WorldWideScience

Sample records for waste management system

  1. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  2. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2017-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover......, specific methodological challenges arise when investigating waste systems, such as the allocation of impacts and the consideration of long-term emissions. The complexity of waste LCAs is mainly derived from the variability of the object under study (waste) which is made of different materials that may...

  3. Assessing waste management systems using reginalt software

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs.

  4. Life Cycle Assessment of Municipal Waste Management System ...

    African Journals Online (AJOL)

    Life Cycle Assessment of Municipal Waste Management System (Case Study: ... solid waste management systems for determine the optimum municipal solid waste ... include water pollution, air pollution, consumed energy and waste residues.

  5. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  6. 1993 baseline solid waste management system description

    Energy Technology Data Exchange (ETDEWEB)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

  7. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  8. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  9. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  10. Healthcare waste generation and its management system: the case ...

    African Journals Online (AJOL)

    Healthcare waste generation and its management system: the case of health ... in the course of activities, the generation of hazardous and non hazardous waste is a ... Segregation of wastes and pre treatment of infectious wastes were not ...

  11. INTEGRATED WASTE MANAGEMENT SYSTEM IN HARGHITA COUNTY

    Directory of Open Access Journals (Sweden)

    Mihai-Constantin AVORNICULUI

    2015-11-01

    Full Text Available Waste management problems in Harghita County (and other places in the country have a major negative impact on society and pose a direct threat to human health, and an adverse effect on quality of life. Considering the current practices, it is clear that the system of waste management in Romania and Harghita county needs to be improved to meet the requirements of new national and European regulations. In Harghita County there are 36 protected areas of national interest, four protected areas of local interest and 18 Natura 2000 sites, including 13 Sites of Community Importance (SCI and 5 Special Protection Areas (SPA. Strengthening a sustainable waste management system involves major changes to current practices. Implementing such changes can be successfully achieved only through the involvement of the whole society: population– as users, entrepreneurs, socio-economic institutions and public authorities.

  12. Smart Garbage Monitoring System for Waste Management

    Directory of Open Access Journals (Sweden)

    Mohd Yusof Norfadzlia

    2017-01-01

    Full Text Available Piles of rubbish are one of the major problems faced by most people in Malaysia, especially those who live in flats, as the number of bins is limited and shared among all residents. It may cause pollutions, which may lead to sanitary issues and diseases. This project presents the development of a smart garbage monitoring system in order to measure waste level in the garbage bin in real-time and to alert the municipality, in particular cases, via SMS. The proposed system is consisted by the ultrasonic sensor to measure the waste level, the GSM module to send the SMS, and an Arduino Uno which controls the system operation. It supposes to generate and send the warning messages to the municipality via SMS when the waste bin is full or almost full, so the garbage can be collected immediately. Furthermore, it is expected to contribute to improving the efficiency of the solid waste disposal management.

  13. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2011-10-12

    ...: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special......

  14. Stakeholder analysis for industrial waste management systems.

    Science.gov (United States)

    Heidrich, Oliver; Harvey, Joan; Tollin, Nicola

    2009-02-01

    Stakeholder approaches have been applied to the management of companies with a view to the improvement of all areas of performance, including economic, health and safety, waste reduction, future policies, etc. However no agreement exists regarding stakeholders, their interests and levels of importance. This paper considers stakeholder analysis with particular reference to environmental and waste management systems. It proposes a template and matrix model for identification of stakeholder roles and influences by rating the stakeholders. A case study demonstrates the use of these and their ability to be transferred to other circumstances and organizations is illustrated by using a large educational institution.

  15. Waste Information Management System-2012 - 12114

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has

  16. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  17. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2011-12-08

    ....: EPA-R08-RCRA-2011-0823; FRL-9502-4] Hazardous Waste Management System; Identification and Listing of... industrial solid waste. If finalized, the EPA would conclude that ConocoPhillips' petitioned waste is... subject to Federal RCRA delisting, to manage industrial waste. II. Background A. What is a listed waste...

  18. On Integrity Constraints for a Waste Management Information System

    OpenAIRE

    Schreiber, D. (Dominik)

    1994-01-01

    There is a waste problem in nearly every country. A model of a waste generating system and an efficient waste management information system are the first steps to control this problem. Some countries have already enacted laws which force communities and enterprises to report annually the amounts of wastes produced. For example, the German federal state, Lower Saxony, enacted such a law in 1992. This YSSP-Project deals with a case study on the development of a waste management information syst...

  19. Report: integrated industrial waste management systems in China.

    Science.gov (United States)

    Zhang, Wenxin; Roberts, Peter

    2007-06-01

    Various models of urban sustainable development have been introduced in recent years and some of these such as integrated waste management have been proved to be of particular value. Integrated industrial waste management systems include all the administrative, financial, legal, planning and engineering functions involved in solutions to the problems of industrial waste. Even though the pace of the improvement made to China's industrial waste management capacity is impressive, China has been unable to keep up with the increasing demand for waste management. This paper will evaluate the application of integrated industrial waste management systems in promoting urban sustainable development in the context of three case study cities in China (positive case, average case and negative case) by identifying and accessing the factors that affect the success or failure of integrated industrial waste management systems.

  20. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identifying and Listing Hazardous Waste... permitted, licensed, or registered by a State to manage industrial solid waste. The rule also imposes... per year from the list of hazardous wastes. The Agency has decided to grant the petition based on an...

  1. 75 FR 51434 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-08-20

    ... No. EPA-HQ-RCRA-2009-0640. Mail: Send your comments to the Hazardous and Solid Waste Management... Delivery: Deliver two copies of your comments to the Hazardous and Solid Waste Management System... electronically in http://www.regulations.gov or in hard copy at the Hazardous and Solid Waste Management...

  2. Development of a Universal Waste Management System

    Science.gov (United States)

    Stapleton, Thomas J.; Baccus, Shelley; Broyan, James L., Jr.

    2013-01-01

    NASA is working with a number of commercial companies to develop the next low Earth orbit spacecraft. The hardware volume and weight constraints are similar to or greater than those of the Apollo era. This, coupled with the equally demanding cost challenge of the proposed commercial vehicles, causes much of the Environmental Control and Life Support System (ECLSS) designs to be reconsidered. The Waste Collection System (WCS) is within this group of ECLSS hardware. The development to support this new initiative is discussed within. A WCS concept - intended to be common for all the vehicle platforms currently on the drawing board - is being developed. The new concept, referred to as the Universal Waste Management System (UWMS), includes favorable features from previous designs while improving on other areas on previous Space Shuttle and the existing International Space Station (ISS) WCS hardware, as needed. The intent is to build a commode that requires less crew time, improved cleanliness, and a 75% reduction in volume and weight compared to the previous US ISS/Extended Duration Orbitor WCS developed in the 1990s. The UWMS is most similar to the ISS Development Test Objective (DTO) WCS design. It is understood that the most dramatic cost reduction opportunity occurs at the beginning of the design process. To realize this opportunity, the cost of each similar component between the UWMS and the DTO WCS was determined. The comparison outlined were the design changes that would result with the greatest impact. The changes resulted in simplifying the approach or eliminating components completely. This initial UWMS paper will describe the system layout approach and a few key features of major components. Future papers will describe the UWMS functionality, test results, and components as they are developed.

  3. Revolutionary advances in medical waste management. The Sanitec system.

    Science.gov (United States)

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the

  4. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  5. Deployed Force Waste Management

    Science.gov (United States)

    2004-11-01

    Granath J., Baky A., Thhyselius L., (2004). Municipal Solid Waste Management from a Systems Perspective. Journal of Cleaner Production , forthcoming...Municipal Solid Waste Management from a Systems Perspective. Journal of Cleaner Production , forthcoming article In this paper different waste

  6. A system dynamics approach for hospital waste management.

    Science.gov (United States)

    Chaerul, Mochammad; Tanaka, Masaru; Shekdar, Ashok V

    2008-01-01

    Healthcare services provided by hospitals may generate some infectious wastes. Although a large percentage of hospital waste is classified as general waste, which has similar nature as that of municipal solid waste and, therefore, could be disposed in municipal landfills, a small portion of infectious waste has to be managed in the proper manner in order to minimize risk to public health. Many factors involved in the hospital waste management system often link to one another, which require a comprehensive analysis to determine the role of each factor in the system. In this paper, we present a hospital waste management model based on system dynamics to determine the interaction among factors in the system using a software package, Stella. A case study of the City of Jakarta, Indonesia is selected. The hospital waste generation is affected by various factors including the number of beds in the hospitals and the NIMBY (not in my back yard) syndrome. To minimize the risk to public health, we found that waste segregation, as well as infectious waste treatment prior to disposal, has to be conducted properly by the hospital management, especially when scavenging takes place in landfill sites in developing countries.

  7. Role of the South African Waste Information System in improving waste management

    CSIR Research Space (South Africa)

    Godfrey, L

    2010-09-01

    Full Text Available Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research, whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed...

  8. Improving waste management through a process of learning: the South African waste information system

    CSIR Research Space (South Africa)

    Godfrey, L

    2011-05-01

    Full Text Available Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed...

  9. Intelligent information system for waste management; Jaetehuollon aelykaes tietojaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nuortio, T. [Kuopio Univ. (Finland)

    2005-07-01

    'iWaste - Intelligent Information System for Waste Management' - was a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project was to improve the management and use of waste management data. Also the project focused on the development of information management systems. The results of the project are numerous. A study of the present state of information management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, communication requirements among different actors, and the characteristics and applications of the software products. The conceptual data model of waste management was developed and resulted as the hyper document for connecting waste and information management specialists, and for research and educational purposes. Also, this model can be used for the development of political regulation. Methodologies and models for processing data into information for decision making were developed. The methodologies and models include e.g. data mining techniques, prediction of waste generation and optimisation of waste pick-up and transport. (orig.)

  10. Environmental and economic analysis of management systems for biodegradable waste

    Energy Technology Data Exchange (ETDEWEB)

    Sonesson, U. [Department of Agricultural Engineering, Swedish University of Agricultural Sciences, P.O. Box 7033, S-750 07 Uppsala (Sweden); Bjoerklund, A. [Department of Chemical Engineering and Technology/Industrial Ecology, Royal Institute of Technology, S-100 44 Stockholm (Sweden); Carlsson, M. [Department of Economics, Swedish University of Agricultural Sciences, P.O. Box 7013, S-750 07 Uppsala (Sweden); Dalemo, M. [Swedish Institute of Agricultural Engineering, P.O. Box 7033, S-750 07 Uppsala (Sweden)

    2000-01-01

    The management system for solid and liquid organic waste affects the environment and surrounding technical systems in several ways. In order to decrease the environmental impact and resource use, biological waste treatment and alternative solutions for sewage treatment are often advocated. These alternatives include increased agricultural use of waste residuals. To analyse whether such proposed systems indicate improvements for the environment and its sustainability, systems analysis is a useful method. The changes in environmental impact and resource use is not only a result of changes in waste treatment methods, but also largely a result of changes in surrounding systems (energy and agriculture) caused by changes in waste management practices. In order to perform a systems analysis, a substance-flow simulation model, the organic waste research model (ORWARE), has been used. The results are evaluated by using methodology from life cycle assessment (LCA). An economic analysis was also performed on three of the studied scenarios. The management system for solid organic waste and sewage in the municipality of Uppsala, Sweden, was studied. Three scenarios for different treatments of solid waste were analysed: incineration with heat recovery, composting, and anaerobic digestion. These three scenarios included conventional sewage treatment. A fourth scenario reviewed was anaerobic digestion of solid waste, using urine-separating toilets and separate handling of the urine fraction. The results are only valid for the case study and under the assumptions made. In this case study anaerobic digestion result in the lowest environmental impact of all the solid waste management systems, but is costly. Economically, incineration with heat recovery is the cheapest way to treat solid waste. Composting gives environmental advantages compared to incineration methods, without significantly increased costs. Urine separation, which may be implemented together with any solid waste

  11. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  12. Tank waste remediation system systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

  13. Quantifying uncertainty in LCA-modelling of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Guyonnet, D.; Christensen, Thomas Højlund

    2012-01-01

    Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present...... the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining...

  14. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... than 1. The description of the waste is corrected from ``wastewater treatment plant (WWTP) sludge'' to..., 2010. The Hazardous and Solid Waste Amendments of 1984 amended section 3010 of the Resource... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  15. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the...

  16. A Management Framework for Municipal Solid Waste Systems and Its Application to Food Waste Prevention

    Directory of Open Access Journals (Sweden)

    Krista L. Thyberg

    2015-08-01

    Full Text Available Waste management is a complex task involving numerous waste fractions, a range of technological treatment options, and many outputs that are circulated back into society. A systematic, interdisciplinary systems management framework was developed to facilitate the planning, implementation, and maintenance of sustainable waste systems. It aims not to replace existing decision-making approaches, but rather to enable their integration to allow for inclusion of overall sustainability concerns and address the complexity of solid waste management. The framework defines key considerations for system design, steps for performance monitoring, and approaches for facilitating continual system improvements. It was developed by critically examining the literature to determine what aspects of a management framework would be most effective at improving systems management for complex waste systems. The framework was applied to food waste management as a theoretical case study to exemplify how it can serve as a systems management tool for complex waste systems, as well as address obstacles typically faced in the field. Its benefits include the integration of existing waste system assessment models; the inclusion of environmental, economic, and social priorities; efficient performance monitoring; and a structure to continually define, review, and improve systems. This framework may have broader implications for addressing sustainability in other disciplines.

  17. Facilitating the improved management of waste in South Africa through a national waste information system.

    Science.gov (United States)

    Godfrey, Linda

    2008-01-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such as South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.

  18. Methodology for assessing performance of waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.K.; Herzenberg, C.L.; Camasta, S.F.

    1988-01-01

    The purpose of the methodology provided in this report is to select the optimal way to manage particular sets of waste streams from generation to disposal in a safe and cost-effective manner. The methodology described is designed to review the entire waste management system, assess its performance, ensure that the performance objectives are met, compare different LLW management alternatives, and select the optimal alternative. The methodology is based on decision analysis approach, in which costs and risk are considered for various LLW management alternatives, a comparison of costs, risks, and benefits is made, and an optimal system is selected which minimizes costs and risks and maximizes benefits. A ''zoom-lens'' approach is suggested, i.e., one begins by looking at gross features and gradually proceeds to more and more detail. Performance assessment requires certain information about the characteristics of the waste streams and about the various components of the waste management system. Waste acceptance criteria must be known for each component of the waste management system. Performance assessment for each component requires data about properties of the waste streams and operational and design characteristics of the processing or disposal components. 34 refs., 2 figs., 1 tab.

  19. Waste management system optimisation for Southern Italy with MARKAL model

    Energy Technology Data Exchange (ETDEWEB)

    Salvia, M.; Cosmi, C. [Istituto di Metodologie Avanzate di Analisi Ambientale, Consiglio Nazionale delle Ricerche, C. da S. Loja, 85050 (PZ) Tito Scalo (Italy); Macchiato, M. [Dipartimento di Scienze Fisiche, Universita Federico II, Via Cintia, 80126 Napoli (Italy); Mangiamele, L. [Dipartimento di Ingegneria e Fisica dell' Ambiente, Universita degli Studi della Basilicata, C. da Macchia Romana, 85100 Potenza (Italy)

    2002-01-01

    The MARKAL models generator was utilised to build up a comprehensive model of the anthropogenic activities system which points out the linkages between productive processes and waste disposal technologies. The aim of such a study is to determine the optimal configuration of the waste management system for the Basilicata region (Southern Italy), in order to support the definition of the regional waste management plan in compliance with the Italian laws. A sensitivity analysis was performed to evaluate the influence of landfilling fees on the choice of waste processing technologies, in order to foster waste management strategies which are environmentally sustainable, economically affordable and highly efficient. The results show the key role of separate collection and mechanical pre-treatments in the achievement of the legislative targets.

  20. GIS based solid waste management information system for Nagpur, India.

    Science.gov (United States)

    Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A

    2013-01-01

    Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.

  1. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  2. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  3. System dynamic modeling on construction waste management in Shenzhen, China.

    Science.gov (United States)

    Tam, Vivian W Y; Li, Jingru; Cai, Hong

    2014-05-01

    This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.

  4. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  5. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  6. Improving waste management through a process of learning: the South African waste information system.

    Science.gov (United States)

    Godfrey, Linda; Scott, Dianne

    2011-05-01

    Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed in the country, such that there is a noticeable improvement. The interviews with officials from municipalities and private waste companies, conducted as part of the piloting of the SAWIS, highlighted that certain organizations, typically private waste companies have been successful in collecting waste data. Through a process of learning, these organizations have utilized this waste data to inform and manage their operations. The drivers of such data collection efforts were seen to be financial (business) sustainability and environmental reporting obligations, particularly where the company had an international parent company. However, participants highlighted a number of constraints, particularly within public (municipal) waste facilities which hindered both the collection of waste data and the utilization of this data to effect change in the way waste is managed. These constraints included a lack of equipment and institutional capacity in the collection of data. The utilization of this data in effecting change was further hindered by governance challenges such as politics, bureaucracy and procurement, evident in a developing country context such as South Africa. The results show that while knowledge is a necessary condition for resultant action, a theoretical framework of learning does not account for all observed factors, particularly external influences.

  7. An innovative national health care waste management system in Kyrgyzstan.

    Science.gov (United States)

    Toktobaev, Nurjan; Emmanuel, Jorge; Djumalieva, Gulmira; Kravtsov, Alexei; Schüth, Tobias

    2015-02-01

    A novel low-cost health care waste management system was implemented in all rural hospitals in Kyrgyzstan. The components of the Kyrgyz model include mechanical needle removers, segregation using autoclavable containers, safe transport and storage, autoclave treatment, documentation, recycling of sterilized plastic and metal parts, cement pits for anatomical waste, composting of garden wastes, training, equipment maintenance, and management by safety and quality committees. The gravity-displacement autoclaves were fitted with filters to remove pathogens from the air exhaust. Operating parameters for the autoclaves were determined by thermal and biological tests. A hospital survey showed an average 33% annual cost savings compared to previous costs for waste management. All general hospitals with >25 beds except in the capital Bishkek use the new system, corresponding to 67.3% of all hospital beds. The investment amounted to US$0.61 per capita covered. Acceptance of the new system by the staff, cost savings, revenues from recycled materials, documented improvements in occupational safety, capacity building, and institutionalization enhance the sustainability of the Kyrgyz health care waste management system. © The Author(s) 2015.

  8. Integrated environmental and economic assessment of waste management systems

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica

    The Solid Waste Management (SWM) sector has evolved from a simple control of emissions towards a resource recovery sector while still being constrained by strict emission regulations. For that waste authorities are paying increased attention to the waste hierarchy as a set of priorities for solid....... However, the waste hierarchy does not consider the local needs/conditions of each geographical area, and it cannot be used to identify sustainable SWM options by itself. Environmental impact assessment can help with this task as holistic decision-support tool. Nevertheless, waste authorities need economic...... assessment of SWM systems alongside environmental impacts assessment to take budget constrains into account. In light of the need for combined environmental and economic assessment of SWM, this PhD thesis developed a consistent and comprehensive method for integrated environmental and economic assessment...

  9. LCA comparison of container systems in municipal solid waste management.

    Science.gov (United States)

    Rives, Jesús; Rieradevall, Joan; Gabarrell, Xavier

    2010-06-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80l to containers of 2400l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60l or 80l) had most impact while systems using big steel containers (2400l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Development and design of an integrated information management system for safe management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2004-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as; the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections In safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal.

  11. Design of an integrated information management system for safe management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)] (and others)

    2003-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as: the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal.

  12. Sustainable solid waste management a systems engineering approach

    CERN Document Server

    Chang, N

    2015-01-01

    Interactions between human activities and the environment are complicated and often difficult to quantify. In many occasions, judging where the optimal balance should lie among environmental protection, social well-being, economic growth, and technological progress is complex. The use of a systems engineering approach will fill in the gap contributing to how we understand the intricacy by a holistic way and how we generate better sustainable solid waste management practices. This book aims to advance interdisciplinary understanding of intertwined facets between policy and technology relevant to solid waste management issues interrelated to climate change, land use, economic growth, environmental pollution, industrial ecology, and population dynamics.

  13. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  14. Waste Information Management System with 2012-13 Waste Streams - 13095

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  15. Environmental comparison of solid waste management systems: A case study of the cities of Iasi, Romania and Enschede, Netherlands.

    NARCIS (Netherlands)

    Chinea, Cristina; Petraru, Madalina; Bressers, Johannes T.A.; Gavrilescu, Maria

    2012-01-01

    Sustainable approach to solid waste management in any region can be achieved by integrated waste management systems. The waste management systems differ in developed and developing countries. The Netherlands has a unique waste management system, the Dutch approach to waste consist in “avoid waste as

  16. Environmental comparison of solid waste management systems: A case study of the cities of Iasi, Romania and Enschede, Netherlands.

    NARCIS (Netherlands)

    Chinea, Cristina; Petraru, Madalina; Bressers, Hans; Gavrilescu, Maria

    2012-01-01

    Sustainable approach to solid waste management in any region can be achieved by integrated waste management systems. The waste management systems differ in developed and developing countries. The Netherlands has a unique waste management system, the Dutch approach to waste consist in “avoid waste as

  17. Management of the radioactive waste of European Spallation Source within the Swedish waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Ene, Daniela [European Spallation Source AB, ESS-AB (Sweden); Forsstroem, H. [Svensk Kaernbraenslehantering AB, SKB (Sweden)

    2014-07-01

    The European Spallation Source AB (ESS) is the European common effort in designing and building a next generation large-scale user facility for studies of the structure and dynamics of materials. The proposed schematic layout of the ESS facility is based on a linear driver (linac) directing the proton beam (5 MW of 2.5 GeV) of 2.8 ms long pulses with a 20 Hz on a tungsten target where neutrons are produced via spallation reactions. Further the neutrons will be moderated to thermal and sub-thermal energies in a couple of moderators placed around the target. The moderators feed 22 beam-lines guiding the neutrons to the scattering instruments, mainly for neutron scattering research, as has been previously mentioned. The ESS will generate specific types of radioactive waste. This waste should be handled and disposed of within the Swedish radioactive waste management system, which is owned and operated by Svensk Kaernbraenslehantering AB, (SKB). The main objectives of this work are: i) To estimate types and quantities of waste that the ESS project will generate at different stages: commission, operation, decommissioning; ii) To allocate the waste to specific disposal route; iii) To assess the disposal volumes needed and to ensure that the ESS waste may safely be accommodated within the Swedish disposal system, SKB The amounts of ESS waste and classifications were derived using: i) precise Monte Carlo calculations ii) scaling the activity from the operation experience of the existing spallation source installations for waste such it is difficult to predict level of activation or for components of the facility in stage of the pre-conceptual model. Associated waste treatment/conditioning options were further analyzed in order to define the waste type and packet descriptions in agreement with Swedish regulations and policy. The potential final disposal routes for high activated components were decided via the comparison of the activity levels of the isotopes inside the

  18. Solid Waste Management System: Public-Private Partnership, the Best System for Developing Countries

    Directory of Open Access Journals (Sweden)

    Dr. Nabukeera Madinah

    2016-04-01

    Full Text Available Solid waste management (SWM is a major public health and environmental concern in urban areas of many developing countries. Nairobi’s solid waste situation, which could be taken to generally represent the status which is largely characterized by low coverage of solid waste collection, pollution from uncontrolled dumping of waste, inefficient public services, unregulated and uncoordinated private sector and lack of key solid waste management infrastructure. This paper recapitulates on the public-private partnership as the best system for developing countries; challenges, approaches, practices or systems of SWM, and outcomes or advantages to the approach; the literature review focuses on surveying information pertaining to existing waste management methodologies, policies, and research relevant to the SWM. Information was sourced from peer-reviewed academic literature, grey literature, publicly available waste management plans, and through consultation with waste management professionals. Literature pertaining to SWM and municipal solid waste minimization, auditing and management were searched for through online journal databases, particularly Web of Science, and Science Direct. Legislation pertaining to waste management was also researched using the different databases. Additional information was obtained from grey literature and textbooks pertaining to waste management topics. After conducting preliminary research, prevalent references of select sources were identified and scanned for additional relevant articles. Research was also expanded to include literature pertaining to recycling, composting, education, and case studies; the manuscript summarizes with future recommendationsin terms collaborations of public/ private patternships, sensitization of people, privatization is important in improving processes and modernizing urban waste management, contract private sector, integrated waste management should be encouraged, provisional government

  19. evaluation of municipal solid waste management system

    African Journals Online (AJOL)

    eobe

    management facility gave a significant fitted model to show the relationship between household's ... However most of these studies tend not to evaluate ... On the other hand, some residents .... most dominant category of house type (54%) and.

  20. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  1. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...

  2. Development of components for waste management systems using aerospace technology

    Energy Technology Data Exchange (ETDEWEB)

    Rousar, D.; Young, M.; Sieger, A. [Aerojet-General Corp., Sacramento, CA (United States)

    1995-09-01

    An aerospace fluid management technology called ``platelets`` has been applied to components that are critical to the economic operation of waste management systems. Platelet devices are made by diffusion bonding thin metal plates which have been etched with precise flow passage circuitry to control and meter fluid to desired locations. Supercritical water oxidation (SCWO) is a promising waste treatment technology for safe and environmentally acceptable destruction of hazardous wastes. Performance and economics of current SCWO systems are limited by severe salt deposition on and corrosion of the reactor walls. A platelet transpiring-wall reactor has been developed that provides a protective layer of water adjacent to the reactor walls which prevents salt deposition and corrosion. Plasma arc processing is being considered as a method for stabilizing mixed radioactive wastes. Plasma arc torch systems currently require frequent shutdown to replace failed electrodes and this increases operating costs. A platelet electrode design was developed that has more than 10 times the life of conventional electrodes. It has water cooling channels internal to the electrode wall and slots through the wall for injecting gas into the arc.

  3. Waste Management Planning System – Factors Influencing Waste Composition in Lithuania

    OpenAIRE

    Davidavičienė, Vida; Janeliūnienė, Rasma; Liberytė, Ginta

    2012-01-01

    Rapid changes in the field of information technologies, growing production and consumption forced by economic growth lead to growth of waste causing the new challenges to waste management. All these fields are widely analyzed by scientists as separate scientific, technological, environmental or economic problems as well as integrated questions. Waste management is analyzed comprehensively and systematically as well as individual questions of waste generation, waste forecasting, waste storage,...

  4. Systems approaches to integrated solid waste management in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Rachael E., E-mail: rmarsh01@uoguelph.ca [School of Engineering, University of Guelph, Albert A. Thornbrough Building, Guelph, ON, Canada N1G 2W1 (Canada); Farahbakhsh, Khosrow, E-mail: khosrowf@uoguelph.ca [School of Engineering, University of Guelph, Albert A. Thornbrough Building, Guelph, ON, Canada N1G 2W1 (Canada)

    2013-04-15

    Highlights: ► Five drivers led developed countries to current solid waste management paradigm. ► Many unique factors challenge developing country solid waste management. ► Limited transferability of developed country approaches to developing countries. ► High uncertainties and decision stakes call for post-normal approaches. ► Systems thinking needed for multi-scale, self-organizing eco-social waste systems. - Abstract: Solid waste management (SWM) has become an issue of increasing global concern as urban populations continue to rise and consumption patterns change. The health and environmental implications associated with SWM are mounting in urgency, particularly in the context of developing countries. While systems analyses largely targeting well-defined, engineered systems have been used to help SWM agencies in industrialized countries since the 1960s, collection and removal dominate the SWM sector in developing countries. This review contrasts the history and current paradigms of SWM practices and policies in industrialized countries with the current challenges and complexities faced in developing country SWM. In industrialized countries, public health, environment, resource scarcity, climate change, and public awareness and participation have acted as SWM drivers towards the current paradigm of integrated SWM. However, urbanization, inequality, and economic growth; cultural and socio-economic aspects; policy, governance, and institutional issues; and international influences have complicated SWM in developing countries. This has limited the applicability of approaches that were successful along the SWM development trajectories of industrialized countries. This review demonstrates the importance of founding new SWM approaches for developing country contexts in post-normal science and complex, adaptive systems thinking.

  5. Quantifying uncertainty in LCA-modelling of waste management systems.

    Science.gov (United States)

    Clavreul, Julie; Guyonnet, Dominique; Christensen, Thomas H

    2012-12-01

    Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) as a new approach, a combined sensitivity analysis providing a visualisation of the shift in the ranking of different options due to variations of selected key parameters. This tiered approach optimises the resources available to LCA practitioners by only propagating the most influential uncertainties.

  6. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    Science.gov (United States)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  7. Implementation of spatial smart waste management system in malaysia

    Science.gov (United States)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  8. Life cycle assessment of capital goods in waste management systems

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2016-01-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m3 collection truck, a composting plant, an anaerobic digestion...... plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation...... for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming....

  9. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong.

    Science.gov (United States)

    Hossain, Md Uzzal; Wu, Zezhou; Poon, Chi Sun

    2017-08-03

    This study aimed to compare the environmental performance of building construction waste management (CWM) systems in Hong Kong. Life cycle assessment (LCA) approach was applied to evaluate the performance of CWM systems holistically based on primary data collected from two real building construction sites and secondary data obtained from the literature. Different waste recovery rates were applied based on compositions and material flow to assess the influence on the environmental performance of CWM systems. The system boundary includes all stages of the life cycle of building construction waste (including transportation, sorting, public fill or landfill disposal, recovery and reuse, and transformation and valorization into secondary products). A substitutional LCA approach was applied for capturing the environmental gains due to the utilizations of recovered materials. The results showed that the CWM system by using off-site sorting and direct landfilling resulted in significant environmental impacts. However, a considerable net environmental benefit was observed through an on-site sorting system. For example, about 18-30kg CO2 eq. greenhouse gases (GHGs) emission were induced for managing 1 t of construction waste through off-site sorting and direct landfilling, whereas significant GHGs emission could be potentially avoided (considered as a credit -126 to -182kg CO2 eq.) for an on-site sorting system due to the higher recycling potential. Although the environmental benefits mainly depend on the waste compositions and their sortability, the analysis conducted in this study can serve as guidelines to design an effective and resource-efficient building CWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Study on the construction and operation for management system of municipal domestic wastes

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Wang Shuqiang; Chen Jingxin

    2006-01-01

    In recent years, the quantity of our country's municipal domestic wastes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environmental pollution and so on. By holding waste minimization as the center, the developed countries have formed perfect waste management system. Based on analyzing the status quo and problems of processing in our country, on the principle of benefit, scale,waste minimization, reclamation and hazard-free treatment, according to the recycling model of processing, the article has constructed our country's domestic wastes management system, proposed the measures of promoting the operation of system. It has realized the transformation of waste management system from terminal disposal to source reduction,achieved the goals, including domestic wastes categorizing and reclaiming, industrialization and non-pollution processing,and finally brought sustainable development for resources, environment, economy and society.

  11. Survey of systems safety analysis methods and their application to nuclear waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Winegardner, W.K.; Gallucci, R.H.V.

    1981-11-01

    This report reviews system safety analysis methods and examines their application to nuclear waste management systems. The safety analysis methods examined include expert opinion, maximum credible accident approach, design basis accidents approach, hazard indices, preliminary hazards analysis, failure modes and effects analysis, fault trees, event trees, cause-consequence diagrams, G0 methodology, Markov modeling, and a general category of consequence analysis models. Previous and ongoing studies on the safety of waste management systems are discussed along with their limitations and potential improvements. The major safety methods and waste management safety related studies are surveyed. This survey provides information on what safety methods are available, what waste management safety areas have been analyzed, and what are potential areas for future study.

