WorldWideScience

Sample records for waste package materials

  1. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  2. Microbial Effects on Nuclear Waste Packaging Materials

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J; Martin, S; Carrillo, C; Lian, T

    2005-07-22

    Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM

  3. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  4. ROCK FALL CALCULATIONS FOR SINGLE CORROSION RESISTANT MATERIAL WASTE PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Z. Ceylan

    1999-03-23

    The purpose of this activity is to determine the structural performance of waste packages (WP) subject to rock fall design basis event (DBE) dynamic loads and document the calculation results that describe the threshold rock sizes for crack-initiation and through cracks in waste package shells. This activity is associated with the waste package design. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to develop the calculation.

  5. ROCK FALL CALCULATIONS FOR SINGLE CORROSION RESISTANT MATERIAL WASTE PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    S. Bader

    1999-09-20

    The purpose of this activity is to determine the structural performance of waste packages (WP) subject to rock fall design basis event (DBE) dynamic loads and document the calculation results that describe the threshold rock sizes for crack-initiation and through-cracks in waste package shells. This activity is associated with the waste package design. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to develop the calculation.

  6. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  7. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  8. Implementation of Control Measures for Radioactive Waste Packages with Respect to the Materials Composition - 12365

    Energy Technology Data Exchange (ETDEWEB)

    Steyer, S.; Kugel, K. [Federal Office for Radiation Protection (BfS), Salzgitter (Germany); Brennecke, P. [Braunschweig (Germany); Boetsch, W.; Gruendler, D.; Haider, C. [ISTec, Cologne (Germany)

    2012-07-01

    In addition to the radiological characterization and control measures the materials composition has to be described and respective control measures need to be implemented. The approach to verify the materials composition depends on the status of the waste: - During conditioning of raw waste the control of the materials composition has to be taken into account. - For already conditioned waste a retrospective qualification of the process might be possible. - If retrospective process qualification is not possible, legacy waste can be qualified by spot checking according to the materials composition requirements The integration of the control of the material composition in the quality control system for radioactive waste is discussed and examples of control measures are given. With the materials-list and the packaging-list the Federal Office for Radiation Protection (BfS) provides an appropriate tool to describe the materials composition of radioactive waste packages. The control measures with respect to the materials composition integrate well in the established quality control framework for radioactive waste. The system is flexible enough to deal with waste products of different qualities: raw waste, qualified conditioned waste or legacy waste. Control measures to verify the materials composition can be accomplished with minimal radiation exposure and without undue burden on the waste producers and conditioners. (authors)

  9. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    Science.gov (United States)

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Use of ceramic materials in waste-package systems for geologic disposal of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Fullam, H.T.

    1980-12-01

    A study to investigate the potential use of ceramic materials as components in the waste package systems was conducted. The initial objective of the study was to screen and compare a large number of ceramic materials and identify the best materials for the proposed application. The principal method used to screen the candidates was to subject samples of each material to a series of leaching tests and to determine their relative resistance to attack by the leach solutions. A total of 14 ceramic materials, plus graphite and basalt were evaluated using three different leach solutions: demineralized water, a synthetic Hanford ground water, and a synthetic WIPP brine solution. The ceramic materials screened were Al/sub 2/O/sub 3/ (99%), Al/sub 2/O/sub 3/ (99.8%), mullite (2Al/sub 2/O/sub 3/.SiO/sub 2/), vitreous silica (SiO/sub 2/), BaTiO/sub 3/, CaTiO/sub 3/, CaTiSiO/sub 5/, TiO/sub 2/, ZrO/sub 2/, ZrSiO/sub 4/, Pyroceram 9617, and Marcor Code 9658 machinable glass-ceramic. Average leach rates for the materials tested were determined from analyses of the leach solutions and/or sample weight loss measurements. Because of the limited scope of the present study, evaluation of the specimens was limited to ceramographic examination. Based on an overall evaluation of the leach rate data, five of the materials tested, namely graphite, TiO/sub 2/, ZrO/sub 2/, and the two grades of alumina, exhibited much greater resistance to leaching than did the other materials tested. Based on all the experimental data obtained, and considering other factors such as cost, availability, fabrication technology, and mechanical and physical properties, graphite and alumina are the preferred candidates for the barrier application. The secondary choices are TiO/sub 2/ and ZrO/sub 2/.

  11. Potential Biogenic Corrosion of Alloy 22, A Candidate Nuclear Waste Packaging Materials, Under Simulated Repository Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Martin, S.I.; Rivera, A.J.; Bedrossian, P.J.; Lian, T.

    2000-01-12

    The U.S. Department of Energy has been charged with assessing the suitability of a geologic nuclear waste repository at Yucca Mountain (YM), NV. Microorganisms, both those endogenous to the repository site and those introduced as a result of construction and operational activities, may contribute to the corrosion of metal nuclear waste packaging and thereby decrease their useful lifetime as barrier materials. Evaluation of potential Microbiological Influenced Corrosion (MIC) on candidate waste package materials was undertaken reactor systems incorporating the primary elements of the repository: YM rock (either non-sterile or presterilized), material coupons, and a continual feed of simulated YM groundwater. Periodically, both aqueous reactor efflux and material coupons were analyzed for chemical and surfacial characterization. Alloy 22 coupons exposed for a year at room temperature in reactors containing non-sterile YM rock demonstrated accretion of chromium oxide and silaceous scales, with what appear to be underlying areas of corrosion.

  12. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  13. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  14. WASTE PACKAGE TRANSPORTER DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  15. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  16. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    Science.gov (United States)

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-06-01

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of

  17. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  18. The effects of gamma radiation on the corrosion of candidate materials for the fabrication of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada); King, F

    1999-07-01

    The influence of gamma radiation on the corrosion of candidate materials for the fabrication of nuclear waste packages has been comprehensively reviewed. The comparison of corrosion of the various materials was compared in three distinct environments: Environment A; Mg{sup 2+}-enriched brines in which hydrolysis of the cation produces acidic environments and the Mg{sup 2+} interferes with the formation of protective films; Environment B; saline environments with a low Mg{sup 2+} content which remain neutral; Environment C; moist aerated conditions.The reference design of nuclear waste package for emplacement in the proposed waste repository in Yucca Mountain, Nevada, employs a dual wall arrangement, in which a 2 cm thick nickel alloy inner barrier is encapsulated within a 10 cm thick mild steel outer barrier. It is felt that this arrangement will give considerable containment lifetimes, since no common mode failure exists for the two barriers. The corrosion performance of this waste package will be determined by the exposure environment established within the emplacement drifts. Key features of the Yucca Mountain repository in controlling waste package degradation are expected to be the permanent availability of oxygen and the limited presence of water. When water contacts the surface of the waste package, its gamma radiolysis could produce an additional supply of corrosive agents. the gamma field will be produced by the radioactive decay of radionuclides within the waste form, and its magnitude will depend on the nature and age of the waste form as well as the material and wall thickness of the waste package.

  19. Safety Analysis Report for packaging (onsite) steel waste package

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  20. Waste Materials from Tetra Pak Packages as Reinforcement of Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Miguel Martínez-López

    2015-01-01

    Full Text Available Different concentrations (from 1 to 6 wt% and sizes (0.85, 1.40, and 2.36 mm of waste Tetra Pak particles replaced partially silica sand in polymer concrete. As is well known, Tetra Pak packages are made up of three raw materials: cellulose (75%, low density polyethylene (20%, and aluminum (5%. The polymer concrete specimens were elaborated with unsaturated polyester resin (20% and silica sand (80% and irradiated by using gamma rays at 100 and 200 kGy. The obtained results have shown that compressive and flexural strength and modulus of elasticity decrease gradually, when either Tetra Pak particle concentration or particle size is increased, as regularly occurs in composite materials. Nevertheless, improvements of 14% on both compressive strength and flexural strength as well as 5% for modulus of elasticity were obtained when polymer concrete is irradiated.

  1. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives.

  2. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    Science.gov (United States)

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  3. Quantitative assessment of microbiological contributions to corrosion of candidate nuclear waste-package materials

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.; Jones, D.; Lian, T.; Martin, S.

    1998-10-30

    The U.S. Department of Energy is contributing to the design of a potential nuclear-waste repository at Yucca Mountain, Nevada. A system to predict the contribution of Yucca Mountain (YM) bacteria to overall corrosion rates of candidate waste-package (WP) materials was designed and implemented. DC linear polarization resistance techniques were applied to candidate material coupons that had been inoculated with a mixture of YM-derived bacteria with potentially corrosive activities or left sterile. Inoculated bacteria caused a 5- to 6-fold increase in corrosion rate of carbon steel C1020 (to approximately 7Ð8mm/yr) and an almost 100-fold increase in corrosion rate of Alloy 400 (to approximately 1mm/yr). Microbiologically influenced corrosion (MIC) rates on more resistant materials (CRMs: Alloy 625, Type 304 Stainless Steel, and Alloy C22) were on the order of hundredths of micrometers per year (mm/yr). Bulk chemical and surfacial end-point analyses of spent media and coupon surfaces showed preferential dissolution of nickel from Alloy 400 coupons and depletion of chromium from CRMs after incubation with YM bacteria. Scanning electron microscopy (SEM) also showed greater damage to the Alloy 400 surface than that indicated by electrochemical detection methods.

  4. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  5. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  6. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  7. Packaging wastes management; Gestion integral de los residuos de envases

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ramos, M.

    1996-12-01

    Packaging, having fulfilled their function, become waste and joint the flow of resure we generate every day. Packaging waste is a usable secondary raw material, provided that a suitable integrated management strategy is devised. This article highlights the Integrated Management Strategic Plan for Packaging Waste, following the priority guidelines established by the Community Directives on waste management: Reduction, re-use, Recycling, Energy Recovery and Final Elimination, and the European Directive 94/62/CE about packaging and packaging waste. (Author)

  8. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  9. FY 1985 status report on feasibility assessment of copper-base waste package container materials in a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    McCright, R.D.

    1985-09-30

    This report discusses progress made during the first year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. The expected corrosion and oxidation performances of oxygen-free copper, aluminum bronze, and 70% copper-30% nickel are presented; a test plan for determining whether copper or one of the alloys can meet the containment requirements is outlined. Some preliminary corrosion test data are presented and discussed. Fabrication and joining techniques for forming waste package containers are descibed. Preliminary test data and analyses indicate that copper and copper-base alloys have several attractive features as waste package container materials, but additional work is needed before definitive conclusions can be made on the feasibility of using copper or a copper-base alloy for containers. Plans for work to be undertaken in the second year are indicated.

  10. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  11. Classification of waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.P.; Sauer, M.; Rojahn, T. [Versuchsatomkraftwerk GmbH, Kahl am Main (Germany)

    2001-07-01

    A barrel gamma scanning unit has been in use at the VAK for the classification of radioactive waste materials since 1998. The unit provides the facility operator with the data required for classification of waste barrels. Once these data have been entered into the AVK data processing system, the radiological status of raw waste as well as pre-treated and processed waste can be tracked from the point of origin to the point at which the waste is delivered to a final storage. Since the barrel gamma scanning unit was commissioned in 1998, approximately 900 barrels have been measured and the relevant data required for classification collected and analyzed. Based on the positive results of experience in the use of the mobile barrel gamma scanning unit, the VAK now offers the classification of barrels as a service to external users. Depending upon waste quantity accumulation, this measurement unit offers facility operators a reliable and time-saving and cost-effective means of identifying and documenting the radioactivity inventory of barrels scheduled for final storage. (orig.)

  12. Techno-economic assessment of central sorting at material recovery facilities - the case of lightweight packaging waste

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Maul, Anja; Wenzel, Henrik;

    2016-01-01

    by documenting typical steps taken in a techno-economic assessment of MRFs, using the specific example of lightweight packaging waste (LWP) sorting in Germany. Thus, the study followed the steps of dimensioning of buildings and equipment, calculation of processing costs and projections of revenues from material...... 7 to 21 million EUR and the yearly operational expenditure grew by a factor of 2.4 from 2 to 4.7 million EUR. As a result, specific unit processing cost decreased from 110 to 70 EUR/tonne. Material sales and disposal costs summed to between a net cost of 25 EUR/tonne and net revenue of 50 EUR....../tonne. Measured as total materials recovery, the difference between optimal and typical operation was approximately 15% points. The complex nature of LWP waste combined with challenging processing conditions were identified as important factors explaining the relatively low overall recovery efficiencies achieved...

  13. Naval Waste Package Design Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    T. Schmitt

    2006-12-13

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license application design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages.

  14. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2008-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  15. The reduction of packaging waste

    Energy Technology Data Exchange (ETDEWEB)

    Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

    1994-04-01

    Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

  16. Stress Corrosion Cracking of the Drip Shield, The Waste Package Outer Barrier and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    C. Stephen

    2000-04-17

    One of the potential failure modes of the drip shield (DS), the waste package (WP) outer barrier, and the stainless structural material is the initiation and propagation of stress corrosion cracking (SCC) induced by the WP environment and various types of stresses that can develop in the DSs or the WPs. For the current design of the DS and WP, however, the DS will be excluded from the SCC evaluation because stresses that are relevant to SCC are insignificant in the DS. The major sources of stresses in the DS are loadings due to backfill and earthquakes. These stresses will not induce SCC because the stress caused by backfill is generally compressive stress and the stress caused by earthquakes is temporary in nature. The 316NG stainless steel inner barrier of the WP will also be excluded from the SCC evaluation because the SCC performance assessment will not take credit from the inner barrier. Therefore, the purpose of this document is to provide a detailed description of the process-level models that can be applied to assess the performance of the material (i.e., Alloy 22) used for the WP outer barrier subjected to the effects of SCC. As already mentioned in the development plan for the WP PMR (CRWMS M and O 1999e), this Analyses and Models Report (AMR) is to serve as a feed to the Waste Package Degradation (WPD) Total System Performance Assessment (TSPA) and Process Model Report (PMR).

  17. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2017-01-01

    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  18. PROSPECTS OF POLYMER PACKAGING MATERIALS

    Directory of Open Access Journals (Sweden)

    V. A. Sedykh

    2012-01-01

    Full Text Available The main types of materials used in the manufacture of packaging. Analyzed trends in further development of packaging materials. Shows how to improve the quality of plastic packaging materials in today's market.

  19. Packaging Design Criteria for the Steel Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2000-10-19

    This packaging design criteria provides the criteria for the design, fabrication, safety evaluation, and use of the steel waste package (SWP) to transport remote-handled waste and special-case waste from the 324 facility to Central Waste Complex (CWC) for interim storage.

  20. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.

    1997-12-01

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

  1. Reference waste package environment report

    Energy Technology Data Exchange (ETDEWEB)

    Glassley, W.E.

    1986-10-01

    One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of {similar_to}230{sup 0}C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment.

  2. Waste forms, packages, and seals working group summary

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, N. [Center Antonio, TX (United States); McNeil, M.B. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of radioactive waste forms and packaging. Also included is a description of the use of natural analogs in waste packaging, container materials and waste forms.

  3. Hydrogen generation in tru waste transportation packages

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B; Sheaffer, M K; Fischer, L E

    2000-03-27

    This document addresses hydrogen generation in TRU waste transportation packages. The potential sources of hydrogen generation are summarized with a special emphasis on radiolysis. After defining various TRU wastes according to groupings of material types, bounding radiolytic G-values are established for each waste type. Analytical methodologies are developed for prediction of hydrogen gas concentrations for various packaging configurations in which hydrogen generation is due to radiolysis. Representative examples are presented to illustrate how analytical procedures can be used to estimate the hydrogen concentration as a function of time. Methodologies and examples are also provided to show how the time to reach a flammable hydrogen concentration in the innermost confinement layer can be estimated. Finally, general guidelines for limiting the hydrogen generation in the payload and hydrogen accumulation in the innermost confinement layer are described.

  4. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  5. Sustainable Materials Management (SMM) Web Academy Webinar: Reducing Wasted Food: How Packaging Can Help

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  6. Compostability of bioplastic packaging materials: an overview.

    Science.gov (United States)

    Kale, Gaurav; Kijchavengkul, Thitisilp; Auras, Rafael; Rubino, Maria; Selke, Susan E; Singh, Sher Paul

    2007-03-08

    Packaging waste accounted for 78.81 million tons or 31.6% of the total municipal solid waste (MSW) in 2003 in the USA, 56.3 million tons or 25% of the MSW in 2005 in Europe, and 3.3 million tons or 10% of the MSW in 2004 in Australia. Currently, in the USA the dominant method of packaging waste disposal is landfill, followed by recycling, incineration, and composting. Since landfill occupies valuable space and results in the generation of greenhouse gases and contaminants, recovery methods such as reuse, recycling and/or composting are encouraged as a way of reducing packaging waste disposal. Most of the common materials used in packaging (i.e., steel, aluminum, glass, paper, paperboard, plastics, and wood) can be efficiently recovered by recycling; however, if packaging materials are soiled with foods or other biological substances, physical recycling of these materials may be impractical. Therefore, composting some of these packaging materials is a promising way to reduce MSW. As biopolymers are developed and increasingly used in applications such as food, pharmaceutical, and consumer goods packaging, composting could become one of the prevailing methods for disposal of packaging waste provided that industry, governments, and consumers encourage and embrace this alternative. The main objective of this article is to provide an overview of the current situation of packaging compostability, to describe the main mechanisms that make a biopolymer compostable, to delineate the main methods to compost these biomaterials, and to explain the main standards for assessing compostability, and the current status of biopolymer labeling. Biopolymers such as polylactide and poly(hydroxybutyrate) are increasingly becoming available for use in food, medical, and consumer goods packaging applications. The main claims of these new biomaterials are that they are obtained from renewable resources and that they can be biodegraded in biological environments such as soil and compost

  7. Insight into economies of scale for waste packaging sorting plants

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik; Maul, Anja

    2015-01-01

    This contribution presents the results of a techno-economic analysis performed for German Materials Recovery Facilities (MRFs) which sort commingled lightweight packaging waste (consisting of plastics, metals, beverage cartons and other composite packaging). The study addressed the importance...... material streams....

  8. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  9. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA); Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S. [CDA/INCRA Joint Advisory Group, Greenwich, CT (USA)

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  10. Packaging - Materials review

    Science.gov (United States)

    Herrmann, Matthias

    2014-06-01

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  11. Packaging - Materials review

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Matthias [Hoppecke Advanced Battery Technology GmbH, 08056 Zwickau (Germany)

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  12. Horizontal Drop of 21- PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2001-04-26

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  13. Safety evaluation for packaging (onsite) disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, B.D., Westinghouse Hanford

    1996-12-20

    This safety evaluation for packaging (SEP) evaluates and documents the ability of the Disposable Solid Waste Cask (DSWC) to meet the packaging requirements of HNF-CM-2-14, Hazardous Material Packaging and Shipping, for the onsite transfer of special form, highway route controlled quantity, Type B fissile radioactive material. This SEP evaluates five shipments of DSWCs used for the transport and storage of Fast Flux Test Facility unirradiated fuel to the Plutonium Finishing Plant Protected Area.

  14. Dynamic modelling of packaging material flow systems.

    Science.gov (United States)

    Tsiliyannis, Christos A

    2005-04-01

    A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data.

  15. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  16. CERAMIC WASTE FORM DATA PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  17. Engineered waste-package-system design specification

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

  18. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety

  19. Development of waste packages for tuff

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, A.J.

    1982-09-20

    The objective of this program is to develop nuclear waste packages that meet the Nuclear Regulatory Commission`s requirements for a licensed repository in tuff at the Nevada Test Site. Selected accomplishments for FY82 are: (1) Selection, collection of rock, and characterization of suitable outcrops (for lab experiments); (2) Rock-water interactions (Bullfrog Tuff); (3) Corrosion tests of ferrous metals; (4) Thermal modeling of waste package in host rock; (5) Preliminary fabrication tests of alternate backfills (crushed tuff); (6) Reviewed Westinghouse conceptual waste package designs for tuff and began modification for unsaturated zone; and (7) Waste Package Codes (BARIER and WAPPA) now running on our computer. Brief discussions are presented for rock-water interactions, corrosion tests of ferrous metals, and thermal and radionuclide migration modelling.

  20. Prevention policies addressing packaging and packaging waste: Some emerging trends.

    Science.gov (United States)

    Tencati, Antonio; Pogutz, Stefano; Moda, Beatrice; Brambilla, Matteo; Cacia, Claudia

    2016-10-01

    Packaging waste is a major issue in several countries. Representing in industrialized countries around 30-35% of municipal solid waste yearly generated, this waste stream has steadily grown over the years even if, especially in Europe, specific recycling and recovery targets have been fixed. Therefore, an increasing attention starts to be devoted to prevention measures and interventions. Filling a gap in the current literature, this explorative paper is a first attempt to map the increasingly important phenomenon of prevention policies in the packaging sector. Through a theoretical sampling, 11 countries/states (7 in and 4 outside Europe) have been selected and analyzed by gathering and studying primary and secondary data. Results show evidence of three specific trends in packaging waste prevention policies: fostering the adoption of measures directed at improving packaging design and production through an extensive use of the life cycle assessment; raising the awareness of final consumers by increasing the accountability of firms; promoting collaborative efforts along the packaging supply chains.

  1. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1983. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1984-08-01

    The current effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, and tuff repositories. In the current Biannual Report a section on carbon steel container corrosion has been included to complement prior work on TiCode-12 and Type 304 stainless steel. The use of crushed tuff as a packing material is discussed and waste package component interaction test data are included. Licensing data requirements to estimate the degree of compliance with NRC performance objectives are specified. 41 figures, 24 tables.

  2. 19 CFR 191.13 - Packaging materials.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed pursuant...

  3. The Role of Packaging in Solid Waste Management 1966 to 1976.

    Science.gov (United States)

    Darnay, Arsen; Franklin, William E.

    The goals of waste processors and packagers obviously differ: the packaging industry seeks durable container material that will be unimpaired by external factors. Until recently, no systematic analysis of the relationship between packaging and solid waste disposal had been undertaken. This three-part document defines these interactions, and the…

  4. 基于连锁超市的包装废弃物回收模型%Recycling Model of Waste Packaging Materials for Chain Supermarkets

    Institute of Scientific and Technical Information of China (English)

    黄勇; 邱丽艳

    2013-01-01

    阐述了包装废弃物回收的意义,基于资源整合与共享的理论思想,提出连锁超市的回收模式,即基于连锁超市的配送体系,在连锁超市合理选址的基础上,依超市建立回收站点,集中回收可再利用的包装;充分利用配送中心的网络资源,建立以达到降低物流成本,实现资源再利用为目的的模型.最后用模糊综合评价法对其进行了评价.%In this paper, we introduced the significance of the recycling of waste packaging materials and on the basis of the ideas of resource integration and sharing, proposed the recycling model of the chain supermarkets, which, on the basis of the reasonable location of the supermarkets, recycled reusable packaging materials in a centralized way and made full use of the network resource of the distribution centers to reduce logistics cost and realize resource reclamation. At the end, we evaluated the model using fuzzy comprehensive evaluation method.

  5. Symmetric Rock Fall on Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    Sreten Mastilovic

    2001-08-09

    The objective of this calculation is to determine the structural response of the Naval SNF (spent nuclear fuel) Waste Package (WP) and the emplacement pallet (EP) subjected to the rock fall DBE (design basis event) dynamic loads. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities and residual stresses in the WP, and stress intensities and maximum permanent downward displacements of the EP-lifting surface. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP and EP considered in this calculation, and all obtained results are valid for those designs only. This calculation is associated with the waste package design and is performed by the Waste Package Design Section in accordance with Reference 24. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document.

  6. Hazardous Material Packaging and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  7. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  8. Analysis of Ecodesign Implementation and Solutions for Packaging Waste System by Using System Dynamics Modeling

    Science.gov (United States)

    Berzina, Alise; Dace, Elina; Bazbauers, Gatis

    2010-01-01

    This paper discusses the findings of a research project which explored the packaging waste management system in Latvia. The paper focuses on identifying how the policy mechanisms can promote ecodesign implementation and material efficiency improvement and therefore reduce the rate of packaging waste accumulation in landfill. The method used for analyzing the packaging waste management policies is system dynamics modeling. The main conclusion is that the existing legislative instruments can be used to create an effective policy for ecodesign implementation but substantially higher tax rates on packaging materials and waste disposal than the existing have to be applied.

  9. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    Energy Technology Data Exchange (ETDEWEB)

    Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

  10. Strategy for experimental validation of waste package performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Abrajano, T.A. Jr.; Wronkiewicz, D.J.; Gerding, T.J.; Seils, C.A.

    1990-07-01

    A strategy for the experimental validation of waste package performance assessment has been developed as part of a program supported by the Repository Technology Program. The strategy was developed by reviewing the results of laboratory analog experiments, in-situ tests, repository simulation tests, and material interaction tests. As a result of the review, a listing of dependent and independent variables that influence the ingress of water into the near-field environment, the reaction between water and the waste form, and the transport of radionuclides from the near-field environment was developed. The variables necessary to incorporate into an experimental validation strategy were chosen by identifying those which had the greatest effect of each of the three major events, i.e., groundwater ingress, waste package reactions, and radionuclide transport. The methodology to perform validation experiments was examined by utilizing an existing laboratory analog approach developed for unsaturated testing of glass waste forms. 185 refs., 9 figs., 2 tabs.

  11. 9 CFR 381.144 - Packaging materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or in... to health. All packaging materials must be safe for the intended use within the meaning of section...

  12. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-04-19

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  13. Semiconductor packaging materials interaction and reliability

    CERN Document Server

    Chen, Andrea

    2012-01-01

    In semiconductor manufacturing, understanding how various materials behave and interact is critical to making a reliable and robust semiconductor package. Semiconductor Packaging: Materials Interaction and Reliability provides a fundamental understanding of the underlying physical properties of the materials used in a semiconductor package. The book focuses on an important step in semiconductor manufacturing--package assembly and testing. It covers the basics of material properties and explains how to determine which behaviors are important to package performance. The authors also discuss how

  14. Thermal Evaluation of the Fort Saint Vrain Codisposal Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    Adam Scheider; Horia Radulescu

    2001-07-19

    The objective of this calculation is to evaluate the thermal response of the Fort Saint Vrain (FSV) Codisposal Waste Package (WP) design under nominal Monitored Geologic Repository conditions. The objective of the calculation is to provide thermal parameter information to support the FSV waste package design. The information provided by the sketches (Attachment IV) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.124, ''Calculations'' (Ref. 17) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the SDHLW (Defense High Level Waste) / DOE (Department of Energy) Long WP.

  15. Energy implications of recycling packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

    1994-03-01

    In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

  16. Secondary Waste Form Down Selection Data Package – Ceramicrete

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete

  17. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

    1982-02-01

    In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

  18. 44 BWR Waste Package Loading Curve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Scaglione

    2001-11-05

    The objective of this calculation is to evaluate the required minimum burnup as a function of average initial boiling water reactor (BWR) assembly enrichment that would permit loading of fuel into a potential 44 BWR waste package (WP). The potential WP design is illustrated in Attachment I. The scope of this calculation covers a range of initial enrichments from 1.5 through 5.0 weight percent U-235, and a burnup range of 0 through 50 GWd/mtU.

  19. Industrial Waste Landfill IV upgrade package

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  20. 9 CFR 317.24 - Packaging materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging materials... packaging materials must be safe for their intended use within the meaning of section 409 of the Federal...

  1. Disposability Characteristics of Military Packaging Materials

    Science.gov (United States)

    1974-03-06

    packaging material but repre- sents only a minor segment of all packaging materials. In terms of U. S. tonnage, wood packaging materials account for...motftontttctl Anotywu of Solid Hoof COMactwn. David H. Markt and Jon C. Uabman (of Jonnt Hopkint Univartity), for tha U.S. Dapartmant of Hoatth, Education

  2. WAPDEG Analysis of Waste Package and Drip shield Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-09-29

    As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of

  3. Packaging configurations and handling requirements for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, R.M.

    1981-01-01

    The basic safety concepts for radioactive material are that the package is the primary protection for the public, that the protection afforded by the package should be proportional to the hazard and that the package must be proved by performance. These principles are contained in Department of Energy (DOE), Nuclear Regulatory Commission (NRC) and Department of Transportation (DOT) regulations which classify hazards of various radioactive materials and link packaging requirements to the physical form and quantities being shipped. Packaging requirements are reflected in performance standards to guarantee that shipments of low hazard quantities will survive the rigors of normal transportation and that shipments of high hazard quantities will survive extreme severity transportation accidents. Administrative controls provide for segregation of radioactive material from people and other sensitive or hazardous material. They also provide the necessary information function to control the total amounts in a conveyance and to assure that appropriate emergency response activities be started in case of accidents or other emergencies. Radioactive materials shipped in conjunction with the nuclear reactor programs include, ores, concentrates, gaseous diffusion feedstocks, enriched and depleted uranium, fresh fuel, spent fuel, high level wastes, low level wastes and transuranic wastes. Each material is packaged and shipped in accordance with regulations and all hazard classes, quantity limits and packaging types are called into use. From the minimal requirements needed to ship the low hazard uranium ores or concentrates to the very stringent requirements in packaging and moving high level wastes or spent fuel, the regulatory system provides a means for carrying out transportation of radioactive material which assures low and controlled risk to the public.

  4. The Model 9977 Radioactive Material Packaging Primer

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  5. Reasons for household food waste with special attention to packaging

    OpenAIRE

    Williams, Helén; Wikström, Fredrik; Otterbring, Tobias; Löfgren, Martin; Gustafsson, Anders

    2012-01-01

    The amount of food waste needs to be reduced in order to sustain the world’s limited resources and secure enough food to all humans. Packaging plays an important role in reducing food waste. The knowledge about how packaging affects food waste in households, however, is scarce. This exploratory study examines reasons for food waste in household and especially how and to what extent packaging influences the amount of food waste. Sixty-one families measured their amount of food waste during sev...

  6. Reasons for household food waste with special attention to packaging

    OpenAIRE

    Williams, Helén; Wikström, Fredrik; Otterbring, Tobias; Löfgren, Martin; Gustafsson, Anders

    2012-01-01

    The amount of food waste needs to be reduced in order to sustain the world’s limited resources and secure enough food to all humans. Packaging plays an important role in reducing food waste. The knowledge about how packaging affects food waste in households, however, is scarce. This exploratory study examines reasons for food waste in household and especially how and to what extent packaging influences the amount of food waste. Sixty-one families measured their amount of food waste during sev...

