detection limits and reducing uncertainties of measured data. This document is the result of the scientific production of several CEA laboratories that use complementary techniques: destructive methods and radiochemical analyses, photo-fission and active photonic interrogation, high energy imaging systems, neutron interrogation, gamma spectroscopy and active and passive imaging techniques. (J.S.)

  14. Materials of Criticality Safety Concern in Waste Packages

    International Nuclear Information System (INIS)

    Larson, S.L.; Day, B.A.

    2006-01-01

    10 CFR 71.55 requires in part that the fissile material package remain subcritical when considering 'the most reactive credible configuration consistent with the chemical and physical form of the material'. As waste drums and packages may contain unlimited types of materials, determination of the appropriately bounding moderator and reflector materials to ensure compliance with 71.55 requires a comprehensive analysis. Such an analysis was performed to determine the materials or elements that produce the most reactive configuration with regards to both moderation and reflection of a Pu-239 system. The study was originally performed for the TRUPACT-II shipping package and thus the historical fissile mass limit for the package, 325 g Pu-239, was used [1]. Reactivity calculations were performed with the SCALE package to numerically assess the moderation or reflection merits of the materials [2]. Additional details and results are given in SAIC-1322-001 [3]. The development of payload controls utilizing process knowledge to determine the classification of special moderator and/or reflector materials and the associated fissile mass limit is also addressed. (authors)

  15. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  16. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  17. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Directory of Open Access Journals (Sweden)

    Arantzazu eValdés

    2014-02-01

    Full Text Available The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  18. Study of applicable methods on safety verification of disposal facilities and waste packages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Three subjects about safety verification on the disposal of low level radioactive waste were investigated in FY. 2012. For radioactive waste disposal facilities, specs and construction techniques of covering with soil to prevent possible destruction caused by natural events (e.g. earthquake) were studied to consider verification methods for those specs. For waste packages subject to near surface pit disposal, settings of scaling factor and average radioactivity concentration (hereafter referred to as ''SF'') on container-filled and solidified waste packages generated from Kashiwazaki Kariwa Nuclear Power Station Unit 1-5, setting of cesium residual ratio of molten solidified waste generated from Tokai and Tokai No.2 Power Stations, etc. were studied. Those results were finalized in consideration of the opinion from advisory panel, and publicly opened as JNES-EV reports. In FY 2012, five JNES reports were published and these have been used as standards of safety verification on waste packages. The verification method of radioactive wastes subject to near-surface trench disposal and intermediate depth disposal were also studied. For radioactive wastes which will be returned from overseas, determination methods of radioactive concentration, heat rate and hydrogen generation rate of CSD-C were established. Determination methods of radioactive concentration and heat rate of CSD-B were also established. These results will be referred to verification manuals. (author)

  19. Evaluation and compilation of DOE waste package test data

    International Nuclear Information System (INIS)

    Interrante, C.G.; Escalante, E.; Fraker, A.C.

    1990-11-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period August 1988 through January 1989. Included are reviews of related materials research and plans, activities for the DOE Materials Characterization Center, information on the Yucca Mountain Project, and other information regarding supporting research and special assistance. NIST comments are given on the Yucca Mountain Consultation Draft Site Characterization Plan (CDSCP) and on the Waste Compliance Plan for the West Valley Demonstration Project (WVDP) High-Level Waste (HLW) Form. 3 figs

  20. Destructive and non-destructive tests for radioactive waste packages Task 3 Characterization of radioactive waste forms. A series of final reports (1985-89) No 43

    International Nuclear Information System (INIS)

    Odoj, R.

    1991-01-01

    On the basis of preliminary waste acceptance requirements quality control of radioactive waste has to be performed prior to interim storage or final disposal. The quality control can either be achieved by random tests on conditioned radioactive waste packages or by process qualification of the conditioning processes. One of the most important criteria is the activity of the radioactive waste product or packages. To get some first information on the waste package γ-spectrometric measurement is performed as non-destructive test. Besides the γ-emitting nuclides the α and β-emitting nuclides can be estimated by calculation if the waste was generated in nuclear power plants and the nuclide relations are known. If the non-destructive determination of nuclides is not sufficient or the non-radioactive content of the waste packages has to be identified sampling from the waste packages has to be performed. This can best be done by core drilling. To avoid the need of water for cooling the drill head, air cooled core drilling is investigated. As mixed wastes is not allowed for final disposal the determination of possible organic toxic materials like PCB, dioxin and furane-compounds in cemented wastes is conducted by GC-MS-investigations. For getting more knowledge in the field of process qualification concerning super compaction, instrumentation of the super compaction process is investigated and tested

  1. Shielding Calculations on Waste Packages - The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    Science.gov (United States)

    Adams, Mike; Smalian, Silva

    2017-09-01

    For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like "Monte-Carlo N-Particle Transport Code System" (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.

  2. Options for reducing food waste by ‘Quality Controlled Logistics’ using intelligent packaging along the supply chain

    NARCIS (Netherlands)

    Heising, J.K.; Claassen, G.D.H.; Dekker, M.

    2017-01-01

    Optimizing supply chain management can help to reduce food waste. This article describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on Quality Controlled Logistics (QCL). Intelligent packaging senses compounds in the package that correlate

  3. 10 CFR 60.135 - Criteria for the waste package and its components.

    Science.gov (United States)

    2010-01-01

    ... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste package and its interactions with the emplacement environment do not compromise the function of the waste...

  4. Management of waste from packaging of construction materials in building construction works

    OpenAIRE

    González Pericot, Natalia; Río Merino, Mercedes del

    2011-01-01

    Every material arriving at the construction site comes protected in some type of packaging, fundamentally cardboard, plastic or wood, and presently the great majority of these packagings finish in a container mixed with the rest of waste of the construction work. The increasing tendency to use prefabricated materials increases the volume of packaging necessary in product transport; in addition, the traditional materials also arrive more protected with packaging. A specific management for ...

  5. Release procedures and disposal of radioactive residual substances at the Medical University Hanover (MHH)

    International Nuclear Information System (INIS)

    Scheller, F.; Behrendt, R.; Harke, H.

    2005-01-01

    The disposal of all radioactive residual packages of the MHH is regulated by the German radiation protection ordinance from 26 th July 2001; shown in appendix III, table 1, column 5: unrestricted release of solid materials and liquids. All radioactive waste packages are collected and handled by the central MHH department for radiation protection. They are sorted for type, nuclide and specific radioactivity. A few packages can directly be released as conventional waste after performing incoming measurements showing very low activity concentrations. Longer living radionuclides with specific activities above the release limits have to be delivered to the national waste disposal. For direct measurements of gamma-emitting radionuclides we use two in-situ-measuring units (ISOCS, Canberra) and a special release unit with 9 plastic scintillators in a fixed geometry (FR-9 PVT, MED Medizintechnik). Fluid beta-emitting radionuclides are measured by taking a fraction and using liquid scintillation counting (LSC). Solid beta-emitting radionuclides activity are calculated. (orig.)

  6. Review of waste package verification tests. Semiannual report, April 1985-September 1985

    International Nuclear Information System (INIS)

    Soo, P.

    1986-01-01

    Several studies were completed this period to evaluate experimental and analytical methodologies being used in the DOE waste package program. The first involves a determination of the relevance of the test conditions being used by DOE to characterize waste package component behavior in a salt repository system. Another study focuses on the testing conditions and procedures used to measure radionuclide solubility and colloid formation in repository groundwaters. An attempt was also made to evaluate the adequacy of selected waste package performance codes. However, the latter work was limited by an inability to obtain several codes from DOE. Nevertheless, it was possible to comment briefly on the structures and intents of the codes based on publications in the open literature. The final study involved an experimental program to determine the likelihood of stress-corrosion cracking of austenitic stainless steels and Incoloy 825 in simulated tuff repository environments. Tests for six-month exposure periods in water and air-steam conditions are described. 52 figs., 48 tabs

  7. Verification of the 2.00 WAPPA-B [Waste Package Performance Assessment-B version] code

    International Nuclear Information System (INIS)

    Tylock, B.; Jansen, G.; Raines, G.E.

    1987-07-01

    The old version of the Waste Package Performance Assessment (WAPPA) code has been modified into a new code version, 2.00 WAPPA-B. The input files and the results for two benchmarks at repository conditions are fully documented in the appendixes of the EA reference report. The 2.00 WAPPA-B version of the code is suitable for computation of barrier failure due to uniform corrosion; however, an improved sub-version, 2.01 WAPPA-B, is recommended for general use due to minor errors found in 2.00 WAPPA-B during its verification procedures. The input files and input echoes have been modified to include behavior of both radionuclides and elements, but the 2.00 WAPPA-B version of the WAPPA code is not recommended for computation of radionuclide releases. The 2.00 WAPPA-B version computes only mass balances and the initial presence of radionuclides that can be released. Future code development in the 3.00 WAPPA-C version will include radionuclide release computations. 19 refs., 10 figs., 1 tab

  8. Performance testing of waste forms in a tuff environment

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1983-11-01

    This paper describes experimental work conducted to establish the chemical composition of water which will have reacted with Topopah Spring Member tuff prior to contact with waste packages. The experimental program to determine the behavior of spent fuel and borosilicate glass in the presence of this water is then described. Preliminary results of experiments using spent fuel segments with defects in the Zircaloy cladding are presented. Some results from parametric testing of a borosilicate glass with tuff and 304L stainless steel are also discussed. Experiments conducted using Topopah Spring tuff and J-13 well water have been conducted to provide an estimate of the post-emplacement environment for waste packages in a repository at Yucca Mountain. The results show that emplacement of waste packages should cause only small changes in the water chemistry and rock mineralogy. The changes in environment should not have any detrimental effects on the performance of metal barriers or waste forms. The NNWSI waste form testing program has provided preliminary results related to the release rate of radionuclides from the waste package. Those results indicate that release rates from both spent fuel and borosilicate glass should be below 1 part in 10 5 per year. Future testing will be directed toward making release rate testing more closely relevant to site specific conditions. 17 references, 7 figures

  9. Low and intermediate level waste in SFR-1. Reference Waste Inventory 2007

    Energy Technology Data Exchange (ETDEWEB)

    Almkvist, Lisa (Vattenfall Power Consultant AB, Stockholm (SE)); Gordon, Anna (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-11-15

    The objective with this report is to describe all the waste and the waste package that is expected to be deposited in SFR 1 at the time of closure. The report will form the basis for the release calculation in the safety analysis for SFR 1. Three different scenarios are explored in this report; the waste inventory is based on an estimated operational lifetime of the Swedish nuclear power plants of 50 and 60 years and that closure of the SFR 1 repository will take place in 2040 or 2050 respectively. The third scenario is where the repository is full (one part where the activity adds up to 1016 Bq and one part where the repository is considered full regarding volume). In the report, data about geometries, weights, materials, chemicals and radionuclide are given. No chemotoxic material has been identified in the waste. The inventory is estimated using the Prosit-interface which extracts information from the Triumf database. The inventory is based on so called 'waste types' and the waste types' 'reference waste package'. The reference waste package combined with a prognosis of the number of waste packages to be delivered to SFR 1 gives the final waste inventory for SFR 1. All reference waste packages are thoroughly described in the appendices of this report. The reference waste packages are as far as possible based on actual experiences and measurements. The radionuclide inventory is also based on actual measurements. The inventory is based on measurements of 60Co and 137Cs in waste packages and on measurements of 239Pu and 240Pu in reactor water. Other nuclides in the inventory are calculated with correlation factors

  10. Optimization of an impact limiter for radioactive waste packaging

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta; Mattar Neto, Miguel

    1999-01-01

    A certain class of packages for the transportation of radioactive wastes - type B packages in the transport jargon - is supposed to resist to a series of postulated tests, the most severe for the majority of the packages being the 9 m height drop test. To improve the performance of the packages under this test, impact limiters are added to them, normally as a removable overpack, with the primary goal of reducing the deceleration loads transmitted to the packages and their contents. The first impact limiter concept, developed during the '70s, used a shell-type impact limiter attached to both ends of the package. Later on, wood was tested as impact limiter filling, which improved the package's mechanical performance, but not its thermal resistance. The popularization of the polymeric materials and their growing use in engineer applications have led to the use of these materials in impact limiters, with the extra advantage of the polymers good thermal properties. This paper proposes a methodology for the optimization of an impact limiter for a package for the conditioning of spent sealed sources. Two simplified methods for the design of impact limiters are presented. Finally, a brief discussion is presented on the methodology usually employed in the design of accident-resisting packages. (author)

  11. Role of waste packages in the safety of a high level waste repository in a deep geological formation

    International Nuclear Information System (INIS)

    Bretheau, F.; Lewi, J.