  12. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    ...; Final Exclusion AGENCY: Environmental Protection Agency. ACTION: Final rule. SUMMARY: Environmental... Software (DRAS), EPA has concluded that the petitioned waste is not hazardous waste. This exclusion applies.... What are the limits of this exclusion? D. How will OxyChem manage the waste if it is delisted? E....

  13. Solid waste information and tracking system server conversion project management plan

    Energy Technology Data Exchange (ETDEWEB)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  14. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    from the LCAs of full waste management systems revealed that capital goods should be included in future LCAs. The impact share of capital goods was highest for resource depletion and the impacts of toxicity on humans and ecosystems. To evaluate the quality and consistency of available data...... for the primary and secondary production of materials, 366 datasets were gathered. The materials in focus were: paper, newsprint, cardboard, corrugated board, glass, aluminium, steel and plastics (HDPE, LDPE, LLDPE, PET, PS, PVC). Only one quarter of these data concerned secondary production, thus underlining...... a severe lack of data for these production processes. The results showed large variations in CO2 emissions from the production of each of the evaluated materials. An evaluation of the data revealed that energy systems are central to impacts and are thereby important to specify as background information...

  15. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  16. Developing a municipal urban waste management integrated system in Cluj County

    Directory of Open Access Journals (Sweden)

    Gabriela E. Popiţa

    2011-08-01

    Full Text Available The need to develop and modeling an integrated waste management system from the urbanpopulation in Cluj County is founded in evaluating the current waste management system. This systemdoes not pursue the objectives of the national and European strategy for waste and does not link withthe environmental existing problems in the county. The integrated management proposed systemincludes all stages passing through the population beginning the selective collection and to disposal.

  17. An Accounting System for Solid Waste Management in Small Communities.

    Science.gov (United States)

    Zausner, Eric R.

    This pamphlet provides a guide to the type and quantity of information to be collected for effective solid waste management in small communities. It is directed at municipal or private personnel involved in the operation and ownership of management facilities. Sample activity reports are included for reference. (CS)

  18. Integrated data management system for radioactive waste and spent fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Ho [Korea Power Engineering Co., Inc., Yongin (Korea, Republic of)

    2001-03-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. So through the system, the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized, and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information, it can ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control and finally re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal. For this objectives, benchmark study was performed on similar data base system worldwide and data specification with major input/output data during the first phase of this project.

  19. Life cycle assessment of capital goods in waste management systems.

    Science.gov (United States)

    Brogaard, Line K; Christensen, Thomas H

    2016-10-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m(3) collection truck, a composting plant, an anaerobic digestion plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation, Human Health: 2-91%, Photochemical Ozone Formation: 2-56%, Freshwater Eutrophication: 0.05-99%, Marine Eutrophication: 0.03-8%, Terrestrial Acidification: 2-13%, Terrestrial Eutrophication: 1-8%, Particulate Matter: 11-26%, Human Toxicity, Cancer Effect: 10-92%, Human Toxicity, non-Cancer Effect: 1-71%, Freshwater Ecotoxicity: 3-58%. Depletion of Abiotic Resources - Fossil: 1-31% and Depletion of Abiotic Resources - Elements (Reserve base): 74-99%. The single most important contribution by capital goods was made by the high use of steel. Environmental impacts from capital goods are more significant for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming.

  20. Waste Management Using a Multilevel Distributed System and Data Mining

    Directory of Open Access Journals (Sweden)

    Laura DANILESCU

    2008-01-01

    Full Text Available Administration is conducted through the control of events and management of problems in the territory. Economical growth and nowadays technologies lead to difficult problems related to environmental protection against pollution and to people safety against various direct threats from air soil, food. In this respect, an increasing importance get the collection of information and its processing and interpretation just to understand and discover threats and potential disturbance of the environment and health. The paper proposes a multilevel system for the administrative bodies involved in environment matters at local regional and national levels, which may collect and scrutiny data on waste generation, spread and reuse/elimination, and provide sound instruments to assist decision makers of the corresponding levels, using Data Mining and Business Intelligence.

  1. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    Science.gov (United States)

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable.

  2. Modeling of urban solid waste management system: the case of Dhaka city.

    Science.gov (United States)

    Sufian, M A; Bala, B K

    2007-01-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collection and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.

  3. A multi-echelon supply chain model for municipal solid waste management system.

    Science.gov (United States)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

  4. Functional analysis, a resilience improvement tool applied to a waste management system - application to the "household waste management chain"

    Science.gov (United States)

    Beraud, H.; Barroca, B.; Hubert, G.

    2012-12-01

    A waste management system plays a leading role in the capacity of an area to restart after flooding, as their impact on post-crisis management can be very considerable. Improving resilience, i.e. enabling it to maintain or recover acceptable operating levels after flooding is primordial. To achieve this, we must understand how the system works for bringing any potential dysfunctions to light and taking preventive measures. Functional analysis has been used for understanding the complexity of this type of system. The purpose of this article is to show the interest behind this type of method and the limits in its use for improving resilience of waste management system as well as other urban technical systems1, by means of theoretical modelling and its application on a study site. 1In a systemic vision of the city, urban technical systems combine all the user service systems that are essential for the city to operate (electricity, water supplies, transport, sewerage, etc.). These systems are generally organised in the form of networks (Coutard, 2010; CERTU, 2005).

  5. Functional analysis, a resilience improvement tool applied to a waste management system – application to the "household waste management chain"

    Directory of Open Access Journals (Sweden)

    H. Beraud

    2012-12-01

    Full Text Available A waste management system plays a leading role in the capacity of an area to restart after flooding, as their impact on post-crisis management can be very considerable. Improving resilience, i.e. enabling it to maintain or recover acceptable operating levels after flooding is primordial. To achieve this, we must understand how the system works for bringing any potential dysfunctions to light and taking preventive measures. Functional analysis has been used for understanding the complexity of this type of system. The purpose of this article is to show the interest behind this type of method and the limits in its use for improving resilience of waste management system as well as other urban technical systems1, by means of theoretical modelling and its application on a study site.


    1In a systemic vision of the city, urban technical systems combine all the user service systems that are essential for the city to operate (electricity, water supplies, transport, sewerage, etc.. These systems are generally organised in the form of networks (Coutard, 2010; CERTU, 2005.

  6. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    National Research Council Canada - National Science Library

    Debere, Mesfin Kote; Gelaye, Kassahun Alemu; Alamdo, Andamlak Gizaw; Trifa, Zemedu Mehamed

    2013-01-01

    Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system...

  7. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  8. Systems approaches to integrated solid waste management in developing countries.

    Science.gov (United States)

    Marshall, Rachael E; Farahbakhsh, Khosrow

    2013-04-01

    Solid waste management (SWM) has become an issue of increasing global concern as urban populations continue to rise and consumption patterns change. The health and environmental implications associated with SWM are mounting in urgency, particularly in the context of developing countries. While systems analyses largely targeting well-defined, engineered systems have been used to help SWM agencies in industrialized countries since the 1960s, collection and removal dominate the SWM sector in developing countries. This review contrasts the history and current paradigms of SWM practices and policies in industrialized countries with the current challenges and complexities faced in developing country SWM. In industrialized countries, public health, environment, resource scarcity, climate change, and public awareness and participation have acted as SWM drivers towards the current paradigm of integrated SWM. However, urbanization, inequality, and economic growth; cultural and socio-economic aspects; policy, governance, and institutional issues; and international influences have complicated SWM in developing countries. This has limited the applicability of approaches that were successful along the SWM development trajectories of industrialized countries. This review demonstrates the importance of founding new SWM approaches for developing country contexts in post-normal science and complex, adaptive systems thinking.

  9. Non-deposit system option for waste management on small islands.

    Science.gov (United States)

    Vilms, Monica; Voronova, Viktoria

    2016-08-01

    This paper analyses waste management on small islands (on a global scale these are micro-islands). In the context of the paper, small islands are islands that have an area less than 50 km(2) The study presents an overview of the problems connected with waste transport from islands to the mainland. Waste generation on islands is very much related to tourists. If tourists do not handle waste properly, it will cause problems. Four small Estonian islands in the range of 3-19 km(2) are studied in detail. For these and other small islands, the main problem is the waste produced by tourists, or related to tourists and waste transport to the mainland. Currently, the local municipality has to arrange and finance waste transport. In fact, and based on the polluter-pays principle, the tourists should bear the cost of waste management. There are different tax options available in order to collect the money from tourists - waste tax, harbour tax, tourist tax, donations, environmental tax and others. The study results revealed that the best possible solution for Estonian islands may be a non-deposit system - including an additional charge on ferry ticket prices. The extra money should cover the costs of waste management and waste shipping. The tourists arriving in their own boats should pay a harbour tax, which includes a waste tax to compensate for the cost of waste management.

  10. National information network and database system of hazardous waste management in China

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongchang [National Environmental Protection Agency, Beijing (China)

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry, and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.

  11. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-08-14

    When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5(th) best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. A system dynamics-based environmental performance simulation of construction waste reduction management in China.

    Science.gov (United States)

    Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue

    2016-05-01

    A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized.

  13. Modelling sensitivity and uncertainty in a LCA model for waste management systems - EASETECH

    DEFF Research Database (Denmark)

    Damgaard, Anders; Clavreul, Julie; Baumeister, Hubert

    2013-01-01

    In the new model, EASETECH, developed for LCA modelling of waste management systems, a general approach for sensitivity and uncertainty assessment for waste management studies has been implemented. First general contribution analysis is done through a regular interpretation of inventory and impact...

  14. Future scenario development within life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina

    Life Cycle Assessment (LCA) is an acknowledged tool for quantifying the sustainability of waste management solutions. However, the use of LCA for decision-making is hindered by the strong dependency of the LCA results on the assumptions regarding the future conditions in which the waste management...... of the LCA. The main outcome of this thesis is a systematic framework that can be used to assess future scenarios in LCAs of waste management systems. The framework combines approaches developed during the PhD study in order to systematically address the modelling implications of combining future scenarios...... and LCAs of waste management systems. The study developed a systematic definition of importance of LCA model parameters based on their input uncertainty and their sensitivity on results with a Global Sensitivity Analysis (GSA) approach. Within LCAs of waste management systems, the GSA approach allowed...

  15. Waste management system in the riparian towns of the Romanian Danube sector

    Directory of Open Access Journals (Sweden)

    Radu Săgeată

    2016-09-01

    Full Text Available In Romania, managing and recycling household garbage is one of the least performing systems in the European Union. Numerous waste dumping sites are unconformable to European standards, besides there is little garbage recycling. This paper makes a complex waste management analysis of the Romanian Danube riparian towns subjected to strong human pressure; this sector is also of great European interest for the protection of its biodiversity. The main dysfunctions of garbage dumping, the price asked by scavenging services, the steps taken for the ecological management of waste dumping sites in conformity with EU norms and better waste recycling, as well as future measures are also discussed in this paper.

  16. Conceptual modular description of the high-level waste management system for system studies model development

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1992-08-01

    This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

  17. Quality management system for the disposal of low and medium levels radioactive wastes - RBMN

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Antonio Mario P.; Haucz, Maria Judite A.; Fraga, Rosane Rodrigues, E-mail: ampa@cdtn.br, E-mail: hauczmj@cdtn.br, E-mail: rosaner@cdtn.br [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    This article compares the standards applied in quality and safety management systems for the Disposal of Radioactive Waste. The comparison will be a contribution to development, maintenance and improvement the safety and quality system of a disposal of low and medium radioactive waste (RBMN) coordinated by CDTN - Brazilian Development Center for Nuclear Technology). (author)

  18. Solid Waste Information Management System (SWIMS). Data summary, fiscal year 1980

    Science.gov (United States)

    Batchelder, H. M.

    1981-05-01

    The solid waste information management system (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The SWIMS data base contains information on the transuranic (TRU) and low level waste (LLW) generated, buried, or stored.

  19. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Rosnick, C.K.

    1996-04-19

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  20. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  1. Dual Fan Separator within the Universal Waste Management System

    Science.gov (United States)

    Stapleton, Tom; Converse, Dave; Broyan, James Lee, Jr.

    2014-01-01

    Since NASA's new spacecraft in development for both LEO and Deep Space capability have considerable crew volume reduction in comparison to the Space Shuttle, the need became apparent for a smaller commode. In response the Universal Waste Management System (UWMS) was designed, resulting in an 80% volume reduction from the last US commode, while enhancing performance. The ISS WMS and previous shuttle commodes have a fan supplying air flow to capture feces and a separator to capture urine and separate air from the captured air/urine mixture. The UWMS combined both rotating equipment components into a single unit, referred to at the Dual Fan Separator (DFS). The combination of these components resulted in considerable packaging efficiency and weight reduction, removing inter-component plumbing, individual mounting configurations and required only a single motor and motor controller, in some of the intended UWMS platform applications the urine is pumped to the ISS Urine Processor Assembly (UPA) system. It requires the DFS to include less than 2.00% air inclusion, by volume, in the delivered urine. The rotational speed needs to be kept as low as possible in centrifugal urine separators to reduce air inclusion in the pumped fluid, while fans depend on rotational speed to develop delivered head. To satisfy these conflicting requirements, a gear reducer was included, allowing the fans to rotate at a much higher speed than the separator. This paper outlines the studies and analysis performed to develop the DFS configuration. The studies included a configuration trade study, dynamic stability analysis of the rotating bodies and a performance analysis of included labyrinth seals. NASA is considering a program to fly the UWMS aboard the ISS as a flight experiment. The goal of this activity is to advance the Technical Readiness Level (TRL) of the DFS and determine if the concept is ready to be included as part of the flight experiment deliverable.

  2. Integrated data management system for radioactive waste and spent fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Taek [Korea Power Engineering Co., Inc., Yongin (Korea, Republic of)

    2002-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Through the system, the five principles(independence, openness, clearance, efficiency and reliance) of safety regulation can be realized and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted. By providing reliable information and openness within the international nuclear community can be ensured and efficient support of international agreements among contracting parties can be ensured. By operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible for holistic control and reorganization of the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy so as to integrate safe management and unit safe disposal. To meet this objectives, design of the database system structure and the study of input/output data validation and verification methodology was performed during the second phase of this project.

  3. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  4. Sustainability of Solid Waste Management System in Urban Areas of Pakistan: Stakeholders Perspective

    Directory of Open Access Journals (Sweden)

    Shoaib Muhammad

    2017-03-01

    Full Text Available Sustainability of solid waste management system in Pakistan like other developing countries is a growing challenge. Stakeholders are vital for the successful running of solid waste management system and timely inclusion of stakeholders’ perspective can contribute to attain sustainability of solid waste management system. Therefore, stakeholders’ subjectivities and perspectives towards the sustainability of solid waste management system were studied in this research program. . Five components of the sustainable solid waste management system, that is, Technical, Environmental, Economic, Social and Institutional, were considered based on literature review. Nature of these components being part of an integrated system makes the system multicriteria. Relative importance of these components leading to define priorities for planning and execution of such system is the need for planning, development, and running of such systems. To acquire these priorities based on stakeholders input the stakeholders were classified into two major categories i.e. Technical and Social. A survey was undertaken in which the afore-mentioned stakeholders were asked to provide their input in the form of a pair wise comparison among the various components of the sustainable solid waste management system (SSWM. Analytical Hierarchy Process, a Multi Criteria Decision Analysis (MCDA tool was used to quantify the relative importance of various components of SSWM. Environmental component of the sustainability came out to be the top priority of the stakeholders as it was given the highest weight by the stakeholders

  5. Development of A Web based GIS Waste Disposal Management System for Nigeria

    Directory of Open Access Journals (Sweden)

    Adebayo P. Idowu

    2012-07-01

    Full Text Available Waste management has to do with handling of solid refuse from their sources of generation through storage, collection, transportation, recovery and treatment processes to disposal This research developed a web based GIS waste disposal management system, with aim of achieving an effective waste management system and a spatial view of waste collection locations in any local government area in Nigeria. The system was developed using Extensive Hypertext Markup Language and Cascading Style Sheet (XHTML/CSS, and Asynchronous Java Scripting with XML (AJAX and the software packages used for the development of the application are Adobe Dreamweaver and Adobe Fireworks, MySQL, Apache Server and PHP scripting. With this waste management system, the locations of all the waste collection tanks in any location will be, monitored, managed and maintained. The use of this system will ease the job of the waste management unit of the local government areas in Nigeria in achieving a clean environment and mitigate the spread of epidemic in a way to ensure safety of all and sundry.

  6. Development of automated information system for domestic waste logistics management (by the example of Apatity town

    Directory of Open Access Journals (Sweden)

    Ladik A. S.

    2016-03-01

    Full Text Available A software system for management information support of domestic waste logistics (by the example of Apatity town has been developed for management information support efficiency enhancement of domestic waste collection and transportation processes in the municipal systems subject to hygiene and sanitary norms and standards. The system is implemented as an interactive multilogic web-service. The system provides computational procedure execution of financial expenditure and ecological damage in the issue of domestic waste collection and transportation and environmental risk minimization on the basis of proposed algorithms for automated synthesis of adaptive journey routes in comparison with existing prototypes

  7. Developing a Novel, Sustainable and Beneficial System for the Systematic Management of Hospital Wastes

    Science.gov (United States)

    Hinduja, Indira N.; Ahuja, Harish S.

    2016-01-01

    Introduction India is the 2nd most populated country in the world. Population of India is increasing at a tremendous rate. Proportionately, the numbers of people seeking health care are increasing. In that ratio the quantities of hospital wastes, in wider terms, healthcare wastes that are getting generated is also increasing. Current methods for the safe disposal of healthcare wastes are not able to cope up with the rate of generation of healthcare wastes and moreover are not eco-friendly at all. Due to this, the current rules and regulations regarding the safe disposal of healthcare wastes are getting violated, ultimately leading to improper management of healthcare wastes, posing a serious threat to the environment and to the community. Aim To develop a novel, sustainable and beneficial system for the systematic management of healthcare wastes utilizing the strategies of waste reduction, waste segregation and recycling of Non Hazardous Hospital Wastes (NHHWs). Materials and Methods Firstly a detailed study of the Healthcare Waste Management System (HCWMS) operational at the Jaslok Hospital and Research Centre was done. A pilot study was then performed. After that, data regarding the generation and management of healthcare wastes in the other healthcare settings was collected and analyzed. Considering all this, a novel, sustainable and beneficial template system for the systematic management of healthcare wastes was proposed. Lastly the possible positive impacts from the implementation of HCWMSs designed using proposed template HCWMS in significant numbers of healthcare establishments was gauged. Results The healthcare waste management system operational at the Jaslok Hospital and Research Centre was found to be very efficient and provided vital inputs about developing the novel HCWMS. The pilot study was successfully completed generating significant revenue from the hospital’s own NHHWs while managing them in an eco-friendly way. The total healthcare waste

  8. Developing a Novel, Sustainable and Beneficial System for the Systematic Management of Hospital Wastes.

    Science.gov (United States)

    Doiphode, Sanket Mohan; Hinduja, Indira N; Ahuja, Harish S

    2016-09-01

    India is the 2(nd) most populated country in the world. Population of India is increasing at a tremendous rate. Proportionately, the numbers of people seeking health care are increasing. In that ratio the quantities of hospital wastes, in wider terms, healthcare wastes that are getting generated is also increasing. Current methods for the safe disposal of healthcare wastes are not able to cope up with the rate of generation of healthcare wastes and moreover are not eco-friendly at all. Due to this, the current rules and regulations regarding the safe disposal of healthcare wastes are getting violated, ultimately leading to improper management of healthcare wastes, posing a serious threat to the environment and to the community. To develop a novel, sustainable and beneficial system for the systematic management of healthcare wastes utilizing the strategies of waste reduction, waste segregation and recycling of Non Hazardous Hospital Wastes (NHHWs). Firstly a detailed study of the Healthcare Waste Management System (HCWMS) operational at the Jaslok Hospital and Research Centre was done. A pilot study was then performed. After that, data regarding the generation and management of healthcare wastes in the other healthcare settings was collected and analyzed. Considering all this, a novel, sustainable and beneficial template system for the systematic management of healthcare wastes was proposed. Lastly the possible positive impacts from the implementation of HCWMSs designed using proposed template HCWMS in significant numbers of healthcare establishments was gauged. The healthcare waste management system operational at the Jaslok Hospital and Research Centre was found to be very efficient and provided vital inputs about developing the novel HCWMS. The pilot study was successfully completed generating significant revenue from the hospital's own NHHWs while managing them in an eco-friendly way. The total healthcare waste generation in Maharashtra was approximately

  9. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    Energy Technology Data Exchange (ETDEWEB)

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented.

  10. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    Science.gov (United States)

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway.

  11. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  12. A National system for the Management of Non-nuclear Radioactive Waste in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lindhe, J. C.

    2004-07-01

    The Swedish government in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to suggest a national system for the management of all types of non-nuclear radioactive waste with special consideration to the principle of polluter pays and the responsibility of the producers. The committee delivered its recommendations to the government at the end of last year. Funding for future costs for nuclear waste management and final storage is collected in a state governed funding system. For non-nuclear waste, however, there are no means today to secure the funding. If a company goes bankrupt and leaves radioactive waste behind it might be up to the taxpayers to pay for its safe management. This is due to the fact that the cost for the waste is paid at the time one wants to dispose of it and it is usually the last owner of a product etc. that has to pay. Sometimes the price comes as a surprise and the owner might not have the money available. Thus the waste might be kept longer than otherwise and might even end up as orphan waste. To solve this dilemma the committee recommends a funding system in parallel with the system for the nuclear waste. The cost for the waste should be paid up front before the waste has been created. E.g. when a customer buys a product the cost for the future waste management would be included in the price and he will not have to pay for this the day he disposes the product by returning it to the producer or leaves it to a waste-collecting organisation. It should be the responsibility of the producer (manufacturer, importer or re-seller) to guarantee the funding for the waste management. In summary the non-nuclear radioactive waste is divided into three main groups: waste from products, waste from practices and other waste. Waste from products includes household products as well as products used in research, industry and hospitals etc. For this category it is easy to identify a producer who imports or

  13. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  14. Understanding uncertainty propagation in life cycle assessments of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Conradsen, Knut; Christensen, Thomas Højlund

    2015-01-01

    Uncertainty analysis in Life Cycle Assessments (LCAs) of waste management systems often results obscure and complex, with key parameters rarely determined on a case-by-case basis. The paper shows an application of a simplified approach to uncertainty coupled with a Global Sensitivity Analysis (GSA......) perspective on three alternative waste management systems for Danish single-family household waste. The approach provides a fast and systematic method to select the most important parameters in the LCAs, understand their propagation and contribution to uncertainty....

  15. APPLICATION OF THE ELECTRE III METHOD FOR A SOLID WASTE MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Aysun ÖZKAN

    2011-06-01

    Full Text Available In recent years, effective disposing of solid waste environmentally and economically has become mandatory due to the increase in environmental problems resulted by the solid waste. Furthermore, choosing a solid waste management system appears to be an important decision making problem. Hence, economical, social, cultural and technical factors in choosing thesolid waste management systems should be considered together. A solid waste management system may have different alternatives to be evaluated by considering several criteria. Hence, this type of problem is considered as Multi Criteria Decision Making problem. Therefore, in this study, there were five alternative system scenarios (MRF, recycling, composting, incinerating and landfilling processes ranked by using ELECTRE III for Eskisehir city/Turkey. Eskisehir is one of the developing cities of Turkey where approximately 750 tons/day waste is generated in total. It is required to apply an effective MSW management system since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Final ranking for scenarios was in the following order: S3>S2>S1>S4=S5. According to the comparisons and the sensitivity analysis, scenario S3 (15% recycling+77% composting + 8% landfilling for MSW management system in Eskisehir should be preferred.

  16. Toward a sustainable waste management system: a comprehensive assessment of thermal and electric energy recovery from waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Salvia, Monica; Cosmi, Carmelina; Cuomo, Vincenzo; Macchiato, Maria [Istituto Nazionale per la Fisica della Materia, Napoli (Italy); Mangiamele, Lucia [Univ. della Basilicata, Potenza (Italy). Dipt. Ingegneria e Fisica dell Ambiente; Pietrapertosa, Filomena [Univ. di Napoli Federico II, (Italy). Dipt. di Scienze Fisiche

    2002-12-01

    Energy-environmental planning must join normative, environmental and socio-economic features to obtain effective strategies aimed to a sustainable development. Therefore a comprehensive methodology for the analysis and the optimisation of the anthropogenic activities system configuration, can usefully support decision-makers in the definition of harmonised sector plans, joining waste management issues with resource use problems and exploiting energy and materials feedback among supply and demand sectors. In this paper we present an innovative application of the Advanced Local Energy Environmental Planning methodology (ALEP), aimed to the definition of optimal waste management strategies which comply with comprehensive as well as sectorial issues.

  17. Management Information System (MIS: Tool for Monitoring the Waste Management Health Service (RSS and Cost of Treatment

    Directory of Open Access Journals (Sweden)

    Vania Elisabete Schneider

    2013-06-01

    Full Text Available One of the major challenges of solid waste management has been improve and deploy systems that perform monitoring and control of management processes of health service’s waste (HSW. This study aims to evaluate the total cost per category of HSW/day and active bed/day with the handling of HSW in a teaching hospital in northeastern area of Brazil`s Rio Grande do Sul state and identify contributions of a management information system (MIS in the management process, especially considering the generation and segregation of waste. Utilized methodology was developed in two stages: data collection about the management of the HSW and proposition, implementation and feed of a MIS for recording and processing of data related to waste characterization. Results show that whether the management system of the hospital in this study were 100% right, the monthly savings for the treatment of infectious waste would be 18.4% of the costs and 5.83% of costs of chemical waste. The implementation of MIS becomes an essential tool in the evaluation of the management process of HSW since it makes possible to raise issues of fundamental importance to the implementation and evaluation of strategies contained in the HSW management plan. The MIS also represents a tool of easy reference and of great importance to evaluate generation of HSW as it helps to promote the surveillance, identification of sectors that have the biggest problems with segregation, as well as ways to minimize costs and impacts.

  18. Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Ola

    2003-04-01

    Waste management is something that affects most people. The waste amounts are still increasing, but the waste treatment is changing towards recycling and integrated solutions. In Sweden producers' responsibility for different products, a tax and bans on deposition of waste at landfills implicates a reorganisation of the municipal solid waste management. Plans are made for new incineration plants, which leads to that waste combustion comes to play a role in the reorganisation of the Swedish energy system as well. The energy system is supposed to adapt to governmental decisions on decommission of nuclear plants and decreased use of fossil fuels. Waste from private households consists of hazardous waste, scrap waste, waste electronics and wastes that to a large extent are generated in the kitchen. The latter type has been studied in this thesis, except for newsprint, glass- and metal packages that by source separation haven't ended up in the waste bin. Besides the remaining amount of the above mentioned fractions, the waste consists of food waste, paper, cardboard- and plastic packages and inert material. About 80-90 % of this mixed household waste is combustible, and the major part of that is also possible to recycle. Several systems analyses of municipal solid waste management have been performed. Deposition at landfill has been compared to energy recovery, recycling of material (plastic and cardboard) and recycling of nutrients (in food waste). Environmental impact, fuel consumption and costs are calculated for the entire lifecycle from the households, until the waste is treated and the by-products have been taken care of. To stop deposition at landfills is the most important measure to take as to decrease the environmental impact from landfills, and instead use the waste as a resource, thereby substituting production from virgin resources (avoiding resource extraction and emissions). The best alternative to landfilling is incineration, but also material

  19. Application of macro material flow modeling to the decision making process for integrated waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, S.A. [California Polytechnic State Univ., San Luis Obispo, CA (United States); Holter, G.M. [Battelle Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    Computer models have been used for almost a decade to model and analyze various aspects of solid waste management Commercially available models exist for estimating the capital and operating costs of landfills, waste-to-energy facilities and compost systems and for optimizing system performance along a single dimension (e.g. cost or transportation distance). An alternative to the use of currently available models is the more flexible macro material flow modeling approach in which a macro scale or regional level approach is taken. Waste materials are tracked through the complete integrated waste management cycle from generation through recycling and reuse, and finally to ultimate disposal. Such an approach has been applied by the authors to two different applications. The STELLA simulation language (for Macintosh computers) was used to model the solid waste management system of Puerto Rico. The model incorporated population projections for all 78 municipalities in Puerto Rico from 1990 to 2010, solid waste generation factors, remaining life for the existing landfills, and projected startup time for new facilities. The Pacific Northwest Laboratory has used the SimScript simulation language (for Windows computers) to model the management of solid and hazardous wastes produced during cleanup and remediation activities at the Hanford Nuclear Site.

  20. Wet-oxidation waste management system for CELSS

    Science.gov (United States)

    Takahashi, Y.; Ohya, H.

    1986-01-01

    A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.

  1. Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives

    DEFF Research Database (Denmark)

    Laurent, Alexis; Bakas, Ioannis; Clavreul, Julie

    2014-01-01

    , e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement......The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where...

  2. An analysis of the technical status of high level radioactive waste and spent fuel management systems

    Science.gov (United States)

    English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

    1977-01-01

    The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

  3. Review of LCA studies of solid waste management systems--part I: lessons learned and perspectives.

    Science.gov (United States)

    Laurent, Alexis; Bakas, Ioannis; Clavreul, Julie; Bernstad, Anna; Niero, Monia; Gentil, Emmanuel; Hauschild, Michael Z; Christensen, Thomas H

    2014-03-01

    The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.

  4. Municipal Solid Waste Management using Geographical Information System aided methods: a mini review.

    Science.gov (United States)

    Khan, Debishree; Samadder, Sukha Ranjan

    2014-11-01

    Municipal Solid Waste Management (MSWM) is one of the major environmental challenges in developing countries. Many efforts to reduce and recover the wastes have been made, but still land disposal of solid wastes is the most popular one. Finding an environmentally sound landfill site is a challenging task. This paper addresses a mini review on various aspects of MSWM (suitable landfill site selection, route optimization and public acceptance) using the Geographical Information System (GIS) coupled with other tools. The salient features of each of the integrated tools with GIS are discussed in this paper. It is also addressed how GIS can help in optimizing routes for collection of solid wastes from transfer stations to disposal sites to reduce the overall cost of solid waste management. A detailed approach on performing a public acceptance study of a proposed landfill site is presented in this study. The study will help municipal authorities to identify the most effective method of MSWM.

  5. Preliminary characterization of risks in the nuclear waste management system based on information in the literature

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Rhoads, R.E.; Van Luick, A.E.; Fecht, B.A.; Nilson, S.A.; Sevigny, N.L. [Pacific Northwest Lab., Richland, WA (United States); Armstrong, G.R. [Westinghouse Hanford Co., Richland, WA (United States); Hill, D.H.; Rowe, M.; Stern, E. [Brookhaven National Lab., Upton, NY (United States)

    1992-01-01

    This document presents preliminary information on the radiological and nonradiological risks in the nuclear waste management system. The objective of the study was to (1) review the literature containing information on risks in the nuclear waste management system and (2) use this information to develop preliminary estimates of the potential magnitude of these risks. Information was collected on a broad range of risk categories to assist the US Department of Energy (DOE) in communicating information about the risks in the waste management systems. The study examined all of the portions of the nuclear waste management system currently expected to be developed by the DOE. The scope of this document includes the potential repository, the integral MRS facility, and the transportation system that supports the potential repository and the MRS facility. Relevant literature was reviewed for several potential repository sites and geologic media. A wide range of ``risk categories`` are addressed in this report: (1) public and occupational risks from accidents that could release radiological materials, (2) public and occupational radiation exposure resulting from routine operations, (3) public and occupational risks from accidents involving hazards other than radioactive materials, and (4) public and occupational risks from exposure to nonradioactive hazardous materials during routine operations. The report is intended to provide a broad spectrum of risk-related information about the waste management system. This information is intended to be helpful for planning future studies.