  7. Hanford Site radioactive hazardous materials packaging directory

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  8. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  9. Cleanup Verification Package for the 300-8 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2005-11-07

    This cleanup verification package documents completion of remedial action for the 300-8 waste site. This waste site was formerly used to stage scrap metal from the 300 Area in support of a program to recycle aluminum.

  10. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...

  11. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  12. Sustainable Materials Management (SMM) Web Academy Webinar Series: A Step-by-Step Guide to Conducting a Wasted Food Assessment with the Reducing Wasted Food & Packaging Toolkit

    Science.gov (United States)

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  13. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  14. A study on the gas generation from radioactive waste packages under disposal conditions in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo wan; Kim, Chang Lak; Choi, Heui Joo; Yoon, Jeong Hyoun [Korea Electric Power Corporation, Nuclear Environment Institute, Taejon (Korea, Republic of)

    1999-07-01

    In order to confirm the compliance to acceptance criteria , the performance of radioactive waste packages currently used at the nuclear power plants in Korea in aspect of gas generation is investigated. As the principal gas generation mechanisms radiolysis, corrosion of metals, and microbial activity of organic materials are considered. For calculating rates and total volumes of radiolytic hydrogen gas generated in waste packages a computer program that accommodates interactions among adjacent packages is used. Gas production due to metal corrosion and microbial degradation of Dry Active Waste (DAW) packages and the others is estimated over an assessment period of one thousand years under a given set of repository condition, respectively. Flammability hazard caused by radiolytic hydrogen formation inside a sealed waste package, pressure build-up inside the engineered barrier structure under repository condition is also assessed. (author)

  15. Challenges in packaging waste management in the fast food industry

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Teija [Digita Oy, P.O. Box 135, FI-00521 Helsinki (Finland); Haemaelaeinen, Anne [Department of Energy and Environmental Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland)

    2008-02-15

    The recovery of solid waste is required by waste legislation, and also by the public. In some industries, however, waste is mostly disposed of in landfills despite of its high recoverability. Practical experiences show that the fast food industry is one example of these industries. A majority of the solid waste generated in the fast food industry is packaging waste, which is highly recoverable. The main research problem of this study was to find out the means of promoting the recovery of packaging waste generated in the fast food industry. Additionally, the goal of this article was to widen academic understanding on packaging waste management in the fast food industry, as the subject has not gained large academic interest previously. The study showed that the theoretical recovery rate of packaging waste in the fast food industry is high, 93% of the total annual amount, while the actual recovery rate is only 29% of the total annual amount. The total recovery potential of packaging waste is 64% of the total annual amount. The achievable recovery potential, 33% of the total annual amount, could be recovered, but is not mainly because of non-working waste management practices. The theoretical recovery potential of 31% of the total annual amount of packaging waste cannot be recovered by the existing solid waste infrastructure because of the obscure status of commercial waste, the improper operation of producer organisations, and the municipal autonomy. The research indicated that it is possible to reach the achievable recovery potential in the existing solid waste infrastructure through new waste management practices, which are designed and operated according to waste producers' needs and demands. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action. (author)

  16. Mechanical Assessment of the Waste Package Subject to Vibratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-14

    The purpose of this document is to provide an integrated overview of the calculation reports that define the response of the waste package and its internals to vibratory ground motion. The calculation reports for waste package response to vibratory ground motion are identified in Table 1-1. Three key calculation reports describe the potential for mechanical damage to the waste package, fuel assemblies, and cladding from a seismic event. Three supporting documents have also been published to investigate sensitivity of damage to various assumptions for the calculations. While these individual reports present information on a specific aspect of waste package and cladding response, they do not describe the interrelationship between the various calculations and the relationship of this information to the seismic scenario class for Total System Performance Assessment-License Application (TSPA-LA). This report is designed to fill this gap by providing an overview of the waste package structural response calculations.

  17. New Polymer Materials for Microelectronics Packaging

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Researchers at the CAS Institute of Chemistry (ICCAS) have made breakthrough progress in developing the manufacturing technology of advanced polymer materials for microelectronics packaging applications. The advanced integrated circuit (IC) packaging polymer materials, including photoimageable polyimide resins and liquid epoxy underfills, are a key issue for FC-BGA/CSP(flip chip-ball grill array/chip scale packaging) which is the main stream for the next generation of microelectronics devices. With the down-sizing, thinning and high I/O (input/output) of IC chips, microelectronics packaging is now facing a big technology challenge.

  18. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  19. FABRICATION AND DEPLOYMENT OF THE 9979 TYPE AF RADIOACTIVE WASTE PACKAGING FOR THE DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.; Eberl, K.

    2013-10-10

    This paper summarizes the development, testing, and certification of the 9979 Type A Fissile Packaging that replaces the UN1A2 Specification Shipping Package eliminated from Department of Transportation (DOT) 49 CFR 173. The DOT Specification Package was used for many decades by the U.S. nuclear industry as a fissile waste container until its removal as an authorized container by DOT. This paper will discuss stream lining procurement of high volume radioactive material packaging manufacturing, such as the 9979, to minimize packaging production costs without sacrificing Quality Assurance. The authorized content envelope (combustible and non-combustible) as well as planned content envelope expansion will be discussed.

  20. Polyhydroxyalkanoates (PHA) Bioplastic Packaging Materials

    Science.gov (United States)

    2010-05-01

    Center CEFPACK - Center for Flexible Packaging CAEFF - Center for Advanced Engineering Films and Fibers T cr - recrystallization temperature...conditions. The tandem line has 1½” primary extruder with a Barr ET screw and a pineapple mixing tip. The gas inject is about 2/3 of the way down the...stretch and shrink film, the equipment at the Center for Flexible Packaging (CEFPACK) and the Center for Advanced Engineering Films and Fibers (CAEFF) at

  1. Material Design and Technology of Cartonboard Packaging

    OpenAIRE

    Marttila, Erno

    2012-01-01

    This thesis explores the different types of cartonboard packages through the whole line of their manufacturing process from choosing the right materials for the board in to final converting processes. Producing efficient, environmentally friendly and most of all right kind of cartonboard package is the core theme in this work. This work is publicly available and can be used as a reference by anyone who needs to learn the basics and some of the more advanced things of cartonboard packaging....

  2. STRATEGIES FOR PACKAGE WASTE REDUCING THROUGH A RATIONAL AND EFFECTIVE DESIGN

    Directory of Open Access Journals (Sweden)

    Barsan Lucian

    2017-05-01

    Full Text Available The paper presents a number of regulations which should be respected when designing a package. Package represents a large percent of the total waste, therefore we should focus on this ‘type’ of product to reduce the resources used and also to reduce the waste through reusing and recycling. Design is strongly involved in this activity analysing the package lifecycle and trying to respect some rules, which represent the fundaments for a design strategy. Regulations regarding materials choosing, materials combinations, choosing the most adequate process are presented. Either the package is reusable or not, it must be recyclable. The possibility of simply dismantle the package for sorting the materials represent another requirement for the design process. Examples of good practice are presented as a case study.

  3. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  4. Packaging Materials Outgassing Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. A. [Oak Ridge Y-12 Plant (Y-12), Oak Ridge, TN (United States)

    2006-09-26

    An outgassing study was conducted on two polyurethane packaging foams, two polymer bottles (polytetrafluoroethylene and polyethylene), and two polymer lids. The purpose was to measure the volume of gases that diffuse from these packaging materials at a maximum of 400-degrees F when stored in ambient air within sealed containers.

  5. Characterisation of plastic packaging waste for recycling: problems related to current approaches

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    2013-01-01

    were addressed by a resin type-based sorting analysis and a washing test for plastic packaging material from Danish household waste. Preliminary results show that, for a quarter of the hand sorted material, no resin type could be identified and that Polypropylene and Polyethylene terephthalate were...... criteria of recycling processes. A lack of information in current waste characterisation practise on polymer resin composition, black coloured material content and the influence of surface adherent material on physico-chemical characteristics of plastic packaging waste were identified. These shortcomings...... the dominating resin types in plastic packaging. The suggested washing procedure caused a decrease of 70% of the ash content of the plastic material. The analysed metals and nutrients were reduced by up to 24%...

  6. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    Energy Technology Data Exchange (ETDEWEB)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  7. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  8. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  9. STUDY ON PACKAGING WASTE PREVENTION IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Scortar Lucia-Monica

    2013-07-01

    It is very important to mention that individuals and businesses can often save a significant amount of money through waste prevention: waste that never gets created doesn't have management costs (handling, transporting, treating and disposing of waste. The rule is simple: the best waste is that which is not produced.

  10. Consumption and recovery of packaging waste in Germany in 2009; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2009

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [GVM Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2012-04-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 15.05 million tons of packaging were consumed and became waste. Compared to the reference year 2008, packaging consumption decreased by 6.2 %. A total of 12.73 million tons was recovered in terms of material or energy, of which a total of 2.45 million tons outside Germany. In addition, 1.42 million tons of imported packaging waste were recovered in Germany. In 2009, 1.55 million tons were incinerated at waste incineration plants with energy recovery.

  11. Consumption and recovery of packaging waste in Germany in 2008; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2010-12-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 16.04 million tons of packaging were consumed and became waste. Compared to the reference year 2005, packaging consumption increased by 3.7 % (minus 0.4 % compared to 2007). A total of 13.10 million tons was recovered in terms of material or energy, of which a total of 2.41 million tons outside Germany. In addition, 1.40 million tons of imported packaging waste were recovered in Germany. In 2008, 2.10 million tons were incinerated at waste incineration plants with energy recovery. (orig.)

  12. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-03-21

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  13. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-05-06

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  14. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2002-12-18

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  15. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2002-10-17

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  16. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-08-28

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  17. Stress corrosion cracking in canistered waste package containers: Welds and base metals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.

    1998-03-01

    The current design of waste package containers include outer barrier using corrosion allowable material (CAM) such as A516 carbon steel and inner barrier of corrosion resistant material (CRM) such as alloy 625 and C22. There is concern whether stress corrosion cracking would occur at welds or base metals. The current memo documents the results of our analysis on this topic.

  18. Waste package environment studies. FY 1984 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Gray, W.J.; Hodges, F.N.; McVay, G.L.; Moore, D.A.; Rai, D.; Schramke, J.A.

    1986-03-01

    Tests were conducted by Pacific Northwest Laboratory in FY 1984 to examine the influence of heat and radiation on the chemical environment of a high-level nuclear waste package in a repository in salt and to determine the solubility of key radionuclides in site-specific brines. These tests are part of an ongoing effort by the Waste Package Program, whose objective is to help develop a data base on package components and system interactions necessary to qualify a nuclear waste package for geologic disposal. Specifically, tests performed in FY 1984 involved alpha and gamma radiolysis of brines, americium solubility in brines, the influence of heat and radiation on rock salt, and the influence of temperature on brine chemistry.

  19. The radioactive materials packaging handbook: Design, operations, and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  20. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  1. Compounds in food packaging materials

    DEFF Research Database (Denmark)

    Rosenmai, Anna Kjerstine

    Food contact materials (FCMs) are sources of food contamination and human chemical exposure. Some chemicals in these materials are known to cause adverse effects, but many are poorly characterized for their potential toxicological hazards making risk assessment a challenge. The aim of the project......, but subgroups of fluorinated chemicals had similar profiles. Polyfluoroalkyl phosphate ester surfactants (PAPs) generally decreased progestagen and androgen levels, fluorotelomer alcohols (FTOHs) generally increased ER activity, and long-chained perfluorinated alkyl carboxylic acids (PFCAs) generally increased...

  2. Recovery and distribution of incinerated aluminum packaging waste.

    Science.gov (United States)

    Hu, Y; Bakker, M C M; de Heij, P G

    2011-12-01

    A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses.

  3. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Directory of Open Access Journals (Sweden)

    Arantzazu eValdés

    2014-02-01

    Full Text Available The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  4. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  5. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    Science.gov (United States)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  6. Characteristics of meat packaging materials and their environmental suitability assessment

    Directory of Open Access Journals (Sweden)

    Šuput Danijela Z.

    2013-01-01

    Full Text Available After functional phase, packaging becomes waste that is recycled or disposed of in landfills. Recently, numerus packages have been developed for assessing the packaging risk on the environment. We applied Gabi 4 Education software on polymer product packaging for meat products. The objective of first part of the paper was characterization of materials used for meat and meat products packaging in terms of mechanical and barrier properties. Results show that tested materials are able to keep protective atmosphere and contribute to the quality and sustainability of the product. Air permeability was 3.60 and 26.60 ml/m224h, and water vapor was 6.90 and 9.50 ml/m224h, respectively, for foils 1 and 2, as a result of different film composition. In second part, based on real data, Gabi 4 Education software is applied. The obtained results showed that organic compounds emissions have the highest impact on human health and the most damaging environmental impact observed was the emission of CO2.

  7. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  8. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste

    NARCIS (Netherlands)

    Groot, J.J.; Bing, X.; Bos-Brouwers, H.E.J.; Bloemhof, J.M.

    2014-01-01

    Post-consumer plastic packaging waste (PPW) can be collected for recycling via source separation or post-separation. In source separation, households separate plastics from other waste before collection, whereas in post-separation waste is separated at a treatment centre after collection. There are

  9. Mass Transfer Model for a Breached Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    C. Hsu; J. McClure

    2004-07-26

    The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss.

  10. 19 CFR 10.461 - Retail packaging materials and containers.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for...

  11. 19 CFR 10.539 - Retail packaging materials and containers.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for...

  12. Chitosan films and blends for packaging material.

    Science.gov (United States)

    van den Broek, Lambertus A M; Knoop, Rutger J I; Kappen, Frans H J; Boeriu, Carmen G

    2015-02-13

    An increased interest for hygiene in everyday life as well as in food, feed and medical issues lead to a strong interest in films and blends to prevent the growth and accumulation of harmful bacteria. A growing trend is to use synthetic and natural antimicrobial polymers, to provide non-migratory and non-depleting protection agents for application in films, coatings and packaging. In food packaging, antimicrobial effects add up to the barrier properties of the materials, to increase the shelf life and product quality. Chitosan is a natural bioactive polysaccharide with intrinsic antimicrobial activity and, due to its exceptional physicochemical properties imparted by the polysaccharide backbone, has been recognized as a natural alternative to chemically synthesized antimicrobial polymers. This, associated with the increasing preference for biofunctional materials from renewable resources, resulted in a significant interest on the potential for application of chitosan in packaging materials. In this review we describe the latest developments of chitosan films and blends as packaging material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Petrologic and geochemical characterization of the Topopah Spring Member of the Paintbrush Tuff: outcrop samples used in waste package experiments

    Energy Technology Data Exchange (ETDEWEB)

    Knauss, K.G.

    1984-06-01

    This report summarizes characterization studies conducted with outcrop samples of Topopah Spring Member of the Paintbrush Tuff (Tpt). In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), Tpt is being studied both as a primary object and as a constituent used to condition water that will be reacted with waste form, canister, or packing material. These studies directly or indirectly support NNWSI subtasks concerned with waste package design and geochemical modeling. To interpret the results of subtask experiments, it is necessary to know the exact nature of the starting material in terms of the intial bulk composition, mineralogy, and individual phase geochemistry. 31 figures, 5 tables.

  14. Polylactide nanocomposites for packaging materials: A review

    Science.gov (United States)

    Widiastuti, Indah

    2016-02-01

    This review aims at highlighting on an attempt for improving the properties of polylactide (PLA) as packaging material by application of nanocomposite technology. PLA is attracting considerable interest because of more eco-friendliness from its origin as contrast to the petrochemical-based polymers and its biodegradability. Despite possessing good mechanical and optical properties, deterioration of the material properties in PLA materials during their service time could occur after prolonged exposure to humidity and high temperature condition. Limited gas barrier is another drawback of PLA material that should be overcome to satisfy the requirement for packaging application. To further extend the range of mechanical and thermal properties achievable, several attempts have been made in modifying the material such as blending with other polymers, use of plasticizing material and development of PLA nanocomposites. Nanocomposite is a fairly new type of composite that has emerged in which the reinforcing filler has nanometer scale dimensions (at least one dimension of the filler is less than 100 nm). In this review, the critical properties of PLA as packaging materials and its degradation mechanism are presented. This paper discusses the current effort and key research challenges in the development of nanocomposites based on biodegradable polymer matrices and nano-fillers. The PLA layered silicate nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modification, frequently exhibits remarkable improvements of mechanical strength, gas barrier and thermal stability.

  15. Review of waste package verification tests. Semiannual report, April 1984-September 1984. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Veakis, E.; Soo, P.

    1985-06-01

    This ongoing study is part of a task to specify tests that may be used to verify that engineered waste package/repository systems comply with NRC radionuclide containment and controlled release performance objectives. Work covered in this report includes crushed tuff packing material for use in a high level waste tuff repository. A review of available tests to quantify packing performance is given together with recommendations for future testing work. 27 refs., 6 figs., 3 tabs.

  16. WASTE PACKAGE OPERATIONS FY99 CLOSURE METHODS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    M. C. Knapp

    1999-09-23

    The waste package (WP) closure weld development task is part of a larger engineering development program to develop waste package designs. The purpose of the larger waste package engineering development program is to develop nuclear waste package fabrication and closure methods that the Nuclear Regulatory Commission will find acceptable and will license for disposal of spent nuclear fuel (SNF), non-fuel components, and vitrified high-level waste within a Monitored Geologic Repository (MGR). Within the WP closure development program are several major development tasks, which, in turn, are divided into subtasks. The major tasks include: WP fabrication development, WP closure weld development, nondestructive examination (NDE) development, and remote in-service inspection development. The purpose of this report is to present the objectives, technical information, and work scope relating to the WP closure weld development.and NDE tasks and subtasks and to report results of the closure weld and NDE development programs for fiscal year 1999 (FY-99). The objective of the FY-99 WP closure weld development task was to develop requirements for closure weld surface and volumetric NDE performance demonstrations, investigate alternative NDE inspection techniques, and develop specifications for welding, NDE, and handling system integration. In addition, objectives included fabricating several flat plate mock-ups that could be used for NDE development, stress relief peening, corrosion testing, and residual stress testing.

  17. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  18. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Mitchell

    2000-05-31

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M

  19. Industrial Waste Landfill IV upgrade package

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-14

    This document consists of page replacements for the Y-12 industrial waste landfill. The cover page is to replace the old page, and a new set of text pages are to replace the old ones. A replacement design drawing is also included.

  20. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: UNCANISTERED FUEL (TBV)

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint, The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact uncanistered fuel waste package (UCF-WP) configuration; and (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the UCF-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. Due to the current lack of knowledge in a number of areas, every attempt has been made to ensure that the all calculations and assumptions were conservative. This analysis is preliminary in nature, and is intended to be superseded by at least two more versions prior to license application. The information and assumptions used to generate this analysis are unverified and have been globally assigned TBV identifier TBV-059-WPD. Future versions of this analysis will update these results, possibly replacing the global TBV with a small number of TBV's on individual items, with the goal of removing all TBV designations by license application submittal. The final output of this document, the probability of UCF-WP criticality as a function of time, is therefore, also TBV. This document is intended to deal only with the risk of internal criticality with unaltered fuel

  1. Biodegradable containers from green waste materials

    Science.gov (United States)

    Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto

    2016-05-01

    Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.

  2. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    OpenAIRE

    Тахира Далиевна Сидикова

    2016-01-01

    We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR) may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ce...

  3. Natural materials in Japan is reflected in the package design

    Institute of Scientific and Technical Information of China (English)

    孙云云

    2016-01-01

    Japanese packaging design simple and not drab, has a strong national character, "type" style, but also take into account the Europe and the United States"YangShi" style. Japanese packaging of naturalness, pay attention to packaging material, the nature of the material with its unique design style. This article through to the Japanese brand packaging design case analysis, this paper expounds the Japanese brand packaging design and the use of natural materials. On this basis, further discusses the Japanese brand packaging design concept of innovation to improve the practical significance of China's packaging design innovation.

  4. Aging and Phase Stability of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    F. Wong

    2004-09-28

    This report was prepared in accordance with ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 22, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate. The aging and phase stability model, which is based on fundamental thermodynamic and kinetic concepts and principles, will be used to provide predictive insight into the long-term metallurgical stability of Alloy 22 under relevant repository conditions. The results of this model are used by ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' as reference-only information. These phase stability studies are currently divided into three general areas: Tetrahedrally close-packed (TCP) phase and carbide precipitation in the base metal; TCP and carbide precipitation in welded samples; and Long-range ordering reactions. TCP-phase and carbide precipitates that form in Alloy 22 are generally rich in chromium (Cr) and/or molybdenum (Mo) (Raghavan et al. 1984 [DIRS 154707]). Because these elements are responsible for the high corrosion resistance of Alloy 22, precipitation of TCP phases and carbides, especially at grain boundaries, can lead to an increased susceptibility to localized corrosion in the alloy. These phases are brittle and also tend to embrittle the alloy (Summers et al. 1999 [DIRS 146915]). They are known to form in Alloy 22 at temperatures greater than approximately 600 C. Whether these phases also form at the lower temperatures expected in the repository during the 10,000-year regulatory period must be determined. The kinetics of this precipitation will be determined for both the base metal and the weld heat-affected zone (HAZ). The TCP

  5. Ammonia gas permeability of meat packaging materials.

    Science.gov (United States)

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott

    2011-03-01

    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  6. Effect of Spices and different Packaging Materials on acceptability ...

    African Journals Online (AJOL)

    Effect of Spices and different Packaging Materials on acceptability and shelf-life of ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... garlic and nutmeg) as preservatives and use of different packaging materials ...

  7. Nutritional response of Okra to various packaging materials and ...

    African Journals Online (AJOL)

    Nutritional response of Okra to various packaging materials and chemical pickling agents. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... and groundnut oil) and packaging materials (glass jar, plastic and stainless ...

  8. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  9. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова

    2016-02-01

    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  10. SECOND WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: GENERATION AND EVALUATION OF INTERNAL CRITICIALITY CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    P. Gottlieb, J.R. Massari, J.K. McCoy

    1996-03-27

    applicable to the post 10,000 year time horizon. The principal probability related objective of this analysis is to estimate the earliest time at which a criticality can possibly occur, as a function of several environmental and material performance parameters, the specific values of which are subject to great uncertainty. It should be noted that the longer the possibility of criticality is delayed, the less will be the probability of any criticality at all, because of the increased probability that the waste package bottom will be penetrated by corrosion so that the waste package can no longer hold enough water to provide the necessary moderation to support the criticality.

  11. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    Science.gov (United States)

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  13. Waste Package Data Processing by Direct Upload to the SRS Waste Information System

    Energy Technology Data Exchange (ETDEWEB)

    Casella, V.R.

    2002-06-20

    Hundreds of waste packages are generated each month at the Westinghouse Savannah River Site (SRS), Aiken, SC. Most of these waste packages are compactable, low level waste (LLW) either in 55-gallon drums or B-25 boxes, and TRU waste is put in DOT Type A 55-gallon drums. Several methods are used for assay of the waste package contents, including direct assay, dose-to-curie measurements, and smear-to-curie measurements. These assays generate many thousands of data that must be entered manually into the SRS Waste Information Tracking System (WITS) by a Generation Certification Official, even though much of this data is already available electronically. Since spreadsheets are routinely used to collect data for manual entry into WITS, direct data upload would greatly improve data entry. WITS was originally written as an interactive program, requiring each data item to be entered individually with subsequent tests being performed on each data entry to ensure that acceptance criteria were me t. An error message was displayed if the acceptance criteria were not met, and either corrected data had to be re-entered or a deviation had to be approved by WITS personnel. This system did not allow batch data entry, where essentially all the data could be entered, and then all of this data were evaluated against the acceptance criteria. A WITS user interface has been written for batch data entry for over twenty waste generators. This interface accepts all the data for a waste package, and an error report is generated listing non-conforming data. This interface allows direct uploads of electronic data for waste packages by dumping this data into Microsoft Excel spreadsheets that are formatted for direct data entry into WITS. Therefore, programs can be written to transfer any electronic data to the WITS interface spreadsheet for direct uploads of waste data. The whole process is now much less labor intensive, more cost effective, and more accurate.

  14. Waste Package Project quarterly report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1995-11-15

    The following tasks are reported: overview and progress of nuclear waste package project and container design; nuclear waste container design considerations; structural investigation of multi purpose nuclear waste package canister; and design requirements of rock tunnel drift for long-term storage of high-level waste (faulted tunnel model study by photoelasticity/finite element analysis).

  15. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  16. Characterization of integrated circuit packaging materials

    CERN Document Server

    Moore, Thomas

    1993-01-01

    Chapters in this volume address important characteristics of IC packages. Analytical techniques appropriate for IC package characterization are demonstrated through examples of the measurement of critical performance parameters and the analysis of key technological problems of IC packages. Issues are discussed which affect a variety of package types, including plastic surface-mount packages, hermetic packages, and advanced designs such as flip-chip, chip-on-board and multi-chip models.

  17. Phthalate migration from packaging materials into food

    Directory of Open Access Journals (Sweden)

    Soňa Bogdanovičová

    2015-08-01

    Full Text Available The content of dibutylphthalate (DBP and di- (2-ethylhexyl phthalate (DEHP in samples of packages used for packaging meat productsand the phthalate migration from packaging materials to meat products were studied. Five samples of textile packaging intended for cooked meat production were analysed as well asthe final product which was filled into packages. Subsequently an analysis was carried out (after 1, 7, 14, 21, and 28 days of storage of the finished meat products stored over the course of their intended shelf life at ambient temperature of 4 °C. Determination of phthalates was conducted by high performance liquid chromatography (HPLC method with UV detection at a wavelength of 224 nm on the Zorbax Eclipse C8 column. The content of phthalates in the final product was below the limit of quantification. According to the Regulation of the Commission (EU No. 10/2011, the specific migration limit of products intended for food contact is 1.5 mg.kg-1of food simulant for DEHP and 0.3 mg.kg-1 for DBP. After filling and the first day of storage of the meat product, four package samples release the said phthalates to an extent that it exceeded the limits of the Commission Regulation (EU No. 10/2011. Already after the seventh day of storage, all samples (with the exception of sample 2 for DBP exceeded SMLs. Monitoring of each phthalate migration in individual samples during storage (for 28 days produced a rising tendency.  In sample 1, DBP increased from 0.40 to 3.37 mg.kg-1, while DEHP from 0.58 to 14.66 mg.kg-1. In sample 2, DBP increased from ≤0.2 mg.kg-1 to 4.34 mg.kg-1, whileDEHP from 1.46 to 28.20 mg.kg-1. In sample 3, DBP increased from ≤0.2 mg.kg-1 to  8.27 mg.kg-1, while DEHP from 1.67 to 14.84 mg.kg-1. In sample 4, DBP increased from 0.27 to 6.12 mg.kg-1, while DEHP from 2.37 to 13.22 mg.kg-1. In sample 5, DBP increased from 0.32 to 11.11 mg.kg-1, while DEHP from 1.91 to 15.42 mg.kg-1.

  18. Packaging performance evaluation and performance oriented packaging standards for large packages for poison inhalation hazard materials

    Energy Technology Data Exchange (ETDEWEB)

    Griego, N.R.; Mills, G.S.; McClure, J.D. [and others

    1997-07-01

    The U.S. Department of Transportation Research & Special Programs Administration (DOT-RSPA) has sponsored a project at Sandia National Laboratories to evaluate the protection provided by current packagings used for truck and rail transport of materials that have been classified as Poison Inhalation Hazards (PIH) and to recommend performance standards for these PIH packagings. Hazardous materials span a wide range of toxicity and there are many parameters used to characterize toxicity; for any given hazardous material, data are not available for all of the possible toxicity parameters. Therefore, it was necessary to select a toxicity criterion to characterize all of the PIH compounds (a value of the criterion was derived from other parameters in many cases) and to calculate their dispersion in the event of a release resulting from a transportation accident. Methodologies which account for material toxicity and dispersal characteristics were developed as a major portion of this project and applied to 72 PIH materials. This report presents details of the PIH material toxicity comparisons, calculation of their dispersion, and their classification into five severity categories. 16 refs., 5 figs., 7 tabs.

  19. REPOSITORY LAYOUT SUPPORTING DESIGN FEATURE #13- WASTE PACKAGE SELF SHIELDING

    Energy Technology Data Exchange (ETDEWEB)

    J. Owen

    1999-04-09

    The objective of this analysis is to develop a repository layout, for Feature No. 13, that will accommodate self-shielding waste packages (WP) with an areal mass loading of 25 metric tons of uranium per acre (MTU/acre). The scope of this analysis includes determination of the number of emplacement drifts, amount of emplacement drift excavation required, and a preliminary layout for illustrative purposes.

  20. Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-05-23

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{sub eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.

  1. Waste Package Neutron Absorber, Thermal Shunt, and Fill Gas Selection Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Pasupathi

    2000-01-28

    Materials for neutron absorber, thermal shunt, and fill gas for use in the waste package were selected using a qualitative approach. For each component, selection criteria were identified; candidate materials were selected; and candidates were evaluated against these criteria. The neutron absorber materials evaluated were essentially boron-containing stainless steels. Two candidates were evaluated for the thermal shunt material. The fill gas candidates were common gases such as helium, argon, nitrogen, carbon dioxide, and dry air. Based on the performance of each candidate against the criteria, the following selections were made: Neutron absorber--Neutronit A978; Thermal shunt--Aluminum 6061 or 6063; and Fill gas--Helium.

  2. 49 CFR 173.40 - General packaging requirements for toxic materials packaged in cylinders.

    Science.gov (United States)

    2010-10-01

    ... concrete or steel, impacting at an orientation most likely to cause damage. “Deformation”means a cylinder... packaged in cylinders. 173.40 Section 173.40 Transportation Other Regulations Relating to Transportation... Transportation § 173.40 General packaging requirements for toxic materials packaged in cylinders. When this...