    1990-06-01

    The safety of a radioactive waste disposal facility lays on the three following barriers placed between the radioactive materials and the biosphere: the waste package; the engineered barriers; the geological barrier. The function assigned to each of these barriers in the performance assessment is an option taken by the organization responsible for waste disposal management (ANDRA in France), which must show that: expected performances of each barrier (confinement ability, life-time, etc.) are at least equal to those required to fulfill the assigned function; radiation protection requirements are met in all situations considered as credible, whether they be the normal situation or random event situations. The French waste management strategy is based upon two types of disposal depending on the nature and activity of waste packages: - surface disposal intended for low and medium level wastes having half-lives of about 30 years or less and alpha activity less than 3.7 MBq/kg (0.1 Ci/t), for individual packages and less than 0.37 MBq/kg (0.01 Ci/t) in the average. Deep geological disposal intended for TRU and high level wastes. The conditions of acceptance of packages in a surface disposal site are subject to the two fundamental safety rules no. I.2 and III.2.e. The present paper is only dealing with deep geological disposal. For deep geological repositories, three stages are involved: stage preceding definitive disposal (intermediate storage, transportation, handling, setting up in the disposal cavities); stage subsequent to definitive sealing of the disposal cavities but prior to the end of operation of the repository; stage subsequent to closure of the repository. The role of the geological barrier has been determined as the essential part of long term radioactivity confinement, by a working group, set up by the French safety authorities. Essential technical criteria relating to the choice of a site so defined by this group, are the following: very low permeability

  12. Synthesis of knowledge on the long-term behaviour of concretes. Applications to cemented waste packages; Synthese des connaissances sur le comportement a long terme des betons. Application aux colis cimentes

    Energy Technology Data Exchange (ETDEWEB)

    Richet, C.; Galle, C.; Le Bescop, P.; Peycelon, H.; Bejaoui, S.; Tovena, I.; Pointeau, I.; L' Hostis, V.; Levera, P

    2004-03-01

    As stipulated in the former law of December 91 relating to 'concrete waste package', a progress report (phenomenological reference document) was first provided in 1999. The objective was to make an assessment of the knowledge acquired on the long-term behaviour of cement-based waste packages in the context of deep disposal and/or interim storage. The present document is an updated summary report. It takes into account a new knowledge assessment, considers coupled mechanisms and should contribute to the first performance studies (operational calculations). Handling and radio-nuclides (RN) confinement are the two major functional properties requested from the concrete used for the waste packages. In unsaturated environment (interim storage/disposal prior to closing), the main problem is the generation of cracks in the material. This aspect is a key parameter from the mechanical point of view (retrievability). It can have a major impact on the disposal phase (confinement). In saturated environment (disposal post-closing phase), the main concern is the chemical degradation of the waste package concrete submitted to underground waters leaching. In this context, the major thema are: the durability of the concretes under water (chemical degradation) and in unsaturated medium (corrosion of reinforcement), matter transport, RN retention, chemistry / transport / mechanical couplings. On the other hand, laboratory data on the behaviour of concretes are used to evaluate the RN source term of waste packages in function of time (concrete waste package OPerational Model, i.e. 'Concrete MOP'). The 'MOP' provides the physico-chemical description of the RN release in relationship with the waste package degradation itself. This description is based on simplified phenomenology for which only dimensioning mechanisms are taken into account. The use of Diffu-Ca code (basic module for the MOP) on the CASTEM numerical plate-form, already allows operational

  13. Synthesis of knowledge on the long-term behaviour of concretes. Applications to cemented waste packages; Synthese des connaissances sur le comportement a long terme des betons. Application aux colis cimentes

    Energy Technology Data Exchange (ETDEWEB)

    Richet, C; Galle, C; Le Bescop, P; Peycelon, H; Bejaoui, S; Tovena, I; Pointeau, I; L' Hostis, V; Levera, P

    2004-03-01

    As stipulated in the former law of December 91 relating to 'concrete waste package', a progress report (phenomenological reference document) was first provided in 1999. The objective was to make an assessment of the knowledge acquired on the long-term behaviour of cement-based waste packages in the context of deep disposal and/or interim storage. The present document is an updated summary report. It takes into account a new knowledge assessment, considers coupled mechanisms and should contribute to the first performance studies (operational calculations). Handling and radio-nuclides (RN) confinement are the two major functional properties requested from the concrete used for the waste packages. In unsaturated environment (interim storage/disposal prior to closing), the main problem is the generation of cracks in the material. This aspect is a key parameter from the mechanical point of view (retrievability). It can have a major impact on the disposal phase (confinement). In saturated environment (disposal post-closing phase), the main concern is the chemical degradation of the waste package concrete submitted to underground waters leaching. In this context, the major thema are: the durability of the concretes under water (chemical degradation) and in unsaturated medium (corrosion of reinforcement), matter transport, RN retention, chemistry / transport / mechanical couplings. On the other hand, laboratory data on the behaviour of concretes are used to evaluate the RN source term of waste packages in function of time (concrete waste package OPerational Model, i.e. 'Concrete MOP'). The 'MOP' provides the physico-chemical description of the RN release in relationship with the waste package degradation itself. This description is based on simplified phenomenology for which only dimensioning mechanisms are taken into account. The use of Diffu-Ca code (basic module for the MOP) on the CASTEM numerical plate-form, already allows operational predictions. (authors)

  14. STRUCTURAL CALCULATION OF AN EMPLACEMENT PALLET STATICALLY LOADED BY A WASTE PACKAGE

    International Nuclear Information System (INIS)

    S. Mastilovic

    2000-01-01

    The purpose of this calculation is to determine the structural response of the emplacement pallet (EP) subjected to static load from the mounted waste package (WP). The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This calculation is associated with the waste emplacement systems design; calculations are performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element solutions are performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The results of these calculations are provided in terms of maximum stress intensity magnitudes

  15. Packaging of radioactive wastes for sea disposal

    International Nuclear Information System (INIS)

    1981-02-01

    The Convention on the Prevention of Marine Pollution by the Dumping of Wastes and Other Matter, known as the London Dumping Convention was adopted by an inter-governmental conference in London in 1972 and came into force in 1975. In 1977, the IAEA Board of Governors agreed that there is a continuing responsibility for the IAEA to contribute to the effectiveness of the London Dumping Conventions by providing guidance relevant to the various aspects of dumping radioactive wastes at sea. In the light of the above responsibilities, the IAEA organized a Technical Committee Meeting from 3 to 7 December 1979 to assess the current situation concerning the requirements and the practices of packaging radioactive wastes for dumping at sea with a view to providing further guidance on this subject. The present report summarizes the results of this meeting

  16. Development of a pneumatic stowing and chocking system for packages containing radioactive waste

    International Nuclear Information System (INIS)

    Baekelandt, L.; Libon, H.; Vandorpe, M.; Lafontaine, I.

    1989-01-01

    Since that goods are transported, their chocking and stowing is very often done by improvisation, successfully or disastrously. When the disaster appears in comics it is always a source of an enormous amusement, when it appears in road or maritime accidents it is most of the time a source of death or severe damages. Even if transport of radioactive materials could be considered as the exception where chains and tie-down systems are used abundantly, their strength relies always on the weakness of their components. Special attention has been paid to the transport of type A or type B packages, but obviously there was a lack of interest for the transport of low level radioactive waste, even knowing that the quantities of this waste are a hunderfold or a thousandfold of the first ones. On the subject of stowing and chocking systems for radioactive waste packages, TRANSNUBEL together with the CEA-France performed under the sponsorship of the Commission of the European Communities between 1980 and 1985 a study which clearly showed that during a road accident, in case of a front end impact, the stowing system must be able to absorb entirely the kinetic energy generated by the package deceleration, which is proportional to the package mass. The chocks must be able to absorb a deceleration energy generated by the package of about 30 g at a speed of about 50 km/h. This energy of course decreases at the same time as the speed. These conclusions served as basic principles for the development by TRANSNUBEL of a pneumatic stowing and chocking system for packagings containing radioactive waste

  17. Radionuclide release from low-level waste in field lysimeters

    International Nuclear Information System (INIS)

    Oblath, S.B.

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species

  18. A PC-based software package for modeling DOE mixed-waste management options

    International Nuclear Information System (INIS)

    Abashian, M.S.; Carney, C.; Schum, K.

    1995-02-01

    The U.S. Department of Energy (DOE) Headquarters and associated contractors have developed an IBM PC-based software package that estimates costs, schedules, and public and occupational health risks for a range of mixed-waste management options. A key application of the software package is the comparison of various waste-treatment options documented in the draft Site Treatment Plans prepared in accordance with the requirements of the Federal Facility Compliance Act of 1992. This automated Systems Analysis Methodology consists of a user interface for configuring complexwide or site-specific waste-management options; calculational algorithms for cost, schedule and risk; and user-selected graphical or tabular output of results. The mixed-waste management activities modeled in the automated Systems Analysis Methodology include waste storage, characterization, handling, transportation, treatment, and disposal. Analyses of treatment options identified in the draft Site Treatment Plans suggest potential cost and schedule savings from consolidation of proposed treatment facilities. This paper presents an overview of the automated Systems Analysis Methodology

  19. Overview of DOE LLWMP waste treatment, packaging, and handling activities

    International Nuclear Information System (INIS)

    Pechin, W.H.

    1982-01-01

    The program objective is to develop the best available technology for waste treatment, packaging, and handling to meet the needs of shallow land burial disposal and for greater confinement than shallow land burial. The program has reviewed many of the hardware options for appropriate usage with low-level waste, but promising options remain to be evaluated. The testing of treatment technologies with actual radioactive process wastes has been initiated. The analysis of the interaction of treatment, solidification and disposal needs to be completed

  20. Consumption and recovery of packaging waste in Germany in 2008; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2010-12-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 16.04 million tons of packaging were consumed and became waste. Compared to the reference year 2005, packaging consumption increased by 3.7 % (minus 0.4 % compared to 2007). A total of 13.10 million tons was recovered in terms of material or energy, of which a total of 2.41 million tons outside Germany. In addition, 1.40 million tons of imported packaging waste were recovered in Germany. In 2008, 2.10 million tons were incinerated at waste incineration plants with energy recovery. (orig.)

  1. Consumption and recovery of packaging waste in Germany in 2008; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2010-12-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 16.04 million tons of packaging were consumed and became waste. Compared to the reference year 2005, packaging consumption increased by 3.7 % (minus 0.4 % compared to 2007). A total of 13.10 million tons was recovered in terms of material or energy, of which a total of 2.41 million tons outside Germany. In addition, 1.40 million tons of imported packaging waste were recovered in Germany. In 2008, 2.10 million tons were incinerated at waste incineration plants with energy recovery. (orig.)

  2. Consumption and recovery of packaging waste in Germany in 2009; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2009

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [GVM Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2012-04-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 15.05 million tons of packaging were consumed and became waste. Compared to the reference year 2008, packaging consumption decreased by 6.2 %. A total of 12.73 million tons was recovered in terms of material or energy, of which a total of 2.45 million tons outside Germany. In addition, 1.42 million tons of imported packaging waste were recovered in Germany. In 2009, 1.55 million tons were incinerated at waste incineration plants with energy recovery.

  3. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses

  4. Insight into economies of scale for waste packaging sorting plants

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik; Maul, Anja

    2015-01-01

    of economies of scale and discussed complementary relations occurring between capacity size, technology level and operational practice. Processing costs (capital and operational expenditure) per unit waste input were found to decrease from above 100 € for small plants with a basic technology level to 60......This contribution presents the results of a techno-economic analysis performed for German Materials Recovery Facilities (MRFs) which sort commingled lightweight packaging waste (consisting of plastics, metals, beverage cartons and other composite packaging). The study addressed the importance......-70 € for large plants employing advanced process flows. Typical operational practice, often riddled with inadequate process parameters was compared with planned or designed operation. The former was found to significantly influence plant efficiency and therefore possible revenue streams from the sale of output...

  5. Shielding Calculations on Waste Packages – The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    Directory of Open Access Journals (Sweden)

    Adams Mike

    2017-01-01

    Full Text Available For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like “Monte-Carlo N-Particle Transport Code System” (MCNP® on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.

  6. Method to determine the radioactivity of radioactive waste packages. Basic procedure of the method used to determine the radioactivity of low-level radioactive waste packages generated at nuclear power plants: 2007

    International Nuclear Information System (INIS)

    2008-03-01

    This document describes the procedures adopted in order to determine the radioactivity of low-level radioactive waste packages generated at nuclear power plants in Japan. The standards applied have been approved by the Atomic Energy Society of Japan after deliberations by the Subcommittee on the Radioactivity Verification Method for Waste Packages, the Nuclear Cycle Technical Committee, and the Standards Committee. The method for determining the radioactivity of the low-level radioactive waste packages was based on procedures approved by the Nuclear Safety Commission in 1992. The scaling factor method and other methods of determining radioactivity were then developed on the basis of various investigations conducted, drawing on extensive accumulated knowledge. Moreover, the international standards applied as common guidelines for the scaling factor method were developed by Technical Committee ISO/TC 85, Nuclear Energy, Subcommittee SC 5, Nuclear Fuel Technology. Since the application of accumulated knowledge to future radioactive waste disposal is considered to be rational and justified, such body of knowledge has been documented in a standardized form. The background to this standardization effort, the reasoning behind the determination method as applied to the measurement of radioactivity, as well as other related information, are given in the Annexes hereto. This document includes the following Annexes. Annex 1: (reference) Recorded items related to the determination of the scaling factor. Annex 2 (reference): Principles applied to the determining the radioactivity of waste packages. (author)

  7. Expected very-near-field thermal environments for advanced spent-fuel and defense high-level waste packages

    International Nuclear Information System (INIS)

    Rickertsen, L.D.; Misplon, M.A.; Claiborne, H.C.

    1982-03-01

    The very-near-field thermal environments expected in a nuclear waste repository in a salt formation have been evaluated for the Westinghouse Form I advanced waste package concepts. The repository descriptions used to supplement the waste package designs in these analyses are realistic and take into account design constraints to assure conservatism. As a result, areal loadings are well below the acceptable values established for salt repositories. Predicted temperatures are generally well below any temperature limits which have been discussed for waste packages in a salt formation. These low temperatures result from the conservative repository designs. Investigations are also made of the sensitivity of these temperatures to areal loading, canister separation, and other design features

  8. Gas cooled reactor decommissioning. Packaging of waste for disposal in the United Kingdom deep repository

    International Nuclear Information System (INIS)

    Barlow, S.V.; Wisbey, S.J.; Wood, P.

    1998-01-01

    United Kingdom Nirex Limited has been established to develop and operate a deep underground repository for the disposal of the UK's intermediate and certain low level radioactive waste. The UK has a significant Gas Cooled Reactor (GCR) programme, including both Magnox and AGR (Advanced Gas-cooled Reactor) capacity, amounting to 26 Magnox reactors, 15 AGR reactors as well as research and prototype reactor units such as the Windscale AGR and the Windscale Piles. Some of these units are already undergoing decommissioning and Nirex has estimated that some 15,000 m 3 (conditioned volume) will come forward for disposal from GCR decommissioning before 2060. This volume does not include final stage (Stage 3) decommissioning arisings from commercial reactors since the generating utilities in the UK are proposing to adopt a deferred safe store strategy for these units. Intermediate level wastes arising from GCR decommissioning needs to be packaged in a form suitable for on-site interim storage and eventual deep disposal in the planned repository. In the absence of Conditions for Acceptance for a repository in the UK, the dimensions, key features and minimum performance requirements for waste packages are defined in Waste Package Specifications. These form the basis for all assessments of the suitability of wastes for disposal, including GCR wastes. This paper will describe the nature and characteristics of GCR decommissioning wastes which are intended for disposal in a UK repository. The Nirex Waste Package Specifications and the key technical issues, which have been identified when considering GCR decommissioning waste against the performance requirements within the specifications, are discussed. (author)

  9. Nuclear-waste-package program for high-level isolation in Nevada tuff

    International Nuclear Information System (INIS)

    Rothman, A.J.

    1982-01-01

    The objective of the waste package program is to insure that a package is designed suitable for a repository in tuff that meets performance requirements of the NRC. In brief, the current (draft) regulation requires that the radionuclides be contained in the engineered system for 1000 years, and that, thereafter, no more than one part in 10 5 of the nuclides per year leave the boundary of the system. Studies completed as of this writing are thermal modeling of waste packages in a tuff repository and analysis of sodium bentonite as a potential backfill material. Both studies will be presented. Thermal calculations coupled with analysis of the geochemical literature on bentonite indicate that extensive chemical and physical alteration of bentonite would result at the high power densities proposed (ca. 2 kW/package and an area density of 25 W/m 2 ), in part due to compacted bentonite's relatively low thermal conductivity when dehydrated (approx. 0.6 +- 0.2 W/m 0 C). Because our groundwater contains K + , an upper hydrothermal temperature limit appears to be 120 to 150 0 C. At much lower power densities (less than 1 kW per package and an areal density of 12 W/m 2 ), bentonite may be suitable

  10. Polyethylene liners in radioactive mixed waste packages: An engineering study

    International Nuclear Information System (INIS)

    Whitney, G.A.

