WorldWideScience

Sample records for waste management radiation

  1. Radiation waste management in Poland

    International Nuclear Information System (INIS)

    Tomczak, W.

    1995-01-01

    Radioactive waste management especially related to storage of spent fuel from Ewa and Maria research nuclear reactors has been presented. The classification and balance of radioactive wastes coming from different branches of nuclear activities have been shown. The methods of their treatment in respect of physical state and radioactive have been performed as well as their storage in Central Polish Repository have been introduced. 2 figs, 4 tabs

  2. Waste water management in radiation medicine laboratories

    International Nuclear Information System (INIS)

    Song Miaofa

    1990-01-01

    A new building has been used since 1983 in the department of radiation medicine of Suzhou Medical College. Management, processing facilities, monitoring, discharge and treatment of 147 Pm contaminated waste water are reported

  3. Radiation-protection standards and waste management

    International Nuclear Information System (INIS)

    Rowe, W.D.

    1976-01-01

    This paper reviews some of the difficult questions to be addressed in the development of fundamental environmental criteria and standards for radioactive waste management. A short discussion is included of the need to develop more precise definitions of terminology, better conceptualization of long-term problems, and new concepts to express risks from waste management and to evaluate the ability of proposed technical alternatives to control such risks. EPA's plans to develop fundamental environmental criteria and generally applicable environmental radiation-protection standards for waste disposal are summarized. Finally, the principal projects in EPA's planned near-future programs are reviewed in the areas of high-level waste, transuranic solid waste, low-level waste, residual decommissioning waste, ocean disposal, and wastes containing natural radioactivity

  4. The radiation protection and the radioactive wastes management

    International Nuclear Information System (INIS)

    Servais, F.; Woiche, Ch.; Hunin, Ch.

    2003-01-01

    This chapter concerns the radiation protection in relation with the radioactive waste management. Three articles make the matter of this file, the management of radioactive medical waste into hospitals, a new concept of waste storage on site, the protection devices on the long term with some lessons for the radioactive waste management. (N.C.)

  5. Low-level radiation waste management system

    International Nuclear Information System (INIS)

    Kubofcik, K.W.

    1990-01-01

    This patent describes a low-level radiation waste container set for use in conjunction with an open-topped receptacle. It comprises: a receptacle liner having a closed end and an open end, the receptacle liner sized for deployment as an inserted liner in an open-topped receptacle for collecting low-level radiation waste material within the receptacle liner within the open-topped receptacle; a cover sized and shaped to fit over the open top of the open-topped receptacle and the receptacle liner therein with the cover is in a closed position. The cover having a depending skirt which, when the cover is in the closed position, extends downwardly to overlap the open-topped receptacle adjacent the open top thereof and a portion of the receptacle liner received therein; and the receptacle liner and cover being fabricated of flexible radiation shielding material

  6. Balancing requirements for radioactive waste management and radiation protection

    International Nuclear Information System (INIS)

    Lafuma, J.; Lefevre, J.

    1985-01-01

    The authors recall the principles of radiation protection and their application to radioactive waste management. The dose limitation system applies to every stage in management. The accepted risk limits should be compared with the level of risk from other sources, particularly from natural radiation. The uncertainties associated with long-term estimates should not lead to unrealistic requirements. The optimum rules are to be obtained by discussion among those responsible for radiation protection, nuclear safety and radioactive waste management. Satisfactory, applicable rules can be worked out in the present state of the art [fr

  7. Radiation management for infectious waste from nuclear medicine studies

    International Nuclear Information System (INIS)

    Kondo, Yuji; Takeuchi, Yasuyuki; Masumoto, Kazuya

    2003-01-01

    An industrial waste management service has refused to collect medical waste from our hospital owing to radioactive contamination found in the waste in July 2000. An investigation revealed that the ''three-way stopcock'' and handling diapers used for radioisotope examination were the radioactive contaminants. We therefore reconsidered the system of medical waste maintenance especially for radioactive materials. Since February 2001, we have resumed radiation maintenance by following the manual for the handling diapers of patients administered radiopharmaceuticals issued by five organizations associated with Japan Radiological Society (JRS), Japanese Society of Radiological Technology (JSRT), the Japanese Society of Nuclear Medicine (JSNM), the Japanese Society of Nuclear Medicine Technology (JSNMT), and Japan Association on Radiological Protection in Medicine (JARPM). A major change was to check the radioactive waste at the individual departments and at a centralized check system. This eliminated the problem of dumping radioactive material into medical waste as well as resolving the concerns of the industrial waste management service. (author)

  8. Challenges in Regulating Radiation Sources and Associated Waste Management

    International Nuclear Information System (INIS)

    Shehzad, A.

    2016-01-01

    Radiation sources are widely used in the fields of medical, industry, agriculture, research, etc. Owing to the inherent risk of exposure to ionizing radiations while using the radiation sources and management of associated waste, safety measures are of utmost importance including robust regulatory control. Pakistan Nuclear Regulatory Authority (PNRA) is responsible for supervising all matters pertaining to nuclear safety and radiation protection in the country. Since its inception, PNRA has made rigorous efforts to regulate the radiation facilities for which regulatory framework was further strengthened by taking into account international norms/practices and implemented afterwards. However, due to vibrant use of these facilities, there are numerous challenges being faced while implementing the regulatory framework. These challenges pertains to shielding design of some facilities, control over service provider for QC/repair maintenance of radiation equipment, assessment of patient doses, and establishment of national diagnostic reference levels for radiological procedures. Further, the regulatory framework also delineate requirements to minimize the generation of associated radioactive waste as low as practicable. The requirements also necessitates that certain sealed radioactive sources (SRS) are returned to the supplier upon completion of their useful life, while other radioactive sources are required to be transported for storage at designated radioactive waste storage facilities in the country, which requires commitment from the licensee. This paper will briefly describe the challenges in regulating the radiation sources and issues related to the waste management associated with these facilities. (author)

  9. Radiation effects on ion exchange materials used in waste management

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1982-01-01

    Radiation damage to process materials used in radioactive waste management has been a topic of little interest in the past. In recent years, as a result of the increasing number of accidents reported in the open literature, there has been some desire to examine the radiation decomposition of ion exchange materials and its consequences to the interim and long-term management of radioactive wastes. Extensive literature surveys and some confirmatory laboratory investigations conducted conclusively demonstrate that radiation damage to ion exchangers has the potential to cause problems of corrosion, elution of adsorbed ionic species, generation of flammable and explosive gaseous products and agglomeration of particulates to form rigid monoliths. This paper is an overview of present knowledge and a presentation of the results of our investigations of this phenomenon. The distinct lack of systematic studies to evaluate the problems of radiation damage to process materials used in the consolidation and isolation of high specific activity radionuclides still leaves considerable gaps in our knowledge of the processes and consequences of radiation effects on ion exchangers used in radioactive waste management

  10. The radiation protection and the radioactive wastes management; La radioprotection et la gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Servais, F. [CHR Hopital de Warquignies, Service de Medecine Nucleaire (Belgium); Woiche, Ch. [Universite Libre de Bruxelles, Service Interne et de Prevention et Protection (Belgium); Hunin, Ch. [Agence Federale de Controle Nucleaire, Service Controle Etablissements Classes, Brexelles (Belgium)] [and others

    2003-07-01

    This chapter concerns the radiation protection in relation with the radioactive waste management. Three articles make the matter of this file, the management of radioactive medical waste into hospitals, a new concept of waste storage on site, the protection devices on the long term with some lessons for the radioactive waste management. (N.C.)

  11. Managing radioactive waste issues and misunderstandings (radiation realities, energy comparison, waste strategies)

    International Nuclear Information System (INIS)

    Rosen, M.

    2001-01-01

    The technical specialist is confident that radioactive waste can be safely managed, but many in the public remain totally unconvinced. There are issues and deep-seated misunderstandings that drive public doubts. Currently, a growing concern with pollution from other industrial waste is enabling radioactive waste issues to be debated in a wider context that allows comparisons with other potentially hazardous waste, particularly from energy generation sources. Health effects and time period issues are not unique to radioactive waste. This paper concentrates on 3 topics. The first concerns radiation health effects where the real realities of radiation are covered. The large misunderstandings that exist about radiation and its health effects have led to an almost zero health impact regulatory policy. A policy which must be more fully understood and dealt with. The second topic deals with a few revealing comparisons about the various energy generation systems. Nuclear power's 10 thousand fold lower fuel requirements, compared with a comparable fossil fuelled plant, is a dominating factor decisively minimising environmental impacts. The third topic examines waste disposal strategies. Extraordinarily small radioactive waste quantities permit a confinement strategy for disposal as opposed to the more common dispersion strategy for most toxic waste. The small quantities coupled with radioactive decay, contrary to the public perception, make any potential hazard from both low and high level radioactive waste exceedingly small. (author)

  12. Radiation safety requirements for radioactive waste management in the framework of a quality management system

    International Nuclear Information System (INIS)

    Salgado, M.M.; Benitez, J.C.; Pernas, R.; Gonzalez, N.

    2007-01-01

    The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in the Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)

  13. Radiation waste management in Poland; Unieszkodliwianie odpadow promieniotworczych w Polsce

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, W. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1995-12-31

    Radioactive waste management especially related to storage of spent fuel from Ewa and Maria research nuclear reactors has been presented. The classification and balance of radioactive wastes coming from different branches of nuclear activities have been shown. The methods of their treatment in respect of physical state and radioactive have been performed as well as their storage in Central Polish Repository have been introduced. 2 figs, 4 tabs.

  14. 7th Expert meeting radiation protection. International developments, waste management, challenges for the radiation protection in aging nuclear installations

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings of the 7th Expert meeting on radiation protection include contributions to the following topics: nuclear power and public opinion, IAEA safety standards, ISOE - information system on occupational exposure, European harmonization of the radiation protection education, WANO - challenges and results, CTBTO's global radiation measurement network, state of final radioactive waste disposal in Germany and worldwide, radioactive waste management and disposal in French NPPs, preparedness for final waste disposal in Schacht Konrad, actualization of the transport study Konrad, transport of NPPs' operational radioactive waste and waste from decommissioned reactor demolition to the final repository Konrad, qualification of radioactive waste casks for the final repository Konrad, radioactive waste disposal management concept in Switzerland, aging management and radiation protection, decontamination as effective measure for dose rate reduction - long-term and sustainable dose rate reduction by primary circuit decontamination, system and component decontamination for individual and collective dose reduction - practical examples, radiation protection map - electronic assistance for work planning, EPR dismantling already today? radiation protection register 2002-2010 - knowledge based on a decade of radiation monitoring, actual information on radiation protection in medicine, mobile telecommunication - actual research results.

  15. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  16. Safety and radiation protection in waste management. Final report

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.; Lipponen, M.; Vuori, S.; Ruokola, E.; Palsson, S.E.; Sekse, T.; Ramsoey, T.

    2001-12-01

    During 1998-2001, a project on the management of radioactive waste was carried out as part of the NKS programme. The project was called NKS/SOS-3 and was divided into three sub-projects: SOS-3.1 (Environmental Impact Assessment; EIA), SOS-3.2 (Intermediate storage) and SOS-3.3 (Contamination levels in metals). SOS-3.1 included four EIA seminars on the use of EIA in the Nordic countries. The seminars were held in Norway in 1998, Denmark in 1999, Iceland in 2000 and Finland in 2001. (The last seminar was performed in co-operation with the NKS project SOS-1.) The seminars focused on experiences from EIA procedures for the disposal of radioactive waste, and other experiences from EIA processes. SOS-3.2 included a study on intermediate storage of radioactive waste packages in the Nordic countries. An overview of experiences was compiled and recommendations were made regarding different intermediate storage options as well as control and supervision. SOS-3.3 included investigation of contamination levels in steel, aluminium and magnesium samples from smelting facilities and an overview of current practice for clearance in the Nordic countries. Clearance, clearance levels, naturally occurring radioactive materials, radioactive waste, radioactive material, intermediate storage, waste disposal, environmental impact assessment, gamma spectrometric measurements, beta measurements, neutron activation analyses. (au)

  17. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  18. Waste assaying and radiation monitoring equipment at the waste management centre of NPP Leningrad

    Directory of Open Access Journals (Sweden)

    Šokčić-Kostić Marina

    2006-01-01

    Full Text Available The waste accumulated in the past at the Nuclear Power Plant Leningrad has to be sorted and packed in an optimal way. In the area of waste treatment and management, the completeness and quality of direct monitoring are of the outmost importance for the validity of, and confidence in, both practicable waste management options and calculations of radiological impacts. Special monitoring systems are needed for this purpose. Consistent with the scale of work during the waste treatment procedures and the complexity of the plant data have to be collected from characteristic parts in various treatment stages. To combine all the information, a tracking procedure is needed during the waste treatment process to characterize the waste for interim and/or final disposal. RWE NUKEM GmbH has developed special customer-tailored systems which fulfill the specifications required by plant operation and by the authorities.

  19. National environmental radiation monitoring program: towards formulating policy on radioactive waste management

    International Nuclear Information System (INIS)

    Sukiman Sarmani

    2002-01-01

    Though Malaysia has no nuclear power station, but the management of its low level radioactive waste generated from industrial activities involves most of the same issues that must be considered in countries with nuclear power. These include public consultation at all stages, an open approach, high level scientific and engineering input and political decision by the Government. A carefully planned approach, which involves the public and gives time to build trust and confidence, is necessary for success. It is also pertinent to establish accurate and reliable data on environmental radiation to accurately assess possible risk. This is where a national monitoring program on environmental radiation is very important. While accurate data will help formulate sound policy on radioactive waste management, it should also be readily available to the public to gain support and acceptance. This paper presents arguments on the importance of a national monitoring program for environmental radiation as an input for formulating a policy on radioactive waste management in Malaysia. (Author)

  20. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  1. Radiation doses in alternative commercial high-level waste management systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Pelto, P.J.; Lavender, J.C.; Daling, P.M.; Fecht, B.A.

    1986-01-01

    In the commercial high-level waste management system, potential changes are being considered that will augment the benefits of an integral monitored retrievable storage (MRS) facility. The US Department of Energy (DOE) has recognized that alternative options could be implemented in the authorized waste management system (i.e., without an integral MRS facility) to potentially achieve some of the same beneficial effects of the integral MRS system. This paper summarizes those DOE-sponsored analyses related to radiation doses resulting from changes in the waste management system. This report presents generic analyses of aggregated radiation dose impacts to the public and occupational workers, of nine postulated changes in the operation of a spent-fuel management system without an MRS facility

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  3. Occupational radiation protection experience in radioactive waste management at Bhabha Atomic Research Centre, Trombay, Mumbai, India

    International Nuclear Information System (INIS)

    Ramchandran, V.; Jauhri, G.S.

    2000-01-01

    Waste Management Facilities, Trombay (WMFT) comprises Radioactive Solid waste Management Site (RSMS), an Effluent Treatment Plant (ETP), and a Decontamination Centre (DC). Radioactive wastes from the plants and laboratories in Mumbai are handled here. The wastes are categorized and classified as per International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) guidelines. RSMS is a near surface disposal facility, where assorted beta gamma solid waste is disposed off in appropriate disposal facilities. ETP is a centralized low level liquid waste treatment facility, where liquid effluent is chemically treated to remove the radionuclides present in it, monitored for radioactivity, and discharged into the Mumbai Harbour Bay. In DC, plant and laboratory used clothings and personnel protective wears are decontaminated, monitored and sent for reuse. A comprehensive radiation monitoring programme is in place in these facilities from the beginning of radioactive waste management operations at BARC. The per capita radiation dose of the occupational workers and individual maximum dose has been low. Radioactivity release through liquid effluent from ETP has been kept well below Authorized Limits (AL). There has been no safety related unusual occurrences during the facility operation, that had any significant radiological impact. (author)

  4. Training-methodical guide on radioecology and radiation waste management in the Kazakhstan conditions

    International Nuclear Information System (INIS)

    2002-01-01

    The guide is compiled with purpose to render assistance to specialists, secondary schools' teachers for elder classes' pupils and population on radioecology and radiation waste management for understanding of a more deep problems in this field. The guide consists of a lot of illustrative and tabular materials including of results of the authors own investigations

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  6. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  7. Evaluation of management of radioactive waste in nuclear medicine department of radiation and isotopes center, Khartoum

    International Nuclear Information System (INIS)

    Ahmed, Amel Bushra Abaker

    2001-01-01

    Evaluation of management of radioactive waste in nuclear medicine department of radiation and isotopes center in Khartoum, Sudan, was conducted using radiation survey meter. The purpose of this study is to provide protection of workers, patients, co patients, an the environment by introducing good practice in management of radioactive waste generated in this lab. In this work measurement of radiation effective dose at different locations in the department were carried out. These locations were selected around the radioactive liquid and solid waste disposal position. It was found that the effective doses per year from radioactive wastes obtained through this work using the survey meter RDS-120 at these locations, are 1.47 mSv/y at the neighbouring patients room, 5.47 mSv/y at the hot lab., 0.09 mSv/y at the neighbouring toilet, 0.321 mSv/y at the water closet, and 1.4 mSv/y at the place down water closet. The results obtained shows that the dose levels waste at the location not exceed the recommended dose limits for workers 20 mSv/y, that set by basic safety standards (Bss 115) which published by the international atomic energy agency. Also it s comply with the national regulation, regulation on basic radiation protection requirement and dose limits 1996, issued by sudan atomic energy commission act 1996. The annual dose calculated for the patients and co-patients at rooms around the nuclear medicine department, the results shows that dose are fairly high. Measure should taken to improve the waste management in the department for better protection of workers, patients and co patients. (Author)

  8. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  9. Main principles of radiation protection and their applications in waste management

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1993-01-01

    The average exposure for an individual from such background in the United States is about 300 mrem per year with approximately 200 mrem of this coming from radon exposure alone. In addition to the natural sources of background radiation, a very small amount of the background radiation occurs due to the nuclear weapons test fallout. Manmade sources of radiation also include certain consumer products, industrial and research use of radioisotopes, medical X-rays, and radiopharmaceuticals. When all sources, natural and man-made, are taken into account, the National Council on Radiation Protection and Measurements (NCRP) has estimated that the average annual dose to individuals in the US population is 360 mrem (NCRP Report No. 93). In this report the fundamental principles of radiation protection are reviewed, as well as the relevant laws and regulations in the United States and discuss application of radiation protection in radioactive waste management

  10. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  11. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  12. Rad World -- computer-animated video radiation and hazardous waste-management science curriculum

    International Nuclear Information System (INIS)

    Powell, B.

    1996-01-01

    The Rad World computer-animated video and curriculum materials were developed through a grant from the Waste-management Education and Research Consortium. The package, which includes a computer-animated video, hands-on activities, and multidisciplinary lessons concerning radiation and hazardous-waste management, was created to approach these subjects in an informative, yet entertaining, manner. The lessons and video, designed to supplement studies of energy and physical science at the middle school and high school level, also implement quality and consistent science education as outlined by the New Mexico Science Standards and Benchmarks (1995). Consistent with the curriculum standards and benchmarks, the curriculum includes library research, collaborative learning, hands-on-science, and discovery learning. Pre- and post-tests are included

  13. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  14. Management and hazardous waste characterization in Central for Isotop and Radiation Application based on potential dangers

    International Nuclear Information System (INIS)

    Niken Hayudanti Anggarini; Megi Stefanus; Prihatiningsih

    2014-01-01

    Separating and storing hazardous waste have been done based on the physical, chemical, and based on potential dangers due to safety hazardous waste temporary storage warehouse. From the results of data collection in 2014 found that the most dominant hazardous waste is organic liquid waste which reaches 61 %, followed by inorganic liquid waste 33 % while organic solid waste and inorganic solid waste has a small portion. When viewed from potential danger, flammable liquid waste has the greatest volume percentage it is 47 % and is followed by a corrosive liquid waste 26 %, while the liquid waste that has not been identified is quite large, which is 9 %. From the highest hazard potential data, hazardous waste storage warehouse is required to have good air circulation and waste storage shelf protected from direct solar heat. Cooperation of lab workers and researchers are also indispensable in providing identification of each waste generated to facilitate the subsequent waste management. (author)

  15. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  16. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  17. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  18. Waste management and radiation protection overview of the practices in the NEA member countries

    International Nuclear Information System (INIS)

    Takahashi, M.; Riotte, H.; Ruegger, B.

    2000-01-01

    For many years the NEA has been reviewing waste management practices in Member States. Measures applied in the nuclear fuel cycle to reduce waste generation are outlined and characteristics of waste management in all steps of the nuclear fuel cycle are described. Views gained are discussed. (author)

  19. Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry

    International Nuclear Information System (INIS)

    2010-01-01

    The oil and gas industry, a global industry operating in many Member States, makes extensive use of radiation generators and sealed and unsealed radioactive sources, some of which are potentially dangerous to human health and the environment if not properly controlled. In addition, significant quantities of naturally occurring radioactive material (NORM) originating from the reservoir rock are encountered during production, maintenance and decommissioning. The oil and gas industry operates in all climates and environments, including the most arduous conditions, and is continuously challenged to achieve high efficiency of operation while maintaining a high standard of safety and control - this includes the need to maintain control over occupational exposures to radiation, as well as to protect the public and the environment through proper management of wastes that may be radiologically and chemically hazardous. The oil and gas industry is organizationally and technically complex, and relies heavily on specialized service and supply companies to provide the necessary equipment and expertise, including expertise in radiation safety. This training manual is used by the IAEA as the basis for delivering its training course on radiation protection and the management of radioactive waste in the oil and gas industry. Enclosed with this manual is a CD-ROM that contains the presentational material used in the training course, the course syllabus and additional notes for course presenters. The course material is based principally on IAEA Safety Reports Series No. 34 Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry, published by the IAEA in 2003. The training course is aimed at regulatory bodies; oil and gas field operators and support companies; workers and their representatives; health, safety and environmental professionals; and health and safety training officers. A pilot training course was held in the Syrian Arab Republic in 2000 as

  20. Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry. Additional Information

    International Nuclear Information System (INIS)

    2010-01-01

    The oil and gas industry, a global industry operating in many Member States, makes extensive use of radiation generators and sealed and unsealed radioactive sources, some of which are potentially dangerous to human health and the environment if not properly controlled. In addition, significant quantities of naturally occurring radioactive material (NORM) originating from the reservoir rock are encountered during production, maintenance and decommissioning. The oil and gas industry operates in all climates and environments, including the most arduous conditions, and is continuously challenged to achieve high efficiency of operation while maintaining a high standard of safety and control - this includes the need to maintain control over occupational exposures to radiation, as well as to protect the public and the environment through proper management of wastes that may be radiologically and chemically hazardous. The oil and gas industry is organizationally and technically complex, and relies heavily on specialized service and supply companies to provide the necessary equipment and expertise, including expertise in radiation safety. This training manual is used by the IAEA as the basis for delivering its training course on radiation protection and the management of radioactive waste in the oil and gas industry. Enclosed with this manual is a CD-ROM that contains the presentational material used in the training course, the course syllabus and additional notes for course presenters. The course material is based principally on IAEA Safety Reports Series No. 34 Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry, published by the IAEA in 2003. The training course is aimed at regulatory bodies; oil and gas field operators and support companies; workers and their representatives; health, safety and environmental professionals; and health and safety training officers. A pilot training course was held in the Syrian Arab Republic in 2000 as

  1. Radiation Protection and Radioactive Waste Management in the Operation of Nuclear Power Plants. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide recommendations to the regulatory body, focused on the operational aspects of radiation protection and radioactive waste management in nuclear power plants, and on how to ensure the fulfilment of the requirements established in the relevant Safety Requirements publications. It will also be useful for senior managers in licensee or contractor organizations who are responsible for establishing and managing programmes for radiation protection and for the management of radioactive waste. This Safety Guide gives general recommendations for the development of radiation protection programmes at nuclear power plants. The issues are then elaborated by defining the main elements of a radiation protection programme. Particular attention is paid to area classification, workplace monitoring and supervision, application of the principle of optimization of protection (also termed the 'as low as reasonably achievable' (ALARA) principle), and facilities and equipment. This Safety Guide covers all the safety related aspects of a programme for the management of radioactive waste at a nuclear power plant. Emphasis is placed on the minimization of waste in terms of both activity and volume. The various steps in predisposal waste management are covered, namely processing (pretreatment, treatment and conditioning), storage and transport. Releases of effluents, the application of authorized limits and reference levels are discussed, together with the main elements of an environmental monitoring programme

  2. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  3. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  4. Practical Model of Cement Based Grout Mix Design, for Use into Low Level Radiation Waste Management

    Directory of Open Access Journals (Sweden)

    Radu Lidia

    2015-12-01

    Full Text Available The cement based grouts, as functional performance composite materials, are widely used for both immobilisation and encapsulation as well as for stabilization in the field of inorganic waste management. Also, to ensure that low level radioactive waste (LLW are contained for storage and ultimate disposal, they are encapsulated or immobilized in monolithic waste forms, with cement –based grouts.