  6. WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT FRAMEWORK LEGISLATION AND MANAGEMENT SYSTEM IN EUROPE

    Directory of Open Access Journals (Sweden)

    Maria-Loredana NICOLESCU

    2015-07-01

    Full Text Available Waste electrical and electronic equipment (WEEE has become one of the most significant waste streams due to the increasing amounts and environmental impact. It is very important to know how to manage the WEEE quantities, what laws are in force in this field and what policies are available to apply. This paper presents the e-waste legislation and management system from some of the European countries, as examples. The hierarchy of the management systems is presented according to the framework Directive and legislative approaches. There are also shown the "take-back" policy, the "polluter pays" principle and the "extended producer responsibility" principle. The goal of this research is to highlight the WEEE framework legislation in Europe and to present the EU policies for the WEEE management system.

  7. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    OpenAIRE

    Debere Mesfin Kote; Gelaye Kassahun Alemu; Alamdo Andamlak Gizaw; Trifa Zemedu Mehamed

    2013-01-01

    Abstract Background Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Methods Six hospitals in Addis Ababa, (three private and three public), were selected using s...

  8. Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria.

    Science.gov (United States)

    Allesch, Astrid; Brunner, Paul H

    2017-01-03

    This paper demonstrates the power of material flow analysis (MFA) for designing waste management (WM) systems and for supporting decisions with regards to given environmental and resource goals. Based on a comprehensive case study of a nationwide WM-system, advantages and drawbacks of a mass balance approach are discussed. Using the software STAN, a material flow system comprising all relevant inputs, stocks and outputs of wastes, products, residues, and emissions is established and quantified. Material balances on the level of goods and selected substances (C, Cd, Cr, Cu, Fe, Hg, N, Ni, P, Pb, Zn) are developed to characterize this WM-system. The MFA results serve well as a base for further assessments. Based on given goals, stakeholders engaged in this study selected the following seven criteria for evaluating their WM-system: (i) waste input into the system, (ii) export of waste (iii) gaseous emissions from waste treatment plants, (iv) long-term gaseous and liquid emissions from landfills, (v) waste being recycled, (vi) waste for energy recovery, (vii) total waste landfilled. By scenario analysis, strengths and weaknesses of different measures were identified. The results reveal the benefits of a mass balance approach due to redundancy, data consistency, and transparency for optimization, design, and decision making in WM.

  9. Minimax regret optimization analysis for a regional solid waste management system.

    Science.gov (United States)

    Chang, Ni-Bin; Davila, Eric

    2007-01-01

    Solid waste management (SWM) facilities are crucial for environmental management and public health in urban regions. Due to the waste management hierarchy, one of the greatest challenges that organizations face today is to figure out how to diversify the treatment options, increase the reliability of infrastructure systems, and leverage the redistribution of waste streams among incineration, compost, recycling, and other facilities to their competitive advantage region wide. Systems analysis plays an important role for regionalization assessment of integrated SWM systems, leading to provide decision makers with break-through insights and risk-informed strategies. This paper aims to apply a minimax regret optimization analysis for improving SWM strategies in the Lower Rio Grande Valley (LRGV), an economically fast growing region in the US. Based on different environmental, economic, legal, and social conditions, event-based simulation in the first stage links estimated waste streams in major cities in LRGV with possible solid waste management alternatives. The optimization analysis in the second stage emphasizes the trade-offs and associated regret evaluation with respect to predetermined scenarios. Such optimization analyses with multiple criteria have featured notable successes, either by public or private efforts, in diverting recyclables, green waste, yard waste, and biosolids from the municipal solid waste streams to upcoming waste-to-energy, composting, and recycling facilities. Model outputs may link prescribed regret scenarios in decision making with various scales of regionalization policies. The insights drawn from the system-oriented, forward-looking, and preventative study can eventually help decision-makers and stakeholders gain a scientific understanding of the consequences of short-term and long-term decisions relating to sustainable SWM in the fast-growing US-Mexico borderland.

  10. An inexact reverse logistics model for municipal solid waste management systems.

    Science.gov (United States)

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred.

  11. A decision support system for regional hazardous waste management alternatives

    OpenAIRE

    Mahyar A. Amouzegar; Jacobsen, Stephen E.

    1998-01-01

    With the passage of the Resource Conservation and Recovery Act (RCRA), and the subsequent amendments to RCRA, efforts to provide tighter controls on the transportation and disposal of hazardous waste have been steadily gaining ground. This paper, intended as a decision support tool for regional planning, incorporates information on the hazardous waste generation, treatment capacity and the costs of waste treatment alternatives into an optimization problem of finding the relationship between g...

  12. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel en

  13. Environmental control and waste management system design concept

    Science.gov (United States)

    Gandy, A. R.

    1974-01-01

    Passive device contains both solid and liquid animal waste matter for extended period without being cleaned and without contaminating animal. Constant airflow dries solid waste and evaporates liquid matter. Technique will maintain controlled atmospheric conditions and cage cleanliness during periods of 6 months to 1 year.

  14. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    Science.gov (United States)

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)).

  15. The use of ACV in the integrated waste systems of waste management; El uso del ACV en el desarrollo de sistemas integrados de gestion de residuos

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F. R.; Navarro, M

    2000-07-01

    The treatment systems of Solid Wastes must be conceived for minimizing the environment charge originated by them and to be economically assumed by the sectors of a community. The waste integrated management represents a global proposal which implies a wide range of different treatment options for all waste. (Author)

  16. Technologies and decision support systems to aid solid-waste management: a systematic review.

    Science.gov (United States)

    Vitorino de Souza Melaré, Angelina; Montenegro González, Sahudy; Faceli, Katti; Casadei, Vitor

    2017-01-01

    Population growth associated with population migration to urban areas and industrial development have led to a consumption relation that results in environmental, social, and economic problems. With respect to the environment, a critical concern is the lack of control and the inadequate management of the solid waste generated in urban centers. Among the challenges are proper waste-collection management, treatment, and disposal, with an emphasis on sustainable management. This paper presents a systematic review on scientific publications concerning decision support systems applied to Solid Waste Management (SWM) using ICTs and OR in the period of 2010-2013. A statistical analysis of the eighty-seven most relevant publications is presented, encompassing the ICTs and OR methods adopted in SWM, the processes of solid-waste management where they were adopted, and which countries are investigating solutions for the management of solid waste. A detailed discussion on how the ICTs and OR methods have been combined in the solutions was also presented. The analysis and discussion provided aims to help researchers and managers to gather insights on technologies/methods suitable the SWM challenges they have at hand, and on gaps that can be explored regarding technologies/methods that could be useful as well as the processes in SWM that currently do not benefit from using ICTs and OR methods.

  17. Environmental system analysis of waste management. Experiences from applications of the ORWARE model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, Anna

    2000-11-01

    Waste management has gone through a history of shifting problems, demands, and strategies over the years. In contrast to the long prevailing view that the problem could be solved by hiding or moving it, waste is now viewed as a problem ranging from local to global concern, and as being an integral part of several sectors in society. Decisive for this view has been society's increasing complexity and thus the increasing complexity of waste, together with a general development of environmental consciousness, moving from local focus on point emission sources, to regional and global issues of more complex nature. This thesis is about the development and application ORWARE; a model for computer aided environmental systems analysis of municipal waste management. Its origin is the hypothesis that widened perspectives are needed in waste management decision-making to avoid severe sub-optimisation of environmental performance. With a strong foundation in life cycle assessment (LCA), ORWARE aims to cover the environmental impacts over the entire life cycle of waste management. It also performs substance flow analysis (SFA) calculations at a rather detailed level of the system. Applying ORWARE has confirmed the importance of applying systems perspective and of taking into account site specific differences in analysis and planning of waste management, rather than relying on overly simplified solutions. Some findings can be generalised and used as guidelines to reduce environmental impact of waste management. Recovery of material and energy resources from waste generally leads to net reductions in energy use and environmental impact, because of the savings this brings about in other sectors. Waste treatment with low rate of energy and materials recovery should therefore be avoided. The exact choice of technology however depends on what products can be recovered and how they are used. Despite the complexity of the model and a certain degree of user unfriendliness, involved

  18. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management. (LK)

  19. Biomedical Waste Management

    OpenAIRE

    Sikovska, Biljana; Dimova, Cena; Sumanov, Gorgi; Vankovski, Vlado

    2016-01-01

    Medical waste is all waste material generated at health care facilities, such as hospitals, clinics, physician’s offices, dental practices, blood banks, and veterinary hospitals/clinics, as well as medical research facilities and laboratories. Poor management of health care waste potentially exposes health care workers, waste handlers, patients and the community at large to infection, toxic effects and injuries, and risks polluting the environment. It is essential that all medical waste ma...

  20. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Wecks, M.D.

    1998-04-15

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

  1. Assessment of the municipal solid waste management system in Accra, Ghana: A 'Wasteaware' benchmark indicator approach.

    Science.gov (United States)

    Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne

    2017-09-01

    This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.

  2. A system dynamics approach for hospital waste management in a city in a developing country: the case of Nablus, Palestine.

    Science.gov (United States)

    Al-Khatib, Issam A; Eleyan, Derar; Garfield, Joy

    2016-09-01

    Hospitals and health centers provide a variety of healthcare services and normally generate hazardous waste as well as general waste. General waste has a similar nature to that of municipal solid waste and therefore could be disposed of in municipal landfills. However, hazardous waste poses risks to public health, unless it is properly managed. The hospital waste management system encompasses many factors, i.e., number of beds, number of employees, level of service, population, birth rate, fertility rate, and not in my back yard (NIMBY) syndrome. Therefore, this management system requires a comprehensive analysis to determine the role of each factor and its influence on the whole system. In this research, a hospital waste management simulation model is presented based on the system dynamics technique to determine the interaction among these factors in the system using a software package, ithink. This model is used to estimate waste segregation as this is important in the hospital waste management system to minimize risk to public health. Real data has been obtained from a case study of the city of Nablus, Palestine to validate the model. The model exhibits wastes generated from three types of hospitals (private, charitable, and government) by considering the number of both inpatients and outpatients depending on the population of the city under study. The model also offers the facility to compare the total waste generated among these different types of hospitals and anticipate and predict the future generated waste both infectious and non-infectious and the treatment cost incurred.

  3. Assessment of Municipal Solid Waste Management System in a Developing Country

    Directory of Open Access Journals (Sweden)

    A. Ahsan

    2014-01-01

    Full Text Available This study represents a few basic steps of municipal solid waste management practiced in the six major cities of Bangladesh, namely, Dhaka, Chittagong, Khulna, Rajshahi, Barisal, and Sylhet. A six-month field study was conducted to identify the solid wastes management steps such as storage at source, separation, on-site storage, collection, transportation, treatment, reuse, recycling, and ultimate disposal. This study addresses the role of the city authority to meet the demand of the city dwellers in solving this emerging socioenvironmental issue and the initiatives taken by some nongovernmental organizations and community based organizations. The problems and constraints of the solid wastes management system are also identified to find a sustainable management concept for the urban areas of Bangladesh.

  4. Cost Implications of an Interim Storage Facility in the Waste Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, Joshua J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joseph, III, Robert Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petersen, Gordon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutt, Mark [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, Joe [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cotton, Thomas [Complex Systems Group, Bozeman, MT (United States)

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  5. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-01-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within...... regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding...

  6. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    Science.gov (United States)

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  7. Incineration or autoclave? A comparative study in isfahan hospitals waste management system (2010).

    Science.gov (United States)

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-03-01

    treatment of bulky wastes such as Anatomical wastes, their usage seems logic considering the very low amounts of such wastes. Also, considering the amount of generated wastes in Isfahan hospitals, a combination of centralized and non-centralized autoclaves is recommended for treatment of infected wastes. Mobile autoclaves may also be considered according to technical and economical conditions. It must not be forgotten that the priority must be given to the establishment of waste management systems particularly to personnel training to produce less wastes and to well separate them.

  8. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  9. Factors affecting the sustainability of solid waste management system-the case of Palestine.

    Science.gov (United States)

    Al-Khateeb, Ammar J; Al-Sari, Majed I; Al-Khatib, Issam A; Anayah, Fathi

    2017-02-01

    Understanding the predictors of sustainability in solid waste management (SWM) systems can significantly contribute to eliminate many waste management problems. In this paper, the sustainability elements of SWM systems of interest are (1) attitudes toward separation at the source, (2) behaviour regarding reuse and/or recycling and (3) willingness to pay for an improved service of SWM. The predictors affecting these three elements were studied in two Palestinian cities: Ramallah and Jericho. The data were collected via structured questionnaires and direct interviews with the respondents, and the analysis utilized a logistic regression model. The results showed that the place of residence and dwelling premises are the significant factors influencing attitudes toward separation at the source; the place of residence and age are the significant factors explaining behaviour regarding reuse and/or recycling; while the dwelling premises, gender, level of education and being received education on waste management are the significant factors affecting willingness to pay for an improved service of SWM.

  10. Comparison of the organic waste management systems in the danish-german border region using life cycle assessment

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Scheutz, Charlotte; Møller, Jacob

    The treatment of organic waste from household in the Danish-German border region is very diverse, the Danish area only uses incineration for the treatment while the German system includes combined biogas and composting, mechanical and biological treatment and incineration. Data on all parts...... of the organic waste treatment has been collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life...

  11. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    Energy Technology Data Exchange (ETDEWEB)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  12. Healthcare waste generation and its management system: the case ...

    African Journals Online (AJOL)

    Bernt Lindtjorn

    new patients and those who had some other health services at .... Pharmacy. 0.436 ± 0.209. 24.3. 357.89. Injection & Dressing. 0.597 ± 0.135. 33.3 ... buckets and safety boxes were used to transport manually .... Waste segregation and treatment are the most important ... recent times, although its documentation is grossly.

  13. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  14. Biohazardous waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.

    2004-01-01

    This plan describes the process for managing non-medical biohazardous waste at Sandia National Laboratories California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of biohazardous waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to non-medical biohazardous waste.

  15. Medical waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  16. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue consumpt

  17. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    -German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts......This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish...... of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life...

  18. 77 FR 12497 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Exclusion

    Science.gov (United States)

    2012-03-01

    ... Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Environmental... waste is not a hazardous waste. This exclusion conditionally excludes the petitioned waste from the.... What decision is EPA finalizing and why? B. What are the terms of this exclusion? C. When is...

  19. 77 FR 43002 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2012-07-23

    ... leachate extract of the waste measured in any sample must not exceed the following concentrations (mg/L... used for generation of the leaching extract if oil and grease comprise 1 percent or more of the waste...; Vanadium- 12.3; Xylenes (total)-22; Zinc-500. ] 2. Verification Testing: To verify that the waste does...

  20. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors

  1. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, 2800 Kgs. Lyngby (Denmark); Kromann, Mikkel A. [COWI A/S, Parallelvej 2, 2800 Kgs. Lyngby (Denmark); Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, 2800 Kgs. Lyngby (Denmark)

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental

  2. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment.

  3. Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Ola

    2003-04-01

    Waste management is something that affects most people. The waste amounts are still increasing, but the waste treatment is changing towards recycling and integrated solutions. In Sweden producers' responsibility for different products, a tax and bans on deposition of waste at landfills implicates a reorganisation of the municipal solid waste management. Plans are made for new incineration plants, which leads to that waste combustion comes to play a role in the reorganisation of the Swedish energy system as well. The energy system is supposed to adapt to governmental decisions on decommission of nuclear plants and decreased use of fossil fuels. Waste from private households consists of hazardous waste, scrap waste, waste electronics and wastes that to a large extent are generated in the kitchen. The latter type has been studied in this thesis, except for newsprint, glass- and metal packages that by source separation haven't ended up in the waste bin. Besides the remaining amount of the above mentioned fractions, the waste consists of food waste, paper, cardboard- and plastic packages and inert material. About 80-90 % of this mixed household waste is combustible, and the major part of that is also possible to recycle. Several systems analyses of municipal solid waste management have been performed. Deposition at landfill has been compared to energy recovery, recycling of material (plastic and cardboard) and recycling of nutrients (in food waste). Environmental impact, fuel consumption and costs are calculated for the entire lifecycle from the households, until the waste is treated and the by-products have been taken care of. To stop deposition at landfills is the most important measure to take as to decrease the environmental impact from landfills, and instead use the waste as a resource, thereby substituting production from virgin resources (avoiding resource extraction and emissions). The best alternative to landfilling is incineration, but also material

  4. ECLSS Universal Waste Management System (UWMS) Metal Materials Compatibility Study- Electrochemical and Crevice Corrosion Evaluation

    Science.gov (United States)

    Lee, R. E.

    2017-01-01

    Electrochemical and crevice corrosion laboratory test results are presented for three noble metal candidates with possible application on the Universal Waste Management System (UWMS) in support of the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The three metal candidates, which included Inconel 625, Hastelloy C276 and Titanium 6Al-4V, were evaluated in two solutions representative of the acidic pretreatment formulations utilized during processing of waste liquids within the ECLSS. Final test results and data analysis indicated that the passive layer on all three metals provides excellent corrosion protection in both solutions under standard test conditions.

  5. Flow analysis of metals in a municipal solid waste management system.

    Science.gov (United States)

    Jung, C H; Matsuto, T; Tanaka, N

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  6. A web-based Decision Support System for the optimal management of construction and demolition waste.

    Science.gov (United States)

    Banias, G; Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, N; Papaioannou, I

    2011-12-01

    Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece.

  7. Economic and ecological optimal strategies of management of the system of regional solid waste disposal

    Directory of Open Access Journals (Sweden)

    Samoylik Marina S.

    2014-01-01

    Full Text Available The article develops an economic and ecological model of optimal management of the system of solid waste disposal at the regional level, identifies its target functions and forms optimisation scenarios of management of this sphere with theoretically optimal parameters’ values. Based on the model of management of the sphere of solid waste disposal the article forms an algorithm of identification of optimal managerial strategies and mechanisms of their realisation, which allows solution of the set tasks of optimisation of development of the sphere of solid waste disposal at a given set of values and parameters of the state of the system for a specific type of life cycle of solid waste and different subjects of this sphere. The developed model has a number of feasible solutions and, consequently, offers selection of the best of them with consideration of target functions. The article conducts a SWOT analysis of the current state of solid waste disposal in the Poltava region and identifies a necessity of development of a relevant strategy on the basis of the developed economic and ecological model with consideration of optimisation of mutually opposite criteria: ecological risk for the population from the sphere of solid waste disposal and total expenditures for this sphere functioning. The article conducts modelling of this situation by basic (current situation and alternative scenarios and finds out that, at this stage, it is most expedient to build in the region four sorting lines and five regional solid waste grounds, while expenditures on this sphere are UAH 62.0 million per year, income from secondary raw material sales – UAH 71.2 per year and reduction of the ecological risk – UAH 13 million per year.

  8. The strategic role of recycling centres for environmental performance of waste management systems.

    Science.gov (United States)

    Krook, Joakim; Eklund, Mats

    2010-05-01

    This paper analyses how different actors influence the sorting quality of waste at recycling centres. Users (i.e. citizens) play an essential role since they conduct the actual sorting. They have difficulties sorting many of their discarded products, leading to decreased performance of the entire waste management system of which recycling centres are a part. Several measures addressing this problem are identified such as product design, improved terminology for labelling waste and increased manning at recycling centres. A fundamental task for managers and employees is to further develop information and guidance for users, both at home and at recycling centres. Several obstacles for improvements are also discussed, including working conditions and the economy of recycling centres, as well as the routines for communication and quality assurance among actors in the recycling business.

  9. Efficiency Assessment of E-waste Management System in Lithuanian Public Sector

    Directory of Open Access Journals (Sweden)

    Laura Vasilenko

    2009-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Rapid technology change, low initial costs have resulted in a fast-growing surplus of electrical and electronic equipment waste (e-waste around the globe. Management of e-waste in an environment friendly way according to all legal regulations carries great importance. E-waste management system incorporates different stakeholders through the whole life cycle of electrical and electronic equipment (EEE - producers/importers, distributors, consumers/users, collectors, recyclers. The system's efficiency depends on the environmental awareness and effective activity of each of the actors. The public sector is dealt with in this paper describing the differences and problems of a non-household (B2B sector in the e-waste chain. The aim of this paper is to evaluate efficiency of the e-waste management system in the public sector (PS, identifying the problems which have brought about reduced e-waste management efficiency. It is anticipated that the recommendations proposed should increase the efficiency of the PS and some of the recommendations could be applied to the e-waste management system in general.

  10. Assessment of national systems for obtaining local acceptance of waste management siting and routing activities

    Energy Technology Data Exchange (ETDEWEB)

    Paige, H.W.; Lipman, D.S.; Owens, J.E.

    1980-07-01

    There is a rich mixture of formal and informal approaches being used in our sister nuclear democracies in their attempts to deal with the difficulties of obtaining local acceptance for siting of waste management facilities and activities. Some of these are meeting with a degree of success not yet achieved in the US. Although this survey documents and assesses many of these approaches, time did not permit addressing in any detail their relevance to common problems in the US. It would appear the US could benefit from a periodic review of the successes and failures of these efforts, including analysis of their applicability to the US system. Of those countries (Germany, Sweden, Switzerland, Japan, Belgium, and the US) who are working to a time table for the preparation of a high-level waste (HLW) repository, Germany is the only country to have gained local siting acceptance for theirs. With this (the most difficult of siting problems) behind them they appear to be in the best overall condition relative to waste management progress and plans. This has been achieved without a particularly favorable political structure, made up for by determination on the part of the political leadership. Of the remaining three countries studied (France, UK and Canada) France, with its AVM production facility, is clearly the world leader in the HLW immobilization aspect of waste management. France, Belgium and the UK appear to have the least favorable political structures and environments for arriving at waste management decisions. US, Switzerland and Canada appear to have the least favorable political structures and environments for arriving at waste management decisions.

  11. E-waste management

    CERN Document Server

    Hieronymi, Klaus; Williams, Eric

    2012-01-01

    The landscape of electronic waste, e-waste, management is changing dramatically. Besides a rapidly increasing world population, globalization is driving the demand for products, resulting in rising prices for many materials. Absolute scarcity looms for some special resources such as indium. Used electronic products and recyclable materials are increasingly crisscrossing the globe. This is creating both - opportunities and challenges for e-waste management. This focuses on the current and future trends, technologies and regulations for reusable and recyclable e-waste worldwide.

  12. A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand.

    Science.gov (United States)

    Sukholthaman, Pitchayanin; Sharp, Alice

    2016-06-01

    Municipal solid waste has been considered as one of the most immediate and serious problems confronting urban government in most developing and transitional economies. Providing solid waste performance highly depends on the effectiveness of waste collection and transportation process. Generally, this process involves a large amount of expenditures and has very complex and dynamic operational problems. Source separation has a major impact on effectiveness of waste management system as it causes significant changes in quantity and quality of waste reaching final disposal. To evaluate the impact of effective source separation on waste collection and transportation, this study adopts a decision support tool to comprehend cause-and-effect interactions of different variables in waste management system. A system dynamics model that envisages the relationships of source separation and effectiveness of waste management in Bangkok, Thailand is presented. Influential factors that affect waste separation attitudes are addressed; and the result of change in perception on waste separation is explained. The impacts of different separation rates on effectiveness of provided collection service are compared in six scenarios. 'Scenario 5' gives the most promising opportunities as 40% of residents are willing to conduct organic and recyclable waste separation. The results show that better service of waste collection and transportation, less monthly expense, extended landfill life, and satisfactory efficiency of the provided service at 60.48% will be achieved at the end of the simulation period. Implications of how to get public involved and conducted source separation are proposed.

  13. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  14. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    Science.gov (United States)

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  15. Mixed waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.B.; Kirner, N.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  16. LCA Modeling of Waste Management Scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2011-01-01

    and shows that recycling is superior to incineration with energy recovery, which again is better than landfilling. Cleary (2010) reviewed 20 waste management scenarios assessed in 11 studies published in the period 2002–2008 and concluded that, due to lack of transparency regarding boundary conditions...... and exchange with the energy systems, a comparison of results was hampered on a system level. In addition, differences in waste composition may affect the LCA results. This chapter provides results of LCA modeling of 40 waste management scenarios handling the same municipal waste (MSW) and using different...... management systems. The study focuses on Europe in terms of waste composition and exchange with the energy system. The waste management systems modeled are described with respect to waste composition, waste management technologies, mass flows and energy exchange in the systems. Results are first presented...

  17. 77 FR 41720 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2012-07-16

    ... wastewater treated). The biological waste streams include sanitary wastewaters, dilute organic waste (DOW... copper sulfate plating bath solutions (totaling less than 0.1 percent of the wastewater treated through... exclude (or ``delist'') up to 3,150 cubic yards per calendar year of F006 wastewater treatment...

  18. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    ... exclude (or delist) a wastewater treatment plant (WWTP) sludge filter cake (called sludge hereinafter... to the petition submitted by Tokusen, to delist the WWTP sludge. After careful analysis and use of... waste. This exclusion applies to 2,000 cubic yards per year of the WWTP sludge with Hazardous Waste...

  19. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  20. Comparison of costs for three hypothetical alternative kitchen waste management systems.

    Science.gov (United States)

    Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen

    2014-11-01

    Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option.

  1. LCA of waste management systems: Development of tools for modeling and uncertainty analysis

    DEFF Research Database (Denmark)

    Clavreul, Julie

    to be modelled rather than monitored as in classical LCA (e.g. landfilling or the application of processed waste on agricultural land). Therefore LCA-tools are needed which specifically address these issues and enable practitioners to model properly their systems. In this thesis several pieces of work...... are presented. First a review was carried out on all LCA studies of waste management systems published before mid-2012. This provided a global overview of the technologies and waste fractions which have attracted focus within LCA while enabling an analysis of methodological tendencies, the use of tools...... and databases and the application of uncertainty analysis methods. The major outcome of this thesis was the development of a new LCA model, called EASETECH, building on the experience with previous LCA-tools, in particular the EASEWASTE model. Before the actual implementation phase, a design phase involved...

  2. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    Science.gov (United States)

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  3. LCA-IWM: a decision support tool for sustainability assessment of waste management systems.

    Science.gov (United States)

    den Boer, J; den Boer, E; Jager, J

    2007-01-01

    The paper outlines the most significant result of the project 'The use of life cycle assessment tools for the development of integrated waste management strategies for cities and regions with rapid growing economies', which was the development of two decision-support tools: a municipal waste prognostic tool and a waste management system assessment tool. The article focuses on the assessment tool, which supports the adequate decision making in the planning of urban waste management systems by allowing the creation and comparison of different scenarios, considering three basic subsystems: (i) temporary storage; (ii) collection and transport and (iii) treatment, disposal and recycling. The design and analysis options, as well as the assumptions made for each subsystem, are shortly introduced, providing an overview of the applied methodologies and technologies. The sustainability assessment methodology used in the project to support the selection of the most adequate scenario is presented with a brief explanation of the procedures, criteria and indicators applied on the evaluation of each of the three sustainability pillars.

  4. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  5. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  6. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  7. A facility location model for municipal solid waste management system under uncertain environment.

    Science.gov (United States)

    Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K

    2017-12-15

    In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs.(1) /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  9. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and

  10. 77 FR 36447 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2012-06-19

    ... factors could cause the waste to be hazardous. EPA considered whether the waste is acutely toxic, the... Manganese 6.66E-01 3.11E+02 Mercury ND 2.00E-01 Methyl ethyl ketone......... ND 2.00E+00 Molybdenum 1.66E-02... toxic constituents. EPA is proposing to require ExxonMobil to analyze representative samples of...

  11. Life cycle assessment and life cycle costs for pre-disaster waste management systems.

    Science.gov (United States)

    Wakabayashi, Yohei; Peii, Tsai; Tabata, Tomohiro; Saeki, Takashi

    2017-10-01

    This study develops a method of environmental and economic evaluation of an integrated disaster waste management system that considers the spatial scale of removal, transport, and treatment of disaster waste. A case study was conducted on combustibles, which is a type of disaster waste derived from dwellings, in Mie Prefecture, Japan. First, we calculated the quantity and the spatial distribution of disaster waste derived from dwellings and tsunami debris produced as a result of a large-scale earthquake. The quantity of disaster waste was estimated as 7,178,000t with functioning flood-preventing facilities and 11,956,000t without functioning flood prevention facilities. Ensuring resilience in the face of earthquakes and tsunamis by renovating flood-preventing facilities is extremely important in decreasing the production of wastes, especially in coastal regions. Next, the transportation network for transporting combustibles in disaster waste to temporary storage sites, incineration plants, and landfill was constructed using an optimization model. The results showed that if flood-preventing facilities do not function properly, the installation of temporary incineration facilities becomes essential. Life-cycle emissions of CO2, SOx, NOx, and PM and the costs of removal, storage, and treatment of combustibles were calculated as 258,000t, 618t, 1705t, 7.9t, and 246millionUSD, respectively, in the case of functioning flood-preventing facilities. If flood-preventing facilities do not function, the quantity of environmentally unfriendly emissions and the costs increase. This result suggested the significance of renovation in order to maintain the conditions of flood-preventing facilities to decrease the environmental burden and costs as well as keep the production of disaster waste at a minimum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  13. Proceedings from Workshop on System Studies of Integrated Solid Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Jan-Olov (ed.) [Swedish Environmental Research Institute, Stockholm (Sweden); Finnveden, Goeran (ed.) [Stockholm Univ. and Swedish Defence Research Agency, Stockholm (Sweden). Environmental Strategies Research Group; Sundberg, Johan (ed.) [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Energy Systems Technology

    2002-12-01

    This international workshop was held to discuss results and experience from system studies of waste management system and methodological questions and issues based on case studies. The workshop gathered more than 40 participants. These proceedings document more than 20 presentations as well as six discussion sessions. An overall aim of the workshop was to draw some general conclusions from the presented studies concerning - waste strategies that generally seem to be favourable or not favourable - methodological approaches and assumptions that can govern the results - lack of knowledge. Considering the environmental aspects, the presented studies indicated that the waste hierarchy seems to be valid: - Paper and plastic: Material recycling < Incineration < Landfilling - Biodegradable waste: Incineration {approx} Anaerobic digestion < Composting < Landfilling. A number of key aspects that can influence the results were identified: - Avoided products (heat, electricity, material, fertiliser produced from waste). - Efficiency in power plants, heating plants etc. and also recycling plants. - Emissions and impacts from recycling plants - Landfilling models, e.g. time frames. - Final sinks: there should be a distinction between temporary sinks (landfills) and final sinks - Local conditions and local impacts are often neglected. - Electricity production - Choice of alternatives to compare can have an influence on the conclusions drawn. - Stakeholders influence. - Linear modelling. - Data gaps. Especially data on toxic substances where identified as an important data gap.

  14. The Management of Capital Allocation for Sustainable Municipal Solid Waste Management System: A Case Study of Bang Saen, Thailand

    Directory of Open Access Journals (Sweden)

    Daichi Iwase

    2013-01-01

    Full Text Available This paper attempted to analyze and understand the management of capital allocation for sustainable municipal solid waste management system at Bang Saen, Thailand. Financial, manufactured, human, social and natural capital was the focus of this study. Capital allocation to five capitals, activities of the stakeholders related to municipal solid waste management, and the output of these activities were analyzed. The investigation was carried out by reviewing documents, conducting in-depth interviews with various stakeholders including the Saensuk municipality officials, locals and tourists, and carrying out field observations. Results showed that total output from five capitals is influenced by activity performance of stakeholders, which is dependent on input to five capitals. However, input was made without assessments of output produced by the activities of the stakeholders, which stemmed from the absence of a policy goal on municipal solid waste management and action plans to achieve its goal. Capital was mostly allocated to financial and manufactured capitals in terms of support of municipal solid waste collection, transportation and disposal. Findings suggest that capital should be allocated to activities related to human, social and natural capitals that can help improve activity performance of the stakeholders, and therefore improve total output and sustainability of the system. Well-designed activities could generate improved output, which is made by readjusting input based on assessments of output and by reflecting feedback in decision making on capital allocation. For this reason, the municipality has to set a clear policy goal of municipal solid waste management, short-term, and long-term action plans. Finally, recommendation is given to municipality.