    1991-05-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste treatment, storage, and disposal facilities for the US Department of Energy-Richland Operations Office under contract AC06-87RL10930. These facilities include solid waste disposal sites and radioactive solid waste storage areas. This document is 1 in a series of 25 reports or actions identified in a Solid Waste Management Event Fact Sheet and critique report (Appendix E) to address the problem of stored, leaking 183-H Solar Evaporation Basin waste drums. It specifically addresses the adequacy of polyethylene liners used as internal packaging of radioactive mixed waste. This document is to be used by solid waste generators preparing solid waste for storage at Hanford Site facilities. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of radioactive solid waste

  11. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    International Nuclear Information System (INIS)

    Gordon, G.

    2004-01-01

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22

  12. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  13. Effect of alpha and gamma radiation on the near-field chemistry and geochemistry of high-level waste packages

    International Nuclear Information System (INIS)

    Reed, D.T.

    1985-12-01

    Ionizing radiation can potentially alter geochemical and chemical processes in a geologic system. These effects can either enhance or reduce the performance of the waste package in a deep geologic repository. Current indications are that, in a repository located in basalt, ionizing radiation significantly affects geochemical/chemical processes but does not appear to significantly affect factors important to the long-term performance of the repository. The experimental results presented in this paper were obtained as part of an ongoing effort by the Basalt Waste Isolation Project to determine the effect of ionizing radiation on chemical and geochemical processes in the environment of the waste package. Gamma radiolysis experiments were done by subjecting samples of synthetic basalt groundwater in the presence of various waste package components (basalt/packing/low-carbon steel) to high levels of gamma radiation from a 60 Co source. Post-irradiation analysis was done on the gas, liquid, and solid components of the basalt system. The results obtained are important in evaluating waste package performance during the containment period. The effect of alpha radiation on the basalt groundwater system in the presence of waste package components is important in evaluating waste package performance during the isolation period. The experimental work in this area is in a very preliminary stage. Results from two experiments are reported. 9 refs., 4 figs., 7 tabs

  14. Long-term corrosion behaviour of low-/medium-level waste packages

    International Nuclear Information System (INIS)

    Jendras, M.; Bach, F.W.; Behrens, S.; Birr, Ch.; Hassel, Th.

    2009-01-01

    Full text of publication follows: Storage of low- and medium-level radioactive waste requires safe packages. This means that all materials used for the manufacturing of such packages have to show a sufficient resistance especially against corrosive attacks. Since these packages are generally made from carbon steel an additional coating for corrosion protection - mainly solvent-based polymers - is necessary. However, it is not enough to consider the selection and combination of the materials. Regarding the construction and manufacturing of corrosion-resistant drums for low- and medium-level radioactive waste there also has to be paid closer attention to the joining technologies such as welding. For lifetime prediction of low-/medium-level waste packages reliable experimental data concerning the long-term corrosion behaviour of each material as well as of the components is needed. Therefore sheet metals from carbon steel were galvanized or coated with different solvent-based and water-based corrosion protection materials (epoxy as well as silicone resins). After damaging the anti-corrosion coating of some of these sheets with predefined scratches sets of these samples were stored at higher temperatures in climatic chamber, in simulated waste or aged according to standard DIN EN ISO 9227. All corrosion damages were analyzed by means of metallography (light microscopy as well as scanning electron microscopy of micro-sections). The quantitative influence of the corrosive attacks on the mechanical properties of the materials was examined by mechanical testing according to DIN EN 10002. Besides reduction of tensile strength drastic reduction of percentage of elongation after fracture (from 30 % to 10 %) was found. Further experiments were carried out using components or scaled-down drums joined by means of innovative welding techniques such as Cold Arc or Force Arc. The relevant welding parameters (e.g. welding current, proper volume of shielding gas or wire feed) were

  15. Demonstration tests for low level radioactive waste packaging safety

    International Nuclear Information System (INIS)

    Nagano, I.; Shimura, S.; Miki, T.; Tamamura, T.; Kunitomi, K.

    1993-01-01

    The transport packaging for low level radioactive waste (so-called the LLW packaging) has been developed to be utilized for transportation of LLW in 200 liter-drums from Japanese nuclear power stations to the LLW Disposal Center at Rokkashomura in Aomori Prefecture. Transportation is expected to start from December in 1992. We will explain the brief history of the development, technical features and specifications as well as two kinds of safety demonstration tests, namely one is '1.2 meter free drop test' and the other is 'ISO container standard test'. (J.P.N.)

  16. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented

  17. Packaging and transport of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Smith, M.J.S.; Streatfield, R.E.

    1987-02-01

    The paper presents an overview of Nirex proposals for the packaging and transport of low and intermediate-level radioactive waste, as well as the regulatory requirements which must be met in such operations. (author)

  18. Preliminary selection criteria for the Yucca Mountain Project waste package container material

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1991-01-01

    The Department of Energy's Yucca Mountain Project (YMP) is evaluating a site at Yucca Mountain in Nevada for construction of a geologic repository for the storage of high-level nuclear waste. Lawrence Livermore National Laboratory's (LLNL) Nuclear Waste Management Project (NWMP) has the responsibility for design, testing, and performance analysis of the waste packages. The design is performed in an iterative manner in three sequential phases (conceptual design, advanced conceptual design, and license application design). An important input to the start of the advanced conceptual design is the selection of the material for the waste containers. The container material is referred to as the 'metal barrier' portion of the waste package, and is the responsibility of the Metal Barrier Selection and Testing task at LLNL. The selection will consist of several steps. First, preliminary, material-independent selection criteria will be established based on the performance goals for the container. Second, a variety of engineering materials will be evaluated against these criteria in a screening process to identify candidate materials. Third, information will be obtained on the performance of the candidate materials, and final selection criteria and quantitative weighting factors will be established based on the waste package design requirements. Finally, the candidate materials will be ranked against these criteria to determine whether they meet the mandated performance requirements, and to provide a comparative score to choose the material for advanced conceptual design activities. This document sets forth the preliminary container material selection criteria to be used in screening candidate materials. 5 refs

  19. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    International Nuclear Information System (INIS)

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  20. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses.

  1. Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Voegele, Michael D.

    2014-01-01

    This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding. - Highlights: • Progression of events associated with repository design to accommodate tunnel boring machine and in-drift waste package emplacement are discussed. • Change in container design from small, single-layered stainless steel vessel to large, two-layered nickel alloy vessel is discussed. • The addition of drip shield to limit the

  2. Guidelines for sea dumping packages of radioactive waste. Revised version.

    International Nuclear Information System (INIS)

    Anon.

    1979-04-01

    The purpose of these Guidelines is to establish general requirements and provide practical information for the design and manufacture of packages for sea dumping of radioactive waste, in accordance with the terms of the OECD Council Decision establishing a Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste. These Guidelines are in compliance with the IAEA Revised Definition and Recommendations of 1978, for applying the London Dumping Convention to radioactive waste, and are intended for application under the responsibility of the appropriate national authorities of countries participating in the NEA Mechanism

  3. The paradox of packaging optimization – a characterization of packaging source reduction in the Netherlands

    NARCIS (Netherlands)

    van Sluisveld, M.A.E.; Worrell, E.

    2013-01-01

    The European Council Directive 94/62/EC for Packaging and Packaging Waste requires that Member States implement packaging waste prevention measures. However, consumption and subsequently packaging waste figures are still growing annually. It suggests that policies to accomplish packaging waste

  4. Addendum to the Safety Analysis Report for the Steel Waste Packaging. Revision 1

    International Nuclear Information System (INIS)

    Crow, S.R.

    1996-01-01

    The Battelle Pacific Northwest National Laboratory Safety Analysis Report (SAR) for the Steel Waste Package requires additional analyses to support the shipment of remote-handled radioactive waste and special-case waste from the 324 building hot cells to PUREX for interim storage. This addendum provides the analyses required to show that this waste can be safely shipped onsite in the configuration shown

  5. Synthesis document on the long life behavior of packages: reference operational document ''CSD-C'' 2004

    International Nuclear Information System (INIS)

    Helie, M.

    2004-12-01

    This document is realized in the framework of the law of 1991 on the radioactive wastes management. The 2004 synthesis document on long time behavior of standard packages of compacted wastes is constituted by two documents, the reference document and the operational document. This paper presents the operational model describing the packages alteration by the water and the associated radionuclide release. (A.L.B.)

  6. Cleanup Verification Package for the 300 VTS Waste Site

    International Nuclear Information System (INIS)

    Clark, S.W.; Mitchell, T.H.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste

  7. Cleanup Verification Package for the 300 VTS Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Clark and T. H. Mitchell

    2006-03-13

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

  8. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Tang

    2001-05-03

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated.

  9. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    International Nuclear Information System (INIS)

    J.S. Tang

    2001-01-01

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated

  10. Repository Waste Package Transporter Shielding Weight Optimization

    International Nuclear Information System (INIS)

    C.E. Sanders; Shiaw-Der Su

    2005-01-01

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight

  11. Discussion on the methods for calculation release limits for low-level radioactive waste

    International Nuclear Information System (INIS)

    Cao Fengbo; Liu Xiaochao

    2012-01-01

    The release request for low-level radioactive waste are briefly described in this paper. Associating with the conditions of low-level radioactive waste of some radioactive waste processing station, the methods and gist for calculating release limits for low-level radioactive waste with national release limits and annual effective dose limit for the public or the occupation are discussed. Then release limits for the low-level radioactive waste are also proposed. (authors)

  12. IN-PACKAGE CHEMISTRY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  13. IN-PACKAGE CHEMISTRY ABSTRACTION

    International Nuclear Information System (INIS)

    E. Thomas

    2005-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H 2 O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package

  14. Prediction of radionuclide invention for low-and intermediate-level radioactive waste by considering concentration limit of waste package

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Kim, Min Seong; Jeong, Noh Gyeon; Park, Jin Beak [Korea Radioactive Waste Agency(KORAD), Daejeon (Korea, Republic of)

    2017-03-15

    The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.

  15. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  16. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  17. Release consequence analysis for a hypothetical geologic radioactive waste repository in hard rock

    International Nuclear Information System (INIS)

    1979-12-01

    This report makes an evaluation of the long-term behaviour of the wastes placed in a hard rock repository. Impacts were analyzed for the seven reference fuel cycles of WG 7. The reference repository for this study is for granitic rock or gneiss as the host rock. The descriptions of waste packages and repository facilities used in this study represent only one of many possible designs based on the multiple barriers concept. The repository's size is based on a nuclear economy producing 100 gigawatts of electricity per year for 1 year. The objective of the modeling efforts presented in this study is to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere and thus determine an estimate of the potential dose to humans so that the release consequence impacts of the various fuel cycles can be compared. Currently available hydrologic, leach, transport, and dose models were used in this study

  18. Analysis of near-field thermal and psychometric waste package environment using ventilation

    International Nuclear Information System (INIS)

    Danko, G.

    1995-03-01

    The ultimate objective of the Civilian Radioactive Waste Management System (CRWMS) Program is to safely emplace and isolate the nations' spent nuclear fuel (SNF) and radioactive wastes in a geologic repository. Radioactive waste emplaced in a geologic repository will generate heat, increasing the temperature in the repository. The magnitude of this temperature increase depends upon (1) the heat source, i.e. the thermal loading of the repository, and (2) the geologic and engineered heat transport characteristics of the repository. Thermal management techniques currently under investigation include ventilation of the emplacement drifts during the preclosure period which could last as long as 100 years. Understanding the amount of heat and moisture removed from the emplacement drifts and near-field rock by ventilation, are important in determining performance of the engineered barrier system (EBS), as well as the corrosive environment of the waste packages, and the interaction of the EBS with the near-field host rock. Since radionuclide releases and repository system performance are significantly affected by the corrosion rate related to the psychometric environment, it is necessary to predict the amount of heat and moisture that are removed from the repository horizon using a realistic model for a wide range of thermal loading. This can be realized by coupling the hydrothermal model of the rock mass to a ventilation/climate model which includes the heat and moisture transport on the rock-air interface and the dilution of water vapor in the drift. This paper deals with the development of the coupled model concept, and determination of the boundary conditions for the calculations

  19. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1995-01-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to ∼3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of ∼1 g/m 2 /hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals

  20. 77 FR 17093 - Certain Food Waste Disposers and Components and Packaging Thereof: Notice of Receipt of Complaint...

    Science.gov (United States)

    2012-03-23

    ... INTERNATIONAL TRADE COMMISSION [DN 2886] Certain Food Waste Disposers and Components and Packaging.... International Trade Commission has received a complaint entitled Certain Food Waste Disposers and Components and Packaging Thereof, DN 2886; the Commission is soliciting comments on any public interest issues raised by...

  1. Safety analysis report for packaging (onsite) for the Waste Encapsulation and Storage Facility ion exchange module

    International Nuclear Information System (INIS)

    Romano, T.

    1997-01-01

    The Waste Encapsulation and Storage Facility (WESF) is in need of providing an emergency ion exchange system to remove cesium or strontium from the pool cell in the event of a capsule failure. The emergency system is call the WESF Emergency Ion Exchange System and the packaging is called the WESF ion exchange module (WIXM). The packaging system will meet the onsite transportation requirements for a Type B, highway route controlled quantity package as well as disposal requirements for Category 3 waste

  2. Ultimate storage of thorium-bearing waste

    International Nuclear Information System (INIS)

    Ganser, B.

    1986-01-01

    The goal of this R and D project was to experimentally determine the release of the radioactive noble gas radon from thorium-bearing waste. For the experiments, three 200 litre waste forms have been prepared: One package consisting of inactive cement (for blank value determination), the second of cemented, radioactive sludge precipitate (for reference value determination), and the third of untreated sludge precipitate in a drum. The release rate measured on the reference package at room temperature is 3.1x10 10 Bq/a for Rn-220, and 2.4x10 6 Bq/a for Rn-222. The release rate from a drum under equal conditions is 4.1x10 8 Bq/a for Rn-220, and 2.1x10 6 Bq/a for Rn-222. (orig./RB) [de

  3. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-03-02

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  4. Commercial SNF Accident Release Fractions

    Energy Technology Data Exchange (ETDEWEB)

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the

  5. Commercial SNF Accident Release Fractions

    International Nuclear Information System (INIS)

    Schulz, J.