  3. Acoustic imaging internal microstructure of a packaging material

    OpenAIRE

    Kao-Walter, Sharon; Levin, M. L.; Petronyuk, J.S.; Walter, Mats

    2008-01-01

    Microstructure of a paper-based packaging material was studied by acoustic microscopy method. The laminate structure of the packaging material contains paperboard, polymer and aluminium, which are widely used for aseptic liquid food package. The method has also been used to detect delaminations inside the material. The results show the possibility to study the micro structural features of paperboard, polymer and aluminium foil layered materials by applying the high-resolution ultrasonic acous...

  4. Plasticizers effect on native biodegradable package materials

    Science.gov (United States)

    Cozar, Onuc; Cioica, Nicolae; Coţa, Constantin; Nagy, Elena Mihaela; Fechete, Radu

    2017-01-01

    Changes in intensity of some IR and Raman bands suggest the plasticizing - antiplasticizing effects of water and glycerol contents and a small increase of amorphous/crystalline ratio, too. The nuclear magnetic relaxation data show that the amorphous/crystalline ratio depends on amylose/amylopectin mobility and also by the place of their polymer chain segments. Thus the distributions of spin-spin (T2) relaxation times and the shift toward higher values of some T2 characteristic peaks show that the increasing of water and glycerol content in the starch package materials lead to the more mobile amylose and amylopectin polymer chain segments and the prevalence of amorphous regions in the prepared native corn starch samples.

  5. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  6. Solvent extraction as additional purification method for postconsumer plastic packaging waste

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Jansen, M.

    2011-01-01

    An existing solvent extraction process currently used to convert lightly polluted post-industrial packaging waste into high quality re-granulates was tested under laboratory conditions with highly polluted post-consumer packaging waste originating from municipal solid refuse waste. The objective was

  7. Considerations on the performance and fabrication of candidate materials for the Yucca Mountain repository waste packages highly corrosion resistant nickel-base and titanium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E; Goldberg, A

    1995-11-30

    Among the metallurgical factors that affect the performance of a material in a given environment are alloy composition, alloy segregation, depletion of alloying elements, non-uniform microstructures, precipitation leading to an increase in susceptibility to corrosion as well as decreases in ductility, residual plastic deformation, and residual stresses. Precipitation often occurs preferentially at grain boundaries, causing depletion of critical elements in regions adjacent to these boundaries. Continuous grain-boundary precipitates can lead to drops in ductility and toughness. The presence of non-metallic inclusions, if excessive and/or segregated, can also cause embrittlement. Segregation of alloying elements can result in localized galvanic action. Depletion of alloying elements as well as segregation can result in reductions in the concentrations of critical elements below those necessary to resist localized corrosion. Segregation and alloy depletion can also facilitate precipitation that could lead to embrittlement.

  8. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.

  9. Estimation of waste package performance requirements for a nuclear waste repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B J

    1980-07-01

    A method of developing waste package performance requirements for specific nuclides is described, and based on federal regulations concerning permissible concentrations in solution at the point of discharge to the accessible environment, a simple and conservative transport model, and baseline and potential worst-case release scenarios.

  10. Performance-oriented packagings for hazardous materials: Resource guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This document provides recommendations to US Department of Energy (DOE) shippers regarding packaging that meet performance-oriented packaging requirements implemented by US Department of Transportation (DOT) in rulemaking HM-181 (December 21, 1990) and subsequent actions. The packaging described in this document are certified by their vendor to comply with requirements for Packing Group I, II, or III hazardous materials packaging. The intent of this document is to share information between DOE and contractors and at all DOE facilities.

  11. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  12. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  13. Vertical Drop Of 21-Pwr Waste Package On Unyielding Surface

    Energy Technology Data Exchange (ETDEWEB)

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-29

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only.

  14. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages. Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  15. Directory of certificates of compliance for radioactive materials packages. Summary report of NRC approved packages

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    This directory contains a Summary Report of NRC Approved Packages for radioactive material packages effective September 14, 1979. Purpose of this directory is to make available a convenient source of information on packagings which have been approved by the US Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance number is included at the back of each volume of the directory. The Summary Report includes a listing of all users of each package design prior to the publication date of the directory.

  16. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites.

    Science.gov (United States)

    González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O

    2014-11-01

    The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. An econometric analysis of regional differences in household waste collection: the case of plastic packaging waste in Sweden.

    Science.gov (United States)

    Hage, Olle; Söderholm, Patrik

    2008-01-01

    The Swedish producer responsibility ordinance mandates producers to collect and recycle packaging materials. This paper investigates the main determinants of collection rates of household plastic packaging waste in Swedish municipalities. This is done by the use of a regression analysis based on cross-sectional data for 252 Swedish municipalities. The results suggest that local policies, geographic/demographic variables, socio-economic factors and environmental preferences all help explain inter-municipality collection rates. For instance, the collection rate appears to be positively affected by increases in the unemployment rate, the share of private houses, and the presence of immigrants (unless newly arrived) in the municipality. The impacts of distance to recycling industry, urbanization rate and population density on collection outcomes turn out, though, to be both statistically and economically insignificant. A reasonable explanation for this is that the monetary compensation from the material companies to the collection entrepreneurs vary depending on region and is typically higher in high-cost regions. This implies that the plastic packaging collection in Sweden may be cost ineffective. Finally, the analysis also shows that municipalities that employ weight-based waste management fees generally experience higher collection rates than those municipalities in which flat and/or volume-based fees are used.

  18. Decision support system for material handling and packaging design

    Science.gov (United States)

    Johnsson, Mats I.; Mazouz, Abdel K.; Han, Chingping

    1992-02-01

    The reliability of the materials handling process involving automated stacking of packages on a pallet or automated sorting of packages in a distribution system depends mainly on the design of the package and the material used for the package. Many problems can be eliminated that result in a higher utilization of the system if the package is designed not only for the product and its requirements but also for an automated handling system with different types of grasping devices. A decision support system is being developed to help the package designer select the most appropriate material and design to satisfy the requirements of the automated materials handling process. The decision support system is programmed in C++ which gives the flexibility and portability needed for this type of system. The user interface is using graphics to ease the understanding of different design options during the selection process.

  19. Application of combinatorial approach in packaging material selection

    Science.gov (United States)

    Jarupan, Lerpong; Kamarthi, Sagar V.; Gupta, Surendra M.

    2004-12-01

    Packaging material selection (PMS) problems have always been important to packaging designers and engineers. Not only does the selection of packaging material determine the costs and the environmental impacts of packaging, but also influences packaging physical characteristics and associated manufacturing methods. In order to reduce economic and environmental impacts, one has to take a holistic approach to packaging material selection by considering material effects throughout the packaging life cycle. To evaluate economic costs and environmental impacts both quantitative factors and subjective criteria play an important role in the packaging design. In the present work, fuzzy set theory is used for representing and manipulating the vague and subjective descriptions of packaging performance and design attributes. Further a genetic algorithm based approach is used for addressing the packaging material selection problem through multiple criteria decision-making. The overall approach comprises of two phases. In the first phase, fuzzy set theory is used for the linguistic transformation of performance attributes into numerical values. It results in a decision matrix that contains crisp scores. Also in this phase, a weight is assigned to each sub-criterion to show its importance compared to others. In the second phase, a GA is used to globally search for near-optimal or optimal design solutions. The implementation of the proposed methodology is illustrated through a numerical example.

  20. Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S C; Gordon, G M; Andresen, P L; Herrera, M L

    2003-06-20

    A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking due to three factors, which must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is Alloy 22, a highly corrosion resistant alloy, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulas for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, the time to through-wall penetration for the waste package can be calculated. The SDFR model relates the advance (or propagation) of cracks, subsequent to the crack initiation from bare metal surface, to the metal oxidation transients that occur when the protective film at the crack tip is continually ruptured and repassivated. A crack, however, may reach the ''arrest'' state before it enters the ''propagation'' phase. There exists a threshold stress intensity factor, which provides a criterion for determining if an initiated crack or pre

  1. Package Formats for Preserved Digital Material

    DEFF Research Database (Denmark)

    Zierau, Eld

    2012-01-01

    This paper presents an investigation of the best suitable package formats for long term digital preservation. The choice of a package format for preservation is crucial for future access, thus a thorough analysis of choice is important. The investigation presented here covers setting up requireme...

  2. Package Formats for Preserved Digital Material

    DEFF Research Database (Denmark)

    Zierau, Eld

    2012-01-01

    This paper presents an investigation of the best suitable package formats for long term digital preservation. The choice of a package format for preservation is crucial for future access, thus a thorough analysis of choice is important. The investigation presented here covers setting up requireme......This paper presents an investigation of the best suitable package formats for long term digital preservation. The choice of a package format for preservation is crucial for future access, thus a thorough analysis of choice is important. The investigation presented here covers setting up...... the listed requirements will ensure mitigating a number of risks of information loss. Thus WARC is the best choice for a package format in cases where these same risks are judged most important. Similar analysis will need to be carried out in cases where the requirements differ from the ones described here...

  3. DESIGNING OF POLYMERIC PACKAGING FILM MATERIALS WITH THE BARRIER PROPERTIES

    OpenAIRE

    Колосов, Олександр Євгенович; Сідоров, Дмитро Едуардович; Малецький, Сергій Віталійович

    2016-01-01

    The basic types of interactions for packaged food product and packaging that may occur between the polymer film packaging material and the produc are analyzed. It is noted that the most simple to implement isolation of the internal space of the polymer film packaging from the environment. In this package of the insulated space can be removed by air, in particular, evacuation, or replaced with an inert gas or inert gas mixture. It is noted that the permeability of gases and gas mixtures by non...

  4. 75 FR 5375 - Hazardous Material; Miscellaneous Packaging Amendments

    Science.gov (United States)

    2010-02-02

    ... plastic bags, plastic film bags, textile bags, and paper bags. The purpose was to eliminate uncertainty in... in This Final Rule A. Definitions B. Plastic Packagings Used To Transport Poison Materials C... provisions to require plastic single and composite non-bulk packagings containing Division 6.1 material to...

  5. 75 FR 75157 - Importation of Wood Packaging Material From Canada

    Science.gov (United States)

    2010-12-02

    .... 319.40-3 of the regulations lists the IPPC requirements, which include either heat treatment or... of Wood Packaging Material From Canada AGENCY: Animal and Plant Health Inspection Service, USDA... unmanufactured wood articles to remove the exemption that allows wood packaging material from Canada to enter...

  6. 19 CFR 10.601 - Retail packaging materials and containers.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the...

  7. Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates

    Science.gov (United States)

    Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.

    2015-12-01

    Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (organic modifier, were melt compounded with the recycled materials in a twin-screw extruder. The morphological, thermal, rheological and mechanical properties of the prepared nanocomposites were extensively discussed.

  8. Addendum to the Safety Analysis Report for the Steel Waste Packaging. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Crow, S R

    1996-02-15

    The Battelle Pacific Northwest National Laboratory Safety Analysis Report (SAR) for the Steel Waste Package requires additional analyses to support the shipment of remote-handled radioactive waste and special-case waste from the 324 building hot cells to PUREX for interim storage. This addendum provides the analyses required to show that this waste can be safely shipped onsite in the configuration shown.

  9. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  10. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    Energy Technology Data Exchange (ETDEWEB)

    González Pericot, N., E-mail: natalia.gpericot@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Villoria Sáez, P., E-mail: paola.villoria@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Del Río Merino, M., E-mail: mercedes.delrio@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Liébana Carrasco, O., E-mail: oscar.liebana@uem.es [Escuela de Arquitectura, Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón (Spain)

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  11. Review of waste package verification tests. Semiannual report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1985-07-01

    The potential of WAPPA, a second-generation waste package system code, to meet the needs of the regulatory community is analyzed. The analysis includes an indepth review of WAPPA`s individual process models and a review of WAPPA`s operation. It is concluded that the code is of limited use to the NRC in the present form. Recommendations for future improvement, usage, and implementation of the code are given. This report also describes the results of a testing program undertaken to determine the chemical environment that will be present near a high-level waste package emplaced in a basalt repository. For this purpose, low carbon 1020 steel (a current BWIP reference container material), synthetic basaltic groundwater and a mixture of bentonite and basalt were exposed, in an autoclave, to expected conditions some period after repository sealing (150{sup 0}C, {approx_equal}10.4 MPa). Parameters measured include changes in gas pressure with time and gas composition, variation in dissolved oxygen (DO), pH and certain ionic concentrations of water in the packing material across an imposed thermal gradient, mineralogic alteration of the basalt/bentonite mixture, and carbon steel corrosion behavior. A second testing program was also initiated to check the likelihood of stress corrosion cracking of austenitic stainless steels and Incoloy 825 which are being considered for use as waste container materials in the tuff repository program. 82 refs., 70 figs., 27 tabs.

  12. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-08-27

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

  13. THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, N.

    2010-03-04

    Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

  14. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  15. Life cycle Analysis of Aluminum Foil Packaging Material.

    Science.gov (United States)

    El Sebaie, Olfat; Ahmed, Manal; Hussein, Ahmed; El Sharkawy, Fahmay; Samy, Manal

    2006-01-01

    A fundamental tent of life cycle analysis (LCA) is that every material product must become a waste. To choose the greener products, it is necessary to take into account their environmental impacts from cradle to grave. LCA is the tool used to measure environmental improvements. Aluminum (Al) is the third most common element found in the earth's crust, after oxygen and silicon. Al packaging foil was chosen as the material for the study with its life cycle perspective at Alexandria. The Al packaging produced from virgin and recycled Al was investigated through life cycle stages in these two production processes; primary and secondary. The aim of this study is to evaluate the environmental impact of aluminum packaging process by using life cycle analysis of its product from two different starting raw materials (virgin and recycled aluminum). The input and output materials, energy, water, natural gas consumptions, and solid waste uses in the foil industry had been analyzed in order to identify those with significant contribution to the total environmental impacts. From the survey done on the two life cycles, it was found that in environmental terms, the most important emissions from the primary process are the emission of CO(2) and perfluorocarbon (PFC) gases, which produce the greenhouse effect, and SO(2) as well as the emission of fluorides and polyaromatic hydrocarbons (PAH compounds), which are toxic to humans and the environment. On over all material balance, it was found that the ingot shares by 45% of the feed to the casthouse furnaces at Egyptian Copper Work (ECW), net production of the casthouse is 43.76% and the yield of rotary dross furnace (RDF) is 28.8%. The net production of the foil unit represents 35% of the total input to the unit. By comparing the two life cycles, it is obvious that, for water consumption, 93.5% is used in the primary cycle, while 6.5% is used in the secondary cycle. For electricity consumption, 99.3% is used in the primary cycle

  16. Incorporation of Uncertainty and Variability of Drip Shield and Waste Package Degradation in WAPDEG Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Helton

    2000-04-19

    This presentation investigates the incorporation of uncertainty and variability of drip shield and waste package degradation in analyses with the Waste Package Degradation (WAPDEG) program (CRWMS M&O 1998). This plan was developed in accordance with Development Plan TDP-EBS-MD-000020 (CRWMS M&O 1999a). Topics considered include (1) the nature of uncertainty and variability (Section 6.1), (2) incorporation of variability and uncertainty into analyses involving individual patches, waste packages, groups of waste packages, and the entire repository (Section 6.2), (3) computational strategies (Section 6.3), (4) incorporation of multiple waste package layers (i.e., drip shield, Alloy 22, and stainless steel) into an analysis (Section 6.4), (5) uncertainty in the characterization of variability (Section 6.5), and (6) Gaussian variance partitioning (Section 6.6). The presentation ends with a brief concluding discussion (Section 7).

  17. WASTE CONTAINER AND WASTE PACKAGE PERFORMANCE MODELING TO SUPPORT SAFETY ASSESSMENT OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.

    2004-06-30

    Prior to subsurface burial of low- and intermediate-level radioactive wastes, a demonstration that disposal of the wastes can be accomplished while protecting the health and safety of the general population is required. The long-time frames over which public safety must be insured necessitates that this demonstration relies, in part, on computer simulations of events and processes that will occur in the future. This demonstration, known as a Safety Assessment, requires understanding the performance of the disposal facility, waste containers, waste forms, and contaminant transport to locations accessible to humans. The objective of the coordinated research program is to examine the state-of-the-art in testing and evaluation short-lived low- and intermediate-level waste packages (container and waste form) in near surface repository conditions. The link between data collection and long-term predictions is modeling. The objective of this study is to review state-of-the-art modeling approaches for waste package performance. This is accomplished by reviewing the fundamental concepts behind safety assessment and demonstrating how waste package models can be used to support safety assessment. Safety assessment for low- and intermediate-level wastes is a complicated process involving assumptions about the appropriate conceptual model to use and the data required to support these models. Typically due to the lack of long-term data and the uncertainties from lack of understanding and natural variability, the models used in safety assessment are simplistic. However, even though the models are simplistic, waste container and waste form performance are often central to the case for making a safety assessment. An overview of waste container and waste form performance and typical models used in a safety assessment is supplied. As illustrative examples of the role of waste container and waste package performance, three sample test cases are provided. An example of the impacts of

  18. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  19. Radioactive Waste Material From Tapping Natural Resources ...

    Science.gov (United States)

    2017-08-07

    Rocks around oil and gas and mineral deposits may contain natural radioactivity. Drilling through these rocks and bringing them to the surface creates radioactive waste materials. Once desired minerals have been removed from ore, the radionuclides left in the waste are more concentrated. Scientists call this waste Technologically Enhanced Naturally Occurring Radioactive Material or simply TENORM.

  20. Ethanol production from waste materials

    Directory of Open Access Journals (Sweden)

    Muhammad Shahid Iqbal

    2012-08-01

    Full Text Available Experiment was designed for ethanol production using corn andother organic waste material containing starch contents andcellulosic material while barely used for diastase and acidicdigestion methods. The effect of temperature, yeast, barely diastaseand various dilutions of acid (sulfuric acids were investigated onethanol production. The result showed that corn yielded highamount of ethanol (445ml as compared to cellulosic material whichproduced 132ml of ethanol from one kg of weight. It was also notedthat with the increase of barely and yeast amount in a proper mannercan increase ethanol production from different starch sources. It wasalso noted that acid dilutions affected cellulose digestion where highyield of reducing sugar was noted at 0.75% of sulfuric acid dilution.It was concluded from the present experiment that economicalsources of starch and various dilutions of acids should be tried oncellulose digestion for bio-fuel production to withstand in thisenergy crisis time.

  1. An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines.

    Science.gov (United States)

    Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal

    2016-10-01

    In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs.

  2. DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.; Eberl, K.

    2008-09-14

    In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any

  3. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-03-02

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  4. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

    2013-07-01

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  5. Optimizing biomass blends for manufacturing molded packaging materials using mycelium

    Science.gov (United States)

    Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...

  6. Standard Guide for Packaging Materials for Foods to Be Irradiated

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides a format to assist producers and users of food packaging materials in selecting materials that have the desirable characteristics for their intended use and comply with applicable standards or government authorizations. It outlines parameters that should be considered when selecting food-contact packaging materials intended for use during irradiation of prepackaged foods and it examines the criteria for fitness for their use. 1.2 This guide identifies known regulations and regulatory frameworks worldwide pertaining to packaging materials for holding foods during irradiation; but it does not address all regulatory issues associated with the selection and use of packaging materials for foods to be irradiated. It is the responsibility of the user of this guide to determine the pertinent regulatory issues in each country where foods are to be irradiated and where irradiated foods are distributed. 1.3 This guide does not address all of the food safety issues associated with the synergisti...

  7. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

  8. Management and legislation of packaging wastes; La gestion y la legislacion de residuos de envases

    Energy Technology Data Exchange (ETDEWEB)

    Berbel Vecino, J.; Gomez-Limon Rodriguez, J.A. [SADECO, Saneamientos de Cordoba. Empresa Municipal (Spain)

    1997-06-01

    Municipal Solid Waste management and Packaging Waste management have became in a big environmental problem in Western Europe. This situation made compulsory a European Law to rule the Packaging Waste management recycling (Directive 94/62), that have to be translated inside the different Member States. This paper try to analyze the spanish law project developed in this area, pointing its positive and negative aspects, relating this one with other solutions adopted by other countries. (Author) 9 refs.

  9. Graphite matrix materials for nuclear waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  10. Detection of high-energy delayed gammas for nuclear waste packages characterization

    Energy Technology Data Exchange (ETDEWEB)

    Carrel, F., E-mail: frederick.carrel@cea.fr [CEA, LIST, Gif-sur-Yvette F-91191 (France); Agelou, M.; Gmar, M.; Laine, F. [CEA, LIST, Gif-sur-Yvette F-91191 (France)

    2011-10-01

    Methods based on photon activation analysis (PAA) have been developed by CEA LIST for several years, in order to assay actinides inside nuclear waste packages. These techniques were primarily based on the detection of delayed neutrons emitted by fission products. To overcome some limitations related to neutrons, CEA LIST has worked on the detection of high-energy delayed gammas (E>3 MeV), which are simultaneously emitted by fission products along with delayed neutrons. Since the emission yield is more important for high-energy delayed gammas than delayed neutrons and because they are less sensitive to hydrogenous material, high-energy delayed gammas are a solution of interest in order to improve the accuracy of these techniques. In this article, we present new experimental results demonstrating the feasibility of high-energy delayed gamma detection for nuclear waste packages characterization. Experiments have been carried out in the PAA facility called SAPHIR, which is located in CEA Saclay. The most important part of our work has been carried out on an 870 l mock-up package. Some experimental techniques, initially based on delayed neutron detection (altitude scan, photofission tomography), have been successfully applied for the first time using high-energy delayed gamma detection.

  11. Reduced Pressure Electron Beam Welding Evaluation Activities on a Ni-Cr-Mo Alloy for Nuclear Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Wong, F; Punshon, C; Dorsch, T; Fielding, P; Richard, D; Yang, N; Hill, M; DeWald, A; Rebak, R; Day, S; Wong, L; Torres, S; McGregor, M; Hackel, L; Chen, H-L; Rankin, J

    2003-09-11

    The current waste package design for the proposed repository at Yucca Mountain Nevada, USA, employs gas tungsten arc welding (GTAW) in fabricating the waste packages. While GTAW is widely used in industry for many applications, it requires multiple weld passes. By comparison, single-pass welding methods inherently use lower heat input than multi-pass welding methods which results in lower levels of weld distortion and also narrower regions of residual stresses at the weld TWI Ltd. has developed a Reduced Pressure Electron Beam (RPEB) welding process which allows EB welding in a reduced pressure environment ({le} 1 mbar). As it is a single-pass welding technique, use of RPEB welding could (1) achieve a comparable or better materials performance and (2) lead to potential cost savings in the waste package manufacturing as compared to GTAW. Results will be presented on the initial evaluation of the RPEB welding on a Ni-Cr-Mo alloy (a candidate alloy for the Yucca Mountain waste packages) in the areas of (a) design and manufacturing simplifications, (b) material performance and (c) weld reliability.

  12. Packaging and transportation of radioactive materials: summary program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference. (DC)

  13. 77 FR 23751 - Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation...

    Science.gov (United States)

    2012-04-20

    ... COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation... importation, and the sale within the United States after importation of certain food waste disposers and... sale within the United States after importation of certain food waste disposers and components...

  14. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  15. Applying and influence of polymer materials for packaging dairy beverages

    Directory of Open Access Journals (Sweden)

    Milanović Spasenija D.

    2017-01-01

    Full Text Available Functional food is positioned above the traditional, with the potential to improve human health. Thanks to very good physico-mechanical and barrier properties polymers became very popular in food industry as a packaging materials. Wild range of fermented dairy products could be packed in this packaging materials according to their’s inertness as well. Functional milk beverage was obtained from milk with 0,9% milk fat content by applying 10% v/v of kombucha’s inoculum cultivated on a black tea sweetened with sucrose. The beverage was packed in a different packaging materials: polyamid-polyethylen (PA/PE coextruded foil bags and polyprophylen (PP cups closed with aluminium (Al foil lids under atmospheric conditions (ATM. Beverages were storaged for 15 days at 4°C. The quality of kombucha inoculum, milk and obtained kombucha fermented milk beverage were analysed. Characterization of the packaging materials was done by investigating physico-mechanical, barrier and structural properties. The composition and changes in the headspace atmosphere, after production and during the storage, were analysed. The influence of packaging material properties and packaging conditions on the biochemical transformations of the milk’s components (the content of: lactose, L-lactic acid, D-galactose, ethanol, B1 and B2 vitamins influenced by kombucha starter were analysed as well. On the bases of the obtained results of characterisation of packaging materials, it can be concluded that PA/PE and PP materials are proper to be used for analysed beverage’s packaging. Also, there is no significant difference in content of components which were quantified, between analysed materials in correlation with the packed fermented milk beverage. [Projekat Ministarstva nauke Republike Srbije, br. III-46009

  16. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-25

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

  17. Extending the utility of a radioactive material package

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Savannah River Nuclear Solutions; Nathan, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Nuclear Solutions; Loftin, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Savannah River Nuclear Solutions; Bellamy, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Savannah River Nuclear Solutions

    2015-06-04

    Once a package has been certified for the transportation of DOT Hazard Class 7 – Radioactive Material in compliance with the requirements of 10 CFR 71, it is often most economical to extend its utility through the addition of content-specific configuration control features or the addition of shielding materials. The SRNL Model 9977 Package’s authorization was expanded from its original single to twenty contents in this manner; and most recently, the 9977 was evaluated for a high-gamma source content. This paper discusses the need for and the proposed shielding modifications to the package for extending the utility of the package for this purpose.

  18. Extending the utility of a radioactive material package

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Savannah River Nuclear Solutions; Nathan, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Nuclear Solutions; Loftin, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Savannah River Nuclear Solutions; Bellamy, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Savannah River Nuclear Solutions

    2015-06-04

    Once a package has been certified for the transportation of DOT Hazard Class 7 – Radioactive Material in compliance with the requirements of 10 CFR 71, it is often most economical to extend its utility through the addition of content-specific configuration control features or the addition of shielding materials. The SRNL Model 9977 Package’s authorization was expanded from its original single to twenty contents in this manner; and most recently, the 9977 was evaluated for a high-gamma source content. This paper discusses the need for and the proposed shielding modifications to the package for extending the utility of the package for this purpose.

  19. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  20. INITIAL WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: MULTI-PURPOSE CANISTER WITH DISPOSAL CONTAINER (TBV)

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Massari

    1995-10-06

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to: (1) Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts; (2) Demonstrate the established process by estimating the probability of criticality as a function of time since emplacement for an intact multi-purpose canister waste package (MPC-WP) configuration; (3) Identify the dominant sequences leading to waste package criticality for subsequent detailed analysis. The purpose of this analysis is to document and demonstrate the developed process as it has been applied to the MPC-WP. This revision is performed to correct deficiencies in the previous revision and provide further detail on the calculations performed. This analysis is similar to that performed for the uncanistered fuel waste package (UCF-WP, B00000000-01717-2200-00079).

  1. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  2. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-Barrera

    2015-01-01

    Full Text Available The development of the packaging industry has promoted indiscriminately the use of disposable packing as Tetra Pak, which after a very short useful life turns into garbage, helping to spoil the environment. One of the known processes that can be used for achievement of the compatibility between waste materials and the environment is the gamma radiation, which had proved to be a good tool for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete. Concrete specimens were elaborated with waste cellulose at concentrations of 3, 5, and 7 wt% and irradiated at 200, 250, and 300 kGy of gamma dose. The results show highest improvement on the mechanical properties for concrete with 3 wt% of waste cellulose and irradiated at 300 kGy; such improvements were related with the surface morphology of fracture zones of cement concrete observed by SEM microscopy.

  3. Absorption properties of waste matrix materials

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  4. Ingredient of Biomass Packaging Material and Compare Study on Cushion Properties

    Directory of Open Access Journals (Sweden)

    Fangyi Li

    2014-01-01

    Full Text Available In order to reduce the white pollution caused by nondegradable waste plastic packaging materials, the biomass cushion packaging material with straw fiber and starch as the main raw materials had been synthesized. The orthogonal experiment was used to study the impact of mass ratio of fiber to starch, content of plasticizer, active agent, and foaming agent on the compressive strength of cushion material. Infrared spectrometer and theory of water’s bridge-connection were used to study the hydroxyl groups among the fiber and starch. The results were demonstrated as follows: the mass ratio of fiber to starch had the most significant impact on compressive strength. When the contents of the plasticizer, the foaming agent, and the active agent were, respectively, 12%, 0.1%, and 0.3% and the mass ratio of fiber to starch was 2 : 5, the compressive strength was the best up to 0.94 MPa. Meanwhile, with the plasticizer content and the mass ratio of fiber to starch increasing, the cushioning coefficient of the material decreased first and then increased. Comparing the cushion and rebound performance of this material with others, the biomass cushion packaging material could be an ideal substitute of plastic packaging materials such as EPS and EPE.

  5. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K; Joseph Murphy, J

    2008-07-18

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding that was induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species used in the construction of the packaging, followed by polyvinyl acetate (PVAc) glue. Fiberboard material, also used in the construction of the packaging induced corrosion to a much lesser extent than the PVAc glue and RTV sealant, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water. In light of these corrosion mechanisms, the lead shielding was sheathed in a stainless steel liner to mitigate against corrosion.

  6. Alternative buffer material. Status of the ongoing laboratory investigation of reference materials and test package 1

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Daniel [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Dueck, Ann; Nilsson, Ulf; Olsson, Siv; Sanden, Torbjoern [Clay Technology AB, Lund (Sweden); Lydmark, Sara; Jaegerwall, Sara; Pedersen, Karsten [Microbial Analytics Sweden AB, Moelnlycke (Sweden); Hansen, Staffan [LTH Lund Univ., Lund (Sweden)

    2011-07-15

    Bentonite clay is part of the Swedish KBS-3 design of final repositories for high level radioactive waste. Wyoming bentonite with the commercial name MX-80 (American Colloid Co) has long been the reference for buffer material in the KBS-3 concept. Extending the knowledge base of alternative buffer materials will make it possible to optimize regarding safety, availability and cost. For this reason the field experiment Alternative Buffer Material (ABM) was started at Aespoe Hard Rock Laboratory during 2006. The experiment includes three medium-scale test packages, each consisting of a central steel tube with heaters, and a buffer of compacted clay. Eleven different clays were chosen for the buffers to examine effects of smectite content, interlayer cations and overall iron content. Also bentonite pellets with and without additional quartz are being tested. The buffer in package 1 had been subjected to wetting by formation water and heating for more than two years (at 130 deg C for {approx} 1 year) when it was retrieved and analyzed. The main purposes of the project were to characterise the clays with respect to hydro-mechanical properties, mineralogy and chemical composition and to identify any differences in behaviour or long term stability. The diversity of clays and the heater of steel also make the experiment suitable for studies of iron-bentonite interactions. This report concerns the work accomplished up to now and is not to be treated as any final report of the project.