  15. Capacity planning for waste management systems: an interval fuzzy robust dynamic programming approach.

    Science.gov (United States)

    Nie, Xianghui; Huang, Guo H; Li, Yongping

    2009-11-01

    This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.

  16. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment.

    Science.gov (United States)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  17. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  18. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  19. Grid-connected integrated community energy system. Phase II, Stage 1, final report. Conceptual design: pyrolysis and waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-08

    The University of Minnesota is studying and planning a grid-connected integrated community energy system to include disposal of wastes from health centers and utilizing the heat generated. Following initial definition of the 7-county metropolitan region for which the solid waste management system is to be planned, information is then necessary about the nature of the waste generated within this region. Estimates of the quantities generated, generation rates, and properties of the waste to be collected and disposed of are required in order to determine the appropriate size and capacity of the system. These estimates are designated and subsequently referred to as ''system input''. Institutional information is also necessary in designing the planned system, to be compatible with existing institutional operations and procedures, or to offer a minimum amount of problems to the participating institution in the region. Initial considerations of health care institutions generating solid waste within the defined region are made on a comprehensive basis without any attempt to select out or include feasible candidate institutions, or institutional categories. As the study progresses, various criteria are used in selecting potential candidate institutional categories and institutions within the 7-county region as offering the most feasible solid waste system input to be successfully developed into a centralized program; however, it is hoped that such a system if developed could be maintained for the entire 7-county region, and remain comprehensive to the entire health care industry. (MCW)

  20. Development drivers for waste management.

    Science.gov (United States)

    Wilson, David C

    2007-06-01

    This paper identifies six broad groups of drivers for development in waste management. Public health led to the emergence of formalized waste collection systems in the nineteenth century, and remains a key driver in developing countries. Environmental protection came to the forefront in the 1970s, with an initial focus on eliminating uncontrolled disposal, followed by the systematic increasing of technical standards. Today, developing countries seem still to be struggling with these first steps; while climate change is also emerging as a key driver. The resource value of waste, which allows people to make a living from discarded materials, was an important driver historically, and remains so in developing countries today. A current trend in developed countries is closing the loop, moving from the concept of 'end-of-pipe' waste management towards a more holistic resource management. Two underpinning groups of drivers are institutional and responsibility issues, and public awareness. There is no, one single driver for development in waste management: the balance between these six groups of drivers has varied over time, and will vary between countries depending on local circumstances, and between stakeholders depending on their perspective. The next appropriate steps towards developing a sustainable, integrated waste management system will also vary in each local situation.

  1. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-12-01

    ... to leachate data or ground water monitoring data) or any other data relevant to the delisted waste... exclusion applies to the centrifuge solids generated at Beaumont Refinery's Beaumont, Texas facility... located at the U.S. Environmental Protection Agency Region 6, 1445 Ross Avenue, Dallas, Texas 75202,...

  2. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... and analytical data from the Beaumont Refinery, Beaumont, Texas facility. C. How will Beaumont... offsite Landfill, so no ground water monitoring data for disposal of this waste stream in the landfill is... environmental data (including but not limited to leachate data or ground water monitoring data) or any...

  3. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2010-03-31

    ... hereinafter) to exclude (or delist) a wastewater treatment plant (WWTP) sludge filter cake (called just sludge... Sec. 261.11(a)(2) or (a)(3), or (3) the wastes are mixed with or derived from the treatment, storage... copper and zinc to produce a brass coating. The facility generates F006 filter cake by the dewatering...

  4. 76 FR 5110 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2011-01-28

    ... proposing to grant a petition submitted by Gulf West Landfill, TX, LP. (Gulf West) to exclude (or delist) the landfill leachate generated by Gulf West in Anahuac, Texas from the lists of hazardous wastes. EPA... viruses. Docket. All documents in the electronic docket are listed in the http://www.regulations.gov index...

  5. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the...

  6. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011.

    Science.gov (United States)

    Debere, Mesfin Kote; Gelaye, Kassahun Alemu; Alamdo, Andamlak Gizaw; Trifa, Zemedu Mehamed

    2013-01-12

    Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Six hospitals in Addis Ababa, (three private and three public), were selected using simple random sampling method for this work. Data was recorded by using an appropriately designed questionnaire, which was completed for the period of two months. The calculations were based on the weights of the health care wastes that were regularly generated in the selected hospitals over a one week period during the year 2011. Average generation indexes were determined in relation to certain important factors, like the type of hospitals (public vs private). The median waste generation rate was found to be varied from 0.361- 0.669 kg/patient/day, comprised of 58.69% non-hazardous and 41.31% hazardous wastes. The amount of waste generated was increased as the number of patients flow increased (rs=1). Public hospitals generated high proportion of total health care wastes (59.22%) in comparison with private hospitals (40.48%). The median waste generation rate was significantly vary between hospitals with Kruskal-Wallis test (X2=30.65, p=0.0001). The amount of waste was positively correlated with the number of patients (p waste separation and treatment practices were very poor. Other alternatives for waste treatment rather than incineration such as a locally made autoclave should be evaluated and implemented. These findings revealed that the management of health care waste at hospitals in Addis Ababa city was poor.

  7. Comparison of municipal solid waste management systems in Canada and Ghana: a case study of the cities of London, Ontario, and Kumasi, Ghana.

    Science.gov (United States)

    Asase, Mizpah; Yanful, Ernest K; Mensah, Moses; Stanford, Jay; Amponsah, Samuel

    2009-10-01

    Integrated waste management has been accepted as a sustainable approach to solid waste management in any region. It can be applied in both developed and developing countries. The difference is the approach taken to develop the integrated waste management system. This review looks at the integrated waste management system operating in the city of London, Ontario-Canada and how lessons can be drawn from the system's development and operation that will help implement a sustainable waste management system in the city of Kumasi, Ghana. The waste management system in London is designed such that all waste generated in the city is handled and disposed of appropriately. The responsibility of each sector handling waste is clearly defined and monitored. All major services are provided and delivered by a combination of public and private sector forces. The sustainability of the waste management in the city of London is attributed to the continuous improvement strategy framework adopted by the city based on the principles of integrated waste management. It is perceived that adopting a strategic framework based on the principles of integrated waste management with a strong political and social will, can transform the current waste management in Kumasi and other cities in developing countries in the bid for finding lasting solutions to the problems that have plagued the waste management system in these cities.

  8. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  9. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  10. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program: Volume 2, Supporting information. [Civilian Radioactive Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    This report provides cost estimates for the fifth evaluation of the adequacy of the fee and is consistent with the program strategy and plans. The total-system cost for the reference cases in the improved-performance system is estimated at $32.1 to $38.2 billion (expressed in constant 1986 collars) over the entire life of the system, or $1.5 to $1.6 billion more than that of the authorized system (i.e., the system without an MRS facility). The current estimate of the total-system cost for the reference cases in the improved-performance system is $3.8 to $5.4 billion higher than the estimate for the same system in the 1986 TSLCC analysis. In the case with the maximum increase, nearly all of the higher cost is due to a $5.2-billion increase in the costs of development and evaluation (D and E); all other system costs are essentially unchanged. The cost difference between the improved-performance system and the authorized system is smaller than the difference estimated in last year's TSLCC analysis. Volume 2 presents the detailed results for the 1987 analysis of the total-system life cycle cost (TSLCC). It consists of four sections: Section A presents the yearly flows of waste between waste-management facilities for the 12 aggregate logistics cases that were studied; Section B presents the annual total-system costs for each of the 30 TSLCC cases by major cost category; Section C presents the annual costs for the disposal of 16,000 canisters of defense high-level waste (DHLW) by major cost category for each of the 30 TSLCC cases; and Section D presents a summary of the cost-allocation factors that were calculated to determine the defense waste share of the total-system costs.

  11. IoT-Based Smart Garbage System for Efficient Food Waste Management

    Directory of Open Access Journals (Sweden)

    Insung Hong

    2014-01-01

    Full Text Available Owing to a paradigm shift toward Internet of Things (IoT, researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%.

  12. IoT-based smart garbage system for efficient food waste management.

    Science.gov (United States)

    Hong, Insung; Park, Sunghoi; Lee, Beomseok; Lee, Jaekeun; Jeong, Daebeom; Park, Sehyun

    2014-01-01

    Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%.

  13. IoT-Based Smart Garbage System for Efficient Food Waste Management

    Science.gov (United States)

    Lee, Jaekeun

    2014-01-01

    Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%. PMID:25258730

  14. Radioactive waste management status and prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ik Hwan [Nuclear Environment Technology Institite, Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-07-01

    This paper reviews the status of radioactive waste management including management policy and system in the Republic of Korea. Also included are the status and plan of the radioactive waste management projects: construction of a low-level radioactive waste repository, construction of spent fuel interim storage facility, transportation, radioisotope waste management, and public acceptance program. Finally, the status and prospects on radioactive waste management based on the national radioactive waste management program are briefly introduced. (author)

  15. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA).

    Science.gov (United States)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-03-01

    This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34% of the entire system for one impact category and showing large difference between each heating system substituted, e.g. in "Global Warming" the impact was from -16 to -1.1 milli person equivalent/tonne treated waste from substitution of centralised hard coal and decentralised natural gas, respectively.

  16. Approaches to formalization of the informal waste sector into municipal solid waste management systems in low- and middle-income countries: Review of barriers and success factors

    DEFF Research Database (Denmark)

    Aparcana Robles, Sandra Roxana

    2016-01-01

    The Municipal Solid Waste Management (MSWM) sector represents a major challenge for low-and middle-income countries due to significant environmental and socioeconomic issues involving rapid urbanization, their MSWM systems, and the existence of the informal waste sector. Recognizing its role......, this paper aims to address this gap by explaining to policy- and decision-makers, and to waste managers in the private sector, certain dynamics that can be observed and that should be taken into account when designing formalization strategies that are adapted to their particular socioeconomic and political...... classified into three categories: (1) informal waste workers organized in associations or cooperatives; (2) organized in CBOs or MSEs; and (3) contracted as individual workers by the formal waste sector. This was followed by the identification and subsequent classification of measures for removing common...

  17. Sustainability assessment and comparison of waste management systems: The Cities of Sofia and Niš case studies.

    Science.gov (United States)

    Milutinović, Biljana; Stefanović, Gordana; Kyoseva, Vanya; Yordanova, Dilyana; Dombalov, Ivan

    2016-09-01

    Sustainability assessment of a waste management system is a very complex problem for numerous reasons. Firstly, it is a problem of environmental assessment, economic viability and social acceptability, and also a choice of the most practical waste treatment technique, taking into account all the specific areas in which a waste management system is implemented. For these reasons, among others, it is very important to benchmark, cooperate and exchange experiences in areas with similar characteristics. In this study, a comparison of waste management scenarios in the Cities of Niš and Sofia was performed. Based on the amount and composition of municipal solid waste, and taking into account local specifics (economic conditions, social acceptance, etc.), different scenarios were developed: landfilling without energy recovery, landfilling with energy recovery, mechanical-biological treatment, anaerobic digestion with biogas utilization and incineration with energy recovery. Scenario ranking was done using multi-criteria analysis and 12 indicators were chosen as the criteria. The obtained results show that the most sustainable scenario in both case studies is the mechanical-biological treatment (recycling, composting and Refuse Derived Fuel production). Having in mind that this scenario is the current waste management system in Sofia, these results can help decision-makers in the City of Niš in choosing a successful and sustainable waste management system.

  18. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  19. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program. Volume 2. Supporting information

    Energy Technology Data Exchange (ETDEWEB)

    1986-04-01

    This report presents the detailed results and assumptions for the January 1986 Total System Life Cycle Cost (TSLCC) analysis. The report is composed of three sections: Section A lists the costing assumptions which have been made about the principal waste management system parameters; Section B presents the yearly flows of waste material between system facilities for the 8 logistics cases which were studied; and Section C presents the annual total system costs for each of the 32 TSLCC cases by major cost category.

  20. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    Directory of Open Access Journals (Sweden)

    Debere Mesfin Kote

    2013-01-01

    Full Text Available Abstract Background Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Methods Six hospitals in Addis Ababa, (three private and three public, were selected using simple random sampling method for this work. Data was recorded by using an appropriately designed questionnaire, which was completed for the period of two months. The calculations were based on the weights of the health care wastes that were regularly generated in the selected hospitals over a one week period during the year 2011. Average generation indexes were determined in relation to certain important factors, like the type of hospitals (public vs private. Results The median waste generation rate was found to be varied from 0.361- 0.669 kg/patient/day, comprised of 58.69% non-hazardous and 41.31% hazardous wastes. The amount of waste generated was increased as the number of patients flow increased (rs=1. Public hospitals generated high proportion of total health care wastes (59.22% in comparison with private hospitals (40.48%. The median waste generation rate was significantly vary between hospitals with Kruskal-Wallis test (X2=30.65, p=0.0001. The amount of waste was positively correlated with the number of patients (p Conclusion These findings revealed that the management of health care waste at hospitals in Addis Ababa city was poor.

  1. Commercial radioactive waste management system feasibility with the universal canister concept. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Morissette, R.P.; Schneringer, P.E.; Lane, R.K.; Moore, R.L.; Young, K.A.

    1986-01-01

    A Program Research and Development Announcement (PRDA) was initiated by DOE to solicit from industry new and novel ideas for improvements in the nuclear waste management system. GA Technologies Inc. was contracted to study a system utilizing a universal canister which could be loaded at the reactor and used throughout the waste management system. The proposed canister was developed with the objective of meeting the mission requirements with maximum flexibility and at minimum cost. Canister criteria were selected from a thorough analysis of the spent fuel inventory, and canister concepts were evaluated along with the shipping and storage casks to determine the maximum payload. Engineering analyses were performed on various cask/canister combinations. One important criterion was the interchangeability of the canisters between truck and rail cask systems. A canister was selected which could hold three PWR intact fuel elements or up to eight consolidated PWR fuel elements. One canister could be shipped in an overweight truck cask or six in a rail cask. Economic analysis showed a cost savings of the reference system under consideration at that time.

  2. Solid Waste Management Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  3. Quantitative assessments of municipal waste management systems: using different indicators to compare and rank programs in New York State.

    Science.gov (United States)

    Greene, Krista L; Tonjes, David J

    2014-04-01

    The primary objective of waste management technologies and policies in the United States is to reduce the harmful environmental impacts of waste, particularly those relating to energy consumption and climate change. Performance indicators are frequently used to evaluate the environmental quality of municipal waste systems, as well as to compare and rank programs relative to each other in terms of environmental performance. However, there currently is no consensus on the best indicator for performing these environmental evaluations. The purpose of this study is to examine the common performance indicators used to assess the environmental benefits of municipal waste systems to determine if there is agreement between them regarding which system performs best environmentally. Focus is placed on how indicator selection influences comparisons between municipal waste management programs and subsequent system rankings. The waste systems of ten municipalities in the state of New York, USA, were evaluated using each common performance indicator and Spearman correlations were calculated to see if there was a significant association between system rank orderings. Analyses showed that rank orders of waste systems differ substantially when different indicators are used. Therefore, comparative system assessments based on indicators should be considered carefully, especially those intended to gauge environmental quality. Insight was also gained into specific factors which may lead to one system achieving higher rankings than another. However, despite the insufficiencies of indicators for comparative quality assessments, they do provide important information for waste managers and they can assist in evaluating internal programmatic performance and progress. To enhance these types of assessments, a framework for scoring indicators based on criteria that evaluate their utility and value for system evaluations was developed. This framework was used to construct an improved model for

  4. Online Management of Waste Storage

    Directory of Open Access Journals (Sweden)

    Eugenia IANCU

    2011-01-01

    Full Text Available The paper presents a telematic system designed to monitor the areas affected by the uncontrollable waste storing by using the newest informational and communicational technologies through the elaboration of a GPS/GIS electronic geographical positioning system. Within the system for online management of the affected locations within the built up areas, the following data categories are defined and processed: data regarding the waste management (monitored locations within the built up areas, waste, pollution sources, waste stores, waste processing stations, data describing the environment protection (environmental quality parameters: water, air, soil, spatial data (thematic maps. Using the automatic collection of the data referring to the environment quality, it is aiming at the realization of a monitoring system, equipped with sensors and/or translators capable of measuring and translating (into electrical signals measures with meteorological character (the intensity of the solar radiation, temperature, humidity but also indicators of the ecological system (such as: the concentration of nutrients in water and soil, the pollution in water, air and soil, biomasses. The organization, the description and the processing of the spatial data requires the utilization of a GIS (Geographical Information System type product.

  5. Management of radioactive waste: A review

    Directory of Open Access Journals (Sweden)

    Luis Paulo Sant'ana

    2016-06-01

    Full Text Available The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from country to country. Furthermore, microbiological procedures, plasma vitrification process, chemical precipitation, ion exchange, evaporation and reverse osmosis are strategies used for the treatment of radioactive wastes. The major challenge is to manage these radioactive substances after being used and discharged. This report brings data from the literature published worldwide from 2009 to 2014 on radioactive waste management studies and it covers production, classification and management of radioactive solid, liquid and gas waste.

  6. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 -- a fee levied on electricity generated in commercial nuclear power plants -- is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee and is consistent with the program strategy and plans contained in the DOE`s Draft 1988 Mission Plan Amendment. The total-system cost for the system with a repository at Yucca Mountain, Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $24 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $31 to $33 billion, depending on the quantity of spent fuel to be disposed of. The $7 billion cost savings for the single-repository system in comparison with the two-repository system is due to the elimination of $3 billion for second-repository development and $7 billion for the second-repository facility. These savings are offset by $2 billion in additional costs at the first repository and $1 billion in combined higher costs for the MRS facility and transportation. 55 refs., 2 figs., 24 tabs.

  7. Quantitative performance targets by using balanced scorecard system: application to waste management and public administration.

    Science.gov (United States)

    Mendes, Paula; Nunes, Luis Miguel; Teixeira, Margarida Ribau

    2014-09-01

    This article demonstrates how decision-makers can be guided in the process of defining performance target values in the balanced scorecard system. We apply a method based on sensitivity analysis with Monte Carlo simulation to the municipal solid waste management system in Loulé Municipality (Portugal). The method includes two steps: sensitivity analysis of performance indicators to identify those performance indicators with the highest impact on the balanced scorecard model outcomes; and sensitivity analysis of the target values for the previously identified performance indicators. Sensitivity analysis shows that four strategic objectives (IPP1: Comply with the national waste strategy; IPP4: Reduce nonrenewable resources and greenhouse gases; IPP5: Optimize the life-cycle of waste; and FP1: Meet and optimize the budget) alone contribute 99.7% of the variability in overall balanced scorecard value. Thus, these strategic objectives had a much stronger impact on the estimated balanced scorecard outcome than did others, with the IPP1 and the IPP4 accounting for over 55% and 22% of the variance in overall balanced scorecard value, respectively. The remaining performance indicators contribute only marginally. In addition, a change in the value of a single indicator's target value made the overall balanced scorecard value change by as much as 18%. This may lead to involuntarily biased decisions by organizations regarding performance target-setting, if not prevented with the help of methods such as that proposed and applied in this study.

  8. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    Science.gov (United States)

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  9. LOGISTICS OF WASTE MANAGEMENT IN HEALTHCARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2016-07-01

    Full Text Available The waste management system in health care is a tool that allows to conduct reasonable steps to reduce their amount, collection, storage and transport, and provide a high level of utilization or disposal. Logistics solutions in waste management are intended to make full use of the infrastructure and technical resources, optimize costs, ensure the safety and health at work and meet legal requirements. The article discusses the elements of the logistics system of waste management in hospital, necessary to ensure the smooth flow of waste from its origin to landfilling. The following criteria were characterized: technical and technological, ecological and economic that can be used in the analysis and evaluation of solutions in waste management in the hospital. Finally, solutions to improve waste management system in the hospital on the example of the real object have been presented.

  10. An information system for sustainable materials management with material flow accounting and waste input–output analysis

    Directory of Open Access Journals (Sweden)

    Pi-Cheng Chen

    2017-05-01

    Full Text Available Sustainable materials management focuses on the dynamics of materials in economic and environmental activities to optimize material use efficiency and reduce environmental impact. A preliminary web-based information system is thus developed to analyze the issues of resource consumption and waste generation, enabling countries to manage resources and wastes from a life cycle perspective. This pioneering system features a four-layer framework that integrates information on physical flows and economic activities with material flow accounting and waste input–output table analysis. Within this framework, several applications were developed for different waste and resource management stakeholders. The hierarchical and interactive dashboards allow convenient overview of economy-wide material accounts, waste streams, and secondary resource circulation. Furthermore, the system can trace material flows through associated production supply chain and consumption activities. Integrated with economic models; this system can predict the possible overloading on the current waste management facility capacities and provide decision support for designing strategies to approach resource sustainability. The limitations of current system are specified for directing further enhancement of functionalities.

  11. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Value added: modes of sustainable recycling in the modernisation of waste management systems

    NARCIS (Netherlands)

    Scheinberg, A.

    2011-01-01

    For many centuries urban waste management in Europe and Northern America consisted of private – to – private arrangements to remove waste from the city centre and so restrain the spread of cholera and other diseases, odour and nuisances. The agricultural and industrial value chains provi

  13. A global approach for sparse representation of uncertainty in Life Cycle Assessments of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Conradsen, Knut; Christensen, Thomas Højlund

    2016-01-01

    . Three full-scale waste management scenarios are modelled with the dedicated waste LCA model EASETECH and a full range of ILCD recommended impact categories. Common uncertainty ranges of 10 % are used for all parameters, which we assume to be normally distributed. The applicability of the concepts...

  14. Value added: modes of sustainable recycling in the modernisation of waste management systems

    NARCIS (Netherlands)

    Scheinberg, A.

    2011-01-01

    For many centuries urban waste management in Europe and Northern America consisted of private – to – private arrangements to remove waste from the city centre and so restrain the spread of cholera and other diseases, odour and nuisances. The agricultural and industrial value chains

  15. Value added: modes of sustainable recycling in the modernisation of waste management systems

    NARCIS (Netherlands)

    Scheinberg, A.

    2011-01-01

    For many centuries urban waste management in Europe and Northern America consisted of private – to – private arrangements to remove waste from the city centre and so restrain the spread of cholera and other diseases, odour and nuisances. The agricultural and industrial value chains provi

  16. Development and application of the decision support system for municipal solid waste management in central Taiwan.

    Science.gov (United States)

    Chang, Yao-Jen; Lin, Min-Der

    2013-05-01

    Municipal solid waste management (MSWM) is an important, practical and challenging environmental subject. The processes of a MSWM system include household collection, transportation, treatment, material recycling, compost and disposal. A regional program of MSWM is more complicated owing to the involvement of multi-municipality and multi-facility issues. Therefore, an effective decision support system capable of solving regional MSWM problems is necessary for decision-makers. This article employs linear programming techniques to establish a MSWM decision support system (MSWM-DSS) that is able to determine the least costs of regional MSWM strategies. The results of investigating a real-world case in central Taiwan indicate that a regional program is more economical and efficient. For the redeployment of MSW streams, the relatively least cost of operation for the MSWM system can still be achieved through the re-estimation of the MSWM-DSS. This tool and results are useful for MSWM policy-making in central Taiwan.

  17. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rigamonti, L., E-mail: lucia.rigamonti@polimi.it; Falbo, A.; Grosso, M.

    2013-11-15

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.

  18. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  19. Data Management Plan and Functional System Design for the Information Management System of the Clinch River Remedial Investigation and Waste Area Grouping 6

    Energy Technology Data Exchange (ETDEWEB)

    Ball, T.; Brandt, C.; Calfee, J.; Garland, M.; Holladay, S.; Nickle, B.; Schmoyer, D.; Serbin, C.; Ward, M. [Oak Ridge National Lab., TN (United States)

    1994-03-01

    The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementation of a common information management strategy that benefits each program.

  20. A Literature Review and Compilation of Nuclear Waste Management System Attributes for Use in Multi-Objective System Evaluations.

    Energy Technology Data Exchange (ETDEWEB)

    Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Samsa, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-11-01

    The purpose of this work was to compile a comprehensive initial set of potential nuclear waste management system attributes. This initial set of attributes is intended to serve as a starting point for additional consideration by system analysts and planners to facilitate the development of a waste management system multi-objective evaluation framework based on the principles and methodology of multi-attribute utility analysis. The compilation is primarily based on a review of reports issued by the Canadian Nuclear Waste Management Organization (NWMO) and the Blue Ribbon Commission on America's Nuclear Future (BRC), but also an extensive review of the available literature for similar and past efforts as well. Numerous system attributes found in different sources were combined into a single objectives-oriented hierarchical structure. This study provides a discussion of the data sources and the descriptions of the hierarchical structure. A particular focus of this study was on collecting and compiling inputs from past studies that involved the participation of various external stakeholders. However, while the important role of stakeholder input in a country's waste management decision process is recognized in the referenced sources, there are only a limited number of in-depth studies of the stakeholders' differing perspectives. Compiling a comprehensive hierarchical listing of attributes is a complex task since stakeholders have multiple and often conflicting interests. The BRC worked for two years (January 2010 to January 2012) to "ensure it has heard from as many points of view as possible." The Canadian NWMO study took four years and ample resources, involving national and regional stakeholders' dialogs, internet-based dialogs, information and discussion sessions, open houses, workshops, round tables, public attitude research, website, and topic reports. The current compilation effort benefited from the distillation of these many varied inputs

  1. 77 FR 56558 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2012-09-13

    ... regulatory docket at no cost for the first 100 pages and at a cost of $0.15 per page for additional copies... processes; (2) Historical sampling data of the IWTP sludge; (3) Analytical results from four samples for.... Methods must meet Performance Based Measurement System Criteria in which the Data Quality Objectives...

  2. Nuclear waste management. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  3. Solid waste information and tracking system client-server conversion project management plan

    Energy Technology Data Exchange (ETDEWEB)

    May, D.L.

    1998-04-15

    This Project Management Plan is the lead planning document governing the proposed conversion of the Solid Waste Information and Tracking System (SWITS) to a client-server architecture. This plan presents the content specified by American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards for software development, with additional information categories deemed to be necessary to describe the conversion fully. This plan is a living document that will be reviewed on a periodic basis and revised when necessary to reflect changes in baseline design concepts and schedules. This PMP describes the background, planning and management of the SWITS conversion. It does not constitute a statement of product requirements. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  4. Proposal for the integration of decentralised composting of the organic fraction of municipal solid waste into the waste management system of Cuba.

    Science.gov (United States)

    Körner, I; Saborit-Sánchez, I; Aguilera-Corrales, Y

    2008-01-01

    Municipal solid waste (MSW) generation and management in Cuba was studied with a view to integrating composting of the organic fractions of MSW into the system. Composting is already included as part of the environmental strategy of the country as an appropriate waste management solution. However, no programme for area-wide implementation yet exists. The evaluation of studies carried out by some Cuban and international organisations showed that organic matter comprises approximately 60-70% of the MSW, with households being the main source. If all organic waste fractions were considered, the theoretical amount of organic waste produced would be approximately 1 Mio. Mg/a, leading to the production of approximately 0.5 Mio. Mg/a of compost. Composting could, therefore, be a suitable solution for treating the organic waste fractions of the MSW. Composting would best be carried out in decentralised systems, since transportation is a problem in Cuba. Furthermore, low technology and low budget composting options should be considered due to the problematic local economic situation. The location for such decentralised composting units would optimally be located at urban agricultural farms, which can be found all over Cuba. These farms are a unique model for sustainable farming in the world, and have a high demand for organic fertiliser. In this paper, options for the collection and impurity-separation in urban areas are discussed, and a stepwise introduction of source-separation, starting with hotel and restaurant waste, is suggested. For rural areas, the implementation of home composting is recommended.

  5. An Assessment of Solid Waste Management System in the Kumasi Metropolis

    Directory of Open Access Journals (Sweden)

    Alexander Fianko Otchere

    2015-03-01

    Full Text Available Waste products arise from our ways of life and it is generated at every stage of the process of production and development. It spans all stages of human activities, from manufacturing to consumption. The purposes of this thesis were to identify the solid waste management practices in KMA. This research is exploratory research. A sample size of 200 was used out of a total population of the study was 350. Questionnaire was the main data collection instrument used for the study. Quantitative data analysis technique (such as mean, percentages, frequencies and standard deviation and qualitative data analysis technique (such as content analysis were used to analyse the collected data. It was found out that all the seven solid waste management practices identified and tested, only two; waste generation practices, and transfer and transport practices were moderately done well. This means that the rest: onsite handling, collection, sorting, disposal, and energy generation practices are not been done appropriately. Based on the findings of this study, it is recommended that, the management of KMA should adopt appropriate waste management practices such as conversion of waste into energy.

  6. US Department of Energy National Solid Waste Information Management System (NSWIMS): Annual report for calendar year 1987

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.L.

    1988-07-01

    The Solid Waste Information Management System (SWIMS) is the database used to gather information for the US Department of Energy (DOE) on DOE and Department of Defense solid low-level radioactive waste (LLW). The National SWIMS Annual Report (NSWIMS) provides officials of the DOE with management information on the entire DOE/defense solid LLW cycle. The acronym for the annual report, NSWIMS, signifies that an improved format has been developed to make this document a more useful tool for assessing solid LLW management performance. Part I provides a composite summary of the DOE/defense solid LLW management. It includes data related to waste generation, forecasting, treatment, and disposal. Part II contains SWIMS computer-supplied information with discussions of the data presented, standardized and simplified data tables, and revised figures. All data are presented without interpretation and are potentially useful to users for evaluating trends, identifying possible problem areas, and defining future implications. 33 figs., 29 tabs.

  7. A systems study of the waste management system in Gothenburg. Part of the project: Thermal and biological waste treatment in a systems perspective; Systemstudie Avfall i Goeteborg. Delprojekt i Termisk och biologisk avfallsbehandling i ett systemperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Sundberg, Johan; Haraldsson, Maarten; Norrman Eriksson, Ola

    2010-07-01

    The purpose of the project A system study of waste management in Gothenburg is to evaluate new waste treatment options for municipal and industrial waste from a system perspective. The project has been carried out as a part of the project Thermal and biological waste treatment in a systems perspective - WR21. The focus is set to the waste and district heating system in Gothenburg. The project has been running for 2,5 years with an active group consisting of persons from Renova, Kretsloppskontoret, Goeteborg Energi, Gryaab and Profu. The work on development of models and of methods of handling strategic questions within the field has gone back and forth within the group. This report focuses on presenting the final results from the project, which means that the process in which we've excluded several treatment options and scenarios are only briefly described

  8. Strategies for the municipal waste management system to take advantage of carbon trading under competing policies: The role of energy from waste in Sydney.

    Science.gov (United States)

    El Hanandeh, Ali; El-Zein, Abbas

    2009-07-01

    Climate change is a driving force behind some recent environmental legislation around the world. Greenhouse gas emission reduction targets have been set in many industrialised countries. A change in current practices of almost all greenhouse-emitting industrial sectors is unavoidable, if the set targets is to be achieved. Although, waste disposal contributes around 3% of the total greenhouse gas emissions in Australia (mainly due to fugitive methane emissions from landfills), the carbon credit and trading scheme set to start in 2010 presents significant challenges and opportunities to municipal solid waste practitioners. Technological advances in waste management, if adopted properly, allow the municipal solid waste sector to act as carbon sink, hence earning tradable carbon credits. However, due to the complexity of the system and its inherent uncertainties, optimizing it for carbon credits may worsen its performance under other criteria. We use an integrated, stochastic multi-criteria decision-making tool that we developed earlier to analyse the carbon credit potential of Sydney municipal solid waste under eleven possible future strategies. We find that the changing legislative environment is likely to make current practices highly non-optimal and increase pressures for a change of waste management strategy.