    2004-01-01

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M andO 1999). In contrast to bare unconfined fuel assemblies, the

  6. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  7. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  8. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.; Capron, J.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes

  9. Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials

    Directory of Open Access Journals (Sweden)

    Nural Yilgo

    2014-06-01

    Full Text Available Manufacturing panels from Tetra Pak® (TP packaging material might be an alternative to conventional wood-based panels. This study evaluated some chemical and physical properties as well as biological, weathering, and fire performance of panels with and without zinc borate (ZnB by using shredded TP packaging cartons. Such packaging material, a worldwide well-known multilayer beverage packaging system, is composed of cellulose, low-density polyethylene (LDPE, and aluminum (Al. Panels produced from waste TP packaging material were also examined by FT-IR to understand the fungal deterioration and extent of degradation after accelerated weathering. Before FT-IR investigations, panel specimens were ground under nitrogen atmosphere due to non-uniformity of the composite material. The FT-IR results showed that fungal degradation occurred in the natural polymer of the panel matrix. Although the natural polymer is mostly composed of cellulose, there were also small amounts of polyoses and lignin. It was seen that especially polyose and lignin bands in FT-IR spectra were affected more than cellulose bands by fungal attack. No changes were observed by the fungi in the plastic component (LDPE of the matrix; however, LDPE seemed more sensitive to weathering than cellulose. Incorporation of ZnB at loading level of 1% (w/w did not contribute fire performance of the panels when compared to control panel specimens, while a loading level of 10% improved fire performance considering test parameters such as mass loss, ignition time and peak heat release rate.

  10. Nuclear Waste Package Mockups: A Study of In-situ Redox State

    Science.gov (United States)

    Helean, K.; Anderson, B.; Brady, P. V.

    2006-05-01

    The Yucca Mountain Repository (YMR), located in southern Nevada, is to be the first facility in the U.S. for the permanent disposal of high-level radioactive waste and spent nuclear fuels. Total system performance assessment(TSPA) has indicated that among the major radionuclides contributing to dose are Np, Tc, and I. These three radionuclides are mobile in most geochemical settings, and therefore sequestering them within the repository horizon is a priority for the Yucca Mountain Project (YMP). Corroding steel may offset radionuclide transport processes within the proposed waste packages at YMR by retaining radionuclides, creating locally reducing conditions, and reducing porosity. Ferrous iron has been shown to reduce UO22+ to UO2s, and some ferrous iron-bearing ion-exchange materials have been shown to adsorb radionuclides and heavy metals. Locally reducing conditions may lead to the reduction and subsequent immobilization of problematic dissolved species such as TcO4-, NpO2+, and UO22+ and can also inhibit corrosion of spent nuclear fuel. Water occluded during corrosion produces bulky corrosion products, and consequently less porosity is available for water and radionuclide transport. The focus of this study is on the nature of Yucca Mountain waste package corrosion products and their effects on local redox conditions, radionuclide transport, and porosity. In order to measure in-situ redox, six small-scale (1:40) waste package mockups were constructed using A516 and 316 stainless steel, the same materials as the proposed Yucca Mountain waste packages. The mockups are periodically injected with a simulated groundwater and the accumulated effluent and corrosion products are evaluated for their Fe(II)/Fe(III) content and mineralogy. Oxygen fugacities are then calculated and, thus, in-situ redox conditions are determined. Early results indicate that corrosion products are largely amorphous Fe-oxyhydroxides, goethite and magnetite. That information together with the

  11. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste

  12. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    E. Thomas

    2004-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been

  13. Knowledge synthesis on the long time behavior of packages MOP-CLTBE 2004

    International Nuclear Information System (INIS)

    Peycelon, H.; Bejaoui, S.; Richet, C.; Bary, B.

    2004-10-01

    This document is realized in the framework of the law of 1991 on the radioactive wastes management. It presents the main evolution factors of the concrete packages for non saturated medium storage and saturated disposal. It takes stock on the operational model describing the package alteration and the consequences in terms of radionuclide releases. (A.L.B.)

  14. Plan for spent fuel waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Shaw, H.F.

    1987-11-01

    The purpose of spent fuel waste form testing is to determine the rate of release of radionuclides from failed disposal containers holding spent fuel, under conditions appropriate to the Nevada Nuclear Waste Storage Investigations (NNWSI) Project tuff repository. The information gathered in the activities discussed in this document will be used: to assess the performance of the waste package and engineered barrier system (EBS) with respect to the containment and release rate requirements of the Nuclear Regulatory Commission, as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate the cumulative releases to the accessible environment over 10,000 years to determine compliance with the Environmental Protection Agency, and as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate cumulative releases over 100,000 years as required by the site evaluation process specified in the DOE siting guidelines. 34 refs

  15. Hanford high-level waste melter system evaluation data packages

    International Nuclear Information System (INIS)

    Elliott, M.L.; Shafer, P.J.; Lamar, D.A.; Merrill, R.A.; Grunewald, W.; Roth, G.; Tobie, W.

    1996-03-01

    The Tank Waste Remediation System is selecting a reference melter system for the Hanford High-Level Waste vitrification plant. A melter evaluation was conducted in FY 1994 to narrow down the long list of potential melter technologies to a few for testing. A formal evaluation was performed by a Melter Selection Working Group (MSWG), which met in June and August 1994. At the June meeting, MSWG evaluated 15 technologies and selected six for more thorough evaluation at the Aug. meeting. All 6 were variations of joule-heated or induction-heated melters. Between the June and August meetings, Hanford site staff and consultants compiled data packages for each of the six melter technologies as well as variants of the baseline technologies. Information was solicited from melter candidate vendors to supplement existing information. This document contains the data packages compiled to provide background information to MSWG in support of the evaluation of the six technologies. (A separate evaluation was performed by Fluor Daniel, Inc. to identify balance of plant impacts if a given melter system was selected.)

  16. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    Vejmelka, P.; Rudolph, G.; Kluger, W.; Koester, R.

    1992-02-01

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG) [de

  17. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  18. Impact of rinsing in pesticide packaging waste management: Economic and environmental benefits

    Directory of Open Access Journals (Sweden)

    Marčeta Una

    2015-01-01

    Full Text Available Pesticides have become dailiness due to inevitable application of these preparations in agricultural activities, with the consequence of generation of large amounts of waste packaging. Impact on the environment and expenses of management of packaging waste can be minimized if the packaging is immediately rinsed after the application of devices and if identified as non-hazardous. Besides, financial losses may be reduced by maximum utilization of the preparation. Considering these two financial aspects this work shows evaluation of quantitative losses of preparations if the triple rising method is not applied. The research was conducted in two phases. Phase I included the examination of the impact of different formulations of the same volume on quantitative and financial losses. Based on the results of the first phase of the research, it was noted that the SC formulation is the most interesting to study because this type of formulation has the highest percentage of residue, as well as the fact that the highest annual consumption is noted percisely in this preparation group. This paper presents the results which indicate the impact of packaging volume of SC formulation (ALVERDE 240 SC, INTERMEZZO and ANTRE PLUS on percentage of preparation residue in packaging if there was no rinsing. The results have shown that the quantitative loss is inversely proportional to the volume of packaging, while financial losses do not only depend on the percentage of residue but also on price and quantity of utilization of preparations.

  19. Technical assessment of the significance of Wigner energy for disposal of graphite wastes from the Windscale Piles

    International Nuclear Information System (INIS)

    Guppy, R.M.; Wisbey, S.J.; McCarthy, J.

    2001-01-01

    Plans to dismantle the core of the Windscale Pile 1 reactor, and to package the waste for interim storage and eventual disposal, are well advanced. UK Nirex Limited, currently responsible for identifying and developing a site primarily for disposal of the wide range of intermediate level wastes, is addressing the suitability of the waste from Windscale Pile 1, for transport to, and disposal at, a deep waste repository. To support the decommissioning of Windscale Pile 1, information on the condition of the graphite has been sought. Despite the fire in 1957, recent sampling of regions of the core has shown that much of the graphite still contains significant residual Wigner energy. Unless it can be shown that Wigner energy will not be released at a significant rate during operations such as waste packaging or handling of the package, or after disposal, future safety cases may be undermined. A model for the release of Wigner energy has been developed, which describes the stored energy as a set of defects with different activation energies. Initial values of stored energy are attributed to each member of the set, and the energy is released using first order decay processes. By appropriate selection of the range of activation energies and stored energies attributable to each population of defects, experimentally determined releases of stored energy as a function of temperature can be reproduced by the model. Within the disposal environment, the packages will be subject to modest heating from external sources, including the host rocks, radioactive decay, corrosion processes and heat from curing of backfill materials in the disposal vaults. The Wigner energy release model has been used in combination with finite element thermal modelling to assess the temperature evolution of stacks of waste packages located within hypothetical disposal vaults. It has also been used to assess the response of individual waste packages exposed to fires. This paper provides a summary of the

  20. Effect of PPG-PEG-PPG on the tocopherol-controlled release from films intended for food-packaging applications.

    Science.gov (United States)

    Castro López, María del Mar; Dopico García, Sonia; Ares Pernas, Ana; López Vilariño, José Manuel; González Rodríguez, María Victoria

    2012-08-22

    The feasibility of novel controlled release systems for the delivery of active substances from films intended for food packaging was investigated. Because polyolefins are used highly for food-packaging applications, the reported high retention degree of antioxidants has limited their use for active packaging. Thus, in this study, PP films modified with different chain extenders have been developed to favor and control the release rates of the low molecular weight antioxidant tocopherol. The use of different chain extenders as polymer modifiers (PE-PEG M(w), 575; and PPG-PEG-PPG M(w), 2000) has caused significant changes in tocopherol-specific release properties. High-performance liquid chromatography coupled to PDA-FL and PDA-MS was used to test tocopherol and chain extender migration, respectively. The release of tocopherol from the prepared films with two chain extenders into two food simulants was studied. Different temperatures and storage times were also tested. Varying the structural features of the films with the incorporation of different levels of PPG-PEG-PPG, the release of tocopherol (food-packaging additive) into different ethanolic simulants could be clearly controlled. The effect of the temperature and storage time on the release of the antioxidant has been outstanding as their values increased. The migration of the chain extender, also tested, was well below the limits set by European legislation.

  1. Evaluation and compilation of DOE waste package test data

    International Nuclear Information System (INIS)

    Interrante, C.G.; Fraker, A.C.; Escalante, E.

    1993-06-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of some of the Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, August 1989--January 1990. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Short discussions are given relating to the publications reviewed and complete reviews and evaluations are included. Reports of other work are included in the Appendices

  2. Cleanup Verification Package for the 600-47 Waste Site

    International Nuclear Information System (INIS)

    Cutlip, M.J.

    2005-01-01

    This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris

  3. Development and evaluation of a tracer-injection hydrothermal technique for studies of waste package interactions

    International Nuclear Information System (INIS)

    Jones, T.E.; Coles, D.G.; Britton, R.C.; Burnell, J.R.

    1986-11-01

    A tracer-injection system has been developed for use in characterizing reactions of waste package materials under hydrothermal conditions. High-pressure liquid chromatographic instrumentation has been coupled with Dickson-type rocking autoclaves to allow injection of selected components into the hydrothermal fluid while maintaining run temperature and pressure. Hydrothermal experiments conducted using this system included the interactions of depleted uranium oxide and Zircaloy-4 metal alloy discs with trace levels of 99 Tc and non-radioactive Cs and I in a simulated groundwater matrix. After waste-package components and simulated waste forms were pre-conditioned in the autoclave systems (usually 4 to 6 weeks), known quantities of tracer-doped fluids were injected into the autoclaves' gold reaction bag at run conditions. Time-sequenced sampling of the hydrothermal fluid providing kinetic data on the reactions of tracers with waste package materials. The injection system facilitates the design of experiments that will better define ''steady-state'' fluid compositions in hydrothermal reactions. The injection system will also allow for the formation of tracer-bearing solid phases in detectable quantities

  4. Design of a nuclear-waste package for emplacement in tuff

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Rothman, A.J.; Gregg, D.W.; Hockman, J.N.; Revelli, M.A.; Russell, E.W.; Schornhorst, J.R.

    1983-01-01

    Design, modeling, and testing activities are under way at LLNL in the development of high level nuclear waste package designs. We discuss the geological characteristics affecting design, the 10CFR60 design requirements, conceptual designs, metals for containment barriers, economic analysis, thermal modeling, and performance modeling

  5. Composition and activity variations in bulk gas of drum waste packages of Paks NPP

    International Nuclear Information System (INIS)

    Molnar, M.; Palcsu, L.; Svingor, E.; Szanto, Zs.; Futo, I.; Ormai, P.

    2001-01-01

    To obtain reliable estimates of the quantities and rates of the gas production a series of measurements was carried out in drum waste packages generated and temporarily stored at the site of Paks Nuclear Power Plant (Paks NPP). Ten drum waste packages were equipped with sampling valves for repeated sampling. Nine times between 04/02/2000 and 19/07/2001 qualitative gas component analyses of bulk gases of drums were executed. Gas samples were delivered to the laboratory of the ATOMKI for tritium and radiocarbon content measurements.(author)

  6. Miniature stick-packaging--an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems.

    Science.gov (United States)

    van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix

    2013-08-07

    Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.

  7. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris

  8. Radioactive waste package assay facility. Volume 3. Data processing

    International Nuclear Information System (INIS)

    Creamer, S.C.; Lalies, A.A.; Wise, M.O.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd, and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd, on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. Volume 3, describes the work carried out by Siemens Plessey Controls Ltd on the data-processing aspects of an integrated waste assay facility. It introduces the need for a mathematical model of the assay process and develops a deterministic model which could be tested using Harwell experimental data. Relevant nuclear reactions are identified. Full implementation of the model was not possible within the scope of the Harwell experimental work, although calculations suggested that the model behaved as predicted by theory. 34 figs., 52 refs., 5 tabs

  9. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    International Nuclear Information System (INIS)

    K. Mon

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of features, events and processes (FEPs) with respect to drip shield and waste package modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). Thirty-three FEPs associated with the waste package and drip shield performance have been identified (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). A screening decision, either ''included'' or ''excluded,'' has been assigned to each FEP, with the technical bases for screening decisions, as required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs analyses in this report address issues related to the degradation and potential failure of the drip shield and waste package over the post closure regulatory period of 10,000 years after permanent closure. For included FEPs, this report summarizes the disposition of the FEP in TSPA-LA. For excluded FEPs, this report provides the technical bases for the screening arguments for exclusion from TSPA-LA. The analyses are for the TSPA-LA base-case design (BSC 2004 [DIRS 168489]), where a drip shield is placed over the waste package without backfill over the drip shield (BSC 2004 [DIRS 168489]). Each FEP includes one or more specific issues, collectively described by a FEP name and description. The FEP description encompasses a single feature, event, or process, or a few closely related or coupled processes, provided the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs were assigned to associated Project reports, so the screening decisions reside with the relevant subject-matter experts

  10. Evaluation and compilation of DOE waste package test data: Biannual report, August 1986-January 1987

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Harrison, S.; Shull, R.; Linzer, M.; Ricker, R.; Ruspi, J.