  5. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  6. The state of radioactive waste management and of personnel radiation exposure in nuclear power generating facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1985-01-01

    (1) The state of radioactive waste management in nuclear power generating facilities: In the nuclear power stations, the released quantities of radioactive gaseous and liquid wastes are all below the control objective levels. For the respective nuclear power stations, the released quantities of radioactive gaseous and liquid wastes in fiscal 1983 and the objective levels are given in table. And, the quantities of solid wastes taken into storage and the cumulative amounts are given. For reference, the results each year since fiscal 1974 are shown. (2) The state of personnel radiation exposure in nuclear power generating facilities: In the nuclear power stations, the personnel radiation exposures are all below the permissible levels. The dose distribution etc. in the respective nuclear power stations are given in table. For reference, the results each year since fiscal 1974 are shown. (Mori, K.)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  8. Radiation safety ensuring and environment protection dealing with radioactive waste management in the system of the special plants ''Radon''

    International Nuclear Information System (INIS)

    Zenkina, Lidia

    1999-01-01

    This presentation deals with the Russian special plants ''Radon'', a system of 16 regional plants devoted to radioactive waste management. The plants are intended to receive solid radioactive wastes and liquid radioactive wastes of low and medium levels of activity for reprocessing and final disposal. The following topics are discussed: (1) waste characterization, (2) storage construction, (3) preparation of waste for burial, (4) site selection, (5) tasks of the plant, (6) division of plant territory into zones, (7) radiation monitoring, (8) prevention of accidents and elimination of their consequences, (10) training of staff, (11) sanitary treatment of staff and equipment decontamination. Lack of financial means is a major problem. The closure of the Murmansk special plant Radon has caused great problems for the North-European District. The Leningrad special plant Radon has been forced to accept radioactive waste from the Arkhangelsk region. The exhaustion of reserve volumes for solid radioactive waste acceptance at this plant affects the entire North-Western Russia. At present, spent sources of ionising radiation are buried in shallow land-based storage facilities of well type. It was found on inspection that such burial of sources containing nuclides with half-life of more than 30 years must be stopped. Existing storages are inadequate for safe storage of such sources throughout their hazardous period, and are not adjusted for extraction of such sources in the future. The spent sources containing long-lived nuclides must be temporarily stored in transport containers in separate sections of solid waste storage facilities. In 1997, analysis of radiation state parameters for radioactive waste burial at special plants Radon showed that the radiation dose rate at working places and the average annual volumetric activity of radionuclides in the environment were within the admissible limits

  9. Situation of the radioactive waste management and the employee radiation exposure in commercial power generation reactor facilities in fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    (1) Situation of the radioactive waste management in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the target dose around the sites by law in the radioactive waste management. The release of radioactive gaseous and liquid wastes and the storage of radioactive solid wastes in respective reactor facilities in fiscal 1980 are presented in tables (for the former, the data since 1971 are also given). The release control values were satisfied in all the facilities. (2) Situation of employe radiation exposure in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the permissible exposure doses by law. The Employe exposure doses in respective reactor facilities in fiscal 1980 are given in tables. All exposure doses were below the permissible levels. (J.P.N.)

  10. Integrating radiation protection criteria for radioactive waste management into remediation procedures in existing exposure situations after a nuclear accident.

    Science.gov (United States)

    Sugiyama, Daisuke; Kimura, Hideo; Tachikawa, Hirokazu; Iimoto, Takeshi; Kawata, Yosuke; Ogino, Haruyuki; Okoshi, Minoru

    2018-03-01

    Experience after the accident at the Fukushima Daiichi nuclear power station has shown that there is a need to establish radiation protection criteria for radioactive waste management consistent with the criteria adopted for the remediation of existing exposure situations. A stepwise approach to setting such criteria is proposed. Initially, a reference level for the annual effective dose from waste management activities in the range 1-10 mSv should be set, with the reference level being less than the reference level for the ambient dose. Subsequently, the reference level for the annual effective dose from waste management activities should be reduced in one or more steps to achieve a final target value of 1 mSv. The dose criteria at each stage should be determined with relevant stakeholder involvement. Illustrative case studies show how this stepwise approach might be applied in practice.

  11. The CEC contribution to radioactive waste management, decommissioning and related radiation protection issues

    International Nuclear Information System (INIS)

    Finzi, S.

    1991-01-01

    The Commission of the European Communities has, for more than 15 years, supported Research and Development (R and D) programmes on ''Radioactive Waste Management'' (since 1975) as well as on ''Decommissioning of Nuclear Installations'' (since 1979), which are carried out by research laboratories, universities, public organisations and private companies of the EC Member states, under shared-cost contracts. Under these contracts, the Commission of the European Communities generally funds up to 50% of the total cost of a research project. The main objective of the ''Radioactive Waste Management Programme'' is to ensure the safety of the waste management and disposal systems with the goal that the scientific and technological results can be used in practice on industrial scale with full respect for safety and environmental protection requirements. Studies have been performed on three main components of the radioactive waste management system, (i) the waste packages, (ii) the geological repository and (iii) the performance assessment, either through experiments or by theoretical evaluation. The current programme which has two main components, one on waste management, the other on the construction and operation of underground storage facilities, is discussed. (author)

  12. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    Science.gov (United States)

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  14. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  15. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  16. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    International Nuclear Information System (INIS)

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1

  17. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  18. The state of radioactive waste management and personnel radiation exposure in commercial nuclear power plants in fiscal 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive waste management: The owners of commercial nuclear power plants are obligated to control the release of gaseous and liquid radioactive wastes below the objective release levels, and to store solid wastes in containers on the site. As for the former, the released (radioactive) quantity in fiscal 1981 (from April, 1981, to March, 1982,) together with the objective levels are given for respective nuclear power stations; and as for the latter, the stored quantity and also the cumulative quantity up to the year are given. Radiation exposure: The owners of commercial nuclear power plants are obligated to control the personnel exposure below the permissible level. The personnel exposure dose in fiscal 1981 is given for respective nuclear power station. (Mori, K.)

  19. The fourth country report on agreement of safety supervision on radiation waste and management of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-10-15

    This report covered the agreement of safety supervision on radiation waste and management of spent fuel. It listed the stipulation, the common law, the coverage and the amount of stock on spent fuel. Also, it indicated law and regulations and restriction on the related the agency, general safety regulations, policy on guarantee of quality, emergency method, dismantling, management of safety control on spent fuel including a process of establishment and safety requirements, regulations of conveyance between countries and improvement of safety of spent fuel.

  20. Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel and Transuranic Radioactive Wastes (40 CFR Part 191)

    Science.gov (United States)

    This regulation sets environmental standards for public protection from the management and disposal of spent nuclear fuel, high-level wastes and wastes that contain elements with atomic numbers higher than uranium (transuranic wastes).

  1. Implementation of Information Management System for Radiation Safety of Personnel at the Russian Northwest Center for Radioactive Waste Management 'SevRAO' - 13131

    Energy Technology Data Exchange (ETDEWEB)

    Chizhov, K.; Simakov, A.; Seregin, V.; Kudrin, I.; Shandala, N.; Tsovyanov, A.; Kryuchkov, V. [Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, RF Ministry of Health and Social Development. 46, Zhivopisnaya St., Moscow, 123182 (Russian Federation); Krasnoschekov, A.; Kosnikov, A. [Northwest Center for Radioactive Waste Management ' SevRAO' - a branch of the Federal State Unitary Enterprise ' Enterprise for Radioactive Waste Management' ' RosRAO' 183017, Murmansk, Lobova st., 100 (Russian Federation); Kemsky, I. [Regional management - 120 of the Federal Medical-Biological Agency, 184682, Snezhnogorsk, Valentina Biryukova St., 5/1 (Russian Federation); Sneve, M. [Norwegian Radiation Protection Authority, Postboks 55, 1332 Oesteraas (Norway)

    2013-07-01

    The report is an overview of the information-analytical system designed to assure radiation safety of workers. The system was implemented in the Northwest Radioactive Waste Management Center 'SevRAO' (which is a branch of the Federal State Unitary Enterprise 'Radioactive Waste Management Enterprise RosRAO'). The center is located in the Northwest Russia. In respect to 'SevRAO', the Federal Medical-Biological Agency is the regulatory body, which deals with issues of radiation control. The main document to regulate radiation control is 'Reference levels of radiation factors in radioactive wastes management center'. This document contains about 250 parameters. We have developed a software tool to simplify control of these parameters. The software includes: input interface, the database, dose calculating module and analytical block. Input interface is used to enter radiation environment data. Dose calculating module calculates the dose on the route. Analytical block optimizes and analyzes radiation situation maps. Much attention is paid to the GUI and graphical representation of results. The operator can enter the route at the industrial site or watch the fluctuations of the dose rate field on the map. Most of the results are presented in a visual form. Here we present some analytical tasks, such as comparison of the dose rate in some point with control levels at this point, to be solved for the purpose of radiation safety control. The program helps to identify points making the largest contribution to the collective dose of the personnel. The tool can automatically calculate the route with the lowest dose, compare and choose the best route. The program uses several options to visualize the radiation environment at the industrial site. This system will be useful for radiation monitoring services during the operation, planning of works and development of scenarios. The paper presents some applications of this system on real data

  2. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  3. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around “70% of the municipal waste produced...

  4. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  5. National waste management infrastructure in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Fletcher, J.J.

    1998-01-01

    Radioactive materials have been used in Ghana for more than four decades. Radioactive waste generated from their applications in various fields has been managed without adequate infrastructure and any legal framework to control and regulate them. The expanded use of nuclear facilities and radiation sources in Ghana with the concomitant exposure to human population necessitates effective infrastructure to deal with the increasing problems of waste. The Ghana Atomic Energy Act 204 (1963) and the Radiation Protection Instrument LI 1559 (1993) made inadequate provision for the management of waste. With the amendment of the Atomic Energy Act, PNDCL 308, a radioactive waste management centre has been established to take care of all waste in the country. To achieve the set objectives for an effective waste management regime, a waste management regulation has been drafted and relevant codes of practice are being developed to guide generators of waste, operators of waste management facilities and the regulatory authority. (author)

  6. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  7. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  8. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  9. Radiation and waste safety

    International Nuclear Information System (INIS)

    1997-01-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  10. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  11. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  13. Scientific basis for nuclear waste management XX

    International Nuclear Information System (INIS)

    Gray, W.J.; Triay, I.R.

    1997-01-01

    The proceedings are divided into the following topical sections: Glass formulations and properties; Glass/water interactions; Cements in radioactive waste management; Ceramic and crystalline waste forms; Spent nuclear fuel; Waste processing and treatment; Radiation effects in ceramics, glasses, and nuclear waste materials; Waste package materials; Radionuclide solubility and speciation; Radionuclide sorption; Radionuclide transport; Repository backfill; Performance assessment; Natural analogues; Excess plutonium dispositioning; and Chernobyl-related waste disposal issues. Papers within scope have been processed separately for inclusion on the data base

  14. Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferation in Eastern Europe

    International Nuclear Information System (INIS)

    Dassen, Lars van; Delalic, Zlatan; Ekblad, Christer; Keyser, Peter; Turner, Roland; Rosengaard, Ulf; German, Olga; Grapengiesser, Sten; Andersson, Sarmite; Sandberg, Viviana; Olsson, Kjell; Stenberg, Tor

    2009-10-01

    The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden's bilateral assistance to Russia, Ukraine, Georgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in various projects financed by the European Union. The purpose of this project-oriented report is to provide the Swedish Government and other funding agencies as well as other interested audiences in Sweden and abroad with an encompassing understanding of our work and in particular the work performed during 2008. the activities are divided into four subfields: Nuclear waste management; Reactor safety; Radiation safety and emergency preparedness; and, Nuclear non-proliferation. SSM implements projects in the field of spent nuclear fuel and radioactive waste management in Russia. The problems in this field also exist in other countries, yet the concentration of nuclear and radioactive materials are nowhere higher than in north-west Russia. And given the fact that most of these materials stem from the Cold War era and remain stored under conditions that vary from 'possibly acceptable' to 'wildly appalling' it is obvious that Sweden's first priority in the field of managing nuclear spent fuel and radioactive waste lies in this part of Russia. The prioritisation and selection of projects in reactor safety are established following thorough discussions with the partners in Russia and Ukraine. For specific guidance on safety and recommended safety improvements at RBMK and VVER reactors, SSM relies on analyses and handbooks established by the IAEA in the 1990s. In 2008, there were 16 projects in reactor safety. SSM implements a large number of projects in the field of radiation protection and emergency preparedness. The activities are at a first glance at some distance from the activities covered and foreseen by for instance the

  15. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  16. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  17. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  18. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  19. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  20. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  1. National perspective on waste management

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1980-01-01

    Sources of nuclear wastes are listed and the quantities of these wastes per year are given. Methods of processing and disposing of mining and milling wastes, low-level wastes, decommissioning wastes, high-level wastes, reprocessing wastes, spent fuels, and transuranic wastes are discussed. The costs and safeguards involved in the management of this radioactive wastes are briefly covered in this presentation

  2. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.; Smith, G.M.; White, I.F

    1984-01-01

    Carbon-14 occurs in nature, but is also formed in nuclear reactors. Because of its long half-life and the biological significance of carbon, releases from nuclear facilities could have a significant radiological impact. Waste management strategies for carbon-14 are therefore of current concern. Carbon-14 is present in a variety of waste streams both at reactors and at reprocessing plants. A reliable picture of the production and release of carbon-14 from various reactor systems has been built up for the purposes of this study. A possible management strategy for carbon-14 might be the reduction of nitrogen impurity levels in core materials, since the activation of 14 N is usually the dominant source of carbon-14. The key problem in carbon-14 management is its retention of off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. Three alternative trapping processes that convert carbon dioxide into insoluble carbonates have been suggested. The results show that none of the options considered need be rejected on the grounds of potential radiation doses to individuals. All exposures should be as low as reasonably achievable, economic and social factors being taken into account. If, on these grounds, retention and disposal of carbon-14 is found to be beneficial, then, subject to the limitations noted, appropriate retention, immobilization and disposal technologies have been identified

  3. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  4. Swedish waste management

    International Nuclear Information System (INIS)

    Sandwall, L.

    2004-01-01

    Sweden has a well-functioning organization for managing various types of radioactive waste. There is an interim storage facility for spent nuclear fuel, a final repository for low and intermediate level waste, and a specially-built vessel with transport casks and containers for shipping the radioactive waste between the nuclear installations. (author)

  5. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  6. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  8. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  9. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  10. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  11. [RADIATION HYGIENIC MONITORING AT THE AREA OF THE LOCATION OF THE FAR EASTERN CENTER FOR RADIOACTIVE WASTE MANAGEMENT (FEC "DALRAO"--BRANCH OF FSUE "ROSRAO")].

    Science.gov (United States)

    Kiselev, S M; Shandala, N K; Akhromeev, S V; Gimadova, T I; Seregin, V A; Titov, A V; Biryukova, N G

    2015-01-01

    Intensification ofactivities in the field of spent nuclear fuel (SNF) and radioactive waste (RW) management in the Far East region of Russia assumes an increase of the environmental load on the territories adjacent to the enterprise and settlements. To ensure radiation safety during works on SNF and radioactive waste management in the standard mode of operation and during the rehabilitation works in the contaminated territories, there is need for the optimization of the existing system of radiation-hygienic monitoring, aimed at the implementation of complex dynamic observation of parameters of radiation-hygienic situation and radiation amount of the population living in the vicinity of the Far Eastern Center for Radioactive Waste Management (FEC "DALRAO"). To solve this problem there is required a significant amount of total and enough structured information on the character of the formation of the radiation situation, the potential ways of the spread of man-made pollution to the surrounding area, determining the radiation load on the population living in the vicinity of the object. In this paper there are presented the results of field studies of the radiation situation at the plant FEC "DALRAO", which were obtained during the course of expedition trips in 2009-2012.

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  13. Safety and radiation protection aspects of the management of radioactive wastes of high level activity

    International Nuclear Information System (INIS)

    Candes, P.; Pradel, J.

    1977-01-01

    Appropriate consideration is given in France to safety and protection problems to be solved from the production up to the final disposal of radioactive wastes of high level activity. The first stage of the work consisted in emphasizing the various technical options. Different strategies appear to be possible, taking into account technical, political, and psychological difficulties. This results in evaluating the safety problems to be solved in the framework of those strategies. In this field, the main safety and protection principles do not differ from those which apply to other nuclear facilities. Nevertheless, duration is in most cases a quite different factor (thousands or millions of years). The question is then raised of evaluating the importance to be given to very remote consequences, both at philosophical and scientific levels. As a first result of those considerations, the application of the ''barrier'' concept is recommended. This concept is familiar to safety specialists. Different barriers for which particular problems are listed and evaluated, are defined. Another results with regard to radiation protection principles is to consider that if safety provisions should lead to a containment of radioactive products as efficient as possible, it would not be realistic to consider such a containment as absolute, in particular for disposal durations arising to thousands of years. It is therefore assumed that a limited radioactivity transfer should be taken into account, and its consequences for environment and man be calculated. This is especially true in the study of an appropriate site for final storage, and the study should necessarily include a detailed investigation of the retention characteristics of soil layers, and the implementation of appropriate models giving a sufficiently accurate evaluation of the consequences of transfers, including those related to the effect of various elements after their arrival into the biosphere. The authors review the

  14. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  16. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  17. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  18. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  20. Detection and measurement of ionizing radiation by the Radioactive Waste Management Centre

    International Nuclear Information System (INIS)

    Mudra, Josef

    2013-01-01

    The following topics are dealt with: Basic properties of radionuclides and selection of suitable detectors; radiation characteristics of sealed sources (radiation detection, dose rate measurement, surface contamination measurement, gamma spectroscopy); non-destructive analysis (segment gamma scanner, digital radiography); destructive analysis; radiation monitoring of humans and workplaces; and dosimetric monitoring of workplace surroundings and discharges. (orig.)

  1. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  3. Waste management in NUCEF

    International Nuclear Information System (INIS)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I.

    2000-01-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  4. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  5. Waste management advisory missions to developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.

    1990-01-01

    The IAEA's Waste Management Advisory Programme (WAMAP) was initiated in 1987 as an interregional technical co-operation project to complement other activities in radioactive waste management. Its creation gave greater recognition to the importance of the safe management of radioactive wastes and promotion of long-term waste management technical assistance strategies for developing countries. Over the past 4 years, international experts have reviewed the radioactive waste management programmes of 29 developing countries. Missions have been conducted within the framework of the IAEA's Waste Management Advisory Programme (WAMAP). Ten of these countries have nuclear power plants in operation or under construction or have nuclear fuel cycle facilities. Altogether, 23 have research reactors or centres, eight have uranium or thorium processing programmes or wastes, and nine essentially have only isotope applications involving the use of radiation sources

  6. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  7. Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferation in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Dassen, Lars van; Delalic, Zlatan; Ekblad, Christer; Keyser, Peter; Turner, Roland; Rosengaard, Ulf; German, Olga; Grapengiesser, Sten; Andersson, Sarmite; Sandberg, Viviana; Olsson, Kjell; Stenberg, Tor

    2009-10-15

    The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden's bilateral assistance to Russia, Ukraine, Georgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in various projects financed by the European Union. The purpose of this project-oriented report is to provide the Swedish Government and other funding agencies as well as other interested audiences in Sweden and abroad with an encompassing understanding of our work and in particular the work performed during 2008. the activities are divided into four subfields: Nuclear waste management; Reactor safety; Radiation safety and emergency preparedness; and, Nuclear non-proliferation. SSM implements projects in the field of spent nuclear fuel and radioactive waste management in Russia. The problems in this field also exist in other countries, yet the concentration of nuclear and radioactive materials are nowhere higher than in north-west Russia. And given the fact that most of these materials stem from the Cold War era and remain stored under conditions that vary from 'possibly acceptable' to 'wildly appalling' it is obvious that Sweden's first priority in the field of managing nuclear spent fuel and radioactive waste lies in this part of Russia. The prioritisation and selection of projects in reactor safety are established following thorough discussions with the partners in Russia and Ukraine. For specific guidance on safety and recommended safety improvements at RBMK and VVER reactors, SSM relies on analyses and handbooks established by the IAEA in the 1990s. In 2008, there were 16 projects in reactor safety. SSM implements a large number of projects in the field of radiation protection and emergency preparedness. The activities are at a first glance at some distance from the activities covered and

  8. Radioactive wastes management of NPP

    International Nuclear Information System (INIS)

    Klyuchnikov, A.A.; Pazukhin, Eh.M.; Shigera, Yu. M.; Shigera, V.Yu.

    2005-01-01

    Modern knowledge in the field of radiation waste management on example of the most serious man-made accident at Chernobyl NPP are illuminated. This nuclear power plant that after accident in 1986 became in definite aspect an experimental scientific ground, includes all variety of problems which have to be solved by NPP personnel and specialists from scientific organizations. This book is aimed for large sphere of readers. It will be useful for students, engineers, specialists and those working in the field of nuclear power, ionizing source and radiation technology use for acquiring modern experience in nuclear material management

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  10. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  12. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  13. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  14. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  15. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  16. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  17. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  18. Low-level radioactive waste disposal: radiation protection laws

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Guetat, P.; Garbay, H.

    1991-01-01

    The politics of radioactive waste management is a part of waste management and activity levels are one of the components of potential waste pollutions in order to assume man and environment safety. French regulations about personnel and public' radiation protection defines clearly the conditions of radioactive waste processing, storage, transport and disposal. But below some activity levels definite by radiation protection laws, any administrative procedures or processes can be applied for lack of legal regulations. So regulations context is not actually ready to allow a rational low-level radioactive waste management. 15 refs.; 4 tabs.; 3 figs

  19. Safe management of radioactive waste in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2000-01-01

    The Ghana Atomic Energy Commission was established in 1963 by an Act of Parliament, Act 204 for the Promotion, Development and Peaceful Application of Nuclear Techniques for the Benefit of Ghana. As in many developing countries the use of nuclear application is growing considerably in importance within the national economy. The Radiation Protection Board was established as the national regulatory authority and empowered by the Radiation Protection Instrument LI 1559 (1993). The above regulations, Act 204 and LI 1559 provided a minimum legal basis for regulatory control of radioactive waste management as it deals with waste management issues in a very general way and is of limited practical use to the waste producer. Hence the National Radioactive Waste Management Centre was established in July 1995 to carry out waste safety operations in Ghana. This paper highlights steps that have been taken to develop a systemic approach for the safe management of radioactive waste in the future and those already in existence. (author)

  20. Radiation treatment of solid wastes

    International Nuclear Information System (INIS)

    Brenner, W.; Rugg, B.; Rogers, C.

    1977-01-01

    Solid waste is now generally recognized as both a major problem and an underutilized renewable resource for materials and energy recovery. Current methods for dealing with solid wastes are admittedly inadequate for cost effective utilization of the latest material and energy values, especially of cellulose and other organics. Processes for production of energy from organic wastes including incineration, pyrolysis and biodegradation, are receiving considerable attention even though the heating value of dried organic wastes is substantially less than that of fossil fuels. An attractive alternative approach is conversion into chemical feedstocks for use as fuels, intermediates for plastics, rubbers, fibers etc., and in the preparation of foods. Radiation treatment of solid wastes offers attractive possibilities for upgrading the value of such organic waste components as cellulose and putrescible matter. The latter can be cold sterilized by radiation treatments for the production of animal feed supplements. The wide availability of cellulosic wastes warrants their consideration as an alternate feedstock to petrochemicals for fuels, intermediates and synthesis of single cell protein. The crucial step in this developing technology is optimizing the conversion of cellulose to its monomer glucose which can be accomplished by either acid or enzymatic hydrolysis. A combination pretreatment consisting of radiation of hydropulped cellulosic wastes has shown considerable promise in improving the yields of glucose for acid hydrolysis reactions at substantially lower cost than presently used methods such as grinding. Data are presented to compare the effectiveness of this pretreatment with other techniques which have been investigated. (author)

  1. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  2. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  3. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Syed Abdul Malik Syed Zain

    2005-01-01

    This chapter discussed the basic subjects covered in the radioactive waste management. The subjects are policy and legislation, pre-treatment, classification, segregation, treatment, conditioning, storage, siting and disposal, and quality assurance

  5. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  7. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  8. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  9. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  10. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  11. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  12. Healthcare liquid waste management.