  9. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  10. US Department of Energy National Solid Waste Information Management System (NSWIMS) annual report for calendar year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.

    1989-09-01

    This report is generated annually from the National Solid Waste Information Management System (SWIMS) database. The SWIMS database operates under NOMAD2, fourth generation database management system. The database resides on an IBM 3083 mainframe with a virtual machine operating system. This system was implemented to meet the requirements of Energy Research and Development Administration Manual. The SWIMS database has kept pace with requirements of subsequent directives and complies with current Department of Energy (DOE) orders for retention of data on the management of solid low-level radioactive waste (LLW). SWIMS provides a comprehensive method for collecting and maintaining data related to management of US DOE and Department of Defense (DOE/Defense) related LLW. 33 figs., 29 tabs.

  11. Influence of legislative conditioned changes in waste management on economic viability of MSW-fuelled district heating system: Case study

    Directory of Open Access Journals (Sweden)

    Tomić Tihomir

    2016-01-01

    Full Text Available District heating systems represents one of the ways by which the European Union is trying to reach set goals in energy efficiency and security field. These systems allow the use of different energy sources including local energy sources such as waste and biomass. This paper provides economic viability assessment of using these fuels in the district heating system. Economic evaluation is based on regression analysis from data of existing plants and on the locally dependent data. Some of parameters that are dependent of local parameters are price and available fuel quantity, therefore these values are separately modelled; biomass as a function of location of the plant while municipal waste as a function of location and the time changes in waste quantity and composition which depend of socio-economic trends and legislation. This methodology is applied on the case of district heating plants in the City of Zagreb where internal rates of return are calculated for four considered scenarios. Results indicate that waste powered plant can improve its profitability by co-combusting other local wastes while economic viability is achieved by introduction of region wide waste management system. Reducing plant capacity, based on prognosis of waste generation, showed that these plants can be competitive with biomass plants.

  12. Preliminary assessment of radiological doses in alternative waste management systems without an MRS facility

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Pelto, P.J.; Daling, P.M.; Lavender, J.C.; Fecht, B.A.

    1986-06-01

    This report presents generic analyses of radiological dose impacts of nine hypothetical changes in the operation of a waste management system without a monitored retrievable storage (MRS) facility. The waste management activities examined in this study include those for handling commercial spent fuel at nuclear power reactors and at the surface facilities of a deep geologic repository, and the transportation of spent fuel by rail and truck between the reactors and the repository. In the reference study system, the radiological doses to the public and to the occupational workers are low, about 170 person-rem/1000 metric ton of uranium (MTU) handled with 70% of the fuel transported by rail and 30% by truck. The radiological doses to the public are almost entirely from transportation, whereas the doses to the occupational workers are highest at the reactors and the repository. Operating alternatives examined included using larger transportation casks, marshaling rail cars into multicar dedicated trains, consolidating spent fuel at the reactors, and wet or dry transfer options of spent fuel from dry storage casks. The largest contribution to radiological doses per unit of spent fuel for both the public and occupational workers would result from use of truck transportation casks, which are smaller than rail casks. Thus, reducing the number of shipments by increasing cask sizes and capacities (which also would reduce the number of casks to be handled at the terminals) would reduce the radiological doses in all cases. Consolidating spent fuel at the reactors would reduce the radiological doses to the public but would increase the doses to the occupational workers at the reactors.

  13. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, Olga, E-mail: o.parkes@ucl.ac.uk; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk; Bogle, I. David L.

    2015-06-15

    Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for

  14. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    Directory of Open Access Journals (Sweden)

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  15. Attitude towards the incorporation of the selective collection of biowaste in a municipal solid waste management system. A case study.

    Science.gov (United States)

    Bernad-Beltrán, D; Simó, A; Bovea, M D

    2014-12-01

    European waste legislation has been encouraging for years the incorporation of selective collection systems for the biowaste fraction. European countries are therefore incorporating it into their current municipal solid waste management (MSWM) systems. However, this incorporation involves changes in the current waste management habits of households. In this paper, the attitude of the public towards the incorporation of selective collection of biowaste into an existing MSWM system in a Spanish municipality is analysed. A semi-structured telephone interview was used to obtain information regarding aspects such as: level of participation in current waste collection systems, willingness to participate in selective collection of biowaste, reasons and barriers that affect participation, willingness to pay for the incorporation of the selective collection of biowaste and the socioeconomic characteristics of citizens who are willing to participate and pay for selective collection of biowaste. The results showed that approximately 81% of the respondents were willing to participate in selective collection of biowaste. This percentage would increase until 89% if the Town Council provided specific waste bins and bags, since the main barrier to participate in the new selective collection system is the need to use specific waste bin and bags for the separation of biowaste. A logit response model was applied to estimate the average willingness to pay, obtaining an estimated mean of 7.5% on top of the current waste management annual tax. The relationship of willingness to participate and willingness to pay for the implementation of this new selective collection with the socioeconomic variables (age, gender, size of the household, work, education and income) was analysed. Chi-square independence tests and binary logistic regression was used for willingness to participate, not being obtained any significant relationship. Chi-square independence tests, ordinal logistic regression and

  16. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  17. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    Science.gov (United States)

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  18. LCA Modeling of Waste Management Scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2011-01-01

    Lifecycle assessment (LCA) modeling provides a quantitative statement about resource issues and environmental issues in waste management useful in evaluating alternative management systems and in mapping where major loads and savings take place within existing systems. Chapter 3.1 describes...... the concepts behind LCA modeling and Chapter 3.2 gives an overview of existing models and shows examples of their application. A recent comprehensive review of publicly available LCA studies (WRAP, 2006) concluded that, on a material basis, LCA modeling in general confirms the validity of the waste hierarchy...... and exchange with the energy systems, a comparison of results was hampered on a system level. In addition, differences in waste composition may affect the LCA results. This chapter provides results of LCA modeling of 40 waste management scenarios handling the same municipal waste (MSW) and using different...

  19. A Rule-Based Expert System for Construction and Demolition Waste Management

    OpenAIRE

    Leila Ooshaksaraie; Alireza Mardookhpour

    2011-01-01

    Problem statement: The construction industry generates lots of construction waste which caused significant impacts on the environment and aroused growing public concern in the local community. Construction waste is becoming a serious environmental problem in many large cities in the world. Approach: In recent years, expert systems have been used extensively in different applications areas including environmental studies. In this study, expert system software -CDWM- developed by using Microsof...

  20. The Scenario Approach to the Development of Regional Waste Management Systems (Implementation Experience in the Regions of Russia)

    Science.gov (United States)

    Fomin, Eugene P.; Alekseev, Audrey A.; Fomina, Natalia E.; Dorozhkin, Vladimir E.

    2016-01-01

    The article illustrates a theoretical approach to scenario modeling of economic indicators of regional waste management system. The method includes a three-iterative algorithm that allows the executive authorities and investors to take a decision on logistics, bulk, technological and economic parameters of the formation of the regional long-term…

  1. Case Study on the Deficiencies and Difficulties of Project Management since the Promotion Stage of Integrated Waste Systems

    Directory of Open Access Journals (Sweden)

    Raluca CUCINSCHI

    2011-06-01

    Full Text Available The present case study focuses on the shortcomings and difficulties encountered in the management of projects in the environment protection area, respectively of integrated waste management systems, observed in similar projects, promoted simultaneously in five counties in Romania, counties located in different development regions. Thus, following a European funding, five counties were selected to receive free consultancy services for the elaboration of the county master in the field of environment protection, respectively waste management. One of the requirements that the counties had to fulfil was the expressed unequivocal willingness to implement the project at county level. A Project Implementation Unit (PIU was set up at county council level with the precise purpose of managing and implementing the project. Even though the counties benefited from free technical assistance, major delays in finalizing and approving the application were encountered in all the cases studied, due to reasons that depended mostly on the manner the project management was conducted.

  2. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation.

    Science.gov (United States)

    Rigamonti, L; Falbo, A; Grosso, M

    2013-11-01

    This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Radioactive waste management; Gerencia de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan.

  4. Development of an analytical method for quantitative comparison of the e-waste management systems in Thailand, Laos, and China.

    Science.gov (United States)

    Liang, Li; Sharp, Alice

    2016-11-01

    This study employed a set of quantitative criteria to analyse the three parameters; namely policy, process, and practice; of the respective e-waste management systems adopted in Thailand, Laos, and China. Questionnaire surveys were conducted to determine the current status of the three parameters in relation to mobile phones. A total of five, three, and six variables under Policy (P1), Process (P2), and Practice (P3), respectively, were analysed and their weighted averages were calculated. The results showed that among the three countries surveyed, significant differences at pe-waste to recovery centres) and P306 (treating e-waste by retailers themselves). Based on the quantitative method developed in this study, Laos' e-waste management system received the highest scores in both P1 average (0.130) and P3 average (0.129). However, in the combined Ptotal, China scored the highest (0.141), followed by Laos (0.132) and Thailand (0.121). This method could be used to assist decision makers in performing quantitative analysis of complex issues associating with e-waste management in a country.

  5. Nuclear waste management quarterly progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M. (comp.)

    1977-11-01

    Progress is reported in sections on decontamination and densification of chop-leach cladding residues, monitoring methods for effluents from waste solidification, TRU waste fixation studies, krypton solidification, /sup 14/C and /sup 129/I fixation, waste management system studies, waste isolation assessment, stored waste migration monitoring, properties of fission product organic complexes, and decontamination of metals. (JRD)

  6. On-line Technology Information System (OTIS): Solid Waste Management Technology Information Form (SWM TIF)

    Science.gov (United States)

    Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriguez, Luis

    2003-01-01

    Contents include the following: What is OTIS? OTIS use. Proposed implementation method. Development history of the Solid Waste Management (SWM) Technology Information Form (TIF) and OTIS. Current development state of the SWM TIF and OTIS. Data collection approach. Information categories. Critiques/questions/feedback.

  7. A review on technologies and their usage in solid waste monitoring and management systems: Issues and challenges.

    Science.gov (United States)

    Hannan, M A; Abdulla Al Mamun, Md; Hussain, Aini; Basri, Hassan; Begum, R A

    2015-09-01

    In the backdrop of prompt advancement, information and communication technology (ICT) has become an inevitable part to plan and design of modern solid waste management (SWM) systems. This study presents a critical review of the existing ICTs and their usage in SWM systems to unfold the issues and challenges towards using integrated technologies based system. To plan, monitor, collect and manage solid waste, the ICTs are divided into four categories such as spatial technologies, identification technologies, data acquisition technologies and data communication technologies. The ICT based SWM systems classified in this paper are based on the first three technologies while the forth one is employed by almost every systems. This review may guide the reader about the basics of available ICTs and their application in SWM to facilitate the search for planning and design of a sustainable new system.

  8. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    Science.gov (United States)

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Waste management fiscal year 1998 progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

  10. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  11. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  12. Fish waste management by conversion into heterotrophic bacteria biomass

    NARCIS (Netherlands)

    Schneider, O.

    2006-01-01

    Just as all other types of animal production, aquaculture produces waste. This waste can be managed outside the production system, comparable to terrestrial husbandry systems. However, particularly recirculation aquaculture systems (RAS) are suited to manage waste within the system. In this case, pr

  13. feasibility study on solid waste management in port harcourt ...

    African Journals Online (AJOL)

    user

    system is still being used instead of the integrated solid waste management system (1SWMS) and that about 75% of the ..... passengers from dropping off their waste via the window, which ... application of geographical information system in.

  14. Guide for Industrial Waste Management

    Science.gov (United States)

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  15. Sanitary Landfilling – A Key Component of Waste Management

    OpenAIRE

    Johann Fellner

    2013-01-01

    In many affluent countries waste management is experiencing a fast transition from landfilling to sophisticated recycling and waste to energy plants. Thus, landfilling of waste becomes less important in these countries. The present paper discusses whether a similar development will take place in transition economies, or waste management systems will mainly rely on landfilling in the near future. For this purpose, the current waste management practices and associated environmental impacts as w...

  16. Synthesis of waste management systems analyses; Syntes av systemanalyser av avfallshantering

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Jan-Olov [Swedish Environmental Research Inst., Goeteborg (Sweden); Finnveden, Goeran [Stockholm Univ. and Swedish Defence Research Agency, Stockholm (Sweden). Environmental Strategies Research Group; Sundberg, Johan [Chalmers Univ. of Technology, Goeteborg (Sweden). Energy Systems Technology] (eds.)

    2002-09-01

    The systems studies performed under the research program 'Energy from Waste' of the Swedish Energy Agency are reviewed in this study. Similar results have been achieved from most of these studies: Deposition of waste that can be incinerated, digested, composted or recycled is a less attractive alternative than other treatments both from environmental and economic points of view. Digestion and incineration (of combustible household waste) is hard to compare. None is clearly better than the other from the environmental point of view. Composting has almost no environmental advantages compared to incineration. Recycling is preferable to incineration in the cases studied. Transportation of wastes is of limited energy, environmental or economic importance. Household transport with automobiles might influence the results.

  17. A GIS-based modeling system for petroleum waste management. Geographical information system.

    Science.gov (United States)

    Chen, Z; Huang, G H; Li, J B

    2003-01-01

    With an urgent need for effective management of petroleum-contaminated sites, a GIS-aided simulation (GISSIM) system is presented in this study. The GISSIM contains two components: an advanced 3D numerical model and a geographical information system (GIS), which are integrated within a general framework. The modeling component undertakes simulation for the fate of contaminants in subsurface unsaturated and saturated zones. The GIS component is used in three areas throughout the system development and implementation process: (i) managing spatial and non-spatial databases; (ii) linking inputs, model, and outputs; and (iii) providing an interface between the GISSIM and its users. The developed system is applied to a North American case study. Concentrations of benzene, toluene, and xylenes in groundwater under a petroleum-contaminated site are dynamically simulated. Reasonable outputs have been obtained and presented graphically. They provide quantitative and scientific bases for further assessment of site-contamination impacts and risks, as well as decisions on practical remediation actions.

  18. Alternatives for Future Waste Management in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Cimpan, Ciprian; Dall, Ole

    The TOPWASTE project has addressed the challenges of planning robust solutions for future waste management. The purpose was to identify economic and environmentally optimal solutions ‐ taking into account different scenarios for the development of the surrounding systems, such as the energy system....... During the project, four decision support tools were developed:1. Frida ‐ The EPA's tool for forecasting future waste generation 2. OptiWaste ‐ a new tool for economic optimisation of investments and operation of the combined waste and energy system3. KISS ‐ a new lifecycle based model with focus...... on comparison of greenhouse gas emissions associated with different waste management alternatives 4. A new tool for techno‐economic modelling of central sorting plants. The project has furthermore contributed with method development on evaluation of critical resources as well as analyses of economic...

  19. Review of LCA studies of solid waste management systems--part II: methodological guidance for a better practice.

    Science.gov (United States)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H; Hauschild, Michael Z

    2014-03-01

    Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.

  20. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  1. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  2. Grid connected integrated community energy system. Phase II: final state 2 report. Preliminary design waste management and institutional analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The Preliminary Design of a Regional, Centralized Solid Waste Management System for the Twin Cities Metropolitan Region in Minnesota is presented. The concept has been developed for the sound environmental and safe disposal of solid waste generated from its health care industry, although some additional waste supplements are included as economic assistance in order to approach a competitive alternative to current health care solid waste disposal costs. The system design focuses on a 132 tons per day high-temperature, slagging pyrolysis system manufactured by Andco Incorporated, Andco-Torrax Division Design criteria are given. A Collection and Transportation System (CTS) has been planned for the movements of solid waste (General and Special) from the generating HHC facilities within a 10-mile waste-shed zone, for municipal solid waste from a local transfer station currently processing municipal solid waste, and for pyrolysis residue to final disposal. Each of these facilities is now considered as service contract operations. Approximately 15 vehicle trips per day are estimated as vehicle traffic delivering the refuse to the pyrolysis facility. Cost estimates for the CTS have been determined in conjunction with current municipal refuse haulers in the TCMR, and valued at the following: HHC General Solid Waste (HHC/GSW) at 6.00 $/T; HHC Special Solid Waste (HHC/SSW) at 20.00 $/T; Municipal Transfer at 4.00 to be paid the pyrolysis system as a drop charge. Special box-bag containers are to be required in handling the HHC/SSW at a cost of 30.19 $/T estimate. The total operating cost for the pyrolysis system has been estimated to be 13.73 $/T, with a steam credit of 11.70 $/T, to yield a net cost of 2.03 $/T. Capital cost has been estimated to be 7,700,800 dollars, 1978. A back-up facility capital investment of $163,000 dollars, 1978 has been estimated, which should be applied to the existing University of Minnesota incinerator.

  3. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  4. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  5. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  6. The State-of-the-Art Report for the Knowledge Management System for the Radioactive Waste Depository

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Choi, Jong Won; Choi, Heui Joo; Cho, Dong Keun; Park, Chung Kyun [KAERI, Daejeon (Korea, Republic of); Cho, Young Chul; Lee, Sang Hun [ENESYS, Daejeon (Korea, Republic of)

    2011-09-15

    The radioactive waste disposal projects require stepwise long-term research and developments such as site characterization, site selection, operation and monitoring, closure and environmental monitoring and son on. During each steps of disposal projects, much information and knowledge such as experimental data, databases, design reports, technical reports, guidelines, operation manuals are produced. Also, knowledge based on experiences by staff members participated in each steps of disposal projects are also very important. These knowledge based on experiences may be disappeared with the retirement of staff members if there are no effective and systematic system for the acquisition and storage of these knowledge. Therefore, it is necessary to preserve these written and experiences systematically in order to perform a disposal projects successfully. The acquisition and preservation of these knowledge for the successful performances of disposal projects can be possible by the establishment of a knowledge management system by recent using information technologies. The knowledge management system can be defined as a information technology system developed and used to maximize the values of knowledge resources of a certain organization through the support of knowledge management process. The application areas of the knowledge management system for the disposal projects are the enhancement of effectiveness and usefulness of acquisition, management, and maintenance of knowledge, objective decision making, opinion collection of many stakeholders, securing of credibility of the safety assessment, and promotion of public acceptances. However, the integrated knowledge management system for the disposal projects have never been developed, and only a management system for experimental data and database management system which can be used as a sub-system for the integrated knowledge management system are being developed and used. Therefore, the establishment of an integrated

  7. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  8. Mixed Waste Focus Area program management plan

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  9. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department...

  10. Setting priorities for waste management strategies in developing countries.

    Science.gov (United States)

    Brunner, Paul H; Fellner, Johann

    2007-06-01

    This study aimed to determine whether the waste management systems, that are presently applied in affluent countries are appropriate solutions for waste management in less developed regions. For this purpose, three cities (Vienna, Damascus and Dhaka) which differ greatly in their gross domestic product and waste management were compared. The criteria for evaluation were economic parameters, and indicators as to whether the goals of waste management (protection of human health and the environment, the conservation of resources) were reached. Based on case studies, it was found that for regions spending 1-10 Euro capita(-1) year(-1) for waste management, the 'waste hierarchy' of prevention, recycling and disposal is not an appropriate strategy. In such regions, the improvement of disposal systems (complete collection, upgrading to sanitary landfilling) is the most cost-effective method to reach the objectives of solid waste management. Concepts that are widely applied in developed countries such as incineration and mechanical waste treatment are not suitable methods to reach waste management goals in countries where people cannot spend more than 10 Euro per person for the collection, treatment and disposal of their waste. It is recommended that each region first determines its economic capacity for waste management and then designs its waste management system according to this capacity and the goals of waste management.

  11. Greenhouse gas accounting and waste management.

    Science.gov (United States)

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  12. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational...... and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  13. Greenhouse gas accounting and waste management

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Christensen, Thomas Højlund; Aoustin, E.

    2009-01-01

    for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.......Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental...... Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more...

  14. Effects of solid-liquid separation and storage on monensin attenuation in dairy waste management systems

    Science.gov (United States)

    Hafner, Sarah C.; Watanabe, Naoko; Harter, Thomas; Bergamaschi, Brian; Parikh, Sanjai J.

    2017-01-01

    Environmental release of veterinary pharmaceuticals has been of regulatory concern for more than a decade. Monensin is a feed additive antibiotic that is prevalent throughout the dairy industry and is excreted in dairy waste. This study investigates the potential of dairy waste management practices to alter the amount of monensin available for release into the environment. Analysis of wastewater and groundwater from two dairy farms in California consistently concluded that monensin is most present in lagoon water and groundwater downgradient of lagoons. Since the lagoons represent a direct source of monensin to groundwater, the effect of waste management, by mechanical screen separation and lagoon aeration, on aqueous monensin concentration was investigated through construction of lagoon microcosms. The results indicate that monensin attenuation is not improved by increased solid-liquid separation prior to storage in lagoons, as monensin is rapidly desorbed after dilution with water. Monensin is also shown to be easily degraded in lagoon microcosms receiving aeration, but is relatively stable and available for leaching under typical anaerobic lagoon conditions.

  15. Effects of solid-liquid separation and storage on monensin attenuation in dairy waste management systems.

    Science.gov (United States)

    Hafner, Sarah C; Watanabe, Naoko; Harter, Thomas; Bergamaschi, Brian A; Parikh, Sanjai J

    2017-04-01

    Environmental release of veterinary pharmaceuticals has been of regulatory concern for more than a decade. Monensin is a feed additive antibiotic that is prevalent throughout the dairy industry and is excreted in dairy waste. This study investigates the potential of dairy waste management practices to alter the amount of monensin available for release into the environment. Analysis of wastewater and groundwater from two dairy farms in California consistently concluded that monensin is most present in lagoon water and groundwater downgradient of lagoons. Since the lagoons represent a direct source of monensin to groundwater, the effect of waste management, by mechanical screen separation and lagoon aeration, on aqueous monensin concentration was investigated through construction of lagoon microcosms. The results indicate that monensin attenuation is not improved by increased solid-liquid separation prior to storage in lagoons, as monensin is rapidly desorbed after dilution with water. Monensin is also shown to be easily degraded in lagoon microcosms receiving aeration, but is relatively stable and available for leaching under typical anaerobic lagoon conditions.

  16. Attitude towards the incorporation of the selective collection of biowaste in a municipal solid waste management system. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Bernad-Beltrán, D. [Department of Mechanical Engineering and Construction, Universitat Jaume I, Av Sos Baynat s/n, E12071 Castellón (Spain); Simó, A. [Department of Mathematics, Universitat Jaume I, Av Sos Baynat s/n, E12071 Castellón (Spain); Bovea, M.D., E-mail: bovea@uji.es [Department of Mechanical Engineering and Construction, Universitat Jaume I, Av Sos Baynat s/n, E12071 Castellón (Spain)

    2014-12-15

    Highlights: • Attitude towards incorporating biowaste selective collection is analysed. • Willingness to participate and to pay in biowaste selective collection is obtained. • Socioeconomic aspects affecting WtParticipate and WtPay are identified. - Abstract: European waste legislation has been encouraging for years the incorporation of selective collection systems for the biowaste fraction. European countries are therefore incorporating it into their current municipal solid waste management (MSWM) systems. However, this incorporation involves changes in the current waste management habits of households. In this paper, the attitude of the public towards the incorporation of selective collection of biowaste into an existing MSWM system in a Spanish municipality is analysed. A semi-structured telephone interview was used to obtain information regarding aspects such as: level of participation in current waste collection systems, willingness to participate in selective collection of biowaste, reasons and barriers that affect participation, willingness to pay for the incorporation of the selective collection of biowaste and the socioeconomic characteristics of citizens who are willing to participate and pay for selective collection of biowaste. The results showed that approximately 81% of the respondents were willing to participate in selective collection of biowaste. This percentage would increase until 89% if the Town Council provided specific waste bins and bags, since the main barrier to participate in the new selective collection system is the need to use specific waste bin and bags for the separation of biowaste. A logit response model was applied to estimate the average willingness to pay, obtaining an estimated mean of 7.5% on top of the current waste management annual tax. The relationship of willingness to participate and willingness to pay for the implementation of this new selective collection with the socioeconomic variables (age, gender, size of the

  17. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  18. Radioactive waste management in the former USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  19. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  20. Urban waste management and the mobile challenge.

    Science.gov (United States)

    Mavropoulos, Antonis; Tsakona, Maria; Anthouli, Aida

    2015-04-01

    Digital evolution and mobile developments are carving a new era that affects human behaviour and global governance. Interconnectivity and flow of information through various types of modern means create new opportunities for cooperation and ways to work. Waste management could not stay unaffected by these changes. New potentials are arising for the sector, offering a novel field for innovation, changing the way waste practices are applied. In this framework, mobile products and apps can become valuable tools for authorities, companies, civilians and other stakeholders, integrating these technologies in the battle for environmental protection, recycling, etc. This article examines the unexplored challenges of mobile apps to deliver sustainable waste management with emphasis on recycling and waste prevention performance, especially for emerging developing countries. It presents the opportunities that are involved in using mobile apps to improve both the systemic performance of a specific waste management system and the individual behaviour of the users. Furthermore, the article reviews the most important relevant literature and summarises the key findings of the recent research on mobile apps and human behaviour. Useful conclusions are drawn for both the content and the format of the mobile apps required for recycling and waste prevention. Finally, the article presents the most characteristic mobile apps that are already in place in the waste management sector. © The Author(s) 2015.

  1. Management Strategy for Hazardous Waste

    OpenAIRE

    Vilgerts, J; Timma, L; Blumberga, D.

    2012-01-01

    During the past year authorities, manufactures and scientists have been focused on the management and treatment methods of hazardous wastes, because they realized that “prevention costs” of activities connected to handling of hazardous waste are lower than “restoration costs” after damage is done. Uncontrolled management of hazardous substances may lead to contamination of any ecosystem on Earth: freshwater, ocean and terrestrial. Moreover leakage of toxic gasses creates also air pollution...

  2. Management of solid residues in waste-to-energy and biomass systems

    Energy Technology Data Exchange (ETDEWEB)

    Vehlow, J.; Bergfeldt, B. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Technische Chemie; Wilen, C.; Ranta, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Schwaiger, H. [Forschungsgesellschaft Joanneum mbH, Graz (Austria); Visser, H.J.M. [ECN Energy Research Centre of the Netherlands, Petten (Netherlands); Gu, S.; Gyftopoulou, E.; Brammer, J. [Aston Univ., Birmingham (United Kingdom)

    2007-12-15

    A literature review has been performed for getting in-depth information about quality of residues from thermal processes for waste and biomass as well as their disposal or utilisation options and current practices. Residues from waste incineration have been subject to intense research programs for many years and it can be concluded that the quality of bottom ashes has meanwhile a high standard. The question whether an utilisation as secondary building material is accepted or not depends on the definition of acceptable economic impac. For filter ashes and gas cleaning residues the situation is more complex. Their quality is known: due to their high inventory of heavy metals and organic micro-pollutants they are classified as hazardous waste which means they require specific measures for their safe long-term disposal. A number of stabilisation and treatment processes for filter ashes and gas cleaning residues including the recovery of species out of these materials have been developed but none has been implemented in full scale due to economic constraints. There is reason to speculate that even recovery processes which are not profitable for private companies might point out economically useful if future and long-term costs which have to be covered of the society, e.g. for rehabilitation of contaminated sites, are taken into account. Their quality as well as that of residues from combustion of contaminated biomass is mainly depending on the quality of the fuel. The inventory of critical ingredients in fuel produced from waste or waste fractions, especially of halogens and heavy metals, is often rather high and shows typically a wide range of variation. A reliable quality control for such fuels is very difficult. Other residues can - like gas cleaning residues from waste incineration - be inertised in order to meet the criteria for the access to cheaper landfills than those for hazardous waste. A similar conclusion can be drawn for the quality and management of

  3. RSW-MCFP: A Resource-Oriented Solid Waste Management System for a Mixed Rural-Urban Area through Monte Carlo Simulation-Based Fuzzy Programming

    Directory of Open Access Journals (Sweden)

    P. Li

    2013-01-01

    Full Text Available The growth of global population and economy continually increases the waste volumes and consequently creates challenges to handle and dispose solid wastes. It becomes more challenging in mixed rural-urban areas (i.e., areas of mixed land use for rural and urban purposes where both agricultural waste (e.g., manure and municipal solid waste are generated. The efficiency and confidence of decisions in current management practices significantly rely on the accurate information and subjective judgments, which are usually compromised by uncertainties. This study proposed a resource-oriented solid waste management system for mixed rural-urban areas. The system is featured by a novel Monte Carlo simulation-based fuzzy programming approach. The developed system was tested by a real-world case with consideration of various resource-oriented treatment technologies and the associated uncertainties. The modeling results indicated that the community-based bio-coal and household-based CH4 facilities were necessary and would become predominant in the waste management system. The 95% confidence intervals of waste loadings to the CH4 and bio-coal facilities were 387, 450 and 178, 215 tonne/day (mixed flow, respectively. In general, the developed system has high capability in supporting solid waste management for mixed rural-urban areas in a cost-efficient and sustainable manner under uncertainty.

  4. A review on technologies and their usage in solid waste monitoring and management systems: Issues and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Hannan, M.A., E-mail: hannan@eng.ukm.my [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor DE (Malaysia); Abdulla Al Mamun, Md., E-mail: md.abdulla@siswa.ukm.edu.my [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor DE (Malaysia); Hussain, Aini, E-mail: aini@eng.ukm.my [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor DE (Malaysia); Basri, Hassan, E-mail: drhb@ukm.my [Department of Civil and Structural Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor DE (Malaysia); Begum, R.A., E-mail: rawshan@ukm.edu.my [Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor DE (Malaysia)

    2015-09-15

    Highlights: • Classification of available technologies for SWM system in four core category. • Organization of technology based SWM systems in three main groups. • Summary of SWM systems with target application, methodology and functional domain. • Issues and challenges are highlighted for further design of a sustainable system. - Abstract: In the backdrop of prompt advancement, information and communication technology (ICT) has become an inevitable part to plan and design of modern solid waste management (SWM) systems. This study presents a critical review of the existing ICTs and their usage in SWM systems to unfold the issues and challenges towards using integrated technologies based system. To plan, monitor, collect and manage solid waste, the ICTs are divided into four categories such as spatial technologies, identification technologies, data acquisition technologies and data communication technologies. The ICT based SWM systems classified in this paper are based on the first three technologies while the forth one is employed by almost every systems. This review may guide the reader about the basics of available ICTs and their application in SWM to facilitate the search for planning and design of a sustainable new system.

  5. Waste management of shrimp farms as starting point to develop integrated farming systems (case study: Kuwaru Coast, Bantul, Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    H.G. Saiya

    2015-10-01

    Full Text Available Intensive waste management is a solution to maintain an area of ecological harmony but still can produce economic benefits that are beneficial to social welfare. So in this research, waste of shrimp farms which was just processed by using zeolite, was treated again with a few treatments, i.e. simple filters, constructed wetlands, shell, fish and composting. Simple filters were composed of stone, gravel, coral, charcoal, sand and coconut fibers. Constructed wetland system used was hybrid type which combines type of horizontal flow and type of vertical flow. The shell used was Polymesoda erosa. The fish used was Tilapia. In the composting sediment activator, biang kompos was used with the composting time of one month. The results indicated that the system of simple filters, constructed wetlands, shells and fish proved to be quite effective to reduce levels of pollutants in wastewater and will be more effective if treatment was accompanied with a proper aeration. While, the sediment composted into fertilizer needed to be composted with a longer time than normal composting time. This was because the composted materials were derived from waste having a very low nutrient, so it took longer to restore nutrients. The results also indicated the potential of shrimp farm waste of PT. IBD to be processed into clean water and fertilizer. With the appropriate policies and strategies, this can lead to the development of an integrated farming system to support sustainable coastal ecologically, economically and socially.