    1987-10-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon and stainless steels, and copper. In the section on tuff, the current level of understanding of several canister materials is questioned. Within the Basalt Waste Isolation Project (BWIP) section, discussions are given on problems concerning groundwater, materials for use in the metallic overpack, and diffusion through the packing. For the proposed salt site, questions are raised on the work on both ASTM A216 Steel and Ti-Code 12. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) is covered. NBS reviews of selected DOE technical reports and a summary of current waste-package activities of the Materials Characterization Center (MCC) is presented. Using a database management system, a computerized database for storage and retrieval of reviews and evaluations of HLW data has been developed and is described. 17 refs., 2 figs., 2 tabs

  11. NWTS program criteria for mined geologic disposal of nuclear waste: functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel

    International Nuclear Information System (INIS)

    1982-07-01

    The Department of Energy (DOE) has primary federal responsibility for the development and implementation of safe and environmentally acceptable nuclear waste disposal methods. Currently, the principal emphasis in the program is on emplacement of nuclear wastes in mined geologic repositories well beneath the earth's surface. A brief description of the mined geologic disposal system is provided. The National Waste Terminal Storage (NWTS) program was established under DOE's predecessor, the Energy Research and Development Administration, to provide facilities for the mined geologic disposal of radioactive wastes. The NWTS program includes both the development and the implementation of the technology necessary for designing, constructing, licensing, and operating repositories. The program does not include the management of processing radioactive wastes or of transporting the wastes to repositories. The NWTS-33 series, of which this document is a part, provides guidance for the NWTS program in the development and implementation of licensed mined geologic disposal systems for solidified high-level and transuranic (TRU) wastes. This document presents the functional requirements and performance criteria for waste packages for solidified high-level waste and spent fuel. A separate document to be developed, NWTS-33(4b), will present the requirements and criteria for waste packages for TRU wastes. The hierarchy and application of these requirements and criteria are discussed in Section 2.2

  12. Performance implications of waste package emplacement orientation

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1991-05-01

    Emplacement borehole orientation directly impacts many aspects of the Engineered Barrier System (EBS) and interactions with the near field environment. This paper considers the impacts of orientation on the hydrologic portion of the environment and its interactions with the EBS. The hydrologic environment is considered from a conceptual standpoint, the numerical analyses are left for subsequent work. As reported in this paper, several aspects of the hydrological environment are more favorable for long term performance of vertically oriented rather than horizontally oriented Waste Packages. 19 refs., 15 figs

  13. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2001-01-01

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site)

  14. Influence of system considerations on waste form design

    International Nuclear Information System (INIS)

    Bauer, A.A.; Matthews, S.C.; Peterson, R.W.

    1979-01-01

    The design of waste forms is constrained by waste management system considerations imposed during generation, treatment, packaging, transportation, storage, and isolation. In the isolation phase, the waste form provides one of the barriers to release in a multibarrier system that includes the natural geologic and hydrologic barriers as well as other engineered barriers

  15. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.-L. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Carasco, C., E-mail: cedric.carasco@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Perot, B. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Mauerhofer, E.; Kettler, J.; Havenith, A. [Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Juelich GmbH (Germany)

    2012-07-15

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R and D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a {approx}20 kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Juelich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. - Highlights: Black-Right-Pointing-Pointer Comparison between measurements and MCNP calculation has been performed for a PGNAA system. Black-Right-Pointing-Pointer The system aims at controlling the amount of toxic elements in nuclear waste. Black-Right-Pointing-Pointer Simple samples and a concrete cylinder in which impurities have been added are used. Black-Right-Pointing-Pointer Calculations agree within a factor 2 with measurements. Black-Right-Pointing-Pointer The system can be improved with a better neutron flux monitoring and the use of boron-free graphite.

  16. Models for recurrent gas release event behavior in hazardous waste tanks

    International Nuclear Information System (INIS)

    Anderson, D.N.; Arnold, B.C.

    1994-08-01

    Certain radioactive waste storage tanks at the United States Department of Energy Hanford facilities continuously generate gases as a result of radiolysis and chemical reactions. The congealed sludge in these tanks traps the gases and causes the level of the waste within the tanks to rise. The waste level continues to rise until the sludge becomes buoyant and ''rolls over'', changing places with heavier fluid on top. During a rollover, the trapped gases are released, resulting, in a sudden drop in the waste level. This is known as a gas release event (GRE). After a GRE, the wastes leading to another GRE. We present nonlinear time waste re-congeals and gas again accumulates leading to another GRE. We present nonlinear time series models that produce simulated sample paths that closely resemble the temporal history of waste levels in these tanks. The models also imitate the random GRE, behavior observed in the temporal waste level history of a storage tank. We are interested in using the structure of these models to understand the probabilistic behavior of the random variable ''time between consecutive GRE's''. Understanding the stochastic nature of this random variable is important because the hydrogen and nitrous oxide gases released from a GRE, are flammable and the ammonia that is released is a health risk. From a safety perspective, activity around such waste tanks should be halted when a GRE is imminent. With credible GRE models, we can establish time windows in which waste tank research and maintenance activities can be safely performed

  17. WESTINGHOUSE 17X17 MOX PWR ASSEMBLY - WASTE PACKAGE CRITICALITY ANALYSIS (SCPB: N/A)

    International Nuclear Information System (INIS)

    J.W. Davis

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi-Purpose Canister (MPC) PWR waste package concepts. The objectives of this evaluation are to show that the criticality potential of the MOX fuel is equal to or lower than the DBF or, if necessary, indicate what additional measures are required to make it so

  18. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-10-11

    The purpose of this report is to evaluate and document the inclusion or exclusion of features, events and processes (FEPs) with respect to drip shield and waste package modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). Thirty-three FEPs associated with the waste package and drip shield performance have been identified (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). A screening decision, either ''included'' or ''excluded,'' has been assigned to each FEP, with the technical bases for screening decisions, as required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs analyses in this report address issues related to the degradation and potential failure of the drip shield and waste package over the post closure regulatory period of 10,000 years after permanent closure. For included FEPs, this report summarizes the disposition of the FEP in TSPA-LA. For excluded FEPs, this report provides the technical bases for the screening arguments for exclusion from TSPA-LA. The analyses are for the TSPA-LA base-case design (BSC 2004 [DIRS 168489]), where a drip shield is placed over the waste package without backfill over the drip shield (BSC 2004 [DIRS 168489]). Each FEP includes one or more specific issues, collectively described by a FEP name and description. The FEP description encompasses a single feature, event, or process, or a few closely related or coupled processes, provided the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs were assigned to associated Project reports, so the screening decisions reside with the relevant subject-matter experts.

  19. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-25

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

  20. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair

  1. Radioactive waste handling at the Mochovce NPP, 1998-2008

    International Nuclear Information System (INIS)

    Vasickova, Gabriela

    2009-01-01

    The radioactive waste management system at the Mochovce NPP is described. The system addresses technical aspects as well as administrative provisions related to radioactive waste generated within the controlled area, from the waste generation phase to waste sorting, packaging, storage, recording, measurement, and transportation to the Bohunice waste processing facility or transfer to the Mochovce liquid radioactive waste treatment facility. The article also addresses conditions for release from the controlled area to the environment for radioactive waste which can be exempt from the institutional administrative control system or released to the environment on the basis of a valid permission issued by the relevant regulatory authority

  2. The release code package REVOLS/RENONS for fission product release from a liquid sodium pool into an inert gas atmosphere

    International Nuclear Information System (INIS)

    Starflinger, J.; Scholtyssek, W.; Unger, H.

    1994-12-01

    For aerosol source term considerations in the field of nuclear safety, the investigation of the release of volatile and non-volatile species from liquid surfaces into a gas atmosphere is important. In case of a hypothetical liquid metal fast breeder reactor accident with tank failure, primary coolant sodium with suspended or solved fuel particles and fission products may be released into the containment. The computer code package REVOLS/RENONS, based on a theoretical mechanistic model with a modular structure, has been developed for the prediction of sodium release as well as volatile and non-volatile radionuclide release from a liquid pool surface into the inert gas atmosphere of the inner containment. Hereby the release of sodium and volatile fission products, like cesium and sodium iodide, is calculated using a theoretical model in a mass transfer coefficient formulation. This model has been transposed into the code version REVOLS.MOD1.1, which is discussed here. It enables parameter analysis under highly variable user-defined boundary conditions. Whereas the evaporative release of the volatile components is governed by diffusive and convective transport processes, the release of the non-volatile ones may be governed by mechanical processes which lead to droplet entrainment from the wavy pool surface under conditions of natural or forced convection into the atmosphere. The mechanistic model calculates the liquid entrainment rate of the non-volatile species, like the fission product strontium oxide and the fuel (uranium dioxide) from a liquid pool surface into a parallel gas flow. The mechanistic model has been transposed into the computer code package REVOLS/RENONS, which is discussed here. Hereby the module REVOLS (RElease of VOLatile Species) calculates the evaporative release of the volatile species, while the module RENONS (RElease of NON-Volatile Species) computes the entrainment release of the non-volatile radionuclides. (orig./HP) [de

  3. Radioactive wastes. New design: the package at the core of investigations

    International Nuclear Information System (INIS)

    Fillet, C.; Cau Dit Coumes, C.; Joussot-Dubien, Ch.; Boen, R.; Ferry, C.; Ribet, I.; Devezeaux de Lavergne, J.G.; Lieven, Th.; Silvy, J.P.; Poinssot, Ch.; Macias, R.M.; Moncouyoux, J.P.

    2005-01-01

    Current waste conditioning processes have demonstrated their effectiveness on an industrial scale. Major advances have nonetheless been achieved, with the development of processes having broader applications, and the ability to achieve further waste volume reductions yet. Meanwhile what will be the long-term behavior of nuclear packages, cornerstone of nuclear wastes management studies? And what about the spent fuels which involve investigation of specific processes, insofar as they may end up in a configuration not originally intended for a long-term storage or disposal facility? Is industrial storage suited for long-term management? How may storage and the long-term be made compatible? This document aims to answer these questions and discusses also on the other countries management of radioactive wastes. (A.L.B.)

  4. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    International Nuclear Information System (INIS)

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document

  5. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  6. Establishing a store baseline during interim storage of waste packages and a review of potential technologies for base-lining

    Energy Technology Data Exchange (ETDEWEB)

    McTeer, Jennifer; Morris, Jenny; Wickham, Stephen [Galson Sciences Ltd. Oakham, Rutland (United Kingdom); Bolton, Gary [National Nuclear Laboratory Risley, Warrington (United Kingdom); McKinney, James; Morris, Darrell [Nuclear Decommissioning Authority Moor Row, Cumbria (United Kingdom); Angus, Mike [National Nuclear Laboratory Risley, Warrington (United Kingdom); Cann, Gavin; Binks, Tracey [National Nuclear Laboratory Sellafield (United Kingdom)

    2013-07-01

    Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. During the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)

  7. Improved practices for packaging transuranic waste at Los Alamos National Laboratory (LA-UR-09-03293) - 16280

    International Nuclear Information System (INIS)

    Goyal, Kapil K.; Carson, Peter H.

    2009-01-01

    Transuranic (TRU) waste leaving the Plutonium Facility at Los Alamos National Laboratory (LANL) is packaged using LANL's waste acceptance criteria for onsite storage. Before shipment to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, each payload container is subject to rigorous characterization to ensure compliance with WIPP waste acceptance criteria and Department of Transportation regulations. Techniques used for waste characterization include nondestructive examination by WIPP-certified real-time radiography (RTR) and nondestructive assay (NDA) of containers, as well as headspace gas sampling to ensure that hydrogen and other flammable gases remain at safe levels during transport. These techniques are performed under a rigorous quality assurance program to confirm that results are accurate and reproducible. If containers are deemed problematic, corrective action is implemented before they are shipped to WIPP. A defensive approach was used for many years to minimize the number of problematic drums. However, based on review of data associated with headspace gas sampling, NDA and RTR results, and enhanced coordination with the entities responsible for waste certification, many changes have been implemented to facilitate packaging of TRU waste drums with higher isotopic loading at the Plutonium Facility at an unprecedented rate while ensuring compliance with waste acceptance criteria. This paper summarizes the details of technical changes and related administrative coordination activities, such as information sharing among the certification entities, generators, waste packagers, and shippers. It discusses the results of all such cumulative changes that have been implemented at the Plutonium Facility and gives readers a preview of what LANL has accomplished to expeditiously certify and dispose of newly generated TRU waste. (authors)

  8. Thermomechanical scoping calculations for the waste package environment tests

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Yow, J.L. Jr.

    1986-03-01

    During the site characterization phase of the Nevada Nuclear Waste Storage Investigation Project, tests are planned to provide field information on the hydrological and thermomechanical environment. These results are needed for assessing performance of stored waste packages emplaced at depth in excavations in a rock mass. Scoping calculations were performed to provide information on displacements and stress levels attained around excavations in the rock mass from imposing a thermal load designed to simulate the heat produced by radioactive decay. In this way, approximate levels of stresses and displacements are available for choosing instrumentation type and sensitivity as well as providing indications for optimizing instrument emplacement during the test. 7 refs., 9 figs., 1 tab

  9. Hanford Waste Vitrification Project overview and status

    International Nuclear Information System (INIS)

    Swenson, L.D.; Smets, J.L.

    1993-01-01

    The Hanford Waste Vitrification Project (HWVP) is being constructed at the US DOE's Hanford Site in Richland, WA. Engineering and design are being accomplished by Fluor Daniel Inc. in Irvine, CA. Technical input is furnished by Westinghouse Hanford Co. and construction management services by UE ampersand C-Catalytic Inc. The HWVP will immobilize high level nuclear waste in a glass matrix for eventual disposal in the federal repository. The HWVP consists of several structures, the major ones being the Vitrification Building, the Canister Storage Building, fan house, sand filter, waste hold tank, pump house, and administration and construction facilities. Construction started in April 1992 with the clearing and grubbing activities that prepared the site for fencing and construction preparation. Several design packages have been released for procurement activities. The most significant package release is for the Canister Storage Building, which will be the first major structure to be constructed

  10. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  11. R and D applied to the non-destructive characterization of waste packages for long term storage or deep disposal

    Energy Technology Data Exchange (ETDEWEB)

    Malvache, P.; Perot, B.; Ma, J.L.; Pettier, J.L. [CEA Cadarache, Dept. d' Etudes des Dechets, DED, 13 - Saint Paul lez Durance (France); Capdevila, J.M.; Huot, N. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares DDIN, 91 - Gif Sur Yvette (France); Moulin, V. [CEA Grenoble, Lab. d' Electronique, de Technologie de l' Information LETI, DSYS, 38 (France)

    2001-07-01

    To ensure the quality and traceability of waste package management in the long term, knowledge on these packages is necessary so as to confirm their compliance to storage or disposal specifications. Research is focused on the management of the knowledge on these packages (fabrication means, materials contained,...) and on the acquisition, through measurement, of their characteristics. Within this context, many studies are underway at the CEA in the field of measurements so as to obtain non- destructive tools to access the parameters which allow the waste packages to be characterized. The two main R and D investigations concern: the nuclear measurement methods for the detection and quantification of radionuclides and of chemical elements considered as important for storage or disposal safety ; the measurement methods for the physical characteristics of the packages by high energy photon imaging, thus allowing pictures of the contents of large, high density and sometimes irradiating packages to be known. During the last five years, the research at the CEA focused on these two areas and resulted in a significant evolution in the non-destructive characterization means for long lived waste packages. (author)

  12. R and D applied to the non-destructive characterization of waste packages for long term storage or deep disposal

    International Nuclear Information System (INIS)

    Malvache, P.; Perot, B.; Ma, J.L.; Pettier, J.L.; Capdevila, J.M.; Huot, N.; Moulin, V.