  7. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    Science.gov (United States)

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  8. Food safety concerns deriving from the use of silver based food packaging materials: a case study.

    Directory of Open Access Journals (Sweden)

    Alessandra ePezzuto

    2015-10-01

    Full Text Available The formulation of innovative packaging solutions, exerting a functional antimicrobial role in slowing down food spoilage, is expected to have a significant impact on the food industry, allowing both the maintenance of food safety criteria for longer periods and the reduction of food waste. Different materials are considered able to exert the required antimicrobial activity, among which are materials containing silver. However, challenges exist in the application of silver to food contact materials due to knowledge gaps in the production of ingredients, stability of delivery systems in food matrices and health risks caused by the same properties which also offer the benefits. Aims of the present study were to test the effectiveness and suitability of two packaging systems, one of which contained silver, for packaging and storing Stracchino cheese, a typical Italian fresh cheese, and to investigate if there was any potential for consumers to be exposed to silver, via migration from the packaging to the cheese. Results did not show any significant difference in the effectiveness of the packaging systems on packaged Stracchino cheese, excluding that the active packaging systems exerted an inhibitory effect on the growth of spoilage microorganisms. Moreover, silver migrated into the cheese matrix throughout the storage time (24 days. Silver levels in cheese finally exceeded the maximum established level for the migration of a non-authorised substance through a functional barrier (Commission Regulation (EC No. 450/2009. This result poses safety concerns and strongly suggests the need for more research aimed at better characterizing the new packaging materials in terms of their potential impacts on human health and the environment.

  9. Food safety concerns deriving from the use of silver based food packaging materials.

    Science.gov (United States)

    Pezzuto, Alessandra; Losasso, Carmen; Mancin, Marzia; Gallocchio, Federica; Piovesana, Alessia; Binato, Giovanni; Gallina, Albino; Marangon, Alberto; Mioni, Renzo; Favretti, Michela; Ricci, Antonia

    2015-01-01

    The formulation of innovative packaging solutions, exerting a functional antimicrobial role in slowing down food spoilage, is expected to have a significant impact on the food industry, allowing both the maintenance of food safety criteria for longer periods and the reduction of food waste. Different materials are considered able to exert the required antimicrobial activity, among which are materials containing silver. However, challenges exist in the application of silver to food contact materials due to knowledge gaps in the production of ingredients, stability of delivery systems in food matrices and health risks caused by the same properties which also offer the benefits. Aims of the present study were to test the effectiveness and suitability of two packaging systems, one of which contained silver, for packaging and storing Stracchino cheese, a typical Italian fresh cheese, and to investigate if there was any potential for consumers to be exposed to silver, via migration from the packaging to the cheese. Results did not show any significant difference in the effectiveness of the packaging systems on packaged Stracchino cheese, excluding that the active packaging systems exerted an inhibitory effect on the growth of spoilage microorganisms. Moreover, silver migrated into the cheese matrix throughout the storage time (24 days). Silver levels in cheese finally exceeded the maximum established level for the migration of a non-authorised substance through a functional barrier (Commission of the European Communities, 2009). This result poses safety concerns and strongly suggests the need for more research aimed at better characterizing the new packaging materials in terms of their potential impacts on human health and the environment.

  10. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  11. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  12. 78 FR 1881 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's...

    Science.gov (United States)

    2013-01-09

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's Determination Not To Review Initial Determinations Granting Complainant's Motions To Partially Terminate...

  13. 77 FR 50716 - Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission...

    Science.gov (United States)

    2012-08-22

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof; Notice of Commission Determination Not to Review an Initial Determination Granting Complainant's Motions To Amend the Notice...

  14. Materials in Nuclear Waste Disposition

    Science.gov (United States)

    Rebak, Raul B.

    2014-03-01

    Commercial nuclear energy has been used for over 6 decades; however, to date, none of the 30+ countries with nuclear power has opened a repository for high-level waste (HLW). All countries with nuclear waste plan to dispose of it in metallic containers located in underground geologically stable repositories. Some countries also have liquid nuclear waste that needs to be reduced and vitrified before disposition. The five articles included in this topic offer a cross section of the importance of alloy selection to handle nuclear waste at the different stages of waste processing and disposal.

  15. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    decisions in waste planning thus require a holistic and systematic assessment of environmental impacts of different waste management options. Such assessment requires reliable information on the physical and chemical waste properties to model the flows of waste materials and substances throughout the entire...... the selection of appropriate acid digestion method for future waste characterization studies and the comparison of data across existing studies. A consistent dataset for 73 physico-chemical parameters in 49 residual and 24 source-segregated Danish household waste fractions was obtained and is now available...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions...

  16. PACKAGING WASTE MANAGEMENT ON EXAMPLE OF CITY ZIELONA GÓRA

    OpenAIRE

    Joanna ZARĘBSKA

    2012-01-01

    The article presents the legal requirements of the European Union's packaging waste, and their most recent transposition into Polish law. The author has attempted to describe selected achievements of the Department of Public Utilities and Housing (DPUaH) in Zielona Góra, which for many years on behalf of the city, in a systematic way it’s developing municipal waste management system (including packaging), consistent with EU policies and objectives of sustainable development. The deficiencies ...

  17. Implications of material selection on the design of packaging machinery.

    Science.gov (United States)

    Merritt, J P

    2009-01-01

    Material selection has significant implications on the design and cost of horizontal-form-fill-seal packaging machinery. To avoid excessive costs, machine redesigns and project delays, material selection must be reconciled early in the project and revisited throughout the construction of the machine.

  18. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  19. Plastic packaging materials and environmental problems. Plastic hosozai to kankyo mondai

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, T. (Sekisui Plastics Co. Ltd., Osaka (Japan))

    1992-05-01

    This paper describes the recent trends in the environmental problems created from used plastic packaging materials. The 23 wards of the city of Tokyo produce refuses daily of 12,000 tons (1990), with plastics accounting for 15% by volume. Discussions to deal with plastic refuses that are bulky and standing out began as early as in 1971 when the disposal study meeting was inaugurated. As a result, wastes from polyvinyl chloride sheet for agricultural green houses had 40% recovered and recycled out of 100,000 tons generated annually, and styrofoam wastes at 10% of 150,000 tons. The wastes disposal law and the recycling law were established in 1991 aiming at reducing volume of wastes, promoting re-utilization, and assuring appropriate disposal methods and facilities. The Wastes Re-utilization Association was organized to handle styrofoam wastes that are attracting strong attention recently, the association having begun its activities with a good start. It is expected that styrofoam wastes will be molten thermally and regenerated into the same styrofoam products. Styrofoam could be more energy saving and resource saving material than paper cups. 6 refs., 10 figs., 5 tabs.

  20. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K

    2007-11-16

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species followed by the polyvinyl acetate (PVAc) glue. The fiberboard material induced corrosion to a much lesser extent than the PVAc glue and RTV, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water as expected. A corrosion rate of 0.05 mm/year measured for coupons exposed to the most aggressive conditions was recommended as a conservative estimate for use in package performance calculations.

  1. Design of radioactive material shipping packaging for low-velocity puncture resistance

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E. (Electric Power Research Inst., Palo Alto, CA (USA)); May, R.A. (Sandia National Labs., Albuquerque, NM (USA))

    1983-02-01

    Both the standards developed by the International Atomic Energy Agency (IAEA) and those contained in the U.S. federal regulations stipulate that transport packagings containing large quantities of radioactive material, such as spent fuel from a nuclear power reactor or waste by-products from nuclear weapons programs, should be designed to resist a sequence of impact, puncture, fire, and water immersion conditions without harmful release of contents. A recent paper has offered a perspective on the design of such packagings relative to the impact event - a 30 ft (9m) drop onto an essentially unyielding target. In this paper the second event in the accident design sequence is addressed - the 40 in (1 m) drop of the packaging, after primary impact, onto a mild steel cylindrical punch.

  2. Options for reducing food waste by ‘Quality Controlled Logistics’ using intelligent packaging along the supply chain

    NARCIS (Netherlands)

    Heising, J.K.; Claassen, G.D.H.; Dekker, M.

    2017-01-01

    Optimizing supply chain management can help to reduce food waste. This article describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on Quality Controlled Logistics (QCL). Intelligent packaging senses compounds in the package that correlate

  3. High-Level waste glass dissolution in simulated internal waste package environments

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V.; Pan, Y.M. [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio (United States)

    2000-07-01

    The rate of radionuclide release as a result of leaching of high-level radioactive waste (HLW) glass is important to the performance of engineered barriers. The modified product consistency test (PCT), with regular leachant exchanges, was used to determine the leaching rate of simulated HLW glasses (West Valley Demonstration Project Reference 6 and Defense Waste Processing Facility Blend 1) in aqueous solutions of FeCl{sub 2} and FeCl{sub 3} at 90 EC. These conditions were selected to simulate an internal waste package (WP) environment containing steel corrosion products and oxidized by radiolysis. Substantially higher initial B and alkali release rates, approximately a factor of 50 to 70 times greater than those in deionized water, were measured in 0.25 M FeCl{sub 3} solutions. The initial leaching rate for B and alkali was found to be pH-dependent and decreased as the leachate pH was increased. While the leach rate for Si did not show any significant change in the pH range studied, the leach rate for Al showed a minimum. The minimum in the leach rate of Al occurred at different pH values. The study indicates that elements in the glass matrix are released incongruently. (authors)

  4. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    PD Meyer; RJ Serne

    1999-12-21

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

  5. Evaluation and compilation of DOE waste package test data; Volume 8: Biannual report, August 1989--January 1990

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.G. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Fraker, A.C.; Escalante, E. [National Inst. of Standards and Technology (MSEL), Gaithersburg, MD (United States). Metallurgy Div.

    1993-06-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of some of the Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, August 1989--January 1990. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Short discussions are given relating to the publications reviewed and complete reviews and evaluations are included. Reports of other work are included in the Appendices.

  6. Evaluation and compilation of DOE [Department of Energy] waste package test data; Biannual report, February 1988--July 1988

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.; Escalante, E.; Fraker, A.; Plante, E.

    1989-10-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six month period February 1988 through July 1988. Activities for the DOE Materials Characterization Center are reviewed for the period January 1988 through June 1988. A summary is given of the Yucca Mountain, Nevada disposal site activities. Short discussions relating to the reviewed publications are given and complete reviews and evaluations are included. 20 refs., 1 fig., 1 tab.

  7. Cleanup Verification Package for the 118-B-6, 108-B Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Proctor

    2006-06-13

    This cleanup verification package documents completion of remedial action for the 118-B-6, 108-B Solid Waste Burial Ground. The 118-B-6 site consisted of 2 concrete pipes buried vertically in the ground and capped by a concrete pad with steel lids. The site was used for the disposal of wastes from the "metal line" of the P-10 Tritium Separation Project.

  8. Technical Basis Document No. 6: Waste Package and Drip Shield Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Pasupathi, V; Nair, P; Gordon, G; McCright, D; Gdowski, G; Carroll, S; Steinborn, T; Summers, T; Wong, F; Rebak, R; Lian, T; Ilevbare, G; Lee, J; Hua, F; Payer, J

    2003-08-01

    The waste package and drip shield will experience a wide range of interactive environmental conditions and degradation modes that will determine the overall performance of the waste package and repository. The operable modes of degradation are determined by the temperature regime of operation (region), and are summarized here. Dry-Out Region (T {ge} 120 C; 50 to 400 Years): During the pre-closure period, the waste package will be kept dry by ventilation air. During the thermal pulse, heat generated by radioactive decay will eventually increase the temperature of the waste package, drip shield and drift wall to a level above the boiling point, where the probability of seepage into drifts will become insignificant. Further heating will push the waste package surface temperature above the deliquescence point of expected salt mixtures, thereby preventing the formation of deliquescence brines from dust deposits and humid air. Phase and time-temperature-transformation diagrams predicted for Alloy 22, and validated with experimental data, indicates no significant phase instabilities (LRO and TCP precipitation) at temperatures below 300 C for 10,000 years. Neither will dry oxidation at these elevated temperatures limit waste package life. After the peak temperature is reached, the waste package will begin to cool, eventually reaching a point where deliquescence brine formation may occur. However, corrosion testing of Alloy 22 underneath such films has shown no evidence of life-limiting localized corrosion. Transition Region (120 C {ge} T {ge} 100 C; 400 to 1,000 Years): During continued cooling, the temperature of the drift wall will drop to a level close to the boiling point of the seepage brine, thus permitting the onset of seepage. Corrosion in a concentrated, possibly aggressive, liquid-phase brine, evolved through evaporative concentration, is possible while in this region. However, based upon chemical divide theory, most ({ge} 99%) of the seepage water entering the

  9. Geochemistry Model Abstraction and Sensitivity Studies for the 21 PWR CSNF Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot; S. LeStrange; E. Thomas; K. Zarrabi; S. Arthur

    2002-10-29

    The CSNF geochemistry model abstraction, as directed by the TWP (BSC 2002b), was developed to provide regression analysis of EQ6 cases to obtain abstracted values of pH (and in some cases HCO{sub 3}{sup -} concentration) for use in the Configuration Generator Model. The pH of the system is the controlling factor over U mineralization, CSNF degradation rate, and HCO{sub 3}{sup -} concentration in solution. The abstraction encompasses a large variety of combinations for the degradation rates of materials. The ''base case'' used EQ6 simulations looking at differing steel/alloy corrosion rates, drip rates, and percent fuel exposure. Other values such as the pH/HCO{sub 3}{sup -} dependent fuel corrosion rate and the corrosion rate of A516 were kept constant. Relationships were developed for pH as a function of these differing rates to be used in the calculation of total C and subsequently, the fuel rate. An additional refinement to the abstraction was the addition of abstracted pH values for cases where there was limited O{sub 2} for waste package corrosion and a flushing fluid other than J-13, which has been used in all EQ6 calculation up to this point. These abstractions also used EQ6 simulations with varying combinations of corrosion rates of materials to abstract the pH (and HCO{sub 3}{sup -} in the case of the limiting O{sub 2} cases) as a function of WP materials corrosion rates. The goodness of fit for most of the abstracted values was above an R{sup 2} of 0.9. Those below this value occurred during the time at the very beginning of WP corrosion when large variations in the system pH are observed. However, the significance of F-statistic for all the abstractions showed that the variable relationships are significant. For the abstraction, an analysis of the minerals that may form the ''sludge'' in the waste package was also presented. This analysis indicates that a number a different iron and aluminum minerals may form in

  10. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  11. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  12. Scenarios study on post-consumer plastic packaging waste recycling

    NARCIS (Netherlands)

    Thoden van Velzen, E.U.; Bos-Brouwers, H.E.J.; Groot, J.J.; Bing Xiaoyun, Xiaoyun; Jansen, M.; Luijsterburg, B.

    2013-01-01

    We all use plastics on a daily basis. Plastics come in many shapes, sizes and compositions and are used in a wide variety of products. Almost all of the currently used plastic packaging are made from fossil resources, which are finite. The production of plastic packages causes environmental impacts,

  13. Thermal testing of packages for transport of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Koski, J.A.

    1994-12-31

    Shipping containers for radioactive materials must be shown capable of surviving tests specified by regulations such as Title 10, Code of Federal Regulations, Part 71 (called 10CFR71 in this paper) within the United States. Equivalent regulations hold for other countries such as Safety Series 6 issued by the International Atomic Energy Agency. The containers must be shown to be capable of surviving, in order, drop tests, puncture tests, and thermal tests. Immersion testing in water is also required, but must be demonstrated for undamaged packages. The thermal test is intended to simulate a 30 minute exposure to a fully engulfing pool fire that could occur if a transport accident involved the spill of large quantities of hydrocarbon fuels. Various qualification methods ranging from pure analysis to actual pool fire tests have been used to prove regulatory compliance. The purpose of this paper is to consider the alternatives for thermal testing, point out the strengths and weaknesses of each approach, and to provide the designer with the information necessary to make informed decisions on the proper test program for the particular shipping container under consideration. While thermal analysis is an alternative to physical testing, actual testing is often emphasized by regulators, and this report concentrates on these testing alternatives.

  14. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7...

  15. TRANSPORT LOCOMOTIVE AND WASTE PACKAGE TRANSPORTER ITS STANDARDS IDENTIFICATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    K.D. Draper

    2005-03-31

    To date, the project has established important to safety (ITS) performance requirements for structures, systems and components (SSCs) based on identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Basis for License Application'' (NSDB) (BSC 2005). Further, SSCs credited with performing safe functions are classified as ITS. In turn, performance confirmation for these SSCs is sought through the use of consensus code and standards. The purpose of this study is to identify applicable codes and standards for the waste package (WP) transporter and transport locomotive ITS SSCs. Further, this study will form the basis for selection and the extent of applicability of each code and standard. This study is based on the design development completed for License Application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and that final selection will not be determined until further design development has occurred. Therefore, for completeness, throughout this study alternative designs currently under consideration will be discussed. Further, the results of this study will be subject to evaluation as part of a follow-on gap analysis study. Based on the results of this study the gap analysis will evaluate each code and standard to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied a ''gap'' is highlighted. Thereafter, the study will identify supplemental requirements to augment the code or standard to meet performance requirements. Further, the gap analysis will identify non-standard areas of the design that will be subject to a

  16. DEMONSTRATION OF PACKAGING MATERIALS ALTERNATIVES TO EXPANDED POLYSTYRENE

    Science.gov (United States)

    This report represents the second demonstration of cleaner technologies to support the goals of the 33/50 Program under the EPA Cooperative Agreement No. CR-821848. The report presents assessment results of alternative packaging materials which could potentially replace expanded...

  17. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  18. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary, mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.

  19. The innovative application studty on eco-packaging design and materials

    Directory of Open Access Journals (Sweden)

    Cui Yong Min

    2016-01-01

    Full Text Available The paper solves the increasingly deteriorate environmental problems by positively exploring how to utilize and develop eco-packaging design reasonably. The paper explores an effective method that combines eco-packaging and environmental protection materials, hoping to define the sustainable development road of packaging design. The paper is centered on the design application of eco-packaging and environmental protection materials, applies and analyzes the method to obtain innovative design requirements and development tendency of eco-packaging design by analyzing status and significance of eco-packaging design, combining with the development and main types of eco-packaging packaging materials, and based on the achievements acquired by eco-packaging and environmental protection materials. Meanwhile, the paper also reveals mutual dependence and mutual promotion of eco-packaging design and eco-packaging materials.

  20. Estimation of packaged water consumption and associated plastic waste production from household budget surveys

    Science.gov (United States)

    Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim

    2017-08-01

    Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.

  1. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  2. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  3. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  4. Packaging waste recycling in Europe: is the industry paying for it?

    Science.gov (United States)

    da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-01

    This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and

  5. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  6. Material efficiency improvement for European packaging in the period 2000 - 2020

    NARCIS (Netherlands)

    Hekkert, M.; Joosten, L.; Worrell, E.

    1998-01-01

    In this paper the current material consumption for packaging making in Europe is described. Per packaging type (food bottles, non-food bottles, boxes for primary packaging, flexible packaging, carrier bags, industrial boxes and pallets) options for improved material efficiency are described. The

  7. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    Energy Technology Data Exchange (ETDEWEB)

    Coles, D.G.; Peters, R.D.

    1986-04-01

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance.

  8. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  9. Non-destructive assay of drum package radioactive wastes utilizing tomographic gamma scanning

    Energy Technology Data Exchange (ETDEWEB)

    Ausbrooks, K. L. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-05-01

    A methodology for nondestructive assay of drum packaged radioactive waste materials is investigated using Emission Computed Tomography procedures. A requirement of this method is accurate gamma attenuation correction. This is accomplished by the use of a constant density distribution for the drum content, thereby requiring the need for a homogeneous medium. The current predominant NDA technique is the use of the Segmented Gamma Scanner. Tomographic Gamma Scanning improves upon this method by providing a low resolution three-dimensional image of the source distribution, yielding both spatial and activity information. Reconstruction of the source distribution is accomplished by utilization of algebraic techniques with a nine by six voxel model with detector information gathered over scanning intervals of ninety degrees. Construction of a linear system to describe the scenario was accomplished using a point-source response function methodology, where a 54 x 120 matrix contained the projected detector responses for each source-detector geometry. Entries in this matrix were calculated using the point-kernal shielding code QAD-CGGP. Validation was performed using the MCNP photon transport code. Solutions to the linear system were determined using the Non-Negative Least Squares (NNLS) algorithm and the LSMOD algorithm. A series of four scans were performed, each reconstructing the source distribution of a mock-up waste package containing a single 73 mCi 137Cs point source. For each scan, the source was located in a different location. Results of the reconstruction routines accurately predict the location and activity of the source. The range of activity calculated using the NNLS routine is 0.2681 mCi with an average value of 77.7995 mCi. The range of values calculated using LSMOD is 5.1843 mCi with an average of 72.8018 mCi.

  10. Climate accounting for waste management, Phase I and II. Summary: Phase 1: Glass Packaging, Metal packaging, paper, cardboard, plastic and wet organic waste. Phase 2: Wood waste and residual waste from households; Klimaregnskap for avfallshaandtering, Fase I og II. Sammendrag: Fase 1: Glassemballasje, metallemballasje, papir, papp, plastemballasje og vaatorganisk avfall. Fase 2: Treavfall og restavfall fra husholdninger

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche; Modahl, Ingunn Saur; Lyng, Kari-Anne

    2009-09-15

    involves the lowest greenhouse gas load for the types of waste glass packaging, metal packaging and plastic packaging. Biological treatment (biogas production) provides the lowest GHG (greenhouse gas) impact for the treatment of wet organic waste. Energy recovery provides the lowest GHG impact for the treatment of paper, cardboard and wood waste. Disposal provides the greatest greenhouse gas load for all the analyzed types of waste, but plastic and glass containers. For waste composition has a major impact on greenhouse gas emissions for the landfill and the energy efficiency of the waste. The composition varies both with the types of waste disposed and with what kind of source separation schemes offered in the various municipalities. This in turn can vary depending on population density (urban areas / cities versus scattered buildings), and motivation of the individual citizen to source sorting. Energy recovery means the lowest greenhouse gas emissions for an 'average composite' residual waste in Norway. Analysis of residual waste should always be considered in context with the total amounts and handling of sorted out waste types, as well as total amounts and composition of residual waste. This is important to achieve a comprehensive assessment and avoid suboptimalization. Transport related greenhouse gas emissions are generally of relatively little importance in relation to the environmental benefits arising from the material and / or energy utilization. 3. The model is used to calculate the net greenhouse gas emissions resulting from disposal of a total of approximately 4.1 million tons of waste from households, industry, construction and service industries. 4. Analysis of a realistic optimal scenario for disposal of household waste show that this system can be virtually carbon-neutral. 5. The choice of which assumptions to be incorporated in this type of analysis depends on the purpose of analysis, in addition to local and geographical conditions. 6. Relevant

  11. Waste package performance assessment code with automated sensitivity-calculation capability

    Energy Technology Data Exchange (ETDEWEB)

    Worley, B.A.; Horwedel, J.E.

    1986-09-01

    WAPPA-C is a waste package performance assessment code that predicts the temporal and spatial extent of the loss of containment capability of a given waste package design. This code was enhanced by the addition of the capability to calculate the sensitivity of model results to any parameter. The GRESS automated procedure was used to add this capability in only two man-months of effort. The verification analysis of the enhanced code, WAPPAG, showed that the sensitivities calculated using GRESS were accurate to within the precision of perturbation results against which the sensitivities were compared. Sensitivities of all summary table values to eight diverse data values were verified.

  12. RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING

    Energy Technology Data Exchange (ETDEWEB)

    Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

    2013-06-05

    The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energy’s Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.

  13. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

  14. Recycle of silicate waste into mesoporous materials.

    Science.gov (United States)

    Kim, Jung Ho; Kim, Minwoo; Yu, Jong-Sung

    2011-04-15

    Template synthesis of porous carbon materials usually requires selective removal of template silica from the carbon/silica composites. It not only involves waste of valuable chemicals, but also poses significant environmental concerns including high waste treatment cost. Recycling of silicates released from such nanocasting methods is successfully performed for the first time to regenerate valuable mesoporous MCM and SBA type silica materials, which will not only help in saving valuable chemicals, but also in decreasing chemical waste, contributing in improvement of our environmental standards. This approach can thus improve cost effectiveness for the mass production of nanostructured carbon and others utilizing silica directed nanocasting method by recycling otherwise silicate waste into highly desirable valuable mesoporous silica.

  15. Today's wastes, tomorrow's materials for environmental protection

    OpenAIRE

    Macaskie, L.E.; Mikheenko, I.P.; Yong, P.; Deplanche, K; Murray, A J; Paterson-Beedle, M; Coker, V. S.; Pearce, C. I.; Pattrick, R. A. D.; Vaughan, D.; Van Der Laan, G; Lloyd, J. R.

    2009-01-01

    Over the past 30 years the literature has burgeoned with bioremediation approaches to heavy metal removal from wastes. The price of base and precious metals has dramatically increased. With the resurgence of nuclear energy uranium has become a strategic resource. Other 'non-carbon energy' technologies are driven by the need to reduce CO2 emissions. The 'New Biohydrometallurgy' we describe unites these drivers by the concept of conversion of wastes into new materials for environmental applicat...

  16. Geotechnical, Hydrogeologic and Vegetation Data Package for 200-UW-1 Waste Site Engineered Surface Barrier Design

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.

    2007-11-26

    Fluor Hanford (FH) is designing and assessing the performance of engineered barriers for final closure of 200-UW-1 waste sites. Engineered barriers must minimize the intrusion and water, plants and animals into the underlying waste to provide protection for human health and the environment. The Pacific Northwest National Laboratory (PNNL) developed Subsurface Transport Over Multiple Phases (STOMP) simulator is being used to optimize the performance of candidate barriers. Simulating barrier performance involves computation of mass and energy transfer within a soil-atmosphere-vegetation continuum and requires a variety of input parameters, some of which are more readily available than others. Required input includes parameter values for the geotechnical, physical, hydraulic, and thermal properties of the materials comprising the barrier and the structural fill on which it will be constructed as well as parameters to allow simulation of plant effects. This report provides a data package of the required parameters as well as the technical basis, rationale and methodology used to obtain the parameter values.

  17. Nanotechnology for the Solid Waste Reduction of Military Food Packaging

    Science.gov (United States)

    2016-06-01

    Environmental Protection Agency ESTCP Environmental Security Technology Certification Program FEST Food Engineering and Science Team FOC Force Operating ... Engineering Program DLA Defense Logistics Agency DoD Department of Defense EQBR Environmental Quality Basic Research EPA United States...each case inspected by NSRDEC engineers . The focus was on examining the food quality and packaging integrity of the prototype and control systems

  18. Effect of Packaging materials on Quality Parameters of Garlic

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Grewal

    2015-11-01

    Full Text Available Studies were carried out to evaluate the effect of storage period and different packaging material on the quality of garlic flakes dried by convective-cum-microwave (CCM and fluidized-cum-microwave (FCM hybrid drying. Garlic flakes were packaged and stored in high density polyethylene (HDPE, low density polyethylene (LDPE and laminated aluminium foil for 3 months under ambient conditions. Samples were investigated to observe for change in rehydration ratio, colour, physiological loss in weight % and overall acceptability. Among the hybrid drying techniques adopted, the garlic flakes developed under optimized condition of fluidized bedcum-microwave was found better in terms of shelf life and quality attributes. The aluminium packaging was adjudged to be the best in retaining the quality of dried garlic flakes up to 3 months of storage. Overall, it can be concluded that the fluidized bed cum microwave dried garlic flakes packed in Aluminium package were the best, and can be stored safely up to 3 months.

  19. STRUCTURAL CALCULATIONS FOR THE CODISPOSAL OF TRIGA SPENT NUCLEAR FUEL IN A WASTE PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    S. Mastilovic

    1999-07-28

    The purpose of this analysis is to determine the structural response of a TRIGA Department of Energy (DOE) spent nuclear fuel (SNF) codisposal canister placed in a 5-Defense High Level Waste (DHLW) waste package (WP) and subjected to a tipover design basis event (DBE) dynamic load; the results will be reported in terms of displacements and stress magnitudes. This activity is associated with the WP design.

  20. Safety evaluation for packaging for onsite transfer of B Plant organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, M.S.

    1996-10-07

    This safety evaluation for packaging authorizes the use of a 17,500-L (4,623-gal) tank manufactured by Brenner Tank, Incorporated, to transport up to 16,221 L (4,285 gal) of radioactive organic liquid waste. The waste will be transported from the organic loading pad to a storage pad. Both pads are within the B Plant complex, but approximately 4 mi apart.

  1. Buried waste containment system materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  2. Potential vertical movement of large heat-generating waste packages in salt.

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Daniel James; Martinez, Mario J.; Hardin, Ernest.

    2013-05-01

    With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.

  3. 77 FR 17093 - Certain Food Waste Disposers and Components and Packaging Thereof: Notice of Receipt of Complaint...

    Science.gov (United States)

    2012-03-23

    ... COMMISSION Certain Food Waste Disposers and Components and Packaging Thereof: Notice of Receipt of Complaint... complaint entitled Certain Food Waste Disposers and Components and Packaging Thereof, DN 2886; the Commission is soliciting comments on any public interest issues raised by the complaint or...