  6. Application of AHP for the development of waste management systems that minimize infection risks in developing countries: Case studies Lesotho and South Africa

    CSIR Research Space (South Africa)

    Brent, AC

    2006-09-01

    Full Text Available This paper focuses on the establishment of waste management systems that minimize infection risks in the context of sustainable development in the developing country situations. The Analytical Hierarchy Process (AHP), a known multi-criteria decision...

  7. Technology Roadmapping for Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Bray, O.

    2003-02-26

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects.

  8. General survey of solid-waste management

    Science.gov (United States)

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  9. Geotechnics of waste management

    Energy Technology Data Exchange (ETDEWEB)

    Husami, Z.I. (ed.)

    1982-01-01

    Seven lectures are presented on the geological aspects hazardous and nuclear waste disposal are presented. Each lecture has been abstracted and indexed for the Department of Energy's Energy Data Base (EDB).

  10. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available by issues of population growth and urbanisation; increasing quantity and complexity of waste; climate change; carbon economics; resource scarcity; commodity prices; energy security; globalisation; job creation; and tightening regulation (DST, 2014a...

  11. How to integrate the informal recycling system into municipal solid waste management in developing countries: Based on a China’s case in Suzhou urban area

    NARCIS (Netherlands)

    Fei, Fan; Qu, Lili; Wen, Zongguo; Xue, Yanyan; Zhang, Huanan

    2016-01-01

    China and lots of other developing countries have been facing an increase in population and immense economic development that lead to an enormous growth in solid waste generation, and many developing countries aspire to achieve modern waste management systems. Domestic recyclable resources (DRR) are

  12. Laws, directives and policy instruments important for the development of the waste management system; Lagar, direktiv och styrmedel viktiga foer avfallssystemets utveckling

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Karolina; Sundberg, Johan

    2010-01-15

    This report gives a survey and a description of present and future policy instruments that have been or will become important for the development of the waste management system. Policy instruments here refers to laws, directives, taxes/fees, national/local goals and other regulating measures that the society introduce to steer the development of the waste management system. This work can thus be used as a dictionary or a guideline for these measures. The investigation has two goals: 1. To give representatives of the Swedish waste management system a summary of important policy instruments for the future development of the waste management system. 2. To give Waste Refinery a summary of these policy instruments that can be used for the discussions of how the research within the centre should develop during stage 2. A large number of policy instruments have been found during the study. These instruments have been, most likely will become, or may become important for the development of the waste management system. Most of them are described in this report. The selection made is presented in Table 1. Focus for the selection has been policy instruments that are important for the research activities within Waste Refinery, meaning policy instruments that direct or indirect can change the use of thermal and/or biological treatment as well as techniques and methods supporting these treatment methods. [Table 1. Policy instruments that are presented in the report

  13. Mine Waste Disposal and Managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young-Wook; Min, Jeong-Sik; Kwon, Kwang-Soo [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research project deals with: Analysis and characterization of mine waste piles or tailings impoundment abandoned in mining areas; Survey of mining environmental pollution from mine waste impounds; Modelling of pollutants in groundwater around tailings impoundment; Demonstration of acid rock drainage from coal mine waste rock piles and experiment of seeding on waste rock surface; Development of a liner using tailings. Most of mine wastes are deposited on natural ground without artificial liners and capping for preventing contamination of groundwater around mine waste piles or containments. In case of some mine waste piles or containments, pollutants have been released to the environment, and several constituents in drainage exceed the limit of discharge from landfill site. Metals found in drainage exist in exchangeable fraction in waste rock and tailings. This means that if when it rains to mine waste containments, mine wastes can be pollutant to the environment by release of acidity and metals. As a result of simulation for hydraulic potentials and groundwater flow paths within the tailings, the simulated travel paths correlated well with the observed contaminant distribution. The plum disperse, both longitudinal and transverse dimensions, with time. Therefore liner system is a very important component in tailings containment system. As experimental results of liner development using tailings, tailings mixed with some portion of resin or cement may be used for liner because tailings with some additives have a very low hydraulic conductivity. (author). 39 refs.

  14. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  15. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  16. Sustainable waste management through end-of-waste criteria development.

    Science.gov (United States)

    Zorpas, Antonis A

    2016-04-01

    The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies.

  17. Risk Reduction from Minimization of Persistent, Bioaccumulative, and Toxic Waste Materials Within the U.S. Industrial Solid Waste Management System

    Science.gov (United States)

    This study addressed three questions of interest in national-scale solid and hazardous waste management decision-making within the United States: 1) can we quantify the reduction in risk to human and ecological receptors resulting from the reduction of certain industrial waste s...

  18. Assessment of remote maintenance technologies and their potential application in the Federal Waste Management System (FWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kring, C.T.; Meacham, S.A.; Peishel, F.L.

    1988-10-01

    The 40 plus years of remote operating experience in nuclear facilities are summarized, with emphasis on the evolution and capabilities of the remote systems. Current commercially available systems and major development activities are described. The advanced servomanipulator is described, which represents new remote technology that has been developed for the Department of Energy-Nuclear Energy and that can significantly improve remote operations by extending the range of admissible remote tasks and increasing remote work efficiency. Also based upon past ORNL experience with remote facilities for reprocessing fuel, the guidelines and concepts that are utilized in the design, fabrication, and remote operation of mechanical process equipment and facilities are outlined. The currently available remote handling systems that can be applied, in various combinations, to large-volume in-cell operations are described, and requirements for waste storage facilities are reviewed. A basic trade-off analysis of these remote systems considering waste plant requirements is given. Justification is given for selecting the overhead crane/servomanipulator-based maintenance concept as the option most desirable for future waste processing plant in-cell maintenance. The Robotics/Remote Handling workshop that was implemented by the Office of Storage and Transportation System during the period that this assessment was being performed, helped focus the remaining time allocated to this effort on the future implementation of an overall program plan using a total systems approach. The concluding recommendation of this assessment is that this Robotics/Remote Handling program plan be developed and implemented as soon as possible. 43 refs., 17 figs., 9 tabs.

  19. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  20. The Waste Management in Romania. A Case Study: WMS Implementation

    Directory of Open Access Journals (Sweden)

    OROIAN I.

    2009-12-01

    Full Text Available The present study aims to discuss issues related to the degree of implementation of national waste managementstrategy by emphasizing progress in waste management at national level in three years after its development. In 2004,Romania has developed national policy documents as Waste Management Strategy and National Waste ManagementPlan (WMS, WMSP based on the ”waste hierarchy”. In the four years after the initiation of this process resultsdemonstrate the advantages of using this system in ensuring a sustainable solution to eliminate pollution from waste.Also, the amount of waste recovered at the start of the period - 2004, occupies a proportion of 5.08% of total while inthe end of 2007, the degree of recovery reached 7%. Concerning waste disposal, this was achieved by storage. Thereason is the lack of incinerators for thermal treatment of waste. Traditional collection of household and similar waste inthe mixture, is the most common, accounting for a share of about 97%.

  1. A systems study of the future waste management system in Boraas. Part of the project: 'Thermal and biological waste treatment in a systems perspective'; Systemstudie Avfall - Boraas: En systemstudie foer den framtida avfallsbehandlingen i Boraas. Ett delprojekt inom projektet 'Termisk och biologisk avfallsbehandling i ett systemperspektiv'

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Haraldsson, Maarten; Sundberg, Johan; Norrman Eriksson, Ola

    2010-07-01

    The purpose of this project (A systems study of the future waste management system in Boraas) is to evaluate, from a systems perspective, new and improved waste treatment technologies. The study is focused on the waste management system and the district heating system of Boraas. In order to make the analysis complete, the project has also included analyses of surrounding systems that interact with Boraas waste management and district heating systems. The study evaluates the situation in 2015, i.e. a situation only a few years from today. Therefore we have chosen to perform the analysis with one external scenario and 12 development paths (divided into Analyses 1-5). The external scenario describes the development of the surrounding systems through factors that are important for the waste management and district heating systems in Boraas (e.g. electricity price, waste generation, and price of tradable emissions permits for CO{sub 2}). A development path (or local scenario) means changes of the current waste management and/or district heating systems in Boraas and consists of a set of technologies (e.g. anaerobic digestion, central separation and gasification) that are used to fulfil the demand for waste treatment and district heating. The development in the surrounding systems (described by the external scenario) cannot be influenced by the decision-makers in Boraas. The development paths describe possible changes of the waste management and district heating systems that decision-makers in Boraas can choose to implement

  2. Integrated solid waste management of Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  3. Conceptual Basis for a Hazardous Waste Component of the Army Environmental Data Management System (AEDMS)

    Science.gov (United States)

    1988-09-01

    Requirements RP/RK Description Reference Remarks i.: estr - eo * ,, Soi ic Waste Generators 4’) CR ca SG are requireo to test an,, solid 2c8.7 wastes to oe...testing/analyaes. .§ estr -, P *0SG s of Restricted Wastes 4o CFR aste o. tensazs *Senerators of restricted wastes that 268.l 1 ~ erpci~ns require

  4. INTEGRATED MANAGEMENT SYSTEMS IN LOCAL PUBLIC ENTERPRIZE FOR PRODUCTION, DISTRIBUTION AND CLEANING OF WASTED WATER

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2007-06-01

    Full Text Available Appearance of large number of management systems, with different and sometimes divergent demands, needs reconsideration of their implementation strategies and their integration in one integrated management system (IMS. So defined IMS would be designed and implemented in different areas. In this paper is presented basic concept of integration of partical management systems in areas of quality (ISO 9001, environmental protection (ISO 14001, occupational health (ISO 18001, food safety (ISO 22000 and accreditation of laboratories (ISO17025/ISO17020. As a pilot organization is choosed local public enterprise for production, supply and drain of water.

  5. Evaluation of Externality Costs in Life-Cycle Optimization of Municipal Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Levis, James W.; Damgaard, Anders

    2017-01-01

    " and "externality costs". Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average...... suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO2, CH4, N2O, PM2.5, PM10, NOx, SO2, VOC, CO, NH3, Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy...... development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO2, NOx, PM2.5, CH4, fossil CO2...

  6. Nuclear waste management. Quarterly progress report, April-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  7. Preliminary study for the management of construction and demolition waste.

    Science.gov (United States)

    Kourmpanis, B; Papadopoulos, A; Moustakas, K; Stylianou, M; Haralambous, K J; Loizidou, M

    2008-06-01

    This paper refers to the management of the construction and demolition (C&D) waste since, according to the EU Waste Strategy, C&D waste is considered to be one of the priority waste streams and appropriate actions need to be taken with respect to its effective management. Initially, the paper presents the state-of-the-art of the problem of C&D waste, including the amount and composition of C&D waste in EU countries, differences in the characteristics of this waste stream depending on its origin, as well as collection and management practices that are applied. A methodology is described for the estimation of the quantities of the waste stream under examination, since in most cases quantitative primary data is not available. Next, the fundamentals for the development of an integrated scheme for the management of C&D waste are presented and discussed, such as appropriate demolition procedures and location of waste management (off-site waste management, on-site waste management, direct on-site recovery, centralized on-site recovery). Finally, taking into consideration all relevant parameters, alternative systems that could be applied for the management of the C&D waste are suggested.

  8. Waste management project technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  9. Remote waste handling and feed preparation for Mixed Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Couture, S.A.; Merrill, R.D. [Lawrence Livermore National Lab., CA (United States); Densley, P.J. [Science Applications International Corp., (United States)

    1995-05-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation.

  10. Management systems for struggling with energy waste; Sistemas de gerenciamento no combate ao desperdicio de energia

    Energy Technology Data Exchange (ETDEWEB)

    Filgueiras, Jose Eduardo de Oliveira; Pinto, Danilo Pereira; Rodrigues, Claudio Roberto Barbosa [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Faculdade de Engenharia]. E-mail: zeduardo@gmail.com; danilo.pinto@ufjf.edu.br; claudiorobb@yahoo.com.br

    2006-07-01

    This article presents the advantages and disadvantages of implantation of energy management systems and also alternatives for replacement in some cases, such as the punctual measurements or the supplying in various points by the concessionaire. Besides, it is presented some examples of intervention by using the management and also some real examples of application in the electric system of the Federal University of Jazz de F ora - Minas Gerais - Brazil.

  11. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    DEFF Research Database (Denmark)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna

    2014-01-01

    Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper...... and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples...... are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste...

  12. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...... with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic...

  13. e-Waste Management Scenarios in Malaysia

    OpenAIRE

    Fatihah Suja; Rakmi Abdul Rahman; Arij Yusof; Mohd Shahbudin Masdar

    2014-01-01

    e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malay...

  14. e-Waste Management Scenarios in Malaysia

    OpenAIRE

    Fatihah Suja; Rakmi Abdul Rahman; Arij Yusof; Mohd Shahbudin Masdar

    2014-01-01

    e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malay...

  15. Municipal Solid Waste Management in Phuntsholing City, Bhutan

    Directory of Open Access Journals (Sweden)

    Norbu

    2010-01-01

    Full Text Available Municipal solid waste problem is a major concern in major cities in Bhutan. Despite the lack of reliable data on both waste composition and quantity, no studies have been conducted to identify problems and alternatives to improve the current system. The study objectives are: 1 to determine solid waste composition and generation rate; and 2 to investigate current solid waste management system. Six waste samples were selected in Phuntsholing city from three designated collection spots and from three collection vehicles and analyzed for their composition. Waste generation rate was computed from waste collected by collection vehicles. The investigation was carried out through interviews with municipal authorities, existing document reviews, and field observations. The organic fraction of solid waste composition comprised about 71 percent. The waste generation rate was estimated to 0.40 kg/capita.day. The current management system is inefficient, and recommendations are given to improve the current situation.

  16. Integrated monitoring environmental system applied to waste management; Sistema integrato di monitoraggio ambientale applicato alla gestione dei rifiuti

    Energy Technology Data Exchange (ETDEWEB)

    Morselli, L. [Bologna Univ., Bologna (Italy)

    2000-11-01

    For every antropic process is important the knowledge of entity of processes and the interaction with surrounding environment. This paper defines the environmental monitoring and proposes a possible application of an integrated system of waste management. [Italian] Per ogni processo antropico, soprattutto per quelle attivita' a forte impatto ambientale, uno degli obiettivi e' la conoscenza affidabile della loro entita' e della loro interazione con l'ambiente circostante. Questa nota definisce il monitoraggio ambientale e propone un approccio ad una possible applicazione ad un sistema integrato di gestione dei rifiuti.

  17. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  18. Stock flow diagram analysis on solid waste management in Malaysia

    Science.gov (United States)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  19. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  20. Guide to radioactive waste management literature

    Energy Technology Data Exchange (ETDEWEB)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.

  1. Hazardous and toxic waste management in Botswana: practices and challenges.

    Science.gov (United States)

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  2. Assessing the management of healthcare waste in Hawassa city, Ethiopia.

    Science.gov (United States)

    Israel Deneke Haylamicheal; Mohamed Aqiel Dalvie; Biruck Desalegn Yirsaw; Hanibale Atsbeha Zegeye

    2011-08-01

    Inadequate management of healthcare waste is a serious concern in many developing countries due to the risks posed to human health and the environment. This study aimed to evaluate healthcare waste management in Hawassa city, Ethiopia. The study was conducted in nine healthcare facilities (HCFs) including hospitals (four), health centres (two) and higher clinics (three) in two phases, first to assess the waste management aspect and second to determine daily waste generation rate. The result showed that the median quantity of waste generated at the facilities was 3.46 kg bed(-1) day(-1) (range: 1.48-8.19 kg bed(-1) day(-1)). The quantity of waste per day generated at a HCF increased as occupancy increased (p waste generated at government HCFs was more than at private HCFs (p waste (20-63.1%) generated at the different HCFs was much higher than the WHO recommendation (10-25%). There was no waste segregation in most HCFs and only one used a complete color coding system. Solid waste and wastewater were stored, transported, treated and disposed inappropriately at all HCFs. Needle-stick injuries were prevalent in 25-100% of waste handlers employed at these HCFs. Additionally, low levels of training and awareness of waste legislation was prevalent amongst staff. The study showed that management of healthcare waste at HCFs to be poor. Waste management practices need to be improved through improved legislation and enforcement, and training of staff in the healthcare facilities in Hawassa.

  3. ICDF Complex Operations Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  4. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  5. Indian programme on radioactive waste management

    Indian Academy of Sciences (India)

    P K Wattal

    2013-10-01

    The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective.

  6. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  7. International waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  8. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    to optimize current waste management systems with respect to environmental achievements and by authorities to Set Guidelines and regulations and to evaluate different strategies for handling of waste. The waste hierarchy has for decades been governing waste management but the ranking of handling approaches......A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  9. Regional solid waste management study

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  10. Nuclear waste management. Quarterly progress report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A.

    1979-11-01

    Research is reported on: decontamination and densification of chop-leach cladding residues, monitoring of effluents from waste solidification, TRU waste mobilization, Kr solidification, /sup 14/C and /sup 129/I fixation, waste management system and safety studies, waste isolation safety assessment, logging systems for shallow land burial, unsaturated zone transport, mobile organic complexes of fission products, electropolishing for surface decontamination of metals, and decontamination and decommissioning of Hanford facilities. (DLC)

  11. Local waste management constraints and waste administrators in China.

    Science.gov (United States)

    Chung, Shan Shan; Lo, Carlos W H

    2008-01-01

    Local level waste authorities and their officials directly interact and serve the people on behalf of higher governments. Given the influential positions they have on the quality of life of the citizens, these local waste authorities deserve more attention from researchers. This study throws light on the factors related to local waste management and administrators that have caused waste management failures in three mainland Chinese cities. Based on a survey conducted in 2002-2003, it was found that waste administrators in these cities are not professionally competent in their jobs and they are also not confident in using economic instruments to address waste management issues in their cities. These local waste authorities are generally under-funded, and funding politics has to some extent eroded the incentives to carry out the instructions of higher waste authorities. The community at large also does not respect local waste management work. The residents frequently litter, are unobservant of waste collection times and are unwilling to pay for waste collection service. All of these are handicapping environmentally sound waste management.

  12. Using Financial Incentives to Manage the Solid Waste Stream.

    Science.gov (United States)

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  13. Mass balance and life cycle assessment of the waste electrical and electronic equipment management system implemented in Lombardia Region (Italy).

    Science.gov (United States)

    Biganzoli, L; Falbo, A; Forte, F; Grosso, M; Rigamonti, L

    2015-08-15

    Waste electrical and electronic equipment (WEEE) is one of the fastest growing waste streams in Europe, whose content of hazardous substances as well as of valuable materials makes the study of the different management options particularly interesting. The present study investigates the WEEE management system in Lombardia Region (Italy) in the year 2011 by applying the life cycle assessment (LCA) methodology. An extensive collection of primary data was carried out to describe the main outputs and the energy consumptions of the treatment plants. Afterwards, the benefits and burdens associated with the treatment and recovery of each of the five categories in which WEEE is classified according to the Italian legislation (heaters and refrigerators - R1, large household appliances - R2, TV and monitors - R3, small household appliances - R4 and lighting equipment - R5) were evaluated. The mass balance of the treatment and recovery system of each of the five WEEE categories showed that steel and glass are the predominant streams of materials arising from the treatment; a non-negligible amount of plastic is also recovered, together with small amounts of precious metals. The LCA of the regional WEEE management system showed that the benefits associated with materials and energy recovery balance the burdens of the treatment processes, with the sole exception of two impact categories (human toxicity-cancer effects and freshwater ecotoxicity). The WEEE categories whose treatment and recovery resulted more beneficial for the environment and the human health are R3 and R5. The contribution analysis showed that overall the main benefits are associated with the recovery of metals, as well as of plastic and glass. Some suggestions for improving the performance of the system are given, as well as an indication for a more-in-depth analysis for the toxicity categories and a proposal for a new characterisation method for WEEE.

  14. [Hazardous medical waste management as a public health issue].

    Science.gov (United States)

    Marinković, Natalija; Vitale, Ksenija; Afrić, Ivo; Janev Holcer, Natasa

    2005-03-01

    The amount of waste produced is connected with the degree of a country's economic development; more developed countries produce more waste. This paper reviews the quantities, manipulation and treatment methods of medical waste in Croatia, as well as hazardous potentials of medical waste for human health. Medical waste must be collected and sorted in containers suitable for its characteristics, amount, means of transportation and treatment method in order to prevent contact with environment and to protect people who are working with waste. Hazardous medical waste in Croatia is largely produced by hospitals. Even though only one hospital has a licence to incinerate infectious medical waste, many other hospitals incinerate their hazardous waste in inappropriate facilities. Healthcare institutions also store great amounts of old medical waste, mostly pharmaceutical, anti-infectious, and cytostatic drugs and chemical waste. Data on waste treatment effects on human health are scarce, while environmental problems are covered better. Croatian medical waste legislation is not being implemented. It is very important to establish a medical waste management system that would implement the existing legislation in all waste management cycles from waste production to treatment and final disposal.

  15. Mechanical - physical treatment of used motor oil within a sustainable waste management system

    Directory of Open Access Journals (Sweden)

    Đukić Veljko N.

    2015-01-01

    Full Text Available Waste oils are all mineral or synthetic oils that cannot be used for the purpose for which they were originally produced. These are: hydraulic oils, motor oils, ship oils, liquids for the transfer of heat or insulation, oily remains from reservoirs, oil-water emulsions and various oil-water mixtures. In its chemical makeup used motor oil contains hydrocarbons, organic minerals, heavy metals (cobalt, magnesium, iron, zinc, sulfur, chlorine, nitrogen, phosphorus, compounds from additives and other products that are dangerous as they have cancerous effects on health. As it is considered the biggest contaminant of the environment and classified as hazardous waste; special attention must be given in the handling of used motor oil to ensure its appropriate disposal. Setting up of a viable system for Mechanical-Physical Treatment of used motor oil makes it possible to re-use it as a secondary raw material i.e. the problem of collection, transportation, treatment and storing of the used motor oil is being solved. . The subject of this research is the advantage of the mechanical-physical treatment of used motor oil. Re- refined motor oil can be used for multiple purposes such as a base for the other synthetic oils, for heating etc. Improper disposal of used motor oil causes multiple damage; firstly, losing the valuable secondary base which, with the addition of certain additives, can be used as the basis for the other synthetic oils; secondly, causing damage to the environment by the pollution with inability to repair the damage to all environmental components.

  16. Approaches to formalization of the informal waste sector into municipal solid waste management systems in low- and middle-income countries: Review of barriers and success factors.

    Science.gov (United States)

    Aparcana, Sandra

    2017-03-01

    The Municipal Solid Waste Management (MSWM) sector represents a major challenge for low-and middle-income countries due to significant environmental and socioeconomic issues involving rapid urbanization, their MSWM systems, and the existence of the informal waste sector. Recognizing its role, several countries have implemented various formalization measures, aiming to address the social problems linked to this sector. However, regardless of these initiatives, not all attempts at formalization have proved successful due to the existence of barriers preventing their implementation in the long term. Along with this, there is a frequent lack of knowledge or understanding regarding these barriers and the kind of measures that may enable formalization, thereby attaining a win-win situation for all the stakeholders involved. In this context, policy- and decision-makers in the public and private sectors are frequently confronted with the dilemma of finding workable approaches to formalization, adjusted to their particular MSWM contexts. Building on the review of frequently implemented approaches to formalization, including an analysis of the barriers to and enabling measures for formalization, this paper aims to address this gap by explaining to policy- and decision-makers, and to waste managers in the private sector, certain dynamics that can be observed and that should be taken into account when designing formalization strategies that are adapted to their particular socioeconomic and political-institutional context. This includes possible links between formalization approaches and barriers, the kinds of barriers that need to be removed, and enabling measures leading to successful formalization in the long term. This paper involved a literature review of common approaches to formalization, which were classified into three categories: (1) informal waste workers organized in associations or cooperatives; (2) organized in CBOs or MSEs; and (3) contracted as individual

  17. Grid Connected Integrated Community Energy System. Volume 4. Integrated solid waste management systems. Final report: Phase I, February 1, 1977-May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The cities of Minneapolis and Saint Paul represent the hub of commercial activity for the Twin Cities Metropolitan Region (TCMR). A Metropolitan Council has been charged with a continuous program of research and study concerning the acquisition of necessary facilities for the disposal of solid material for the metropolitan area and the means of financing such facilities. The region is defined; management of solid waste in the region is discussed. The region ranks high in the number of health care units and some data on the facilities are complied. The solid waste input that would result from the health care units is evaluated. Aspects of collection and transportation of solid wastes from the facilities and pyrolysis facility selection are described. A report is provided for the conceptual design, preliminary energy analysis, and preliminary financial analysis for a 132 US TPD Andco-Torrax slagging pyrolysis system.

  18. The challenges of municipal solid waste management systems provided by public-private partnerships in mature tourist destinations: The case of Mallorca.

    Science.gov (United States)

    Arbulú, Italo; Lozano, Javier; Rey-Maquieira, Javier

    2016-05-01

    This article analyzes the influence of tourism on the municipal solid waste management (MSWM) system taking as reference the case study of Mallorca, an internationally renowned destination. The characteristics of tourism such as seasonality and land scarcity, set interesting challenges to public-private partnerships related to MSWM system. The analysis of Mallorca's experience shows that land endowment strongly influences the choice of treatment technologies in tourism destinations. Furthermore, tourism seasonality significantly affects management costs which should be considered on PPP contracts. Finally, the tariff system in this kind of environmental PPPs in tourist destinations still need to improve to promote waste minimization and recycling.

  19. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development.

    Science.gov (United States)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei

    2017-03-01

    Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.

  20. Integrated solid waste management of Seattle, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  1. Integrated solid waste management of Sevierville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  2. Implementation of Information Management System for Radiation Safety of Personnel at the Russian Northwest Center for Radioactive Waste Management 'SevRAO' - 13131

    Energy Technology Data Exchange (ETDEWEB)

    Chizhov, K.; Simakov, A.; Seregin, V.; Kudrin, I.; Shandala, N.; Tsovyanov, A.; Kryuchkov, V. [Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, RF Ministry of Health and Social Development. 46, Zhivopisnaya St., Moscow, 123182 (Russian Federation); Krasnoschekov, A.; Kosnikov, A. [Northwest Center for Radioactive Waste Management ' SevRAO' - a branch of the Federal State Unitary Enterprise ' Enterprise for Radioactive Waste Management' ' RosRAO' 183017, Murmansk, Lobova st., 100 (Russian Federation); Kemsky, I. [Regional management - 120 of the Federal Medical-Biological Agency, 184682, Snezhnogorsk, Valentina Biryukova St., 5/1 (Russian Federation); Sneve, M. [Norwegian Radiation Protection Authority, Postboks 55, 1332 Oesteraas (Norway)

    2013-07-01

    The report is an overview of the information-analytical system designed to assure radiation safety of workers. The system was implemented in the Northwest Radioactive Waste Management Center 'SevRAO' (which is a branch of the Federal State Unitary Enterprise 'Radioactive Waste Management Enterprise RosRAO'). The center is located in the Northwest Russia. In respect to 'SevRAO', the Federal Medical-Biological Agency is the regulatory body, which deals with issues of radiation control. The main document to regulate radiation control is 'Reference levels of radiation factors in radioactive wastes management center'. This document contains about 250 parameters. We have developed a software tool to simplify control of these parameters. The software includes: input interface, the database, dose calculating module and analytical block. Input interface is used to enter radiation environment data. Dose calculating module calculates the dose on the route. Analytical block optimizes and analyzes radiation situation maps. Much attention is paid to the GUI and graphical representation of results. The operator can enter the route at the industrial site or watch the fluctuations of the dose rate field on the map. Most of the results are presented in a visual form. Here we present some analytical tasks, such as comparison of the dose rate in some point with control levels at this point, to be solved for the purpose of radiation safety control. The program helps to identify points making the largest contribution to the collective dose of the personnel. The tool can automatically calculate the route with the lowest dose, compare and choose the best route. The program uses several options to visualize the radiation environment at the industrial site. This system will be useful for radiation monitoring services during the operation, planning of works and development of scenarios. The paper presents some applications of this system on real data

  3. The Travel of Global Ideas of Waste Management

    DEFF Research Database (Denmark)

    Zapata Campos, Maria José; Zapata, Patrik

    2014-01-01

    Informal settlements in the global South cities are often neglected by formal solid waste collection services. In the city of Managua, the municipality and international and local NGOs recently implemented several waste management projects to provide waste collection in informal settlements...... by municipal truck to the municipal landfill. New institutionalism theory and the “travel metaphor” illuminate how the “waste transfer station” idea travelled to Managua from various international organizations. New urban infrastructure and waste management models introduced by donors were decoupled from...... existing waste management models and practices. Despite the organizational hypocrisy of the city administration, introducing this new model via pilot projects in three city districts challenges the logic of the existing centralized waste management system, which ignores the city's informal settlements...

  4. An assessment of pharmaceutical waste management in some ...

    African Journals Online (AJOL)

    An assessment of pharmaceutical waste management in some Nigerian pharmaceutical industries. ... African Journal of Biotechnology ... waste, pharmaceuticals, wastewater, waste management, environment, regulatory authorities, effluent.

  5. Households willingness to pay for improved solid waste management

    Directory of Open Access Journals (Sweden)

    S. Akhtar

    2017-04-01

    Full Text Available Waste is a byproduct of human life. Nowadays, municipal solid waste is being produced in excessive amounts and in this way, both developing and developed countries are facing challenges regarding generation of waste. Economic development, urbanization and improved living standards in cities have contributed to increase in the amount and complexity of solid waste produced. The present study was conducted in the residential area of main Boulevard Gulberg, Lahore to determine the present methods and efficiency of current solid waste management facility and to estimate the willingness of the selected households to pay for the improvement of solid waste management through questionnaire survey. It was found that current Solid waste management system in the area is fair but needs more improvement in terms of improved collection efficiency and rates, recycling bins, and segregation of waste at storage. According to the questionnaire survey, majority of the respondents despite belonging to middle class incomes are willing to pay an amount less than USD 4.8 for the improvement of waste management facility in the area. The area lacks frequent collection of waste containers. Therefore, there is a need for upgradation of storage and collection facilities in terms of increase in collection efficiency and rates, introduction of recycling facility and segregation of waste at source. Waste storage and collection sites of the area should be monitored periodically and waste should be disposed of in a scientific manner in sanitary landfills.

  6. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  7. INFORMAL AND FORMAL SECTORS PARTNERSHIP IN URBAN WASTE MANAGEMENT (Case Study: Non-Organic Waste Management in Semarang

    Directory of Open Access Journals (Sweden)

    Djoko Indrosaptono

    2014-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The urban waste management is still crucial issues in most regions in Indonesia. Urban waste is considered as a cultural issue because of its impact on various life factors , especially in big cities such as Jakarta, Semarang, Surabaya, Bandung, Palembang and Medan. Currently, the average productivity of the urban waste is 0.5 kg / capita / day. If this is multiplied by number of people in some cities in Java and Bali, the total waste will reach about 100,000 tons / day. This number will still increase by increasing population growth. Therefore, the urban waste management is very important for cities in Indonesia, alhough currently not many cities applied the urban waste management system. Urban waste management in Indonesia is not merely caused by formal sector, but it is also supported by informal sector in reducing daily production waste up to 30%. The informal sector management is mainly conducted by sorting the waste to recycleable or not. The recycleable waste is then sold back to the mills to be converted to other valuable products. This reserach was aimed to evaluate the partnership between formal and informal sector in reduction of waste production in Semarang city through urban waste management system. The research about informal sector was conducted by communal interaction and qualitative analysis focusing at Semarang City especially at Old Town area. The research has provided substantive knowledge of informal sector partnerships and formal sector in urban waste management with case inorganic waste management in the city of Semarang through 3R (recycle, reuse and reduce knwoledge management. Basic knowledge of the structure / surface is characterized by empirical knowledge which was easily caught by the direct perspective of human. Middle knowledge could be adjusted to different loci

  8. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  9. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  10. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.; Latkowski, J.F.; Meier, W.R. [Lawrence Livermore National Lab., CA (United States); Reyes, S. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad Nacional de Educacion a Distancia and Instituto de Fusion Nuclear, Dept. Ingenieria Energetica, Bilbao (Spain)

    2000-07-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  11. Municipal solid waste management in Malaysia: practices and challenges.