    2001-01-01

    To ensure the quality and traceability of waste package management in the long term, knowledge on these packages is necessary so as to confirm their compliance to storage or disposal specifications. Research is focused on the management of the knowledge on these packages (fabrication means, materials contained,...) and on the acquisition, through measurement, of their characteristics. Within this context, many studies are underway at the CEA in the field of measurements so as to obtain non- destructive tools to access the parameters which allow the waste packages to be characterized. The two main R and D investigations concern: the nuclear measurement methods for the detection and quantification of radionuclides and of chemical elements considered as important for storage or disposal safety ; the measurement methods for the physical characteristics of the packages by high energy photon imaging, thus allowing pictures of the contents of large, high density and sometimes irradiating packages to be known. During the last five years, the research at the CEA focused on these two areas and resulted in a significant evolution in the non-destructive characterization means for long lived waste packages. (author)

  13. Application of digital radiography for the non-destructive characterization of radioactive waste packages

    International Nuclear Information System (INIS)

    Lierse, C.; Goebel, H.; Kaciniel, E.; Buecherl, T.; Krebs, K.

    1995-01-01

    Digital radiography (DR) using gamma-rays is a powerful tool for the non-destructive determination of various parameters which are relevant within the quality control procedure of radioactive waste packages prior to an interim storage or a final disposal. DR provides information about the waste form and the extent of filling in a typical container. It can identify internal structures and defects, gives their geometric dimensions and helps to detect non-declared inner containers, shielding materials etc. From a digital radiographic image the waste matrix homogeneity may be determined and mean attenuation coefficients as well as density values for selected regions of interest can be calculated. This data provides the basis for an appropriate attenuation correction of gamma emission measurements (gamma scanning) and makes a reliable quantification of gamma emitters in waste containers possible. Information from DR measurements are also used for the selection of interesting height positions of the object which are subsequently inspected in more detail by other non-destructive methods, e. g. by transmission computerized tomography (TCT). The present paper gives important technical specifications of an integrated tomography system (ITS) which is used to perform digital radiography as well as transmission/emission computerized tomography (TCT/ECT) on radioactive waste packages. It describes the DR mode and some of its main applications and shows typical examples of radiographs of real radioactive waste drums

  14. Energy recovery from containerized waste

    International Nuclear Information System (INIS)

    Benoit, M.R.; Hansen, E.R.; Reese, T.J.

    1991-01-01

    This patent describes a method for achieving environmentally sound disposal of solid waste in an operating rotary kiln. It comprises: a heated, rotated cylinder containing in-process mineral material, the method comprising the steps of packaging the waste in containers and charging the containerized waste into the kiln to contact the mineral material at a point along the length of the kiln cylinder where the kiln gas temperature is sufficient to decompose volatile components of the waste released upon contact of the waste with the in-process mineral material

  15. Measurements of Mercury Released From Solidified/Stabilized Waste Forms-FY2002

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2003-01-01

    This report covers work performed during FY 2002 in support of treatment demonstrations conducted for the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) Mercury Working Group. To comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of the following procedures for mixed low-level radioactive wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or (if the wastes also contain organics) an incineration treatment. The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE MWFA Mercury Working Group is working with EPA to determine whether some alternative processes could be used to treat these types of waste directly, thereby avoiding a costly recovery step for DOE. In previous years, demonstrations were performed in which commercial vendors applied their technologies for the treatment of radiologically contaminated elemental mercury as well as radiologically contaminated and mercury-contaminated waste soils from Brookhaven National Laboratory. The test results for mercury release in the headspace were reported in two reports, ''Measurements of Mercury Released from Amalgams and Sulfide Compounds'' (ORNL/TM-13728) and ''Measurements of Mercury Released from Solidified/Stabilized Waste Forms'' (ORNL/TM-2001/17). The current work did not use a real waste; a surrogate sludge had been prepared and used in the testing in an effort to understand the consequences of mercury speciation on mercury release

  16. Tritium release reduction and radiolysis gas formation

    Energy Technology Data Exchange (ETDEWEB)

    Batifol, G.; Douche, Ch.; Sejournant, Ch. [CEA Valduc, 21 - Is-sur-Tille (France)

    2008-07-15

    At CEA Valduc, the usual tritiated waste container is the steel drum. It allows good release reduction performance for middle activity waste but in some cases tritium outgassing from the waste drums is too high. It was decided to over-package each drum in a tighter container called the over-drum. According to good safety practices it was also decided to measure gas composition evolution into the over-drum in order to defect hydrogen formation over time. After a few months, a significant release reduction was observed. Additionally there followed contamination reduction in the roof storage building rainwater. However hydrogen was also observed in some over-drums, in addition to other radiolysis products. Catalyst will be added to manage the hydrogen risk in the over-drums. (authors)

  17. The treatment and packaging of waste plutonium and waste actinides for disposal

    International Nuclear Information System (INIS)

    Taylor, R.F.

    1988-07-01

    The objectives of this work have been to review the current state of knowledge on the treatment and packaging of unusable or surplus plutonium and other waste actinides for disposal and to identify any gaps in data essential for the development of a preferred route. The exercise was based on published data which said the quantity currently to be disposed of was 50 tonnes in oxide form. A literature review over the period 1978 to 1988 was carried out and a computerised database specific to the exercise was created. From this it is concluded that there are no insuperable problems to the formulation of a disposal route although there is none currently proven. The preferred wasteform would be a glass or synthetic rock. The major complication lies in the fissile nature of plutonium which dictates limits to the package size and places restrictions on the production and disposal routes. Additional work necessary to permit a final decision is listed. (author)

  18. Definition of the waste package environment for a repository located in salt

    International Nuclear Information System (INIS)

    Clark, D.E.; Bradley, D.J.

    1983-01-01

    The expected environmental conditions for emplaced waste packages in a salt repository are simulated in the materials testing program to evaluate performance. Synthetic brines, based on the analyses of actual brines (both intrusion and inclusion), are used for corrosion and leach testing. Elevated temperatures (to 150 0 C) and radiation fields of up to 10 3 rad/h are employed as conservative conditions to bracket expected performance and provide data for worst case scenarios. Obtaining a precise definition of the waste package environment in a salt repository and its change with time is closely tied to detailed site characterization of the candidate salt repository horizon. It is expected that field testing can augment some of the materials testing currently under way and can provide increased confidence in the predicted site-specific near-field conditions. 17 references, 5 figures, 1 table

  19. Experiments to quantify airborne release from packages with dispersible radioactive materials under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martens, R.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50667 Koeln (Germany); Koch, W.; Nolte, O. [Fraunhofer-Institut fuer Toxikologie und Experimentelle Medizin (ITEM), Nikolai-Fuchs-Str.1, 30625 Hannover (Germany)

    2005-07-01

    For transport or handling accidents involving packages with radioactive materials and the assessment of potential radiological consequences, for the review of current requirements of the IAEA Transport Regulations, and for their possible further development reliable release data following mechanical impact are required. Within this context a research project was carried out which extends the basis for a well-founded examination of the contemporary system of requirements of 'Low Specific Activity' (LSA)-type materials and allows for its further development where appropriate. This project comprises a prior system-analytical examination and an experimental programme aiming at improving the general physical understanding of the release process as well as the quantity and the characteristics of airborne released material for non-fixed dispersible LSA-II material upon mechanical impact. Impaction experiments applying small, medium and real sized specimens of different dispersible materials revealed that the release behaviour of dispersible powders strongly depends upon material properties, e.g. particle size distribution and cohesion forces. The highest experimentally determined release fraction of respirable mass (AED < 10 {mu}m) amounted to about 2 % and was obtained for 2 kg of un-contained easily dispersible pulverized fly ash (PFA). For larger un-contained PFA specimen the release fraction decreases. However, packaging containing powdery material substantially reduces the airborne release fraction. The measured airborne release fractions for a 200 l drum with Type A certificate containing PFA were about a factor of 50 to 100 lower than for un-contained material. For a drop height of 9 m the airborne release fraction amounted to about 4 x 10{sup -5}. This value should be applicable for most of transport and handling accidents with mechanical impact. For a metal container of Type IP-2 or better which contains powder masses of 100 kg or more this release

  20. Long term behaviour of low and intermediate level waste packages under repository conditions. Results of a co-ordinated research project 1997-2002

    International Nuclear Information System (INIS)

    2004-06-01

    The development and application of approaches and technologies that provide long term safety is an essential issue in the disposal of radioactive waste. For low and intermediate level radioactive waste, engineered barriers play an important role in the overall safety and performance of near surface repositories. Thus, developing a strong technical basis for understanding the behaviour and performance of engineered barriers is an important consideration in the development and establishment of near surface repositories for radioactive waste. In 1993, a Co-ordinated Research Project (CRP) on Performance of Engineered Barrier Materials in Near Surface Disposal Facilities for Radioactive Waste was initiated by the IAEA with the twin goals of addressing some of the gaps in the database on radionuclide isolation and long term performance of a wide variety of materials and components that constitute the engineered barriers system (IAEA-TECDOC-1255 (2001)). However, during the course of the CRP, it was realized that that the scope of the CRP did not include studies of the behaviour of waste packages over time. Given that a waste package represents an important component of the overall near surface disposal system and the fact that many Member States have active R and D programmes related to waste package testing and evaluation, a new CRP was launched, in 1997, on Long Term Behaviour of Low and Intermediate Level Waste Packages Under Repository Conditions. The CRP was intended to promote research activities on the subject area in Member States, share information on the topic among the participating countries, and contribute to advancing technologies for near surface disposal of radioactive waste. Thus, this CRP complements the afore mentioned CRP on studies of engineered barriers. With the active participation and valuable contributions from twenty scientists and engineers from Argentina, Canada, Czech Republic, Egypt, Finland, India, Republic of Korea, Norway, Romania

  1. Application of geometry correction factors for low-level waste package dose measurements. Revision 1

    International Nuclear Information System (INIS)

    Chandler, M.C.; Parish, B.

    1995-01-01

    Plans are to determine the Cs-137 content of low-level waste packages generated in High-Level Waste by measuring the radiation level at a specified distance from the package with a hand-held radiation instrument. The measurement taken at this specified distance, either 3 or 5 feet, is called the far-field measurement. This report documents a method for adjusting the gamma exposure rate (mR/hr) reading used in dose-to-curie determinations when the far-field measurement equals the background reading. This adjustment is necessary to reduce the conservatism resulting from using a minimum detection limit exposure rate for the dose-to-curie determination for the far-field measurement position. To accomplish this adjustment, the near-field (5 cm) measurement is multiplied by a geometry correction factor to obtain an estimate of the far field exposure rate (which is below instrument sensitivity). This estimate of the far field exposure rate is used to estimate the Cs-137 curie content of the package. This report establishes the geometry correction factors for the dose-to-curie determination when the far-field gamma exposure measurement equals the background reading. This report also provides a means of demonstrating compliance to 1S Manual requirements for exposure rate readings at different locations from waste packages while specifying only two measurement positions. This demonstration of compliance is necessary to minimize the number of locations exposure rate measurements that are required, i.e., ALARA

  2. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    Energy Technology Data Exchange (ETDEWEB)

    Polley, G.M. [Perma-Fix Environmental Services, 575 Oak Ridge Turnpike, Oak Ridge, TN 37830 (United States)

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged in inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing

  3. Conceptual designs for waste packages for horizontal or vertical emplacement in a repository in salt for reference in the site characterization plan

    International Nuclear Information System (INIS)

    1987-06-01

    This report includes the options of horizontal and vertical emplacement, the addition of a phased repository, an additional waste form (intact spent fuel), revised geotechnical data appropriate for the Deaf Smith County site, new corrosion data for the container, and new repository design data. The waste package consists of waste form and canister within a thick-walled, low-carbon steel container surrounded by packing. The container is a hollow cylinder with a flat head welded to each end. The design concepts for the waste container or vertical and horizontal emplacement are identical. This report discusses the results of analyses of aspects of the reference waste package concept needing changes because of new data and information believed applicable to the Deaf Smith County site. Included are waste package conceptual designs or (1) the reference defense high-level waste form from the Savannah River Plant; (2) intact spent fuel with our pressurized-water-reactor or nine boiling-water-reactor assemblies per package for emplacement during Phase 1 of repository operation; and (3) spent fuel which has been disassembled and consolidated into a segmented cylindrical canister with rods from either 12 pressurized-water-reactor or 30 boiling-water-reactor assemblies per package for emplacement during Phase 2. 30 refs., 61 figs., 30 tabs

  4. CERAMIC WASTE FORM DATA PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  5. WASTE PACKAGE CORROSION STUDIES USING SMALL MOCKUP EXPERIMENTS

    International Nuclear Information System (INIS)

    B.E. Anderson; K.B. Helean; C.R. Bryan; P.V. Brady; R.C. Ewing

    2005-01-01

    The corrosion of spent nuclear fuel and subsequent mobilization of radionuclides is of great concern in a geologic repository, particularly if conditions are oxidizing. Corroding A516 steel may offset these transport processes within the proposed waste packages at the Yucca Mountain Repository (YMR) by retaining radionuclides, creating locally reducing conditions, and reducing porosity. Ferrous iron, Fe 2+ , has been shown to reduce UO 2 2+ to UO 2(s) [1], and some ferrous iron-bearing ion-exchange materials adsorb radionuclides and heavy metals [2]. Of particular interest is magnetite, a potential corrosion product that has been shown to remove TcO 4 - from solution [3]. Furthermore, if Fe 2+ minerals, rather than fully oxidized minerals such as goethite, are produced during corrosion, then locally reducing conditions may be present. High electron availability leads to the reduction and subsequent immobilization of problematic dissolved species such as TcO 4 - , NpO 2 + , and UO 2 2+ and can also inhibit corrosion of spent nuclear fuel. Finally, because the molar volume of iron material increases during corrosion due to oxygen and water incorporation, pore space may be significantly reduced over long time periods. The more water is occluded, the bulkier the corrosion products, and the less porosity is available for water and radionuclide transport. The focus of this paper is on the nature of Yucca Mountain waste package steel corrosion products and their effects on local redox state, radionuclide transport, and porosity

  6. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    International Nuclear Information System (INIS)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs

  7. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  8. Semi-empirical model to determine pure β--emitters in closed waste packages using Bremsstrahlung radiation

    International Nuclear Information System (INIS)

    Takacs, S.; Hermanne, A.