    Science.gov (United States)

    Sharma, D R; Pradhan, B; Pathak, R P; Shrestha, S C

    2010-04-01

    The management of healthcare liquid waste is an overlooked problem in Nepal with stern repercussions in terms of damaging the environment and affecting the health of people. This study was carried out to explore the healthcare liquid waste management practices in Kathmandu based central hospitals of Nepal. A descriptive prospective study was conducted in 10 central hospitals of Kathmandu during the period of May to December 2008. Primary data were collected through interview, observation and microbiology laboratory works and secondary data were collected by records review. For microbiological laboratory works,waste water specimens cultured for the enumeration of total viable counts using standard protocols. Evidence of waste management guidelines and committees for the management of healthcare liquid wastes could not be found in any of the studied hospitals. Similarly, total viable counts heavily exceeded the standard heterotrophic plate count (p=0.000) with no significant difference in such counts in hospitals with and without treatment plants (p=0.232). Healthcare liquid waste management practice was not found to be satisfactory. Installation of effluent treatment plants and the development of standards for environmental indicators with effective monitoring, evaluation and strict control via relevant legal frameworks were realized.

  13. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  15. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  16. Management of radioactive waste generated from the use of radiation sources in Ukraine

    International Nuclear Information System (INIS)

    Bogdan, L.

    2000-01-01

    Activities associated with collection, transportation and disposal of low-medium activity solid and liquid RAW and spent radiation sources in the country are performed by 'Radon' enterprise. On the territory the following facilities are placed: 14 storage facilities for solid RAW disposal - 10 of them are filled and closed; 14 storage facilities for temporary liquid RAW storage - 2 of them are filled and closed; 14 storage facilities for spent radiation sources - 4 of them are closed. There are storage facilities in Kiev and Kharkov for solid RAW with capacity reserve of approximately 50% and hangar type storage facility in Lvov with capacity reserve - 90%. For all facilities licenses are issued. During 1999 SNRA has analyzed the fulfilment of the license conditions

  17. Development of a radiation hardened ANDROS robot for environmental restoration and waste management operations

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Youk, G.; Ekdahl, D.; Liu, H.; Zhou, H.; Phillips, K.; Sias, F.; Jones, S.; Cable, T.; Harvey, H.

    1995-01-01

    A radiation hardened and tolerant version of the ANDROS V-A and VI-A system has been developed by a team composed of engineers and scientists from REMOTEC, Inc. and the University of Florida. The final upgrade of the major control components to a hardness level greater than one megarad is detailed. Over twelve hundred parts were reviewed. The project has completed its Phase 1 and Phase 2 SBIR redesign with the upgrade of all control components. The facilities at the University of Florida which include a linear accelerator and multiple cobalt irradiators have provided the capability to perform the extensive testing required. The commercial production of this radiation hardened ANDROS makes available a mobile platform that can serve as a main work and inspection system for hazardous tasks facing the world nuclear industry

  18. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  19. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  20. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  1. Low-level radioactive waste management: French and foreign regulations

    International Nuclear Information System (INIS)

    Coulon, R.

    1991-01-01

    This paper describes radioactive waste management regulations applied in USA, CANADA, SCANDINAVIA and FRANCE. For low level radioactive wastes, it is necessary to adapt waste management regulations which were firt definite for high level radioactive wastes. So the exemption concept is a simplification method of regulations applied to low radiation sources

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  3. Radioactive waste management in West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.)

    1978-01-01

    The technologies developed in West Germany for radioactive waste management are widely reviewed. The first topic in this review paper is the disposal of low- and middle-level radioactive liquid wastes. Almost all these liquid wastes are evaporated, and the typical decontamination factor attained is 10/sup 4/ -- 10/sup 6/. The second topic is the solidification of residuals. Short explanation is given to bituminization and some new processes. The third topic is high-level liquid wastes. Degradation of glass quality due to various radiation is discussed. Embedding of small glass particles containing radioactive wastes into metal is also explained. Disposals of low-level solid wastes and the special wastes produced from reprocessing and mixed oxide fuel fabrication are explained. Final disposal of radioactive wastes in halite is discussed as the last topic. Many photographs are used to illustrate the industrial or experimental use of those management methods.

  4. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  5. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  6. Waste management at KKP

    International Nuclear Information System (INIS)

    Blaser, W.; Grundke, E.; Majunke, J.

    1997-01-01

    The smooth management of radioactive plant waste is an integral, essential part of safe and economic operation of a nuclear power plant. The Philippsburg Nuclear Power Station (KKP) addressed these problems early on. The stationary facilities installed, with an organization established in the lights of the objectives to be met, allow problems to be solved largely independent of external factors and make for operational flexibility and optimum utilization of plant and personnel capacities. The good performance achieved in volume reduction and product quality of the conditioned radioactive waste justifies the capital investments made. In this way, KKP has met the ecological and economic requirements of orderly waste management. At KKP, waste management is considered an interdisciplinary duty. Existing resources in KKP's organization were used to achieve synergy effects. The Central Monitoring Unit is responsible for the cooperation of all groups involved with the objective of generating a product fit for final storage. The necessary coordination and monitoring efforts are made by a small team of specialists with extensive know-how in waste management. Four persons are responsible for coordination and monitoring, and another ten or twelve persons for direct execution of the work. (orig.) [de

  7. Online Management of Waste Storage

    Directory of Open Access Journals (Sweden)

    Eugenia IANCU

    2011-01-01

    Full Text Available The paper presents a telematic system designed to monitor the areas affected by the uncontrollable waste storing by using the newest informational and communicational technologies through the elaboration of a GPS/GIS electronic geographical positioning system. Within the system for online management of the affected locations within the built up areas, the following data categories are defined and processed: data regarding the waste management (monitored locations within the built up areas, waste, pollution sources, waste stores, waste processing stations, data describing the environment protection (environmental quality parameters: water, air, soil, spatial data (thematic maps. Using the automatic collection of the data referring to the environment quality, it is aiming at the realization of a monitoring system, equipped with sensors and/or translators capable of measuring and translating (into electrical signals measures with meteorological character (the intensity of the solar radiation, temperature, humidity but also indicators of the ecological system (such as: the concentration of nutrients in water and soil, the pollution in water, air and soil, biomasses. The organization, the description and the processing of the spatial data requires the utilization of a GIS (Geographical Information System type product.

  8. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    International Nuclear Information System (INIS)

    Reyes, S.; Latkowski, J.F.; Meier, W.R.; Reyes, S.

    2000-01-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  9. Nuclear waste management news

    International Nuclear Information System (INIS)

    Stoeber, H.

    1987-01-01

    In view of the fact that nuclear waste management is an important factor determining the future perspectives of the peaceful uses of nuclear energy, it seems suitable to offer those who are interested in this matter a source of well-founded, concise information. This first newsletter will be followed by others at irregular intervals, reviewing the latest developments and the state of the art in West Germany and abroad. The information presented in this issue reports the state of the art of nuclear waste management in West Germany and R and D activities and programmes, refers to conferences or public statements, and reviews international relations and activities abroad. (orig.) [de

  10. Radioactive waste management in a hospital.

    Science.gov (United States)

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  11. Radioactive Waste Management in A Hospital

    Science.gov (United States)

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  12. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  13. Management of small producers waste in Slovenia

    International Nuclear Information System (INIS)

    Fabjan, Marija; Rojc, Joze

    2007-01-01

    Available in abstract form only. Full text of publication follows: Radioactive materials are extensively used in Slovenia in various fields and applications in medicine, industry and research. For the managing of radioactive waste raised from these establishments the Agency for radwaste management (ARAO) was authorised as the state public service of managing the radioactive waste in 1999. The public service of the radioactive waste of small producers in Slovenia is performed in line with the Governmental decree on the Mode, Subject and Terms of Performing the Public Service of Radioactive Waste Management (Official Gazette RS No. 32/99). According to the Decree the scope of the public service includes: 'collection of the waste from small producers at the producers' premises and its transportation to the storage facility for treatment, storing and disposal', 'acceptance of radioactive waste in case of emergency situation on the premises, in case of transport accidents or some other accidents', 'acceptance of radioactive waste in cases when the producer is unknown', 'management (collection, transport, pre-treatment, storing, together with QA and radiation protection measures) of radioactive waste', 'treatment and conditioning of radioactive waste for storing and disposal', and 'operating of the Central Interim Storage for LIL waste from small producers'. After taking over the performing of the public service, ARAO first started with the project for refurbishment and modernization of the Central Interim Storage Facility, including improvements of the storage utilization and rearrangement of the stored waste. (authors)

  14. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  15. Integrated refinery waste management

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Y -S [ETG Environmental, Inc., Blue Bell, PA (US); Sheehan, W J [Separation and Recovery Systems, Inc., Irvine, CA (US)

    1992-01-01

    In response to the RCRA land ban regulations and TC rule promulgated by the U.S. Federal Environmental Protection Agency (EPA) in 1988-1990, an Integrated Refinery Waste Management (IRWM) program has been developed to provide cost-effective solutions to petroleum industry customers. The goal of IRWM is to provide technology based remediation treatment services to manage sludges and wastewaters generated from the oil refining processes, soils contaminated with petroleum distillates and groundwater contaminated with fuels. Resource recovery, volume reduction and waste minimization are the primary choices to mitigate environmental problems. Oil recovery has been performed through phase separation (such as centrifugation and filtration) and heating of heavy oils. Volume reduction is achieved by dewatering systems such as centrifuges and filter presses, and low temperature thermal treatment. Waste minimization can be accomplished by bioremediation and resource recovery through a cement kiln. (Author).

  16. Regional seminar on approaches and practices in strengthening radiation protection and waste management infrastructure in countries of Eastern Europe and the former USSR. Programme, book of extended synopses, list of participants

    International Nuclear Information System (INIS)

    1998-01-01

    This publication contains 30 extended synopses of presentations given by the participants of the seminar. The scope of the presentations included development of radiation protection laws, radioactive waste management technologies, radiation protection infrastructure and constitution of national regulatory bodies. Recent developments in these areas in a number of Eastern Europe and former USSR countries were presented. The role of international co-operation in development of safe radioactive waste management technologies and in establishing legislative and regulatory frameworks was shown

  17. Radioactive waste management in developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.; Baehr, W.; Plumb, G.R.

    1989-01-01

    The activities of the Agency in waste management have therefore laid emphasis on advising developing Member States on the management of wastes from the uses of radioactive materials. At the present time, developing countries are mostly concerned with the management of nuclear wastes generated from medical centres, research institutes, industrial facilities, mining operations, and research reactors. In certain instances, management of such wastes has lapsed causing serious accidents. Radiation source mismanagement has resulted in fatalities to the public in Mexico (1962), Algeria (1978), Morocco (1984), and Brazil (1987). The objective of these activities is to support the countries to develop the required expertise for self-sufficiency in safe management of radioactive wastes. What follows are details of the Agency mechanisms in place to meet the above objectives

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The dossier published in this issue deals with all matters relating to radioactive waste management. It describes in detail the guidelines implemented by France in this field and provides a general overview of actions carried out at international level. The articles are assembled in several chapters, treating the following subjects: I. Upstream storage management. II. Storage (surface and underground). III. Research to back up the management program. There then follows a description of various processes and equipment developed by research laboratories and industrialists to provide, at the different stages, a number of operations required by the management programs [fr

  19. State regulation of nuclear and radiation safety in the field of radioactive waste management in the Russian Federation

    International Nuclear Information System (INIS)

    Vishnevski, U.G.; Kislov, A.I.; Charafoutdinov, R.B.

    2000-01-01

    Efforts being undertaken in the Russian Federation to upgrade, in a systematic manner, national regulations relating to the safe management of radioactive waste are outlined. The hierarchy and structure of the normative framework of documents are described. Progress made and results achieved are presented. (author)

  20. Radiation protection, radioactive waste management and site monitoring at the nuclear scientific experimental and educational centre IRT-Sofia at INRNE-BAS.

    Science.gov (United States)

    Mladenov, Al; Stankov, D; Nonova, Tz; Krezhov, K

    2014-11-01

    This article identifies important components and describes the safe practices in implementing radiation protection and radioactive waste management programmes, and in their optimisation at the Nuclear Scientific Experimental and Educational Centre with research reactor IRT at INRNE-BAS. It covers the instrumentation and personal protective equipment and organisational issues related to the continuous site monitoring. The reactor is under major reconstruction and the measures applied to radiation monitoring of environment and working area focused on restricting the radiation exposure of the staff as well as compliance with international good practices related to the environmental and public radiation safety requirements are also addressed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Management of radioactive waste

    International Nuclear Information System (INIS)

    Jahn, P.G.

    1986-01-01

    The text comprises three sections, i.e. theological and moral aspects, scientific and technical aspects, and administrative and political aspects. The book informs on the scientific and legal situation concerning nuclear waste management and intends to give some kind of decision aid from a theological point of view. (PW) [de

  2. K. Radioactive waste management

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive waste management is a controversial and emotive subject. This report discusses radioactivity hazards which arise from each stage of the fuel cycle and then relates these hazards to the New Zealand situation. There are three appendices, two of which are detailed considerations of a paper by Dr. B.L.Cohen

  3. Nuclear waste management

    International Nuclear Information System (INIS)

    Wicks, G.G.; Ross, W.A.

    1984-01-01

    Papers from the Second International Symposium on Ceramics in Nuclear Waste Management, held during the American Ceramic Society's 85th Annual Meeting, comprise this eighth volume in the Advances in Ceramics series. The 81 papers included in this volume were compiled by George G. Wicks, of Savannah River Lab, and Wayne A. Ross, of Battelle, Pacific Northwest Labs

  4. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  5. Alternatives for radioactive waste management

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-10-01

    The safety aspects of waste management alternatives are emphasized. The options for waste management, their safety characteristics, and the methods that might be used to evaluate the options and their safety are outlined

  6. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  7. Radioactive waste management of health services

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Miaw, Sophia Teh Whei

    2001-01-01

    In health care establishment, radioactive waste is generated from the use of radioactive materials in medical applications such as diagnosis, therapy and research. Disused sealed sources are also considered as waste. To get the license to operate from Comissao Nacional de Energia Nuclear - CNEN, the installation has to present a Radiation Protection Plan, in which the Waste Management Programme should be included. The Waste Management Programme should contain detailed description on methodologies and information on technical and administrative control of generated waste. This paper presents the basic guidelines for the implementation of a safe waste management by health care establishments, taking into account the regulations from CNEN and recommendations from the International Atomic Energy Agency - IAEA. (author)

  8. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  9. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  10. Solid Waste Management In Kosova

    OpenAIRE

    , F. Tahiri; , A. Maçi; , V. Tahiri; , K. Tahiri

    2016-01-01

    Waste management accordingly from concept and practices that are used in different countries there are differences, particularly between developed and developing countries. Our country takes part in the context of small developing countries where waste management right is almost at the beginning. In order to have better knowledge about waste management in Kosovo is done a research. The research has included the institutions that are responsible for waste management, including central and loca...

  11. State of radioactive waste management is power reactor facilities and state of radiation exposure of workers who engaged in radiation works in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the summary of the reports on radiation control and others submitted by those who installed practical power reactor facilities based on the relevant law in fiscal 1993. The amounts of release of radioactive gaseous and liquid wastes were sufficiently smaller than the target value of the yearly release control for attaining the target value of dose that the public around the facilities receive. As to the state of control of radioactive solid waste, the amount of drum generation tended to decrease year by year, and the cumulative amount to be preserved tended to level off. The dose equivalent that the individuals who engaged in radiation works received was smaller than the limit value in all nuclear power stations. The total dose equivalent for those workers in fiscal 1993 was 86.65 man Sv. Hereafter, the automation and remote operation of works, the water quality control for reducing crud and so on will be promoted to reduce radiation exposure. The reference data on the state of control of gaseous, liquid and solid wastes, and the state of control of radiation exposure of workers are attached. (K.I.)

  12. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  13. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  14. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.

    1984-01-01

    As part of their research programme on Radioactive Waste Management, the Commission of the European Communities has provided financial support for a detailed study of wastes containing 14 C and the options for their management. The main results of this study are outlined. Carbon-14 is formed by neutron activation reactions in core materials and is therefore present in a variety of waste streams both at reactors and at reprocessing plants. Data on the production and release of 14 C from various reactor systems are presented. A possible management strategy for 14 C might be reduction of 14 N impurity levels in core materials, but only reductions of about a factor of five in arisings could be achieved in this way. The key problem in 14 C management is its retention in off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. In this stream the nuclide is present as carbon dioxide and is extensively isotopically diluted by the carbon dioxide content of the air. Processes for trapping 14 C from these off-gases must be integrated with the other processes in the overall off-gas treatment system, and should provide for conversion to a stable solid compound of carbon, suitable for subsequent immobilization and disposal. Three trapping processes that convert carbon dioxide into insoluble carbonates can be identified: the double alkali (NaOH/Ca(OH) 2 ) process, the direct calcium hydroxide slurry process, and the barium ocathydrate gas/solid process. Calcium or barium carbonates, produced in the above processes, could probably be incorporated into satisfactory immobilized waste forms. However, the stability of such waste forms to prolonged irradiation and to leaching remains to be investigated. (author)

  15. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  16. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  17. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  18. Waste management. Sector 6

    International Nuclear Information System (INIS)

    1994-01-01

    The waste management section of this report deals with two sectors: land disposal of solid waste and wastewater treatment. It provides background information on the type of emissions that contribute to the greenhouse gases from these two sectors, presents both sector current status in Lebanon, describes the methodology followed to estimate the corresponding emissions, and presents the results obtained regarding greenhouse emissions. The total methane emissions from solid waste disposal on land are 42.804 Gg approximately. There are no emissions from wastewater and industrial handling systems because, for the target year 1994, there was no treatment facilities in Lebanon. The wastewater (municipal, commercial and industrial) was directly discharged into the sea, rivers, ravines or septic tanks which indicate that methane or nitrous oxide emissions are significant if not nonexistent. Note that this situation will change in the future as treatment plants are being constructed around the country and are expected to come into operation by the year 2000

  19. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  20. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  1. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  3. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  4. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  5. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  6. Management of tritium wastes

    International Nuclear Information System (INIS)

    Kisalu, J.; Mellow, D.G.; Pennington, J.D.; Thompson, H.M.; Wood, E.

    1991-07-01

    This work provides a review of the management of tritium wastes with particular reference to current practice, possible alternatives and to the implications of any alternatives considered. It concludes that reduction in UK emissions from nuclear industry is feasible but at a cost out of all proportion to the reduction in dose commitment achievable. Commercial usage of tritium involves importation at several times the UK nuclear production level although documentation is sparse. (author)

  7. Radiation exposure management

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    Radiation exposure management includes administrative control, education and training, monitoring and dose assessments and planning of work and radiation protection. The information and discussion given in the paper are based on experiences in Sweden mainly from nuclear power installations. (Author)

  8. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1982-04-01

    Terminology used in documents published by the IAEA is frequently defined in glossaries in the separate documents so that understanding is enhanced, particularly for terms having unique meanings in the field of radioactive waste management. This has been found to be a good practice but frequently a burdensome one, too. In addition, terms in various documents occasionally were used differently. Thus, a common glossary of terms for radioactive waste management documents is believed to have merit. This glossary has been developed for use in IAEA documentation on radioactive waste management topics. The individual items have been compiled by selecting terms and definitions from thirty sources, listed on the next page, and numerous people. An effort has been made to use the definitions in internationally-accepted glossaries (e.g. ICRP, ICRU, ISO), with minimum modification; similarly, definitions in recently published IAEA documents have been respected. Nevertheless, when modifications were believed appropriate, they have been made. The glossary, stored on magnetic tape, is intended to be used as a standard for terminology for IAEA use; it is hoped that some benefits of common international terminology may result from its use in IAEA documentation

  9. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  10. Radioactive waste management of urban area

    International Nuclear Information System (INIS)

    Huang, Z.; Gu, S.X.

    1993-01-01

    The several years experience of radioactive waste management in Shanghai of China shows that the centralized management is quite successful and effective. Rad waste generated in urban area would be treated with further concern in the respect of radiation and environmental protection. In this respect, there is a need for a professional organisation to undertake the necessary regulation, and demonstrate that high standards of design, planning, management and operation could be met. The experience in China is suitable to manage and dispose rad waste generated from the civil applications in urban area, and valuable to the developing country and area in particular. It is concluded that the centralized management of intermediate level and low level radioactive waste is an optimum choice for urban area

  11. Radioactive Solid Waste Management Site (RSMS), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Nuclear operations generate a variety of primary solid waste comprising of tissue materials, glassware, plastics, protective rubber-wears, used components like filters, piping, structural items, unserviceable equipment, etc. This type of solid waste is generally associated with low and intermediate level of beta and gamma radiation and, in some cases, by low levels of alpha contamination. Radioactive Solid Waste Management Site (RSMS), Trombay is operational with an objective of safe and efficient management of low and intermediate level solid waste generated from various nuclear fuel cycle facilities of BARC, Trombay. The RSMS also manages the spent radioactive sources, utilised in healthcare, industries and research institutes, after completion of their useful life. The radioactive solid waste is first segregated, treated for volume reduction and disposed in engineered disposal module to prevent the migration of radionuclides and isolate them from human environment

  12. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  13. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  14. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  15. WNA's Policy Document : sustaining global best practices in uranium, mining and processing, principles for managing radiation, health and safety, waste and the environment

    International Nuclear Information System (INIS)

    Saint-Pierre, S.; Waste Management and Decommissioning Working Group-WM and DW

    2008-01-01

    The worldwide community of uranium mining and processing recognizes that managing radiation, health and safety, waste and the environment is paramount. Such responsible management applies at all stages of planning and activities. Today we are acting to ensure that all parties directly involved in uranium mining and processing strive to achieve the highest levels of excellence in these fields. We are doing so by sustaining a strong safety culture based on a commitment to common, internationally shared principles. This paper sets out principles for the management of radiation, health and safety, waste and the environment applicable to sites throughout the world. In national and regional settings where nuclear fuel cycle activities are well developed, these principles already serve as the underpinning for 'Codes of Practice' that govern uranium mining and processing. In any given setting, a Code of Practice is needed to guide practical implementation of these principles according to the regional, national or site-specific context. These principles are published in the belief that they hold special relevance for emerging uranium producing countries that do not yet have fully developed regulations for the control of radiation, health and safety, waste and the environment associated with uranium mining and processing. The principles are equally relevant for operators, contractors, and regulators newly engaged in uranium mining and processing. Once national regulations are fully developed, they can be expected to embody these principles. Each principle affirmed here will not apply to the same extent for each party. Ultimately, the precise allocation of responsibilities must be set at the national and local levels. This document holds the status of a policy and ethical declaration by the full WNA membership, which the global nuclear industry. The principles affirmed here are supported by key relevant international organizations, including the IAEA and the global mining

  16. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  17. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  18. Management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  19. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-09-01

    Reports and other Canadian literature on radioactive waste processing and disposal covering the period 1953-1979 are listed. A selected list of international conferences relating to waste management (1959-1979) is attached. (LL)

  20. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  1. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Werthamer, N.R.

    1977-01-01

    The State of New York, some 15 years ago, became a party to an attempt to commercialize the reprocessing and storage of spent nuclear fuels at the West Valley Reprocessing Facility operated by Nuclear Fuel Services, Inc. (NFS). That attempted commercialization, and the State of New York, have fallen victim to changing Federal policies in the United States, leaving an outstanding and unique radioactive waste management problem unresolved. At the beginning of construction in 1963, the AEC assured both NFS and New York State of the acceptability of long-term liquid tank storage for high level wastes, and New York State ERDA therefore agreed to become the responsible long-lived stable institution whose oversight was needed. It was understood that perpetual care and maintenance of the wastes, as liquid, in on-site underground tanks, would provide for safe and secure storage in perpetuity. All that was thought to be required was the replacement of the tanks near the end of their 40-year design life, and the transferring of the contents; for this purpose, a perpetual care trust fund was established. In March of 1972, NFS shut West Valley down for physical expansion, requiring a new construction permit from the AEC. After four years of administrative proceedings, NFS concluded that changes in Federal regulations since the original operating license had been issued would require about 600 million dollars if operations were to resume. In the fall of 1976, NFS informed the NRC, of its intention of closing the reprocessing business. The inventories of wastes left are listed. The premises upon which the original agreements were based are no longer valid. Federal responsibilities for radioactive wastes require Federal ownership of the West Valley site. The views of New York State ERDA are discussed in detail

  2. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  3. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  4. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  5. Waste management and licensing

    International Nuclear Information System (INIS)

    Dauk, W.

    1980-01-01

    It is the Court's consideration of the repercussions the regulation on waste management of Sect. 9a of the Atomic Energy Law will have, relating to the licensing of a plant according to Sect. 7 (2) of the Atomic Energy Law which is noteworthy. Overruling its former legal conception, the Administrative Court Schleswig now assumes, together with the public opinion, that the problem of waste management being brought to a point only with the initial operation of a nuclear power station is accordingly to be taken into account in line with the discretion of licensing according to Sect. 7 (2) of the Atomic Energy Law. In addition, the Administrative Court expressed its opinion on the extent to the right of a neighbour to a nuclear power station to file suit. According to the Sections 114 and 42 (2) of the rules of Administrative Courts it is true that a plaintiff cannot take action to set aside the licence because public interests have not been taken into account sufficiently, but he may do so because his own interests have not been included in the discretionary decision. The Administrative Court is reserved when qualifying the regulation on waste management with regard to the intensity of legal control. The Court is not supposed to replace controversial issues of technology and natural sciences on the part of the executive and its experts by its own assessment. According to the proceedings, the judicial review refers to the finding as to whether decisions made by authorities are suited - according to the way in which they were made - to guarantee the safety standard prescribed in Subdivision 3 of Sect. 7 (2) of the Atomic Energy Law. (HSCH) [de

  6. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  7. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  8. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  9. Solid wastes management in Lebanon

    International Nuclear Information System (INIS)

    Daniel, Simon E.

    1999-01-01

    The paper describes the problem of wastes in Lebanon and their management according to international (European and French) descriptions. It presents the situation in Lebanon including the policies taken by the ministry of environment towards the treatment of different types of wastes especially solid wastes. It is estimated that the production of wastes in Lebanon is 5854 tones per day and it is distributed as follows: Domestic wastes 3200 t/d; industrial wastes 1300 t/d; commercial wastes 1000 t/d; slaughter-houses 150 t/d; waste oils 100 t/d; hospital wastes 64 t/d; vehicle wheels 40 t/d. The annual production within regions is also presented in tables. Collection, transportation, recycling, composting and incineration of wastes are included

  10. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  11. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  12. Gamma radiation scanning of nuclear waste storage tile holes

    International Nuclear Information System (INIS)

    Das, A.; Yue, S.; Sur, B.; Johnston, J.; Gaudet, M.; Wright, M.; Burton, N.

    2010-01-01

    Nuclear waste management facilities at Chalk River Laboratories use below-ground 'tile holes' to store solid waste from various activities such as medical radioisotope production. A silicon PIN (p-type-intrinsic-n-type semiconductor) diode based gamma radiation scanning system has been developed and used to profile the gamma radiation fields along the depth of waste storage tile holes by deploying the sensor into verification tubes adjacent to the tile holes themselves. The radiation field measurements were consistent with expected radiation fields in the tile holes based on administrative knowledge of the radioactive contents and their corresponding decay rates. Such measurements allow non-invasive verification of tile hole contents and provide input to the assessment of radiological risk associated with removal of the waste. Using this detector system, radioactive waste that has decayed to very low levels may be identified based on the radiation profile. This information will support planning for possible transfer of this waste to a licensed waste storage facility designed for low level waste, thus freeing storage space for possible tile hole re-use for more highly radioactive waste. (author)

  13. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  14. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  15. Radiation chemistry of synthetic waste

    International Nuclear Information System (INIS)

    Meisel, D.; Diamond, H.; Horwitz, E.P.; Jonah, C.D.; Matheson, M.S.; Sauer, M.C. Jr.; Sullivan, J.C.

    1991-11-01

    The yield of H 2 from radiolysis of aqueous solutions is substantially reduced by the presence of nitrate and nitrite in the waste solutions. Nitrate is more efficient in scavenging the precursors to H 2 than is nitrite, therefore, the latter should be maintained at higher levels if minimization of radiolytic gas production is required. Nitrate is the major scavenger for e aq - and nitrite is the major scavenger for H atoms. At the concentration levels of the waste solutions some fraction of the radiation energy will be absorbed directly by the solutes, primarily the nitrate/nitrite components. Organic additive will increase the generation of H 2 and mechanistic information is available to allow predictive modeling of trends in the rate of the generation. Physical parameters such as temperature, viscosity, and pressure will not significantly affect the gas generation relative to its generation under normal conditions. Radiolytic generation of N 2 O is very inefficient in the absence of organic solutes. No mechanistic information is available on its generation in the presence of organic additives. At the concentration levels of the inorganic salts in the waste solutions, it will be very difficult to find a chemical additive that could efficiently reduce the yield of the generated H 2 , except, perhaps, increasing the concentration of the nitrite/nitrate components

  16. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  17. Waste management plan - plant plan

    International Nuclear Information System (INIS)

    Gaudet, F.

    2008-01-01

    The author summarizes the nuclear activity of the Pierre Fabre Research Institute (sites, used radionuclides, radioprotection organisation), indicates the applied regulation, gives a brief analytical overview of the waste collection, sorting and elimination processes, of the management process for short period wastes and for long period wastes, and of the traceability and control procedures. He briefly presents some characteristics of the storing premises

  18. Establishment of database system for management of KAERI wastes

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-07-01

    Radioactive wastes generated by KAERI has various types, nuclides and characteristics. To manage and control these kinds of radioactive wastes, it comes to need systematic management of their records, efficient research and quick statistics. Getting information about radioactive waste generated and stored by KAERI is the basic factor to construct the rapid information system for national cooperation management of radioactive waste. In this study, Radioactive Waste Management Integration System (RAWMIS) was developed. It is is aimed at management of record of radioactive wastes, uplifting the efficiency of management and support WACID(Waste Comprehensive Integration Database System) which is a national radioactive waste integrated safety management system of Korea. The major information of RAWMIS supported by user's requirements is generation, gathering, transfer, treatment, and storage information for solid waste, liquid waste, gas waste and waste related to spent fuel. RAWMIS is composed of database, software (interface between user and database), and software for a manager and it was designed with Client/Server structure. RAWMIS will be a useful tool to analyze radioactive waste management and radiation safety management. Also, this system is developed to share information with associated companies. Moreover, it can be expected to support the technology of research and development for radioactive waste treatment

  19. French regulations and waste management

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1985-01-01

    The authors describe the organization and the role of safety authorities in France in matter of waste management. They precise the French policy in waste storage and treatment: basic objectives, optimization of waste management. The safety requirements are based upon the barrier principle. Safety requirements about waste conditioning and waste disposal are mentioned. In addition to the safety analysis and studies described above, the Protection and Nuclear Safety Institute assists the ministerial authorities in the drafting of ''basic safety rules (RFS)'', laying down safety objectives. Appendix 1 and Appendix 2 deal with safety aspects in spent fuel storage and in transportation of radioactive materials [fr

  20. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  1. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-01-01

    When I first became concerned with radioactive waste management, in the early 1950's, very little was really known about the subject. There was a general feeling that it was a serious 'problem'. Articles were appearing in the press and talks were being given on the radio suggesting that the wastes generated by the proposed nuclear power reactors might be a serious menace to humanity. The prophets pointed with alarm to the enormous quantities of fission products that would accumulate steadily over the years in tank farms associated with reactor fuel reprocessing plants, and calculations were made of the possible results from rupture of the tanks due to corrosion, earthquakes or enemy attack. Responsible people suggested seriously that the waste disposal problem might be fatal to the development of a nuclear power industry, and this attitude was reinforced by the popular outcry that arose from experience with fallout from nuclear weapons testing. The Canadian nuclear power industry was not critically involved in this controversy because our heavy-water reactors are fuelled with natural uranium, and reprocessing of the fuel is not necessary. The spent fuel contains plutonium, a potential fuel, but the cost of recovering it was such that it was not competitive with natural uranium, which is not in short supply in Canada. Our spent fuel is not dissolved in acid - it is stored. still in its zirconium cladding, under water at the reactor site, or placed in sealed concrete-and-steel pipes below ground. If the price of uranium rises sufficiently it will become profitable to recover the plutonium, and only then shall we have an appreciable amount of waste from this source. However. during the first five or six years of research and development at Chalk River we did investigate fuel processing methods, and like everybody else we grad stainless steel tanks containing high and medium level wastes. These were located quite close to the Ottawa River, and we worried about what

  2. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  3. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Kaluzny, Y.

    1994-01-01

    The public has demonstrated interest and even concern for radioactive waste. A fully demonstrated industrial solution already exists for 90% of the waste generated by the nuclear industry. Several solutions are currently under development for long-term management of long-lived waste. They could be implemented on an industrial scale within twenty years. The low volumes of this type of waste mean there is plenty of time to adopt a solution. (author). 5 photos

  4. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  5. Waste management 86. Volume 1:General interest

    International Nuclear Information System (INIS)

    Post, R.G.

    1986-01-01

    This book presents the papers given at a symposium on radioactive waste management. Topics considered at the symposium included the status of radioactive waste disposal, the status of international nuclear waste management, waste management activities at the Idaho National Engineering Laboratory, legal and liability issues, risk perceptions and public involvement, waste transportation, waste processing, remedial action, decontamination, predisposal processing and treatment processes, low-level and mixed waste management, and mixed chemical and radioactive waste disposal

  6. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  7. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  8. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  9. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  10. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  11. Degradation characteristics of waste polyurethane by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seok; Ahn, Sung Jun; Gwon Hui Jeong; Jeong, Sung In; Nho, Young Chang; Lim, Youn Mook [Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-06-15

    Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, waste PU recycling has received significant attention due to environmental issues. The aim of this work was to investigate the degradation characteristics of waste PU to recycle. Degradation of waste PU was carried out using a radiation techniques. Waste PUs were exposed to a gamma {sup 60}Co sources. To verify degradation, the irradiated PUs were characterized using FT-IR, gel permeation chromatography (GPC), and their thermal/mechanical properties are reported. When the radiation dose was 500 kGy, the molecular weight of the waste PU drastically decreased. Also, the mechanical properties of waste PU were approximately 4 times lower than those of non-irradiated PU. This study has confirmed the possibility of making fine particle of waste PU for recycling through radiation degradation techniques.

  12. Guide for Industrial Waste Management

    Science.gov (United States)

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  13. The management of high-level nuclear wastes - Issues politicians face regarding the risk of ionizing radiation

    International Nuclear Information System (INIS)

    Bataille, C.

    1992-01-01

    The management of ionizing radiation is not a new issue, and it is not a subject that could be easily communicated with the general public. Politicians responsible for decision making are faced with the public who are concerned with the risks. Without general acceptance and support from the public, nuclear programs can not be pursued. The author provides three key guidelines for politicians to follow, the same advice given to the French Parliament earlier: addressing the protection of the population and environment in a responsible manner, assuming an open, non secretive and transparent approach, and adopting a democratic attitude to allow public participation in decision making

  14. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  15. Radioactive waste management - v. 2

    International Nuclear Information System (INIS)

    1987-01-01

    In this second part, the program of waste management of non-military origin of the following countries: USA, United Kingdom, France, Canada, Federal Republic of Germany, and Japan, is presented. For each country, a brief overview on its nuclear program, to identify the reason of the major emphasis done by this country for a specific waste management, is presented. The legislation control, the classification, the treatment and, the options for waste disposal are also presented. (M.C.K.) [pt

  16. Radioactive wastes. Management prospects

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    This article describes the perspectives of management of radioactive wastes as defined in the French law from December 30, 1991. This law defines three ways of research: abatement of the radiotoxicity of wastes (first way), reversible geological storage (second way) or long duration geological disposal (third way). This article develops these three solutions: 1 - strategic perspectives; 2 - separation, transmutation and specific conditioning: isotopes to be separated (evolution of the radio-toxicity inventory of spent fuels, migration of long-living radionuclides, abatement of radio-toxicity), research on advanced separation (humid and dry way), research on transmutation of separate elements (transmutation and transmutation systems, realistic scenarios of Pu consumption and actinides transmutation, transmutation performances), research on materials (spallation targets, fuels and transmutation targets), research on conditioning matrices for separated elements; 3 - long-term storage: principles and problems, containers, surface and subsurface facilities; 4 - disposal: reversibility and disposal, geological disposal (principle and problems, site and concept selection), adaptation to reversibility, research on materials (bentonite and cements for geologic barrier, metals for containers), underground research and qualification laboratories, quantity of containers to be stored. (J.S.)

  17. Applications to waste management operations

    International Nuclear Information System (INIS)

    Paine, D.; Uresk, V.; Schreckhise, R.G.

    1977-01-01

    Ecological studies of the 200 Area plateau waste management environs have provided preliminary answers to questions concerning the environmental health of associated biota, potential for radionuclide transport through the biotic system and risk to man. More importantly creation of this ecological data base provides visible evidence of environmental expertise so essential for maintenance of continued public confidence in waste management operations

  18. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1986-09-01

    This bibliography is an up-date to AECL-6186(Rev 3), 1952-1982, 'Radioactive Waste Management in Canada AECL Publications and Other Literature' compiled by Dianne Wallace. Canadian publications from outside contractors concerning the Canadian Nuclear Fuel Waste Management Program are included in addition to Atomic Energy of Canada Limited reports and papers. 252 refs

  19. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  20. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  1. Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferation with the Russian Federation, Ukraine, Armenia, Georgia and Belarus

    International Nuclear Information System (INIS)

    Dassen, Lars van; Andersson, Sarmite; Bejarano, Gabriela; Delalic, Zlatan; Ekblad, Christer; German, Olga; Grapengiesser, Sten; Karlberg, Olof; Olsson, Kjell; Sandberg, Viviana; Stenberg, Tor; Turner, Roland; Zinger, Irene

    2010-06-01

    The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden's bilateral cooperation with Russia, Ukraine, Georgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in a number of projects financed by the European Union. This report gives an overview of the cooperation projects in 2009 as well as the framework in which they are performed. Summaries of each project are given in an Appendix. The project managers in the Section for Cooperation and Development in the Department of International Affairs are responsible for the cooperation projects and the implementation of the bilateral programmes. But the positive outcome of the projects is also dependent on a large number of experts at SSM who work with the regulatory functions in the nuclear and radiation protection fields in a Swedish context as well as on external consultants. Together, their experience is invaluable for the implementation of the projects. But the projects also give experience of relevance for the SSM staff.

  2. Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferation with the Russian Federation, Ukraine, Armenia, Georgia and Belarus.

    Energy Technology Data Exchange (ETDEWEB)

    Dassen, Lars van; Andersson, Sarmite; Bejarano, Gabriela; Delalic, Zlatan; Ekblad, Christer; German, Olga; Grapengiesser, Sten; Karlberg, Olof; Olsson, Kjell; Sandberg, Viviana; Stenberg, Tor; Turner, Roland; Zinger, Irene

    2010-06-15

    The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden's bilateral cooperation with Russia, Ukraine, Georgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in a number of projects financed by the European Union. This report gives an overview of the cooperation projects in 2009 as well as the framework in which they are performed. Summaries of each project are given in an Appendix. The project managers in the Section for Cooperation and Development in the Department of International Affairs are responsible for the cooperation projects and the implementation of the bilateral programmes. But the positive outcome of the projects is also dependent on a large number of experts at SSM who work with the regulatory functions in the nuclear and radiation protection fields in a Swedish context as well as on external consultants. Together, their experience is invaluable for the implementation of the projects. But the projects also give experience of relevance for the SSM staff.

  3. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  4. Waste management at LAMPF

    International Nuclear Information System (INIS)

    Lambert, J.E.; Grisham, D.L.

    1982-01-01

    Future major improvements at the Clinto P. Anderson Meson Physics Facility (LAMPF) will require replacement of many large radioactive components. Proper disposal of the components presents special waste management problems caused by component size, weight, geometry, and activity level. A special, large cask trailer (54 metric tons gross) is being constructed for transporting the material to the disposal site. The cask trailer is designed so that the amount of shielding may be individually tailored to suit the geometry and activity level of eah item transported. Special handling techniques and methods of stabilizing loose contamination are being developed to facilitate transport of large radioactive components across open areas. A special Monitor remote-handling system is being constructed to perform the various preparation and rigging operations. Implementation of this equipment will expedite future improvements at LAMPF with minimum impact and/or interference with other ongoing activities

  5. Hospital waste management in Lebanon

    International Nuclear Information System (INIS)

    Chaker, Alissar

    1999-01-01

    Hospital wastes comprises approximately 80% domestic waste components, also known as non-risk waste and 20% hazardous or risk waste. The 20% of the hospital waste stream or the risk waste (also known as infectious, medical, clinical wastes) comprises components which could be potentially contaminated with infections, chemical or radioactive agents. Therefore, it should be handled and disposed of in such a manner as to minimize potential human exposure and cross-contamination. Hospital risk waste and be subdivided into seven general categories as follows: infections, anatomical/pathological, chemical, pharmaceutical, radioactive waste, sharps and pressurised containers. These waste categories are generated by many types of health care establishments, including hospitals, clinics, infirmaries.... The document presents also tables of number of hospitals and estimated bed number in different regions in Lebanon; estimated hospital risk and non-risk waste generation per tonnes per day for the years 1998 until 2010 and finally sensitivity analysis of estimated generation of hospital risk waste in Lebanon per tonnes per day for the years 1998 until 2010. The management, treatment and disposal of hospital risk waste constitute important environmental and public safety issues. It is recognised that there is alack of infrastructure for the safe and environmentally acceptable disposal of hospital waste in Lebanon

  6. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  7. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  8. Legal aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Hofmann, H.

    1981-01-01

    The result of the study is that the nuclear waste management defined by sect. 9a of the Atomic Energy Law cannot be realized without violating the constitution or other relevant laws. This evaluation of the nuclear waste management concept is based on an in-depth discussion of technological difficulties involved in nuclear waste management, and on the examination of all existing rules and regulations (Radiation Protection Ordinance, intermediate storage and burial, and reprocessing) at home and abroad, which lead to legal aspects of nuclear waste management which, according to established German law, are to be characterized as being 'unclear'. The author demonstrates especially the lack of precision in law of the term 'radioactive waste'. He points out that a sufficient regulation on the dismantlement of nuclear reactors is missing and he sets forth uncertainties relating to administrative law which are involved in bringing in private companies for burial as it is provided by law. The concluding constitutional assessment of the nuclear waste management regulation of the Atomic Energy Law shows that sect. 9a of the Atomic Energy Law does not meet completely constitutional requirements. (orig./HP) [de

  9. User interface features of information-analytical system for radiation safety of personnel on the example of the northwest center for radioactive waste management 'SEVRAO'

    Energy Technology Data Exchange (ETDEWEB)

    Chizhov, K.; Kryuchkov, V.; Simakov, A.; Tsovyanov, A. [Burnasyan Federal Medical Biophysical Center (Russian Federation); Sneve, M. [Norwegian Radiation Protection Authority - NRPA (Norway); Krasnoshekov, A.; Kosnikov, A. [Northwest Center for Radioactive Waste Management ' SevRAO' - a branch of the Federal State Unitary Enterprise ' Enterprise for Radioactive Waste Management ' RosRAO' (Russian Federation); Kemsky, I. [Regional management No. 120 of the Federal Medical-Biological Agency (Russian Federation)

    2014-07-01

    Algorithms for radiation protection services and regulators were developed. They provide guidelines for choosing actions in planning the elimination of accidents. Method is based on work with a grid of radiation field, which is obtained by interpolation of the measured values. Based on these algorithms, was developed a software with a graphical representation of the original data and the results of calculations. It allows us to evaluate the quality of information received from the monitoring team, search for the best routes on site and find points that make a maximum contribution to the collective dose. Regulator should control about 250 parameters of the radiation situation. Basically, this is a list of control points and the reference values of dose rate at these points for the technical area, buildings and structures located at the industrial site. For each point are two control values - the dose rate at rest and during work. It is more important for regulator to compare the radiation situation with control levels, but not only to see radiation situation itself. Our software graphically present information as areas on the map. Regulator with a glance at the screen can see where levels have been exceeded. It has shown that an important condition for the software implementation is that when facility use it, the operator's efficiency increases, while working time stay constant or reduces. This statement applies for input data into the database, mathematical analysis and present the results in a report drawn up in accordance with the rules of the company. On the example of the Northwest Center for Radioactive Waste Management 'SevRAO' shown that the installation of information-analytical system helped to reduce the time for entering and processing data on the radiation measurements. Document available in abstract form only. (authors)

  10. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  11. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  12. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  13. Hospital Waste Management - Case Study

    Directory of Open Access Journals (Sweden)

    Beatriz Edra

    2017-07-01

    Full Text Available The importance of waste management in hospitals is indisputable in preserving the environment and protecting public health, but management models are rarely discussed. This study presents the legal and conceptual frameworks of good waste management practices applicable to hospitals and associated indicators. As a case study, the overall performance of Hospital Centre of São João, in Porto, was analysed based on published reports. Data on the production of waste in their different typologies were collected from 2010 to 2016, enabling a correlation of the waste production with the kg/bed/day indicator. The aim of this study was to gather data and discuss trends in a real scenario of evolution over a six-year period in order to contribute to a future research proposal on indicators that can be used as reference for benchmarking the construction of methodological guides for hospital waste management.

  14. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  15. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  16. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  17. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  18. Management program on radioactive wastes in research

    International Nuclear Information System (INIS)

    Xavier, Ana Maria; Wieland, Patricia; Heilbron Filho, Paulo Fernando L.; Ferreira, Rubemar de Souza

    1998-01-01

    This document has the objective to orient and advise the researchers to practice a safety management of radioactive wastes in each research laboratory, based upon the technical norms of the Brazilian Nuclear Energy Commission and the recommendations of the International Atomic Energy Agency. Additionally, basic information on the main radioisotopes used in research are presented, including the processes used for production of radioisotopes, methods for radiation detection, range of alpha and beta particles, background radiation, as well as principles on radioprotection and biological effects of radiation

  19. Human factors in waste management

    International Nuclear Information System (INIS)

    Moray, N.

    1994-01-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors

  20. AECL's mixed waste management program

    International Nuclear Information System (INIS)

    Peori, R.; Hulley, V.

    2006-01-01

    Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)

  1. Science, society, and America's nuclear waste: Unit 2, Ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    ''Science, Society and America's Nuclear Waste'' is a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  2. Management of Spent Radiation Source from Radiotherapy

    International Nuclear Information System (INIS)

    Aisyah

    2008-01-01

    Nowadays the use of radioactive source for both radiodiagnostic and radiotherapy in Indonesia hospital increases rapidly. Sealed source used in radiotherapy among others for brachytherapy, teletherapy, bone densitometry, whole blood irradiation and gamma knife (radiosurgery). In line with this, the waste of spent radiation sources will be generated in hospitals. Of course these spent radiation sources must be treated correctly in order to maintain the safety of both the public and the environment. According to the Act No. 10/1997, BATAN, in care of the Radioactive Waste Management Center is the national appointed agency for the management of radioactive waste. The option for waste management by hospitals needs to be expound, either by re-exporting to the supplier of origin, re-exporting to other supplier, re-use by other licensee or sending to the Radioactive Waste Management Center. Usually the waste sent by the hospitals to the center comprises of sealed radiation source of 60 Co, 137 Cs or 226 Ra. The management of spent radiation source in the center is carried out in several steps i.e. conditioning, temporary storage, and long-term storage (final disposal). The conditioning of non 226 Ra is carried out by placing the waste in a 200 litter drum shell, 950 or 350 litter concrete shells, depends on the activity and dimension of the spent radiation source. The conditioning of 226 Ra is carried out by encapsulating the waste in a stainless steel container for long-term storage shield which then placed in a 200 litter drum shell. The temporary storage of the conditioned spent radiation source is carried out by storing it in the center’s temporary storages, either low or medium activity waste. Finally, the conditioned spent radiation source is buried in a disposal facility. For medium half-life spent radiation source, the final disposal is burial it in a shallow-land disposal; mean while, for long half-life spent radiation source, the final disposal is burial it in

  3. Radioactive Waste Management Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of radioactive waste management, including decommissioning and environmental remediation, to ensure that the Nuclear Energy Basic Principles are satisfied.

  4. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  5. Solid Waste Management in Jordan

    OpenAIRE

    Aljaradin, Mohammad; Persson, Kenneth M

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced mi...

  6. Solid Waste Management in Jordan

    OpenAIRE

    Mohammad Aljaradin

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced migra...

  7. Radiation exposure records management

    International Nuclear Information System (INIS)

    Boiter, H.P.

    1975-12-01

    Management of individual radiation exposure records begins at employment with the accumulation of data pertinent to the individual and any previous occupational radiation exposure. Appropriate radiation monitorinng badges or devices are issued and accountability established. A computer master file is initiated to include the individual's name, payroll number, social security number, birth date, assigned department, and location. From this base, a radiation exposure history is accumulated to include external ionizing radiation exposure to skin and whole body, contributing neutron exposure, contributing tritium exposure, and extremity exposure. It is used also to schedule bioassay sampling and in-vivo counts and to provide other pertinent information. The file is used as a basis for providing periodic reports to management and monthly exposure summaries to departmental line supervision to assist in planning work so that individual annual exposures are kept as low as practical. Radiation exposure records management also includes documentation of radiation surveys performed by the health physicist to establish working rates and the individual estimating and recording his estimated exposure on a day-to-day basis. Exposure information is also available to contribute to Energy Research and Development Administration statistics and to the National Transuranium Registry

  8. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  9. LIMCAL: a comprehensive food chain model for predicting radiation exposure to man in long-term nuclear waste management

    International Nuclear Information System (INIS)

    Zach, Reto.

    1982-08-01

    A food chain model, LIMCAL, has been designed to aid in the assessment of the effects of long-term nuclear waste management on man far into the future. LIMCAL is particularly suited to the evaluation of an underground vault. Energy budgets, a basic feature of food chains, have been introduced in LIMCAL to help overcome uncertainties imposed by long time spans. LIMCAL includes all the ingestion pathways leading to man, which comprise terrestrial, fresh-water and saltwater food types and man's and animals' drinking water. The terrestrial pathways include both root uptake and leaf deposition. The basic input terms for LIMCAL are annual average radionuclide concentrations in soil, fresh water and saltwater. Annual average air concentrations can be calculated from soil concentrations by using the resuspension factor or the mass-loading approach. Many of the equations in LIMCAL are similar to those in FOOD II and NEPTUN, existing food chain models for contemporary assessments. The basic output of LIMCAL consists of radionculide concentrations in various food types and drinking water, and the resulting ICRP 26 50-year committed effective dose equivalents for infant and adult man. Dose/ concentration ratios can also be calculated readily by LIMCAL. LIMCAL is best described as a deterministic generic quasi-equilibrium assessment model of the linear-chain type. The parameters of LIMCAL have been reviewed in detail in a separate document

  10. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  11. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BELGOWASTE was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: Purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste; centralization assumes the making of adequate arrangements for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of resiudal material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste; deep clay formations are at present preferred; disposal of low-level treated waste into the Atlantic ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol [fr

  12. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  13. Waste management at WAK

    International Nuclear Information System (INIS)

    Kuhn, K.D.; Willax, H.O.

    1986-01-01

    After a short description of the WAK plant and its reprocessing and intervention activities, types and sources of WAK wastes are described. Roughly half of the waste volume is generated during reprocessing, the other half during intervention periods. Most of the waste is transported to KfK for conditioning. Only waste from the head end cell is cementated on the spot. HLLW is stored in stainless steel tanks. Some results from analyzing this stuff are given. The corrosion behavior is acceptable for medium term storage. (orig.)

  14. Challenges in Regulating Radiation Sources and Radioactive Waste in Nigeria

    International Nuclear Information System (INIS)

    Ngwakwe, C.

    2016-01-01

    Identifying challenges that hamper the efficiency and efficacy of Regulatory Infrastructure (People and Processes) as regards ensuring safety & security of radiation sources and radioactive waste is a major step towards planning for improvement. In a world constantly motivated by technological advancements, there has been considerable increase in the use of new technologies incorporating radioactive sources in both medical and industrial applications due to its perceived benefits, hence changing the dynamics of regulation. This paper brings to the fore, contemporary challenges experienced by regulators in the course of regulating radiation sources and radioactive waste in Nigeria. These challenges encountered in the business of regulating radiation sources and radioactive waste in Nigeria amongst others include; knowledge gap in the use of novel technologies for industrial applications (e.g. radiotracers in oil & gas and wastewater management), inadequate collaboration with operators to ensure transparency in their operations, inadequate cooperation from other government agencies using ionizing radiation sources, lack of synergy between relevant government agencies, difficulty in establishing standard radioactive waste management facility for orphan & disused sources, and inadequate control of NORMS encountered in industrial activities (e.g. well logging, mining). Nigerian Nuclear Regulatory Authority (NNRA), the body saddled with the responsibility of regulating the use of ionizing radiation sources in Nigeria is empowered by the Nuclear Safety and Radiation Protection Act to ensure the protection of life, property, and the environment from the harmful effects of ionizing radiation, hence are not immune to the aforementioned challenges. (author)

  15. Waste Management System Requirements Document

    International Nuclear Information System (INIS)

    1992-02-01

    This DCP establishes an interim plan for the Office of Civilian Radioactive Waste Management (OCRWM) technical baseline until the results of the OCRWM Document Hierarchy Task Force can be implemented. This plan is needed to maintain continuity in the Program for ongoing work in the areas of Waste Acceptance, Transportation, Monitored Retrievable Storage (MRS) and Yucca Mountain Site Characterization

  16. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  17. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  18. Defense waste management plan

    International Nuclear Information System (INIS)

    1983-06-01

    Defense high-level waste (HLW) and defense transuranic (TRU) waste are in interim storage at three sites, namely: at the Savannah River Plant, in South Carolina; at the Hanford Reservation, in Washington; and at the Idaho National Engineering Laboratory, in Idaho. Defense TRU waste is also in interim storage at the Oak Ridge National Laboratory, in Tennessee; at the Los Alamos National Laboratory, in New Mexico; and at the Nevada Test Site, in Nevada. (Figure E-2). This document describes a workable approach for the permanent disposal of high-level and transuranic waste from atomic energy defense activities. The plan does not address the disposal of suspect waste which has been conservatively considered to be high-level or transuranic waste but which can be shown to be low-level waste. This material will be processed and disposed of in accordance with low-level waste practices. The primary goal of this program is to utilize or dispose of high-level and transuranic waste routinely, safely, and effectively. This goal will include the disposal of the backlog of stored defense waste. A Reference Plan for each of the sites describes the sequence of steps leading to permanent disposal. No technological breakthroughs are required to implement the reference plan. Not all final decisions concerning the activities described in this document have been made. These decisions will depend on: completion of the National Environmental Policy Act process, authorization and appropriation of funds, agreements with states as appropriate, and in some cases, the results of pilot plant experiments and operational experience. The major elements of the reference plan for permanent disposal of defense high-level and transuranic waste are summarized

  19. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  20. Robotic radiation survey and analysis system for radiation waste casks

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    Sandia National Laboratories (SNL) and the Hanford Engineering Development Laboratories have been involved in the development of remote systems technology concepts for handling defense high-level waste (DHLW) shipping casks at the waste repository. This effort was demonstrated the feasibility of using this technology for handling DHLW casks. These investigations have also shown that cask design can have a major effect on the feasibility of remote cask handling. Consequently, SNL has initiated a program to determine cask features necessary for robotic remote handling at the waste repository. The initial cask handling task selected for detailed investigation was the robotic radiation survey and analysis (RRSAS) task. In addition to determining the design features required for robotic cask handling, the RRSAS project contributes to the definition of techniques for random selection of swipe locations, the definition of robotic swipe parameters, force control techniques for robotic swipes, machine vision techniques for the location of objects in 3-D, repository robotic systems requirements, and repository data management system needs

  1. Solid waste management - Pakistan's perspective

    International Nuclear Information System (INIS)

    Hussain, M.

    2003-01-01

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  2. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  3. Waste management and the workplace*

    African Journals Online (AJOL)

    User

    those employed by private contractors or intermediaries providing waste management services to local .... Tension both within this coalition and between the coalition and the ruling ANC has at times been high. 12 A lifeline tariff (also called a ...

  4. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  5. Waste management in Greater Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Carrusca, K. [Greater Vancouver Regional District, Burnaby, BC (Canada); Richter, R. [Montenay Inc., Vancouver, BC (Canada)]|[Veolia Environmental Services, Vancouver, BC (Canada)

    2006-07-01

    An outline of the Greater Vancouver Regional District (GVRD) waste-to-energy program was presented. The GVRD has an annual budget for solid waste management of $90 million. Energy recovery revenues from solid waste currently exceed $10 million. Over 1,660,00 tonnes of GVRD waste is recycled, and another 280,000 tonnes is converted from waste to energy. The GVRD waste-to-energy facility combines state-of-the-art combustion and air pollution control, and has processed over 5 million tonnes of municipal solid waste since it opened in 1988. Its central location minimizes haul distance, and it was originally sited to utilize steam through sales to a recycle paper mill. The facility has won several awards, including the Solid Waste Association of North America award for best facility in 1990. The facility focuses on continual improvement, and has installed a carbon injection system; an ammonia injection system; a flyash stabilization system; and heat capacity upgrades in addition to conducting continuous waste composition studies. Continuous air emissions monitoring is also conducted at the plant, which produces a very small percentage of the total air emissions in metropolitan Vancouver. The GVRD is now seeking options for the management of a further 500,000 tonnes per year of solid waste, and has received 23 submissions from a range of waste energy technologies which are now being evaluated. It was concluded that waste-to-energy plants can be located in densely populated metropolitan areas and provide a local disposal solution as well as a source of renewable energy. Other GVRD waste reduction policies were also reviewed. refs., tabs., figs.

  6. Management of reactor waste

    International Nuclear Information System (INIS)

    Baatz, H.

    1976-01-01

    The author discusses the type, production and amount of radioactive waste produced in a nuclear power station (LWR) as well as its conditioning and disposal. The mobile system developed by STEAG for the solidification of medium-activity waste and sludge is referred to in this connection. (HR) [de

  7. ERDA waste management program

    International Nuclear Information System (INIS)

    Kuhlman, C.W.

    1976-01-01

    The ERDA commercial waste program is summarized. It consists of three parts: terminal storage, processing, and preparation of the Generic Environmental Impact Statement. Emplacement in geologic formations is the best disposal method for high-level waste; migration would be essentially zero, as it was in the Oklo event. Solidification processes are needed. Relations with the states, etc. are touched upon

  8. Developing Tribal Integrated Waste Management Plans

    Science.gov (United States)

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  9. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  10. Radioactive waste management in perspective

    International Nuclear Information System (INIS)

    1996-01-01

    This report drafted by the Nuclear Energy Agency (NEA) deals with the basic principles and the main stages of radioactive waste management. The review more precisely focuses on what relates to environment protection, safety assessment, financing, social issues, public concerns and international co-operation. An annex finally summarises the radioactive waste management programs that are implemented in 15 of the NEA countries. (TEC). figs

  11. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  12. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  13. Management of radioactive wastes at UFRJ

    International Nuclear Information System (INIS)

    Soares, J.C.A.R.; Anjos, M.J.; Mattos, J.A.; Souza, H.V.; Castro, C.R.F.; Sarquis, A.C.R.; Padilha Filho, L.G.; Borges, J.C.

    1992-01-01

    Since 1987, when the radiological Control Service of UFRJ was created, a radioprotection program has been developed, including all the installations and employees involved with ionizing radiations activities. Recently, a more systematic approach for radioactive wastes produced, monthly/annual manipulated activities, procedure and capacity of storage, and forms of release to the environment. Actual situation is not distant from that required by the norms about, but there area some critical situations that deserved emergency corrections. A plan for waste management is being prepared to be executed in the short and middle terms. (author)

  14. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Antonioli, S.; Manet, M.

    1985-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled France to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsibilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  15. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Lefevre, J.; Brignon, P.

    1986-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled FRANCE to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning, and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsabilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  16. Update on waste management policies and programmes

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide concise information on current radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc.). For practical purposes, the Bulletin does not include an exhaustive description of national programmes. The reader is therefore invited to go back to the information given in previous bulletins and, if necessary, to contact national correspondents in order to obtain a more complete picture of on-going activities. (authors)

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  18. Development and problems of radioactive waste management infrastructure in Estonia

    International Nuclear Information System (INIS)

    Putnik, H.; Realo, E.

    2001-01-01

    Estonia is one of a few countries where the establishment of radiation protection and radioactive waste management infrastructure started only recently, soon after regaining independence in the beginning of 1990's. Both legislative and regulatory infrastructure had to be built from scratch, in parallel with the beginning of urgent activities and practices to manage waste streams inherited from the past. Despite significant deficiency of local expertise and specialists in the field, the main objectives of the establishment were set up: to enforce national legislation basing on contemporary international principles, criteria, requirements and to implement structures and procedures for an efficient regulation of radiation safety issues, including practices involving radioactive waste management and decommissioning

  19. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  20. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  1. Radiation damage in nuclear waste ceramics

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.; Rusin, J.M.; Wald, J.W.

    1982-01-01

    The text contains a number of specific observations about the radiation-induced changes in glass, glass-ceramic, and supercalcine nuclear waste forms. Other, more general conclusions can be summarized: Radiation-induced property changes follow an exponential ingrowth curve to saturation. Actinide host phases in both crystalline waste forms become X-ray amorphous. The magnitudes of the waste-form density changes observed could not be directly related to observed changes in the primary actinide phases. Although large crystal-structure changes occur in the materials studied, obvious physical degradation was not observed

  2. Solutions for Waste Management

    International Nuclear Information System (INIS)

    2013-01-01

    To safely and securely dispose of highlevel and long-lived radioactive waste, this material needs to be stored for a period of time that is very long compared to our everyday experience. Underground disposal facilities need to be designed and constructed in suitable geological conditions that can be confidently demonstrated to contain and isolate the hazardous waste from our environment for hundreds of thousands of years. Over this period of time, during which the safety of an underground waste repository system must be assured, the waste's radioactivity will decay to a level that cannot pose a danger to people or the environment. The archaeological record can help in visualizing such a long period of time. Climates change, oceans rise and vanish, and species evolve in the course of a one hundred millennia. Rocks bear witness to all of these changes. Geologists in their search for safe repositories for the long-term disposal of high level radioactive waste have identified rock formations that have proven stable for millions of years. These geological formations are expected to remain stable for millions of years and can serve as host formations for waste repositories.

  3. Safe management of spent radiation source

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Valdezco, E.M.; Choi, Kwang-Sub

    2003-01-01

    Presented are 8 investigation reports concerning the safe management of spent radiation source (SRS) during the current 2 years. Four reports from Japan are: Scheme for SRS management (approach and present status of the SRS management and consideration toward solving problems); Current International Atomic Energy Agency (IAEA) activities related to safety of radiation sources (Chronology of action plan development, Outline of revised action plan, and Asian regional activities); Current status of SRS management in Japan (Regulation system, Obligations of licensed users, Regulatory system on sealed sources, Status in the incidents on sources occurred, Incident of source loss, and Incidents of orphan sources); and SRS management system in Japan (Current status of using of sealed sources, collection system of SRS-Japan Radioisotope Association (JRIA) services, and Disposal of SRS). Four reports from the Asian countries also concern the current statuses of SRS management in the Philippine (Radioactive waste sources, Waste management strategies, Conditioning of Ra sources, Ra project action plan, as low as reasonably achievable (ALARA) program, Dose assessment, Regulations on radioactive waste, Action plan on the safety and security of sources, IAEA Regional Demonstration Centers, and sitting studies for a near surface disposal facility); Thailand (Current status of using sealed sources, Inventory of SRS, and Current topics of SRS management); Indonesia (Principles of management of radiation sources, Legislative framework of SRS management practices, Regulatory on SRS, management of sealed SRS, management hurdles, and reported incidents); and Korea (Regulatory frame work, Collection systems of SRS, Radioisotope waste generation, Radiation exposure incident, and Scrap monitoring system). (N.I.)

  4. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  5. Management of radiation risk

    International Nuclear Information System (INIS)

    Hubert, P.

    1996-01-01

    The need to control the risk from ionizing radiation can be tracked back to the eve of the twentieth century. However, as knowledge improved and practices expanded, the approaches to this control have evolved. No longer is the mere respect of some forms of exposure limits or safety related standards sufficient. Rather, it is widely admitted that there is a need for managing radiation risk, both by balancing the advantages and disadvantages of enhancing protection and by setting up a proper organization that allows handling of the risk. This paper describes the multiple aspects of radiation risk management and points out the main related issues. It critically analyzes ALARA and ICRP recommendations. 74 refs, 8 figs, 5 tabs

  6. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  7. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  8. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BelgoWaste was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste, centralization assuming that adequate arrangements are made for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of residual material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste (deep clay formations are at present preferred); and disposal of low-level treated waste into the Atlantic Ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol. (author)

  9. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  10. Waste Management Operations Program

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    The major function of the Program is to operate the Laboratory's systems and facilities for collecting and disposing of radioactive gaseous, liquid, and solid wastes. This includes collection and shallow land burial of about 2000 m 3 of β-γ contaminated waste and retrievable storage of about 60 m 3 of transuranium contaminated waste annually; ion-exchange treatment and release to the environment of about 450 x 10 3 m 3 of slightly contaminated water; volume reduction by evaporation of about 5000 m 3 of intermediate-level liquid waste followed by hydrofracture injection of the concentrate; and scrubbing and/or filtration of the gases from radioactive operations prior to release to the atmosphere. In addition, this year disposal of about 350,000 gal of radioactive sludge from the old (no longer in service) gunite tanks began. Operations are in conformance with rules and regulations presently applicable to ORNL. This Program is responsible for planning and for development activities for upgrading the facilities, equipment, and procedures for waste disposal to ensure ORNL work incorporates the latest technology. Major (line-item) new facilities are provided as well as substantial (GPP) upgrading of old facilities. These activities as well as the technical and engineering support to handle them are discussed

  11. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  12. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  13. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashov, Vladislav S.; Steranka, Steve A. [RadComm Systems Corp., 2931 Portland Dr., Oakville, ON L6H 5S4 (Canada)

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  14. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  15. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  16. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Voss, J.W.

    1979-09-01

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO 2 -PuO 2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  17. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  18. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  19. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Houy, J.C.; Rimbert, J.C.; Bouvet, C.; Laugle, S.

    1997-01-01

    radioactive wastes which do not correspond to the disposal standards will be processed by ANDRA (National Agency for Radioactive Waste Management)

  20. Waste management - nuclear style

    International Nuclear Information System (INIS)

    McCall, P.

    1977-01-01

    Possible ways of disposing of highly radioactive wastes arising from the United Kingdom nuclear industry are briefly reviewed: projecting into outer space, dumping in containers in the ocean, or storage on land. The problems in each case and, in particular, the risks of environmental contamination from marine or land disposal, are discussed. (U.K.)

  1. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  2. International waste-management symposium

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1977-01-01

    An International Symposium on the Management of Wastes from the LWR Fuel Cycle was held in Denver, Colo., on July 11 to 16, 1976. The symposium covered a broad range of topics, from policy issues to technology. Presentations were made by national and international speakers involved in all aspects of waste management, government and agency officials; laboratory managers, directors, and researchers; and industrial representatives. Many speakers advocated pragmatic action on programs for the management of commercial nuclear wastes to complete the light-water reactor (LWR) fuel cycle. The industrialized nations' demand for increasing supplies of energy and their increasing dependence on nuclear energy to fulfill this demand will necessitate the development of an acceptable solution to the disposal of nuclear wastes within the next decade for some industrial nations. Waste-disposal technology should be implemented on a commercial scale, but the commercialization must be accompanied by the decision to use the technology. An important issue in the use of nuclear energy is the question of sharing the technology with the less industrialized nations and with nations that may not have suitable means to dispose of nuclear wastes. The establishment of international and multinational cooperation will be an important key in realizing this objective. Pressing issues that international organizations or task groups will have to address are ocean disposal, plutonium recycling and safeguards, and disposal criteria. The importance of achieving a viable waste-management program is made evident by the increased funding and attention that the back end of the fuel cycle is now receiving

  3. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  4. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  5. The management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Peyrin, J.O.

    1992-01-01

    Enquiries performed by nuclear medicine services together with ANDRA in order to characterize the radioactive wastes from hospital origin have led to suggest some improvements in the management of these products: improved screening on the production site by rationalized collection, planning of a local storage installation for decay of 125 I-containing products, systematic education of concerned hospital staff, in particular to prevent infectious risks, obtaining legislatively a change of class for tritiated and carbonated hospital radioactive wastes, which will be then considered as common wastes. The practical application of these arrangements in hospital by the 'radiation protection competent person' would liberate hospital departments from systematic appeal to ANDRA and thus result in money saving

  6. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  7. Radioactive waste management in the Czech Republic

    International Nuclear Information System (INIS)

    Duda, Vitezslav

    2008-01-01

    Radioactive waste and spent nuclear fuel are generated in the Czech Republic as a consequence of the peaceful use of nuclear energy and ionising radiation in many industries, particularly in the generation of nuclear energy, health care (therapy, diagnostics), research, and agriculture. The current extent of utilisation of nuclear energy and ionising radiation in the Czech Republic is comparable with that of other developed countries. The Concept of Radioactive Waste and Spent Nuclear Fuel Management is a fundamental document formulating government and state authority strategy for the period up to approximately 2025 (affecting policy up to the end of the 21st century), concerning the organizations which generate radioactive waste and spent nuclear fuel. The Concept puts forward solutions to provide for the disposal of waste in compliance with requirements for the protection of human health and the environment without excessively transferring any of the current impacts of nuclear energy and ionising radiation utilisation to future generations. The Concept was approved by the government of the Czech Republic in 2002. According to the Concept high level waste and spent nuclear fuel generated at the Dukovany and Temelin nuclear power plants will eventually be disposed of in a deep geological repository. Such a repository should commence operation in 2065. Work aimed at selecting potentially suitable sites began in 1992, but the final site has not yet been determined. In compliance with the aforementioned Concept, the Radioactive Waste Repository Authority (RAWRA) is responsible for finding two suitable sites before 2015. The current stage of evaluation covers the whole of the Czech Republic and includes detailed criteria and requirements. Based on the latest findings RAWRA suggested six potential sites for further investigation at the beginning of 2003. (author)

  8. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  10. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  11. Television systems for radioactive waste management

    International Nuclear Information System (INIS)

    Quartly, J.R.

    1989-01-01

    Radiation-tolerant television cameras, widely used for the inspection of nuclear plants, are now used for monitoring radioactive waste management processes. Two systems are described in this paper that differ in the methods of maintaining the camera equipment. At the British Nuclear Fuels plc (BNFL) Sellafield plant, a major capital investment program is under way that includes plants for spent-fuel reprocessing and radioactive waste management. The Windscale vitrification plant (WVP) will convert highly active liquid waste to a solid glass-like form. The WVP television system was based on in-cell cameras designed to be removable by remote-handling equipment. The plant to encapsulate medium active solid waste, encapsulation plant 1 (EP1) used through-wall and through-roof viewing systems with a glass viewing dome as the biological shield, allowing the camera and optics to be withdrawn to a safe area for maintenance. Both systems used novel techniques to obtain a record of the waste-processing operations. The WVP system used a microcomputer to overlay reference information onto the television picture and a motion detector to automatically trigger the video recording. The television system for EP1 included automatic character recognition to generate a computer data record of drum serial numbers

  12. French regulation and waste management

    International Nuclear Information System (INIS)

    1984-08-01

    The organization and the role played by French safety authorities for waste management are described. The French policy for storage and conditioning: basic objectives and waste management optimization are specified. Safety requirements are based on the barrier principle, they are mentioned for packaging and storage. The ''Institut de Protection et Surete Nucleaire'' deals not only with safety analysis but also help the ''autorites ministerielles'' for the development of fundamental safety rules. Examples for spent fuel storage and radioactive materials transport are treated in appendixes [fr

  13. Radiation and environmental safety of spent nuclear fuel management options based on direct disposal or reprocessing and disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuori, S.

    1996-05-01

    The report considers the various stages of two nuclear fuel cycle options: direct disposal and reprocessing followed by disposal of vitrified high-level waste. The comparative review is based on the results of previous international studies and concentrates on the radiation and environmental safety aspects of technical solutions based on today's technology. (23 refs., 7 figs., 4 tabs.)

  14. Gamma radiation sterilises bacteria-contaminated waste

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The use of gamma radiation for the sterilisation of sewage and hospital waste etc., is briefly described. A sterilisation plant delivered by Sulzer is illustrated diagrammatically and its functioning explained, while a photograph illustrates a similar plant delivered by Geodel Systems, of Canada. The latter firm has adapted this type of plant for the radiolytical destruction of phenols, cyanides, alkyl benzenesulphonates and similar wastes. (JIW)

  15. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  16. An international approach to radioactive waste management

    International Nuclear Information System (INIS)

    Barlett, J.W.

    1994-01-01

    Needs and opportunities for an international approach to management and disposal of radioactive wastes are discussed. Deficiencies in current national radioactive waste management programs are described, and the impacts of management of fissile materials from nuclear weapons on waste management are addressed. Value-added services that can be provided by an international organization for waste management are identified, and candidate organizations that could provide these services are also identified

  17. Progress in waste management technology

    International Nuclear Information System (INIS)

    Hart, R.G.

    1978-08-01

    In a previous paper by the same author, emphasis was placed on the role that 'pathways analysis' would play in providing 'beyond reasonable doubt' that a particular method and a particular formation would be suitable for the safe geologic disposal of nuclear wastes. Since that paper was released, pertinent pathways analyses have been published by Bernard Cohen, de Marsily et al., the American Physical Society's Special Study Group on Nuclear Fuel Cycles and Waste Management, and KBS of Sweden. The present paper reviews and analyses the strengths and weaknesses of each of these papers and their implications for the Canadian plan for the geologic disposal of nuclear waste. The conclusion is that the Canadian plan is on the right track and that the disposal of nuclear wastes is not an intractable problem. Indeed the analyses show that several options, each with large safety factors, are likely eventually to be identified. (author)

  18. Radioactive waste management in Germany

    International Nuclear Information System (INIS)

    Brammer, K.J.

    2011-01-01

    The responsibility for the disposal of radioactive waste is regulated in the Federal Republic of Germany in the Atomic Energy Act. Basically, it is the responsibility of the waste producers to carry out all necessary processing steps up to the delivery to a repository. The Federal Republic reserves the right to select, explore and operate the repository (§ 9a, para. 3 AtG). The costs of all necessary expenditures of this task are borne by the waste producers in accordance with § 21 AtG regulation. The waste quantity forecasts have shown that by the year 2080 a total volume of about 300,000 m3 of low- and intermediate-level (non-heat-generating) waste will be generated in research, industry, medicine and in the production of electricity in nuclear power plants. This waste is to be transported to the ‘Konrad repository’ which is under construction. The Federal Office for Radiation Protection (BfS), which is responsible for the construction and operation, intends to commission the repository at 2019. As a repository for heat-generating wastes, i. Approximately 10.000 tSM spent fuel (BE) 7,500 molds (HAW and MAW, corresponding to about 6000 tSM) returned Waste from reprocessing, the Gorleben salt dome has been explored since 1979. The works were resumed on 01.10.2010 after a 10-year break. Federal Environment Minister Röttgen has made it clear that the Federal Government has proposed a transparent procedure and a dialogue and participation procedure for open-ended exploration. (roessner)

  19. Radioactive hospital wastes. Radiations under control

    International Nuclear Information System (INIS)

    Bondeelle, A.; Delmotte, H.; Gauron, C.

    2006-07-01

    A set of articles proposes an overview of legal and regulatory evolutions regarding radioactive hospital wastes. These legal measures and evolutions are notably present in the Public Health code, in the Labour code. An article outlines the role of the radiation protection expert in the process of elimination of contaminated wastes (four major steps for this elimination are indicated; peculiarities of the hospital are outlined, as well as control procedures and the importance of training and information). An article describes the specific activity of the Creteil incinerator which comprises a unit for the incineration of care activity wastes under a very constraining regulation

  20. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  1. Radiation treatment of waste papers

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1982-01-01

    The effect of irradiation on enzymatic hydrolysis of waste papers was studied. The sugar yield increased with increasing irradiation dose. In irradiation of deligninized paper, no acceleration of enzymatic hydrolysis was observed. Degradation of cellulose molecules in paper by irradiation was examined by measurements of degree of polymerization and of potential reducing sugar. It was found in enzymatic hydrolysis that oligosaccharides such as celobiose were produced by irradiation. In irradiation of waste papers in catbon dioxide atmosphere, the glucose yield during enzymatic hydrolysis increased with increasing carbon dioxide gas pressure. (author)

  2. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  3. Fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Philippone, R.L.; Kaiser, R.A.

    1989-01-01

    Because of different economic, social and political factors, there has been a tendency to compartmentalize the commercial nuclear power industry into separate power and fuel cycle operations to a greater degree in some countries compared to other countries. The purpose of this paper is to describe how actions in one part of the industry can affect the other parts and recommend an overall systems engineering approach which incorporates more cooperation and coordination between individual parts of the fuel cycle. Descriptions are given of the fuel cycle segments and examples are presented of how a systems engineering approach has benefitted the fuel cycle. Descriptions of fuel reprocessing methods and the waste forms generated are given. Illustrations are presented describing how reprocessing options affect waste management operations and how waste management decisions affect reprocessing

  4. The general principles and consequences of environmental radiation exposure in relation to Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Myers, D.K.

    1989-09-01

    This document reviews the general principles and biological consequences of environmental radiation exposure. Particular attention was paid to the ICRP principle that if individual humans are adequately protected, then populations of other living organisms are likely to be sufficiently protected. The data reviewed in this document suggest that this principle is usually valid, although some theoretical concerns were noted with respect to effects of bioaccumulation of certain radionuclides in aquatic organisms

  5. Healthcare waste management in Asia

    International Nuclear Information System (INIS)

    Prem Ananth, A.; Prashanthini, V.; Visvanathan, C.

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  6. Healthcare waste management in Asia.

    Science.gov (United States)

    Ananth, A Prem; Prashanthini, V; Visvanathan, C

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  7. International waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  8. International waste management fact book

    International Nuclear Information System (INIS)

    Amaya, J.P.; LaMarche, M.N.; Upton, J.F.

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs

  9. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  10. Benefits of a formal waste management program

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1974-01-01

    The proper management of waste is of vital importance in the conservation of our environment. Mound Laboratory, which is operated by Monsanto Research Corporation for the U. S. Atomic Energy Commission, has embarked upon a waste management program designed to assure that the generation, processing, storage, and disposal of waste is conducted in such a manner as to have a minimum impact on the environment. The organizational approach taken toward waste management is discussed and some of the benefits of the waste management program at Mound Laboratory are described. Ithas been shown that the utilization of proper waste management techniques can have economic, as well as environmental protection, benefits. (U.S.)

  11. Radiological impact of radioactive waste management

    International Nuclear Information System (INIS)

    Beninson, D.J.; Migliori de Beninson, Ambreta.

    1985-01-01

    The radiological impacts from management of wastes from the nuclear fuel cycle have been estimated for several alternative fuel cycle strategies. The impacts are expressed as collective effective dose equivalent commitments. Mill tailings make an important contribution, which depends on the uranium requirements for each reference fuel cycle, being the largest for once-through cycles. Disposal of high level waste or spent fuel is also an important contribution, usually larger for once-through cycle where the entire actinide inventory is disposed off. Although at present conversion and enrichment tailing are not considered wastes, they have assumed to be wastes in the reference cycle. In this case, their relative contribution is significant for fuel cycles using enriched uranium. The totals for waste management and disposal are of the same order of magnitude as the collective dose commitments from occupational and public exposures arising from the operation of the nuclear fuel cycle installations. The incomplete collective dose commitments from waste management and disposal assessed by integrating the collective dose rate over a fixed period of time (usually selected as 500 years), at time when the integral is maximum, are also comparable with the corresponding quantity arising from the operation of the fuel cycle installations. The maximum per caput doses predicted for the far future are small, usually a small fraction of the relevant dose limits. The maximun future doses in the critical groups in the vicinity of the repositories will be very low, of about a few percents of that experienced from the exposure to natural radiation sources. (M.E.L.) [es

  12. WasteWise Resource Management: Innovative Solid Waste Contracting Methods

    Science.gov (United States)

    Resource management is an innovative contractual partnership between a waste-generating organization and a qualified contractor that changes the nature of current disposal services to support waste minimization and recycling.

  13. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  14. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Hobart, L.

    1984-01-01

    The Nuclear Waste Fund involves a number of features which make it a unique federal program. Its primary purpose is to finance one of the largest and most controversial public works programs in the history of the United States. Despite the program's indicated size and advance publicity, no one knows exactly where the anticipated projects will be built, who will construct them, what they will look like when they are done or how they will be operated and by whom. Implimentation of this effort, if statutory targets are actually met, covers a 16-year period. To cover the costs of the program, the Federal Government will tax nuclear power at the rate of 1 mil per kilowatt hour generated. This makes it one of the biggest and longest-lived examples of advance collections for construction work in progress in the history of the United States. While the Department of Energy is authorized to collect funds for the program the Nuclear Regulatory Commission has the authority to cut off this revenue stream by the shutdown of particular reactors or particular reactor types. If all goes well, the Federal Government will begin receiving spent nuclear fuel by 1998, continuing to assess a fee which will cover operating and maintenance costs. If all does not go well, the Federal Government and/or utilities will have to take other steps to solve the problem of permanent disposal. Should the latter circumstance prevail, presumably not only used to date but the $7.5 billion would be spent. The Nuclear Waste Policy Act of 1982, contains no clear provision for utility refunds in that case

  15. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  16. Life cycle assessment of capital goods in waste management systems

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2016-01-01

    plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation......The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m3 collection truck, a composting plant, an anaerobic digestion...... for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming....

  17. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  18. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  19. Waste management regroups units into Rust International

    International Nuclear Information System (INIS)

    Kirschner, E.

    1992-01-01

    Three Waste Management (Oak Brook, IL) subsidiaries have proposed merging units from Chemical Waste Management (CWM) and Wheelabrator Technologies with the Brand Companies (Park Ridge, IL). Waste Management says the new company, to be called Rust International, will become one of the US's largest environmental consulting and infrastructure organizations and will include design and construction services. Waste Management expects the merged company's 1993 revenues to reach $1.8 billion. It will be based in Birmingham, AL and have 12,000 employees

  20. Waste Management Information System (WMIS) User Guide

    International Nuclear Information System (INIS)

    Broz, R.E.

    2008-01-01

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data through the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal

  1. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  2. TACIS Belarus - an overview of results and planned activities in the field of radiation protection, emergency preparedness and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, L. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) mbH, Berlin (Germany)

    2006-07-01

    Since 1996 the nuclear safety authorities of the Republic of Belarus were assisted with TACIS activities entitled: 'Transfer of Western European Regulatory Methodology and Practices to the Nuclear Safety Authorities of Belarus'. Considering the results of the Exploratory Mission which was arranged in 1996 the Regulatory Assistance Projects BE/RA/01 and BE/RA/02 were successful realised in 1998/1999 and in 2003/2004, respectively. These projects were financed by the Commission of the European Communities (EC) and implemented by a consortium of Technical Support Organisations (TSOs) from France (IRSN (former IPSN)), Germany (GRS) and Sweden (SSI) led by Riskaudit IRSN/GRS International. Beneficiary of the projects were Promatomnadzor at the beginning and later the Ministry for Emergency Situations of the Republic of Belarus each in connection with the Republican Centre of Radiation Control and Monitoring (RCRCM). The actual project BE/RA/03 'Regulatory Assistance to Belarus in the Field of Nuclear Safety and Radiation Protection including Radiological Emergency Preparedness' was started by the end of August 2006. (author)

  3. TACIS Belarus - an overview of results and planned activities in the field of radiation protection, emergency preparedness and waste management

    International Nuclear Information System (INIS)

    Ackermann, L.

    2006-01-01

    Since 1996 the nuclear safety authorities of the Republic of Belarus were assisted with TACIS activities entitled: 'Transfer of Western European Regulatory Methodology and Practices to the Nuclear Safety Authorities of Belarus'. Considering the results of the Exploratory Mission which was arranged in 1996 the Regulatory Assistance Projects BE/RA/01 and BE/RA/02 were successful realised in 1998/1999 and in 2003/2004, respectively. These projects were financed by the Commission of the European Communities (EC) and implemented by a consortium of Technical Support Organisations (TSOs) from France (IRSN (former IPSN)), Germany (GRS) and Sweden (SSI) led by Riskaudit IRSN/GRS International. Beneficiary of the projects were Promatomnadzor at the beginning and later the Ministry for Emergency Situations of the Republic of Belarus each in connection with the Republican Centre of Radiation Control and Monitoring (RCRCM). The actual project BE/RA/03 'Regulatory Assistance to Belarus in the Field of Nuclear Safety and Radiation Protection including Radiological Emergency Preparedness' was started by the end of August 2006. (author)

  4. Management of radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1968-01-01

    Design data and operating experience with waste management systems at nuclear power stations in Canada, France, the United Kingdom and the United States of America are described. Although the specific designs and operating practices vary between nations, the underlying philosophies are essentially identical, being based on the protection principles of ICRP. The operating experience with different waste management systems has been excellent in maintaining the radiation exposures in the environment well below the accepted dose standards.

  5. Radioactive waste management. Ukraine. WAMAP mission to Ukraine

    International Nuclear Information System (INIS)

    Bergman, C.; Samiei, M.; Takats, F.

    1993-01-01

    In February 1992, the Ukrainian State Committee on Nuclear and Radiation Safety IAEA assisted in management of radwaste and spent fuel. A three member IAEA mission was sent to Ukraine for fact-finding. The present report discusses the outcome of this mission. It gives present legislation, regulations and organizational situation in Ukraine and generation and waste management of radioactive wastes. It discusses possible area of technical co-operation, conclusions and recommendations of the mission

  6. Radiation treatment of wastes: A review

    International Nuclear Information System (INIS)

    Feates, F.S.; George, D.

    1975-01-01

    Since 1945 over 70 papers have been published on various applications of radiation to waste treatment. Work carried out up to 1970 showed consistently that radiation is effective in degrading organic matter in wastes, destroying pathogenic organisms, and enhancing the sedimentation and filterability of sludges, but at a cost about ten times that of conventional treatment methods. Increased cost of energy, scarcity of potable water, environmental awareness and consequent legislation, and technical developments may be changing the picture. For example, ozone, already being widely used as an alternative to chlorine for sterilization, is claimed to be produced by gamma-irradiation of air or oxygen at half the cost of electrical methods. Radiation may solve specific problems associated with industrial wastes and evidence is reported of synergistic effects with oxygen and chlorine. In-situ reactivation of carbon used as an absorbent for textile dye wastes has been observed, and is being further studied. Prototype plant for complete sterilization of sewage sludge for use as fertilizer is in operation. Safety precautions necessary if large radiation sources are used by non-technical operatives will also be considered. (author)

  7. Re-defining the concepts of waste and waste management:evolving the Theory of Waste Management

    OpenAIRE

    Pongrácz, E. (Eva)

    2002-01-01

    Abstract In an attempt to construct a new agenda for waste management, this thesis explores the importance of the definition of waste and its impact on waste management, and the role of ownership in waste management. It is recognised that present legal waste definitions are ambiguous and do not really give an insight into the concept of waste. Moreover, despite its explicit wish of waste prevention, when according to present legislation a thing is assigned the label...

  8. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    1990-11-01

    This bibliography is a review of the Canadian literature on radioactive waste management from 1953 to the present. It incorporates the references from the previous AECL--6186 revisions, and adds the current data and some of the references that had been omitted. Publications from outside organizations of concern to the Canadian Nuclear Fuel Waste Program are included in addition to AECL Research reports and papers. This report is intended as an aid in the preparation of the Concept Assessment Document and is complementary to AECL Research's internal document-ready references on the MASS-11 word processing systems

  9. Radioactive waste integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Song, D Y; Choi, S S; Han, B S [Atomic Creative Technology, Taejon (Korea, Republic of)

    2003-10-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication.

  10. Radioactive waste integrated management system

    International Nuclear Information System (INIS)

    Song, D. Y.; Choi, S. S.; Han, B. S.

    2003-01-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication

  11. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  12. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  13. Oak Ridge Reservation Waste Management Plan

    International Nuclear Information System (INIS)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year

  14. Waste management - textbook for secondary schools

    International Nuclear Information System (INIS)

    Chmielewska, E.; Kuruc, J.

    2010-09-01

    This text-book consist of five parts: (I) Waste management; (II) Solid waste management; (III) Recovery and recycling of secondary raw materials; (IV) Radioactive waste management; Examples of verification knowledge and testing of the secondary students through the worksheet. (V) Suggestions for leisure time activities. This text-book is assigned for high school students.

  15. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  16. Waste Management System Description Document (WMSD)

    International Nuclear Information System (INIS)

    1992-02-01

    This report is an appendix of the ''Waste Management Description Project, Revision 1''. This appendix is about the interim approach for the technical baseline of the waste management system. It describes the documentation and regulations of the waste management system requirements and description. (MB)

  17. Waste management plan for the APT

    International Nuclear Information System (INIS)

    England, J.L.

    1997-01-01

    This revision of the APT Waste Management Plan details the waste management requirements and issues specific to the APT plant for design considerations, construction, and operation. The APT Waste Management Plan is by its nature a living document and will be reviewed at least annually and revised as required

  18. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  19. Radioactive waste management in Brazil: a realistic view

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador; Xavier, Ana Maria

    2014-01-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  20. Radioactive waste management in Brazil: a realistic view

    Energy Technology Data Exchange (ETDEWEB)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador, E-mail: paulo@cnen.gov.br, E-mail: jperez@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Xavier, Ana Maria, E-mail: axavier@cnen.gov.br [Comissao Nacional de Energia Nuclear (ESPOA/CNEN-RS), Porto Alegre, RS (Brazil)

    2014-07-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  1. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  2. Inventory and management of radioactive waste in Thailand

    International Nuclear Information System (INIS)

    Vonglertmongkol, S.

    1994-01-01

    The objectives of the study are to conceive the data based on the utilization of radiation and radioisotopes in Thailand and the inventory of radioactive waste arising from such utilization. The suggestions of the future radioactive waste management are also given as well. Data collection was done by mean of questionnaire and interviewing 245 radioisotope users in Thailand. The outcome can be summarized as follows:. Increase in the quantity of radioisotope in all sectors of the utilization was found, especially on the applications in nuclear medicine and industry. The amount of radioactive waste is increasing accordingly. The waste from unsealed radioisotopes increase 10.68 percent per year for liquid wastes and about 6.39 percent per year for solid waste. Most of these wastes are subjected to transfer for treatment by the Office of Atomic Energy for Peace (OAEP). The wastes from sealed radiation sources were packed in shielded containers. Most of these wastes would be shipped to the country of supply, but, some will be handled by OAEP. The accumulated wastes volume after treatment and conditioning, in the next 30 year will be around 220 cubic meter, excluding the wastes from the operation of nuclear research reactor, nuclear power plant, decommissioning, used sealed sources and the wastes from mining and milling of radioactive ores

  3. Management of radioactive materials and wastes: status, stakes and perspectives

    International Nuclear Information System (INIS)

    Champion, Didier; Devin, Patrick; Tanguy, Loic; Bernard, Herve; Minon, Jean-Paul; Leclaire, Arnaud; Gilli, Ludivine; Lheureux, Yves; Pescatore, Claudio; Barbey, Pierre; Schneider, Thierry; Gay, Didier; Forest, Isabelle; Hemidy, Pierre-Yves; Baglan, Nicolas; Desnoyers, Bruno; Pieraccini, Michel; Poncet, Philippe; Seguin, Bertille; Calvez, Marianne; Leclerc, Elisabeth; Bancelin, Estelle; Fillion, Eric; Segura, Yannick; Vernaz, Etienne; Granier, Guy; De Preter, Peter; Petitfrere, Michael; Laye, Frederic; Nakamura, Takashi; Gin, Stephane; Lebaron-Jacobs, Laurence; Dinant, Sophie; Vacquier, Blandine; Crochon, Philippe; Griffault, Lise; Smith, Graham

    2013-10-01

    These technical days were organized by the Environment section of the French Society of Radiation Protection (SFRP). Time was given to some exchange about the societal aspects of radioactive waste management as well as about the legal context but the most part of the debates delt with the actual management modalities of the different types of wastes, both in France and in foreign countries, and with the related stakes, in particular in terms of impact. This document brings together the presentations (slides) of the following talks: - Contributions of radiation protection to the long-term safety management of radioactive wastes (Jean-Paul MINON - ONDRAF); - The national inventory of radioactive materials and wastes (Arnaud LECLAIRE - ANDRA); - The high activity, medium activity-long living wastes in debate - a co-building approach (ANCCLI/Clis of Bure/IRSN) to share stakes, enlighten, and develop thought (Ludivine GILLI - IRSN, Yves LHEUREUX - ANCCLI); - Social aspects of Radioactive Waste Management - The International Learning (Claudio PESCATORE - AEN/OCDE); - Citizens involvement and ACRO's point of view on radioactive wastes management (Pierre BARBEY - ACRO); - New CIPR recommendations about the geologic disposal of long-living radioactive wastes (Thierry SCHNEIDER - CEPN); - Overview of processes under the views of radiation protection principles (Didier GAY - IRSN); - The national plan of radioactive materials and wastes management (Loic TANGUY - ASN); - Joint convention on spent fuel management safety and on radioactive waste management safety - status and main stakes (Isabelle FOREST - ASN); - Transport of radioactive wastes (Bruno DESNOYERS - AREVA); - Optimisation and limitation of the environmental impacts of very-low level wastes - valorisation and processes selection (Michel PIERACCINI - EDF), Philippe PONCET - AREVA); - Management of hospital wastes - Example of Montpellier's University Regional Hospital (Bertille SEGUIN - CHRU de Montpellier); - Waste

  4. Generic waste management concepts for six LWR fuel cycles

    International Nuclear Information System (INIS)

    DePue, J.D.

    1979-04-01

    This report supplements the treatment of waste management issues provided in the Generic Environmental Statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors (GESMO, NUREG-0002). Three recycle and three no-recycle options are described in this document. Management of the radioactive wastes that would result from implementation of either type of fuel cycle alternative is discussed. For five of the six options, wastes would be placed in deep geologic salt repositories for which thermal criteria are considered. Radiation doses to the workers at the repositories and to the general population are discussed. The report also covers the waste management schedule, the land and salt commitments, and the economic costs for the management of wastes generated

  5. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  6. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  7. Radioactive waste management in Switzerland

    International Nuclear Information System (INIS)

    Hugi, M.

    2011-01-01

    The Federal Nuclear Safety Inspectorate ENSI is the Supervisory Authority for Nuclear Safety and Security of Swiss Nuclear Facilities. The responsibilities include the evaluation and operational monitoring of the existing five Swiss nuclear power plants, the radioactive waste disposals and the nuclear research facilities. The supervisory area includes project planning, operational issues, and decommissioning of plants. ENSI supervises the formation, handling and storage of radioactive waste, the work on deep geological disposal and the transport of radioactive materials. The disposal of radioactive waste is regulated by the Swiss Nuclear Energy Act (2005) and the Nuclear Energy Ordinance (2005). The protection of humans and the environment must be guaranteed permanently. Waste disposal must be carried out in the own country by deep geological repositories. The licensing procedure for the disposal facilities is concentrated at the federal level, the cooperation of the location canton, neighboring cantons and the neighboring countries is ensured. The general license for the deep geological repository is subject to an optional referendum. The polluter pays principle applies to the disposal of radioactive waste. The waste producers are legally obliged to dispose of them and have founded the National Cooperative for the Storage of Radioactive Waste (Nagra). The federal government is responsible for waste from medicine, industry and research (MIF). The Federal Council approved the waste management certificate for low and intermediate level waste (SMA) in 1988. High-level-waste (HAA) and long-live-intermediate-level-waste (LMA), where approved in 2006. Nagra's disposal concept envisages two separate deep geological repositories for SMA and HAA / LMA in a suitable, tectonically stable, low-permeability rock formation. If a site meets both the SMA and HAA / LMA storage requirements, the selection process may result in a common location for all radioactive waste. Until the

  8. Waste management in reprocessing plants

    International Nuclear Information System (INIS)

    Mortreuil, M.

    1982-01-01

    This lecture will give a survey of the French policy for the management of wastes in reprocessing plants. In consideration of their radioactivity, they must be immobilized in matrix in such a manner that they are stored under optimal safety conditions. A general review on the nature, nucleide content and quantity of the various wastes arising from thermal nuclear fuel reprocessing is given in the light of the French plants UP1 at Marcoule and UP2 at La Hague. The procedures of treatment of such wastes and their conditioning into inert packages suitable for temporary or terminal storage are presented, especially concerning the continuous vitrification process carried out for fission product solutions. The requirements of each option are discussed and possible alternative solutions are exposed. (orig./RW)

  9. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Faussat, A.

    1988-01-01

    Solutions for radioactive waste management are already in existence and applied on an industrial scale for short-lived wastes. France has acquired an aknowledged expertise on the international level and several foreign contemporaries are interested in the relevant techniques developed. An intensive international cooperation has allowed to define bases for an underground deep repository for long-lived wastes. It is therefore important to choose a site which meets the expected storage conditions. This development work has been started in several countries in a similar way and which should be completed by the beginning of the next century. An 'open channel' with the public about this emotional topic can smooth the way for solutions by which mankind can master its technological challenges

  10. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  11. Waste regular management: experience and progress prospects

    International Nuclear Information System (INIS)

    Lallement, R.

    1997-01-01

    Since 1990, the CEA has devoted important financial means for the radioactive civilian waste cleaning of its centers: radioactive waste processing (and especially large stocks of ancient wastes), useless-fuel management for fuels produced by experimental reactors and laboratories, and wastes produced by ancient nuclear facilities dismantlement. A policy towards waste volume reduction had already led to a 20 pc volume reduction of its low-level wastes since 1993

  12. Waste management as provided for by the atomic energy law and the waste legislation

    International Nuclear Information System (INIS)

    Muehlenweg, U.; Brasser, T.

    1991-01-01

    Radioactive waste management is subject to the Atomic Energy Act, whereas non-radioactive waste management is provided for by the waste legislation. This two-partite applicability of laws in the field of waste management originates from the treaties establishing the European Communities. The founder members of the European Community in 1957 concluded the Euratom Treaty for the purpose of creating a European framework for the peaceful uses of atomic energy. Based on this treaty, the European Community has been passing a number of directives and regulations aimed at providing protection of workers from the harmful effects of ionizing radiation. EC law does not define any implementing provisions relating to the management of radioactive waste for instance, which is a task remaining within the competence of the national governments. (orig.) [de

  13. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  14. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  15. Radiation and waste safety: Strengthening national capabilities

    International Nuclear Information System (INIS)

    Barretto, P.; Webb, G.; Mrabit, K.

    1997-01-01

    For many years, the IAEA has been collecting information on national infrastructures for assuring safety in applications of nuclear and radiation technologies. For more than a decade, from 1984-95, information relevant to radiation safety particularly was obtained through more than 60 expert missions undertaken by Radiation Protection Advisory Teams (RAPATs) and follow-up technical visits and expert missions. The RAPAT programme documented major weaknesses and the reports provided useful background for preparation of national requests for IAEA technical assistance. Building on this experience and subsequent policy reviews, the IAEA took steps to more systematically evaluate the needs for technical assistance in areas of nuclear and radiation safety. The outcome was the development of an integrated system designed to more closely assess national priorities and needs for upgrading their infrastructures for radiation and waste safety

  16. Northeast Waste Management Alliance (NEWMA)

    International Nuclear Information System (INIS)

    Goland, A.N.; Kaplan, E.

    1993-11-01

    Funding was provided to Brookhaven National Laboratory in the fourth quarter of FY93 to establish a regional alliance as defined by Dr. Clyde Frank during his visit to BNL on March 7, 1993. In collaboration with the Long Island Research Institute (LIRI), BNL developed a business plan for the Northeast Waste Management Alliance (NEWMA). Concurrently, informal discussions were initiated with representatives of the waste management industry, and meetings were held with local and state regulatory and governmental personnel to obtain their enthusiasm and involvement. A subcontract to LIRI was written to enable it to formalize interactions with companies offering new waste management technologies selected for their dual value to the DOE and local governments in the Northeast. LIRI was founded to develop and coordinate economic growth via introduction of new technologies. As a not-for-profit institution it is in an ideal position to manage the development of NEWMA through ready access to venture capital and strong interactions with the business community, universities, and BNL. Another subcontract was written with a professor at SUNY/Stony Brook to perform an evaluation of new pyrolitic processes, some of which may be appropriate for development by NEWMA. Independent endorsement of the business plan recently by another organization, GETF, with broad knowledge of DOE/EM-50 objectives, provides a further incentive for moving rapidly to implement the NEWMA strategy. This report describes progress made during the last quarter of FY93

  17. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  18. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  19. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  20. Radioactive waste management at KANUPP

    International Nuclear Information System (INIS)

    Tahir, Tariq B.; Qamar Ali

    2001-01-01

    This paper describes the existing radioactive waste management scheme of KANUPP. The radioactive wastes generated at KANUPP are in solid, liquid and gaseous forms. The spent fuel of the plant is stored underwater in the Spent Fuel Bay. For long term storage of low and intermediate level solid waste, 3m deep concrete lined trenches have been provided. The non-combustible material is directly stored in these trenches while the combustible material is first burnt in an incinerator and the ash is collected, sealed and also stored in the trenches. The low-level liquid and gaseous effluents are diluted and are discharged into the sea and the atmosphere. The paper also describes a modification carried out in the spent resin collection system in which a locally designed removable tank replaced the old permanent tanks. Presently the low level combustible solid waste is incinerated and stored, but it is planned to replace the present method by using compactor and storing the compacted waste in steel drums underground. (author)

  1. The AREVA's waste management strategy

    International Nuclear Information System (INIS)

    Poncet, Ph.

    2011-01-01

    In accordance with its policy of sustainable development and continuous progress, AREVA is permanently seeking to reduce the impact of the management of its waste, of whatever type, and its radioactive waste in particular. This goal is taken into consideration very early in industrial projects and concerns all the phases in the life of the installations and all the activities of the Group. The resulting actions aim to guarantee that an exhaustive inventory is made of the radioactive materials and waste, to optimise how they are characterised, to ensure their traceability and to determine the best management methods. Past and future progress relies primarily on the effectiveness of zoning (in particular the concept of radiological cleanness), how work is organized, the account taken of operating experience feedback, the search for recycling solutions or appropriate removal routes, optimisation of waste storage and, whenever possible, online processing, plus of course the professionalism of all those involved. A participatory approach by the Group will enable the focus areas and required actions to be defined: networks and multidisciplinary working groups, whenever possible in association with other stake-holders or partners from the nuclear industry. (author)

  2. Management of coal combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    It has been estimated that 780 Mt of coal combustion products (CCPs) were produced worldwide in 2010. Only about 53.5% were utilised, the rest went to storage or disposal sites. Disposal of coal combustion waste (CCW) on-site at a power plant may involve decades-long accumulation of waste, with hundreds of thousands, if not millions, of tonnes of dry ash or wet ash slurry being stored. In December 2008, a coal combustion waste pond in Kingston, Tennessee, USA burst. Over 4 million cubic metres of ash sludge poured out, burying houses and rivers in tonnes of toxic waste. Clean-up is expected to continue into 2014 and will cost $1.2 billion. The incident drew worldwide attention to the risk of CCW disposal. This caused a number of countries to review CCW management methods and regulations. The report begins by outlining the physical and chemical characteristics of the different type of ashes generated in a coal-fired power plant. The amounts of CCPs produced and regulations on CCW management in selected countries have been compiled. The CCW disposal methods are then discussed. Finally, the potential environmental impacts and human health risks of CCW disposal, together with the methods used to prevent them, are reviewed.

  3. Policy of Japan of radioactive waste management

    International Nuclear Information System (INIS)

    Oyama, A.

    1989-01-01

    Development and utilization of nuclear power has been steadily pursued in Japan in order to secure a stable source of energy over a long-term period. According to the author, nuclear power plants are operated carefully and safely and have been generating electricity for more than twenty years. In fact, it now accounts for approximately 30% of total electricity generated, and has become an integral part of the energy supply in Japan. The benefits of nuclear technology are now enjoyed not only in the electricity production, but also in the fields such as medicine and other industries. Under such circumstances, radioactive waste management generated in nuclear power plants and reprocessing plants as well as in industrial and medical uses of radiation, is an important part of the nuclear energy policy, and there is also a strong public interest in this field. The government is active in formulating waste management policies based on the basic policies indicated by Japan ATomic Energy Commission (JAEC). This presentation will touch upon the future perspective of radioactive waste management policy in Japan

  4. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Frazier, D.H.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.; Watson, R.A.

    1977-04-01

    Goals are proposed for the national radioactive waste management program to establish a policy basis for the guidance and coordination of the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations, and analyses of selected primary literature and interviews of personnel concerned with waste management. Public concerns are identified, their relevance assessed, and a conceptual framework is developed that facilitates understanding of the dimensions and demands of the radioactive waste management problem. The nature and scope of the study are described along with the approach used to arrive at a set of goals appropriately focused on waste management

  5. Radioactive waste management - an educational challenge

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1991-01-01

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  6. Waste management research abstracts no. 21

    International Nuclear Information System (INIS)

    1992-12-01

    The 21th issue of this publication contains over 700 abstracts from 35 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  7. Waste management research abstracts. No. 20

    International Nuclear Information System (INIS)

    1990-10-01

    The 20th issue of this publication contains over 700 abstracts from 32 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  8. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    2006-01-01

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs

  9. Management of radioactive medical waste

    International Nuclear Information System (INIS)

    Deschamps, S.; Mathey, J.C.

    1996-01-01

    Hospitals are producers of small amounts of radioactive waste. Current legislation details exactly how hospitals should manage it. Sealed sources are returned to suppliers. Disposal of unsealed sources, liquid or solid, depends upon their half-life: short-lived radioisotopes (half-life less than two months) are stocked on site while they decay; isotopes with longer half-lives (greater than two months) are handled by a specialist organization (ANDRA). (authors). 8 refs

  10. Training waste generators: The first responder in proper waste management

    International Nuclear Information System (INIS)

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a ''cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs

  11. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  12. Natural gas applications in waste management

    International Nuclear Information System (INIS)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs

  13. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  14. Elements of a radioactive waste management course

    International Nuclear Information System (INIS)

    Fentiman, A.W.

    1994-01-01

    The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in the US to determine what radioactive waste management courses are currently being taught. The other went to 600 waste management professionals, asking them to list the topics they think should be included in a radioactive waste management course. Four key elements of a course in radioactive waste management were identified. They are (a) technical information, (b) legal and regulatory framework, (c) communicating with the public, and (d) sources of information on waste management. Contents of each of the four elements are discussed, and results of the surveys are presented

  15. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  16. Swedish national plan for the management of all radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-15

    The Swedish Radiation Safety Authority has been assigned by the government to develop a national plan for the management of all radioactive waste. This report was presented to the government 30 June 2009. The report has been developed in coordination with representatives from other authorities, trade and industry organizations, operators and other parties interested, forming a joint action group. The action proposals in this report are focused on bringing waste management outside the nuclear field, where requirements are essentially regulated by the Act on Radiation Protection, to a level comparable with the management of nuclear waste (including the management of spent nuclear fuel). The Swedish Radiation Safety Authority believes that the objective of the national waste plan is that Sweden, by 2020, will have a comprehensive waste management system whereby all types of radioactive waste will be disposed of in a safe manner. The plan will make it easier to ensure that waste sub-systems for nuclear and non-nuclear waste - which could otherwise easily be regarded as being separated from each other - do not need to be distinguished to any great extent. To ensure continuity in the work in the future, with regard to the follow-up of plans for all radioactive waste, the Swedish Radiation Safety Authority propose that the national waste plan is updated every three years. The plan can then function as the strategy document or the action plan it is intended to be, ensuring that the focus remains on the various problems associated with waste management at different times, so that the set objective can be reached by 2020. A survey was carried out to identify the problems and shortcomings that were found in the waste-management system and what measures are required to resolve them within the near future. The joint action group has contributed by describing various problems as well as by offering points of view on the action proposals which the Swedish Radiation Safety

  17. Swedish national plan for the management of all radioactive waste

    International Nuclear Information System (INIS)

    2011-01-01

    The Swedish Radiation Safety Authority has been assigned by the government to develop a national plan for the management of all radioactive waste. This report was presented to the government 30 June 2009. The report has been developed in coordination with representatives from other authorities, trade and industry organizations, operators and other parties interested, forming a joint action group. The action proposals in this report are focused on bringing waste management outside the nuclear field, where requirements are essentially regulated by the Act on Radiation Protection, to a level comparable with the management of nuclear waste (including the management of spent nuclear fuel). The Swedish Radiation Safety Authority believes that the objective of the national waste plan is that Sweden, by 2020, will have a comprehensive waste management system whereby all types of radioactive waste will be disposed of in a safe manner. The plan will make it easier to ensure that waste sub-systems for nuclear and non-nuclear waste - which could otherwise easily be regarded as being separated from each other - do not need to be distinguished to any great extent. To ensure continuity in the work in the future, with regard to the follow-up of plans for all radioactive waste, the Swedish Radiation Safety Authority propose that the national waste plan is updated every three years. The plan can then function as the strategy document or the action plan it is intended to be, ensuring that the focus remains on the various problems associated with waste management at different times, so that the set objective can be reached by 2020. A survey was carried out to identify the problems and shortcomings that were found in the waste-management system and what measures are required to resolve them within the near future. The joint action group has contributed by describing various problems as well as by offering points of view on the action proposals which the Swedish Radiation Safety

  18. Estimating and understanding DOE waste management costs'

    International Nuclear Information System (INIS)

    Kang, J.S.; Sherick, M.J.

    1995-01-01

    This paper examines costs associated with cleaning up the US Department of Energy's (DOE's) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties

  19. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  20. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  1. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  2. Waste management bibliography 1979-1981

    International Nuclear Information System (INIS)

    Oakley, D.T.

    1981-10-01

    The Los Alamos National Laboratory is conducting a variety of research and development to ensure the safety of storing and treating all types of radioactive wastes. These activities include the assay and sorting of waste, the interaction of waste with the earth, and the treatment of waste to reduce the volume and mobility of radionuclides in waste. The practical lessons learned from safely storing waste at Los Alamos since the mid-1940s are an ingredient in determining the direction of our research. National waste management programs are structured according to categories of waste, for example, high level, low level, mill tailings, and transuranic. In this bibliography publications are listed since 1979 according to the following disciplines to show the relevance of work to more than one category of waste: summary and overview; material science; environmental studies; geochemistry and geology; waste assay; soil/waste interactions shallow land burial; volume reduction and technology development; and nonradioactive wastes

  3. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  4. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    1993-01-01

    Lawrence Berkeley Laboratory's Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department's activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A

  5. Radioactive waste management in an Australian state - IAEA style

    International Nuclear Information System (INIS)

    Shields, B.; Newbery, S.M.

    1999-01-01

    The IAEA have produced a series of publications within the RADWASS programme. These publications are comprehensive in their coverage and are applicable to all aspects of radioactive waste management - from the individual user level to State and National level. Adherence to the principles contained in these publications is advocated in the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The publications provide a useful check list against which to determine the current status of radioactive management, at various levels (individual level, State, National) and also provide a basis for planning future waste management requirements. In Tasmania, these publications have been utilised to assess the current radioactive waste management system and to determine future management requirements, particularly for storage of radioactive waste. This paper illustrates the application of the publications for auditing individual users' waste management status and for determining future State storage requirements for radioactive waste. A brief outline of the process used and the main issues identified as a result, will be presented. These issues include some requiring a National approach for their resolution. Copyright (1999) Australasian Radiation Protection Society Inc

  6. National Syrian Program for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    2009-06-01

    A national plan for radioactive waste management has been presented. It includes identifying, transport, recording, classifying, processing and disposal. It is an important reference for radioactive waste management for those dealing with radioactive waste, and presents a complete protection to environemnt and people. (author)

  7. Hazardous Waste Management by healthcare Institutions, Addis ...

    African Journals Online (AJOL)

    The finding of the study shows that except Zewditu hospital, the rest use proper management to the hazardous waste. Lack of awareness about health hazards of healthcare waste, inadequate training, absence of waste management and disposal systems, insufficient financial and human resources, low priority given to the ...

  8. Waste management research abstracts No. 18

    International Nuclear Information System (INIS)

    1987-12-01

    The eighteenth issue of this publication contains over 750 abstracts from 33 IAEA member countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed

  9. Radioactive waste management in Romania

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Radu, Maria; Dobos, Ion; Glodeanu, Florin; Popescu, V. Ion; Rotarescu, Gheorghe; Turcanu, Cornel

    1998-01-01

    The paper presents the main aspects of management of radwastes generated within the frame of Nuclear Fuel Cycle (NFC) and out of Nuclear Fuel Cycle in Romania. There are mentioned the Romanian legislative and regulatory framework concerning nuclear activities which include provisions for radwaste management generated in Romania. The paper lists the radwaste producers, mentions waste inventory and gives future estimates for radwaste generation, all determining development of the radwaste management strategy. Choosing selected strategy for radwaste management, the main responsible organizations have been established as well as the planned facilities for treatment conditioning, storage and disposal of radwastes generated within the frame of both NFC and out of NFC fields of peaceful nuclear activity. (authors)

  10. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  11. New type radiation management system

    International Nuclear Information System (INIS)

    Mogi, Kenichi; Uranaka, Yasuo; Fujita, Kazuhiko

    2001-01-01

    The radiation management system is a system to carry out entrance and leaving room management of peoples into radiation management area, information management on radiation obtained from a radiation testing apparatus, and so on. New type radiation management system developed by the Mitsubishi Electric Corp. is designed by concepts of superior maintenance and system practice by using apparatus and its interface with standard specification, upgrading of processing response by separating exposure management processing from radiation monitoring processing on a computer, and a backup system not so as to lose its function by a single accident of the constructed computer. Therefore, the system is applied by the newest hardware, package software, and general use LAN, and can carry out a total system filled with requirements and functions for various radiation management of customers by preparing a basic system from radiation testing apparatus to entrance and leaving room management system. Here were described on outline of the new type management system, concept of the system, and functions of every testing apparatus. (G.K.)

  12. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  13. II meeting of R and D in radioactive waste management

    International Nuclear Information System (INIS)

    Astudillo Pastor, J.

    1995-01-01

    The report includes the principal features on the content and development of the Second Seminar on R+D in the Management of Radioactive Waste organised by ENRESA, the National Company responsible for waste management in Spain. More than 200 scientists working in the Second R+D Program have participated. The topical areas included low-intermediate level and high-level wastes as well as Radiation Protection and Decommissioning and Dismantling issues. During the Seminar two round tables and the official presentation of the Third R+D Program have been included. (Author)

  14. Radiation protection philosophy and control of radiation doses from nuclear waste disposal

    International Nuclear Information System (INIS)

    Bryant, P.M.

    1981-01-01

    The author has reviewed the concurrent developments in each of the three decades from 1950 to the present day in radiation protection philosophy and in the control of radioactive waste disposals, with particular reference to the control of radiation doses to the public from disposals from nuclear installations. In addition, the author has summarised the OECD Nuclear Energy Agency's optimisation study which is a generic analysis of the quantitative factors pertinent to the management of tritium, carbon-14, krypton-85 and iodine-129, identified as being the radionuclides in fuel cycle effluents likely to be significant in the radiation exposure of large populations. (author)

  15. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  16. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  17. Thermosyphon evaporator for nuclear waste management application

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajani; Singh, A K; Rana, D S [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Nuclear plant equipment are associated with radioactive material which needs to be safely contained under all conditions of operation. Because of large radioactivity associated with the operations of nuclear waste management plants, the equipment are not accessible to human intervention. Hence, the design of the equipment needs to incorporate features for high reliability and safety so as to avoid unnecessary outage. As far as possible the equipment must be maintenance free. Wherever maintenance is inevitable, it has to be designed to be carried out without exposure of personnel to radiation, preventing spread of radiation or contamination. This paper outlines the design features of a thermosyphon evaporator for nuclear application. (author). 2 figs., 1 tab.

  18. OPG Western Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Julian, J. [Ontario Power Generation, Western Waste Management Facility, Tiverton, ON (Canada)

    2011-07-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  19. OPG Western Waste Management Facility

    International Nuclear Information System (INIS)

    Julian, J.

    2011-01-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  20. Streamlined approach to waste management at CRL

    International Nuclear Information System (INIS)

    Adams, L.; Campbell, B.

    2011-01-01

    Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at Chalk River Laboratories (CRL) as a result of research and development activities and operations since the 1940s. Over the years, the wastes produced as a byproduct of activities delivering the core missions of the CRL site have been of many types, and today, over thirty distinct waste streams have been identified, all requiring efficient management. With the commencement of decommissioning of the legacy created as part of the development of the Canadian nuclear industry, the volumes and range of wastes to be managed have been increasing in the near term, and this trend will continue into the future. The development of a streamlined approach to waste management is a key to successful waste management at CRL. Waste management guidelines that address all of the requirements have become complex, and so have the various waste management groups receiving waste, with their many different processes and capabilities. This has led to difficulties for waste generators in understanding all of the requirements to be satisfied for the various CRL waste receivers, whose primary concerns are to be safe and in compliance with their acceptance criteria and license conditions. As a result, waste movement on site can often be very slow, especially for non-routine waste types. Recognizing an opportunity for improvement, the Waste Management organization at CRL has implemented a more streamlined approach with emphasis on early identification of waste type and possible disposition path. This paper presents a streamlined approach to waste identification and waste management at CRL, the implementation methodology applied and the early results achieved from this process improvement. (author)

  1. Radiation protection aspects of waste disposal

    International Nuclear Information System (INIS)

    Beninson, D.

    1992-01-01

    Waste disposal, particularly of high level waste and some alpha-waste, involves very long times of isolation from the biosphere. The basic radiation protection requirements of 'optimisation of protection' and 'limitation of individual risk' must be complemented with policy decisions regarding the level of ambition of protection for future individuals and populations. Decisions are also necessary for the risk assessments applicable to different time periods. These assessments include considerable uncertainty and determinations of compliance with regulatory requirements must contemplate a policy for taking account of such uncertainties. The paper deals with 'normal' scenarios and with disruptive events as mechanisms for the return of nuclides to the biosphere, in the framework of the Recommendations of the ICRP. (author)

  2. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  3. Managing nuclear waste: a better idea

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the findings and recommendations of the Advisory Panel with regard to alternative approaches to financing and managing the construction and operation of civilian radioactive waste management facilities. Ten organizational alternatives are considered and four of them are focussed on. These four are: present DOE waste management structure; alternative governmental approach; public/private entity; and private corporation. Advantages and disadvantages of each alternative are covered. The preferred alternative is the Federal Corporation for Waste Management (FEDCORP)

  4. Status of DOE defense waste management policy

    International Nuclear Information System (INIS)

    Oertel, K.G.; Scott, R.S.

    1983-01-01

    This paper very briefly traces the statutory basis for DOE management of atomic energy defense activity wastes, touches on the authority of the Federal agencies involved in the regulation of defense nuclear waste management, and addresses the applicable regulations and their status. This background sets the stage for a fairly detailed discussion of management and disposal strategies of the Defense Waste and Byproducts Management Program

  5. The national approach to radioactive waste management: the Philippine experience

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Alamares, A.L.; Salom, D.S.

    1996-01-01

    The Philippine Nuclear Research Institute (PNRI), under the Department of Science and Technology (DOST) is tasked, among others, with the legally-mandated twin function of advancing and regulating the beneficial uses of nuclear energy and radiation technology. The PNRI is also responsible, among others, for the safe management of radioactive wastes generated by all licensed users of radioisotopes, including about 100 medical and industrial users. This papers describes the efforts taken by the PNRI, with technical assistance provided by the International Atomic Energy Agency to establish a low level radioactive waste management facility in the country and the subsequent upgrading of its waste management infrastructure. The conceptual approach and sebsequent implementation of the work programme is presented. Problems attendant to these efforts are briefly outlined including treatment methodologies for specific wastes. The commissioning and operational experiences using a batch type chemical precipitation plant appropriate for the volume of liquid wastes generated in the country is also presented. Data on radioactive waste arisings from 1980 are also presented including anticipated or projected wastes arisings should the repair of the PRR-1 (Philippine Research Reactor-1) research reactor be completed. The government initiatives towards the organizational development of a centralized waste management facility for low level wastes are also discussed. The formulation and adoption of a waste acceptance criteria and the R and D activities on various treatment procedures are also described. The current activities of the PNRI, as the lead agency in two important areas, one of which is in radioactive waste management, will be reported. National, regional and international cooperation in radioactive waste management will also be presented

  6. Model Regulations for the Use of Radiation Sources and for the Management of the Associated Radioactive Waste. Supplement to IAEA Safety Standards Series No. GS-G-1.5

    International Nuclear Information System (INIS)

    2015-01-01

    IAEA Safety Standards Series No. GSR Part 1, Governmental, Legal and Regulatory Framework for Safety, requires that governments establish laws and statutes to make provisions for an effective governmental, legal and regulatory framework for safety. The framework for safety includes the establishment of a regulatory body. The regulatory body has the authority and responsibility for promulgating regulations, and for preparing their implementation. This publication provides advice on an appropriate set of regulations covering all aspects of the use of radiation sources and the safe management of the associated radioactive waste. The regulations provide the framework for the regulatory requirements and conditions to be incorporated into individual authorizations for the use of radiation sources in industry, medical facilities, research and education and agriculture. The regulations also establish criteria to be used for assessing compliance. This publication allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference for those States developing regulations for the first time. The regulations set out in this publication will need to be adapted to take account of local conditions, technical resources and the scale of facilities and activities in the State. The set of regulations in this publication is based on the requirements established in the IAEA safety standards series, in particular in IAEA Safety Standards Series No. GSR Part 3 (Interim), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, in IAEA Safety Standards Series No. GSR Part 5, Predisposal Management of Radioactive Waste, and in IAEA Safety Standards Series No. SSR-5, Disposal of Radioactive Waste. They are also derived from the Code of Conduct of the Safety and Security of Radiation Sources and the Guidance on the Import and Export of Radioactive Sources. This publication allows States to appraise the

  7. Model Regulations for the Use of Radiation Sources and for the Management of the Associated Radioactive Waste. Supplement to IAEA Safety Standards Series No. GS-G-1.5

    International Nuclear Information System (INIS)

    2013-12-01

    IAEA Safety Standards Series No. GSR Part 1, Governmental, Legal and Regulatory Framework for Safety, requires that governments establish laws and statutes to make provisions for an effective governmental, legal and regulatory framework for safety. The framework for safety includes the establishment of a regulatory body. The regulatory body has the authority and responsibility for promulgating regulations, and for preparing their implementation. This publication provides advice on an appropriate set of regulations covering all aspects of the use of radiation sources and the safe management of the associated radioactive waste. The regulations provide the framework for the regulatory requirements and conditions to be incorporated into individual authorizations for the use of radiation sources in industry, medical facilities, research and education and agriculture. The regulations also establish criteria to be used for assessing compliance. This publication allows States to appraise the adequacy of their existing regulations and regulatory guides, and can be used as a reference for those States developing regulations for the first time. The regulations set out in this publication will need to be adapted to take account of local conditions, technical resources and the scale of facilities and activities in the State. The set of regulations in this publication is based on the requirements established in the IAEA safety standards series, in particular in IAEA Safety Standards Series No. GSR Part 3 (Interim), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, in IAEA Safety Standards Series No. GSR Part 5, Predisposal Management of Radioactive Waste, and in IAEA Safety Standards Series No. SSR-5, Disposal of Radioactive Waste. They are also derived from the Code of Conduct of the Safety and Security of Radiation Sources and the Guidance on the Import and Export of Radioactive Sources. This publication allows States to appraise the

  8. Infrastructure Task Force Tribal Solid Waste Management

    Science.gov (United States)

    These documents describe 1) issues to consider when planning and designing community engagement approaches for tribal integrated waste management programs and 2) a proposed approach to improve tribal open dumps data and solid waste projects, and 3) an MOU.

  9. International E-Waste Management Network (IEMN)

    Science.gov (United States)

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  10. Agricultural waste concept, generation, utilization and management ...

    African Journals Online (AJOL)

    Agricultural wastes are non-product outputs of production and processing of ... less than the cost of collection, transportation, and processing for beneficial use. ... Agricultural waste management system (AWMS) was discussed and a typical ...

  11. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  12. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    International Nuclear Information System (INIS)

    Mora, Juan C.; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-01-01

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  13. Management of radioactive waste: A review

    OpenAIRE

    Luis Paulo Sant'ana; Taynara Cristina Cordeiro

    2016-01-01

    The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from co...

  14. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  15. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Disaster waste management: A review article

    International Nuclear Information System (INIS)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-01-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  17. Radioactive waste management in Spain

    International Nuclear Information System (INIS)

    Monroy, C.R.

    1996-01-01

    The review of the Spanish nuclear program is described with the special emphases on the radioactive waste management. The data of availability of a Centralized Temporary Storage facility will depend on the hypothesis considered regarding the service lifetime of nuclear power plants. Thay would be looking at the year 2003 for the 30 years case, and possibly at the year 2013 for the 40 year scenario, the choice between one and the other implying important economic and technical impacts. The aim for final disposal of high level wastes is to finish the preparation work by the year 2016, in order for construction of the disposal facility itself to be initiated and for operation to begin during the decade beginning with the year 2020

  18. Waste management of ENM-containing solid waste in Europe

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    2015-01-01

    the Danish nanoproduct inventory (www.nanodb.dk) to get a general understanding of the fate of ENM during waste management in the European context. This was done by: 1. assigning individual products to an appropriate waste material fraction, 2. identifying the ENM in each fraction, 3. comparing identified...... waste fractions with waste treatment statistics for Europe, and 4. illustrating the general distribution of ENM into incineration, recycling and landfilling. Our results indicate that ╲plastic from used product containers╡ is the most abundant and diverse waste fraction, comprising a variety of both...... nanoproducts and materials. While differences are seen between individual EU countries/regions according to the local waste management system, results show that all waste treatment options are significantly involved in nanowaste handling, suggesting that research activities should cover different areas...

  19. Radioactive waste management: Spanish experiences

    International Nuclear Information System (INIS)

    Beceiro, A. R.

    1996-01-01

    Radioactive waste generation began in Spain during the 1950's, in association with the first applications of radioactive isotopes in industry, medicine and research. Spain's first nuclear power plant began its operations in 1968. At present, there are in operation some one thousand installations possessing the administrative authorization required to use radioactive isotopes (small producers), nine nuclear groups and a tenth is now entering the dismantling phase. There are also activities and installations pertaining to the front end of the nuclear fuel cycle (mining, milling and the manufacturing of fuel elements). Until 1985, the research center Junta de Energia Nuclear (now CIEMAT) rendered radioactive waste removal, and subsequent conditioning and temporary storage services to the small producers. Since the beginning of their operations the nuclear power plants and fuel cycle facilities have had the capacity to condition and temporarily store their own radioactive wastes. ENRESA (Empresa Nacional de Residuos Radiactivos, S. A.) began its operations in the second half of 1985. It is a state-owned company created by the Government in accordance with a previous parliamentary resolution and commissioned to establish a system for management of such wastes throughout Spain, being in charge also of the dismantling of nuclear power plants and other major installations at the end of their operating lifetimes. Possibly the most outstanding characteristic of ENRESA's evolution over these last seven years has been the need to bring about a compromise between solving the most immediate and pressing day-to-day problems of operation (the first wastes were removed at the beginning of 1986) and establishing the basic organization, resources, technology and installations required for ENRESA to operate efficiently in the long term. (author)

  20. Quality control in the radioactive waste management

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    Radioactive waste management as in industrial activities must mantain in all steps a quality control programme. This control extended from materials acquisition, for waste treatment, to the package deposition is one of the most important activities because it aims to observe the waste acceptance criteria in repositories and allows to guarantee the security of the nuclear facilities. In this work basic knowledges about quality control in waste management and some examples of adopted procedures in other countries are given. (author) [pt

  1. Radioactive waste management regulatory framework in Mexico

    International Nuclear Information System (INIS)

    Barcenas, M.; Mejia, M.

    2001-01-01

    The purpose of this paper is to present an overview of the current regulatory framework concerning the radioactive waste management in Mexico. It is intended to show regulatory historical antecedents, the legal responsibilities assigned to institutions involved in the radioactive waste management, the sources of radioactive waste, and the development and preparation of national standards for fulfilling the legal framework for low level radioactive waste. It is at present the most important matter to be resolved. (author)

  2. Arisings and management of nuclear wastes

    International Nuclear Information System (INIS)

    Dejonghe, P.; Heremans, R.; Proost, J.; Voorde, N. van de

    1978-01-01

    The paper contains a brief description of volumes and composition of radioactive wastes expected to occur in Belgium, taking into account the present nuclear program. Various conditioning and management techniques are described and discussed. Some discussion is paid to disposal of conditioned radioactive wastes either into the ocean (low level) or in geologic formations (long lived or high level wastes). Some ideas are given as to the structure optimization in radioactive waste management and the associated R and D. (author)

  3. Managing nuclear waste: the underground perspective

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A simplified, very-general overview of the history of nuclear waste management is presented. The sources of different wastes of different levels of radioactivity are discussed. The current governmental program, including three DOE programs currently studying the problems of isolating waste in geological repositories, is discussed briefly. The general thrust of ensuing articles in the same magazine dealing with different facets of the waste-management program is outlined. (BLM)

  4. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  5. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  6. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  7. Actions of a protocol for radioactive waste management

    International Nuclear Information System (INIS)

    Sousa, Joyce Caroline de Oliveira; Andrade, Idalmar Gomes da Silva; Frazão, Denys Wanderson Pereira; Abreu, Lukas Maxwell Oliveira de; França, Clyslane Alves; Macedo, Paulo de Tarso Silva de

    2017-01-01

    Radioactive wastes are all those materials generated in the various uses of radioactive materials, which can not be reused and which have radioactive substances in quantities that can not be treated as ordinary waste. All management of these wastes must be carried out carefully, including actions ranging from its collection to the point where they are generated to their final destination. However, any and all procedures must be carried out in order to comply with the requirements for the protection of workers, individuals, the public and the environment. The final product of the study was a descriptive tutorial on the procedures and actions of a standard radioactive waste management protocol developed from scientific publications on radiation protection. The management of radioactive waste is one of the essential procedures in the radiological protection of man and the environment where the manipulation of radioactive materials occurs. The standard radioactive management protocol includes: collection, segregation of various types of wastes, transport, characterization, treatment, storage and final disposal. The radioactive wastes typology interferes with sequencing and the way in which actions are developed. The standardization of mechanisms in the management of radioactive waste contributes to the radiological safety of all those involved

  8. Managing low-level radioactive waste in Massachusetts. Final report

    International Nuclear Information System (INIS)

    Bander, S.R.; Goldstein, M.E.

    1983-12-01

    As one of the country's largest generators of low-level radioactive waste, Massachusetts has begun independently seeking solutions to the questions surrounding low-level waste management issues. The Massachusetts Department of Public Health, Radiation Control Program, obtained funding from the U.S. Department ofEnergy through EG and G, Idaho, Inc. to develop a low-level waste management strategy for the Commonwealth. The Working Group was made up of individuals from various waste generating industries, environmental and public interest groups, medical and academic institutions, and affected state agencies. This final report document contains the following staff project reports: Proposed Low-Level Radioactive Waste Management Plan for The Commonwealth of Massachusetts, February 1983 and Low-Level Radioactive Waste Management in Massachusetts - Actions to be Considered for Implementation in 1984-1986, December 1983. These two staff reports represent the completion of the Massachusetts Low-Level Radioactive Waste Management Project. The first report provides some of the background material to the issues and some of the alternative courses of action which can be considered by state policy-makers. The second report provides the next phase in the process by delineating specific steps which may be taken before 1986 in order to address the low-level waste problem, and the estimated amount of time needed to complete each step

  9. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  10. Radioactive waste management registry. A software tool for managing information on waste inventory

    International Nuclear Information System (INIS)

    Miaw, S.T.W.

    2001-01-01

    The IAEA developed a software tool, the RWM Registry (Radioactive Waste Management Registry) which is primarily concerned with the management and recording of reliable information on the radioactive waste during its life-cycle, i.e. from generation to disposal and beyond. In the current version, it aims to assist the management of waste from nuclear applications. the Registry is a managerial tool and offers an immediate overview of the various waste management steps and activities. This would facilitate controlling, keeping track of waste and waste package, planning, optimizing of resources, monitoring of related data, disseminating of information, taking actions and making decisions related to the waste management. Additionally, the quality control of waste products and a Member State's associated waste management quality assurance programme are addressed. The tool also facilitates to provide information on waste inventory as required by the national regulatory bodies. The RWM Registry contains two modules which are described in detail

  11. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  12. Radioactive waste management: a utility view

    International Nuclear Information System (INIS)

    Draper, E.L.

    1982-01-01

    The management of radioactive waste continues to be a matter of public concern and discussion. There is broad agreement among members of the technical community that the various types of waste radioactive species can be managed without jeopardizing public health and safety. Despite this consensus, one of the major reasons cited by opponents of commercial nuclear power for their opposition is the lack of a fully deployed waste management program. Such a program has been suggested but implementation is not yet complete. It is essential that a program be undertaken so as to dispel the impression that past inaction on waste disposal represents an inability to deal safely with wastes

  13. Economic evaluation of radiation processing in urban solid wastes treatment

    Science.gov (United States)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  14. The system for waste management

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1987-01-01

    The author views the system for the management of high level radioactive waste as having five major components science and technology, domestic politics, international programs, regulation and institutions, and the ever changing rules and public perceptions. A system failure will usually occur because of the failure to communicate and not because of inadequate scientific data or engineering skills. For effective communication to occur the participants need to understand each other. The author will focus on this issue as a major theme of this presentation

  15. ERDA overview of waste management

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1976-01-01

    In ERDA it is believed that interaction is essential to the final assurance of bringing technologies on line which are acceptable to all sectors. If this can be achieved then questions surrounding waste management may not be any easier to solve, but they will certainly not crop up at the last minute to confound the technology that is needed tomorrow to meet our energy needs. At the same time, the public who needs to decide what cost and risks they are willing to accept for the benefit of energy use have the information they need and the confidence that all the issues have been addressed

  16. New strategic solid waste management in Sicily

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2005-01-01

    The solid waste management is, today, a very critical issue. In spite of all the attempts in order to recovery and to recycle waste, the dump still remains the more followed solution, while only a small part of solid waste is going to be burnt down. But the rubbish dump isn't, actually, an environmentally sustainable solution. In the last years the waste incineration systems with energy recovery are spreading more over the territory, and if on one hand they allow to recover energy, on the other they also generate waste. So the emergency remains and it has to be faced. Today, the waste incineration system with energy recovery seems to be the best solution for this problem. the following article examinates the main strategic aspects of the solid waste management in Sicily after the General Plan of Waste Management application [it

  17. The review of radioactive waste management in the world

    International Nuclear Information System (INIS)

    Jalilzadeh, R.; Mirzahosseini, A.; Rahnomaei, N. A.

    2008-01-01

    Radioactive waste is generally classified on the basis of how much radiation and the type of radiation it emits as well as the length of time over which it will continue to emit radiation. Many activities dealing with radioactive materials produce nuclear wastes, including civilian nuclear power programs (nuclear Power plant operations and nuclear fuel-cycle activities), defense nuclear programs (nuclear weapons production, naval nuclear reactor programs, and related R and D), and industrial and institutional activities (scientific research, medical operations, and other industrial uses of Radioisotopic sources or Radio chemicals). To minimize the potential adverse health and environment impacts to people and other systems including of animals, plant and etc, during the entire lifetime of the radionuclides involved, nuclear waste must be carefully and properly managed. The scope of nuclear - waste management encompasses generation, processing (treatment and packaging), storage, transport, and disposal. in this research the effect of radioactive waste on environment and also disposal methods and radioactive waste management in countries is surveyed

  18. Assessing waste management systems using reginalt software

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs

  19. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  20. Medical Waste Management in Community Health Centers.

    Science.gov (United States)

    Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz

    2018-02-01

    Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.

  1. Waste Management System Requirement document

    International Nuclear Information System (INIS)

    1990-04-01

    This volume defines the top level technical requirements for the Monitored Retrievable Storage (MRS) facility. It is designed to be used in conjunction with Volume 1, General System Requirements. Volume 3 provides a functional description expanding the requirements allocated to the MRS facility in Volume 1 and, when appropriate, elaborates on requirements by providing associated performance criteria. Volumes 1 and 3 together convey a minimum set of requirements that must be satisfied by the final MRS facility design without unduly constraining individual design efforts. The requirements are derived from the Nuclear Waste Policy Act of 1982 (NWPA), the Nuclear Waste Policy Amendments Act of 1987 (NWPAA), the Environmental Protection Agency's (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel (40 CFR 191), NRC Licensing Requirements for the Independent Storage of Spent Nuclear and High-Level Radioactive Waste (10 CFR 72), and other federal statutory and regulatory requirements, and major program policy decisions. This document sets forth specific requirements that will be fulfilled. Each subsequent level of the technical document hierarchy will be significantly more detailed and provide further guidance and definition as to how each of these requirements will be implemented in the design. Requirements appearing in Volume 3 are traceable into the MRS Design Requirements Document. Section 2 of this volume provides a functional breakdown for the MRS facility. 1 tab

  2. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  3. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  4. Radioactive wastes management: what is the situation?

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation takes stock on the situation of the radioactive wastes management in France. It gives information on the deep underground disposal, the public information, the management of the radioactive wastes in France, the researches in the framework of the law of the 30 december 1991, the underground laboratory of Meuse/Haute-Marne, the national agency for the radioactive wastes management (ANDRA) and its sites. (A.L.B.)

  5. Assessment of LANL beryllium waste management documentation

    International Nuclear Information System (INIS)

    Danna, J.G.; Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    The objective of this report is to determine present status of the preparation and implementation of the various high priority documents required to properly manage the beryllium waste generated at the Laboratory. The documents being assessed are: Waste Acceptance Criteria, Waste Characterization Plan, Waste Certification Plan, Waste Acceptance Procedures, Waste Characterization Procedures, Waste Certification Procedures, Waste Training Procedures and Waste Recordkeeping Procedures. Beryllium is regulated (as a dust) under 40 CFR 261.33 as ''Discarded commercial chemical products, off specification species, container residues and spill residues thereof.'' Beryllium is also identified in the 3rd thirds ruling of June 1, 1990 as being restricted from land disposal (as a dust). The beryllium waste generated at the Laboratory is handled separately because beryllium has been identified as a highly toxic carcinogenic material

  6. Domestic Waste Management In Samarinda City

    Directory of Open Access Journals (Sweden)

    Florentinus Sudiran

    2017-11-01

    Full Text Available Garbage is solid wastes which have mostly organic composition and the rest consists of plastic paper cloth rubber bone and others. Garbage disposal in urban areas is often a burden because it involves financing for waste transport disposal sites health and environmental hygiene. The burden of waste management is increasing as the volume of waste increases due to population growth and community behavior. Samarinda as a developing city also experienced the problem. Problems encountered include low service coverage especially for domestic waste high landfill demand and high government subsidies that resulted in the community no matter the amount of waste generated. The purpose of this study is to determine whether the waste management by the government of Samarinda City from management management aspects institutional capacity and financing system is environmentally sound. The method used is non experimental method and do direct observation in the field. Data collection with questionnaires field observations document analysis and literature. Based on the results of the study concluded as follows Waste management by the Government of Samarinda City as a whole has been good and has environmentally minded by running the system of collecting transporting and destruction and separating waste from waste processing and sources into compost fertilizer though still very limited in scope. Waste management by the capital intensive Samarinda City Government leads to high costs by the operational costs of trucks and other vehicles.

  7. Safety of radioactive waste management. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2000-01-01

    The principal objective of the Conference was to enable members of the scientific community and representatives of facilities which produce radioactive waste, of bodies responsible for radioactive waste management, of nuclear regulatory bodies and of public interest groups, among others, to engage in an open dialogue. The open dialogue which took place may, by providing policy and decision makers with a basis for political action, prove to be an important step in the search for the international consensus so essential in the area of radioactive waste management. The relevant policies and activities of the IAEA, the European Commission, the OECD Nuclear Energy Agency and the World Health Organization were presented. The evolution, under the aegis of the IAEA, of a de facto international radiation and nuclear safety regime was noted. In the area of radioactive waste safety, this regime consists of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, the body of international waste safety standards established by the IAEA and other international organizations, and the IAEA's mechanisms for providing for the application of those standards. The topics covered by the Conference were: Current international co-operative efforts; Recommendations from the International Commission on Radiological Protection; Recommendations from the International Nuclear Safety Advisory Group; Conclusions and recommendations of the International Symposium on the Restoration of Environments with Radioactive Residues; Siting of radioactive waste management facilities; Participation of interested parties; Legislative and general radiation safety aspects; Removal of material from regulatory control (exclusion, exemption and clearance); Predisposal management (dilution, recycling, transmutation, etc.); Near surface disposal; Residues from the mining and processing of radioactive ores; Long term institutional control; Geological disposal

  8. Method for decontaminating radiation metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Akimoto, Hidetoshi

    1991-01-01

    This report describes a method for decontaminating radiation metal waste characterized by the following properties: in order to decontaminate radiation metal waste of various shapes produced by facilities involved with radioactive substances, non-complex shapes are decontaminated by electropolishing the materials in a neutral saline solution. Complex shapes are chemically decontaminated by means of an acid solution containing permanganic acid or an alkaline solution and a mineral acid solution. After neutralizing the solutions used for chemical decontamination, the radioactive material is separated and removed. Further, in the decontamination method for radioactive metal waste, a supernatant liquid is reused as the electrolyte in electropolishing decontamination. Permanganic ions (MnO 4 - ) are reduced to manganese dioxide (MnO 2 ) and deposited prior to neutralizing the solution used for chemical decontamination. Once manganese dioxide (MnO 2 ) has been separated and removed, it is re-used as the electrolyte in electropolishing decontamination by means of a process identical to the separation process for radioactive substances. 3 figs

  9. Shifting paradigms in managing radioactive waste

    International Nuclear Information System (INIS)

    Le Bars, Y.; Pescatore, C.

    2004-01-01

    The Stakeholder involvement in policy making of radioactive waste management, has received considerable attention within the OECD. The Nea forum on Stakeholder confidence (FSC) was set up in 2000. A Nea recent publication entitled ''Learning and adapting to societal requirements for radioactive waste management'' brings together the key FSC findings and experience covering four years of work. Six main areas are targeted in this publication and are briefly described in this document: favourable candidates for issuing radioactive waste management policy, the design of the decision-making process, the social and ethical dimension, trust in the actors, Stakeholder involvement and the local dimension of radioactive waste management. (A.L.B.)

  10. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    Science.gov (United States)

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  11. Radioactive Waste Management in Central Asia - 12034

    Energy Technology Data Exchange (ETDEWEB)

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid [Norwegian Radiation Protection Authority (Norway)

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through

  12. The mixed waste management facility

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory's Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to ∼$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at ∼$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability

  13. Technology Roadmapping for Waste Management

    International Nuclear Information System (INIS)

    Bray, O.

    2003-01-01

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects

  14. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  15. Low-level waste management - suggested solutions for problem wastes

    International Nuclear Information System (INIS)

    Pechin, W.H.; Armstrong, K.M.; Colombo, P.

    1984-01-01

    Problem wastes are those wastes which are difficult or require unusual expense to place into a waste form acceptable under the requirements of 10 CFR 61 or the disposal site operators. Brookhaven National Laboratory has been investigating the use of various solidification agents as part of the DOE Low-Level Waste Management Program for several years. Two of the leading problem wastes are ion exchange resins and organic liquids. Ion exchange resins can be solidified in Portland cement up to about 25 wt % resin, but waste forms loaded to this degree exhibit significantly reduced compressive strength and may disintegrate when immersed in water. Ion exchange resins can also be incorporated into organic agents. Mound Laboratory has been investigating the use of a joule-heated glass melter as a means of disposing of ion exchange resins and organic liquids in addition to other combustible wastes

  16. LOGISTICS OF WASTE MANAGEMENT IN HEALTHCARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2016-07-01

    Full Text Available The waste management system in health care is a tool that allows to conduct reasonable steps to reduce their amount, collection, storage and transport, and provide a high level of utilization or disposal. Logistics solutions in waste management are intended to make full use of the infrastructure and technical resources, optimize costs, ensure the safety and health at work and meet legal requirements. The article discusses the elements of the logistics system of waste management in hospital, necessary to ensure the smooth flow of waste from its origin to landfilling. The following criteria were characterized: technical and technological, ecological and economic that can be used in the analysis and evaluation of solutions in waste management in the hospital. Finally, solutions to improve waste management system in the hospital on the example of the real object have been presented.

  17. Assessment of Malaysia Institutional radioactive waste management

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma; Nik Marzukee; Ibrahim Martibi

    1996-01-01

    A complete inventory of radioactive wastes from different source bas been set up in Malaysia. Wastes from external agencies were sent to the National Radioactive Waste Management Center at MINT for final disposal. MINT has been collecting information on the accumulated wastes received since 1982. Assessment of radioactive waste management in Malaysia has been conducted based on the inventory record. The information in the inventory include description of users, type volume, characteristics of the wastes; and the current and accumulated activities of the radioisotopes in the wastes forms while storing. The records indicate that there is a significant increase in the volume of wastes from medical and industrial applications. The category of users varies; there are about 270 industrial users, about 60 in medical fields and 13 in research institutes and universities. Major users generating sealed source wastes for the industrial sector are services, manufacturing and consumer companies; including government department and universities. It is estimated that by the year 2005, approximately a total accumulated processed waste package volume for disposal will be between 210-215 m sup 3. This estimate includes low level and intermediate level wastes. From this study, future waste management activities in Malaysia can be planned with proper policy decision, treatment conditioning, storage and disposal facilities. This will enable radioactive wastes to be kept under control and their potential impact on man and the environment to be minimal

  18. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  19. Waste Management During RA Reactor Decommissioning

    International Nuclear Information System (INIS)

    Markovic, M.; Avramovic, I.

    2008-01-01

    The objective of radioactive waste management during the RA reactor decommissioning is to deal with radioactive waste in a manner that protects human health and the environment now and in the future. The estimation of waste quantities to be expected during decommissioning is a very important step in the initial planning. (author)

  20. Waste management in healthcare establishments within Jos ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology ... Recommendations have been made for staff training to create awareness on wastes, their effects, importance of existing guidelines and the implementation of the waste management options for the different categories of wastes so that hospitals do not become ...