    Science.gov (United States)

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  12. Waste Management in Hunter-Gatherer Communities

    Directory of Open Access Journals (Sweden)

    Havlíček Filip

    2015-11-01

    Full Text Available This article describes examples of material and waste management with a focus on select Upper Paleolithic and Mesolithic sites. It examines the structuring of space and landscape from the perspective of waste management as a certain need of natural human behavior. The article touches on the concept of purity and on defining the creation of waste.

  13. 餐厨废弃物收运处置管理体系探讨%Management System of Food Waste Collection, Transportation and Disposal

    Institute of Scientific and Technical Information of China (English)

    许崇路

    2014-01-01

    总结青岛市餐厨废弃物管理实际情况,分析了各地餐厨废弃物收运处置体系建设,简述了餐厨废弃物收运、处置及管理模式和各自的优缺点;剖析了现阶段餐厨废弃物管理中存在的问题及餐厨废弃物分类收集难的主要原因,进而探讨了餐厨废弃物规范管理的对策与建议。%Based on summarizing the practical situation of food waste management in Qingdao, the construction of food waste collection, transportation and disposal system was analyzed. The advantages and disadvantages of food waste collection, transportation, disposal and management models were described briefly. The main problems of food waste management in the current stage and main reason for the difficulty in food waste sorting collection were analyzed. And the countermeasures and suggestions on the standardized management of food waste were discussed.

  14. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  15. An Investigation into Waste Management Practices in Nigeria (A ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    West African Journal of Industrial & Academic Research Vol.12 No.1 December 2014 112 ... problem in the environment due to lack Basic facilities:- This paper investigate the waste management problems and the various .... to Waste Management System in Nigeria City centre ..... cleaning fluid (Solvents) or pesticides,.

  16. W-026, Waste Receiving and Processing Facility data management system validation and verification report

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, M.E.

    1997-12-05

    This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure that the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.

  17. Policy Instruments towards a Sustainable Waste Management

    Directory of Open Access Journals (Sweden)

    Tomas Forsfält

    2013-02-01

    Full Text Available The aim of this paper is to suggest and discuss policy instruments that could lead towards a more sustainable waste management. The paper is based on evaluations from a large scale multi-disciplinary Swedish research program. The evaluations focus on environmental and economic impacts as well as social acceptance. The focus is on the Swedish waste management system but the results should be relevant also for other countries. Through the assessments and lessons learned during the research program we conclude that several policy instruments can be effective and possible to implement. Particularly, we put forward the following policy instruments: “Information”; “Compulsory recycling of recyclable materials”; “Weight-based waste fee in combination with information and developed recycling systems”; “Mandatory labeling of products containing hazardous chemicals”, “Advertisements on request only and other waste minimization measures”; and “Differentiated VAT and subsidies for some services”. Compulsory recycling of recyclable materials is the policy instrument that has the largest potential for decreasing the environmental impacts with the configurations studied here. The effects of the other policy instruments studied may be more limited and they typically need to be implemented in combination in order to have more significant impacts. Furthermore, policy makers need to take into account market and international aspects when implementing new instruments. In the more long term perspective, the above set of policy instruments may also need to be complemented with more transformational policy instruments that can significantly decrease the generation of waste.

  18. How Wastes Influence Quality Management

    Directory of Open Access Journals (Sweden)

    Gratiela Dana BOCA

    2011-06-01

    Full Text Available Companies are often surprised to learn that only a fraction of their activities actually add value for their customers. A primary cause of waste is information deficits – employees simply lack the knowledge they need to do their jobs efficiently and effectively. This leads employees to waste valuable time and motion searching, waiting, retrieving, reworking or just plain future action. Companies are able to respond to changing customer desires with high variety, high quality, low cost, and with very fast throughput times. Eliminating waste along entire value streams, instead of at isolated points, creates processes that need less human effort, less space, less capital, and less time to make products and services at far less costs and with much fewer defects, compared with traditional business systems. Companies are able to respond to changing customer desires with high variety, high quality, low cost, and with very fast throughput times.

  19. A NEW RUSSIAN WASTE MANAGEMENT INSTALLATION

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Andrew; Engxy, Thor; Endregard, Monica; Schwab, Patrick; Nazarian, Ashot; Krumrine, Paul; Backe, Steinar; Gorin, Stephen; Evans, Brent

    2003-02-27

    The Polyarninsky Shipyard (sometimes called Navy Yard No. 10 or the Shkval Shipyard) has been designated as the recipient for Solid Radioactive Waste (SRW) management facilities under the Arctic Military Environmental Cooperation (AMEC) Program. The existing SRW storage site at this shipyard is filled to capacity, which is forcing the shipyard to reduce its submarine dismantlement activities. The Polyarninsky Shipyard Waste Management Installation is planned as a combination of several AMEC projects. It will have several elements, including a set of hydraulic metal cutting tools, containers for transport and storage, the Mobile Pretreatment Facility (MPF) for Solid Radioactive Waste, the PICASSO system for radiation monitoring, and a Waste Storage Facility. Hydraulically operated cutting tools can cut many metal items via shearing so that dusts or particulates are not generated. The AMEC Program procured a cutting tool system, consisting of a motor and hydraulic pumping unit, a 38-mm conduit-cutting tool, a 100- mm pipe-cutting tool, and a spreading tool all mounted on a wheeled cart. The vendor modified the tool system for extremely cold conditions and Russian electrical standards, then delivered the tool system to the Polyarninsky shipyard. A new container for transportation and storage of SRW and been designed and fabricated. The first 400 of these containers have been delivered to the Northern Fleet of the Russian Navy for use at the Polyarninsky Shipyard Waste Management Installation. These containers are cylindrical in shape and can hold seven standard 200-liter drums. They are the first containers ever certified in Russia for the offsite transport of military SRW. These containers can be transported by truck, rail, barge, or ship. The MPF will be the focal point of the Polyarninsky Shipyard Waste Management Installation and a key element in meeting the nuclear submarine dismantlement and waste processing needs of the Russian Federation. It will receive raw

  20. International E-Waste Management Network (IEMN)

    Science.gov (United States)

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  1. Impacts on waste planning and management

    CSIR Research Space (South Africa)

    Oelofse, Suzan

    2016-11-01

    Full Text Available the skills or experience to manage this waste responsibly. Available waste water infrastructure in the study area is under pressure and requires urgent intervention. The technologies and capacity at these already stressed facilities are not sufficient...

  2. E-Waste Management and Challenges

    Science.gov (United States)

    Narayanan, S.; Kumar, K. Ram

    2010-11-01

    E-Waste is one of the silent degraders of the environment in the fast-growing world. This paper explores briefly the ultra-modern problem of E-Waste. After enumerating the causes and effects of the E-Waste, it focuses on management of the E-waste using modern techniques. The paper also deals with the responsibilities of the governments, industries and citizens in reducing E-waste.

  3. DOE Ofice of Civilian Radioactive Waste Management Systems studies plan, fiscal years 1991 and 1992. [Appendix lists system studies with respective abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, T W; Haffner, D R; Fletcher, J F

    1991-08-01

    The Systems Engineering Management Plan for the DOE Office of Civilian Radioactive Waste Management, which defines the systems engineering process for the Federal Radioactive Waste System (FWMS), requires that systems studies to support the integration, evaluation, and optimization of the system be identified. These studies are generally directed toward further defining system or system-element functional requirements, including interface requirements, evaluating alternative system configurations or operational rules, or optimizing design features to achieve system integration. Because the decisions based on these studies are conducted within the overall configuration management process, a consistent and documented framework for the identification and conduct of systems studies must be available. A planned approach is needed so that results from defensible and referenceable systems analyses are available to make informed decisions in a timely manner. This Plan covers top level'' studies (i.e., those involving system requirements generally and the definition of requirements for system elements). This Plan is focused on the FY 1991 and 1992 period, and will be updated periodically as required to ensure its currency. Proposed systems studies for FY 1991 and 1992, their recommended timing, and their relations to one another, current studies, and major program milestones are identified. In general, only those studies supporting monitored retrievable storage (MRS) design requirements are recommended for immediate initiation. The studies are grouped into five major decision groups to allow scheduling to support specific decision windows. The proposed system studies schedule is generally a conservative one, with studies occurring early in or before the associated decision window. These proposed studies are described in this Plan. 16 refs., 6 figs., 2 tabs.

  4. Waste not Want not’- Sustainable Waste Management in Malta - Comment

    Directory of Open Access Journals (Sweden)

    Tilak A. Ginige

    2010-12-01

    Full Text Available This paper aims to look at the implications of EU’s sustainable waste management policy as applied to the Maltese Islands. It will review the development of waste management in Malta, pre and post EU accession. It will bring the current analysis of the Waste Framework Directive 2008 in order to understand the implications to Malta. When discussing waste management in the context of sustainable development, we are considering a system involving a process of change in which the core components, i.e. society, resource use, investment, technologies, institutions, and consumption patterns, need to operate in harmony with ecosystems. Malta, whose efforts in waste management are reviewed in this paper, whilst serving as the locus for contribution to the waste management debate as early as 2005, has made great efforts in its strive to abide by the ‘Life Cycle Thinking’ approach highlighted in Municipal Waste Management Workshop it hosted together with the EC’s JRC in 2005. The outputs of that workshop showed that the modern aim of waste management plans is to lay the groundwork for sustainable waste management. However, drafting the strategy and implementing it in the field are two different realities, as depicted in this review.

  5. Integrated sustainable waste management in developing countries

    OpenAIRE

    Wilson, D C; Velis, C.A.; Rodic-Wiersma, L.

    2013-01-01

    This paper uses the lens of ‘integrated sustainable waste management’ to examine how cities in developing countries have been tackling their solid waste problems. The history of related concepts and terms is reviewed, and ISWM is clearly differentiated from integrated waste management, used mostly in the context of technological integration in developed countries. Instead, integrated sustainable waste management examines both the physical components (collection, disposal and recycling) and th...

  6. Radioactive Waste Management in A Hospital

    OpenAIRE

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M.; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance w...

  7. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  8. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R.; Lindskog, A.

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  9. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE)

    DEFF Research Database (Denmark)

    Zhao, Y.; Wang, H.-T.; Lu, W.-J.

    2009-01-01

    , mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used...... in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China...

  10. Effectiveness of waste management in Mataram City

    Science.gov (United States)

    Widayanti, B. H.; Hirsan, F. P.; Kurniawan, A.

    2017-06-01

    Mataram city as National Activity Center (NAC) led to increased of activity that occurs in this region. This condition impacted the increasing of population and the amount of waste. The amount of waste in Mataram City currently reaches 1,444 m3/day and that has been transported by the Sanitation Department as much as 1,033.82 m3 or 71.59%. This research aims to analyze the effectiveness of community-based waste or waste management. The method that was used is quantitative descriptive analysis of waste heaps and analysis of waste management. The results of the analysis of waste heaps is that in the next 10 years (2026) the amount of waste will reach 2,019 m3/day. By using the analysis of waste management, if there are 25 units machines today and 48 waste management groups are effectively utilized, then 948 m3 amount of waste could be processed in a day or as much as 65.65% of the waste is managed by the community. So that, in order to get over this waste problems, collaboration between government and the community in Mataram City is needed.

  11. A legislator`s guide to municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  12. Solid waste management challenges for cities in developing countries.

    Science.gov (United States)

    Guerrero, Lilliana Abarca; Maas, Ger; Hogland, William

    2013-01-01

    Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publications from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very useful when planning, changing or implementing waste management systems in cities.

  13. Integrated solid waste management of Springfield, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  14. Utilizing environmental management information systems to monitor chemical usage and facilitate waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Blazer, T.L.; Kinney, R.W. [Modern Technologies Corporation, Dayton, OH (United States)

    1996-10-01

    Waste minimization and pollution prevention activities have proven to be valuable to the chemical industry`s and the chemical user`s bottom line. Many companies have found that, with a modest initial capital investment and product modifications, mounds of bureaucratic liability can be removed and substantial cost savings can be realized.

  15. Finding urban waste management solutions and policies: Waste-to-energy development and livelihood support system in Payatas, Metro Manila, Philippines.

    Science.gov (United States)

    Serrona, Kevin Roy; Yu, Jeong-Soo

    2009-01-01

    One of the potential solutions in social and environmental sustainability in municipal solid waste management (MSW) in Metro Manila is to combine community-based recycling and sound landfill management strategies. The marriage of the two puts importance on recycling as a source of livelihood while proper landfill management aims to improve the aesthetic and environmental quality of disposal facilities in urban areas. To do this, a social mapping of wastepickers, junkshops and local recycling practices needs to be undertaken and at the same time assess strategies of the national and local governments vis-à-vis existing laws on municipal solid waste. The case of Payatas controlled disposal facility was taken as a pilot study because it represents the general condition of disposal sites in Metro Manila and the social landscape that it currently has. In addition, a waste-to-energy (WTE) project has been established in Payatas to produce electricity from methane gas. Preliminary interviews with wastepickers show that development interventions in disposal sites such as WTE pose no opposition from host communities for as long as alternative livelihood opportunities are provided. Regulating the flow of wastepickers into the landfill has advantages like improved income and security. Felt needs were also articulated like provision of financial support or capital for junkshop operation and skills training. Overall, a smooth relationship between the local government and community associations pays well in a transitioning landfill management scheme such as Payatas.

  16. Challenges and opportunities associated with waste management in India

    Science.gov (United States)

    Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh

    2017-01-01

    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362

  17. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  18. Best Practice of Construction Waste Management and Minimization

    Directory of Open Access Journals (Sweden)

    Khor Jie Cheng

    2014-07-01

    Full Text Available Material management is an important issue as seen in construction waste management. Best practice of material management is accompanied by various benefits which are acknowledged by several studies. The site layout has particular effects on both materials and their waste through effective waste management practice. Ignoring the benefits of material management could result in a daily reduction in productivity of up to 40% by material wastage. Thus, the benefits of effective material management must be well comprehended for the sake of waste minimization. Another convincing fact about waste is that poor site management accounts for the largest factor of waste generation. Hence the site condition is very crucial in developing effective material management. Factors contributing to the efficiency of material management process are effective logistical management and supply chain management. The logistics system must be performing as schedule so that materials are wisely managed on-site without encountering presence of excessive materials. As materials management is closely related to logistics in construction projects, there will be delay in construction projects when materials are not delivered to site as scheduled. The management must be effective in terms of delivery, off-loading, storage, handling, on-site transportation and on-site utilization of materials.

  19. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    Directory of Open Access Journals (Sweden)

    Aleksandra Anić Vučinić

    2010-01-01

    Full Text Available The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as criteria for sustainable waste management establishment. The main constituent of this system is avoiding and minimizing waste, as well as increasing the recycling and recovery level of waste and land fill gas, which also represent green house gases mitigation measures. The Waste Management Plan consists of several direct and indirect measures for green house gases emission reduction and their implementation also affects the green house gases emissions. The contribution of the methane emission from land fills amounts to about 2% of the total green house gases emissions in Croatia. The climate change control and mitigation measures as an integral part of waste management sector strategies represent the measures of achieving the national objectives to wards green house gases emission reduction which Croatia has accepted in the frame work of the Kyoto Protocol.

  20. Office of Civilian Radioactive Waste Management annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-01

    This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation`s spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste.

  1. Waste Management Technician Partnership Program. Final Report.

    Science.gov (United States)

    Campbell, Donna

    This final report for Columbia Basin College's waste management technician partnership program outlines 4 objectives: (1) develop at least 4 waste management competency-based curriculum modules; (2) have 50 participants complete at least 1 module; (3) have 100 participants complete a training and/or certification program and 200 managers complete…

  2. Solid Waste Information and Tracking System Client Server Conversion Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    GLASSCOCK, J.A.

    2000-02-10

    The Project Management Plan governing the conversion of SWITS to a client-server architecture. The PMP describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion

  3. Wast Management System for Western Africa : Analysis of systemssuccessfully applied in the world that may fit the reality faced in Western Africa

    OpenAIRE

    Adamoski, Michele

    2011-01-01

    Health and safety have been the most important concerns in waste management formany years. However, nowadays society demands that as well as being safe, waste managementmust also be sustainable. The management of a sustainable Municipal Solid Waste is anecessary but not-prioritized aspect of environmental management in most countries with lowand middle income.This study purposes an analysis of technologies, in order to select the best and mostsuitable practices in Sustainable Waste Management...

  4. Community Participation in Solid Waste Management, Kathmandu

    OpenAIRE

    Gotame, Manira

    2012-01-01

    Waste management in Nepal is one of the important topics discussed today. Participation of the community is thus,being encouraged to manage solid waste. My study area is Kathmandu (Buddhajyoti, Chamati and Milijuli, Ganesh and Jagriti settlements in Kathmandu). My paper focuses in community participation in solid waste management in these settlements/communities. there are different projects working for this purpose in these settlements. I used household survey...

  5. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  6. Climate protection by means of waste management or waste management by means of climate protection? About the financial sustainability of advanced waste management systems in developing countries, emerging countries and transformation countries; Klimaschutz durch Abfallwirtschaft oder Abfallwirtschaft durch Klimaschutz? Zur finanziellen Nachhaltigkeit fortschrittliche Abfallwirtschaftssysteme in Entwicklungs-, Schwellen- und Transformationslaendern

    Energy Technology Data Exchange (ETDEWEB)

    Pfaff-Simoneit, Wolfgang [KfW Entwicklungsbank, Frankfurt am Main (Germany); Nassour, Abdallah; Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft; Fricke, Klaus [TU Braunschweig (Germany). Leichtweiss-Institut; Mutz, Dieter [GIZ, Indo-German Environment Partnership (IGEP) Programme, New Delhi (India)

    2012-09-15

    Almost all projects in solid waste management (SWM) implemented in developing, emerging and transition countries (DETC) envisage the disposal of residual waste on a landfill. In view of the increasing shortage of resources and climate change leading environmental experts recommend the implementation of advanced solid waste management (SWM) systems even in DETC. In doing this these countries could lower their national greenhouse gas balance by 10-15 %. The provision of low-interest credits or even grants alone can not secure financial sustainability of advanced SWM systems in DETC. SWM systems require steady and reliable revenues to cover the operating cost. Levying user fees faces serious restrictions in DETC. Financial compensations for the greenhouse gas reduction effects of advanced SWM systems could - depending on type of SWM concept and frame conditions - could cover between 30 % and 50 % of the total cost. The appropriate remuneration of these greenhouse gas reduction efforts turns out as the crucial question for guaranteeing financial sustainability of advanced SWM in DETC. To the extent industrialized countries meet their commitments given in the Framework Convention on Climate Change, the Kyoto-Protocol and other international agreements on climate change, DETC with a GDP of about more than 2.000 EUR per cap and year could afford advanced SWM systems. Besides that DETC have to be supported in a holistic approach with technology transfer, capacity building and the development of conducive framework conditions in order to develop their own technological competence in the long run.

  7. Research challenges in municipal solid waste logistics management.

    Science.gov (United States)

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling.

  8. e-Waste Management Scenarios in Malaysia

    Directory of Open Access Journals (Sweden)

    Fatihah Suja

    2014-01-01

    Full Text Available e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malaysia. Management approaches have included law enforcement and regulation and the promotion of e-waste recovery activities. e-Waste of no commercial value must be disposed of at sites/premises licensed by the Department of Environment (DOE, Malaysia. To date, 18 full recovery facilities and 128 partial recovery facilities that use various available technologies have been designated for the segregation, dismantling, and treatment of e-waste. However, there are issues faced by the recovery facilities in achieving the goal of converting e-waste into a source material. The issues include the e-waste supply, the importation of e-waste derived products and coding, and finally the need to develop the criteria for e-waste processing technologies to ensure the safety and the sustainability of the facilities.

  9. Integrated solid waste management of Scottsdale, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  10. Evaluating the Mexican Federal District's integrated solid waste management programme.

    Science.gov (United States)

    Wismer, Susan; Lopez de Alba Gomez, Adriana

    2011-05-01

    Generation of solid waste is a problem of great environmental significance in the Mexican Federal District. With an estimated daily generation of 12 500 tons, waste management is a priority for the district government. Integrated waste management programmes have been implemented in the Mexican Federal District in the past. They have failed. This research has examined the most recent initiative in an effort to discover the causes of failure, using a case study approach. In addition to identifying barriers to and opportunities for implementation of an effective integrated waste management system in the Federal District, this research recommends options for a newly proposed waste management system with the aim of achieving the objectives desired by the government, while aiding in the pursuit of sustainable development.

  11. Sustainable sound waste management startegies in Juja, Kenya ...

    African Journals Online (AJOL)

    Sustainable sound waste management startegies in Juja, Kenya. ... Integrated solid waste management includes source reduction, source separation, recycling ... waste in Juja consisted of 80% food and other organic wastes, 10% plastics, ...

  12. Examining the effectiveness of municipal solid waste management systems: an integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan.

    Science.gov (United States)

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-06-01

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O&M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.

  13. Integrated sustainable waste management in developing countries

    NARCIS (Netherlands)

    Wilson, D.C.; Velis, C.A.; Rodic-Wiersma, L.

    2013-01-01

    This paper uses the lens of ‘integrated sustainable waste management’ to examine how cities in developing countries have been tackling their solid waste problems. The history of related concepts and terms is reviewed, and ISWM is clearly differentiated from integrated waste management, used mostly

  14. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... waste to the environment. The universal waste pesticides must be contained in one or more of the..., structurally sound, compatible with the pesticide, and that lacks evidence of leakage, spillage, or damage that... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...

  15. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... component of a universal waste to the environment. The universal waste pesticides must be contained in one... the pesticide, and that lacks evidence of leakage, spillage, or damage that could cause leakage under... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...

  16. Solid Waste Management Practices in EBRP Schools.

    Science.gov (United States)

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  17. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  18. Waste to energy – key element for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  19. Managing Nuclear Waste: Options Considered

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2002-05-02

    Starting in the 1950s, U.S. scientists began to research ways to manage highly radioactive materials accumulating at power plants and other sites nationwide. Long-term surface storage of these materials poses significant potential health, safety, and environmental risks. Scientists studied a broad range of options for managing spent nuclear fuel and high-level radioactive waste. The options included leaving it where it is, disposing of it in various ways, and making it safer through advanced technologies. International scientific consensus holds that these materials should eventually be disposed of deep underground in what is called a geologic repository. In a recent special report, the National Academy of Sciences summarized the various studies and emphasized that geologic disposal is ultimately necessary.

  20. CHALLENGES OF MUNICIPAL WASTE MANAGEMENT IN HUNGARY

    Directory of Open Access Journals (Sweden)

    ZOLTÁN OROSZ

    2008-06-01

    Full Text Available Aims, tasks and priorities of medium term development plans of national waste management were defined in the National Waste Management Plan, which was made for the period of 2003–2008 in Hungary. Supporting of the European Union is indispensable for carrying out of plan. The most important areas are related to the developing projects of municipal solid waste treatment (increasingthe capacity of landfills, accomplishment of the infrastructure of selective waste collection, building of new composting plants. The national environmental policy does not focus sufficiently on the prevention of waste production. Due to the high expenses of investment and operation the energetic recovery and the incineration of municipal solid waste do not compete with the deposition. We inclined to think that the waste management of Hungary will be deposition-orientated until 2015. The main problems to the next years will be the lack of reprocessing industry of plastic and glass packaging waste. The high number of to-be-recultivated landfills and the attainability of necessary financial sources are also serious problems. There are many questions. What is the future in national waste management? How can we reduce the quantity of dumped waste? What are challenges of national waste management on the short and long term?

  1. The Orbital Workshop Waste Management Compartment

    Science.gov (United States)

    1972-01-01

    This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.

  2. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  3. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  4. 8. Muenster waste management meeting. Proceedings; 8. Muensteraner Abfallwirtschaftstage. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Gallenkemper, B.; Bidlingmaier, W.; Doedens, H.; Stegmann, R. (eds.)

    2003-07-01

    The papers in this proceedings volume come in the following categories: Boundary conditions of the waste management sector; The field of tension between theory and practice of environmental policy; Power generation from waste; Mechanical-biological waste treatment systems and landfills; BMBF project ''Cost Reduction in Waste Management and Street Cleaning; Industrial safety and health hazards; Utilisation of compost and biomass; Current trends in the management of waste electrical appliances; Practical implementation of the Industrial Waste Ordinance (Gewerbeabfallverordnung); Obligatory refundable deposits on packaging materials. [German] Der Tagungsband enthaelt die Beitraege der Autoren, die unter folgenden Themenpunkten zusammengefasst werden: Abfallwirtschaftliche Rahmenbedingungen, Spannungsfeld umweltpolitische Anforderung und Praxis, zukuenftige Struktur der Entsorgungswirtschaft, energetische Verwertung von Abfaellen, MBA und Deponie, BMBF-Verbundprojekt: Kostenreduzierung in der Entsorgungslogistik und Strassenreinigung, Arbeitsschutz und Arbeitsbelastung, Kompost- und Biomassenutzung, Erfassung von Elektroaltgeraeten, Umsetzung der Gewerbeabfallverordnung, Pfandpflicht, Stadtbildpflege und Anti-Littering. (uke)

  5. Site investigation on medical waste management practices in northern Jordan.

    Science.gov (United States)

    Abdulla, Fayez; Abu Qdais, Hani; Rabi, Atallah

    2008-01-01

    This study investigated the medical waste management practices used by hospitals in northern Jordan. A comprehensive inspection survey was conducted for all 21 hospitals located in the study area. Field visits were conducted to provide information on the different medical waste management aspects. The results reported here focus on the level of medical waste segregation, treatment and disposal options practiced in the study area hospitals. The total number of beds in the hospitals was 2296, and the anticipated quantity of medical waste generated by these hospitals was about 1400 kg/day. The most frequently used treatment practice for solid medical waste was incineration. Of these hospitals, only 48% had incinerators, and none of these incinerators met the Ministry of Health (MoH) regulations. As for the liquid medical waste, the survey results indicated that 57% of surveyed hospitals were discharging it into the municipal sewer system, while the remaining hospitals were collecting their liquid waste in septic tanks. The results indicated that the medical waste generation rate ranges from approximately 0.5 to 2.2 kg/bed day, which is comprised of 90% of infectious waste and 10% sharps. The results also showed that segregation of various medical waste types in the hospitals has not been conducted properly. The study revealed the need for training and capacity building programs of all employees involved in the medical waste management.

  6. Sustainable Materials Management (SMM) WasteWise Data

    Science.gov (United States)

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  7. Waste assaying and radiation monitoring equipment at the waste management centre of NPP Leningrad

    Directory of Open Access Journals (Sweden)

    Šokčić-Kostić Marina

    2006-01-01

    Full Text Available The waste accumulated in the past at the Nuclear Power Plant Leningrad has to be sorted and packed in an optimal way. In the area of waste treatment and management, the completeness and quality of direct monitoring are of the outmost importance for the validity of, and confidence in, both practicable waste management options and calculations of radiological impacts. Special monitoring systems are needed for this purpose. Consistent with the scale of work during the waste treatment procedures and the complexity of the plant data have to be collected from characteristic parts in various treatment stages. To combine all the information, a tracking procedure is needed during the waste treatment process to characterize the waste for interim and/or final disposal. RWE NUKEM GmbH has developed special customer-tailored systems which fulfill the specifications required by plant operation and by the authorities.

  8. Electronic waste management approaches: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  9. Waste Management Facilities cost information for low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  10. The systematic roles of SKI and SSI in the Swedish nuclear waste management system. Syncho`s report for project RISCOM

    Energy Technology Data Exchange (ETDEWEB)

    Espejo, R. [Syncho, Solihull (United Kingdom); Gill, A. [Syncho, Oxon (United Kingdom)

    1998-01-01

    The purpose of this report is to share and summarize our findings about the regulatory roles of SKI/SSI in the context of the Swedish Nuclear System (SNS), with an emphasis on nuclear waste management. The driving force in this review is to make decision processes more transparent. What is reported is based on interviews conducted with employees at SKI/SSI/SKB during early December 1996, the presentation to SKI/SSI in January 1997, discussions during the Shap Wells meeting in Cumbria during March 1997 and RISCOM internal discussions. We offer two hypotheses about the way the Nuclear Waste Management System (NWMS) appears to work. We choose one and derive from it a view about structural issues in SNS and NWMS. The conclusion is a set of systemic roles for the regulators. It is the comparison between these systemic roles and the actual situation that may trigger some adjustments in the system. Our hope is that these findings will make apparent feasible and desirable changes in the system in order to increase the chances for transparent decisions in the Nuclear Waste Management System. In summary, Section 2 includes a general background of the NWMS based on interviews and general information. Section 3 makes a more focused attempt to work out the issues expressed by people in the interviews. Section 4 discusses at a more conceptual level systemic ideas such as the unfolding of complexity. Section 5 is an attempt to organize viewpoints about the NWMS and offers hypotheses to support a preliminary diagnosis of the system in Section 6. We call this section `A problem of identity`. It is only in Section 7 that basic systemic arguments are unfolded with the intention of supporting an appreciation of SKI/SSI`s regulatory roles in the nuclear industry as a whole and nuclear waste management in particular. Section 8 offers a summary of conclusions.

  11. Waste management in primary healthcare centres of Iran.

    Science.gov (United States)

    Mesdaghinia, Alireza; Naddafi, Kazem; Mahvi, Amir Hossein; Saeedi, Reza

    2009-06-01

    The waste management practices in primary healthcare centres of Iran were investigated in the present study. A total of 120 primary healthcare centres located across the country were selected using the cluster sampling method and the current situation of healthcare waste management was determined through field investigation. The quantities of solid waste and wastewater generation per outpatient were found to be 60 g outpatient(-1) day(-1) and 26 L outpatient(-1) day(-1), respectively. In all of the facilities, sharp objects were separated almost completely, but separation of other types of hazardous healthcare solid waste was only done in 25% of the centres. The separated hazardous solid waste materials were treated by incineration, temporary incineration and open burning methods in 32.5, 8.3 and 42.5% of the healthcare centres, respectively. In 16.7% of the centres the hazardous solid wastes were disposed of without any treatment. These results indicate that the management of waste materials in primary healthcare centres in Iran faced some problems. Staff training and awareness, separation of healthcare solid waste, establishment of the autoclave method for healthcare solid waste treatment and construction of septic tanks and disinfection units in the centres that were without access to a sewer system are the major measures that are suggested for improvement of the waste management practices.