    2001-01-01

    Medical establishments and research laboratories use many different type of radionuclides for diagnostic, therapeutic and research purposes. As a final by product large amount of medical waste are produced. This waste represents both biological and radiation hazards, therefore it requires special treatments in both point of view. Biomedical waste is usually best managed on site by decay storage, with minimal transport risk and ALARA (as low as reasonably achieved) exposure levels. The nuclear medical waste has characteristics fundamentally different from the nuclear fuel cycle waste. In medical practice radioactive material is used both in sealed and unsealed form, but major part of the medical waste is produced by using unsealed isotopes of relatively short half-life in most cases less than 100 days and of low specific activity. There are gamma-emitter, position-emitter and pure beta-knitter among these isotopes. The positron-emitter isotopes have usually less than 2 hours half-life; therefore they do not contribute too much to the volume of the radioactive waste since they decay rapidly. Among the γ- and pure β - - emitters there are isotopes with half-life from seconds to several hundred days. Waste containing isotopes with longer half-life contributes mainly to that large volume of waste produced regularly at biomedical sites. On site decay storage requires accurate determination of activity levels. Since quantitative estimation of isotope activity can be difficult where waste packages contain a mixed combination of β - -γ-emitters, segregation at the time of waste production is essential. Accurate identification and quantitative measurement of γ-emitter isotopes is possible with a large volume, reverse electrode, high purity germanium detector even those cases when the isotope emits only low energy gamma photons. However, there is problem with the pure β - emitting isotopes to measure. In biological health care and pharmaceutical research a range of

  9. Containers for packaging of solid and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1993-01-01

    Low and intermediate level radioactive wastes are generated at all stages in the nuclear fuel cycle and also from the medical, industrial and research applications of radiation. These wastes can potentially present risks to health and the environment if they are not managed adequately. Their effective management will require the wastes to be safely stored, transported and ultimately disposed of. The waste container, which may be defined as any vessel, drum or box, made from metals, concrete, polymers or composite materials, in which the waste form is placed for interim storage, for transport and/or for final disposal, is an integral part of the whole package for the management of low and intermediate level wastes. It has key roles to play in several stages of the waste management process, starting from the storage of raw wastes and ending with the disposal of conditioned wastes. This report provides an overview of the various roles that a container may play and the factors that are important in each of these roles. This report has two main objectives. The first is to review the main requirements for the design of waste containers. The second is to provide advice on the design, fabrication and handling of different types of containers used in the management of low and intermediate level radioactive solid wastes. Recommendations for design and testing are given, based on the extensive experience available worldwide in waste management. This report is not intended to have any regulatory status or objectives. 56 refs, 16 figs, 10 tabs

  10. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; L.A. Rottinghaus

    2004-03-26

    As directed by a written development plan (BSC 2002 [DIRS 161132]), the primary purpose of this scientific analysis is to identify and document the analyses and resolution of the features, events, and processes (FEPs) affecting the waste package and drip shield performance in the repository. Thirty-three FEPs were identified that are associated with the waste package and drip shield performance. This scientific analysis has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The scope of this scientific analysis is to identify the treatment of the FEPs affecting postclosure waste package and drip shield performance. It should be noted that seismic effects are not treated within this report. A full discussion of seismic effects is contained in the ''Engineered Barrier System Features, Events, and Processes'' report (BSC 2004 [DIRS 167253]). The FEPs that are deemed potentially important to repository postclosure performance are evaluated, either as components of the total system performance assessment (TSPA) or as a separate discussion in a scientific analysis report. The scope for this activity involves two tasks, namely: Task 1: Identify which FEPs are to be considered explicitly in the TSPA (called included FEPs) and in which scientific analyses these FEPs are addressed. Task 2: Identify FEPs not to be included in the TSPA (called excluded FEPs) and provide justification for why these FEPs do not need to be a part of the TSPA model. The analyses documented in this scientific analysis are for the license application (LA) base case design (BSC 2004 [DIRS 167040]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 167040]). Each FEP may include one or more specific issues that are collectively described by a FEP name, a FEP description, and descriptor phrases. The FEP Description may encompass a single feature, process

  11. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    International Nuclear Information System (INIS)

    K.G. Mon; L.A. Rottinghaus

    2004-01-01

    As directed by a written development plan (BSC 2002 [DIRS 161132]), the primary purpose of this scientific analysis is to identify and document the analyses and resolution of the features, events, and processes (FEPs) affecting the waste package and drip shield performance in the repository. Thirty-three FEPs were identified that are associated with the waste package and drip shield performance. This scientific analysis has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The scope of this scientific analysis is to identify the treatment of the FEPs affecting postclosure waste package and drip shield performance. It should be noted that seismic effects are not treated within this report. A full discussion of seismic effects is contained in the ''Engineered Barrier System Features, Events, and Processes'' report (BSC 2004 [DIRS 167253]). The FEPs that are deemed potentially important to repository postclosure performance are evaluated, either as components of the total system performance assessment (TSPA) or as a separate discussion in a scientific analysis report. The scope for this activity involves two tasks, namely: Task 1: Identify which FEPs are to be considered explicitly in the TSPA (called included FEPs) and in which scientific analyses these FEPs are addressed. Task 2: Identify FEPs not to be included in the TSPA (called excluded FEPs) and provide justification for why these FEPs do not need to be a part of the TSPA model. The analyses documented in this scientific analysis are for the license application (LA) base case design (BSC 2004 [DIRS 167040]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 167040]). Each FEP may include one or more specific issues that are collectively described by a FEP name, a FEP description, and descriptor phrases. The FEP Description may encompass a single feature, process or event, or a few

  12. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study

    International Nuclear Information System (INIS)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood

  13. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    Science.gov (United States)

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  14. Gas retention and release behavior in Hanford single-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large (∼100 m 3 ) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given

  15. Future-proof radioactive waste treatment technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Klaus; Braehler, Georg [NUKEM Technologies Engineering Services GmbH, Alzenau (Germany)

    2014-08-15

    In order to select the optimal treatment method for radioactive waste three options can be considered. First, to treat the radioactive waste only to allow long term interim storage until the waste acceptance criteria are defined and the disposal sites are operable. Second, to select treatment methods just in compliance with the current state of discussion with the regard to the above. Third, taking also the future development in the field of waste acceptance criteria and disposal into account. When developing waste treatment systems for Nuclear Power Plants NUKEM Technologies follows the following targets, minimisation of the amount of radioactive waste, maximisation of free release material, volume reduction, avoidance of unwanted materials in the waste package, as well as efficient waste treatment solutions (low investment, high volume reduction). With its technologies produced waste packages fulfil the most stringent waste acceptance criteria.

  16. Aspiration requirements for the transportation of retrievably stored waste in the TRUPACT-2 package

    International Nuclear Information System (INIS)

    Djordjevic, S.; Drez, P.; Murthy, D.; Temus, C.

    1990-01-01

    The Transuranic Package Transporter-II (TRUPACT-II) is the shipping package to be used for the transportation of contact-handled transuranic (CH TRU) waste between the various US Department of Energy (DOE) sites, and to the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. Waste (payload) containers to be transported in the TRUPACT-II package are required to be vented prior to being shipped. ''Venting'' refers to the installation of one or more carbon composite filters in the lid of the container, and the puncturing of a rigid liner (if present). This ensures that there is no buildup of pressure or potentially flammable gas concentrations in the container prior to transport. Payload containers in retrievable storage that have been stored in an unvented condition at the DOE sites, may have generated and accumulated potentially flammable concentrations of gases (primarily due to generation of hydrogen by radiolysis) during the unvented storage period. Such payload containers need to be aspirated for a sufficient period of time until safe pre-transport conditions (acceptably low hydrogen concentrations) are achieved. The period of time for which a payload container needs to be in a vented condition before qualifying for transport in a TRUPACT-II package is defined as the ''aspiration time.'' This paper presents the basis for evaluating the minimum aspiration time for a payload container that has been in unvented storage. Three different options available to the DOE sites for meeting the aspiration requirements are described in this paper. 4 refs., 2 figs

  17. An econometric analysis of regional differences in household waste collection: the case of plastic packaging waste in Sweden.

    Science.gov (United States)

    Hage, Olle; Söderholm, Patrik

    2008-01-01

    The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. The impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used.

  18. An econometric analysis of regional differences in household waste collection: The case of plastic packaging waste in Sweden

    International Nuclear Information System (INIS)

    Hage, Olle; Soederholm, Patrik

    2008-01-01

    The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. The impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used

  19. Methodology for estimating accidental radioactive releases in nuclear waste management

    International Nuclear Information System (INIS)

    Levy, H.B.

    1979-01-01

    Estimation of the risks of accidental radioactive releases is necessary in assessing the safety of any nuclear waste management system. The case of a radioactive waste form enclosed in a barrier system is considered. Two test calculations were carried out

  20. Evaluation on the structural soundness of the transport package for low-level radioactive waste for subsurface disposal against aircraft impact by finite element method

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    2009-01-01

    The structural analysis of aircraft crush on the transport package for low-level radioactive waste was performed using the impact force which was already used for the evaluation of the high-level waste transport package by LSDYNA code. The transport package was deformed, and stresses due to the crush exceeded elastic range. However, plastic strains yieled in the package were far than the elongation of the materials and the body of the package did not contact the disposal packages due to the deformation of the package. Therefore, it was confirmed that the package keeps its integrity against aircraft crush. (author)

  1. Guidance document for prepermit bioassay testing of low-level radioactive waste

    International Nuclear Information System (INIS)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report

  2. Guidance document for prepermit bioassay testing of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  3. Method for activity measurement in large packages of radioactive wastes. Is the overall activity stored inside a final repository systematically under-estimated?

    International Nuclear Information System (INIS)

    Rottner, B.

    2005-01-01

    The activity of a rad waste package is usually evaluated from gamma spectrometry measurements or dose rates emitted by the package, associated with transfer functions. These functions are calculated assuming that both activity and mass distributions are homogeneous. The proposed method, OPROF-STAT (patented) evaluates the error arising from this homogeneous assumption. This error has a systematic part, leading to an over or underestimation of the overall activity in a family of similar waste packages, and a stochastic part, whose mean effect on the overall activity of the family is null. The method consists in building a virtual family of packages, by numeric simulation of the filling of each package of the family. The simulated filling has a stochastic part, so that the mass and activity distributions inside a package are different from one package to another. The virtual packages are wholly known, which is not the case for the real family, and it is then possible to compute the result of a measurement, and the associated error, for each package of the virtual family. A way to fit and demonstrate the representativeness of the virtual is described. The main trends and parameters modifying the error are explored: a systematic underestimation of the activity in a large family of rad waste packages is possible. (author)

  4. A case study of packaging waste collection systems in Portugal - Part II: Environmental and economic analysis.

    Science.gov (United States)

    Pires, Ana; Sargedas, João; Miguel, Mécia; Pina, Joaquim; Martinho, Graça

    2017-03-01

    An understanding of the environmental impacts and costs related to waste collection is needed to ensure that existing waste collection schemes are the most appropriate with regard to both environment and cost. This paper is Part II of a three-part study of a mixed packaging waste collection system (curbside plus bring collection). Here, the mixed collection system is compared to an exclusive curbside system and an exclusive bring system. The scenarios were assessed using life cycle assessment and an assessment of costs to the waste management company. The analysis focuses on the collection itself so as to be relevant to waste managers and decision-makers who are involved only in this step of the packaging life cycle. The results show that the bring system has lower environmental impacts and lower economic costs, and is capable of reducing the environmental impacts of the mixed system. However, a sensitivity analysis shows that these results could differ if the curbside collection were to be optimized. From economic and environmental perspectives, the mixed system has few advantages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. NNWSI waste form test method for unsaturated disposal conditions

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-03-01

    A test method has been developed to measure the release of radionuclides from the waste package under simulated NNWSI repository conditions, and to provide information concerning materials interactions that may occur in the repository. Data are presented from Unsaturated testing of simulated Savannah River Laboratory 165 glass completed through 26 weeks. The relationship between these results and those from parametric and analog testing are described. The data indicate that the waste form test is capable of producing consistent, reproducible results that will be useful in evaluating the role of the waste package in the long-term performance of the repository. 6 refs., 7 figs., 5 tabs

  6. Petrologic and geochemical characterization of the Bullfrog Member of the Crater Flat Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1983-09-01

    In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), experiments on hydrothermal rock/water interaction, corrosion, thermomechanics, and geochemical modeling calculations are being conducted. All of these activities require characterization of the initial bulk composition, mineralogy, and individual phase geochemistry of the potential repository host rock. This report summarizes the characterization done on samples of the Bullfrog Member of the Crater Flat Tuff (Tcfb) used for Waste Package experimental programs. 11 references, 17 figures, 3 tables

  7. Hanford tank residual waste - Contaminant source terms and release models

    International Nuclear Information System (INIS)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.

    2011-01-01

    Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the

  8. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Proctor, M.L.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the 'metal line' of the P-10 Tritium Separation Project.

  9. STRUCTURAL CALCULATIONS FOR THE CODISPOSAL OF TRIGA SPENT NUCLEAR FUEL IN A WASTE PACKAGE

    International Nuclear Information System (INIS)

    S. Mastilovic

    1999-01-01

    The purpose of this analysis is to determine the structural response of a TRIGA Department of Energy (DOE) spent nuclear fuel (SNF) codisposal canister placed in a 5-Defense High Level Waste (DHLW) waste package (WP) and subjected to a tipover design basis event (DBE) dynamic load; the results will be reported in terms of displacements and stress magnitudes. This activity is associated with the WP design

  10. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  11. 40 CFR 262.30 - Packaging.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Packaging. 262.30 Section 262.30... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before... the waste in accordance with the applicable Department of Transportation regulations on packaging...

  12. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    J.C. CUNNANE

    2004-08-31

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release.

  13. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    International Nuclear Information System (INIS)

    CUNNANE, J.C.

    2004-01-01

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release

  14. Long term safety assessment of geological waste disposal systems: issues on release scenarios

    International Nuclear Information System (INIS)

    Khan, S.A.; Qureshi, A.A.

    1995-01-01

    Geological insolation of high level nuclear waste is an attractive waste disposal concept. However, long term safety demonstration of this concept is a major challenge to the operators, regulators and the scientific community. Identification of the factors responsible for the release of radionuclides from geosphere to biosphere,is first step in this regard. Current understanding of the release scenarios indicates that faulting, ground after percolation, seismicity, volcanism and human intrusion are the dominating release factors for most of the candidate rock formations. The major source of uncertainties is the probability values of various release events due to random nature of catastrophic geological events and past poor historical records of the frequencies of such events. There is consensus among the experts that the waste release via human intrusion is the most unpredictable scenario at present state of the knowledge. (author)

  15. Evaluation and compilation of DOE [Department of Energy] waste package test data

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Plante, E.

    1989-10-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six month period February 1988 through July 1988. Activities for the DOE Materials Characterization Center are reviewed for the period January 1988 through June 1988. A summary is given of the Yucca Mountain, Nevada disposal site activities. Short discussions relating to the reviewed publications are given and complete reviews and evaluations are included. 20 refs., 1 fig., 1 tab

  16. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  17. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

  18. Evaluation of the data available for estimating release rates from commercial low-level waste packages

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Cowgill, M.G.

    1991-01-01

    In this paper, an overview of our findings concerning the distribution of activity within low-level radioactive wastes will be presented. This will begin in a general fashion and consider the distribution of the total activity by each of the following: waste class, waste stream, wasteform, and waste container. A radionuclide specific breakdown by waste class and wasteform follows. The findings are reviewed in terms of performance assessment modeling needs. Finally, we present our conclusions

  19. Evaluation and compilation of DOE waste package test data

    International Nuclear Information System (INIS)

    Interrante, C.G.; Fraker, A.C.; Escalante, E.

    1991-12-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, February through July 1989. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Outlines for planned interpretative reports on the topics of aqueous corrosion of copper, mechanisms of stress corrosion cracking and internal failure modes of Zircaloy cladding are included. For the publications reviewed during this reporting period, short discussions are given to supplement the completed reviews and evaluations. Included in this report is an overall review of a 1984 report on glass leaching mechanisms, as well as reviews for each of the seven chapters of this report

  20. Continuous using of the scaling factors for radionuclide evaluation in the packaged solid wastes originated from the Japanese Nuclear Power Plants since 2003

    International Nuclear Information System (INIS)

    2005-03-01

    The amounts and concentration of the nuclides in the waste packages are estimated by measuring some key nuclides, mostly gamma emitters, from outside of the packages and by applying the scaling factor method (using the relationship between some easy to measure key nuclides and the other difficult to measure nuclides). The solid wastes are classified into two kinds of packages: homogeneous solid wastes made from concentrated liquid wastes and spent fuels solidified with cement asphalt, or plastics and heterogeneous solid wastes made of cutting metals, compacted or fused filters solidified with mortars. Japan Nuclear Energy Safety Organization (JNES) established in 2005 is in charge of the confirmation of the inside contents with radionuclide information and compliance with formalities for safety maintenance and control. (S. Ohno)

  1. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage; Les colis de dechets radioactifs stockes au centre de stockage FMA de l'Aube. Une stockage selectif et maitrise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  2. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  3. Behaviour Test with the Leaching of a Waste package; Evaluacion del Comportamiento frente a la Lixiviacion de un Bulto de Residuo Acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G R [Instituto Balseiro, Universidad Nacional de Cuyo, Centro Atomico Bariloche, Universidad de Buenos Aires (Argentina)

    1999-07-01

    bibliographic data.With the whole coefficients it was made a prediction about the time involved until the total release of the radionuclides. This work is being developed by the Radioactive Waste Management Division of Cnea and it has been included in a contract with the IAEA, which also studies the changes on the mechanical resistance of the waste package,so as the release of gases from organic wastes and the container corrosion.

  4. Synthesis document on the long time behavior of packages: operational document ''bituminous'' 2204

    International Nuclear Information System (INIS)

    Tiffreau, C.

    2004-09-01

    This document is realized in the framework of the law of 1991 on the radioactive wastes management. The 2004 synthesis document on long time behavior of bituminous sludges packages is constituted by two documents, the reference document and the operational document. This paper presents the operational model describing the water alteration of the packages and the associated radioelements release, as the gas term source and the swelling associated to the self-irradiation and the bituminous radiolysis. (A.L.B.)

  5. STRUCTURAL CALCULATIONS FOR THE LIFTING IN VERTICAL ORIENTATION OF 5-DHLW/DOE SNF SINGLE CRM WASTE PACKAGES

    International Nuclear Information System (INIS)

    S. Mastilovic

    1999-01-01

    The purpose of this activity is to determine the structural response of the extension of outer shell (which is referred to as skirt throughout this document) designs of both long and short design concepts of 5-Defense High-Level Waste (DHLW) Department of Energy (DOE) spent nuclear fuel (SNF) single corrosion resistant material (CRM) waste packages (WP), subjected to a gravitational load in the course of lifting in vertical orientation. The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This activity is associated with the WP design; calculations are performed by the Waste Package Design group. AP-3.124, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document

  6. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  7. Evaluation and compilation of DOE waste package test data: Biannual report, August 1987--January 1988

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Ondik, H.; Plante, E.; Ricker, R.; Ruspi, J.

    1988-08-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Since enactment of the Budget Reconciliation Act for Fiscal Year 1988, the Yucca Mountain, Nevada, site (in which tuff is the geologic medium) is the only site that will be characterized for use as high-level nuclear waste repository. During the reporting period of August 1987 to January 1988, five reviews were completed for tuff, and these were grouped into the categories: ferrous alloys, copper, groundwater chemistry, and glass. Two issues are identified for the Yucca Mountain site: the approach used to calculate corrosion rates for ferrous alloys, and crevice corrosion was observed in a copper-nickel alloy. Plutonium can form pseudo-colloids that may facilitate transport. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) and activities of the DOE Materials Characterization Center (MCC) for the 6-month reporting period are also included. 27 refs., 3 figs

  8. Use of bremsstrahlung information for the nondestructive characterization of radioactive waste packages; Nutzung von Bremsstrahlungsinformation zur zerstoerungsfreien Charakterisierung radioaktiver Abfallgebinde

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmoser, Benjamin Paul

    2016-11-10

    In order to minimize pseudo activity whilst storage of radioactive waste packages it is required to determine the nuclide inventory as precisely as possible. The in Gamma spectra contained parts of bremsstrahlung can be used to identify and quantify certain beta nuclides. For this an analytical method has been developed. This was mainly tested with beta-emitter Sr-90 and Tm-170, as well as commonly present gamma-emitters in laboratory scale and actual 200 liter waste packages. As a result, non-destructive determination of radioactive wastes can be conducted more precisely.

  9. Waste package/engineered barrier system design concepts for the direct disposal of spent fuel in the potential United States' repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Harrison, D.J.

    1993-01-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package development program is to design a waste package and associated engineered barrier system (EBS) that meets the applicable regulatory requirements for safe disposal of spent nuclear fuel and solidified high-level waste (HLW) in a geologic repository. Attainment of this goal relies on a multi-barrier approach, the unsaturated nature of the Yucca Mountain site, consideration of technical alternatives, and sufficient resolution of technical and regulatory uncertainties. To accomplish this, an iterative system engineering approach will be used. The NWPA of 1982 limits the content of the first US repository to 70,000 metric tons of heavy metal (MTHM). The DOE Mission Plan describes the implementation of the provisions of the NWPA for the waste management system. The Draft 1988 approach will involve selecting candidate designs, evaluating them against performance requirements, and then selecting one or two preferred designs for further detailed evaluation and final design. The reference design of the waste package described in the YMP Site Characterization Plan is a thin-walled, vertical borehole-emplaced waste package with an air gap between the package and the rock wall. The reference design appeared to meet the design requirement. However, the degree of uncertainty was large. This uncertainty led to considering several more-robust design concepts during the Advanced Conceptual Design phase of the program that include small, drift-emplaced packages and higher capacity, drift-emplaced packages, both partially and totally self-shielded. Metallic as well as ceramic materials are being considered

  10. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE NO.13 - WASTE PACKAGE SELF SHIELDING

    International Nuclear Information System (INIS)

    Owen, J.

    1999-01-01

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes

  11. Waste isolation pilot plant performance assessment: Radionuclide release sensitivity to diminished brine and gas flows to/from transuranic waste disposal areas

    Energy Technology Data Exchange (ETDEWEB)

    Day, Brad A.; Camphouse, R. C.; Zeitler, Todd R. [Sandia National Laboratories, Carlsbad (United States)

    2017-03-15

    Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

  12. Development of waste package designs for disposal in a salt repository

    International Nuclear Information System (INIS)

    Balmert, M.E.

    1983-01-01

    Three package design concepts were developed for CHLW and DHLW forms and spent fuel rods: (1) carbon steel overpack, borehole emplacement, (2) titanium clad, carbon steel reinforced overpack, borehole emplacement, and (3) carbon steel (self-shield) overpack, tunnel emplacement. For a DHLW canister with titanium clad overpack, the concept features a 9.5-cm-thick carbon steel overpack reinforcement supporting a 0.25-cm-thick titanium shell. The overall package dimensions are 84 cm diameter x 340 cm long weighing about 8.8 mtons. By contrast, a monolithic DHLW borehole package has a carbon steel overpack that is 10.4 cm thick, weighing about 9.3 mtons. The titanium clad/carbon steel reinforced borehole package is intended for remote emplacement in a vertical borehole in salt. The carbon steel overpack reinforcement provides structural integrity, primarily to resist external pressure, while the titanium overpack provides the necessary corrosion resistance to meet containment requirements. The carbon steel borehole package concept provides containment integrity for both external pressure and corrosion environments with a thicker carbon steel overpack in place of the titanium/carbon steel concept. A third concept utilizes an even greater thickness of cast steel or iron to resist external pressure and corrosion as well as reduce external shielding requirements. For example, a cast steel DHLW package would have overall dimensions of 125 cm diameter x 390 cm long, weighing 31 mtons. The purpose of this self-shield concept is to minimize handling and emplacement operations by reducing the package surface radiation dose to about 100 mrem/hr. In addition, it may serve as a shipping cask, thereby eliminating the need for a shielded hot cell at the repository for waste package assembly operations. 7 figures

  13. Gas generation in SFL 3-5 and effects on radionuclide release

    International Nuclear Information System (INIS)

    Skagius, K.; Lindgren, M.; Pers, K.

    1999-12-01

    A deep repository, SFL 3-5, is presently planned for disposing of long-lived low- and intermediate-level waste. In this study the amounts of gas that can be generated in the waste packages and in the vaults are estimated. The potential gas pressure build-up, the displacement of contaminated water and the consequences on radionuclide release from the engineered barriers in the repository are also addressed. The study is focussed on the repository design and waste inventory that was defined for the prestudy of SFL 3-5. Since the reporting of the prestudy the design of the repository has been modified and the waste inventory has been updated and a preliminary safety assessment of the repository has been carried out based on the new design and updated waste inventory. The implications on gas generation and release of these modifications in design and waste inventory are briefly addressed in this study

  14. Gas generation in SFL 3-5 and effects on radionuclide release

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, K.; Lindgren, M.; Pers, K. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-12-01

    A deep repository, SFL 3-5, is presently planned for disposing of long-lived low- and intermediate-level waste. In this study the amounts of gas that can be generated in the waste packages and in the vaults are estimated. The potential gas pressure build-up, the displacement of contaminated water and the consequences on radionuclide release from the engineered barriers in the repository are also addressed. The study is focussed on the repository design and waste inventory that was defined for the prestudy of SFL 3-5. Since the reporting of the prestudy the design of the repository has been modified and the waste inventory has been updated and a preliminary safety assessment of the repository has been carried outbased on the new design and updated waste inventory. The implications on gas generation and release of these modifications in design and waste inventory are briefly addressed in this study.

  15. Simplified analytical model to simulate radionuclide release from radioactive waste trenches

    International Nuclear Information System (INIS)

    Sa, Bernardete Lemes Vieira de

    2001-01-01

    In order to evaluate postclosure off-site doses from low-level radioactive waste disposal facilities, a computer code was developed to simulate the radionuclide released from waste form, transport through vadose zone and transport in the saturated zone. This paper describes the methodology used to model these process. The radionuclide released from the waste is calculated using a model based on first order kinetics and the transport through porous media was determined using semi-analytical solution of the mass transport equation, considering the limiting case of unidirectional convective transport with three-dimensional dispersion in an isotropic medium. The results obtained in this work were compared with other codes, showing good agreement. (author)

  16. Nirex - The complete package

    International Nuclear Information System (INIS)

    Carr, N.A.; Rarok, M.

    2002-01-01

    Through continuous interaction with its customers, Nirex had identified the need for a comprehensive range of waste containers, reflecting the variety of wastes and operational undertakings. The current range consists of five standard containers. Standardisation is introduced across all waste packages to enable the safe and efficient operation of future waste management facilities. The practical lessons learned during the development of standard containers are in turn reflected in the container design work that Nirex has undertaken. They are also fed into the advice given to customers during evaluation of waste packaging proposals. (author)

  17. Packaging design criteria for the Hanford Ecorok Packaging

    International Nuclear Information System (INIS)

    Mercado, M.S.

    1996-01-01

    The Hanford Ecorok Packaging (HEP) will be used to ship contaminated water purification filters from K Basins to the Central Waste Complex. This packaging design criteria documents the design of the HEP, its intended use, and the transportation safety criteria it is required to meet. This information will serve as a basis for the safety analysis report for packaging

  18. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  19. An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines.

    Science.gov (United States)

    Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal

    2016-10-01

    In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Review of waste package verification tests. Semiannual report, October 1984-March 1985

    International Nuclear Information System (INIS)

    Soo, P.

    1985-07-01

    The potential of WAPPA, a second-generation waste package system code, to meet the needs of the regulatory community is analyzed. The analysis includes an indepth review of WAPPA's individual process models and a review of WAPPA's operation. It is concluded that the code is of limited use to the NRC in the present form. Recommendations for future improvement, usage, and implementation of the code are given. This report also describes the results of a testing program undertaken to determine the chemical environment that will be present near a high-level waste package emplaced in a basalt repository. For this purpose, low carbon 1020 steel (a current BWIP reference container material), synthetic basaltic groundwater and a mixture of bentonite and basalt were exposed, in an autoclave, to expected conditions some period after repository sealing (150 0 C, approx. =10.4 MPa). Parameters measured include changes in gas pressure with time and gas composition, variation in dissolved oxygen (DO), pH and certain ionic concentrations of water in the packing material across an imposed thermal gradient, mineralogic alteration of the basalt/bentonite mixture, and carbon steel corrosion behavior. A second testing program was also initiated to check the likelihood of stress corrosion cracking of austenitic stainless steels and Incoloy 825 which are being considered for use as waste container materials in the tuff repository program. 82 refs., 70 figs., 27 tabs