  4. Materials for high-density electronic packaging and interconnection

    Science.gov (United States)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  5. Waste Package Outer Barrier Stress Due to Thermal Expansion with Various Barrier Gap Sizes

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Lewis

    2001-11-27

    The objective of this activity is to determine the tangential stresses of the outer shell, due to uneven thermal expansion of the inner and outer shells of the current waste package (WP) designs. Based on the results of the calculation ''Waste Package Barrier Stresses Due to Thermal Expansion'', CAL-EBS-ME-000008 (ref. 10), only tangential stresses are considered for this calculation. The tangential stresses are significantly larger than the radial stresses associated with thermal expansion, and at the WP outer surface the radial stresses are equal to zero. The scope of this activity is limited to determining the tangential stresses the waste package outer shell is subject to due to the interference fit, produced by having two different shell coefficients of thermal expansions. The inner shell has a greater coefficient of thermal expansion than the outer shell, producing a pressure between the two shells. This calculation is associated with Waste Package Project. The calculations are performed for the 21-PWR (pressurized water reactor), 44-BWR (boiling water reactor), 24-BWR, 12-PWR Long, 5 DHLW/DOE SNF - Short (defense high-level waste/Department of Energy spent nuclear fuel), 2-MCO/2-DHLW (multi-canister overpack), and Naval SNF Long WP designs. The information provided by the sketches attached to this calculation is that of the potential design for the types of WPs considered in this calculation. This calculation is performed in accordance with the ''Technical Work Plan for: Waste Package Design Description for SR (Ref.7). The calculation is documented, reviewed, and approved in accordance with AP-3.12Q, Calculations (Ref.1).

  6. Stabilizing Waste Materials for Landfills

    Science.gov (United States)

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  7. Method for recovering materials from waste

    Science.gov (United States)

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  8. 41 CFR 50-204.26 - Exemptions for radioactive materials packaged for shipment.

    Science.gov (United States)

    2010-07-01

    ... radioactive materials packaged for shipment. 50-204.26 Section 50-204.26 Public Contracts and Property... HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.26 Exemptions for radioactive materials packaged for shipment. Radioactive materials packaged and labeled in accordance with...

  9. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Receipt of packages containing radioactive material. 835... Individuals and Areas § 835.405 Receipt of packages containing radioactive material. (a) If packages containing quantities of radioactive material in excess of a Type A quantity (as defined at 10 CFR 71.4)...

  10. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  11. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

    2004-09-01

    This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

  12. Impact of rinsing in pesticide packaging waste management: Economic and environmental benefits

    Directory of Open Access Journals (Sweden)

    Marčeta Una

    2015-01-01

    Full Text Available Pesticides have become dailiness due to inevitable application of these preparations in agricultural activities, with the consequence of generation of large amounts of waste packaging. Impact on the environment and expenses of management of packaging waste can be minimized if the packaging is immediately rinsed after the application of devices and if identified as non-hazardous. Besides, financial losses may be reduced by maximum utilization of the preparation. Considering these two financial aspects this work shows evaluation of quantitative losses of preparations if the triple rising method is not applied. The research was conducted in two phases. Phase I included the examination of the impact of different formulations of the same volume on quantitative and financial losses. Based on the results of the first phase of the research, it was noted that the SC formulation is the most interesting to study because this type of formulation has the highest percentage of residue, as well as the fact that the highest annual consumption is noted percisely in this preparation group. This paper presents the results which indicate the impact of packaging volume of SC formulation (ALVERDE 240 SC, INTERMEZZO and ANTRE PLUS on percentage of preparation residue in packaging if there was no rinsing. The results have shown that the quantitative loss is inversely proportional to the volume of packaging, while financial losses do not only depend on the percentage of residue but also on price and quantity of utilization of preparations.

  13. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA)

    Energy Technology Data Exchange (ETDEWEB)

    Kassouf, Amine, E-mail: amine.kassouf@agroparistech.fr [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France); Maalouly, Jacqueline, E-mail: j_maalouly@hotmail.com [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); Rutledge, Douglas N., E-mail: douglas.rutledge@agroparistech.fr [INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France); Chebib, Hanna, E-mail: hchebib@hotmail.com [ER004 “Lebanese Food Packaging”, Faculty of Sciences II, Lebanese University, 90656 Jdeideth El Matn, Fanar (Lebanon); Ducruet, Violette, E-mail: violette.ducruet@agroparistech.fr [INRA, UMR1145 Ingénierie Procédés Aliments, 1 Avenue des Olympiades, 91300 Massy (France); AgroParisTech, UMR1145 Ingénierie Procédés Aliments, 16 rue Claude Bernard, 75005 Paris (France)

    2014-11-15

    Highlights: • An innovative technique, MIR-ICA, was applied to plastic packaging separation. • This study was carried out on PE, PP, PS, PET and PLA plastic packaging materials. • ICA was applied to discriminate plastics and 100% separation rates were obtained. • Analyses performed on two spectrometers proved the reproducibility of the method. • MIR-ICA is a simple and fast technique allowing plastic identification/classification. - Abstract: Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of

  14. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-08-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  15. Construction Material Waste: Recognition and Analysis

    Directory of Open Access Journals (Sweden)

    Ibrahim Mahamid

    2014-09-01

    Full Text Available This study was motivated by long term observations of the construction industry in the Northern region of the Kingdom of Saudi Arabia (KSA. The observations showed that the construction waste is becoming a serious environmental, economical and safety issue that affects the suburbs of the KSA. The study utilizes Likert scaled responses through a two-part questionnaire distributed to 42 contractors located in the Northern region of KSA. The first part of the questionnaire aims at identifying causes of material waste in building construction projects from the contractors’ viewpoint. The second part seeks to rank the considered materials according to their level of importance from the contractors’ viewpoint. The collected data was analyzed through Minitab statistical software. It was found that the most significant factors causing construction waste are: (1 inaccuracy in quantity surveys leading to over-ordering or under-ordering; (2 the selection of low quality products; (3 detail errors in design and construction; (4 the order of supplies in loose form; (5 and the inefficiency in resource management. The results of this study show that construction material handling and managerial decisions have a critical impact on the cause and effect of the level of construction waste. The study findings demonstrate that the most important benefits for considering construction waste are to know the exact required quantities for a construction project and to plan and prepare an accurate schedule for material arriving supply. The study recommends employing Lean Manufacturing principles to eliminate the construction waste and to enhance the decision making process in construction management in the northern part of KSA.

  16. Demands placed on waste package performance testing and modeling by some general results on reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chesnut, D.A.

    1991-09-01

    Waste packages for a US nuclear waste repository are required to provide reasonable assurance of maintaining substantially complete containment of radionuclides for 300 to 1000 years after closure. The waiting time to failure for complex failure processes affecting engineered or manufactured systems is often found to be an exponentially-distributed random variable. Assuming that this simple distribution can be used to describe the behavior of a hypothetical single barrier waste package, calculations presented in this paper show that the mean time to failure (the only parameter needed to completely specify an exponential distribution) would have to be more than 10{sub 7} years in order to provide reasonable assurance of meeting this requirement. With two independent barriers, each would need to have a mean time to failure of only 10{sup 5} years to provide the same reliability. Other examples illustrate how multiple barriers can provide a strategy for not only achieving but demonstrating regulatory compliance.

  17. PACKAGING WASTE MANAGEMENT ON EXAMPLE OF CITY ZIELONA GÓRA

    Directory of Open Access Journals (Sweden)

    Joanna ZARĘBSKA

    2012-01-01

    Full Text Available The article presents the legal requirements of the European Union's packaging waste, and their most recent transposition into Polish law. The author has attempted to describe selected achievements of the Department of Public Utilities and Housing (DPUaH in Zielona Góra, which for many years on behalf of the city, in a systematic way it’s developing municipal waste management system (including packaging, consistent with EU policies and objectives of sustainable development. The deficiencies and weaknesses in the system are taken into consideration, whose liquidation is a priority for future investment of DPUaH consistent with the Waste Management Plan for the City of Zielona Góra.

  18. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    William j. Weber; Lumin Wang; Jonathan Icenhower

    2004-07-09

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

  19. Development of more friendly food packaging materials base on polypropylene through blending with polylacticacid

    Science.gov (United States)

    Setiawan, Achmad Hanafi; Aulia, Fauzan

    2017-01-01

    The commonly food packaging materials today is used a thin layer plastic or film, which is made of a synthetic polymer, such as polypropylene (PP). However, the use of these polymers has a negative impact on the environment, because the synthetic polymer is difficult to degrade naturally by the biotic components such as micro-organisms decomposers and abiotic components such as the sunshine. The use of the biodegradable polymeric material will reduce the use of synthetic polymer products, thereby reducing plastic waste pollution at relatively low cost, it is expected to produce positive effects both for the environment and in terms of economy. PLA is a biodegradable polymer that can be substituted totally or partially to synthetic polymers as far as could fulfill the main function of packaging in the protection and preservation of food. Increasing PLA content in polypropylene blend will affect to the increasing in its water absorption and also its biodegradable. 20% PLA may the optimum composition of poly-blend for food packaging.

  20. Mesoporous silica as carrier of antioxidant for food packaging materials

    Science.gov (United States)

    Buonocore, Giovanna Giuliana; Gargiulo, Nicola; Verdolotti, Letizia; Liguori, Barbara; Lavorgna, Marino; Caputo, Domenico

    2014-05-01

    Mesoporous silicas have been long recognized as very promising materials for the preparation of drug delivery systems. In this work SBA-15 mesoporous silica has been functionalized with amino-silane to be used as carrier of antioxidant compound in the preparation of active food packaging materials exhibiting tailored release properties. Active films have been prepared by loading the antioxidant tocopherol, the purely siliceous SBA-15 and the aminofunctionalized SBA-15 loaded with tocopherol into LDPE matrix trough a two-step process (mixing+extrusion). The aim of the present work is the study of the effect of the pore size and of the chemical functionality of the internal walls of the mesophase on the migration of tocopherol from active LDPE polymer films. Moreover, it has been proved that the addition of the active compound do not worsen the properties of the film such as optical characteristic and water vapor permeability, thus leading to the development of a material which could be favorably used mainly, but not exclusively, in the sector of food packaging.

  1. Effect of ionizing radiation on the waste package environment

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T. [Argonne National Lab., IL (USA); Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01

    The radiolytic production of nitrogen oxides, nitrogen acids and ammonia are discussed in relation to the expected environment in a high-level waste repository that may be constructed at the Yucca Mountain site if it is found to be suitable. Both literature data and repository-relevant data are summarized for air-water vapor systems. The limiting cases of a dry air and a pure water vapor gas phase are also discussed. Design guidelines and recommendations, based solely on the potential consequence of radiation enhancement of corrosion, are given. 13 refs., 5 figs., 1 tab.

  2. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  3. Options for reducing food waste by quality-controlled logistics using intelligent packaging along the supply chain.

    Science.gov (United States)

    Heising, Jenneke K; Claassen, G D H; Dekker, Matthijs

    2017-10-01

    Optimising supply chain management can help to reduce food waste. This paper describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on quality-controlled logistics (QCL). Intelligent packaging senses compounds in the package that correlate with the critical quality attribute of a food product. The information on the quality of each individual packaged food item that is provided by the intelligent packaging can be used for QCL. In a conceptual approach it is explained that monitoring food quality by intelligent packaging sensors makes it possible to obtain information about the variation in the quality of foods and to use a dynamic expiration date (IP-DED) on a food package. The conceptual approach is supported by quantitative data from simulations on the effect of using the information of intelligent packaging in supply chain management with the goal to reduce food waste. This simulation shows that by using the information on the quality of products that is provided by intelligent packaging, QCL can substantially reduce food waste. When QCL is combined with dynamic pricing based on the predicted expiry dates, a further waste reduction is envisaged.

  4. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  5. Rapid discrimination of plastic packaging materials using MIR spectroscopy coupled with independent components analysis (ICA).

    Science.gov (United States)

    Kassouf, Amine; Maalouly, Jacqueline; Rutledge, Douglas N; Chebib, Hanna; Ducruet, Violette

    2014-11-01

    Plastic packaging wastes increased considerably in recent decades, raising a major and serious public concern on political, economical and environmental levels. Dealing with this kind of problems is generally done by landfilling and energy recovery. However, these two methods are becoming more and more expensive, hazardous to the public health and the environment. Therefore, recycling is gaining worldwide consideration as a solution to decrease the growing volume of plastic packaging wastes and simultaneously reduce the consumption of oil required to produce virgin resin. Nevertheless, a major shortage is encountered in recycling which is related to the sorting of plastic wastes. In this paper, a feasibility study was performed in order to test the potential of an innovative approach combining mid infrared (MIR) spectroscopy with independent components analysis (ICA), as a simple and fast approach which could achieve high separation rates. This approach (MIR-ICA) gave 100% discrimination rates in the separation of all studied plastics: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polylactide (PLA). In addition, some more specific discriminations were obtained separating plastic materials belonging to the same polymer family e.g. high density polyethylene (HDPE) from low density polyethylene (LDPE). High discrimination rates were obtained despite the heterogeneity among samples especially differences in colors, thicknesses and surface textures. The reproducibility of the proposed approach was also tested using two spectrometers with considerable differences in their sensitivities. Discrimination rates were not affected proving that the developed approach could be extrapolated to different spectrometers. MIR combined with ICA is a promising tool for plastic waste separation that can help improve performance in this field; however further technological improvements and developments are required before it can be applied

  6. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  7. Predicting diffusion coefficients of chemicals in and through packaging materials.

    Science.gov (United States)

    Fang, Xiaoyi; Vitrac, Olivier

    2017-01-22

    Most of the physicochemical properties in polymers such as activity and partition coefficients, diffusion coefficients, and their activation with temperature are accessible to direct calculations from first principles. Such predictions are particularly relevant for food packaging as they can be used (1) to demonstrate the compliance or safety of numerous polymer materials and of their constitutive substances (e.g. additives, residues…), when they are used: as containers, coatings, sealants, gaskets, printing inks, etc. (2) or to predict the indirect contamination of food by pollutants (e.g. from recycled polymers, storage ambiance…) (3) or to assess the plasticization of materials in contact by food constituents (e.g. fat matter, aroma…). This review article summarizes the classical and last mechanistic descriptions of diffusion in polymers and discusses the reliability of semi-empirical approaches used for compliance testing both in EU and US. It is concluded that simulation of diffusion in or through polymers is not limited to worst-case assumptions but could also be applied to real cases for risk assessment, designing packaging with low leaching risk or to synthesize plastic additives with low diffusion rates.

  8. Evaluation and compilation of DOE waste package test data; Biannual report, February 1989--July 1989: Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.G. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Fraker, A.C.; Escalante, E. [National Inst. of Standards and Technology (IMSE), Gaithersburg, MD (United States). Metallurgy Div.

    1991-12-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, February through July 1989. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Outlines for planned interpretative reports on the topics of aqueous corrosion of copper, mechanisms of stress corrosion cracking and internal failure modes of Zircaloy cladding are included. For the publications reviewed during this reporting period, short discussions are given to supplement the completed reviews and evaluations. Included in this report is an overall review of a 1984 report on glass leaching mechanisms, as well as reviews for each of the seven chapters of this report.

  9. Application of fluidization to separate packaging waste plastics.

    Science.gov (United States)

    Carvalho, M Teresa; Ferreira, Célia; Portela, Antía; Santos, João Tiago

    2009-03-01

    The objective of the experimental work described in this paper is the study of the separation of PS (polystyrene) from PET (polyethylene terephthalate) and PVC (polyvinyl chloride) from drop-off points using a fluidized bed separator. This is a low-cost process commonly used in the hydro-classification of mineral ores. Firstly, experimental tests were carried out with artificial granulated samples with different grain sizes, types and sources of plastic ("separability tests"). The particle settling velocities were determined under different operating conditions. Then, based on the results, the laboratory tests continued with real mixtures of waste plastics ("separation tests") and the efficiency of the process was evaluated. From a PET-rich mixture, a concentrate of PS with a 75% grade in PS was produced while the underflow was quite clear from PS (grade less than 0.5% in PS).

  10. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Life Cycle Assessment of Common Plastic Packaging for Reducing Environmental Impact and Material Consumption

    Directory of Open Access Journals (Sweden)

    Visvaldas Varžinskas

    2009-12-01

    the Faculty of Design and Technologies, Kaunas University of Technology, together with packaging and environmental protection specialists of the University, and in cooperation with the Department of Printed Publications and Packaging of the Ukrainian Print Academy. The present paper analyses certain basic findings of the study on the possibilities of improving the ecological level of packaging within the framework of the project. It is stated that appropriate investigation of packaging, its production and application has to be performed in order to prove that the packaging was produced in compliance with preventive and other principles; this investigation is related to a wide variety of package testing, some of which has not yet got methodology acknowledged at a sufficient level (the EU or groups of countries. Therefore, one of the research directions in the above mentioned project, discussed in the present paper, is related to developing a single system, recognized throughout the EU, which would enable researchers to perform the required tests confirming the packaging quality compliance with the environmental requirements. The paper analyzes the EU prevention regulations for reducing the amount of raw material and the system of checking the realization of the requirements based on identification of critical areas, aimed at reaching the lowest possible package weight and/or volume, consequently, the minimum waste amount, without increasing the amount of faulty products and product waste. The paper presents the findings of the research obtained in assessing the life cycle, when applying the Ecoindicator'99 qualitative analysis, concerning the impact of common plastic packages and processes on the environment during manufacturing, usage and disposal. Compression test results of common type plastic packaging construction are presented, which allow us to assess the impact of the package shape and construction upon the packaging reliability and minimization of its mass.

  12. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    Science.gov (United States)

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  13. The innovative application studty on eco-packaging design and materials

    OpenAIRE

    Cui Yong Min; Ren Xin Guang

    2016-01-01

    The paper solves the increasingly deteriorate environmental problems by positively exploring how to utilize and develop eco-packaging design reasonably. The paper explores an effective method that combines eco-packaging and environmental protection materials, hoping to define the sustainable development road of packaging design. The paper is centered on the design application of eco-packaging and environmental protection materials, applies and analyzes the method to obtain innovative design r...

  14. The innovative application studty on eco-packaging design and materials

    OpenAIRE

    Cui Yong Min; Ren Xin Guang

    2016-01-01

    The paper solves the increasingly deteriorate environmental problems by positively exploring how to utilize and develop eco-packaging design reasonably. The paper explores an effective method that combines eco-packaging and environmental protection materials, hoping to define the sustainable development road of packaging design. The paper is centered on the design application of eco-packaging and environmental protection materials, applies and analyzes the method to obtain innovative design r...

  15. IN-PACKAGE CHEMISTRY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  16. Impact of Spanish legislation of packaging and packaging wastes on the economic agents; Repercusiones de la Legislacion EspaNola sobre los envases y residuos de envases en los agentes econOmicos involucrados e institucionales

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ramos, M.

    1997-09-01

    Review of the legislative text and the responsibilities for economical agents involve in the specific Spanish normative about packagings and packaging wastes. Highlights the Integrated Management Strategic Plan for Packagings Wastes to reach the objectives in Reduction, Recycling and Energy Recovery in Spain. (Author)

  17. Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.S. (ed.)

    1985-12-01

    A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC`s review of the Department of Energy`s (DOE`s) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs.

  18. 49 CFR 173.422 - Additional requirements for excepted packages containing Class 7 (radioactive) materials.

    Science.gov (United States)

    2010-10-01

    ... containing Class 7 (radioactive) materials. 173.422 Section 173.422 Transportation Other Regulations Relating... (Radioactive) Materials § 173.422 Additional requirements for excepted packages containing Class 7 (radioactive) materials. An excepted package of Class 7 (radioactive) material that is prepared for shipment under...

  19. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    OpenAIRE

    Johnny Bolden; Taher Abu-Lebdeh; Ellie Fini

    2013-01-01

    More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nationâs landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take a...

  20. Hanford low-level waste process chemistry testing data package

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  1. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  2. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  3. Electrically conductive and thermally conductive materials for electronic packaging

    Science.gov (United States)

    Liu, Zongrong

    The aim of this dissertation is to develop electrically or thermally conductive materials that are needed for electronic packaging and microelectronic cooling. These materials are in the form of coatings and are made from pastes. The research work encompasses paste formulation, studying the process of converting a paste to a conductive material, relating the processing conditions to the structure and performance, and evaluating performance attributes that are relevant to the application of these conductive materials. The research has resulted in new information that is valuable to the microelectronic industry. Work on electrically conductive materials emphasizes the development of electrical interconnection materials in the form of air-firable glass-free silver-based electrically conductive thick films, which use the Ti-Al alloy as the binder and are in contrast to conventional films that use glass as the binder. The air-firability, as enabled by minor additions of tin and zinc to the paste, is in contrast to previous glass-free films that are not firable. The recommended firing condition is 930°C in air. The organic vehicle in the paste comprises ethyl cellulose, which undergoes thermal decomposition during burnout of the paste. The ethyl cellulose is dissolved in ether, which facilitates the burnout. Excessive ethyl cellulose hinders the burnout. A higher heating rate results in more residue after burnout. The presence of silver particles facilitates drying and burnout. Firing in air gives lower resistivity than firing in oxygen. Firing in argon gives poor films. Compared to conventional films that use glass as the binder, these films, when appropriately fired, exhibit lower electrical resistivity (2.5 x 10-6 O.cm) and higher scratch resistance. Work on thermally conductive materials addresses thermal interface materials, which are materials placed at the interface between a heat sink and a heat source for the purpose of improving the thermal contact. Heat

  4. Materials selection for a transport packaging of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Debora H.S.; Lucchesi, Raquel F.; Mancini, Victor A.; Rossi, Jesualdo L., E-mail: debora_hara@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fiore, Marina [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Escola Politecnica

    2015-07-01

    The radiopharmaceuticals are radioactive isotopes used in nuclear medicine for more accurate diagnosis and treatment of diseases or dysfunctions. Currently, the most important radionuclide for the preparation of radiopharmaceuticals for diagnostic purposes is technetium-99m ({sup 99m}Tc), a product of the radioactive decay of molybdenum-99 (Mo-99). The aim of this work was the materials selection that can enable the manufacture of a package for Mo-99 transport with the aid of CES EduPack program and the methodology developed by Ashby. The ESTAR program was used to check the occurrence of Bremsstrahlung and the XCOM program was used to calculate the attenuation coefficient of gamma radiation from some of the selected materials for the shield; after, the thickness required for radiation shielding was calculated. From the results, the materials selected as potential candidates for the manufacture of the shielding were the tungsten alloys. Related to the thermal insulation and the impact protection, woods, plywoods and particle boards stand out. With regard to internal and external coatings, the selected materials focus on groups of steels and nickel alloys. (author)

  5. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    Energy Technology Data Exchange (ETDEWEB)

    K. Mon

    2004-10-11

    The purpose of this report is to evaluate and document the inclusion or exclusion of features, events and processes (FEPs) with respect to drip shield and waste package modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). Thirty-three FEPs associated with the waste package and drip shield performance have been identified (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). A screening decision, either ''included'' or ''excluded,'' has been assigned to each FEP, with the technical bases for screening decisions, as required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs analyses in this report address issues related to the degradation and potential failure of the drip shield and waste package over the post closure regulatory period of 10,000 years after permanent closure. For included FEPs, this report summarizes the disposition of the FEP in TSPA-LA. For excluded FEPs, this report provides the technical bases for the screening arguments for exclusion from TSPA-LA. The analyses are for the TSPA-LA base-case design (BSC 2004 [DIRS 168489]), where a drip shield is placed over the waste package without backfill over the drip shield (BSC 2004 [DIRS 168489]). Each FEP includes one or more specific issues, collectively described by a FEP name and description. The FEP description encompasses a single feature, event, or process, or a few closely related or coupled processes, provided the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs were assigned to associated Project reports, so the screening decisions reside with the relevant subject-matter experts.

  6. Biodegradable Long Shelf Life Food Packaging Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long shelf life food packaging is a critical to maintaining the crew's well being in NASA's manned missions to the mars. Not only does the packaging have to offer an...

  7. 49 CFR 173.36 - Hazardous materials in Large Packagings.

    Science.gov (United States)

    2010-10-01

    ... an inner packaging is constructed of paper or flexible plastic, the inner packaging must be replaced... the transportation of liquids with a flash point of 60.5 °C (141 °F) (closed cup) or lower, or...

  8. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; McCright, R.D.

    2000-01-28

    Alloy 22 is an extremely Corrosion Resistant Material, with a very stable passive film. Based upon exposures in the LTCTF, the GC rates of Alloy 22 are typically below the level of detection, with four outliers having reported rates up to 0.75 #mu#m per year. In any event, over the 10,000 year life of the repository, GC of the Alloy 22 (assumed to be 2 cm thick) should not be life limiting. Because measured corrosion potentials are far below threshold potentials, localized breakdown of the passive film is unlikely under plausible conditions, even in SSW at 120 deg C. The pH in ambient-temperature crevices formed from Alloy 22 have been determined experimentally, with only modest lowering of the crevice pH observed under plausible conditions. Extreme lowering of the crevice pH was only observed under situations where the applied potential at the crevice mouth was sufficient to result in catastrophic breakdown of the passive film above the threshold potential in non-buffered conditions not characteristic of the Yucca Mountain environment. In cases where naturally ocurring buffers are present in the crevice solution, little or no lowering of the pH was observed, even with significant applied potential. With exposures of twelve months, no evidence of crevice corrosion has been observed in SDW, SCW and SAW at temperatures up to 90 deg C. An abstracted model has been presented, with parameters determined experimentally, that should enable performance assessment to account for the general and localized corrosion of this material. A feature of this model is the use of the materials specification to limit the range of corrosion and threshold potentials, thereby making sure that substandard materials prone to localized attack are avoided. Model validation will be covered in part by a companion SMR on abstraction of this model.

  9. Techniques and Facilities for Handling and Packaging Tritiated Liquid Wastes for Burial

    Energy Technology Data Exchange (ETDEWEB)

    Rhinehammer, T. B.; Mershad, E. A.

    1974-06-01

    Methods and facilities have been developed for the collection, storage, measurement, assay, solidification, and packaging of tritiated liquid wastes (concentrations up to 5 Ci/ml) for disposal by land burial. Tritium losses to the environment from these operations are less than 1 ppm. All operations are performed in an inert gas-purged glovebox system vented to an effluent removal system which permits nearly complete removal of tritium from the exhaust gases prior to their dischardge to the environment. Waste oil and water from tritium processing areas are vacuum-transferred to glovebox storage tanks through double-walled lines. Accommodations are also available for emptying portable liquid waste containers and for removing tritiated water from molecular sieve beds with heat and vacuum. The tritium concentration of the collected liquids is measured by an in-line calorimeter. A low-volume metering pump is used to transfer liquids from holding tanks to heavy walled polyethylene drums filled with an absorbent or cement for solidification. Final packaging of the sealed polyethylene drums is in either an asphalt-filled combination 30- and 55- gallon metal drum package or a 30-gallon welded stainless steel container.

  10. Review of waste package verification tests. Semiannual report, April 1985-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1986-01-01

    Several studies were completed this period to evaluate experimental and analytical methodologies being used in the DOE waste package program. The first involves a determination of the relevance of the test conditions being used by DOE to characterize waste package component behavior in a salt repository system. Another study focuses on the testing conditions and procedures used to measure radionuclide solubility and colloid formation in repository groundwaters. An attempt was also made to evaluate the adequacy of selected waste package performance codes. However, the latter work was limited by an inability to obtain several codes from DOE. Nevertheless, it was possible to comment briefly on the structures and intents of the codes based on publications in the open literature. The final study involved an experimental program to determine the likelihood of stress-corrosion cracking of austenitic stainless steels and Incoloy 825 in simulated tuff repository environments. Tests for six-month exposure periods in water and air-steam conditions are described. 52 figs., 48 tabs.

  11. Polymers and paper as packaging materials of irradiated food

    Science.gov (United States)

    Pentimalli, M.; Ragni, P.; Righini, G.; Capitani, D.

    2000-03-01

    Effects of γ-irradiation on synthetic polymers and paper used as packaging materials for irradiated food have been studied by NMR. Polystyrene, polybutadiene and some copolymers were studied before and after the γ-irradiation treatment and in the presence or absence of antioxidants and stabilisers. In the absence of additives, the effect of γ-irradiation on polystyrene is negligible even irradiating at high doses. In turn, the role of antioxidants and stabilisers is crucial in polybutadiene and butadiene-containing copolymers. Wood pulp paper was also studied by NMR. Preliminary measurements on γ-irradiated wood pulp sheets show a shortening in the T2 relaxation time component due to the bound water, i.e. some of the bound water is lost.

  12. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2001-10-16

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site).

  13. ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS

    Energy Technology Data Exchange (ETDEWEB)

    Husain, A.; Lewis, Brent J.

    2003-02-27

    Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing

  14. Nuclear materials stabilization and packaging. Quarterly status report, January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Horrell, D.R.; Hoth, C.W.; Fife, K.W.; Nielsen, J.B.; Pierce, S.W.; Ricketts, T.E.; Rink, N.A.; Robinson, M.A.

    1996-08-01

    This report documents progress on the Los Alamos Nuclear Materials Stabilization and Packaging projects for the second quarter of FY 1996. It covers development and production activities for the Plutonium Packaging Project, the Plutonium Recovery and Processing Project, and the Uranium Recovery and Processing Project. In addition, it reports on quality assurance activities for the Plutonium Packaging Project.

  15. The Use of Films as Suitable Packaging Materials for Minimally Processed Foods

    Science.gov (United States)

    1994-08-01

    Freshly Peeled citrus products combine pectinase solution, vacuum infusion technology, and a mechanized line to produce pre- peeled orange and...PROCESSED FOODS: MODIFIED ATMOSPHERE PACKAGING, SOUS-VIDE, MICHOWAVEABLE FOODS nwvKrrvE POOD PRESERVATION, VENTED FOODS, ANTIBACTERIAL OXYGEN...Vented Foods Antibacterial Packaging Materials Oxygen Absorbers Moisture Absorbers Packaging Design and Environmental Concern/Awareness Edible Barrier

  16. 利用废旧镁碳砖制备包沿料的研究%The Research of Using Waste MgO-C Materials Preparation Package Along

    Institute of Scientific and Technical Information of China (English)

    巩秀民

    2015-01-01

    Flint, magnesia carbon brick, as the main raw material, pure calcium aluminate cement as binding agents, boron glass and spodumene as composite sintering agent, ladle along the material are prepared. The MgO-C recycled materials and borosilicate glass addition on material properties are studied. The application test showed that: the addition of 15% renewable materials bricks 0.5%~1% of borosilicate glass, the material properties is best, with high strength, slag release and good thermal shock resistance of both the refractory castable. The refractory recycling technology can significantly enhance the use of quality materials ladle along, not only can save the national mineral resources and energy , but also can reduce environmental pollution and greatly reduce the cost of refractories.%以焦宝石、废旧镁碳砖为主要原料,采用纯铝酸钙水泥为结合剂,硼玻璃、锂辉石为复合烧结剂制备钢包包沿料,研究了镁碳砖再生料和硼玻璃加入量对材料性能的影响。工业应用试验表明:加入15%的镁碳砖再生料及0.5%~1%的硼玻璃时,材料性能最好,可以显著提升钢包包沿料的使用质量,研究开发使用后耐火材料再利用技术,不仅可节约矿产资源和能源,大大降低耐火材料的生产成本,还可减少环境污染。

  17. Recent innovations in edible and/or biodegradable packaging materials.

    Science.gov (United States)

    Guilbert, S; Cuq, B; Gontard, N

    1997-01-01

    Certain newly discovered characteristics of natural biopolymers should make them a choice material to be used for different types of wrappings and films. Edible and/or biodegradable packagings produced from agricultural origin macromolecules provide a supplementary and sometimes essential means to control physiological, microbiological, and physicochemical changes in food products. This is accomplished (i) by controlling mass transfers between food product and ambient atmosphere or between components in heterogeneous food product, and (iii) by modifying and controlling food surface conditions (pH, level of specific functional agents, slow release of flavour compounds), it should be stressed that the material characteristics (polysaccharide, protein, or lipid, plasticized or not, chemically modified or not, used alone or in combination) and the fabrication procedures (casting of a film-forming solution, thermoforming) must be adapted to each specific food product and usage condition (relative humidity, temperature). Some potential uses of these materials (e.g. wrapping of various fabricated foods; protection of fruits and vegetables by control of maturation; protection of meat and fish; control of internal moisture transfer in pizzas), which are hinged on film properties (e.g. organoleptic, mechanical, gas and solute barrier) are described with examples.

  18. Fracture mechanics based design for radioactive material transport packagings -- Historical review

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Salzbrenner, D.; Sorenson, K.; McConnell, P.

    1998-04-01

    The use of a fracture mechanics based design for the radioactive material transport (RAM) packagings has been the subject of extensive research for more than a decade. Sandia National Laboratories (SNL) has played an important role in the research and development of the application of this technology. Ductile iron has been internationally accepted as an exemplary material for the demonstration of a fracture mechanics based method of RAM packaging design and therefore is the subject of a large portion of the research discussed in this report. SNL`s extensive research and development program, funded primarily by the U. S. Department of Energy`s Office of Transportation, Energy Management and Analytical Services (EM-76) and in an auxiliary capacity, the office of Civilian Radioactive Waste Management, is summarized in this document along with a summary of the research conducted at other institutions throughout the world. In addition to the research and development work, code and standards development and regulatory positions are also discussed.

  19. 78 FR 29016 - Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material

    Science.gov (United States)

    2013-05-16

    ... Transport of Radioactive Material AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... regulations for the packaging and transportation of radioactive material. The NRC is issuing for public... in Transport of Radioactive Material.'' This draft regulatory guide describes a proposed method...

  20. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    National Research Council Canada - National Science Library

    Martínez-Barrera, Gonzalo; Barrera-Díaz, Carlos E; Cuevas-Yañez, Erick; Varela-Guerrero, Víctor; Vigueras-Santiago, Enrique; Ávila-Córdoba, Liliana; Martínez-López, Miguel

    2015-01-01

    ... for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete...

  1. Renewable fibers and bio-based materials for packaging applications - A review of recent developments

    DEFF Research Database (Denmark)

    Johansson, Caisa; Bras, Julien; Mondragon, Inaki

    2012-01-01

    materials in the packaging market. The covered subjects are renewable fibers and bio-based polymers for use in bioplastics or as coatings for paper-based packaging materials. Current market sizes and forecasts are also presented. Competitive mechanical, thermal, and barrier properties along with material...

  2. 77 FR 14445 - Leakage Tests on Packages for Shipment of Radioactive Material

    Science.gov (United States)

    2012-03-09

    ... COMMISSION Leakage Tests on Packages for Shipment of Radioactive Material AGENCY: Nuclear Regulatory... Standard N14.5-1997, ``Radioactive Materials--Leakage Tests on Packages for Shipment'' approved February... receiving radioactive material. II. Further Information Revision 1 of Regulatory Guide 7.4 was issued with...

  3. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  4. YPHON: A package for calculating phonons of polar materials

    Science.gov (United States)

    Wang, Yi; Chen, Long-Qing; Liu, Zi-Kui

    2014-11-01

    In our recent works, we have developed a mixed-space approach within the framework of direct method for the first-principle calculation of phonon properties. It makes full use of the accuracy of the force constants calculated in the real space and the dipole-dipole interactions in the reciprocal space, making the accurate phonon calculation possible with the direct method for polar materials. In this paper, an efficient C++ implementation of the mixed-space approach, YPHON, is provided as open source, including demos and Linux scripts for extracting input data to YPHON from the output of VASP.5. The functions of the current package include the calculations of: (1) the phonon dispersions; (2) the phonon density of states; (3) the neutron scattering section weighted phonon density of state; (4) the phonons of the high symmetry structure using the force constants from low symmetry structure; (5) the phonon dispersions of random alloys; and (6) the analysis of the vibrational modes using the point group theory. Catalogue identifier: AETS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETS_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 567815 No. of bytes in distributed program, including test data, etc.: 9763594 Distribution format: tar.gz Programming language: C++, Linux scripts. Computer: Linux systems with a g++ or C++ compiler. Operating system: Linux. RAM: Ranges from a few Mbytes to a few Gbytes, dynamically depending on the system size. Classification: 7.8. External routines: GSL-the GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. VASP.5 or later for the calculations of force constants and dielectric constants and Born effective charge for polar materials. Nature of problem: This package has the purpose of computing

  5. The radiation characteristics of the transport packages with vitrified high-level waste

    Science.gov (United States)

    Bogatov, S. A.; Mitenkova, E. F.; Novikov, N. V.

    2015-12-01

    The calculation method of neutron yield in the (α, n) reaction for a homogeneous material of arbitrary composition is represented. It is shown that the use of the ORIGEN 2 code excluding the real elemental composition of vitrified high-level waste leads to significant underestimation of the neutron yield in the (α, n) reaction. For vitrified high-level waste and spent nuclear fuel from VVER, the neutron fluxes are analyzed. The thickness of the protective materials for a transfer cask and a shipping cask with vitrified highlevel waste are estimated.

  6. The radiation characteristics of the transport packages with vitrified high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bogatov, S. A. [JSC VNIPIpromtechnologii (Russian Federation); Mitenkova, E. F., E-mail: mit@ibrae.ac.ru; Novikov, N. V. [Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)

    2015-12-15

    The calculation method of neutron yield in the (α, n) reaction for a homogeneous material of arbitrary composition is represented. It is shown that the use of the ORIGEN 2 code excluding the real elemental composition of vitrified high-level waste leads to significant underestimation of the neutron yield in the (α, n) reaction. For vitrified high-level waste and spent nuclear fuel from VVER, the neutron fluxes are analyzed. The thickness of the protective materials for a transfer cask and a shipping cask with vitrified highlevel waste are estimated.

  7. An approach to study the corrosion behaviour of stainless steel containers for packaging of intermediate level radioactive waste during atmospheric storage

    Energy Technology Data Exchange (ETDEWEB)

    Padovani, C.G.; Wood, P. [Nuclear Decommissioning Authority (United Kingdom); Smart, N.R.; Winsley, R.J. [Serco Technical and Assurance Services (United Kingdom); Charles, A.; Albores-Silva, O. [Newcastle upon Tyne Univ. (United Kingdom); Krouse, D. [Industrial Research Limited (New Zealand)

    2009-07-01

    Full text of publication follows: In the UK, intermediate level radioactive waste (ILW) arising from the decommissioning of power stations and other nuclear installations is generally encapsulated in cement waste forms and packaged within stainless steel containers. The function of the waste package is to immobilise and physically contain the waste in a stable form and to allow its safe storage, transport, handling and eventual disposal in a geological disposal facility. Given such a function, it is important to ensure that the corrosion resistance of the waste container is sufficient to ensure its integrity for long times. This paper discusses the expected corrosion behaviour of ILW containers manufactured in stainless steel 304L and 316L within the current disposal concept, with specific focus on the behaviour of the material during atmospheric storage. In an indoor atmosphere, localised corrosion and stress corrosion cracking may develop on waste containers only if aggressive hygroscopic salts (e.g. MgCl{sub 2}) accumulate on the container surfaces in certain quantities and in certain humidity ranges. Experimental observation is being carried out in order to better identify conditions in which corrosion damage develops. This type of analysis, together with laboratory and field observation, is being used to identify suitable storage conditions for the packages. On the other hand, extrapolation of short-term data on pit depth in aggressive environments (e.g. marine atmospheres) suggests that penetration of the container walls by pitting over long-time scales is unlikely. Experimental observation and modelling are progressing in order to better understand the mechanistic aspects of propagation and to evaluate whether container penetration by pitting may occur over long timescales. Outstanding uncertainties (e.g. related to the effect of ionising radiation on the atmospheric corrosion behaviour of the packages) will also be outlined.

  8. Material Recovery and Waste Form Development FY 2014 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  9. Influence of protective characteristics of packaging material on packed dried fruits

    Directory of Open Access Journals (Sweden)

    Gvozdenović Jasna J.

    2007-01-01

    Full Text Available Dried fruits are very delicate to biochemical changes during storage, due to low water content, as well as low aw value. The shelf life of these products depends on aw value. Materials for dry fruits packaging are necessary to have appropriate barrier characteristics for water, oxygen, nitrogen and carbon dioxide molecules, as well as for electromagnetic rays, especially those with low wavelengths in UV region. During storage of packed dry fruits, qualitative changes, influenced by different packaging materials, may occur. The results of tested characteristics of different packaging materials, combination and their barrier features, as well as the qualitative changes of packaged dried apples are presented in this paper. The qualitative changes of color and sensory characteristics of packaged dried apples point out to influence of the type, combination as well as the barrier features of used packaging materials. .

  10. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials.

    Science.gov (United States)

    Lee, Keun Taik

    2010-09-01

    This article explores the effects of physically manipulated packaging materials on the quality and safety of meat products. Recently, innovative measures for improving quality and extending the shelf-life of packaged meat products have been developed, utilizing technologies including barrier film, active packaging, nanotechnology, microperforation, irradiation, plasma and far-infrared ray (FIR) treatments. Despite these developments, each technology has peculiar drawbacks which will need to be addressed by meat scientists in the future. To develop successful meat packaging systems, key product characteristics affecting stability, environmental conditions during storage until consumption, and consumers' packaging expectations must all be taken into consideration. Furthermore, the safety issues related to packaging materials must also be taken into account when processing, packaging and storing meat products.

  11. Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX

    Science.gov (United States)

    Simon, Eric; Jallu, Fanny; Pérot, Bertrand; Plumeri, Stéphane

    2016-12-01

    The feasibility of fissile mass quantification in large, long-lived medium activity radioactive waste packages using photofission delayed gamma rays has been assessed with MCNPX. The detection limit achievable is lower than the expected uranium mass in these waste packages, but the important sensibility to the waste matrix density and sample localization imposes to get an accurate measurement of these parameters. An isotope discrimination method based on gamma-ray ratios has been evaluated showing that photofission delayed gamma rays can be used to measure the fissile mass as well as the total uranium mass.

  12. Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

    2007-12-01

    The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

  13. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  14. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  15. 49 CFR 173.419 - Authorized packages-oxidizing Class 7 (radioactive) materials.

    Science.gov (United States)

    2010-10-01

    ... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.419 Authorized packages—oxidizing Class 7 (radioactive) materials. (a) An oxidizing Class 7 (radioactive... 49 Transportation 2 2010-10-01 2010-10-01 false Authorized packages-oxidizing Class 7...

  16. Pyrolysis of municipal plastic wastes: Influence of raw material composition.

    Science.gov (United States)

    López, A; de Marco, I; Caballero, B M; Laresgoiti, M F; Adrados, A

    2010-04-01

    The objective of this work is the study of pyrolysis as a feedstock recycling process, for valorizing the rejected streams that come from industrial plants, where packing and packaging wastes are classified and separated for their subsequent mechanical recycling. Four real samples collected from an industrial plant at four different times of the year, have been pyrolysed under nitrogen in a 3.5dm(3) autoclave at 500 degrees C for 30min. Pyrolysis liquids are a complex mixture of organic compounds containing valuable chemicals as styrene, ethyl-benzene, toluene, etc. Pyrolysis solids are composed of the inorganic material contained in the raw materials, as well as of some char formed in the pyrolysis process, and pyrolysis gases are mainly composed of hydrocarbons together with some CO and CO(2), and have very high gross calorific values (GCV). It has been proved by the authors that the composition of the raw material (paper, film, and metals contents) plays a significant role in the characteristics of pyrolysis products. High paper content yields water in the pyrolysis liquids, and CO and CO(2) in the gases, high PE film content gives rise to high viscosity liquids, and high metals content yields more aromatics in the liquid products, which may be attributed to the metals catalytic effect.

  17. RENEWABLE FIBERS AND BIO-BASED MATERIALS FOR PACKAGING APPLICATIONS – A REVIEW OF RECENT DEVELOPMENTS

    Directory of Open Access Journals (Sweden)

    Caisa Johansson,

    2012-04-01

    Full Text Available This review describes the state-of-the-art of material derived from the forest sector with respect to its potential for use in the packaging industry. Some innovative approaches are highlighted. The aim is to cover recent developments and key challenges for successful introduction of renewable materials in the packaging market. The covered subjects are renewable fibers and bio-based polymers for use in bioplastics or as coatings for paper-based packaging materials. Current market sizes and forecasts are also presented. Competitive mechanical, thermal, and barrier properties along with material availability and ease of processing are identified as fundamental issues for sustainable utilization of renewable materials.

  18. Potential of polymeric materials for packaging; L'impiego dei materiali polimerici nell'imballaggio

    Energy Technology Data Exchange (ETDEWEB)

    Lanchi, M. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    Packaging preserves different kind of materials, from raw materials, and it plays an important role in the presentation of the products to the market, too. That's why packaging should be in charge of responding to marketing requirements by means of a proper design, effective colour choice and material, etc. Nowadays packaging is becoming more and more important in different fields. In Italy, it is a rapid growth of the packaging market and the companies involved are very competitive and efficient, in particular in some market segments. Concerning the application fields it can be asserted that packaging is mostly exploited in the food market which represents the 65% of the whole packaging market. Nearly all types of packaging use plastics as a part of their construction: lightness, chemical inertness, corrosion resistance, molding attitude, the good transparency to light, sound and mechanical insulation, etc. Focusing the attention to the horticultural market, growth in South of Italy in particular, examples of promising research fields to date are: developing of good barrier performance films; developing of suitable modified atmosphere packaging; developing of active plastic films, such as antimicrobic films or antioxidant films. The large amount of plastic films used for packaging create a large waste problem. This can be reduced by: optimising packaging design, avoiding the excessive use of plastics; improvising strength, moisture and heat stability per unit weight in order to reduce plastic waste volume; developing blend of plastics and bio-based polymer in order to increase the biodegradability of packaging after use. [Italian] L'imballaggio e' un prodotto adibito a contenere e a proteggere determinate merci, dalle materie prime ai prodotti finiti, a consentire la loro manipolazione e ad assicurare la loro presentazione. E' una realta' importante del mondo della produzione, delle strutture distributive e della vita quotidiana. Nell

  19. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  20. Information technologies and software packages for education of specialists in materials science [In Russian

    NARCIS (Netherlands)

    V. Krzhizhanovskaya; S. Ryaboshuk

    2009-01-01

    This paper presents methodological materials, interactive text-books and software packages developed and extensively used for education of specialists in materials science. These virtual laboratories for education and research are equipped with tutorials and software environment for modeling complex

  1. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  2. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  3. Environmental and economic benefit of recycling model of packaging waste:a case study on aluminum

    Institute of Scientific and Technical Information of China (English)

    Huang Pingsha

    2004-01-01

    In order to achieve sustainable utilization of natural resources, save energy and protect environment and ecosystem, it is important for a region or a nation to develop and implement a viable waste recycling model from both theoretical and practical point of view. Some packaging recycling models operated in developed countries are introduced in this article. Aluminium can recovery and recycling is emphasized. Cost effective, economic and environmental benefit of different models are compared and analyzed. The result shows that all recycling models have their characteristics due to the initial purpose of recovery and the situation of the implementing country. However, all the models contribute to the reduction of municipal solid waste disposal and resources conservation.

  4. Legal analysis of information displayed on dental material packages: An exploratory research

    OpenAIRE

    Bhumika Rathore; Pusphpanjali Krishnappa; Suraj U Mehta

    2016-01-01

    Introduction: Some of the dental materials possess occupational hazards, preprocedural errors, and patient allergies as suggested by evidence. With due consideration to safety of the patients and dental professionals, it is essential that the trade of these materials is in conformity with the law. Aim: To perform the legal analysis of the information displayed on the packaging of dental materials. Materials and Methods: The Bureau of Indian Standards sets guidelines for packaging and marketin...

  5. Use of waste materials for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, R.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Napoli Univ. (Italy). Dipt. di Scienze Chimiche; Buonerba, A.; Grassi, A. [Salerno Univ. (Italy). Dipt. di Chimica e Biologia

    2012-07-01

    Waste raw materials obtained by several sources of both food and agro industries could be considered for biofuel production. In the last years, this topic has growing in interest. At this purpose, our research, has been focused on the development of new technologies to obtain biodiesel from the mentioned wastes feedstock. In particular from oleins, that are mixtures of free fatty acids (FFAs) and triglycerides. Therefore, we are studying the way to produce biodiesel in two steps: an esterification reaction of FFAs with glycerol and a transesterification with methanol of the whole mixture. The esterification of FFAs with glycerol has the advantage of using a relatively high temperature favouring the stripping of water formed during the esterification. In this way esterification equilibrium is shifted to the right. Then, the mixture of mono-, di- and triglycerides, obtained by esterification with glycerol, can be submitted to transesterification with methanol, in the usual way, to produce biodiesel Catalysts promoting esterification, normally, are mineral acids or heterogeneous Bronsted acid catalysts. At this purpose, the classical sulphonated polystyrene acid resins cannot be used at temperature greater than 120 C. Therefore, a new class of sulfonated polymers, with enhanced temperature resistance, has been developed by selective and quantitative sulfonation of olefinic butadiene units in multiblock copolymers syndiotactic polystyrene-co-1,4-cis-polybutadiene. This catalytic system has been successfully tested in the above mentioned esterification reaction and compared to classic commercial strong acid catalysts like Amberlyst {sup registered}, Nafion {sup registered} and sulfuric acid. (orig.)

  6. Material selection for Multi-Function Waste Tank Facility tanks

    Energy Technology Data Exchange (ETDEWEB)

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States); Foster, G.M. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  7. Application of polymer nanocomposite materials in food packaging

    OpenAIRE

    Bratovčić, Amra; Odobašić, Amra; Ćatić, S.; Šestan, Indira

    2015-01-01

    The term “nano” refers to nano particle size from 1 to 100 nanometers. The term "nanotechnology" was first introduced by Norio Taniguchi in 1974. Nanotechnology may be used to improve the taste and texture of food and for the production of packaging that maintain fresh product. The primary function of packaging is to maintain the quality and safety of products during transport and storage period, as well as to extend its viability by preventing unwanted effect agents such as microorganisms, c...

  8. Sustainable Materials Management (SMM) WasteWise Data

    Science.gov (United States)

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  9. Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review.

    Science.gov (United States)

    Jenke, Dennis R; Stults, Cheryl L M; Paskiet, Diane M; Ball, Douglas J; Nagao, Lee M

    Elemental impurities in drug products can arise from a number of different sources and via a number of different means, including the active pharmaceutical ingredient, excipients, the vehicle, and leaching of elemental entities that are present in the drug product's manufacturing or packaging systems. Thus, knowledge about the presence, level, and likelihood of leaching of elemental entities in manufacturing and packaging systems is relevant to understanding how these systems contribute to a drug product's total elemental impurity burden. To that end, a joint team from the Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) has conducted a review of the available literature on elemental entities in pharmaceutically relevant polymers and the presence of these elemental entities in material extracts and/or drug products. This review article contains the information compiled from the available body of literature and considers two questions: (1) What elemental entities are present in the relevant polymers and materials and at what levels are they present? (2) To what extent are these elemental entities leached from these materials under conditions relevant to the manufacturing and storage/distribution of solution drug products? Conclusions drawn from the compiled data are as follows: (1) Elemental entities are present in the materials used to construct packaging and manufacturing systems as these materials either contain these elemental entities as additives or are exposed to elemental entities during their production. (2) Unless the elemental entities are parts of the materials themselves (for example, SiO2 in glass) or intentionally added to the materials (for example, metal stearates in polymers), their incidental amounts in the materials are generally low. (3) When elemental entities are present in materials and systems, generally only a very small

  10. Elucidating the role of interfacial materials properties in microfluidic packages.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Thayne L.

    2013-01-01

    The purpose of this work was to discover a method to investigate the properties of interfaces as described by a numerical physical model. The model used was adopted from literature and applied to a commercially available multiphysics software package. By doing this the internal properties of simple structures could be elucidated and then readily applied to more complex structures such as valves and pumps in laminate microfluidic structures. A numerical finite element multi-scale model of a cohesive interface comprised of heterogeneous material properties was used to elucidate irreversible damage from applied strain energy. An unknown internal state variable was applied to characterize the damage process. Using a constrained blister test, this unknown internal state variable could be determined for an adherend/adhesive/adherend body. This is particularly interesting for laminate systems with microfluidic and microstructures contained within the body. A laminate structure was designed and fabricated that could accommodate a variety of binary systems joined using nearly any technique such as adhesive, welding (solvent, laser, ultrasonic, RF, etc.), or thermal. The adhesive method was the most successful and easy to implement but also one of the more difficult to understand, especially over long periods of time. Welding methods are meant to achieve a bond that is similar to bulk properties and so are easier to predict. However, methods of welding often produce defects in the bonds.. Examples of the test structures used to elucidate the internal properties of the model were shown and demonstrated. The real life examples used this research to improve upon current designs and aided in creating complex structures for sensor and other applications.

  11. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2015-07-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  12. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2014-11-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  13. The Effect of Packaging Materials on the Quality Attributes of Crayfish During Cold Storage.

    Directory of Open Access Journals (Sweden)

    Ajala, A.S

    2015-11-01

    Full Text Available This study evaluates the effects of packaging materials on the quality attributes of crayfish preserved in cold storage. This was done in order to ascertain the suitability of the different packaging materials on keeping the quality attributes of crayfish in cold storage. The “red claw” crayfish was harvested fresh, beheaded, washed, cleaned and packaged in different packaging materials of low-density polyethylene (LDPE, high-density polyethylene (HDPE, aluminum foil and plastic. The crayfish were stored for a period of eight weeks, and samples were taken for analysis every two weeks. The analyses carried out were proximate, mineral (calcium, iron and phosphorus and microbial (yeast, mould, coliform and total viable counts. There were significant reduction changes in the proximate, minerals and microbiological analysis in respect to the packaging materials and storage period.

  14. Waste materials - catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, M.; Batra, V.S.; Hargreaves, J.S.J.; Pulford, I.D. [TERI University, New Delhi (India). Centre for Energy & Environment

    2011-01-15

    In this overview, we present examples of the use of high volume waste materials in catalysis or for catalyst synthesis. Waste materials derived from both industrial and biological sources have attracted interest and this is briefly summarized. The materials described include red mud, aluminium dross, fly ash, blast furnace slag, rice husk and various kinds of shell.

  15. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Johnny Bolden

    2013-01-01

    Full Text Available More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nation’s landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take advantage of the benefits of using waste and recycled materials. Studies have investigated the use of acceptable waste, recycled and reusable materials and methods. The use of swine manure, animal fat, silica fume, roofing shingles, empty palm fruit bunch, citrus peels, cement kiln dust, fly ash, foundry sand, slag, glass, plastic, carpet, tire scraps, asphalt pavement and concrete aggregate in construction is becoming increasingly popular due to the shortage and increasing cost of raw materials. In this study a questionnaire survey targeting experts from construction industry was conducted in order to investigate the current practices of the uses of waste and recycled materials in the construction industry. This study presents an initial understanding of the current strengths and weaknesses of the practice intended to support construction industry in developing effective policies regarding uses of waste and recycled materials as construction materials.

  16. Synthesis of knowledge on the long-term behaviour of concretes. Applications to cemented waste packages; Synthese des connaissances sur le comportement a long terme des betons. Application aux colis cimentes

    Energy Technology Data Exchange (ETDEWEB)

    Richet, C.; Galle, C.; Le Bescop, P.; Peycelon, H.; Bejaoui, S.; Tovena, I.; Pointeau, I.; L' Hostis, V.; Levera, P

    2004-03-01

    As stipulated in the former law of December 91 relating to 'concrete waste package', a progress report (phenomenological reference document) was first provided in 1999. The objective was to make an assessment of the knowledge acquired on the long-term behaviour of cement-based waste packages in the context of deep disposal and/or interim storage. The present document is an updated summary report. It takes into account a new knowledge assessment, considers coupled mechanisms and should contribute to the first performance studies (operational calculations). Handling and radio-nuclides (RN) confinement are the two major functional properties requested from the concrete used for the waste packages. In unsaturated environment (interim storage/disposal prior to closing), the main problem is the generation of cracks in the material. This aspect is a key parameter from the mechanical point of view (retrievability). It can have a major impact on the disposal phase (confinement). In saturated environment (disposal post-closing phase), the main concern is the chemical degradation of the waste package concrete submitted to underground waters leaching. In this context, the major thema are: the durability of the concretes under water (chemical degradation) and in unsaturated medium (corrosion of reinforcement), matter transport, RN retention, chemistry / transport / mechanical couplings. On the other hand, laboratory data on the behaviour of concretes are used to evaluate the RN source term of waste packages in function of time (concrete waste package OPerational Model, i.e. 'Concrete MOP'). The 'MOP' provides the physico-chemical description of the RN release in relationship with the waste package degradation itself. This description is based on simplified phenomenology for which only dimensioning mechanisms are taken into account. The use of Diffu-Ca code (basic module for the MOP) on the CASTEM numerical plate-form, already allows operational

  17. Greenhouse gas emissions from the treatment of household plastic containers and packaging: replacement with biomass-based materials.

    Science.gov (United States)

    Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun

    2014-04-01

    The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling methods. Five scenarios were considered: two for existing fossil-derived materials (the current approach in Japan) and the three for biomass-based materials. Production and waste disposal of 1 m(3) of plastic containers and packaging from households was defined as the functional unit. The results showed that replacement of fossil-derived materials with biomass-based materials could reduce life-cycle GHG emissions by 14-20%. Source separation and recycling should be promoted. When the separate collection ratio reached 100%, replacement with biomass-based materials could potentially reduce GHG emissions by 31.9%. Food containers are a priority for replacement, because they alone could reduce GHG emissions by 10%. A recycling system for biomass-based plastics must be carefully designed, considering aspects such as the transition period from fossil-derived plastics to biomass-based plastics.

  18. Glass matrix composite material prepared with waste foundry sand

    Directory of Open Access Journals (Sweden)

    ZHANG Zhao-shu

    2006-11-01

    Full Text Available The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  19. Glass matrix composite material prepared with waste foundry sand

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-shu; XIA Ju-pei; ZHU Xiao-qin; LIU Fan; HE Mao-yun

    2006-01-01

    The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  20. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  1. Material flow analysis for an industry - A case study in packaging

    Science.gov (United States)

    Amey, E.B.; Sandgren, K.

    1996-01-01

    The basic materials used in packaging are glass, metals (primarily aluminum and steel), an ever-growing range of plastics, paper and paperboard, wood, textiles for bags, and miscellaneous other materials (such as glues, inks, and other supplies). They are fabricated into rigid, semi-rigid, or flexible containers. The most common forms of these containers include cans, drums, bottles, cartons, boxes, bags, pouches, and wraps. Packaging products are, for the most part, low cost, bulky products that are manufactured close to their customers. There is virtually no import or export of packaging products. A material flow analysis can be developed that looks at all inputs to an industrial sector, inventories the losses in processing, and tracks the fate of the material after its useful life. An example is presented that identifies the material inputs to the packaging industry, and addresses the ultimate fate of the materials used. ?? 1996 International Association for Mathematical Geology.

  2. Compilation of current literature on seals, closures, and leakage for radioactive material packagings

    Energy Technology Data Exchange (ETDEWEB)

    Warrant, M.M.; Ottinger, C.A.

    1989-01-01

    This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs.

  3. Development of a impact limiter for radioactive material transport packages - characterization of the polymeric material used; Desenvolvimento de amortecedor de impacto para embalagens para transporte de material radioativo - caracterizacao do material polimerico utilizado

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Rogerio Pimenta [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: mouraor@urano.cdtn.br; Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mmattar@net.ipen.br

    2000-07-01

    Impact limiters are sacrificial components widely used to protect radioactive waste packages against damages arising from falls, fires and collisions with protruding objects. Several materials have been used as impact limiter filling: wood, aluminum honeycomb, and metallic or polymeric foams. Besides, hollow structures are also used as shock absorbers, either as a single shell or as a tube array. One of the most popular materials among package designers is rigid polyurethane foam, owing to its toughness, workability, low specific weight, low costs and commercial availability. In Brazil, a foam developed using the polymer extracted from the castor oil plant (Ricinus communis) is being studied as a potential impact limiter filling. For a better performance of this material, it is necessary to minimize the impact limiter dimensions without compromising the package safety. For this, a detailed knowledge of the foam physical and mechanical properties is essential. A relatively vast amount of data about regular polymeric foams can be found in the literature and in foreign manufacturers brochures, but no data has been published about the properties of the castor oil foam. This paper presents data gathered in an ongoing research program aiming at the development of a Type-B packaging. Foam samples were submitted to uniaxial static compression tests and to hydrostatic tests. The results obtained reveal that the castor oil foam has a mechanical behavior similar to that of regular foams, with good property reproducibility and homogeneity. (author)

  4. Migration and sensory changes of packaging materials caused by ionising radiation

    Science.gov (United States)

    Welle, Frank; Mauer, Alexandra; Franz, Roland

    2002-03-01

    Irradiation of packaging materials—in most cases plastics—generally lead to a formation of free radicals and ions, with secondary effects such as cross-linking as well as oxidative chain scission. These effects result in a formation of volatile radiolysis products which may induce off-odours in the polymers and may change the migration characteristics of packaging materials. Irradiation affect also polymer additives which change the specific migration behaviour of polymer additives and additive related decomposition products. Migration and sensory changes of pre-sterilised packaging materials have consequences on the quality of packaged goods and consumer's safety. Therefore, migration and sensory properties of packaging materials have specific regulations. Within this paper the effects of the formation of radiolysis products on overall migration, specific migration of food additives or radiolysis products as well as on sensory changes are discussed in view of current European food law.

  5. Directory of certificates of compliance for radioactive materials packages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The purpose of this directory is to make available a convenient source of information on packagings approved by the U.S. Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance Number is included at the front of Volumes 1 and 2. An alphabetical listing by user name is included in the back of Volume 3 for approved Quality Assurance programs. The reports include a listing of all users of each package design and approved Quality Assurance programs prior to the publication date of the directory. Comments to make future revisions of this directory more useful are invited and should be directed to the Spent Fuel Project Office, U.S. Nuclear Regulatory Commission.

  6. COMPACTION OF FIBERBOARD OVERPACK MATERIALS IN A 9975 SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Stefek, T.; Daugherty, W.; Estochen, E.; Murphy, J.

    2010-05-27

    Compaction of lower layers in the 9975 fiberboard overpack has been observed in packages that contain excess moisture. Dynamic loading of the package during transportation may also contribute to compaction of the fiberboard. This condition is being tested and analyzed to better understand these compaction mechanisms and provide a basis from which to evaluate their impact to the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Design Safety Analysis) at the Savannah River Site (SRS). A test program has been developed and is being implemented to identify the extent of the compaction as a function of fiberboard moisture and typical transport dynamic loadings. Test conditions will be compared to regulatory requirements for dynamic loading. Characterization of the recovery of short-term compaction following the application of dynamic loading is also being evaluated. Interim results from this test program will be summarized.

  7. Development of a method to determine the nuclide inventory in bituminized waste packages; Entwicklung eines Verfahrens zur Bestimmung des Nuklidinventars in bituminierten Abfallgebinden

    Energy Technology Data Exchange (ETDEWEB)

    Mesalic, E.; Kortman, F.; Lierse von Gostomski, C. [Technische Univ. Muenchen, Garching (Germany). Zentrale Technisch-Wissenschaftliche Betriebseinheit Radiochemie Muenchen (RCM)

    2014-01-15

    Until the 1980s, bitumen was used as a conditioning agent for weak to medium radioactive liquid waste. Its use can be ascribed mainly to the properties that indicated that the matrix was optimal. However, fires broke out repeatedly during the conditioning process, so that the method is meanwhile no longer permitted in Germany. There are an estimated 100 waste packages held by the public authorities in Germany that require a supplementary declaration. In contrast to the common matrices, such as for example resins or sludges, there is still no standardized technology for taking samples and subsequently determining the radio-nuclide for bitumen. Aspects, such as the thermoplastic behaviour, make determining the nuclide inventory more difficult in bituminized waste packages. The development of a standardized technology to take samples with a subsequent determination of the radio-nuclide analysis is the objective of a project funded by the BMBF. Known, new methods, specially developed for the project, are examined on inactive bitumen samples and then transferred to active samples. At first non-destructive methods are used. The resulting information forms an important basis to work out and apply destructive strategy for sampling and analysis. Since the project is on-going, this report can only address the development of the sampling process. By developing a sampling system, it will be possible to take samples from an arbitrary selected location of the package across the entire matrix level and thus gain representative analysis material. The process is currently being optimized. (orig.)

  8. Report on task assignment No. 3 for the Waste Package Project; Parts A & B, ASME pressure vessel codes review for waste package application; Part C, Library search for reliability/failure rates data on low temperature low pressure piping, containers, and casks with long design lives

    Energy Technology Data Exchange (ETDEWEB)

    Trabia, M.B.; Kiley, M.; Cardle, J.; Joseph, M.

    1991-07-01

    The Waste Package Project Research Team, at UNLV, has four general required tasks. Task one is the management, quality assurance, and overview of the research that is performed under the cooperative agreement. Task two is the structural analysis of spent fuel and high level waste. Task three is an American Society of Mechanical Engineers (ASME) Pressure Vessel Code review for waste package application. Finally, task four is waste package labeling. This report includes preliminary information about task three (ASME Pressure Vessel Code review for Waste package Application). The first objective is to compile a list of the ASME Pressure Vessel Code that can be applied to waste package containers design and manufacturing processes. The second objective is to explore the use of these applicable codes to the preliminary waste package container designs. The final objective is to perform a library search for reliability and/or failure rates data on low pressure, low temperature, containers and casks with long design lives.

  9. Waste to wealth: Industrial raw materials potential of peels of ...

    African Journals Online (AJOL)

    Waste to wealth: Industrial raw materials potential of peels of Nigerian sweet orange ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... of orange peels with a view to establishing their raw material potentials.

  10. Youth Solid Waste Educational Materials List, November 1991.

    Science.gov (United States)

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…

  11. The profitability drivers in packaging materials reuse for manufacturers in business to business environments

    DEFF Research Database (Denmark)

    Larsen, Samuel; Deleuran, Brian; Jacobsen, Peter

    ’s theoretical basis is the RSC literature’s business perspective formulated by Guide and Van Wassenhove. Findings – The drivers of profitability in packaging materials reuse are 1) the amount of avoided costs of purchasing new packaging materials, 2) the firm’s ability to reduce costs of reverse logistics......Purpose –The purpose of this paper is to explore the profitability drivers for a firm’s operation of a reverse supply chain (RSC) that takes back and reuses packaging materials. Results apply specifically to original equipment manufacturers (OEMs) in business to business environments. Design...

  12. Mass Transfer Study of Chlorine Dioxide Gas Through Polymeric Packaging Materials

    Science.gov (United States)

    A continuous system for measuring the mass transfer of gaseous chlorine dioxide (ClO2), a strong oxidizing agent and used in food and pharmaceutical packaging, through 10 different types of polymeric packaging material was developed utilizing electrochemical sensor as a detector. Permeability, diff...

  13. Comparison of silicone and spin-on glass packaging materials for light-emitting diode encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liann-Be; Pan, Ke-Wei; Yen, Chia-Yi [Department of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan, Taiwan (China); Jeng, Ming-Jer, E-mail: mjjeng@mail.cgu.edu.tw [Department of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan, Taiwan (China); Wu, Chun-Te; Hu, Sung-Cheng; Kuo, Yang-Kuao [Chemical Systems Research Division, Chung-Shan Institute of Science and Technology Armaments Bureau, MND, Taoyuan, Taiwan (China)

    2014-11-03

    Traditional white light light-emitting diode (LED) encapsulation is performed by mixed phosphors and silicone coating on LED die. However, this encapsulation with silicone coating incurs overheated temperatures and yellowing problem. Therefore, this work attempts to replace silicone paste by using spin-on-glass (SOG) materials. Experimental results indicate that although initial brightness of SOG-based packaging is lower than that of silicone packaging, its light attenuation is significantly lower than that of silicone for a long lighting time. After the LED power is turned on for 12 h, the brightness of LED with silicone and SOG material packaging decreases from 84 to 48 lm and 73 to 59 lm, respectively. Therefore, SOG material provides an alternative packaging solution for high power LED lighting applications. - Highlights: • Spin-on-glass (SOG) material was used to replace silicone coating for LED packaging. • Initial brightness of SOG packaging is lower than that of silicone packaging. • Over time, light attenuation in SOG is much lower than that in silicone. • Color rendering index and brightness of LED packaging was optimized by Taguchi method.

  14. 21 CFR 179.45 - Packaging materials for use during the irradiation of prepackaged foods.

    Science.gov (United States)

    2010-04-01

    ... PRODUCTION, PROCESSING AND HANDLING OF FOOD Packaging Materials for Irradiated Foods § 179.45 Packaging... chapter. (c) Ethylene-vinyl acetate copolymers complying with § 177.1350 of this chapter. The ethylene... exceed 1 pct by weight of the polymer. Triethylene glycol as described in § 178.3740(b) of this chapter...

  15. Optimization of biomass blends in the manufacture of molded packaging materials produced using fungal mycelium

    Science.gov (United States)

    Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...

  16. Establishing a store baseline during interim storage of waste packages and a review of potential technologies for base-lining

    Energy Technology Data Exchange (ETDEWEB)

    McTeer, Jennifer; Morris, Jenny; Wickham, Stephen [Galson Sciences Ltd. Oakham, Rutland (United Kingdom); Bolton, Gary [National Nuclear Laboratory Risley, Warrington (United Kingdom); McKinney, James; Morris, Darrell [Nuclear Decommissioning Authority Moor Row, Cumbria (United Kingdom); Angus, Mike [National Nuclear Laboratory Risley, Warrington (United Kingdom); Cann, Gavin; Binks, Tracey [National Nuclear Laboratory Sellafield (United Kingdom)

    2013-07-01

    Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. During the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)

  17. ZeroWaste BYG: Redesigning construction materials towards zero waste society

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Schmidt, Jacob Wittrup; Ottosen, Lisbeth M.

    2014-01-01

    The ZeroWaste research group (www.zerowaste.byg.dtu.dk) at the Department of Civil Engineering was established in 2012 and covers the broad range of expertise required for turning waste materials into attractive, new materials. Members of the group have developed methods for removal of heavy metals...... and phosphorous from waste incineration, sewage sludge and other bio ashes [1], providing the basis to make these ash types an attractive, new material for the building sector.The amount of waste increases and it is both difficult and expensive to handle many waste types as e.g.different ashes. At the same time...... there are fewer natural resources and the general consumption increases. We wish to utilize alternative and new ash types as raw material in concrete, similarly to what was previously seen with fly ash from coal combustion and microsilica, which were both transformed from problematic waste to valuable raw...

  18. JUSTIFICATION FOR CHOOSING THE OPTIMAL PACKAGE OF MATERIALS FOR CLOTHING CHILDREN WITH METABOLIC SYNDROME

    OpenAIRE

    Ivashchenko I. N.

    2014-01-01

    Quality regulations of clothes and materials do not include features of children and adolescents with disorders of obesity in the design of clothes and selection of the materials. In the article, we proposed the choice of clothing materials management package with the structural features of the surface of the skin and subcutaneous tissue, the properties of materials and their functions

  19. Effects of flavour absorption on foods and their packaging materials

    NARCIS (Netherlands)

    Willige, van R.W.G.

    2002-01-01

    Keywords: flavour absorption, scalping, packaging, food matrix, lldpe, ldpe, pp, pc, pet, pen,b-lactoglobulin, casein, pectin, cmc, lactose, saccharose, oil, modelling, storage, oxygen permeability, taste perception,

  20. 75 FR 60333 - Hazardous Material; Miscellaneous Packaging Amendments

    Science.gov (United States)

    2010-09-30

    ... parties were given an opportunity to comment in response to the NPRM on the possible effect the removal of... were to go into effect, remanufactured drums not meeting minimum thickness requirements will have to be... the packaging, including the top and bottom, must have a minimum puncture resistance of 15 Joules...

  1. Influence of polystyrene and polyethylene packaging materials on food quality.

    NARCIS (Netherlands)

    Linssen, J.P.H.

    1992-01-01

    Polystyrene (PS) and polyethylene (PE) used for packaging of food were studied on their effect on product quality. Different types of PS were tested: General purpose polystyrene (GPPS), high impact polystyrene (HIPS, which contains a dispersed rubber phase) and several blends of these types. PS

  2. Effects of flavour absorption on foods and their packaging materials

    NARCIS (Netherlands)

    Willige, van R.W.G.

    2002-01-01

    Keywords: flavour absorption, scalping, packaging, food matrix, lldpe, ldpe, pp, pc, pet, pen,b-lactoglobulin, casein, pectin, cmc, lactose, saccharose, oil, modelling, storage, oxygen permeability, taste perception, sensory quality.Abso

  3. 49 CFR 173.21 - Forbidden materials and packages.

    Science.gov (United States)

    2010-10-01

    ... temperature-control procedures, and the written record of temperature measurements specified in paragraph (f... under controlled temperature conditions. The control temperature and emergency temperature for a package... must be initiated. § 173.21 Table: Method of Determining Control and Emergency Temperature. SADT...

  4. Chemical composition of material fractions in Danish household waste

    DEFF Research Database (Denmark)

    Riber, Christian; Petersen, Claus; Christensen, Thomas Højlund

    2009-01-01

    The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where...... batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e,g., batteries) than the direct...... method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions. The majority of the energy content of the waste originates from organic waste...

  5. Carbon nanotubes for thermal interface materials in microelectronic packaging

    Science.gov (United States)

    Lin, Wei

    density was beneficial in increasing the collective thermal conductivity of the VACNT film; however, the increased tube-tube interaction in dense VACNT films decreased the thermal conductivity of the individual CNTs. The tip-to-tip contact resistance was shown to be ˜1x10-7 m2 K W -1. The study will shed light on the potential application of VACNTs as thermal interface materials in microelectronic packaging. 5. A combined process of in situ functionalization and microwave curing has been developed to effective enhance the interface between carbon nanotubes and the epoxy matrix. Effective medium theory has been used to analyze the interfacial thermal resistance between carbon nanotubes and polymer matrix, and that between graphite nanoplatlets and polymer matrix.

  6. Short communication: Effect of active food packaging materials on fluid milk quality and shelf life.

    Science.gov (United States)

    Wong, Dana E; Goddard, Julie M

    2014-01-01

    Active packaging, in which active agents are embedded into or on the surface of food packaging materials, can enhance the nutritive value, economics, and stability of food, as well as enable in-package processing. In one embodiment of active food packaging, lactase was covalently immobilized onto packaging films for in-package lactose hydrolysis. In prior work, lactase was covalently bound to low-density polyethylene using polyethyleneimine and glutaraldehyde cross-linkers to form the packaging film. Because of the potential contaminants of proteases, lipases, and spoilage organisms in typical enzyme preparations, the goal of the current work was to determine the effect of immobilized-lactase active packaging technology on unanticipated side effects, such as shortened shelf-life and reduced product quality. Results suggested no evidence of lipase or protease activity on the active packaging films, indicating that such active packaging films could enable in-package lactose hydrolysis without adversely affecting product quality in terms of dairy protein or lipid stability. Storage stability studies indicated that lactase did not migrate from the film over a 49-d period, and that dry storage resulted in 13.41% retained activity, whereas wet storage conditions enabled retention of 62.52% activity. Results of a standard plate count indicated that the film modification reagents introduced minor microbial contamination; however, the microbial population remained under the 20,000 cfu/mL limit through the manufacturer's suggested 14-d storage period for all film samples. This suggests that commercially produced immobilized lactase active packaging should use purified cross-linkers and enzymes. Characterization of unanticipated effects of active packaging on food quality reported here is important in demonstrating the commercial potential of such technologies.

  7. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage; Les colis de dechets radioactifs stockes au centre de stockage FMA de l'Aube. Une stockage selectif et maitrise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  8. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. (Kansas City Plant, Kansas City, MO); Austin, Kevin N.; Adolf, Douglas Brian; Spangler, Scott W.; Neidigk, Matthew Aaron; Chambers, Robert S.

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.

  9. Impact of packaging material and storage time on olive oil quality ...

    African Journals Online (AJOL)

    Impact of packaging material and storage time on olive oil quality. ... appreciated for its characteristic flavor and its biological and nutritional value which are strongly related to the quality. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  10. Technical assessment of processing plants as exemplified by the sorting of beverage cartons from lightweight packaging wastes.

    Science.gov (United States)

    Feil, A; Thoden van Velzen, E U; Jansen, M; Vitz, P; Go, N; Pretz, T

    2016-02-01

    The recovery of beverage cartons (BC) in three lightweight packaging waste processing plants (LP) was analyzed with different input materials and input masses in the area of 21-50Mg. The data was generated by gravimetric determination of the sorting products, sampling and sorting analysis. Since the particle size of beverage cartons is larger than 120mm, a modified sampling plan was implemented and targeted multiple sampling (3-11 individual samplings) and a total sample size of respectively 1200l (ca. 60kg) for the BC-products and of about 2400l (ca. 120kg) for material-heterogeneous mixed plastics (MP) and sorting residue products. The results infer that the quantification of the beverage carton yield in the process, i.e., by including all product-containing material streams, can be specified only with considerable fluctuation ranges. Consequently, the total assessment, regarding all product streams, is rather qualitative than quantitative. Irregular operation conditions as well as unfavorable sampling conditions and capacity overloads are likely causes for high confidence intervals. From the results of the current study, recommendations can basically be derived for a better sampling in LP-processing plants. Despite of the suboptimal statistical results, the results indicate very clear that the plants show definite optimisation potentials with regard to the yield of beverage cartons as well as the required product purity. Due to the test character of the sorting trials the plant parameterization was not ideal for this sorting task and consequently the results should be interpreted with care.

  11. Incentivizing secondary raw material markets for sustainable waste management.

    Science.gov (United States)

    Schreck, Maximilian; Wagner, Jeffrey

    2017-09-01

    Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Use of waste material in cultivation substrates

    Directory of Open Access Journals (Sweden)

    Petr Salaš

    2004-01-01

    Full Text Available Gardeners' practical experience and experimental work prove the affirmation that the used substrate is a very important base for the production of quality nursery products. It is important to emphasis the complexity and synergy of all factors influencing the ecosystem and there mutual relations. Physical, chemical and biological properties do not separately affect the growth and development of plants. In addition, the relations are not statical but differ in relation with other factors changes. This article is dealing with the possibility to use waste material from timber processing in cultivation substrates. The large scale use of such substrates would enable people to reach a relative independence from peat substrates, of which the global reserve is gradually decreasing.Our research activities focus on the use of bark. The basic problems of a bark substrate are easy dehydration and unbalanced nutrition of trees and shrubs. The suggested and experimented cultivation technology solves these problems. It is based on the cultivation of woody species in bark substrates, using modern irrigation systems, slow release fertilisers (Silvamix Forte and special soil conditioners (TerraCottem. This technology was tested on the following species of trees and shrubs: Malus and Buxus.

  13. Development of expert system for biobased polymer material selection: food packaging application.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  14. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K. [Savannah River National Laboratory; Bellamy, S. [Savannah River National Laboratory; Daugherty, W. [Savannah River National Laboratory; Sindelar, R. [Savannah River National Laboratory; Skidmore, E. [Savannah River National Laboratory

    2013-08-18

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

  15. Application of ISO system to safety test for radioactive material transport package

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. S.; Lee, J. C.; Bang, K. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Safety tests for radioactive material transportation package are described in MOST notice 2001-23, IAEA Safety Standards Series No. TS-R-1 and US 10 CFR Part 71. Safety test facilities and equipments were provided to be capable of performing various tests prescribed in those regulations. Test methods and procedures appropriate in International Standard ISO were established and this laboratory of radioactive material transportation package is accredited by Korea Laboratory Accreditation Scheme(KOLAS)

  16. Effect of Components on the Performance of Asphalt Modiifed by Waste Packaging Polyethylene

    Institute of Scientific and Technical Information of China (English)

    ZHANG Maorong; FANG Changqing; ZHOU Shisheng; CHENG Youliang; YU Ruien; LIU Shaolong; LIU Xiaolong; SU Jian

    2016-01-01

    Waste packaging polyethylene (WPE) was used to modify raw asphalt by melt blending the components at 190℃ for 1 h in a simple mixer and subsequently machining them at 120℃ for 1 h in a high-speed shearing machine. The effect of modiifcation on the degree of the penetration, the softening point and the ductility of the asphalt was studied using lfuorescent microscopy, infrared spectrometry, component changes and various other techniques. The experimental results showed that no chemical reactions took place in the components themselves (saturate, aromatic, asphaltene and resin) during the modifications. The softening point and penetration of the asphalt were found to be closely related to the resulting contents of the asphaltene, saturate and resin components. In addition, aromatics were identified as having the greatest impact on the ductility of the asphalt.

  17. Preliminary Criticality Analysis of Degraded SNF Accumulations to a Waste Package (SCPB: N/A) 

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Davis

    2005-12-15

    This study is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probability of criticality in the far-field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses. The objective of this evaluation is to provide input to a risk analysis which will show that criticalities involving commercial spent nuclear fuel (SNF) are not credible, or indicate additional measures that are required for the Engineered Barrier Segment (EBS) to make such events incredible. Minimum critical volumes and masses of UO{sub 2}/H{sub 2}O/tuff mixtures are determined without application of regulatory safety limits. This study does not address or demonstrate compliance with regulatory limits.

  18. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  19. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  20. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  1. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  2. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  3. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.W.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

    1995-09-22

    One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys.

  4. Reuse of Woody Biomass Ash Waste in Cementitious Materials

    OpenAIRE

    Ukrainczyk, N.; Vrbos, N.; Koenders, E.A.B.

    2016-01-01

    There is an increased interest in the reuse of ash waste from biomass combustion, being a sustainable source of energy. This paper investigates the partial replacement of cement and sand in building materials with fly ash waste generated from combustion of woody biomass waste. The results show that the ash widens the particle size distribution of cement and has minerals complementary to portland cement, thus justifying its application as cement replacement, but with a relatively high amoun...

  5. Molecular environmental science using synchrotron radiation:Chemistry and physics of waste form materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.; Shuh, David K.

    2005-02-28

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements.

  6. 49 CFR 173.418 - Authorized packages-pyrophoric Class 7 (radioactive) materials.

    Science.gov (United States)

    2010-10-01

    ... (radioactive) materials. 173.418 Section 173.418 Transportation Other Regulations Relating to Transportation... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.418 Authorized packages—pyrophoric Class 7 (radioactive) materials. Pyrophoric Class 7...

  7. 49 CFR 175.701 - Separation distance requirements for packages containing Class 7 (radioactive) materials in...

    Science.gov (United States)

    2010-10-01

    ... containing Class 7 (radioactive) materials in passenger-carrying aircraft. 175.701 Section 175.701... packages containing Class 7 (radioactive) materials in passenger-carrying aircraft. (a) The following table... Class 7 (radioactive) materials labeled RADIOACTIVE YELLOW-II or RADIOACTIVE YELLOW-III and...

  8. Application of common packaging materials in the probiotic fresh cheese production

    Directory of Open Access Journals (Sweden)

    Mirela Iličić

    2016-03-01

    Full Text Available The aim of this work was to investigate the application of common packaging materials polypropylene (PP and polystyrene (PS in the probiotic fresh cheese production packaging. Probiotic and traditional cheeses were produced from milk with standardized milk fat content of 2.3 g/100 g including the application of two cultures (probiotic and traditional. The samples were packed in the PP and PS cups and stored at 4 ºC for 30 days. The observed permeability of gases through the two applied packaging materials was significantly different. Cheese samples were analysed for microbiological properties whereby lactic acid bacteria, Bifidobacterium sp. and aerobic mesophilic bacteria (AMB were determined. Packaging materials showed no significant effect on the content of ascorbic acid which is known to be sensitive to the presence of oxygen.

  9. Physico-chemical characterisation of material fractions in household waste

    DEFF Research Database (Denmark)

    Götze, Ramona; Boldrin, Alessio; Scheutz, Charlotte

    2016-01-01

    State-of-the-art environmental assessment of waste management systems rely on data for the physico-chemical composition of individual material fractions comprising the waste in question. To derive the necessary inventory data for different scopes and systems, literature data from different sources...... and backgrounds are consulted and combined. This study provides an overview of physico-chemical waste characterisation data for individual waste material fractions available in literature and thereby aims to support the selection of data fitting to a specific scope and the selection of uncertainty ranges related...... to the data selection from literature. Overall, 97 publications were reviewed with respect to employed characterisation method, regional origin of the waste, number of investigated parameters and material fractions and other qualitative aspects. Descriptive statistical analysis of the reported physico...

  10. Assessment of collection schemes for packaging and other recyclable waste in European Union-28 Member States and capital cities.

    Science.gov (United States)

    Seyring, Nicole; Dollhofer, Marie; Weißenbacher, Jakob; Bakas, Ioannis; McKinnon, David

    2016-09-01

    The Waste Framework Directive obliged European Union Member States to set up separate collection systems to promote high quality recycling for at least paper, metal, plastic and glass by 2015. As implementation of the requirement varies across European Union Member States, the European Commission contracted BiPRO GmbH/Copenhagen Resource Institute to assess the separate collection schemes in the 28 European Union Member States, focusing on capital cities and on metal, plastic, glass (with packaging as the main source), paper/cardboard and bio-waste. The study includes an assessment of the legal framework for, and the practical implementation of, collection systems in the European Union-28 Member States and an in depth-analysis of systems applied in all capital cities. It covers collection systems that collect one or more of the five waste streams separately from residual waste/mixed municipal waste at source (including strict separation, co-mingled systems, door-to-door, bring-point collection and civic amenity sites). A scoreboard including 13 indicators is elaborated in order to measure the performance of the systems with the capture rates as key indicators to identify best performers. Best performance are by the cities of Ljubljana, Helsinki and Tallinn, leading to the key conclusion that door-to-door collection, at least for paper and bio-waste, and the implementation of pay-as-you-throw schemes results in high capture and thus high recycling rates of packaging and other municipal waste.

  11. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  12. Packaging tomorrow : modelling the material input for European packaging in the 21st century

    NARCIS (Netherlands)

    Hekkert, M.P.; Joosten, L.A.J.; Worrell, E.

    2006-01-01

    This report is a result of the MATTER project (MATerials Technology for CO2 Emission Reduction). The project focuses on CO2 emission reductions that are related to the Western European materials system. The total impact of the reduction options for different scenario's will be modeled in MARKAL (MAR

  13. THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE WASTE PACKAGE DESIGN (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    H. Wang

    1997-01-23

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24, 5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR and 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 44 BWR and 24 BWR Uncanistered Fuel (UCF) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the WP Design, if used with SNF designed for a MOX fuel cycle, do not preclude WP compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual WP design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, and to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded WP performance is similar to an WP loaded with commercial BWR SNF.

  14. 19 CFR 10.815 - Packaging and packing materials and containers for retail sale and for shipment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Packaging and packing materials and containers for... RATE, ETC. United States-Bahrain Free Trade Agreement Rules of Origin § 10.815 Packaging and packing... good is packaged for retail sale and packing materials and containers for shipment are to...

  15. 19 CFR 10.775 - Packaging and packing materials and containers for retail sale and for shipment.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Packaging and packing materials and containers for... RATE, ETC. United States-Morocco Free Trade Agreement Rules of Origin § 10.775 Packaging and packing... good is packaged for retail sale and packing materials and containers for shipment are to...

  16. 49 CFR 173.467 - Tests for demonstrating the ability of Type B and fissile materials packagings to withstand...

    Science.gov (United States)

    2010-10-01

    ... Type B and fissile materials packagings to withstand accident conditions in transportation. Each Type B packaging or packaging for fissile material must meet the test requirements prescribed in 10 CFR part 71 for... 49 Transportation 2 2010-10-01 2010-10-01 false Tests for demonstrating the ability of Type B...

  17. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    Energy Technology Data Exchange (ETDEWEB)

    Marusich, Robert M.

    2012-01-25

    A set of steady state diffusion flow equations, for the hydrogen diffusion from one bag to the next bag (or one plastic waste container to another), within a set of nested waste bags (or nested waste containers), are developed and presented. The input data is then presented and justified. Inputting the data for each volume and solving these equations yields the steady state hydrogen concentration in each volume. The input data (permeability of the bag surface and closure, dimensions and hydrogen generation rate) and equations are analyzed to obtain the hydrogen concentrations in the innermost container for a set of containers which are analyzed for the TRUCON code for the general waste containers and the TRUCON code for the Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB).

  18. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste

  19. Technological challenges of addressing new and more complex migrating products from novel food packaging materials.

    Science.gov (United States)

    Munro, Ian C; Haighton, Lois A; Lynch, Barry S; Tafazoli, Shahrzad

    2009-12-01

    The risk assessment of migration products resulting from packaging material has and continues to pose a difficult challenge. In most jurisdictions, there are regulatory requirements for the approval or notification of food contact substances that will be used in packaging. These processes generally require risk assessment to ensure safety concerns are addressed. The science of assessing food contact materials was instrumental in the development of the concept of Threshold of Regulation and the Threshold of Toxicological Concern procedures. While the risk assessment process is in place, the technology of food packaging continues to evolve to include new initiatives, such as the inclusion of antimicrobial substances or enzyme systems to prevent spoilage, use of plastic packaging intended to remain on foods as they are being cooked, to the introduction of more rigid, stable and reusable materials, and active packaging to extend the shelf-life of food. Each new technology brings with it the potential for exposure to new and possibly novel substances as a result of migration, interaction with other chemical packaging components, or, in the case of plastics now used in direct cooking of products, degradation products formed during heating. Furthermore, the presence of trace levels of certain chemicals from packaging that were once accepted as being of low risk based on traditional toxicology studies are being challenged on the basis of reports of adverse effects, particularly with respect to endocrine disruption, alleged to occur at very low doses. A recent example is the case of bisphenol A. The way forward to assess new packaging technologies and reports of very low dose effects in non-standard studies of food contact substances is likely to remain controversial. However, the risk assessment paradigm is sufficiently robust and flexible to be adapted to meet these challenges. The use of the Threshold of Regulation and the Threshold of Toxicological Concern concepts may

  20. The contributions of construction material waste to project cost ...

    African Journals Online (AJOL)

    Management, Faculty ... management of materials and waste leads to an increase in the total cost of building ... cost, quality and sustainability, as well as on the success of projects. (Nagapan ..... Moving beyond optimism bias and strategic ...

  1. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  2. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  3. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  4. The occurrence of extractible ink residuals in packaging materials used in the Czech Republic.

    OpenAIRE

    Dupáková, Zdeňka; Dobiáš, Jaroslav; Votavová, Lenka; Klaudisová, Kamila; Voldřich, Michal

    2009-01-01

    Abstract The residuals of printing ink components were determined in 94 samples of packaging materials commercially used in the Czech Republic for food packaging. Tested samples included printed polyethylene and polypropylene films, coextruded and laminated films, paperboard beverages boxes, foils for thermo sealing of polystyrene cups and polypropylene cups. Printing ink components were extracted with diethylether, then separated and determined using gas chromatography coupled wit...

  5. Packaging waste prevention in the distribution of fruit and vegetables: An assessment based on the life cycle perspective.

    Science.gov (United States)

    Tua, Camilla; Nessi, Simone; Rigamonti, Lucia; Dolci, Giovanni; Grosso, Mario

    2017-04-01

    In recent years, alternative food supply chains based on short distance production and delivery have been promoted as being more environmentally friendly than those applied by the traditional retailing system. An example is the supply of seasonal and possibly locally grown fruit and vegetables directly to customers inside a returnable crate (the so-called 'box scheme'). In addition to other claimed environmental and economic advantages, the box scheme is often listed among the packaging waste prevention measures. To check whether such a claim is soundly based, a life cycle assessment was carried out to verify the real environmental effectiveness of the box scheme in comparison to the Italian traditional distribution. The study focused on two reference products, carrots and apples, which are available in the crate all year round. An experience of a box scheme carried out in Italy was compared with some traditional scenarios where the product is distributed loose or packaged at the large-scale retail trade. The packaging waste generation, 13 impact indicators on environment and human health and energy consumptions were calculated. Results show that the analysed experience of the box scheme, as currently managed, cannot be considered a packaging waste prevention measure when compared with the traditional distribution of fruit and vegetables. The weaknesses of the alternative system were identified and some recommendations were given to improve its environmental performance.

  6. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  7. 食品包装废弃物的综合利用%Comprehensive Utilization of Food Packaging Wastes

    Institute of Scientific and Technical Information of China (English)

    李仲谨; 余丽丽

    2011-01-01

    Food packaging is one of the most important parts in packaging industry,which leads to increasingly serious environment pollution.The contaminations in food packaging were pointed out and the comprehensive utilization of food packaging wastes were also introduced by analyzing many examples of domestic and overseas.It would give reference for the effective utilization of food packaging wastes in China,and alleviation of the resource and environment restriction.%食品包装业是包装工业的重要组成部分,它带来的环境污染问题日益严重.介绍了食品包装材料种类,并结合国内外实例综述了不同种类食品包装废弃物的综合利用,为保障食品包装废弃物资源得到有效利用,以及缓解我国经济社会发展面临的资源与环境制约提供参考.

  8. 21 CFR 181.22 - Certain substances employed in the manufacture of food-packaging materials.

    Science.gov (United States)

    2010-04-01

    ... of food-packaging materials. Prior to the enactment of the food additives amendment to the Federal... materials. So used, these substances are not considered “food additives” within the meaning of section 201(s... intended to accomplish any physical or technical effect in the food itself, shall be reduced to the...

  9. Final versions of the initial package of classroom materials and guidelines

    NARCIS (Netherlands)

    Doorman, Michiel; Jonker, Vincent

    2014-01-01

    The main aim of the mascil Work Package 3 ‘classroom materials’ is to present guidelines and an online collection of teaching materials that encourage and support teachers to design their own classroom materials that connect IBL and the WoW in mathematics and science education.The collection present

  10. Impact of Chlorine dioxide Gas on the Barrier Properties of Polymeric Packaging Materials

    Science.gov (United States)

    One important criterion of polymeric material selection and packaging design for fresh produce is choosing the material with suitable ratio of carbon dioxide and oxygen permabilities (PCO2/P O2), to the respiratory proportion of the targeted produce. The ratio of [O2] and [CO2] in the head space var...

  11. Certified reference materials for food packaging specific migration tests: development, validation and modelling

    NARCIS (Netherlands)

    Stoffers, N.H.

    2005-01-01

    Keywords:certified reference materials; diffusion; food contact materials; food packaging; laurolactam; migration modelling; nylon; specific migration This thesis compiles several research topics

  12. 49 CFR 173.421 - Excepted packages for limited quantities of Class 7 (radioactive) materials.

    Science.gov (United States)

    2010-10-01

    ... exceed 0.005 mSv/hour (0.5 mrem/ hour); (3) The nonfixed (removable) radioactive surface contamination on... 7 (radioactive) materials. 173.421 Section 173.421 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive...

  13. 78 FR 16044 - Hazardous Materials Packaging-Composite Cylinder Standards; Public Meeting

    Science.gov (United States)

    2013-03-13

    ... reinforced plastic (DOT-FRP) or fully wrapped carbon-fiber reinforced aluminum lined cylinders (DOT- CFFC... TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Hazardous Materials Packaging--Composite... the manufacture, marking, sale and use of non-DOT specification composite cylinders. The...

  14. Cleanup Verification Package for the 618-2 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  15. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while maintaining food quality.

  16. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2001-02-27

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited

  17. Remote automated material handling of radioactive waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site`s suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling.

  18. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlement agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.

  19. Perceptions of Sustainability and Functional Aspects on Liquid Carton Board Packaging Materials versus Competing Materials for Juice Applications in Sweden

    Directory of Open Access Journals (Sweden)

    Carl Olsmats

    2015-08-01

    Full Text Available This research explores the downstream perceptions of liquid carton board versus competing materials in packaging applications for juice. The methodology used is focus groups. The context is sustainability and functional performance, and related potential implications for the beverage industry value chain. The purpose is to get a deeper insight and understanding of functionality in relation to juice beverage packaging. The results confirm that there is no optimal packaging for every juice product, but a multitude, depending on the distribution channel, retail outlet, customer preferences, and context of consumption. There are some general packaging preferences, but the main deciding criteria for purchase seem to be the product characteristics in terms of quality, taste, brand, price and shelf life. For marketing reasons, packaging has to be adopted to the product and its positioning, liquid carton board packaging seem to have some functional advantages in distribution and is considered as sustainable and functional among many consumers. Major drawbacks seem to be shape limitations, lack of transparency, and lack of a “premium look”. To improve packaging performance and avoid sub-optimization, actors in the beverage industry value chain need to be integrated in development processes.

  20. Aluminum-Scandium: A Material for Semiconductor Packaging

    Science.gov (United States)

    Geissler, Ute; Thomas, Sven; Schneider-Ramelow, Martin; Mukhopadhyay, Biswajit; Lang, Klaus-Dieter

    2016-10-01

    A well-known aluminum-scandium (Al-Sc) alloy, already used in lightweight sports equipment, is about to be established for use in electronic packaging. One application for Al-Sc alloy is manufacture of bonding wires. The special feature of the alloy is its ability to harden by precipitation. The new bonding wires with electrical conductivity similar to pure Al wires can be processed on common wire bonders for aluminum wedge/wedge (w/w) bonding. The wires exhibit very fine-grained microstructure. Small Al3Sc particles are the main reason for its high strength and prevent recrystallization and grain growth at higher temperatures (>150°C). After the wire-bonding process, the interface is well closed. Reliability investigations by active power cycling demonstrated considerably improved lifetime compared with pure Al heavy wires. Furthermore, the Al-Sc alloy was sputter-deposited onto silicon wafer to test it as chip metallization in copper (Cu) ball/wedge bonding technology. After deposition, the layers exhibited fine-grained columnar structure and small coherent Al3Sc particles with dimensions of a few nanometers. These particles inhibit softening processes such as Al splashing in fine wire bonding processes and increase the thickness of remnant Al under the copper balls to 85% of the initial thickness.

  1. Flexible Foam Protection Materials for Constellation Space Suit Element Portable Life Support Subsystem Packaging Study

    Science.gov (United States)

    Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  2. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  3. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  4. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials.

    Science.gov (United States)

    Tang, X Z; Kumar, P; Alavi, S; Sandeep, K P

    2012-01-01

    Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.

  5. MATEO: a software package for the molecular design of energetic materials.

    Science.gov (United States)

    Mathieu, Didier

    2010-04-15

    To satisfy the need of energetic materials chemists for reliable and efficient predictive tools in order to select the most promising candidates for synthesis, a custom software package is developed. Making extensive use of publicly available software, it integrates a wide range of models and can be used for a variety of tasks, from the calculation of molecular properties to the prediction of the performance of heterogeneous materials, such as propellant compositions based on ammonium perchlorate/aluminium mixtures. The package is very easy to use through a graphical desktop environment. According to the material provided as input, suitable models and parameters are automatically selected. Therefore, chemists can apply advanced predictive models without having to learn how to use complex computer codes. To make the package more versatile, a command-line interface is also provided. It facilitates the assessment of various procedures by model developers.

  6. An Investigation Into The Viability Of Nanocrystalline Cellulose As A Packaging Material

    Science.gov (United States)

    Glass, John

    The focus of this proposal is to identify unexplored areas of research in the field of packaging science, specifically related to the incorporation of Nanocrystalline Cellulose (NCC) as a functional material in fiber based packaging, as well as to highlight some of potential risks and unknowns in the product lifecycle. This research hypothesizes that incorporating NCC into wood fiber-based c-flute corrugated packaging medium will show a sufficient performance improvement to justify additional research. Nanomaterials, as a whole, are still being understood, including those using naturally occurring bases such as NCC. Further incremental testing with NCC will help provide a performance and safety baseline for the necessary future research prior to mass production. NCC holds great promise for the future: a commonly available, naturally occurring material that's easily recyclable and biodegradable, yet has the strength of steel. Due diligence is required for this material to come to market in a safe and sustainable manner.

  7. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of high-level radioactive-waste disposal containers. The waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The copper-based alloy materials are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The austenitic materials are Types 304L and 316L stainless steels and Alloy 825. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr, and they must be retrievable from the disposal site during the first 50 yr after emplacement. The containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This volume surveys the available data on the phase stability of both groups of candidate alloys. The austenitic alloys are reviewed in terms of the physical metallurgy of the iron-chromium-nickel system, martensite transformations, carbide formation, and intermetallic-phase precipitation. The copper-based alloys are reviewed in terms of their phase equilibria and the possibility of precipitation of the minor alloying constituents. For the austenitic materials, the ranking based on phase stability is: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is: CDA 102 (oxygen-free copper) (best), and then both CDA 715 and CDA 613. 75 refs., 24 figs., 6 tabs.

  8. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  9. 9975 SHIPPING PACKAGE PERFORMANCE OF ALTERNATE MATERIALS FOR LONG-TERM STORAGE APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, E.; Hoffman, E.; Daugherty, W.

    2010-02-24

    The Model 9975 shipping package specifies the materials of construction for its various components. With the loss of availability of material for two components (cane fiberboard overpack and Viton{reg_sign} GLT O-rings), alternate materials of construction were identified and approved for use for transport (softwood fiberboard and Viton{reg_sign} GLT-S O-rings). As these shipping packages are part of a long-term storage configuration at the Savannah River Site, additional testing is in progress to verify satisfactory long-term performance of the alternate materials under storage conditions. The test results to date can be compared to comparable results on the original materials of construction to draw preliminary conclusions on the performance of the replacement materials.

  10. Preparation, Characterization and Hot Storage Stability of Asphalt Modified by Waste Polyethylene Packaging

    Institute of Scientific and Technical Information of China (English)

    Changqing Fang; Ying Zhang; Qian yu; Xing Zhou; Dagang Guo; Ruien Yu; Min Zhang

    2013-01-01

    Waste polyethylene packaging (WPE) was used to modify asphalt,and hot storage stability of the modified asphalt was studied in this paper.The morphological change and component loss of WPE modified asphalt were characterized by fluorescence microscopy,Fourier transform infrared spectroscopy (FT-IR),differential scanning calorimetry (DSC),thermogravimetry (TG) and isolation testing.In addition,the mechanism of the hot storage stability of WPE modified asphalt was discussed.The results showed that the modification of asphalt with WPE was a physical process.It was found that the filament or partly network-like structure formed in the modified asphalt system was beneficial to improving the hot storage stability.Moreover,the addition of WPE resulted in a decrease in both the light components volatilization and the macromolecules decomposition of asphalt.It was demonstrated that when the content of WPE in matrix asphalt was less than 10 wt%,the service performances of modified asphalt could be better.

  11. W1045 environment surf drip shield and waste package outer barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G

    1999-07-14

    The environments on the drip shield and waste package outer barrier are controlled by the compositions of the waters that contact these components. the temperature (T) of these components, and the effective relative humidity (RH) at these components. Because the composition of the waters that are expected to enter the emplacement drifts (either by seepage flow or by episodic flow) have not been specified: well J13 water was chosen as the reference water (Harrar 1990). Section 6.2 discusses the accessible RH for the temperatures of interest at the repository horizon. Section 6.3 discusses the adsorption of water on metal alloys in the absence of hygroscopic salts. Because the temperatures of the DSs and the WPOBs are higher than those of the surrounding near-field environment, the relative humidity at the DSs and the WPOBs will be lower than that of the surrounding near-field environment. This difference is a result of the water partial pressure in the drift being constant and no higher than the equilibrium water vapor pressure at the temperature of the drift wall.

  12. Flexible Foam Protection Materials for Portable Life Support System Packaging Study

    Science.gov (United States)

    Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  13. THE TYPE OF PACKAGING MATERIAL AND STORAGE CONDITIONS AS FACTORS FOR WHEAT SEED QUALITY

    OpenAIRE

    Josip Šimenić

    2000-01-01

    Seed of cereal is normally grown on 5-8% of the overall plots under cereals in the Republic of Croatia. The produced seed meets the needs for high quality seed of wheat, barley, oat and other cereals. Certain quantities of seed remain unsold every year and are kept at various storage conditions and in various packaging material. The objective of this paper was to find out which storage conditions and what sort of packaging material would provide for the best viability of wheat see...

  14. Hydrogen Concentration in the Inner-Most Container within a Pencil Tank Overpack Packaged in a Standard Waste Box Package

    Energy Technology Data Exchange (ETDEWEB)

    Marusich, Robert M.

    2013-08-15

    The purpose of this report is to evaluate hydrogen generation within Pencil Tank Overpacks (PTO) in a Standard Waste Box (SWB), to establish plutonium (Pu) limits for PTOs based on hydrogen concentration in the inner-most container and to establish required configurations or validate existing or proposed configurations for PTOs. The methodology and requirements are provided in this report.

  15. Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site, Waste Site Reclassification Form 2008-028

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-06-27

    The 120-F-1 waste site consisted of two dumping areas located 660 m southeast of the 105-F Reactor containing laboratory equipment and bottles, demolition debris, light bulbs and tubes, small batteries, small drums, and pesticide contaminated soil. It is probable that 108-F was the source of the debris but the material may have come from other locations within the 100-F Area. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Prevention of spontaneous combustion of backfilled plant waste material.

    CSIR Research Space (South Africa)

    Adamski, SA

    2003-06-01

    Full Text Available Since Grootegeluk Coal Mine commenced operation in 1980 all plant discards and inter-burden material have been stacked on discards dumps, a practice that has led to the spontaneous combustion of the waste material on these dumps. From 1980 to 1988...

  17. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment.

    Science.gov (United States)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  18. FINITE-ELEMENT ANALYSIS OF ROCK FALL ON UNCANISTERED FUEL WASTE PACKAGE DESIGNS (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    Z. Ceylan

    1996-10-18

    The objective of this analysis is to explore the Uncanistered Fuel (UCF) Tube Design waste package (WP) resistance to rock falls. This analysis will also be used to determine the size of rock that can strike the WP without causing failure in the containment barriers from a height based on the starter tunnel dimensions. The purpose of this analysis is to document the models and methods used in the calculations.

  19. Design of a package dedicated to the dismantlement wastes; Conception d'un emballage dedie aux dechets de deconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Chazot, M. [Robatel Industries, Genas (France)

    2011-11-15

    A package for nuclear transport has to comply with strict regulations and mechanical testing concerning free fall, overpressure, fire resistance, water immersion.... which makes its design very dependent on what it will contain. The Robatel firm was founded in 1830 and has been working in the nuclear sector for more than 50 years during which it has designed more than 70 different B-type packages and has manufactured more than 500 items. EDF asked the Robatel firm to design a new B-type package, called R73 to carry metal wastes coming from the dismantling of nuclear power plants like Brennilis, Chinon A1, ... This article describes the design stage of R73 from the EDF initial demand to the reception of the agreement. It appears that the design process is more an iterative and cyclic process than a linear one because the different approaches concerning definition, design, safety and compliance to regulations are strongly correlated. (A.C.)

  20. Material characterization in cemented radioactive waste with the associated particle technique

    Science.gov (United States)

    Carasco, C.; Perot, B.; Mariani, A.; El Kanawati, W.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2010-07-01

    The elemental characterization of materials constituting radioactive waste is of great importance for the management of storage and repository facilities. To complement the information brought by gamma or X-ray imaging, the performance of a fast neutron interrogation system based on the associated particle technique (APT) has been investigated by using MCNP simulations and by performing proof-of-principle experiments. APT provides a 3D localisation of the emission of fast neutron induced gamma rays, whose spectroscopic analysis allows to identify the elements present in specific volumes of interest in the waste package. Monte Carlo calculations show that it is possible to identify materials enclosed behind the thick outer envelop of a ≈1 m 3 cemented waste drum, provided the excited nuclei emit gamma rays with a sufficient energy to limit photon attenuation. Neutron attenuation and scattering are also predominant effects that reduce the sensitivity and spatial selectivity of APT, but it is still possible to localise items in the waste by neutron time-of-flight and gamma-ray spectroscopy. Experimental tests confirm that the elemental characterization is possible across thick mortar slabs.

  1. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  2. Assessing computer waste generation in Chile using material flow analysis.

    Science.gov (United States)

    Steubing, Bernhard; Böni, Heinz; Schluep, Mathias; Silva, Uca; Ludwig, Christian

    2010-03-01

    The quantities of e-waste are expected to increase sharply in Chile. The purpose of this paper is to provide a quantitative data basis on generated e-waste quantities. A material flow analysis was carried out assessing the generation of e-waste from computer equipment (desktop and laptop PCs as well as CRT and LCD-monitors). Import and sales data were collected from the Chilean Customs database as well as from publications by the International Data Corporation. A survey was conducted to determine consumers' choices with respect to storage, re-use and disposal of computer equipment. The generation of e-waste was assessed in a baseline as well as upper and lower scenarios until 2020. The results for the baseline scenario show that about 10,000 and 20,000 tons of computer waste may be generated in the years 2010 and 2020, respectively. The cumulative e-waste generation will be four to five times higher in the upcoming decade (2010-2019) than during the current decade (2000-2009). By 2020, the shares of LCD-monitors and laptops will increase more rapidly replacing other e-waste including the CRT-monitors. The model also shows the principal flows of computer equipment from production and sale to recycling and disposal. The re-use of computer equipment plays an important role in Chile. An appropriate recycling scheme will have to be introduced to provide adequate solutions for the growing rate of e-waste generation.

  3. Material Recovery from Wastes: An Employment and Poverty Alleviation Tool

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2017-02-01

    Full Text Available Waste management is not only about removing waste from the environment but also a tool of social integration and economic well-being. Waste management through the three Rs offers advantages of employment, sustainable development and poverty alleviation. The environment requires attention because it is rapidly degrading amidst dwindling natural resources, mounting amounts of wastes while poverty continues to increase. This paper focused on material recovery from wastes through recovery, re-use, and recycling of municipal solid wastes in the north- eastern city of Maiduguri in Nigeria over a period of 24 months between 2011 and 2013. Three waste management scenarios were thought of and adopted within 7 groups made of the major wards, areas of the Maiduguri metropolis and the University of Maiduguri; involving 5000 respondents/participants working under waste collection outfits or operating at open dump areas. Data obtained were analyzed using simple statistical methods. Findings revealed an annual estimate of the recovery as 16.8 tons of bottles/glasses, 158.4 tons of plastics/rubber, and 264 tons of metal. It also indicated that considerable amount of money could be made from material recovery and recycling=N=97,600 was made from the sales of bottles/glasses, =N= 652,800 from plastic/rubber and =N= 1,408,000 from sales of scrap metals. Material recovery, re-use and recycling have many economic and material benefits. They also constitute human capacity development schemes. These recoverables have paved great means of livelihood to many people involved in this activity. There is need for support from either government or private sector.

  4. 49 CFR 175.702 - Separation distance requirements for packages containing Class 7 (radioactive) materials in cargo...

    Science.gov (United States)

    2010-10-01

    ... containing Class 7 (radioactive) materials in cargo aircraft. 175.702 Section 175.702 Transportation Other... (radioactive) materials in cargo aircraft. (a) No person may carry in a cargo aircraft any package required by... separation distance between the surfaces of the radioactive materials packages, overpacks or...

  5. 49 CFR 175.706 - Separation distances for undeveloped film from packages containing Class 7 (radioactive) materials.

    Science.gov (United States)

    2010-10-01

    ... packages containing Class 7 (radioactive) materials. 175.706 Section 175.706 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF... (radioactive) materials. No person may carry in an aircraft any package of Class 7 (radioactive)...

  6. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    Energy Technology Data Exchange (ETDEWEB)

    French, David M. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hayes, Timothy A. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pope, Howard L. [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States); Enriquez, Alejandro E. [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Carson, Peter H. [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-07-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely

  7. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  8. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  9. Application of Digital Image Correlation to Measurement of Packaging Material Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zhou

    2013-01-01

    Full Text Available Among various packaging materials, papers and polymer plastics are the most common due to their light weights, low costs, and other advantages. However, their mechanical properties are difficult to measure precisely because of their softness. To overcome the difficulty, a new measure instrument prototype is proposed based on an optical method known as the digital image correlation (DIC. Experiments are designed to apply the DIC to measure mechanical properties of flexible packaging materials, including the stress-strain relationship, the Poisson ratio, the coefficient of heat expansion, the creep deformation, and the top-pressure deformation of corrugated box. In addition, the low frequency vibration of package is simulated, and the vibration frequencies are measured by DIC. Results obtained in the experiments illustrate the advantages of the DIC over traditional methods: noncontact, no reinforced effect, high precision over entire area, wide measurement range, and good measurement stability.

  10. MIXPAC: a subroutine package for calculating equations of state for equilibrium mixtures of materials

    Energy Technology Data Exchange (ETDEWEB)

    Cranfill, C.W.

    1983-08-01

    This manual describes MIXPAC, a subroutine package for calculating equations of state (i.e., thermodynamic and transport properties) for plasmas composed of equilibrium mixtures of materials. The package is vectorized for the Los Alamos Cray-1 computers and uses EOSPAC, another vectorized subroutine package, to access the Los Alamos Sesame EOS data library. Each mixture is forced to be in equilibrium through the constraints that all its constituents have the same values for two state functions (e.g., temperature and pressure). The desired equations of state (including first partial derivatives) are then calculated for the mixture consistent with these constraints. All equations of state available for pure materials through EOSPAC are available for equilibrium mixtures through MIXPAC.

  11. The challenge of identifying non-intentionally added substances from food packaging materials: a review.

    Science.gov (United States)

    Nerin, C; Alfaro, P; Aznar, M; Domeño, C

    2013-05-01

    Packaged food can contain non-intentionally added substances (NIAS) as a result of reaction and degradation processes or the presence of impurities in the raw materials used for the packaging production. This manuscript reviews the evidence of NIAS and their possible origin. One of the most challenging and difficult tasks when a sample of packaging materials arrives at the laboratory is knowing the procedure to apply for identifying the unknown compounds. This work proposes an analytical procedure for sample treatment, applicable to polymers as well as to migration samples, and for NIAS identification. The identification protocol comprises the determination of both volatile and non-volatile compounds. A review is presented of the most novel analytical techniques used for identification purposes, particularly high resolution mass spectrometry (HRMS).

  12. Phase Change Materials for Thermal Management of IC Packages

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2007-06-01

    Full Text Available This paper deals with the application of phase change materials (PCM for thermal management of integrated circuits as a viable alternative to active forced convection cooling systems. The paper presents an analytical description and solution of heat transfer, melting and freezing process in 1D which is applied to inorganic crystalline salts. There are also results of numerical simulation of a real 3D model. These results were obtained by means of the finite element method (FEM. Results of 3D numerical solutions were verified experimentally.

  13. Extension of the sorting instructions for household plastic packaging and changes in exposure to bioaerosols at materials recovery facilities.

    Science.gov (United States)

    Schlosser, O; Déportes, I Z; Facon, B; Fromont, E

    2015-12-01

    The aim of this study was to assess how extending the sorting instructions for plastic packaging would affect the exposure of workers working at materials recovery facility (MRF) to dust, endotoxins, fungi and bacteria, taking into consideration other factors that could have an influence on this exposure. Personal sampling was carried out at four MRFs during six sampling campaigns at each facility, both in sorting rooms and when the workers were involved in "mobile tasks" away from the rooms. The data was analysed by describing the extension of sorting instructions both using a qualitative variable (after vs before) and using data for the pots and trays recycling stream, including or excluding plastic film. Overall, before the extension of the sorting guidelines, the geometric mean of personal exposure levels in sorting rooms was 0.3mg/m(3) for dust, 27.7 EU/m(3) for endotoxins, 13,000 CFU/m(3) for fungi and 1800 CFU/m(3) for bacteria. When workers were involved in mobile tasks away from the rooms, these averages were 0.5mg/m(3), 25.7 EU/m(3), 28,000 CFU/m(3) and 5100 CFU/m(3) respectively.The application by households of instructions to include pots, trays and film with other recyclable plastic packaging led to an increase in exposure to endotoxins, fungi and bacteria at MRFs. For an increase of 0.5 kg per inhabitant per year in the pots, trays and film recycling stream, exposure in sorting rooms rose by a factor of 1.4-2.2, depending on the biological agent. Exposure during mobile tasks increased by a factor of 3.0-3.6. The age of the waste amplified the effect of the extension of sorting instructions on exposure to fungi, bacteria and endotoxins. Factors that had a significant influence on the exposure of workers to dust and/or bioaerosols included the presence of paper, newspapers and magazines in the sorted waste, the order in which incoming waste was treated and the quality of the ventilation system in the sorting rooms. The levels of exposure observed in

  14. Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products.

    Science.gov (United States)

    Amna, Touseef; Yang, Jieun; Ryu, Kyeong-Seon; Hwang, I H

    2015-07-01

    To prevent the development and spread of spoilage/pathogenic microorganisms via meat foodstuffs, antimicrobial nanocomposite packaging can serve as a potential alternative. The objective of this study was to develop a new class of antimicrobial hybrid packaging mat composed of biodegradable polyurethane supplemented with virgin olive oil and zinc oxide via electrospinning. Instead of mixing antimicrobial compounds directly with food, incorporation in packaging materials allows the functional effect at food surfaces where microbial activity is localized. The nanofibers were characterized by SEM, EDX, XRD and TEM. The antibacterial activity was tested against two common foodborne pathogens viz., Staphylococcus aureus and Salmonella typhimurium. The present results indicated that incorporation of olive oil in the polymer affected morphology of PU nanofibers and nanocomposite packaging were able to inhibit growth of pathogens. Thus; as-spun mat can be used as prospective antimicrobial packaging, which potentially reduces contamination of meat/meat-products. Moreover, introduced biodegradable packaging for meat products could serve to replace PVC films and simultaneously help to protect natural environment.

  15. An analysis of the qualification criteria for small radioactive material shipping packages

    Energy Technology Data Exchange (ETDEWEB)

    McClure, J.D.

    1983-05-01

    The RAM package design certification process has two important elements, testing and acceptance. These terms sound very similar but they have specific meanings. Qualification testing in the context of this study is the imposition of simulated accident test conditions upon the candidate package design. (Normal transportation environments may also be included.) Following qualification testing, the acceptance criteria provide the performance levels which, if demonstrated, indicate the ability of the RAM package to sustain the severity of the qualification testing sequence and yet maintain specified levels of package integrity. This study has used Severities of Transportation Accidents as a data base to examine the regulatory test criteria which are required to be met by small packages containing Type B quantities of radioactive material (RAM). The basic findings indicate that the present regulatory test standards provide significantly higher levels of protection for the surface transportation modes (truck, rail) than for RAM packages shipped by aircraft. It should also be noted that various risk assessment studies have shown that the risk to the public due to severe transport accidents by surface and air transport modes is very low. A key element in this study was the quantification of the severity of the transportation accident environment and the severity of the present qualification test standards (called qualification test standards in this document) so that a direct comparison could be made between them to assess the effectiveness of the existing qualification test standards. The manner in which this was accomplished is described.

  16. Bremsstrahlung information for the non-destructive characterization of radioactive waste packages. Final report; Nutzung von Bremsstrahlungsinformationen fuer die zerstoerungsfreie Charakterisierung radioaktiver Abfaelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Rohrmoser, B.; Lierse von Gostomski, C.

    2013-04-15

    The report describes a feasibility study on non-destructive characterization of radioactive waste package using bremsstrahlung information within the gamma spectra. A multi-step was developed for the identification of the bremsstrahlung in the measured gamma spectra under defined boundary conditions. The experimental investigations were performed using a stationary HPGe detector system, a mobile HPGe detector system and a mobile gamma scanner. Further studies are necessary with respect to the possible beta emitting radionuclides in a radioactive waste package.

  17. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    Science.gov (United States)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  18. Assessing materials (''Getters'') to immobilize or retard the transport of technetium through the engineered barrier system at the potential Yucca Mountain nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Viani, B E

    1999-03-15

    Current performance assessment calculations show that technetium (Tc) and neptunium (Np) will deliver the major fraction of the radiation dose to the accessible environment from the potential Yucca Mountain nuclear waste repository. Therefore, materials that can immobilize or delay the transport of Tc or Np (getters) are being considered for addition to either the waste-package or the backfill adjacent to the waste-package. Of the two radionuclides, Tc presents the greater challenge in identifying a suitable getter material. This report identifies several materials that warrant further consideration for immobilizing and/or sorbing Tc as additives to the backfill, and recommends active carbon and an inorganic oxide for initial testing. Other materials, such as zero valent iron, might be useful as getters if they were placed in the waste package itself, a subject that merits further investigation.

  19. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  20. Potential applications of nanostructured materials in nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.