  12. Municipal solid waste management in Tehran: current practices, opportunities and challenges.

    Science.gov (United States)

    Damghani, Abdolmajid Mahdavi; Savarypour, Gholamreza; Zand, Eskandar; Deihimfard, Reza

    2008-01-01

    Tehran, the capital city of Iran and a metropolis with a population of 8.2 million and containing 2.4 million households, generated 2,626,519 tons of solid waste in 2005. The present study is aimed at evaluating the generation, characteristics and management of solid waste in Tehran. Municipal solid waste comprises more than 97% of Tehran's solid waste, while three other types of solid waste comprise less than 3% of it, namely hospital waste (1.0%), industrial waste (0.6%) and construction and demolition waste (0.5%). The contribution of household solid waste to total municipal solid waste is about 62.5%. The municipality of Tehran is responsible for the solid waste management of the city; the waste is mainly landfilled in three centers in Tehran, with a small part of it usually recycled or processed as compost. However, an informal sector is also active in collecting recyclable materials from solid waste. The municipality has recently initiated some activities to mechanize solid waste management and reduce waste generation. There remain important challenges in solid waste management in Tehran which include: the proper collection and management of hospital waste; public education aimed at reducing and separating household waste and educating municipal workers in order to optimize the waste collection system; and the participation of other related organizations and the private sector in solid waste management.

  13. Research on design and application of medical waste management system%医疗废物管理系统的开发与应用研究

    Institute of Scientific and Technical Information of China (English)

    陈敏亚; 张怡; 陆靓亮

    2014-01-01

    Objective: Medical waste management is not only the problem of hospital, but also is an important public health problem. Apply modern information technology to insure real-time tracking and monitoring medical waste recycling, storage, disposal, improve medical waste management. Methods: Construct medical waste management system with wireless network, bar code and RFID etc. Results:By this system, transportation, storage and disposal that process of medical waste within the hospital are monitoring and supervision effective. Conclusion:The collection and transportation sectors of medical waste have been standard, to ensure the security, enhanced transparency and improved hospital management.%目的:在数字化医疗医院示范中,通过应用现代信息技术,对医疗废物的回收、存放及处置等环节进行实时跟踪和监管,使医疗废物管理更加规范。方法:基于无线网络、条形码及射频识别(RFID)等技术,开发医疗废物管理信息系统并在医院进行应用实践。结果:系统对医院内部医疗废物的收集、运送、贮存以及处置等过程进行了有效的控制及监管。结论:医疗废物管理系统规范了废物收运环节,增强了透明性,确保了安全,提升了医院管理水平。

  14. Waste Management as a Practical Approach to Sustainable ...

    African Journals Online (AJOL)

    USER

    2014-04-04

    Apr 4, 2014 ... monitor and control prevailing waste management systems while ..... sold to glass manufacturers like Coca Cola and Seven up bottling company as cullet, .... Edo State Government (2013): The Edo State. Statistical Year Book.

  15. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  16. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  17. Life-cycle modelling of waste management in Europe: tools, climate change and waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel

    of these models most importantly depend on the technical assumptions and parameters defining waste management technologies. Some of these technical assumptions have evolved significantly from the early models to the more recent ones. An important purpose of waste LCA models is to perform environmental assessments......Europe has a long history of waste management, where regulation, implementation and enforcement have been the main drivers for the development and diversification of waste management technologies since the late 70s. Despite strong engineering development to minimise impacts to human health...... disposal to resources management, requiring modelling tools, such as life-cycle assessment (LCA) models, for carrying out environmental assessment, because of the complexity of the systems. A review of the key waste LCA models was performed in the present PhD project and showed that the results...

  18. Life Cycle Costing Model for Solid Waste Management

    DEFF Research Database (Denmark)

    Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2014-01-01

    To ensure sustainability of solid waste management, there is a need for cost assessment models which are consistent with environmental and social assessments. However, there is a current lack of standardized terminology and methodology to evaluate economic performances and this complicates...... LCC, e.g. waste generator, waste operator and public finances and the perspective often defines the systemboundaries of the study, e.g. waste operators often focus on her/his own cost, i.e. technology based,whereas waste generators and public finances often focus on the entire waste system, i.......e. system based. Figure 1 illustrates the proposed modeling framework that distinguishes between: a) budget cost, b) externality costs and 3) transfers and defines unit costs of each technology (per ton of input waste). Unitcosts are afterwards combined with a mass balance to calculate the technology cost...

  19. Minimization Management of Construction and Demolition Waste under Systemic View%系统视角下建筑垃圾最少化管理研究

    Institute of Scientific and Technical Information of China (English)

    吴泽洲; 向荣理; 刘贵文

    2011-01-01

    This paper, at the beginning, analyses the sources and composition of construction and demolition waste ( CDW ), summarizes the common recycling measures. Afterward, the CDW minimization management system is proposed pointing that CDW minimization management should concentrate on the sources of the waste. Finally, the feasible reduction measures are provided for each stakeholder in the system to conduct a minimization management.%对建筑垃圾的来源及构成进行分析,总结常见建筑垃圾种类的回收利用措施.提出建筑垃圾最少化管理系统,指出建筑垃圾最少化管理应从垃圾产生源头着手,并提出系统内各方可采取的建筑垃圾减量化措施.

  20. Hospital waste management in El-Beheira Governorate, Egypt.

    Science.gov (United States)

    Abd El-Salam, Magda Magdy

    2010-01-01

    This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and

  1. Managing plastic waste in East Africa: Niche innovations in plastic production and solid waste

    NARCIS (Netherlands)

    Ombis, L.O.; Vliet, van B.J.M.; Mol, A.P.J.

    2015-01-01

    This paper assesses the uptake of environmental innovation practices to cope with plastic waste in Kenyan urban centres at the interface of solid waste management and plastic production systems. The Multi Level Perspective on Technological Transitions is used to evaluate 7 innovation pathways of pla

  2. Managing plastic waste in East Africa: Niche innovations in plastic production and solid waste

    NARCIS (Netherlands)

    Ombis, L.O.; Vliet, van B.J.M.; Mol, A.P.J.

    2015-01-01

    This paper assesses the uptake of environmental innovation practices to cope with plastic waste in Kenyan urban centres at the interface of solid waste management and plastic production systems. The Multi Level Perspective on Technological Transitions is used to evaluate 7 innovation pathways of

  3. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  4. Supplemental Information Source Document Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Halpern, Jonathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mond, Michael du [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shain, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This Supplemental Information Source Document for Waste Management was prepared in support of future analyses including those that may be performed as part of the Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Environmental Impact Statement. This document presents information about waste management practices at SNL/NM, including definitions, inventory data, and an overview of current activities.

  5. Nuclear Waste Management quarterly progress report, October--December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M. (comp.)

    1977-04-01

    Research topics on which progress is reported include decontamination and densification of chop-leach cladding residues, monitoring of effluents from waste solidification, TRU waste fixation, krypton solidification, /sup 14/C and /sup 129/I fixation, waste management system studies, organic complexes of fission products, characterization of 300 Area burial grounds, electropolishing as a decontamination technique, and decommissioning of Hanford facilities. 11 tables, 18 figures. (DLC)

  6. Evaluation of municipal solid waste management in egyptian rural areas.

    Science.gov (United States)

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  7. An environmental analysis for comparing waste management options and strategies.

    Science.gov (United States)

    Marchettini, N; Ridolfi, R; Rustici, M

    2007-01-01

    The debate on different waste management practices has become an issue of utmost importance as human activities have overloaded the assimilative capacity of the biosphere. Recent Italian law on solid waste management recommends an increase in material recycling and energy recovery, and only foresees landfill disposal for inert materials and residues from recovery and recycling. A correct waste management policy should be based on the principles of sustainable development, according to which our refuse is not simply regarded as something to eliminate but rather as a potential resource. This requires the creation of an integrated waste management plan that makes full use of all available technologies. In this context, eMergy analysis is applied to evaluate three different forms of waste treatment and construct an approach capable of assessing the whole strategy of waste management. The evaluation included how much investment is needed for each type of waste management and how much "utility" is extracted from wastes, through the use of two indicators: Environmental yield ratio (EYR) and Net eMergy. Our results show that landfill is the worst system in terms of eMergy costs and eMergy benefits. Composting is the most efficient system in recovering eMergy (highest EYR) from municipal solid waste (MSW) while incineration is capable of saving the greatest quantity of eMergy per gram of MSW (highest net eMergy). This analysis has made it possible to assess the sustainability and the efficiency of individual options but could also be used to assess a greater environmental strategy for waste management, considering a system that might include landfills, incineration, composting, etc.

  8. Role of NGOs and CBOs in Waste Management

    Directory of Open Access Journals (Sweden)

    NN Nik Daud

    2012-05-01

    Full Text Available Background: Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs and community-based organizations (CBOs in municipal solid waste (MSW management.Methods: A survey was conducted to observe the present scenarios of secondary disposal site (SDS, ultimate disposal site (UDS, composting plants, medical wastes management and NGOs and CBOs MSW management activities.Results: A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs.Conclusion: The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises.

  9. Federal facilities compliance act waste management

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J; Gates-Anderson, D; Hollister, R; Painter, S

    1999-07-06

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal.

  10. Waste to energy--key element for sustainable waste management.

    Science.gov (United States)

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Economic and employment potential in textile waste management of Faisalabad.

    Science.gov (United States)

    Noman, Muhammad; Batool, Syeda Adila; Chaudhary, Muhammad Nawaz

    2013-05-01

    The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US$3 billion per year. On average 161 325 people are employed in the textile sector in Faisalabad, of which 11 860 are involved in solid waste handling and management. The textile industries generate solid wastes such as fibre, metal, plastic and paper waste. A total of 794 209 kg day(-1) (289 886 285 kg year(-1)) solid waste is produced from this sector and purchased by cotton waste junkshop owners at US$125 027 day(-1) (US$45 634 855 year(-1)). Only pre-consumer textile waste is considered. Interestingly no waste is sent to landfill. The waste is first segregated into different categories/ types by hand and then weighed. Cotton waste is sold to brick kilns where it is used as an alternative fuel as it is cheaper than wood/coal. Iron scrap is sold in the junk market from where it is resold to recycling industries. Paper waste is recycled, minimizing the virgin material used for producing new paper products. Iron and plastic drums are returned to the chemical industries for refilling, thus decreasing the cost of dyes and decreasing the demand for new drums. Cutting rags are used for making different things such as ropes and underlay, it is also shredded and used as fillings for pillows and mattresses, thus improving waste management, reducing cost and minimizing the need for virgin material. As no system of quality control and no monitoring of subsequent products exist there is a need to carry out quality control and monitoring.

  12. Assessment of municipal solid waste management scenarios in Irkutsk (Russia) using a life cycle assessment-integrated waste management model.

    Science.gov (United States)

    Tulokhonova, Alisa; Ulanova, Olga

    2013-05-01

    Continuous growth in the quantity of municipal solid waste (MSW) and increasing demands for their environmentally-friendly treatment are one of the main consequences of the growing social and economic development rate in modern society. Despite ecologically sustainable trends in waste management systems around the world, open dumps are still the main waste treatment option in Russia. This study aims to help the local municipality administration in Irkutsk (Russia) identify the most appropriate direction for current waste management and its optimization. Within this study four developed MSW management scenarios were assessed and compared with respect to their ecological, economic and social aspects using a life cycle-based integrated waste management model. The evaluation results of these scenarios show that the development of environmental sustainability and the reduction of social effects lead to an increase in handling of costs of waste. The best scenario, regarding both environmental and social aspects, is scenario four, which includes the separate collection and reprocessing of recyclables in combination with an aerobic mechanical-biological pre-treatment of the residual waste before landfilling. However, this scenario is 3.6 times more expensive than the existing system. The results of all assessed scenarios were further analyzed and recommendations were made to design integrated waste management solutions that are optimal not only from the ecological and social points of view, but which are also realistic within the given economic situation.

  13. Sustainable solutions for solid waste management in Southeast Asian countries.

    Science.gov (United States)

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  14. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  15. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  16. Radioactive waste management in Austria

    OpenAIRE

    Neubauer Josef

    2004-01-01

    At the Austrian Research Centers Seibersdorf, there are several facilities in stalled for treatment of waste of low and intermediate radioactivity level (radwaste). A separate company within Centers, Nuclear Engineering Seibersdorf, has been formed recently, acting as a centralized facility for treatment, conditioning and storing of such waste within the country. The relevant treatment technology is applied depending on the waste category. In total about 6900 m3 of solid waste of low and inte...

  17. Construction waste management model based on system dynamics%基于系统动力学的建筑废料管理模型

    Institute of Scientific and Technical Information of China (English)

    王家远; 袁红平

    2009-01-01

    Based on system dynamics, the inter-relations of factors within the construction waste man-agement processes were analyzed. A simulation model integrating four sub-systems, including construction waste generation, on-site waste sorting, waste landfill and public filling, was developed. The model was then simulated through software iThink. The research results indicate that the inter-relations of factors within the system can be better revealed. And the method proposed can provide guides and references for predicting construction waste generation and making construction waste management plans.%运用系统动力学方法对建筑废料管理问题进行了研究,通过对建筑废料管理中诸多影响因素间关系的分析建立了包括建筑废料产生、现场分类分拣、废料填埋场和公众堆填等四个子系统的建筑废料管理模型,并利用iThink软件进行了仿真.结果表明:将系统动力学应用于建筑废料管理可以较好地反映所研究系统内因素间的复杂关系,该方法可为建筑废料的预测和宏观管理措施的制定提供指导与借鉴.

  18. Selection criteria for waste management processes in manned space missions.

    Science.gov (United States)

    Doll, S; Cothran, B; McGhee, J

    1991-10-01

    Management of waste produced during manned space exploration missions will be an important function of advanced life support systems. Waste materials can be thrown away or recovered for reuse. The first approach relies totally on external supplies to replace depleted resources while the second approach regenerates resources internally. The selection of appropriate waste management processes will be based upon criteria which include mission and hardware characteristics as well as overall system considerations. Mission characteristics discussed include destination, duration, crew size, operating environment, and transportation costs. Hardware characteristics include power, mass and volume requirements as well as suitability for a given task. Overall system considerations are essential to assure optimization for the entire mission rather than for an individual system. For example, a waste management system designed for a short trip to the moon will probably not be the best one for an extended mission to Mars. The purpose of this paper is to develop a methodology to identify and compare viable waste management options for selection of an appropriate waste management system.

  19. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  20. Waste prevention for sustainable resource and waste management

    DEFF Research Database (Denmark)

    Sakai, Shin-Ichi; Yano, Junya; Hirai, Yasuhiro

    2017-01-01

    Although the 2Rs (reduce and reuse) are considered high-priority approaches, there has not been enough quantitative research on effective 2R management. The purpose of this paper is to provide information obtained through the International Workshop in Kyoto, Japan, on 11–13 November 2015, which...... a sustainable society. 3R and resource management policies, including waste prevention, will play a crucial role. Approaches using material/substance flow analyses have become sophisticated enough to describe the fate of resources and/or hazardous substances based on human activity and the environment......, including the final sink. Life-cycle assessment has also been developed to evaluate waste prevention activities. Regarding target products for waste prevention, food loss is one of the waste fractions with the highest priority because its countermeasures have significant upstream and downstream effects...

  1. From waste treatment to integrated resource management.

    Science.gov (United States)

    Wilsenach, J A; Maurer, M; Larsen, T A; van Loosdrecht, M C M

    2003-01-01

    Wastewater treatment was primarily implemented to enhance urban hygiene. Treatment methods were improved to ensure environmental protection by nutrient removal processes. In this way, energy is consumed and resources like potentially useful minerals and drinking water are disposed of. An integrated management of assets, including drinking water, surface water, energy and nutrients would be required to make wastewater management more sustainable. Exergy analysis provides a good method to quantify different resources, e.g. utilisable energy and nutrients. Dilution is never a solution for pollution. Waste streams should best be managed to prevent dilution of resources. Wastewater and sanitation are not intrinsically linked. Source separation technology seems to be the most promising concept to realise a major breakthrough in wastewater treatment. Research on unit processes, such as struvite recovery and treatment of ammonium rich streams, also shows promising results. In many cases, nutrient removal and recovery can be combined, with possibilities for a gradual change from one system to another.

  2. Electronic waste management approaches: an overview.

    Science.gov (United States)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-01

    Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Dedicated-site, interim storage of high-level nuclear waste as part of the management system.

    Science.gov (United States)

    Zen, E A

    1980-11-01

    Dedicated-site interim storage of high-level reprocessed nuclear waste and of spent fuel rods is proposed as a long-term integral part of the systems approach of the national nuclear waste isolation program. Separation of interim sites for retrievable storage from permanent-disposal repositories should enhance ensurance of the performance of the latter; maintenance of retrievability at separate sites also has many advantages in both safety and possible use of waste as resources. Interim storage sites probably will not be needed beyond about 100 years from now, so the institutional and technical considerations involved in their choice should be much less stringent than those for the selection of permanent sites. Development of interim sites must be concurrent with unabated effort to identify and to develop permanent repositories.

  4. Summary of International Waste Management Programs (LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW)

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Harris R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blink, James A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Halsey, William G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sutton, Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-08-11

    The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned; the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.

  5. [Health services waste management: a biosafety issue].

    Science.gov (United States)

    Garcia, Leila Posenato; Zanetti-Ramos, Betina Giehl

    2004-01-01

    The subject of "health services waste" is controversial and widely discussed. Biosafety, the principles of which include safeguarding occupational health, community health, and environmental safety, is directly involved in the issue of medical waste management. There are controversies as to the risks posed by medical waste, as evidenced by diverging opinions among authors: some advocate severe approaches on the basis that medical waste is hazardous, while others contend that the potential for infection from medical waste is nonexistent. The Brazilian National Health Surveillance Agency (ANVISA) has published resolution RDC 33/2003 to standardize medical waste management nationwide. There is an evident need to implement biosafety procedures in this area, including heath care workers' training and provision of information to the general population.

  6. Cleaner production for solid waste management in leather industry ...

    African Journals Online (AJOL)

    Cleaner production for solid waste management in leather industry. ... are generated which include wastewater effluents, solid wastes, and hazardous wastes. ... industries discharge wastes into the environment without any proper treatment.

  7. Management of historical waste from research reactors: the Dutch experience

    Energy Technology Data Exchange (ETDEWEB)

    Van Heek, Aliki; Metz, Bert; Janssen, Bas; Groothuis, Ron [NRG, Petten (Netherlands)

    2013-07-01

    Most radioactive waste emerges as well-defined waste streams from operating power reactors. The management of this is an on-going practice, based on comprehensive (IAEA) guidelines. A special waste category however consists of the historical waste from research reactors, mostly originating from various experiments in the early years of the nuclear era. Removal of the waste from the research site, often required by law, raises challenges: the waste packages must fulfill the acceptance criteria from the receiving storage site as well as the criteria for nuclear transports. Often the aged waste containers do not fulfill today's requirements anymore, and their contents are not well documented. Therefore removal of historical waste requires advanced characterization, sorting, sustainable repackaging and sometimes conditioning of the waste. This paper describes the Dutch experience of a historical waste removal campaign from the Petten High Flux research reactor. The reactor is still in operation, but Dutch legislation asks for central storage of all radioactive waste at the COVRA site in Vlissingen since the availability of the high- and intermediate-level waste storage facility HABOG in 2004. In order to comply with COVRA's acceptance criteria, the complex and mixed inventory of intermediate and low level waste must be characterized and conditioned, identifying the relevant nuclides and their activities. Sorting and segregation of the waste in a Hot Cell offers the possibility to reduce the environmental footprint of the historical waste, by repackaging it into different classes of intermediate and low level waste. In this way, most of the waste volume can be separated into lower level categories not needing to be stored in the HABOG, but in the less demanding LOG facility for low-level waste instead. The characterization and sorting is done on the basis of a combination of gamma scanning with high energy resolution of the closed waste canister and low

  8. 78 FR 63185 - Waste Management System; Testing and Monitoring Activities; Update V of SW-846

    Science.gov (United States)

    2013-10-23

    ... (LLOQ), relative standard error (RSE), initial demonstration of proficiency (IDP), etc.), each dated... need to analyze prepared samples (e.g., semi-volatile extracts). Relative Standard Error (RSE)--ORCR... measurement system (PBMS), whereby the analytical focus is on measurement objectives and performance...

  9. West Valley transfer cart control system design description. Environmental Restoration and Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

    1993-01-01

    Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

  10. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  11. Waste management in the Irkutsk Region, Siberia, Russia: Environmental assessment of current practice focusing on landfilling

    DEFF Research Database (Denmark)

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut

    2014-01-01

    The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial...... waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has...... years, the LCA modelling showed that introduction of a new and modern landfill with gas and leachate collection could improve the performance of the waste management system significantly. Collection of landfill gas and utilization for 30 years for electricity production (gas turbine) would reduce...

  12. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  13. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  14. Environmental Assessment of Possible Future Waste Management Scenarios

    Directory of Open Access Journals (Sweden)

    Yevgeniya Arushanyan

    2017-02-01

    Full Text Available Waste management has developed in many countries and will continue to do so. Changes towards increased recovery of resources in order to meet climate targets and for society to transition to a circular economy are important driving forces. Scenarios are important tools for planning and assessing possible future developments and policies. This paper presents a comprehensive life cycle assessment (LCA model for environmental assessments of scenarios and waste management policy instruments. It is unique by including almost all waste flows in a country and also allow for including waste prevention. The results show that the environmental impacts from future waste management scenarios in Sweden can differ a lot. Waste management will continue to contribute with environmental benefits, but less so in the more sustainable future scenarios, since the surrounding energy and transportation systems will be less polluting and also because less waste will be produced. Valuation results indicate that climate change, human toxicity and resource depletion are the most important environmental impact categories for the Swedish waste management system. Emissions of fossil CO2 from waste incineration will continue to be a major source of environmental impacts in these scenarios. The model is used for analyzing environmental impacts of several policy instruments including weight based collection fee, incineration tax, a resource tax and inclusion of waste in a green electricity certification system. The effect of the studied policy instruments in isolation are in most cases limited, suggesting that stronger policy instruments as well as combinations are necessary to reach policy goals as set out in for example the EU action plan on circular economy.

  15. Coal waste management practices in the USA:an overview

    Institute of Scientific and Technical Information of China (English)

    Yoginder P. Chugh; Paul T. Behum

    2014-01-01

    This paper provides an overview of coal waste management practices with two case studies and an estimate of management cost in 2010 US dollars. Processing of as-mined coal typically results in considerable amount of coarse and fine coal processing wastes because of in-seam and out-of-seam dilution mining. Processing plant clean coal recovery values run typically 50%–80%. Trace metals and sulfur may be present in waste materials that may result in leachate water with corrosive charac-teristics. Water discharges may require special measures such as liner and collection systems, and treatment to neutralize acid drainage and/or water quality for trace elements. The potential for variations in coal waste production and quality depends upon mining or processing, plus the long-term methods of waste placement. The changes in waste generation rates and engineering properties of the coal waste during the life of the facility must be considered. Safe, economical and environmentally acceptable management of coal waste involves consideration of geology, soil and rock mechanics, hydrology, hydraulics, geochemistry, soil science, agronomy and environmental sciences. These support all aspects of the regulatory environment including the design and construction of earth and rock embankments and dams, as well as a wide variety of waste disposal structures. Development of impoundments is critical and require considerations of typical water-impounding dams and additional requirements of coal waste disposal impoundments. The primary purpose of a coal waste disposal facility is to dispose of unusable waste materials from mining. However, at some sites coal waste impoundments serve to provide water storage capacity for processing and flood attenuation.

  16. Radioactive waste management in member states

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The objective of this part of the report is to present a brief overview of key issues in radioactive waste management on a nation-by-nation basis. Member State representatives were asked to address nine questions in no more than three or four pages. Hence, by design, the presentations are not comprehensive. Even so, the information set out here should provide the reader valuable insights into the nature of problems associated with radioactive waste management. The materials may also be used as a ready reference for specific information about radioactive waste management in individual Member States as well as for comparative purposes. (author).

  17. Study of Muncipal Solid Waste Management Scenario of Kadapa City

    Directory of Open Access Journals (Sweden)

    Dr.P.Hari Prasad

    2015-05-01

    Full Text Available Municipal Solid Waste management constitutes a serious problem in many third world cities. Most cities do not collect the totality of wastes generated and of the wastes collected, only a fraction received proper disposal. The insufficient collection and inappropriate disposal of solid wastes represent a source of water, land and air pollution and poses risks to human health and the environment. Over the next several decades globalization, rapid urbanization and economic growth in the developing world tend to further deteriorate this situation. Items that we no longer need or don’t have any further use are falling in the category of waste and we tend to throw them away. In early days people were not facing such big problems of disposals because of availability of space and natural materials but now a day’s congestion in cities and use of non-biodegradable materials in our day life create many problems. It is directly deals with our hygiene and psychology. So, proper management of solid waste has become unavoidable. Two decades of economic growth since 1990 has changed the composition of India wastes. The quantity of MSW generated in India is increasing rapidly due to increasing population and change in lifestyles. Land is scarce and public health and environment resources are precious. The current SWM crisis in India should be approached holistically; while planning for long term solutions, focus on the solving the present problems should maintained. Solid waste Management, its impacts on public health and environment and prospects for the future should further researched. The findings should be disseminated into the public knowledge domain more effectively. The present paper deals with various topics related with solid waste such as it quantity, performance of solid waste management in Kadapa Municipal Corporation, future generation trends in KMC, deficiencies in the present Municipal Solid Waste management system and also keys to reduce it

  18. An analytical framework and tool ('InteRa') for integrating the informal recycling sector in waste and resource management systems in developing countries.

    Science.gov (United States)

    Velis, Costas A; Wilson, David C; Rocca, Ondina; Smith, Stephen R; Mavropoulos, Antonis; Cheeseman, Chris R

    2012-09-01

    In low- and middle-income developing countries, the informal (collection and) recycling sector (here abbreviated IRS) is an important, but often unrecognised, part of a city's solid waste and resources management system. Recent evidence shows recycling rates of 20-30% achieved by IRS systems, reducing collection and disposal costs. They play a vital role in the value chain by reprocessing waste into secondary raw materials, providing a livelihood to around 0.5% of urban populations. However, persisting factual and perceived problems are associated with IRS (waste-picking): occupational and public health and safety (H&S), child labour, uncontrolled pollution, untaxed activities, crime and political collusion. Increasingly, incorporating IRS as a legitimate stakeholder and functional part of solid waste management (SWM) is attempted, further building recycling rates in an affordable way while also addressing the negatives. Based on a literature review and a practitioner's workshop, here we develop a systematic framework--or typology--for classifying and analysing possible interventions to promote the integration of IRS in a city's SWM system. Three primary interfaces are identified: between the IRS and the SWM system, the materials and value chain, and society as a whole; underlain by a fourth, which is focused on organisation and empowerment. To maximise the potential for success, IRS integration/inclusion/formalisation initiatives should consider all four categories in a balanced way and pay increased attention to their interdependencies, which are central to success, including specific actions, such as the IRS having access to source separated waste. A novel rapid evaluation and visualisation tool is presented--integration radar (diagram) or InterRa--aimed at illustrating the degree to which a planned or existing intervention considers each of the four categories. The tool is further demonstrated by application to 10 cases around the world, including a step

  19. Managing America`s solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  20. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  1. Safe management of non-nuclear radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lindhe, J.C. [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2005-09-15

    In May 2002, the Swedish Government set up a non-standing committee for the management of radioactive waste unrelated to nuclear technology i.e. outside the nuclear fuel cycle - in this report called non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The author was principal secretary in the Committee. The proposals from the Committee was delivered to the Government by December 3, 2003. Funds for future costs for the management and final storage of waste from nuclear power are collected in a state-governed funding system. The power sector pays a flat fee per kilowatt-hour nuclear power. For non-nuclear radioactive waste, however, there are no means today to secure the funding. If a company goes bankrupt and leaves radioactive waste behind it might be up to the taxpayers to pay for its safe management. This is because the holder of the waste is responsible for its disposal. The costs appear at the time of disposal and it is usually the last owner/holder of a radioactive product that has to pay. Sometimes the costs come as a surprise and the owner might not have the money available. Thus the waste might be kept longer than warranted or end up as orphan waste. To solve this dilemma and other weaknesses in the Swedish system the Committee proposes a funding system paralleling the system for nuclear waste. The cost for the waste should be paid up front, i.e. when a customer buys a product using a radioactive source, the cost for the future waste management should be included in the price. In this way the consumer will not have to pay for this the day he disposes of the product by returning it to the original producer or leaving it to some waste treatment organization. It should be the responsibility of the producer (manufacturer, importer) to guarantee

  2. BIOMEDICAL SOLID WASTE MANAGEMENT PRACTICES IN MAJOR PUBLIC HOSPITALS OF SHIMLA CITY

    OpenAIRE

    Saurabh; Salig Ram; Anmol K

    2014-01-01

    BACKGROUND: The actual biomedical waste management situation in the democratic developing country like India is grim. Even though there are Rules stipulating the method of safe disposal of Bio-medical Waste (BMW), hospital waste generated by Government Hospitals is still largely being dumped in the open, waiting to be collected along with general waste. OBJECTIVES: To assess the waste handling and treatment system of hospital bio-medical solid waste METHODOLOGY: A Cross se...

  3. Partnerships for development: municipal solid waste management in Kasese, Uganda.

    Science.gov (United States)

    Christensen, David; Drysdale, David; Hansen, Kenneth; Vanhille, Josefine; Wolf, Andreas

    2014-11-01

    Municipal solid waste management systems of many developing countries are commonly constrained by factors such as limited financial resources and poor governance, making it a difficult proposition to break with complex, entrenched and unsustainable technologies and systems. This article highlights strategic partnerships as a way to affect a distributed agency among several sets of stakeholders to break so-called path dependencies, which occur when such unsustainable pathways arise, stabilize and become self-reinforcing over time. Experiences from a North-South collaborative effort provide some lessons in such partnership building: In Uganda and Denmark, respectively, the World Wildlife Fund and the network organization access2innovation have mobilized stakeholders around improving the municipal solid waste management system in Kasese District. Through a municipal solid waste management system characterization and mapping exercise, some emergent lessons and guiding principles in partnership building point to both pitfalls and opportunities for designing sustainable pathways. First, socio-technical lock-in effects in the municipal solid waste management system can stand in the way of partnerships based on introducing biogas or incineration technologies. However, opportunities in the municipal solid waste management system can exist within other areas, and synergies can be sought with interlinking systems, such as those represented with sanitation.

  4. Risk management in waste water treatment.

    Science.gov (United States)

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  5. 'Wasteaware' benchmark indicators for integrated sustainable waste management in cities.

    Science.gov (United States)

    Wilson, David C; Rodic, Ljiljana; Cowing, Michael J; Velis, Costas A; Whiteman, Andrew D; Scheinberg, Anne; Vilches, Recaredo; Masterson, Darragh; Stretz, Joachim; Oelz, Barbara

    2015-01-01

    This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The paper presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city's performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat's solid waste management in the World's cities. The comprehensive analytical framework of a city's solid waste management system is divided into two overlapping 'triangles' - one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised 'Wasteaware' set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both 'hard' physical components and 'soft' governance aspects; and in prioritising 'next steps' in developing a city's solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap.

  6. Challenges of solid waste management and environmental ...

    African Journals Online (AJOL)

    Challenges of solid waste management and environmental sanitation in Ibadan North Local government, Oyo State, ... Open Access DOWNLOAD FULL TEXT ... Data were collected using In-Depth Interviews and Key Informant Interviews.

  7. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  8. Integrated study for automobile wastes management and ...

    African Journals Online (AJOL)

    Administrator

    poor waste management is causing serious ecological and public health concerns. Analytical ... searching for mechanic specialists, to prevent motorists from falling .... long term exposure to toxicity. ...... Plant extracts arsenic from polluted soil;.

  9. Waste management in healthcare establishments within Jos ...

    African Journals Online (AJOL)

    EJIRO

    Patient. Primary to tertiary. Health care. 2. State Specialist Hospital, Jos ... For instance a pharmacist who had worked .... Documentation of waste management activities .... National Institute for Occupational Safety and Health (NIOSH) (2004).

  10. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  11. Radioactive waste management in the former USSR. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious in