WorldWideScience

Sample records for waste management programmes

  1. Indian programme on radioactive waste management

    International Nuclear Information System (INIS)

    Wattal, P.K.

    2013-01-01

    The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective. (author)

  2. The Spanish radioactive waste management programme

    International Nuclear Information System (INIS)

    Beceiro, A.R.

    1994-01-01

    All radioactive waste management activities in Spain are controlled by the Empresa Nacional de Residuos Radiactivos, installed by royal decree in 1984. The programme for low- and intermediate-level wastes is well advanced. A near-surface repository for these type of wastes has been in operation since October 1992. The programme for high-level wastes including spent fuel from the operating nuclear power plants is progressing stepwise. As the first step, effforts are made to secure the temporary storage of spent fuel. Final disposal is envisaged in an deep repository in one of the main geological media available in Spain, namely, granite, salt and clay. (orig.) [de

  3. Update on Waste Management Policies and Programmes

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    In addition to the regular items on national, international and NEA programme activities, this edition of the Bulletin contains two special contributions. First, a special editorial by Dr. Rudolf Rometsch, President of the Swiss National Cooperative for the Storage of Radioactive Waste (NAGRA) and current Chairman of the NEA Radioactive Waste Management Committee (RWMC), provides his personal reflections on the significance and relevance of the recent ''TRANSNUKLEAR AFFAIR'' to the waste management community. Secondly, the recently released Goguel Report from France is featured in the ''Topical Report'' section. This report provides a useful examination of site selection criteria for geological waste repositories [fr

  4. Update on waste management policies and programmes

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide concise information on current radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc.). For practical purposes, the Bulletin does not include an exhaustive description of national programmes. The reader is therefore invited to go back to the information given in previous bulletins and, if necessary, to contact national correspondents in order to obtain a more complete picture of on-going activities. (authors)

  5. Indian radioactive waste management programme: an overview

    International Nuclear Information System (INIS)

    Raj, Kanwar; Ozarde, P.D.

    2009-01-01

    The salient features of the closed fuel cycle are recovery and recycle of uranium and plutonium for reconversion as fuel. Emphasis is also being given to separation of useful isotopes of cesium and strontium for use in healthcare and in heat source applications and partitioning of minor actinides for transmutation. This finally leaves a very small percentage of material present in the spent fuel as radioactive waste, which needs to be managed. Radioactive waste management practices in India have roots in indigenous research and development in view of the importance accorded to it from the very inception of the country's nuclear energy programme. India's experience in the management of radioactive waste from research and power reactors, fuel reprocessing, and allied facilities is rich and comparable with international practices. (author)

  6. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1993-06-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  7. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1992-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  8. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1991-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  9. The Swedish programme for radioactive waste management

    International Nuclear Information System (INIS)

    Bjurstroem, S.; Forsstroem, H.

    1986-10-01

    The following systems and facilities are currently in operation and under implementation: a sea transportation system for all kinds of nuclear waste, a central facility for interim storage of spent fuel (CLAB) and a central underground repository for final disposal of low and medium level reactor waste (SFR). For the remaining steps - final disposal of highly active and longlived radioactive residues - a concept, based on encapsulation of the fuel elements in copper canisters and final storage of the canisters in a repository situated 500 m down in crystalline rock (KBS-3), has been developed and approved by the government in accordance with the Swedish nuclear legislation. Although a feasible method for final disposal of the highly active residues has been shown, the Swedish legislation requires that research be carried out to reach the best possible base for the final decision around the year 2000. In parallel with this a geological investigation programme is carried out to find a suitable site for a final repository. The final site selection is foreseen at the end of the 1990's. All costs for the management of radioactive waste from the nuclear power plants are carried by a fee determined annually. The fee is 0.019 SEK/kWh for 1986

  10. Challenges to a successful waste management programme

    International Nuclear Information System (INIS)

    Le Bars, Y.

    2005-01-01

    I have chosen to testify about my personal experience as a practitioner in the development and implementation of sensitive public policies and about some of the lessons I have learnt in various related fields. Those fields do not only include Andra, but also the exchanges from which I benefit within EDRAM, the club (that I currently chair) of agency directors responsible for those programmes, as well as within the Forum for Stakeholder Confidence (FSC) of the DECD/NEA. Last but not least, I would also introduce some lessons from my previous activities in the city planning, and in the management of water projects. In order to succeed, a sound policy relating to a sustainable radioactive-waste management must be able to take up a certain number of challenges. Three of those challenges seem essential to me: combining the technical and social aspects of the issue; organizing a suitable context in which the definition and the implementation of the policy will take place; and achieving a solid implementation locally. (author)

  11. The IAEA's high level radioactive waste management programme

    International Nuclear Information System (INIS)

    Saire, D.E.

    1994-01-01

    This paper presents the different activities that are performed under the International Atomic Energy Agency's (IAEA) high level radioactive waste management programme. The Agency's programme is composed of five main activities (information exchange, international safety standards, R ampersand D activities, advisory services and special projects) which are described in the paper. Special emphasis is placed on the RADioactive WAste Safety Standards (RADWASS) programme which was implemented in 1991 to document international consensus that exists on the safe management of radioactive waste. The paper also raises the question about the need for regional repositories to serve certain countries that do not have the resources or infrastructure to construct a national repository

  12. The Radioactive Waste Management Programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, A. R.; Vico, E.

    2000-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Ministry of Industry and Energy. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Industry and Energy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  13. The radioactive waste management programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, Alvaro R.; Vico, Elena

    2002-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Spanish Government. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Economy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The Fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  14. Evaluation of the Finnish nuclear waste management programme

    International Nuclear Information System (INIS)

    1994-05-01

    In response to a request from Finland in November 1992, the International Atomic Energy Agency (IAEA) set up a Team of four experts (representatives from Belgium, Canada, Germany and Switzerland) to review the Finnish nuclear waste management programme within the auspices of IAEA's Waste Management programme (WATRP). During the early summer of 1993, the Team reviewed a large amount of documentation supplied by the Finnish industry, government and research organizations. The radioactive waste management programme areas within the Team's terms of reference included: (1) work being done in siting and building a conditional facility for spent nuclear fuel and siting and constructing a co-located repository, (2) the plans and activities for conditioning and disposing of the low and intermediate level waste from Finland's NPPs and (3) the plans for decommissioning Finland's reactors when that becomes necessary. The evaluation work and the recommendations of the Team are detailed in the report

  15. Public sector's research programme on nuclear waste management

    International Nuclear Information System (INIS)

    Vuori, S.

    2000-06-01

    According to the Finnish nuclear energy legislation, each producer of nuclear waste is responsible for the safe handling, management and disposal of the waste as well as for the arising costs. Authorities supervise and control the implementation of the national waste management programme and set the necessary safety and other requirements. In these tasks the authorities are supported by a research programme on nuclear waste management that is independent of the implementing organisations and power companies. The main objective of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into the following main topic areas: (1) Behaviour of bedrock (2) Geohydrology and geochemistry, (3) Release of radionuclides from repository and subsequent transport in bedrock, (4) Engineered safety barriers of the repository, system, (5) Performance and safety assessment of spent fuel disposal facilities, (6) Waste management technology and costs (7) Evaluation of the contents and scope of and observation of the realisation of the environmental impact assessment procedure for the siting of spent nuclear fuel disposal facility, and research on other societal and sociopolitical issues, and (8) Public information, attitude, and image issues for waste management facilities. The research programme has generated considerably increased information on the behaviour of the natural and technical release barriers of the disposal system and thereby contributed to building of confidence on the long-term safety of geological disposal of spent fuel. Furthermore, increased confidence among the public in the affected candidate municipalities has probably been achieved by the complementary studies conducted within the research programme on topics

  16. Nuclear knowledge management in radioactive waste management programmes

    International Nuclear Information System (INIS)

    Vetere, Claudia L.; Gomiz, Pablo R.; Lavalle, Myriam; Masset, Elvira

    2015-01-01

    In late 2007, the Nuclear Knowledge Management (NKM) group of the Argentine Atomic Energy Commission (CNEA), understanding the need to preserve knowledge related with radioactive waste, formulated the CONRRaD Project with the aim of developing and implementing a sustainable knowledge management system. The CONRRaD Project was highly focused on minimising the loss of radioactive waste management knowledge related to processes and facilities as a consequence of staff ageing and retiring, promoting transfer and preservation so as to ensure that future generations interpret and improve the management of waste, protecting the environment and people's health. The National Programme for Radioactive Waste Management (NPRWM) has the responsibility of maintaining a documented record system to preserve the knowledge that is available and relates to the facilities for radioactive wastes treatment, conditioning, packaging, storing and disposal of low-level radioactive wastes. The STOReR system has been designed with the aim of ensuring traceability through all the steps of radioactive waste management from generation to storage or disposal. Apart from upgrading an application in use since 2001, the new software includes improvements in the inventory calculations according to the current regulations. Basically, the system consists of two applications. One application called PAGE is on the Net and it is available for the producers. These producers are the facilities that generate radioactive waste as a consequence of their normal operation. PAGE enables the producers to access all the services provided by AGE more easily. Not only are producers the users of PAGE, but there are also authorised owners of radioactive sources and devices because AGE provides transitory or permanent storage of these elements. The other application called STOReR is the main one which provides the capabilities needed to support the whole system, such as the databases storage and management. STORe

  17. Waste management assessment and technical review programme. WATRP. An international peer review service for radioactive waste management activities

    International Nuclear Information System (INIS)

    1994-09-01

    International Atomic Energy Agency provides international peer review services in radioactive waste management to those Member States that have established radioactive waste management programmes. Such services are provided within Waste Management Assessment and Technical Review Programme (WATRP). The main objective of WATRP is to provide international expertise and information on a requested subject in the field of radioactive waste management and to validate that programmes and activities are sound and performing well. Refs, figs and tabs

  18. Finnish Research Programme on Nuclear Waste Management (KYT). Framework Programme for 2002-2005

    International Nuclear Information System (INIS)

    Rasilainen, K.

    2002-12-01

    The new Finnish research programme on nuclear waste management (KYT) will be conducted in 2002 - 2005. This framework programme describes the starting point, the basic aims and the organisation of the research programme. The starting point of the KYT programme is derived from the present state and future challenges of Finnish nuclear waste management. The research programme is funded mainly by the Ministry of Trade and Industry (KTM), the Radiation and Nuclear Safety Authority (STUK), Posiva Oy, Fortum Oyj, Teollisuuden Voima Oy (TVO), and the National Technology Agency (Tekes). As both regulators and implementors are involved, the research programme concentrates on neutral research topics that must be studied in any case. Methods and tools for experimental and theoretical studies fall in this category. State of the art -reviews on relevant topics also create national know-how. Topics that directly belong to licensing activities of nuclear waste management are excluded from the research programme. KYT carries out technical studies that increase national know-how in the area of nuclear waste management. The aim is to maintain and develop basic expertise needed in the operations derived from the national nuclear waste management plan. The studies have been divided into strategic studies and studies enhancing the long-term safety of spent nuclear fuel disposal. Strategic studies support the overall feasibility of Finnish nuclear waste management. These studies include basic options and overall safety principles related to nuclear fuel cycle and nuclear waste management. In addition, general cost estimates as well as general safety considerations related to transportations, low- and medium level wastes, and decommissioning are included in strategic studies. Studies supporting the long-term safety of spent fuel disposal include issues related to performance assessment methodology, release of radionuclides from the repository, behaviour of bedrock and groundwater

  19. New nuclear programmes must not neglect waste management - 59077

    International Nuclear Information System (INIS)

    McCombie, Charles

    2012-01-01

    Many established nuclear power programmes have learned to their dismay that waste management and disposal are not tasks that can be postponed at will if public and political acceptance is a prerequisite for progress. In fact, some programmes that recognised this back in the 1970's and 1980's moved into leading positions in repository development. This happened, for example, in Sweden and Switzerland where already in the 1970's Laws were passed specifying that safe disposal must be demonstrated before new nuclear plants could operate. In recent years, it has become recognised that, in order to ensure that the radioactive wastes in any country are managed safely, it is necessary to have an established legislative and regulatory framework and also to create the necessary organizations for implementation and for oversight of waste management operations and facility development. Guidance on these issues is given in the Joint Convention and a number of other IAEA documents. The IAEA, and also the EC, have in addition published key overarching advisory documents for new nuclear programmes. These are useful for strategic planning but, when it comes to actual implementation projects, the advice tends to imply that all nuclear programmes, however large or small, should be pressing ahead urgently towards early operation of geological repositories. In practice, however, in small programmes there are neither economic nor technical drivers for early implementation of deep geological repositories. Constructing simpler facilities for the disposal of the larger volume of low-level wastes has higher priority. Nevertheless, in all countries political decisions have to be taken and policies set in place to ensure that geological disposal will implemented without unjustified delay. This paper distils out a set of key messages for new programmes. Amongst the most critical are the following. Even if disposal is far off, planning and organization should begin at the initiation of the

  20. Waste management French programmes and approaches

    International Nuclear Information System (INIS)

    Redon, A.

    1976-01-01

    Many of the processes used in France for testing and conditioning non-high level wastes are well known and used on a large scale in all nuclear countries: incineration or baling for solids, evaporation or coprecipitation for liquids. However, some new processes have been developed which offer some interesting advantages: embedding into bitumen or thermosetting resins for liquid effluents of nuclear power plants, use of polymer impregnated cement instead of normal concrete. For α bearing wastes, cryogenic crushing process is being developed. The treatment of cladding hulls is not entirely solved and many efforts are made to cope with it. For high-level waste, progress towards the development and demonstration of a solidification process on an industrial scale is reviewed. The first of these industrial-scale units is now under construction and will be operational in France at Marcoule in 1977. It may be expected that this will be followed about five years later by another plant in France at LaHague. Taking into account specific problems for storing or disposing of nuclear wastes, new methods for improving burial are in progress and engineered structures are built now permitting a retrievable storage for some decades

  1. Research and technology programmes supporting waste management in BNFL

    International Nuclear Information System (INIS)

    Fairhall, G.A.; Horner, A.M.

    2000-01-01

    Waste Management is a major activity of BNFL in the UK and at various locations internationally. To support these activities extensive programmes of Research and Technology have been undertaken for many years. This involves practical studies involving active and non-active work at laboratory and pilot plant scale. Extensive use is also made of theoretical and modelling techniques. Current work is aimed at underpinning and improving current operations supporting the design and safety cases of new plant and addressing waste management activities of the future including decommissioning. (authors)

  2. Indian programme on radioactive waste management

    Indian Academy of Sciences (India)

    These can be disposed of to the environment and are not likely to cause any ... The overall philosophy for the safe management of radioactive ... power plants and other fuel cycle facilities in order to keep the air in the working area and the.

  3. Management of radioactive wastes - an overview of the Indian programme

    International Nuclear Information System (INIS)

    Thomas, K.T.; Sunder Rajan, N.S.; Balu, K.; Khan, A.A.

    1977-01-01

    An overview of the management of radioactive wastes with particular reference to the Indian Nuclear Programme is presented. The initial design philosophy of the radwaste management system is discussed in relation to accepting a calculated, minimum discharge of radioactivity to the environment. A brief report of the operational experience with the low and intermediate level radwaste systems is given. Factors that influence the review of the present philosophy for future adoption are presented. Some methods being developed for decreasing release of the radioactivity to the environment are discussed. Among techniques considered are solar evaporation, delay and decay of fission rare gases from power reactors and concentration and storage of Kr 85 from fuel reprocessing plants. Problems in the management of high level and alph-bearing wastes are discussed with particular reference to the nature of the waste generated and the policy under implementation for their management. The matrices, solidification processes, modes of interim storage and criteria for selection of site for ultimate dispensation of the solidified high level wastes in geological formations are described. An approach towards the solution of the probelm of management of alpha-bearing waste is also presented

  4. Developing an education programme for schools on radioactive waste management

    International Nuclear Information System (INIS)

    Curd, P.J.; Hutchins, J.S.

    1991-01-01

    United Kingdom Nirex Ltd. is responsible for the development of a deep disposal facility for Britain's solid low and intermediate-level radioactive wastes. In line with their technical programme Nirex has a substantial public information programme costing in excess of Brit-pounds 1M per year. An important part of this programme is the need to develop an effective education programme for schools. This paper details the development and content of this education programme and the rationale behind the development in its current form

  5. Nuclear waste management programme 2003 for the Loviisa and Olkiluoto nuclear power plants

    International Nuclear Information System (INIS)

    2002-09-01

    A joint company Posiva Oy founded by nuclear energy producing Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy coordinates the research work of the companies on nuclear waste management in Finland. In Posiva's Nuclear Waste Management Programme 2003, an account of the nuclear waste management measures of TVO and Fortum is given as required by the sections 74 and 75 of the Finnish Nuclear Energy Degree. At first, nuclear waste management situation and the programme of activities are reported. The nuclear waste management research for the year 2003 and more generally for the years 2003-2007 is presented

  6. Operational programs for national radioactive waste and spent fuel management programme in Slovenia

    International Nuclear Information System (INIS)

    Zeleznik, Nadja; Kralj, Metka; Mele, Irena

    2007-01-01

    The first separate National Radioactive Waste and Spent Fuel Management Programme (National Programme) was prepared in Slovenia in 2005 as a supplementary part of the National Environmental Action Programme and was adopted in February 2006 by the Slovenian Parliament. The new National Programme includes all topics being relevant for the management of the radioactive waste and spent fuel which are produced in Slovenia, from the legislation and identification of different waste streams, to the management of radioactive waste and spent fuel, the decommissioning of nuclear facilities and management of (TE)NORM in the near future from 2006 up to the 2015. The National Programme identified the existing and possible future problems and proposed the technical solutions and action plans for two distinctive periods: 2006-2009 and 2010- 2015. According to the requirement of Act on Protection against Ionising Radiation and Nuclear Safety the national Agency for Radwaste Management (ARAO) prepared the operational programmes for the four year period with technical details on implementation of the National programme. ARAO gained the detailed plans of different involved holders and proposed 9 operational programmes with aims, measures, individual organizations in charge, expenses and resources for each of the programmes. The Operational programmes were already reviewed by the Ministry of Environment and Physical Planning and are under acceptance. The orientation of the radioactive waste management according to the National Programme and operational activities within additional limitations based on the strategical decisions of Slovenian Government is presented in the paper. (authors)

  7. Future strategic directions for radioactive waste management programmes

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The NEA Radioactive Waste Management Committee (RWMC) has identified six strategic areas as priorities for work in the coming years. These strategic areas, listed in this paper, are described in a NEA publication (Strategic Areas in Waste Management: the viewpoint and work orientations of the NEA RWMC

  8. Preparation of the National Radioactive Waste and Spent Fuel Management Programme in Slovenia

    International Nuclear Information System (INIS)

    Kralj, M.; Zeleznik, N.; Mele, I.; Veselic, M.

    2006-01-01

    The first separate National Radioactive Waste and Spent Fuel Management Programme (National Programme) was prepared in Slovenia in 2005, as a separate part of the National Environmental Action Programme that was adopted in June 2005. In the previous National Environmental Action Programme from the year 1999, the radioactive waste and spent fuel management was mentioned only briefly in the paragraph on radiation and nuclear safety with two main objectives: to provide an effective management of radioactive waste, and to keep the environmental ionising radiation under control. The new National Programme from 2005 includes all topics being relevant for the management of the radioactive waste and spent fuel, from the legislation and identification of different waste streams in Slovenia, to the management of radioactive waste and spent fuel, the decommissioning of nuclear facilities and management of (TE)NORM. It deals also with the relevant actors in the radioactive waste management, communication and information activities, and the financial aspects of the radioactive waste and spent fuel management. The National Programme was already adopted by the Slovenian Government in October 2005 and will go to Parliament proceedings. The Technical bases for the National Programme was prepared by ARAO and presented to the government in the beginning of 2005. The frames for this document were taken from relevant strategic documents: the Programme of decommissioning the nuclear power plant Krsko and the radioactive waste and spent fuel management, prepared in 2004 by Slovenian and Croatian experts (ARAO and APO), the Proposal of LILW Management Strategy (1999), the Strategy of Spent Fuel Management (1996), and the Resolution on the National Energy Programme (2004). ARAO made a detailed study on the amount and types of radioactive waste produced in Slovenia and future arising with emphasis on the minimization on radioactive waste production. It considered all producers of LILW and

  9. Radioactive waste management: outline of the research programme of the Commission of the European Communities

    International Nuclear Information System (INIS)

    Bresesti, M.

    1980-01-01

    The lines of activity, the main achievements and the perspectives of the research programme of the Commission of the European Communities on radioactive waste management, are presented. In particular an overall view of the activity on chemical separation and nuclear transmutation of actinides is given, as introduction to the various presentations of the JRC staff on specific aspects of this waste management strategy

  10. Waste management research abstracts no. 22. Information on radioactive waste programmes in progress

    International Nuclear Information System (INIS)

    1995-07-01

    The research abstracts contained in this issue have been collected during recent months and cover the period between January 1992 - February 1994 (through July 1994 for abstracts from the United States). The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. Though the information contained in this publication covers a wide range of programmes in many countries, the WMRA should not be interpreted as providing a complete survey of on-going research and IAEA Member States. For the first time, the abstracts published in document are only in English language. In addition, the abstracts received for this issue have been assigned INIS subject category codes and thesaurus terms to facilitate searches and also to fully utilize established sets of technical categories and terms

  11. Programme on radioactive waste management of the C.E.C.: orientations, motivations, organization and evolution

    International Nuclear Information System (INIS)

    Bishop, G.R.

    1980-01-01

    The Commission of the European Communities favours the development of nuclear energy to contribute to the solution of the energy problems. The Commission favours also the development of a complete nuclear fuel cycle including reprocessing and fast breeders. Thus the Commission is interested in the setting-up of effective solutions to problems of radioactive waste management. The Commission is operating by means of a Direct Action Programme, developed in the Joint Research Centre, and of an Indirect Action Programme, developed under contracts with national laboratories and industries. The programmes of the Commission cover all of the most important aspects of radioactive waste conditioning and disposal. The Commission is operating in strict connection with international organizations; collaboration agreements are in preparation with non-Community countries. The Plan of Action (1980 to 1992) in the Field of Radioactive Waste Management, recently approved by the Council, entrusts to the Commission a wider role in the implementation of the waste management policies

  12. The community's R and D programme on radioactive waste management and storage

    International Nuclear Information System (INIS)

    1978-01-01

    The objective of the R and D actions is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and storing radwaste. The following aspects are investigated: processing of solid waste from reactors, reprocessing plants and the plutonium manufacture; intermediate and terminal storage of high activity and alpha waste; advanced waste management methods as the storage of gaseous waste. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  13. Publicly administrated nuclear waste management research programme 1994-1996. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [ed.] [VTT Energy, Espoo (Finland)

    1997-09-01

    The main objective of the JYT-programme has been to provide the authorities with independent information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into following main topic areas: (1) bedrock structure and stability, rock investigation methods and characteristics and flow of ground water, (2) release of radionuclides from a repository and subsequent transport in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management, (4) natural analogue studies, (5) waste management technology and costs and (6) socio political and other societal issues and environmental impact assessment.

  14. Publicly administrated nuclear waste management research programme 1994-1996. Final report

    International Nuclear Information System (INIS)

    Vuori, S.

    1997-09-01

    The main objective of the JYT-programme has been to provide the authorities with independent information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into following main topic areas: (1) bedrock structure and stability, rock investigation methods and characteristics and flow of ground water, (2) release of radionuclides from a repository and subsequent transport in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management, (4) natural analogue studies, (5) waste management technology and costs and (6) socio political and other societal issues and environmental impact assessment

  15. Technical, environmental and regulatory aspects of waste management and their reflection in the IAEA programme

    International Nuclear Information System (INIS)

    Richter, D.K.

    1982-01-01

    Within the IAEA training course on waste management this paper is intended to overview technological, radiological, encironmental, regulatory and institutional aspects of importance in establishing a waste management policy for nuclear power programmes; the objectives and results of IAEA activities in this field; and some current issues from a national and international perspective with special consideration on the needs of countries embarking on nuclear power. (orig./RW)

  16. The Community's R and D programme on the management and storage of radioactive waste. Shared-cost action programmes

    International Nuclear Information System (INIS)

    McMenamin, T.

    1993-01-01

    Since 1975 the Commission of the European Communities (CEC) has been operating a series of shared-cost action programmes in the field of radioactive waste management with the primary objective of developing methods to protect the public and the environment against the potential hazards of radioactive waste. Member States with small, as well as sizeable, nuclear programmes have been taking part. The choice and type of topics for the programme have depended largely on the work being carried out nationally by these countries with the programmes acting as a support and extension to national projects. To this end they have acted as a catalyst in encouraging and promoting cross-border cooperation and have provided a unique opportunity to compare results and ideas leading to improved quality and efficiency. The list of publications covers reports, proceedings, communications and information leaflets produced and published in the framework of the cost-sharing research programmes of the Commission of the European Communities on radioactive waste management and disposal. The list, which is regularly updated, includes: reports of contractors on research supported by the Commission; reports on research in coordinated actions, assembled and edited by the Commission staff or on behalf of the Commission; proceedings of meetings, conferences and workshops organized and edited by the Commission staff; scientific reports, communications, annual progress reports and information leaflets produced and edited by the Commission staff. Not included are contributions of contractors and staff to national or international meetings, workshops, conferences and expert groups

  17. NDA generic research programme for higher activity waste management issues - 16390

    International Nuclear Information System (INIS)

    McKinney, James; Brownridge, Melanie

    2009-01-01

    NDA has a responsibility to ensure decommissioning activities are sufficiently technically underpinned and appropriate Research and Development (Rand D) is carried out. The NDA funds research and development (R and D) indirectly via the Site Licence Companies (SLCs) or directly. The main component of directly funded R and D is the NDA Direct Research Portfolio (DRP). The DRP is split into four framework areas: - University Interactions; - Waste Processing; - Material Characterisation; - Actinide and Strategic Nuclear Materials. These four framework areas were competed through an Official Journal of European Union (OJEU) process in 2008. Although all four areas involve waste management, Waste Processing and Material Characterisation specifically deal with Higher Activity Waste (HAW) waste management issues. The Waste Processing area was awarded to three groups: (i) National Nuclear Laboratory (NNL), (ii) Consortium led by Hyder Consulting Ltd, and (iii) Consortium led by UKAEA Ltd. The Material Characterisation area was awarded to three groups: (i) NNL, (ii) Serco, and (iii) Consortium led by UKAEA Ltd. The initial work in Waste Processing and Material Characterisation was centered on establishing a forward research programme to address the generic needs of the UK civil nuclear industry and the NDA strategic drivers for waste management and land quality. This has been achieved by the four main framework contractors from the Waste Processing and Materials Characterisation areas working together with the NDA to identify the key research themes and begin the development of the NDA's HAW Management Research Programme. The process also involves active engagement with both industry and regulators via the Nuclear Waste Research Forum (NWRF). The NDA's HAW Management Research Programme includes a number of themes: - Optimisation of Interim Store Operation and Design; - Alternative Waste Encapsulants; - Waste Package Integrity; - Alternative Waste treatment methods

  18. Aspects of nuclear waste management after a 4-year Nordic programme

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-01-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (author)

  19. The Community's R and D Programme on radioactive waste management and storage

    International Nuclear Information System (INIS)

    1980-01-01

    The objective of the R and D actions to be achieved by 1980 is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and storing radwaste. The following aspects are investigated: - processing of solid waste from reactors, reprocessing plants and the plutonium fuel fabrication; - intermediate and terminal storage of high activity and alpha wastes; - advanced waste management methods as the storage of gaseous wastes. This report presents the most important results achieved under the programme. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  20. The European Communities' research programme on management of low and intermediate level wastes

    International Nuclear Information System (INIS)

    Simon, R.; Cecille, L.

    1989-01-01

    In the European Communities' third R and D programme on Management and Disposal of Radioactive Wastes a large number of projects have been commissioned to develop treatment and conditioning processes for low and intermediate level wastes and to qualify the conditioned waste forms. The paper presents the main objectives of this research and summarizes some of the more important studies. In liquid waste treatment, the research includes processes to separate actinides by new extractive methods and application of selective inorganic ion exchangers as well as electrochemically controlled ion exchange processes and a series of purification methods involving membrane techniques. The most important issue of solid waste management in the programme is the treatment and conditioning of plutonium containing wastes, for which a strategic study had been commissioned to optimize the choice between different treatment and conditioning options. Processes being studied include two advanced decontamination techniques and a variety of conditioning methods for incinerator ash and fuel element hulls. Another task of the programme is devoted to the qualification of waste forms. This comprises the characterization of the most common low and intermediate level waste products with respect to leaching, waste form stability, radiation resistance and compatibility with the respective disposal environments. In the course of the programme, the development of methods for quality assurance and in particular quality control has become an important issue: the control of the nuclide inventory, of the chemical composition of the wastes and of the correct operation of treatment and conditioning processes is being investigated in special laboratories. (author). 21 refs, 4 tabs

  1. Overview of the solid radioactive waste management programme for Cernavoda NPP

    International Nuclear Information System (INIS)

    Raducea, D.

    2001-01-01

    The wastes generated from nuclear power plants have a very large diversity, and can be grouped into non-radioactive and radioactive wastes. These two types are manipulated completely different ways from each other. Among radioactive wastes, solid radioactive wastes are important, because of their diversity, their method of treatment and of their volume compared to the others types. The strategy for their treatment and characterisation has a dynamic character and allows modification after the identification of new solutions at the international level, or after the production of new waste types. The Radioactive Waste Management concept for Cernavoda NPP established the general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment. The radioactive waste management programme has the following major characteristics: plant operation at all times ensures that radioactive wastes are minimised; procedures are established to ensure that radiation doses to operating staff and members of the public are in accordance with ALARA and contamination from collection, transportation and storage of wastes are eliminated; all staff is trained and qualified to carry out their responsibilities. This presentation does not address the management of spent fuel, contaminated heavy water and the disposal of the solid radioactive wastes.(author)

  2. The Communities R and D Programme: radioactive waste management and storage

    International Nuclear Information System (INIS)

    1977-01-01

    The European Community's programme is the first and to this date the only joint international action dealing with those issues, which might well become decisive for the future of nuclear energy -the management and storage of radioactive waste. The first Annual Progress Report describes the scope and the state of advancement of this indirect action programme. At present 24 research contracts with research institutes in almost every member country of the EC are either signed or in the final stages of negociation. The objective of the R and D actions to be achieved by 1980 is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and stoping radwaste. The following aspects are investigated: processing of solid waste from reactors, reprocessing plants and the plutonium manufacture; intermediate and terminal storage of high activity and alpha wastes; advanced waste management methods as the storage of gaseous waste and the separation and transmutation of actinides. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  3. Radiological impact of the management of radioactive waste arising from the Argentine Nuclear Programme

    International Nuclear Information System (INIS)

    Migliori de Beninson, A.; Cancio, D.

    1984-01-01

    The Argentine nuclear programme, as it stands at present, provides for the construction of four nuclear power plants in addition to those of Atucha I and Embalse and for the establishment of such fuel cycle facilities as are required to supply all of these plants. This paper evaluates the radiological impact (collective dose commitment) expected from the management of the radioactive wastes arising in the facilities mentioned above throughout the useful life of the reactors. The maximum individual doses to be expected as a result of the planned high-level-waste repository are also estimated. The evaluations presented are partly specific to the sites under consideration, but they also include estimates of the total collective dose commitments resulting from the management of radioactive waste under the Argentine nuclear programme. (author)

  4. Waste management research abstracts no. 16. Information on radioactive waste programmes in progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-11-01

    The research abstracts contained in this issue have been collected during recent months ending August 1985. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. The abstracts have been printed in the language and in the form of submittal and without any changes other than minor editorial ones.

  5. Waste management research abstracts no. 16. Information on radioactive waste programmes in progress

    International Nuclear Information System (INIS)

    1985-11-01

    The research abstracts contained in this issue have been collected during recent months ending August 1985. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. The abstracts have been printed in the language and in the form of submittal and without any changes other than minor editorial ones

  6. The Community's research and development programme on radioactive waste management and storage

    International Nuclear Information System (INIS)

    Orlowski, S.; Gandolfo, J.M.

    1988-01-01

    This is the first annual progress report of the European Community's 1985-89 programme of research on radioactive waste management and disposal, carried out by public organizations and private firms in the Community under cost-sharing contracts with the Commission of the European Communities. The 1985-89 programme is aiming at perfecting and demonstrating a system for managing the radioactive waste produced by the nuclear industry, ensuring at the various stages the best possible protection of man and the environment. This first report describes the work to be carried out under the research contracts already concluded before end of 1986 as well as the initial work performed and the first results obtained. For each contract, paragraph C ''Progress of work and obtained results'' was prepared by the contractor under the responsibility of the project leader

  7. IAEA's radioactive waste management programme a change in direction for the 1990's

    International Nuclear Information System (INIS)

    Saire, Donald E.

    1991-01-01

    The IAEA has been assisting Member States in the management and disposal of radioactive wastes for almost three decades. This assistance has largely been in the form of providing an international form for the exchange of information on subjects of mutual interest and in offering technical assistance from developed Member States to developing Member States. In the 1980's, the Agency's programme concentrated on the collection, review and publication of state-of-the-art technology covering such subject fields as handling and processing of wastes from nuclear power plants and fuel cycle facilities, gaseous waste management, near-surface disposal of low-and intermediate-level radioactive wastes, deep geological disposal of high-level and transuranic wastes, radiological and environmental effects of waste disposal and the decontamination and decommissioning of nuclear installations. While the Agency still plans to serve as the main forum for the exchange of information on radioactive waste management two new areas of activity will receive emphasis in the 1990's

  8. Technology transfer on long-term radioactive waste management - a feasible option for small nuclear programmes?

    International Nuclear Information System (INIS)

    Mele, I.; Mathieson, J.

    2007-01-01

    The EU project CATT - Co-operation and technology transfer on long-term radioactive waste management for Member States with small nuclear programmes investigated the feasibility of countries with small nuclear programmes implementing long-term radioactive waste management solutions within their national borders, through collaboration on technology transfer with those countries with advanced disposal concepts. The main project objective was to analyse the existing capabilities of technology owning Member States and the corresponding requirements of potential technology acquiring Member States and, based on the findings, to develop a number of possible collaboration models and scenarios that could be used in a technology transfer scheme. The project CATT was performed as a specific support action under the EU sixth framework programme and it brought together waste management organisations from six EU Member States: UK, Bulgaria, Germany, Lithuania, Slovenia and Sweden. In addition, the EC Joint Research Centre from the Netherlands also participated as a full partner. The paper summarises the analyses performed and the results obtained within the project. (author)

  9. Transfer of radioactive waste management expertise from Switzerland to other countries with small nuclear power programmes

    International Nuclear Information System (INIS)

    McKinley, I.; Birkhaeuser, Ph.; Kickmaier, W.; Vomvoris, S.; Zuidema, P.

    2000-01-01

    A legal requirement which coupled demonstration of the feasibility of nuclear waste disposal to the extension of reactor operational licenses beyond 1985 acted to force rapid development of the Swiss radioactive waste management programme. Over a period of almost 30 years and at a cost of approximately 800 M CHF Nagra has become established as a centre of excellence in this field. Resources include highly experienced manpower, literature and databases supporting development of national repositories for L/ILW and HLW/TRU and state-of-the-art R and D infrastructure (including 2 underground laboratories, hot-laboratory facilities at PSI (Paul Scherrer Institute), modelling groups at universities etc.). This paper reviews Nagra's experience and considers various ways in which expertise can be transferred to other small countries to minimise duplication of effort and optimise development of their own national programmes. (author)

  10. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark (Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: mark.elam@sts.gu.se; Sundqvist, Goeran (Univ. of Oslo, Oslo (Norway))

    2010-09-15

    In this paper the intention is to analyse and re/describe the qualities that underlie the current fame and good standing of Swedish nuclear waste management (the so-called KBS Programme). Inspired by work in the actor-network theory tradition, we want to argue that the success of the KBS Programme can be best accounted for with reference to qualities which are the reverse of those you might otherwise expect. While you might imagine its good name to be ascribable to the constancy, solidity and singularity of the solution being advanced, we want to argue that it is rather the infidelity, fluidity and heterogeneity of this solution that can best account for the leading position of Swedish nuclear waste management today. In fact, we wish to assert that it is through the effacement of the inherent importance of the latter set of qualities, that the KBS Programme has been able to promote a vision of itself as successfully imbued with the former set. The enduring template for Swedish nuclear waste management was established in 1977 through the Nuclear Stipulation Act. This gave rise to the cultivation of a new expertise within the Swedish nuclear industry of demonstrating indubitable solutions to nuclear waste problems close at hand. Thus, while it may appear that the KBS Programme has always been about the conception, and step by step implementation of a completely coherent and largely unvarying approach to the geological disposal of nuclear waste, this can be seen as effacing another reality. Bringing this other reality back into view, we see that for the KBS Programme, attaining the goal of the geological disposal of nuclear waste has never been as important as maintaining the ability to demonstrate its attainability. The KBS Programme is firstly a long-running programme in the material semiotics of nuclear fuel safety and the production of palpable signs of the accomplishment of geological disposal close at hand. This production of palpable signs has extended to the

  11. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2010-09-01

    In this paper the intention is to analyse and re/describe the qualities that underlie the current fame and good standing of Swedish nuclear waste management (the so-called KBS Programme). Inspired by work in the actor-network theory tradition, we want to argue that the success of the KBS Programme can be best accounted for with reference to qualities which are the reverse of those you might otherwise expect. While you might imagine its good name to be ascribable to the constancy, solidity and singularity of the solution being advanced, we want to argue that it is rather the infidelity, fluidity and heterogeneity of this solution that can best account for the leading position of Swedish nuclear waste management today. In fact, we wish to assert that it is through the effacement of the inherent importance of the latter set of qualities, that the KBS Programme has been able to promote a vision of itself as successfully imbued with the former set. The enduring template for Swedish nuclear waste management was established in 1977 through the Nuclear Stipulation Act. This gave rise to the cultivation of a new expertise within the Swedish nuclear industry of demonstrating indubitable solutions to nuclear waste problems close at hand. Thus, while it may appear that the KBS Programme has always been about the conception, and step by step implementation of a completely coherent and largely unvarying approach to the geological disposal of nuclear waste, this can be seen as effacing another reality. Bringing this other reality back into view, we see that for the KBS Programme, attaining the goal of the geological disposal of nuclear waste has never been as important as maintaining the ability to demonstrate its attainability. The KBS Programme is firstly a long-running programme in the material semiotics of nuclear fuel safety and the production of palpable signs of the accomplishment of geological disposal close at hand. This production of palpable signs has extended to the

  12. Waste management research abstracts No.19: Information on radioactive waste programmes in progress

    International Nuclear Information System (INIS)

    1989-06-01

    The research data sheets contained in this issue have been collected up to October 1988. Enquiries for further information concerning a particular data sheet should be addressed to the author(s) at his (their) institute. This issue contains over 840 abstracts that describe research in progress in the field of radioactive waste management. These abstracts present ongoing work in 33 countries and international organizations

  13. Publicly administrated nuclear waste management research programme 1994-1996. General plan for the research programme and research plan for 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy legislation of Finland includes detailed stipulations concerning nuclear waste management. Each producer of nuclear waste is responsible for the safe handling, management and disposal of the waste, and for the financing of these operations. The authorities supervise and control the implementation of the national waste management programme and set the necessary safety and other requirements. The principal goal of the JYT programme is to provide the authorities with information and research results relevant for the safety of nuclear waste management in order to support the various activities of the authorities. The whole field of the research programme is subdivided into the following main topic areas: (1) bedrock structure and stability, rock investigation methods, and characteristics and flow of groundwater, (2) release of radionuclides from a repository and subsequent migration in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management (4) natural analogue studies, (5) waste management technology and costs and (6) sociopolitical and other societal issues and environmental impact assessment

  14. Current Status of the United Kingdom Programme for Long-Term Radioactive Waste Management

    International Nuclear Information System (INIS)

    Murray, C. H.; Hooper, A. J.; Mathieson, J.

    2002-01-01

    In 1997, the UK programme for the deep disposal of radioactive waste was ''stopped dead in its tracks'' with the refusal by the Secretary of State for the Environment to allow Nirex to go ahead with its plans for an underground Rock Characterisation Facility at Sellafield in north-west England. Since that time a House of Lords' Select Committee has held an inquiry into what went wrong and what the way ahead should be. In addition, Nirex and the nuclear industry players have also been analyzing the past with a view to learning from the experience in taking things forward. In Nirex's view this is essentially an ethical issue; the waste exists and we should deal with it in this generation. Three areas need to be better addressed if a successful program of management of the nation's radioactive waste is to be achieved: the process of how policy development and implementation can be achieved; the structure of the nuclear industry and its relationship to the waste management organization; and the behavior of the players in their interaction with stakeholders. All three are underpinned by the need for transparency. In recognition that developing a policy for managing radioactive waste has to be achieved with the support of all stakeholders, the Government instigated a consultation exercise in September 2001. The initial phase of this initiative is essentially a consultation about consultation and is intended to decide on how the next stages of a six year policy development program should be addressed. In addition to this exercise, the Government is undertaking a fundamental review of the structuring of the United Kingdom Atomic Energy Authority (UKAEA) and British Nuclear Fuels plc (BNFL). They are both shareholders in Nirex and in November 2001 the Government announced the setting up of a Liabilities Management Authority (LMA) to manage the long-term nuclear liabilities that are publicly owned, particularly through those organizations. The future of Nirex will be

  15. Radioactive waste disposal programme 2008 of the waste-management-compelled bodies. Technical report 08-01

    International Nuclear Information System (INIS)

    2008-10-01

    and managing available interim storage capacity. The Swiss waste management concept assumes two deep geological repositories, one for low- and intermediate-level waste (L/ILW repository) and one for spent fuel, vitrified high level waste from reprocessing and long-lived intermediate-level waste (HLW repository). These two repositories could be implemented at different sites or at the same site if the geological situation is suitable. The proposed design concepts are based on the requirement that long-term safety is to be assured by a system of multiple passive safety barriers. There must be sufficient flexibility to allow information and experience arising in the future to be taken into account. Planning must also account for waste arising as a result of future developments in the areas of nuclear energy and application of radioactive materials. An allocation of the waste taking into account specific waste properties was undertaken in the context of preparing proposals for geological siting regions in order to derive the requirements on the geology. The implementation time plan assumes that the general licences will be granted for both repositories in 2018, start of operation of the L/ILW repository in 2035 and the HLW repository in 2050. The time plan takes into account site-specific studies for the L/ILW and HLW repositories, as well as the more generic, non-site-specific work that forms part of the research and development programme. It is also possible to take into account the waste arising that will result from future developments in nuclear energy and in the use of radioactive materials. Handling future licensing steps appropriately will allow any required expansion of repository capacity to be taken into account and the stepwise refinement of the waste allocation will also be possible. Radioactive waste must be held in interim storage until it can be emplaced in geological repositories. For the existing power plants and waste from medicine, industry and

  16. Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Today, numerous countries are considering construction of their first nuclear power plant or the expansion of a small nuclear power programme, and many of these countries have limited experience in managing radioactive waste and spent nuclear fuel. They often have limited information about available technologies and approaches for safe and long term management of radioactive waste and spent nuclear fuel arising from power reactors. The lack of basic know-how and of a credible waste management strategy could present a major challenge or even an obstruction for countries wishing to

  17. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  18. Liquid-waste management systems improvement programmes at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Emelity, L.A.; Stanley, P.M.; Buchholz, J.R.

    1981-01-01

    Programmes at the Los Alamos Scientific Laboratory (LASL) are approximately 50% nuclear weapons related and 50% general energy research and development. Since its beginning in the 1940s, liquid industrial wastes have been contaminated with isotopes of plutonium, americium, uranium and various beta-gamma emitters, but management and treatment efforts were, owing to the proportions of the various isotopes, directed primarily at the alpha emitters. The evolution in management methods at LASL since the 1940s has been reported in previous papers. This treatise discusses the most recent three-phase effort to modernize the systems to the probable standards of the next twenty years. The first phase, provision of a double-encased, continuously monitored sewer system will soon be under construction. The second phase, modernization of the treatment facilities, has been funded and is in the final design stage. The third phase, not funded as of this date, will provide lined, monitored solar evaporation ponds for total management of the treated industrial wastes with no release of any liquid to the environment. (author)

  19. Suggested Guidelines for Transparency and Participation in Nuclear Waste Management Programmes. Deliverable 22

    International Nuclear Information System (INIS)

    Jonsson, Josefin Paeivioe; Andersson, Kjell; Bolado, Ricardo; Drottz Sjoeberg, Britt-Marie; Elam, Mark; Sundqvist, Goeran; Kojo, Matti; Meskens, Gaston; Pritrsky, Jozef; Richardson, Phil; Soneryd, Linda; Steinerova, Lucie; Szerszynski, Bronislaw; Wene, Clas-Otto; Vojtechova, Hana

    2010-02-01

    The ARGONA project intended to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. Thereby, studies have been done of the institutional and cultural context within which processes of participation and transparency take place in order to understand how the processes can be applied. The project also included studies of theory in order to build participation and transparency on a firm ground, a number of case studies in Czech Republic, Finland, Sweden and UK, as well as implementation in Czech Republic to make a difference, learn and demonstrate. These proposed guidelines are thus the result of observations and conclusions made in these efforts, and should not be regarded as an attempt to give a comprehensive set of guidelines for nuclear waste management or even for the implementation of transparency and participation therein. However, it is the hope among the ARGONA participants that they can give relevant thoughts and stimulation to those involved in the nuclear waste management area, especially organizations that have, or may become, responsible for the implementation of processes of transparency and participation, such as implementing organizations, government agencies, regulators as well as regional and local communities. It should be recognized that some of the proposed guidelines may be more relevant for a certain type of bodies (such as an implementer) than for another type (such as local community) and vice versa. Some of the proposed guidelines are also relevant at broader societal level and for the European Union bodies. It will be up to the respective reader to judge the relevance for her or his organization. The suggested guidelines are followed by more detailed recommendations on how to combine the two basic forms of mediation that have been identified in ARGONA, namely mediation by demonstration and mediation by dialogue in Annex 1

  20. Establishing a national system for radioactive waste management. A publication within the RADWASS programme

    International Nuclear Information System (INIS)

    1995-09-01

    This Safety Standard is intended to cover the requirements for establishing a national system for safe management of radioactive wastes especially, for solid, liquid and airborne radioactive waste resulting from the nuclear fuel cycle. The main text of the Safety Standard is organized as follows: (a) Section 2 sets out the main objective for radioactive waste management and the principle on which radioactive waste management policy and strategies should be based; (b) Section 3 presents the basic components of a national framework for radioactive waste management; (c) Section 4 outlines the responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities; and (d) Section 5 describes important features of radioactive waste management

  1. Community R and D programme on radioactive waste management and storage (Shared Cost Action). List of scientific reports

    International Nuclear Information System (INIS)

    Hebel, W.; Falke, W.

    1984-11-01

    The scientific reports listed herein have been brought out in the scope of the Research and Development programme sponsored by the Commission of the European Communities in the field of Radioactive Waste Management and Storage. The list systematically contains the references of all final R and D reports and equivalent scientific publications drawn up since 1975 on the various contractual research works sponsored by the Commission in its programme on shared cost terms (Shared Cost Action). It states the autor of the work, the title, the EUR report number (where applicable), the way of publication and the contractor's reference (CEC contract number). The content headings are: conditioning of fuel cladding and dissolution residues, immobilization and storage of gaseous waste, treatment of Low and Medium Level waste, processing of alpha contaminated waste, characterization of conditioned Low and Medium Level waste forms, testing of solidified High Level waste forms, shallow land burial of solid Low Level waste, waste disposal in geological formations, safety of radioactive waste disposal, and annual progress reports of the Community programme

  2. The Community's R and D programme on management and storage of radioactive waste

    International Nuclear Information System (INIS)

    McMenamin, T.

    1990-05-01

    This list of publications covers reports, proceedings, communications and information leaflets produced and published in the frame of the cost-sharing research programme of the Commission of the European Communities on radioactive waste management and disposal. The list, which is regularly updated, includes: (i) reports of contractors on research supported by the Commission; (ii) reports on research in coordinated actions, assembled and edited by the Commission staff or on behalf of the Commission; (iii) proceedings of meetings, conferences and workshops organized and edited by the Commission staff; (iv) scientific reports, communications, annual progress reports and information leaflets produced and edited by the Commission staff. Not included are contributions of contractors and staff to national or international meetings, workshops, conferences and expert groups. Work performed by the Commission's Joint Research Centre (JRC) in the field of radioactive waste management is not mentioned here - information on the JRC activities and publications may be found in the annual JRC progress reports and the bi-annual information leaflet EC-Focus

  3. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another new

  4. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another

  5. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    International Nuclear Information System (INIS)

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another new

  6. The principles of radioactive waste management. A publication within the RADWASS programme

    International Nuclear Information System (INIS)

    1995-01-01

    This publication defines the objective of radioactive waste management and the associated set of internationally agreed principles. The Safety Fundamentals include the objective of radioactive waste management and fundamental principles of radioactive waste management. The fundamental principles fall into the following general subject areas: protection of human health, protection of the environment, protection beyond national borders, responsibility to future generations and implementation procedures. Each principle is stated, and supporting and explanatory information pertaining to the principle is provided. 1 fig

  7. Nuclear waste management in Finland. Final report of public sector's research programme JYT2001 (1997-2001)

    International Nuclear Information System (INIS)

    Rasilainen, K.

    2002-05-01

    According to Finnish nuclear energy legislation, each producer of nuclear waste is responsible for the safe handling, management, and disposal of its waste, as well as for the costs arising. The Posiva company, owned by the nuclear energy-producing power companies, is in charge of spent nuclear fuel management in Finland. The authorities supervise the management of nuclear waste and issue regulations for this purpose. In these demanding tasks the authorities have been supported by the Public Sector's Research Programme on Nuclear Waste Management (JYT2001). The objective of JYT2001 was to provide the authorities with independent expertise and research results relevant to the safety of nuclear waste management. Emphasis was placed on the geological disposal of spent nuclear fuel. The research area was divided into (1) technical studies on the safety of spent fuel disposal, and (2) social science studies related to nuclear waste management. The technical studies covered bedrock behaviour, the hydrogeology and geochemistry of the bedrock, the stability of the bentonite buffer, and the migration of radionuclides in the bedrock. In addition, performance assessment methodology was covered, as well as waste management technologies and costs. The social science studies were focussed on observing the Decision in Principle (DiP) process including the Environmental Impact Assessment (EIA), and media issues related to the spent fuel disposal facility. JYT2001 provided considerable support to the authorities in helping them deal with technical and social science questions. The Government's positive Decision in Principle (DiP) on Posiva's application for a spent fuel disposal facility in Eurajoki was ratified by Parliament in May 2001. The existence of a credible JYT2001 programme, independent of Posiva, obviously contributed to the high level of public confidence in the Finnish nuclear waste management programme. According to the schedule of the Finnish nuclear waste management

  8. Programme of research into the management and storage of radioactive waste. Mathematical modelling

    International Nuclear Information System (INIS)

    Rae, J.

    1984-01-01

    Progress in work on the importance of fractures in rocks to waste disposal studies is reported. The permeability of the fracture system is predicted. Computer programmes are used to solve problems of ground water flow and radionuclide transport, and a new 'dual porosity' mathematical model is assessed for radionuclide transportation. (U.K.)

  9. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  10. Integrated planning of laboratory, in-situ, modelling and natural analogue studies in the Swiss radioactive waste management programme

    International Nuclear Information System (INIS)

    McKinley, I.G.; Zuidema, P.

    2001-01-01

    After more than 25 years of development, the Swiss radioactive waste management programme has a well established disposal strategy supported by an integrated R and D infrastructure. The process of implementation of repository projects is constrained by political factors, but a dynamic R and D programme is strongly guided by periodic integrated performance assessments and includes: Experimental studies in conventional and ''hot'' laboratories; Projects in underground test facilities and field test sites; Model development verification and validation; Natural and archaeological analogue projects. R and D in the Swiss national programme focuses on filling remaining gaps in system understanding, enhancing confidence via validation and demonstration projects, system optimisation and maintaining state of the art technical capacity in key areas. Increasingly, such work is carried out in collaboration with partner national waste management organisations. In addition, The National Cooperative for the Disposal of Radioactive Waste (Nagra) provides support services to developing programmes - which allows Nagra to widen its range of experience while providing attractive access to a knowledge base accumulated at a cost of over 750 M CHF. (author)

  11. Impact of an intervention programme on knowledge, attitude and practice of healthcare staff regarding pharmaceutical waste management, Gaza, Palestine.

    Science.gov (United States)

    Tabash, M I; Hussein, R A; Mahmoud, A H; El-Borgy, M D; Abu-Hamad, B A

    2016-09-01

    To assess knowledge, attitude and practice (KAP) of healthcare staff regarding pharmaceutical waste management; and to determine the impact of an educational programme on the KAP survey items. Pre-post-test intervention study. The pre-intervention phase was performed using a sample of 530 out of 1500 healthcare workers. A predesigned interview questionnaire was used to assess KAP. Next, an educational programme was designed and offered to a subsample of 69 healthcare workers. KAP were re-assessed for the programme attendees using the same interview questionnaire, both immediately (post-test) and six months after the end of the programme (follow-up test). The parametric paired sample t-test was used to assess the difference between pre-test and follow-up test results. Poor knowledge and poor practice levels (scores 50%) detected in the pre-intervention phase were found to improve to satisfactory levels (scores ≥75%) in the follow-up phase. Attitude was found to be positive (score ≥75%) in all phases of the study. The educational programme led to a significant improvement in KAP of healthcare staff regarding pharmaceutical waste management (P<0.001). Copyright © 2016. Published by Elsevier Ltd.

  12. RADWASS update. Radioactive Waste Safety Standards Programme

    International Nuclear Information System (INIS)

    Delattre, D.

    2000-01-01

    By the late 1980s, the issue of radioactive wastes and their management was becoming increasingly politically important. The IAEA responded by establishing a high profile family of safety standards, the Radioactive Waste Safety Standards (RADWASS). By this means, the IAEA intended to draw attention to the fact that well-established procedures for the safe management of radioactive wastes already were in place. The programme was intended to establish an ordered structure for safety documents on waste management and to ensure comprehensive coverage of all relevant subject areas. RADWASS documents are categorized under four subject areas - discharges, predisposal, disposal, and environmental restoration. The programme is overseen through a formalized review and approval mechanism that was established in 1996 for all safety standards activities. The Waste Safety Standards Committee (WASSC) is a standing body of senior regulatory officials with technical expertise in radioactive waste safety. To date, three Safety Requirements and seven Safety Guides have been issued

  13. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  14. Advanced concepts for waste management and nuclear energy production in the EURATOM 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejon, J.

    2002-01-01

    This paper summarises the objectives of the research projects on partitioning and transmutation (P and T) of long-lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM 5. Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long-lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing high-temperature reactors (HTRs) commercially for energy production. Finally, the European Commissions proposal fora New Framework Programme (2002-2006) is briefly outlined. (authors)

  15. Advanced concepts for waste management and nuclear energy production in the EURATOM fifth framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejo, J.

    2001-01-01

    This paper summarises the objectives of the research projects on Partitioning and Transmutation (P and T) of long lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM Fifth Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing High Temperature Reactors (HTRs) commercially for energy production. Finally, the European Commission(tm)s proposal for a New Framework Programme (2002-2006) is briefly outlined. (author)

  16. RDandD Programme 2007. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    International Nuclear Information System (INIS)

    2007-09-01

    The programme describes in general terms the planned measures and the facilities that are needed for the task, with a focus on the plans for the period 2008-2013. The period of immediate concern is 2008-2010. The level of detail for the three subsequent years is naturally lower. The programme provides a basis for designing systems to manage and dispose of the radioactive waste from the nuclear power plants. SKB intends to dispose of the spent nuclear fuel in accordance with the KBS-3 method. In the RDandD Programme we describe our activities and the planning for it. We also deal with societal research and other methods for disposal of spent nuclear fuel. The planning for low- and intermediate-level waste, as well as for the societal research, is presented in separate parts. The upcoming review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they view different parts of the activity. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government. The most important milestone during the coming three-year period is to submit applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. RDandD programme 2007 therefore focuses on the technology development that is needed to realize the final repository for spent nuclear fuel. The site investigations in Forsmark and Laxemar will be concluded in 2007. The work of compiling the applications for the final repository is under way. In contrast to the immediately preceding programmes, RDandD Programme 2007 therefore also contains a summary of the site investigation phase and a look ahead at the steps that remain before the final repository can be put into operation. RDandD Programme 2007 consists of six parts: Part I SKB's plan of action; Part II Final repository for spent

  17. RDandD Programme 2007. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    The programme describes in general terms the planned measures and the facilities that are needed for the task, with a focus on the plans for the period 2008-2013. The period of immediate concern is 2008-2010. The level of detail for the three subsequent years is naturally lower. The programme provides a basis for designing systems to manage and dispose of the radioactive waste from the nuclear power plants. SKB intends to dispose of the spent nuclear fuel in accordance with the KBS-3 method. In the RDandD Programme we describe our activities and the planning for it. We also deal with societal research and other methods for disposal of spent nuclear fuel. The planning for low- and intermediate-level waste, as well as for the societal research, is presented in separate parts. The upcoming review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they view different parts of the activity. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government. The most important milestone during the coming three-year period is to submit applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. RDandD programme 2007 therefore focuses on the technology development that is needed to realize the final repository for spent nuclear fuel. The site investigations in Forsmark and Laxemar will be concluded in 2007. The work of compiling the applications for the final repository is under way. In contrast to the immediately preceding programmes, RDandD Programme 2007 therefore also contains a summary of the site investigation phase and a look ahead at the steps that remain before the final repository can be put into operation. RDandD Programme 2007 consists of six parts: Part I SKB's plan of action; Part II Final repository for spent

  18. RDandD Programme 2007. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    The programme describes in general terms the planned measures and the facilities that are needed for the task, with a focus on the plans for the period 2008-2013. The period of immediate concern is 2008-2010. The level of detail for the three subsequent years is naturally lower. The programme provides a basis for designing systems to manage and dispose of the radioactive waste from the nuclear power plants. SKB intends to dispose of the spent nuclear fuel in accordance with the KBS-3 method. In the RDandD Programme we describe our activities and the planning for it. We also deal with societal research and other methods for disposal of spent nuclear fuel. The planning for low- and intermediate-level waste, as well as for the societal research, is presented in separate parts. The upcoming review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they view different parts of the activity. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government. The most important milestone during the coming three-year period is to submit applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. RDandD programme 2007 therefore focuses on the technology development that is needed to realize the final repository for spent nuclear fuel. The site investigations in Forsmark and Laxemar will be concluded in 2007. The work of compiling the applications for the final repository is under way. In contrast to the immediately preceding programmes, RDandD Programme 2007 therefore also contains a summary of the site investigation phase and a look ahead at the steps that remain before the final repository can be put into operation. RDandD Programme 2007 consists of six parts: Part I SKB's plan of action; Part II Final repository for

  19. Objectives, concepts and strategies for the management of radioactive waste arising from nuclear power programmes

    International Nuclear Information System (INIS)

    1977-09-01

    This Report (also referred to as the Polvani Report) provides a comprehensive description of problems, current practices and policies in the field of radioactive waste management. The day to day management of radioactive waste is, according to the Report, in general satisfactorily covered, both from the point of view of licensing and control and liability and insurance. It points out, however, that the third party liability regime established by the Paris Convention and corresponding national legislation, would seem to be ill-adapted to cover damage resulting from waste ultimately disposed of because it would necessitate the operator's liability and corresponding insurance being maintained for an indefinite period of time. Solutions should therefore be sought providing for compensation by governments. (NEA) [fr

  20. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  1. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    RDandD Programme 2010 presents SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas: the programme for low- and intermediate-level waste (the LILW Programme) and the Nuclear Fuel Programme. Operation of the existing facilities takes place within the Operational Process. RDandD Programme 2010 consists of five parts: Part I Overall plan of action Part II The LILW Programme Part III The Nuclear Fuel Programme Part IV Research for assessment of long-term safety Part V Social science research RDandD Programme 2007 was mainly focused on development of technology to realize the final repository for spent nuclear fuel. The efforts described were aimed at gaining a greater knowledge of long-term safety and compiling technical supporting documentation for applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. Many important results from these efforts are reported in this programme. The integrated account of the results will be presented in applications submitted in early 2011. The regulatory review of RDandD Programme 2007 and its supplement called for clarifications of plans and programmes for the final repository for short-lived radioactive waste, SFR, and the final repository for long-lived waste, SFL. This RDandD Programme describes these plans more clearly

  2. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    International Nuclear Information System (INIS)

    2010-09-01

    RDandD Programme 2010 presents SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas: the programme for low- and intermediate-level waste (the LILW Programme) and the Nuclear Fuel Programme. Operation of the existing facilities takes place within the Operational Process. RDandD Programme 2010 consists of five parts: Part I Overall plan of action Part II The LILW Programme Part III The Nuclear Fuel Programme Part IV Research for assessment of long-term safety Part V Social science research RDandD Programme 2007 was mainly focused on development of technology to realize the final repository for spent nuclear fuel. The efforts described were aimed at gaining a greater knowledge of long-term safety and compiling technical supporting documentation for applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. Many important results from these efforts are reported in this programme. The integrated account of the results will be presented in applications submitted in early 2011. The regulatory review of RDandD Programme 2007 and its supplement called for clarifications of plans and programmes for the final repository for short-lived radioactive waste, SFR, and the final repository for long-lived waste, SFL. This RDandD Programme describes these plans more clearly

  3. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    RDandD Programme 2010 presents SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas: the programme for low- and intermediate-level waste (the LILW Programme) and the Nuclear Fuel Programme. Operation of the existing facilities takes place within the Operational Process. RDandD Programme 2010 consists of five parts: Part I Overall plan of action Part II The LILW Programme Part III The Nuclear Fuel Programme Part IV Research for assessment of long-term safety Part V Social science research RDandD Programme 2007 was mainly focused on development of technology to realize the final repository for spent nuclear fuel. The efforts described were aimed at gaining a greater knowledge of long-term safety and compiling technical supporting documentation for applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. Many important results from these efforts are reported in this programme. The integrated account of the results will be presented in applications submitted in early 2011. The regulatory review of RDandD Programme 2007 and its supplement called for clarifications of plans and programmes for the final repository for short-lived radioactive waste, SFR, and the final repository for long-lived waste, SFL. This RDandD Programme describes these plans more clearly

  4. Strategy and research programmes in the framework of the law of 30 December 1991 relative to the management of high-level and long-lived radioactive wastes

    International Nuclear Information System (INIS)

    2000-04-01

    This paper is a summary of the document prepared by the government agencies responsible of the researches on the nuclear wastes management in the framework of the law of the 30 december 1991 and concerning the strategy and the researches programmes relative to the radioactive wastes management. It is organized in six chapters: the principles and the objectives of researches, the analysis of the historical context and the mean tendencies, the evaluation criteria and the researches relevance, the programmes establishment and the priorities definition concerning the five basis operations on the radionuclides, the description of the researches programmes. (A.L.B.)

  5. Radioactive waste management and public participation in the EU. Lessons learnt from the EURATOM research framework programmes

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Gianluca [European Commission, Joint Research Centre, Petten (Netherlands); Martell, Meritxell [Merience SCP, Barcelona (Spain)

    2015-12-15

    Since 2000, the EURATOM Framework Programmes have dedicated political attention and economic support to public participation in radioactive waste management (RWM). Although a one-fit-all solution for a participatory RWM does not exist, the diversity that characterizes the European Union (EU) offers a relevant pool of knowledge and experience. The Joint Research Centre has used the knowledge and experience cumulated by relevant EURATOM projects to define a list of general principles for a more participatory approach to RWM. The principles explained in this article can ultimately work as indications for the changes and strategic actions that are needed for a better RWM in the EU.

  6. Radioactive waste management and public participation in the EU. Lessons learnt from the EURATOM research framework programmes

    International Nuclear Information System (INIS)

    Ferraro, Gianluca; Martell, Meritxell

    2015-01-01

    Since 2000, the EURATOM Framework Programmes have dedicated political attention and economic support to public participation in radioactive waste management (RWM). Although a one-fit-all solution for a participatory RWM does not exist, the diversity that characterizes the European Union (EU) offers a relevant pool of knowledge and experience. The Joint Research Centre has used the knowledge and experience cumulated by relevant EURATOM projects to define a list of general principles for a more participatory approach to RWM. The principles explained in this article can ultimately work as indications for the changes and strategic actions that are needed for a better RWM in the EU.

  7. Evaluation of the third community programme 'Radioactive waste management and storage' (1985-1989)

    International Nuclear Information System (INIS)

    Guillaumont, G.; Cottenie, A.; Harrisson, J.; Schmitt-Tegge, J.D.; Schuettenhelm, R.T.E.; Wright, J.K.

    1989-01-01

    This evaluation report fits into the general framework of the Commission's evaluation policy (submitted in the form of a plan of action to the Council. O.J.C14 20.01.87). For the production of evaluation reports of Community research programmes, this plan envisages the use of independent external experts. The report consists of the following six chapters: - A general introduction covering the basis and procedure of the work, - An executive summary, available in each of the Community official languages, - A general review of the problems of radioactive waste, - The main reports, representing the actual evaluation of the programme, - The conclusion, which summarizes the main points, - Finally, policy action recommendations, followed by a recapitulation of the more specific recommendation from chapter IV and by a special note on the problem of public acceptance. At the end of the volume, annexes are added that provide the terms of reference given to the panel, list several more detailed documents which were used by the panel during the evaluation, and list people visited or interviewed by the evaluators

  8. Nuclear waste - research and technique development. KASAMS's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This report is KASAM's review statement to the Government on the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001. KASAM's review was primarily conducted through work by KASAM's members, special adviser, experts and secretary. In KASAM's opinion, the reactor owners, through RD and D Programme 2001, have complied with the requirements of paragraph 12 of the Act on Nuclear Activities. In KASAM's opinion, SKB's research and development programme shows great merit. This applies to both what SKB has done and what it intends to do. The report is well-structured and clear. RD and D Programme 2001 shows that there is still a considerable need for development work in a number of important technical areas. This applies, for example, to the fabrication and sealing of canisters as well as control methods for these activities. Within other areas, for example, geology, chemistry, hydrology, biology and rock mechanics, there is also a great need for further research and development work, and for practical demonstrations of technical applications. In KASAM's opinion, humanities and social science issues, that are of importance for the disposal of nuclear waste, should be accorded greater attention. In Chapter 14, KASAM has presented a proposal for how research in these areas can be organised and financed. KASAM emphasizes that future RD and D programmes should have a broad scientific basis in order to comply with the requirements of the Act on Nuclear Activities regarding comprehensiveness. In their review statements on RD and D Programme 2001, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI) have proposed that SKB should be required to present a strategy document which should be kept updated. In KASAM's opinion, such a report of current strategic issues should be made available to the public and other parties concerned. KASAM also believes that such a documentation of strategy issues should be

  9. The Community's research and development programme on radioactive waste management and storage shared cost action annual progress report 1989 volume 2

    International Nuclear Information System (INIS)

    1990-01-01

    In 1985 the Council of Ministers of the European Communities adopted a five-year R and D programme on 'Management and storage of radioactive waste' for the period 1985-89. The R and D programme was carried out by public organizations and private firms in the Member States. By the end of 1989 over 256 contracts had been concluded with some 70 bodies. This annual report, covering the year 1989, is the fourth of its type. For each contract it gives the objectives, working programme and a summary of progress and results obtained as prepared by the contractor under the responsibility of the project leader. The report contains sections on treatment and conditioning of radioactive waste, characterization of conditioned radioactive waste, general aspects of radioactive waste disposal, and the performance of isolation systems

  10. The Community's research and development programme on radioactive waste management and storage shared cost action annual progress report 1989 volume 1

    International Nuclear Information System (INIS)

    1990-01-01

    In 1985 the Council of Ministers of the European Communities adopted a five-year R and D programme on 'Management and storage of radioactive waste' for the period 1985-89. The R and D programme was carried out by public organizations and private firms in the Member States. By the end of 1989 over 256 contracts had been concluded with some 70 bodies. This annual report, covering the year 1989, is the fourth of its type. For each contract it gives the objectives, working programme and a summary of progress and results obtained as prepared by the contractor under the responsibility of the project leader. The report contains sections on treatment and conditioning of radioactive waste, characterization of conditioned radioactive waste, general aspects of radioactive waste disposal, and the performance of isolation systems

  11. Community's research and development programme on radioactive waste management and storage shared-cost action (1990-94). Annual progress report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    In december 1989 the Council of Ministers of the European Communities adopted the fourth R and D programme on 'Management and Storage of radioactive waste' for the period 1990-1994. Contract negotiations for selected research proposals lead to the signature of contracts with some 93 bodies in charge of carrying out the working programme. This annual report, covering the year 1991 presents for each contract the objectives, the whole research programme and a synopsis of progress and results achieved as prepared by the contractor under the responsibility of the project leader. Part A deals with the study of management systems, treatment and characterization of waste, general aspects of the waste disposal and the safety of geological disposal systems. The running activities on construction and operation of underground facilities in candidated geological media for disposal is presented in part B

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  13. Research programme on radioactive wastes

    International Nuclear Information System (INIS)

    Eckhardt, A.; Hufschmid, P.; Jordi, S.; Schanne, M.; Vigfusson, J.

    2009-11-01

    This report for the Swiss Federal Department of the Environment, Transport, Energy and Communication (DETEC) takes a look at work done within the framework of the research programme on radioactive wastes. The paper discusses the development of various projects and the associated organisations involved. Both long-term and short-term topics are examined. The long-term aspects of handling radioactive wastes include organisation and financing as well as the preservation of know-how and concepts for marking the repositories. Communication with the general public on the matter is looked at along with public perception, opinion-making and acceptance. Waste storage concepts are looked at in detail and aspects such as environmental protection, monitoring concepts, retrievability and encasement materials are discussed. Finally, ethical and legal aspects of radioactive waste repositories are examined. The paper is completed with appendixes dealing with planning, co-ordination and the responsibilities involved

  14. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  15. The IAEA radioactive waste safety standards programme

    International Nuclear Information System (INIS)

    Tourtellotte, James R.

    1995-01-01

    The IAEA is currently reviewing more than thirty publications in its Safety Series with a view toward consolidating and organizing information pertaining to radioactive waste. the effort is entitled Radioactive Waste Safety Standards programme (RADWASS). RADWASS is a significant undertaking and may have far reaching effects on radioactive waste management both in the international nuclear community and in individual nuclear States. This is because IAEA envisions the development of a consensus on the final document. In this circumstance, the product of RADWASS may ultimately be regarded as an international norm against which future actions of Member States may be measured. This program is organized in five subjects: planning, pre-disposal, disposal, uranium and thorium waste management and decommissioning, which has four levels: safety fundamentals, safety standards, safety guides and safety practices. (author)

  16. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    International Nuclear Information System (INIS)

    2010-09-01

    The RD and D programme 2010 gives an account of SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas - the programme for Low and Intermediate Level Waste (the Loma program) and the Nuclear Fuel Program. The RD and D Programme 2010 consists of five parts: Part I: Overall Plan, Part II: Loma program, Part III: Nuclear Fuel Program, Part IV: Research on analysis of long-term safety, Part V: Social Science Research. The 2007 RD and D programme was focused primarily on technology development to realize the final repository for spent nuclear fuel. The actions described were aimed at increasing awareness of long-term safety and to obtain technical data for application under the Nuclear Activities Act for the final repository for spent fuel and under the Environmental Code of the repository system. Many important results from these efforts are reported in this program. An overall account of the results will be given in the Licensing application in early 2011. The authorities' review of RD and D programme in 2007 and completion of the program called for clarification of plans and programs for the final repository for short-lived radioactive waste, SFR, and the final repository for waste, SFL. This RD and D program describes these plans in a more detailed way

  17. NNP Life Management Programmes

    International Nuclear Information System (INIS)

    Hervia Ruperez, F.

    1996-01-01

    Around the world, power station owners are increasingly concerned to optimise Plant Life Management. In response, they are setting up Life Management programmes, of more or less ambitious scope and depth. Strategic, economic and security concerns and the close link between life extension work and the improved maintenance practices that are so important today, will increase and global these programmes for monitoring and conservation or mitigation of ageing. These programmes are all based on knowledge of the precise condition of all components and population with the greatest effect on the economics and safety of the plant, and trends in changes in their condition. (Author)

  18. Final Disposal of Nuclear Waste. The Swedish National Council for Nuclear Waste's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RDandD Programme 2007

    International Nuclear Information System (INIS)

    2009-01-01

    properties of the excavation-damaged zone in conjunction with controlled blasting, along with an explanation of why full-face boring has been abandoned. Additional aspects of changes associated with an open repository should be examined, such as changes in groundwater chemistry, 'short-circuiting', i.e. interconnection of different groundwater-conducting zones, and altered rock stress conditions. SKB must show more clearly how the results of the biosphere work are integrated in the safety assessment and the EIA process and what importance the biosphere will have for siting. SKB should conduct sensitivity analyses of the modelling results regarding the biosphere. SKB's level of ambition in shedding light on possibilities and risks with retrieval is satisfactory. The social science research programme should be supplemented by studies of future economic consequences of the handling of the nuclear waste issue. We consider research projects on global changes and safety culture to be a very urgent research field, since such research can shed light on the social barrier for safety in the final disposal solution. SKB should specify when different facilities can be decommissioned and give reasons for this. The desire for immediate dismantling can be evaluated in relation to the need to have final repositories ready to receive decommissioning waste before the dismantling work is begun. The Council therefore believes that there is a need for a systems analysis encompassing all the facilities and activities covered by SKB's account of LILW and decommissioning. Questions concerning the decision process for decommissioning and management of the waste need to be studied. The need for environmental impact assessments of decommissioning of nuclear power plants should be illuminated. The Council wishes to emphasize the importance of a transparent decision process with regard to decommissioning and dismantling where the municipalities are invited to participate in the dialogue

  19. Radioactive waste programme in Latvia

    International Nuclear Information System (INIS)

    Salmins, A.

    2000-01-01

    An overview is made on the use of radioactive sources and waste management in Latvia. Brief overview of the development of national legal documents - the framework law of environmental protection; international agreements; the new law on radiation safety and nuclear safety; regulation of the Cabinet of Ministers - is given. The regulatory infrastructure in the nearest future is outlined. The institutional framework for radioactive waste management is described. Basic design of the repository and radioactive waste inventory are also given. The activities on the EU DG Environment project CASIOPEE are reported

  20. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  1. Towards implementation of transparency and participation in radioactive waste management programmes. ARGONA Final Summary Report. Deliverable 23b

    International Nuclear Information System (INIS)

    Jonsson, Josefin Paeivioe; Andersson, Kjell; Bolado, Ricardo; Drottz Sjoeberg, Britt-Marie; Elam, Mark; Sundqvist, Goeran; Kojo, Matti; Meskens, Gaston; Pritrsky, Jozef; Richardson, Phil; Soneryd, Linda; Steinerova, Lucie; Szerszynski, Bronislaw; Wene, Clas-Otto; Vojtechova, Hana

    2010-02-01

    The ARGONA project intended to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in radioactive waste management programmes. Thereby, studies have been done of the institutional and cultural context within which processes of participation and transparency take place in order to understand how the processes can be applied. The project has also included studies of theory in order to build participation and transparency on a firm ground, a number of case studies in Czech Republic, Finland, Sweden and UK, as well as implementation in Czech Republic to make a difference, learn and demonstrate. Perhaps the most important conclusion is that there are institutional settings at hand that can be used for the purpose of participation and transparency (PT), although it is also recommended to arrange formally organized transparency arenas as a way to make regular intermediate 'checkups' of the status of factual and value-laden issues as well as of the actors' intentions and interests. For example, EIA ands SEA directives and national legislation give frameworks for information and participation, but they also provide a rather open framework for what can be done in practice and they can be followed with a higher or lesser degree of ambition. In any case, EIA and SEA consultations, as any PT process, must not be approached in such an instrumental way as to seemingly promise participation but without serious intention to actually take stakeholder contributions into account to have an impact on the end result. Such instrumental use of PT processes would seriously increase distrust among citizens and engaged stakeholders. It is also a very important conclusion from the project that in application careful attention must be paid to the local setting, be it a country or a municipality, although at the same time recognising that such local settings are developed over time and within circumstances steered by

  2. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  3. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  4. Status report on the waste management cooperation programme jointly undertaken by KfK/INE-NUCLEBRAS/CDTN

    International Nuclear Information System (INIS)

    Teh Whei Miaw, S.; Krause, H.

    1988-04-01

    The prime objective of the first phase of the programme was to develop processes for the treatment of the wastes arising at CDTN and to qualify waste forms for final disposal. Chemical precipitation and evaporation have been selected as the main processes for the treatment of low-level liquid wastes. Operating conditions for flocculation have been specified in laboratory-scale experiments. The plant has already been operated successfully. The evaporator nears completion. Two pilot plants for cementation have been erected and investigated, one with an in-drum mixer, the other with an in-tank mixer. Laboratory experiments on cementation have provided the basis for solidification of first batches of waste concentrates. Laboratory experiments on bituminization have started recently. A small-scale bitumen extruder will be put into operation soon. There have also been activities on the development, improvement and test of drums, containers and shielding casks for radioactive wastes. (orig./HP) [de

  5. The European Programme Manager

    DEFF Research Database (Denmark)

    Larson, Anne; Bergman, E.; Ehlers, S.

    The publication is a result of a cooperation between organisations in six European countries with the aim to develop a common European education for programme managers. It contains of a description of the different elements of the education together with a number of case-studies from the counties...

  6. Overview of french P and T programme and results for waste management

    International Nuclear Information System (INIS)

    Warin, D.; Courtois, C.

    2005-01-01

    We will present here the French program and an update on the progress made by the research conducted on partitioning and transmutation. Studies on partitioning and transmutation aim at isolating the most radio toxic long-lived elements present in the waste then at transmuting them through recycling in nuclear reactors, in order to change them into non-radioactive or shorter-lived elements. The partitioning of minor actinides (americium, curium and neptunium), followed by their transmutation, would reduce to a few hundred years the time necessary for the radiotoxicity of the vitrified waste to become similar to that contained in the natural uranium ore originally used. The feasibility of partitioning, which did not appear easily accessible at the time the research began since lanthanides and actinides have rather similar chemical properties, was nevertheless demonstrated in 2001 thanks to a series of tests conducted on solutions of dissolved spent fuel, in the CEA Atalante facility at Marcoule. The 2002-2005 program encompasses technological demonstration of the selected liquid-liquid process, with representative equipment, and economic evaluation of industrial implementation of partitioning. Studies on transmutation, which were initiated before the 1991 Law, rapidly led to concluding that transmutation of minor actinides (Americium, Curium, and Neptunium) was feasible in particular in fast neutron spectra. Results obtained confirm that the feasibility of transmutation is demonstrated, both in pressurized-water reactors (recycling and transmutation of plutonium, optionally but with more difficulty of americium and neptunium) and in advanced systems of nuclear-energy production (GEN IV fast-spectrum reactors, with recycling and transmutation of all heavy nuclides, uranium, plutonium, the minor actinides) or in dedicated incinerator reactors, either critical or sub critical. Work on transmutation is now focusing on technical elements necessary for the demonstration of

  7. Programme of research into the management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Bourke, P.J.; Bradbury, M.H.; Evans, G.V.

    1983-05-01

    The experimental programme on radionuclide behaviour has included (a) the influence of silica colloids on the nature and sorption properties of actinide solutions, (b) the properties of Np and Tc leached from simulated HLW, and (c) the behaviour in the presence of various geological media of leachates arising from ILW encapsulated in concrete. Diffusion measurements, using the iodide ion as tracer, have been made on granites obtained from four different regions of the UK. Analysis of the data has yielded three important rock diffusion parameters, the intrinsic diffusion coefficient, the rock capacity factor and the rock diffusibility parameter. In addition, estimates for the through transport and storage porosities which together make up the total porosity can be obtained from the same data. Permeability measurements made on granite and sandstone have been used to calculate pore apertures and pore internal surface areas. A study of uranium series disequilibrium signatures (uranium content and activity ratios U-234/U-238, Th-230/U-234 and Th-230/Th-232) in waters in granite at Altnabreac, Caithness, has been completed. The main areas of mathematical modelling described are continuum models of groundwater flow, heat transfer and radionuclide transport, flow in fracture networks, and diffusion of radionuclides into the rock matrix. (author)

  8. The Community's research and development programme on radioactive waste management and storage. Shared cost action. Annual progress report 1988. Volume 2

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Third annual progress report of the European Community's 1985-89 programme of research and development on radioactive waste management and disposal, carried out by public organizations and private firms in the Community under cost-sharing contracts with the Commission of the European Communities. This report describes the work to be carried out under research contracts already concluded before the end of 1988, as well as the work performed and the results obtained so far

  9. The Community's research and development programme on radioactive waste management and storage. Shared cost action. Annual progress report 1988. Volume 1

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Third annual progress report of the European Community's 1985-89 programme of research and development on radioactive waste management and disposal, carried out by public organizations and private firms in the Community under cost-sharing contracts with the Commission of the European Communities. This report describes the work to be carried out under research contracts already concluded before the end of 1988, as well as the work performed and the results obtained so far

  10. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  11. Nuclear waste management news

    International Nuclear Information System (INIS)

    Stoeber, H.

    1987-01-01

    In view of the fact that nuclear waste management is an important factor determining the future perspectives of the peaceful uses of nuclear energy, it seems suitable to offer those who are interested in this matter a source of well-founded, concise information. This first newsletter will be followed by others at irregular intervals, reviewing the latest developments and the state of the art in West Germany and abroad. The information presented in this issue reports the state of the art of nuclear waste management in West Germany and R and D activities and programmes, refers to conferences or public statements, and reviews international relations and activities abroad. (orig.) [de

  12. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November 1, 2001

  13. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  14. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  16. Waste management advisory missions to developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.

    1990-01-01

    The IAEA's Waste Management Advisory Programme (WAMAP) was initiated in 1987 as an interregional technical co-operation project to complement other activities in radioactive waste management. Its creation gave greater recognition to the importance of the safe management of radioactive wastes and promotion of long-term waste management technical assistance strategies for developing countries. Over the past 4 years, international experts have reviewed the radioactive waste management programmes of 29 developing countries. Missions have been conducted within the framework of the IAEA's Waste Management Advisory Programme (WAMAP). Ten of these countries have nuclear power plants in operation or under construction or have nuclear fuel cycle facilities. Altogether, 23 have research reactors or centres, eight have uranium or thorium processing programmes or wastes, and nine essentially have only isotope applications involving the use of radiation sources

  17. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  18. Progress report of the 600 m borehole project of the CEC programme on management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Hamilton, L.F.M.

    1991-07-01

    In the framework of the CEC Programme on Radioactive Waste Disposal (1990-1994), in situ experiments in salt deposits are conducted. The experimental results will be used to validate analytical techniques and computer models for prediction of salt behaviour. The experiments take place in the Asse II salt mine in Germany. Progress of the work during the first half of 1990 is reported. Convergence data measured during the first phase of the project will be reported in the final report of phase I, issued mid 1991. Convergence measurement devices have been removed from the borehole and are temporarily stored to be used in a new 600 m deep borehole to be drilled begin 1992. The experiment with the Variable Pressure Device (VPD) started March 1991. During first 2 months it has been shown that low pressure build-up due to convergence could not be registrated. The system, which is basically designed for higher depths and thus higher convergence rates, showed more hysteresis than expected on the applied pressure levels. The measuring programme defined earlier is therefore modified. It will be concentrated first on high pressure changes which are started July 1991. A preliminary conclusion of the first pressure step is that the in-situ measured elasticity of salt is significantly lower than elasticity measured in the laboratory on small samples. More detailed analysis of the measurement results and repeated pressure steps are necessary to verify this conclusion. The predictive analyses planned for the first half of 1991 could not be made since the measuring programme was modified. FE-analyses have been concentrated on interpretation of the measurement result during the first months. Influence of the heat production of the exothermally hardening salt concrete in the behaviour of the borehole is analysed in detail. Predictions of the modified measuring programme (topical report) will be reported later. (author). 4 refs.; 3 figs

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  20. Research programme on radioactive wastes - Synthesis report 2009

    International Nuclear Information System (INIS)

    Brander, S.

    2010-02-01

    This short synthesis report for the Swiss Federal Office of Energy (SFOE) issued by the head of the programme on radioactive wastes reports on activities during the year 2009. Background information on the definition of topics to be focussed on is briefly presented. In particular, topics such as communication with the general public, knowledge-saving and marking concepts for radioactive wastes are noted. Work done in these areas as well as on waste management in general are discussed. Conferences held and the transfer of know-how are noted, as is cooperation with foreign organisations active in the area of nuclear research and waste management. Finally, work planned for 2010 is noted

  1. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  2. Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RDandD Programme 2004. Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, including Social Science Research

    International Nuclear Information System (INIS)

    2005-12-01

    verify the models in time prior to a licence application. Furthermore, the authorities assume that more long-term biosphere issues are being taken into account in SKB's new plan of action. - In its biosphere research, SKB should take into account the possibility of using radionuclide concentrations and flows as complementary safety indicators. - SKB should more clearly explain how it will ensure that studied climate scenarios will shed light on the most important climate-related stresses on the barrier function. - It is justifiable for the research conducted by SKB and Sweden in the area of PandT to maintain its current level so that international developments can be followed and to maintain and develop scientific and technical expertise in areas of importance for nuclear safety. - A clarification of the account of deep boreholes prior to the ultimate choice of a method and prior to licensing under the Environmental Code is needed. A comparison should be made with the KBS-3 method which utilizes safety assessment methodology including simple calculations. - SKB needs to intensify the work on decommissioning issues and in order to present detailed plans and considerations in RDandD Programme 2007. - SKB should investigate the shortest time required for the start of a licensing process for the disposal of decommissioning waste. - In the next RDandD programme, SKB should provide a more detailed description of the programme for long-lived low and intermediate-level waste. - SKB should take into account the viewpoint that long-term interim storage of waste while waiting for the construction of a repository should, as far as possible, be avoided and take this into consideration in its planning. - It is positive that SKB has incorporated social science research into its programme, since the findings from the research should be useful for the stakeholders to apply the research findings in ongoing and future consultation processes for an encapsulation plant and repository

  3. Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RDandD Programme 2004. Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, including Social Science Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    verify the models in time prior to a licence application. Furthermore, the authorities assume that more long-term biosphere issues are being taken into account in SKB's new plan of action. - In its biosphere research, SKB should take into account the possibility of using radionuclide concentrations and flows as complementary safety indicators. - SKB should more clearly explain how it will ensure that studied climate scenarios will shed light on the most important climate-related stresses on the barrier function. - It is justifiable for the research conducted by SKB and Sweden in the area of PandT to maintain its current level so that international developments can be followed and to maintain and develop scientific and technical expertise in areas of importance for nuclear safety. - A clarification of the account of deep boreholes prior to the ultimate choice of a method and prior to licensing under the Environmental Code is needed. A comparison should be made with the KBS-3 method which utilizes safety assessment methodology including simple calculations. - SKB needs to intensify the work on decommissioning issues and in order to present detailed plans and considerations in RDandD Programme 2007. - SKB should investigate the shortest time required for the start of a licensing process for the disposal of decommissioning waste. - In the next RDandD programme, SKB should provide a more detailed description of the programme for long-lived low and intermediate-level waste. - SKB should take into account the viewpoint that long-term interim storage of waste while waiting for the construction of a repository should, as far as possible, be avoided and take this into consideration in its planning. - It is positive that SKB has incorporated social science research into its programme, since the findings from the research should be useful for the stakeholders to apply the research findings in ongoing and future consultation processes for an encapsulation plant and repository.

  4. Preparation of the National Programme for the Spent Fuel and Radioactive Waste Management Taking Into Account Possibility of Potential Multinational/Regional Disposal Facilities Development

    International Nuclear Information System (INIS)

    Kegel, L.

    2016-01-01

    Conclusions: • Final disposal in deep geological repository (national, regional or multinational) is planed: → Implementation of disposal after NPP closure (>2065). • The strategy principle of international cooperation: → National responsibility for radioactive waste and spent fuel management is considered in parallel with active participation in international regional efforts to make progress in connection to joint regional programmes on disposal. • Implementation is challenging but technical feasible. • Timely and appropriate “nesting” of multinational solutions into national plans. • Although a multinational repository is likely not ripe for development today, actions taken now can be important to increase the likelihood of its future development

  5. United States steps up waste isolation programme

    Energy Technology Data Exchange (ETDEWEB)

    Smedes, H W [Department of Energy, Germantown, MD (USA). Office of Waste Isolation; Carbiener, W A [Battelle Columbus Labs., OH (USA)

    1982-11-01

    A description is given of the United States' waste isolation programme which now involves tests of specific sites. The US Department of Energy plans to build a system of mined geological repositories for the disposal of commercially generated high-level and transuranic radioactive waste. It is hoped that the first repository will be available by 1998. Studies of the geology and hydrology of the proposed sites, the waste packaging and the repository design are reported.

  6. Management and Communication programme

    CERN Multimedia

    Nathalie Dumeaux

    2005-01-01

    We are pleased to announce the launch of three new courses in the Management and Communication programme: 1.     Managing Time (Open to all Staff Members) The objectives are: To enhance your personal effectiveness through better organisation skills To acquire ways of making the most of your time through improved work habits To reduce stress For the description of this course, please see:  http://humanresources.web.cern.ch/humanresources/external/training/MANCO/P9798/S8E_e.asp 2.     Service Orientation (Open to all Staff Members working in a service-related function) The objectives are: To understand the key elements in an effective client/service provider relationship To develop a client focused approach to providing services For the description of this course, please see:  http://humanresources.web.cern.ch/humanresources/external/training/MANCO/P9798/serv_e.asp 3.   Introduction to Leadership (Open to Staff in Career Paths E & above, including newly appointed supervisors and Secti...

  7. Management and Communication programme

    CERN Multimedia

    Nathalie Dumeaux

    2005-01-01

    We are pleased to announce the launch of three new courses in the Management and Communication programme: 1.     Managing Time (Open to all Staff Members) The objectives are: To enhance your personal effectiveness through better organisation skills To acquire ways of making the most of your time through improved work habits To reduce stress For the description of this course, please see:  http://humanresources.web.cern.ch/humanresources/external/training/MANCO/P9798/S8E_e.asp 2.     Service Orientation (Open to all Staff Members working in a service-related function) The objectives are: To understand the key elements in an effective client/service provider relationship To develop a client focused approach to providing services For the description of this course, please see:  http://humanresources.web.cern.ch/humanresources/external/training/MANCO/P9798/serv_e.asp 3.   Introduction to Leadership (Open to Staff in Career Paths E & above, including newly appointed supervisors and Sect...

  8. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  9. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  10. RD and D-Programme 2001. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    International Nuclear Information System (INIS)

    2001-09-01

    An overall goal for SKB is to start the initial operation of a deep repository for spent fuel in 2015. This presumes that site investigations have been commenced at the beginning of 2002 and that the different phases have been executed without major changes. The encapsulation plant should be ready to start roughly one year before the deep repository is finished. Spent fuel is the waste that is to be isolated in the deep repository. Various processes will with time alter the conditions in the fuel and in the voids of the canister. Many of these process only occur if the isolation of the canister is breached and water enters the canister. Radiolysis of water is an example of such a process, which can in turn influence the chemical conditions in the canister. Water in the canister can also cause corrosion of the fuel's cladding tubes. If water comes into contact with the fuel it can lead to dissolution of radionuclides. Dissolved radionuclides can diffuse in the water and thereby escape from a damaged canister. Fuel dissolution is a priority area in RDandD Programme 2001. Large resources are being devoted to studies of copper corrosion and stress corrosion cracking in the copper canister. SKB will also investigate the long-term safety of a canister type with a slightly thinner shell but a heavier-duty insert. The buffer of bentonite clay is supposed to protect the canister mechanically against minor rock movements. It is also supposed to retard solute transport. The initial evolution of the buffer is studied in the Aespoe HRL and by means of models. The long-term evolution of the backfill is controlled by largely the same processes as in the buffer. The backfill is more sensitive to saline water than the more compacted buffer. Several processes in the geosphere are important for the safety assessment, such as groundwater flow, earthquakes, microbial processes and matrix diffusion. The models for groundwater flow will be further refined in order to handle the

  11. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  12. Development of an integrated liquid radioactive waste management system. Part of a coordinated programme on integrated radioactive waste management systems and their impact on the environment

    International Nuclear Information System (INIS)

    Pavlik, O.

    1976-09-01

    This final report discusses the theory of the air heated non-boiling evaporation and the laboratory and pilot plant experiences of simultaneous evaporation and solidification. The evaporator concentrates and dries the radioactive liquid wastes by hot air-flow circulating in closed circuit. The air is used both for heating and removal of vapours. The liquid waste becomes saturated and the salt cake is accumulated in the tank. The yield evaporation rate and the decontamination factor or 90 Sr and 137 Cs was investigated as a function to air-flow, air temperature and humidity. During the evaporation process a simultaneous cementation method was developed to fix the water soluble components of the salt cake. The leaching rate of 90 Sr and 137 Cs, the firmness and the homogeneity of the concrete was investigated

  13. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  14. Research and development on radioactive waste management and storage: Third annual progress report (1982) of the European Community programme 1980-1984

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the European Community's program for nuclear waste management and storage. Topics considered include the characterization of conditioned low and medium activity waste forms, conditioning of high activity solid waste, treatment and conditioning processes for low and medium activity liquid waste, processing of alpha-contaminated waste, testing and evaluation of solidified high activity waste forms, immobilization and storage of gaseous waste, shallow land burial of solid low activity waste, storage and disposal in geological formations, and the performance and safety evaluation of radioactive waste disposed in geological formations

  15. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  16. Strategic environmental assessment of the national programme for the safe management of spent fuel and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel [Oeko-Institut e.V. Darmstadt (Germany); and others

    2015-03-27

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  17. Strategic environmental assessment of the national programme for the safe management of spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel

    2015-01-01

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  18. The waste isolation safety assessment programme

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.

    1980-01-01

    Associated with commercial nuclear power production in the USA is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE), through the National Waste Terminal Storage (NWTS) Programme, is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Programme (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Among the analyses required for isolation system evaluation is the detailed assessment of the post-closure performance of nuclear waste repositories in geologic formations. This assessment is essential, since it is concerned with aspects of the nuclear power programme which previously have not been addressed. Specifically, the nature of the isolation systems (e.g. involving breach scenarios and transport through the geosphere), and the time-scales necessary for isolation, dictate the development, demonstration and application of novel assessment capabilities. The assessment methodology needs to be thorough, flexible, objective, and scientifically defensible. Further, the data utilized must be accurate, documented, reproducible, and based on sound scientific principles. (author)

  19. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.

    1984-01-01

    As part of their research programme on Radioactive Waste Management, the Commission of the European Communities has provided financial support for a detailed study of wastes containing 14 C and the options for their management. The main results of this study are outlined. Carbon-14 is formed by neutron activation reactions in core materials and is therefore present in a variety of waste streams both at reactors and at reprocessing plants. Data on the production and release of 14 C from various reactor systems are presented. A possible management strategy for 14 C might be reduction of 14 N impurity levels in core materials, but only reductions of about a factor of five in arisings could be achieved in this way. The key problem in 14 C management is its retention in off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. In this stream the nuclide is present as carbon dioxide and is extensively isotopically diluted by the carbon dioxide content of the air. Processes for trapping 14 C from these off-gases must be integrated with the other processes in the overall off-gas treatment system, and should provide for conversion to a stable solid compound of carbon, suitable for subsequent immobilization and disposal. Three trapping processes that convert carbon dioxide into insoluble carbonates can be identified: the double alkali (NaOH/Ca(OH) 2 ) process, the direct calcium hydroxide slurry process, and the barium ocathydrate gas/solid process. Calcium or barium carbonates, produced in the above processes, could probably be incorporated into satisfactory immobilized waste forms. However, the stability of such waste forms to prolonged irradiation and to leaching remains to be investigated. (author)

  20. Waste Disposal: The PRACLAY Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D

    2000-07-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation.

  1. Waste Disposal: The PRACLAY Programme

    International Nuclear Information System (INIS)

    De Bruyn, D.

    2000-01-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation

  2. RD and D-Programme 2001. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    An overall goal for SKB is to start the initial operation of a deep repository for spent fuel in 2015. This presumes that site investigations have been commenced at the beginning of 2002 and that the different phases have been executed without major changes. The encapsulation plant should be ready to start roughly one year before the deep repository is finished. Spent fuel is the waste that is to be isolated in the deep repository. Various processes will with time alter the conditions in the fuel and in the voids of the canister. Many of these process only occur if the isolation of the canister is breached and water enters the canister. Radiolysis of water is an example of such a process, which can in turn influence the chemical conditions in the canister. Water in the canister can also cause corrosion of the fuel's cladding tubes. If water comes into contact with the fuel it can lead to dissolution of radionuclides. Dissolved radionuclides can diffuse in the water and thereby escape from a damaged canister. Fuel dissolution is a priority area in RDandD Programme 2001. Large resources are being devoted to studies of copper corrosion and stress corrosion cracking in the copper canister. SKB will also investigate the long-term safety of a canister type with a slightly thinner shell but a heavier-duty insert. The buffer of bentonite clay is supposed to protect the canister mechanically against minor rock movements. It is also supposed to retard solute transport. The initial evolution of the buffer is studied in the Aespoe HRL and by means of models. The long-term evolution of the backfill is controlled by largely the same processes as in the buffer. The backfill is more sensitive to saline water than the more compacted buffer. Several processes in the geosphere are important for the safety assessment, such as groundwater flow, earthquakes, microbial processes and matrix diffusion. The models for groundwater flow will be further refined in order to handle the

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  4. The International Conference on Radioactive Waste Management

    International Nuclear Information System (INIS)

    1983-01-01

    The IAEA has been concerned with radioactive waste management since its inception. Its programme in this area was expanded in the mid 1970s as questions related to the management and disposal of radioactive wastes came into focus in conjunction with the further industrial development of nuclear power. The objectives of the Agency's wastes management programme are to assist its Member States in the safe and effective management of wastes by organizing the exchange and dissemination of information, providing guidance and technical assistance and supporting research. The current programme addresses all aspects of the industrial use of nuclear power under the aspects (a) technology of handling and treatment of wastes, (b) underground disposal of wastes, (c) environmental aspects of nuclear energy, including sea disposal of radioactive wastes. Systematic reviews have been made and publications issued concerning the technology of handling, treating, conditioning, and storing various categories of wastes, including liquid and gaseous wastes, wastes from nuclear power plants, spent fuel reprocessing and mining and milling of uranium ores, as well as wastes from decommissioning of nuclear facilities. As waste disposal is the current issue of highest interest, an Agency programme was set up in 1977 to develop a set of guidelines on the safe underground disposal of low-, intermediate- and high-level wastes in shallow ground, rock cavities or deep geological repositories. This programme will continue until 1990. Eleven Safety Series and Technical documents and reports have been published under this programme so far, which also addresses safety and other criteria for waste disposal. The environmental part of the waste management programme is concerned with the assessment of radiological and non-radiological consequences of discharges from nuclear facilities, including de minimis concepts in waste disposal and environmental models and data for radionuclide releases. The Agency

  5. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  6. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around “70% of the municipal waste produced...

  7. Radioactive solid waste management at Trombay

    International Nuclear Information System (INIS)

    Jayaraman, A.P.; Balu, K.

    1977-01-01

    The Radioactive solid waste management programme at BARC, India during 1965-1975 is described in detail. The operational experience, which includes the handling treatment and disposal of these solid wastes is reported alongwith the special problems faced in the case of large volume low hazard potential wastes from the nuclear fuel cycle. (K.B.)

  8. Quality control in the radioactive waste management

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    Radioactive waste management as in industrial activities must mantain in all steps a quality control programme. This control extended from materials acquisition, for waste treatment, to the package deposition is one of the most important activities because it aims to observe the waste acceptance criteria in repositories and allows to guarantee the security of the nuclear facilities. In this work basic knowledges about quality control in waste management and some examples of adopted procedures in other countries are given. (author) [pt

  9. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  10. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  11. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  12. The Role of public Informing on Radioactive Waste Management

    International Nuclear Information System (INIS)

    Cerskov-Klika, M.; Strohal, P.; Subasic, D.

    1998-01-01

    The aim of every public information programme is to build up confidence between the general public and those involved in waste management. Public information programme is the topic of this paper. The example of public informing is described in the programme of APO - Hazardous Waste Management Agency. (author)

  13. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  14. Developing Capacities in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Yusuf, Omar

    2014-01-01

    As the Agency’s main service-delivery mechanism, the IAEA’s technical cooperation (TC) programme plays a large part in supporting radioactive waste management around the world, helping to share information on the topic, and training personnel in the proper treatment and disposal of radioactive waste. The TC programme supports the development of policies and strategies, the assessment and upgrading (if necessary) of existing facilities, and the implementation of new management facilities, especially for near surface disposal. The programme also helps to develop competence in geological disposal for Member States operating nuclear power plants. This article presents just a few project examples to illustrate the scope of the programme

  15. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  16. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  17. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  18. The IAEA Accident Management Programme

    International Nuclear Information System (INIS)

    Kabanov, L.; Jankowski, M.; Mauersberger, H.

    1993-01-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.)

  19. The IAEA Accident Management Programme

    Energy Technology Data Exchange (ETDEWEB)

    Kabanov, L.; Jankowski, M.; Mauersberger, H. (International Atomic Energy Agency, Vienna (Austria))

    1993-02-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.).

  20. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  1. Management & communication programme

    CERN Multimedia

    Nathalie Dumeaux

    2006-01-01

    Calendar of courses for September to December 2006 Please check our Web site to find out the number of places available, which may vary. Management Curriculum 2nd semester 2006 Titres Dates Langue Quality Management 18, 19 September Bilingual Managing Teams 19, 20, 21 September English Communiquer efficacement - résidentiel 20, 21, 22 septembre Bilingue Personal Awareness & Impact 26, 27, 28 September Bilingual Introduction to Leadership 4, 5, 6 October Bilingue IProject Scheduling & Costing 12, 13 October English CDP-SL part 1 17, 18, 19 October English Personal Awareness & Impact 23, 24 October Bilingual Communicating to Convince 23, 24, 25 October Bilingual CDP-GL part 2 25, 26, 27 October English CDP-GL part 1 22, 23, 24 November Bilingual Risk Management 20, 21 December Bilingual Communication curriculum 2nd semester 2006 Titres Dates Langue Techniques d'exposé et de présentation 18, 19 septembre + 16 octobre Français Communi...

  2. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  3. The programme of quality assurance relative to management and characterization of low activity wastes of Saclay nuclear study center

    International Nuclear Information System (INIS)

    Cordero, G.; Perotin, J.P.

    1988-05-01

    The technique for inspection and characterization of solid wastes with a low or very low α activity and medium β or γ activity allows to guarantee ANDRA, the collecting authority, an accurate, but not perfect, knowledge of the wastes and to limit the risk of non-compliance to technical prescription to an acceptable value. Choice of sampling technique limits the number of analysis and automation limits cost and personnal risks [fr

  4. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  6. Federal Republic of Germany R and D programme: A special issue of the journal radioactive waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1986-01-01

    This book examines the issues of radioactive waste management and the nuclear fuel cycle in the Federal Republic of Germany. Topics considered include the challenges of waste handling and disposal, the borosilicate glass for Pamela, the treatment and conditioning of transuranelement bearing wastes in the Federal Republic of Germany, conditioning of low and intermediate level wastes, volume reduction of low level solid radioactive waste by incineration and compaction in the Federal Republic of Germany, MAW test emplacement in boreholes, treatment and disposal of special radioactive wastes comprising tritium, carbon 14, krypton 85 and iodine 129, and the German Project: ''Safety Studies for Nuclear Waste Management: Development of Safety Assessment Methodology for Final Disposal of Nuclear Waste in a Salt Dome

  7. Managing Employee Assistance Programmes.

    Science.gov (United States)

    Schmidenberg, Olive C.; Cordery, John L.

    1990-01-01

    Interviews with 20 branch managers and 20 accountants in an Australian bank determined factors influencing the success of an employee assistance program (EAP). It was found that policies requiring supervisors to act against normal managerial practice doom EAPs to failure. Organizational analysis to integrate the EAP within existing organizational…

  8. Productivity studies of the nuclear waste programme

    International Nuclear Information System (INIS)

    Lundberg, Haakan

    2002-08-01

    The Swedish Nuclear Inspectorate reviews and supplements the SKB proposal for cost estimations for the nuclear waste programme. These estimations are of great importance for the determination of annual fees to the Nuclear Waste Fund and guarantee amounts in accordance with the Financing Act. The majority of the Nuclear Waste Fund's assets are invested in real interest bonds, issued by the Swedish state. The average duration for the Nuclear Waste Fund investments was 12.8 years at the end of December 2001. From July 1, 2002 on the Nuclear waste Fund investments will consist of nominal and real bonds on the official market. The Fund is increased in line with the Consumer Price Index (KPI). If real costs within the nuclear waste programme increase at a faster rate than the KPI, there is a risk that the Nuclear Waste Fund will be 'under balanced'. SKI has developed a weighted index, the KBS-3-index, to compare the SKB cost re-estimate with. Productivity changes have however no impact on these indices. The KBS-3-index indicates that there might be a risk that the de facto, cost increases will exceed KPI. An improved productivity might however balance the cost escalations. Productivity is normally defined as production divided by the input of production factors. The production can be a quantity measurement or the value added. A common approach is calculation of the labour productivity. The productivity development within different industries in Sweden and in EU varies, and is not only positive. The so called DEA method is used for productivity and efficiency measurements in public and private operations. Efficiency evaluations based on known norms are not made with the DEA models. Instead the evaluation is performed in relation to an empirically based reference technology, a relative efficiency. A selection or an optimisation of output is difficult for the nuclear waste programme. It is not possible to change parts of the nuclear waste programme to something else

  9. Radioactive waste management registry. A software tool for managing information on waste inventory

    International Nuclear Information System (INIS)

    Miaw, S.T.W.

    2001-01-01

    The IAEA developed a software tool, the RWM Registry (Radioactive Waste Management Registry) which is primarily concerned with the management and recording of reliable information on the radioactive waste during its life-cycle, i.e. from generation to disposal and beyond. In the current version, it aims to assist the management of waste from nuclear applications. the Registry is a managerial tool and offers an immediate overview of the various waste management steps and activities. This would facilitate controlling, keeping track of waste and waste package, planning, optimizing of resources, monitoring of related data, disseminating of information, taking actions and making decisions related to the waste management. Additionally, the quality control of waste products and a Member State's associated waste management quality assurance programme are addressed. The tool also facilitates to provide information on waste inventory as required by the national regulatory bodies. The RWM Registry contains two modules which are described in detail

  10. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Disaster waste management: A review article

    International Nuclear Information System (INIS)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-01-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  12. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  13. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  14. Programme of research into the management and storage of radioactive waste, nuclide migration studies, and mathematical modelling

    International Nuclear Information System (INIS)

    1982-01-01

    The progress of the work is reported under the headings: nuclide migration studies (nuclide-rock interactions; physico-chemical effects; field experiments; groundwater dating); mathematical modelling (calculation of steady groundwater flow using NAMMU; comparison of thermally and naturally driven flows near a radioactive waste repository; diffusion of radionuclides into a rock matrix; radionuclide migration). (U.K.)

  15. Radioactive waste: from national programmes to community co-operation

    International Nuclear Information System (INIS)

    Sousselier, Yves

    1981-01-01

    An important community programme for the management and storage of waste was introduced 5 years ago although research and development has been carried out on a wide basis for 20 years. There is in fact no contradiction in this, but knowledge of the composition of waste has evolved with the development of nuclear energy, requirements have become stricter while the number of possible handling methods tends to result in postponement of decisions. According to the author, a thorough community co-operation in this field should make it easier to easier to known what to choose and also to decide on the course to be taken. It should also facilitate the obtaining of a consensus of opinion -acceptable to every-one- in relation to the management of radioactive waste [fr

  16. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  17. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  18. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste; Fud-program 2010. Program foer forskning, utveckling och demonstration av metoder foer hantering och slutfoervaring av kaernavfall

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    The RD and D programme 2010 gives an account of SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas - the programme for Low and Intermediate Level Waste (the Loma program) and the Nuclear Fuel Program. The RD and D Programme 2010 consists of five parts: Part I: Overall Plan, Part II: Loma program, Part III: Nuclear Fuel Program, Part IV: Research on analysis of long-term safety, Part V: Social Science Research. The 2007 RD and D programme was focused primarily on technology development to realize the final repository for spent nuclear fuel. The actions described were aimed at increasing awareness of long-term safety and to obtain technical data for application under the Nuclear Activities Act for the final repository for spent fuel and under the Environmental Code of the repository system. Many important results from these efforts are reported in this program. An overall account of the results will be given in the Licensing application in early 2011. The authorities' review of RD and D programme in 2007 and completion of the program called for clarification of plans and programs for the final repository for short-lived radioactive waste, SFR, and the final repository for waste, SFL. This RD and D program describes these plans in a more detailed way

  19. Interfaces and interactions in the Swiss waste disposal programme

    International Nuclear Information System (INIS)

    McCombie, C.

    1994-01-01

    Switzerland is a small country (41,293 km 2 ) with a small population (∼7 million) and a small nuclear power park (∼3000 MWe) which gives rise to correspondingly limited volumes of radioactive wastes. The following sections present a summary of the technical and organizational structures involved in the procedures for implementing a back-end strategy in Switzerland and the rationale for their choice. The hierarchical organizational units involved in repository projects, their responsibilities and their interactions are described. This linked chain of responsibilities must be thought through as a whole if interface and communication problems in the line structure are to be minimized -- this we call vertical integration. The programme implementers do not work, however, in a technical or social vacuum. Interfaces to other bodies (regulators, politicians, public) are equally vital to programme success. These communications and exchanges must all be coordinated with one another and with the line organization -- this we call horizontal interaction. The multidimensional organizational system to be considered is described in Sections 2 and 3, in which the roles of each of the entities involved and the relevant interfaces are described. Beforehand, however, we present a short overview of the Swiss waste management strategy and the current programme status in order that individual points made in the following discussion can be related to concrete projects, plans, locations and waste management facilities

  20. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  1. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  2. Radioactive waste management - the Indian scenario

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2008-01-01

    In India, nuclear power generation programme and application of radioisotopes for health care and various other application is increasing steadily. With resultant increase in generation of radioactive waste, emphasis is on the minimization of generation of radioactive waste by deploying suitable processes and materials, segregation of waste streams at sources, recycle and re-use of useful components of waste and use of volume reduction techniques. The minimization of the radioactive waste is also essential to facilitate judicious use of the scarce land available for disposal, to reduce impact on the environment due to disposal and, finally to optimize the cost of radioactive waste management. This paper presents a bird's eye view of radioactive waste management programme in the country today

  3. International co-operation for safe radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    As a specialised inter-governmental body, NEA pursues three main objectives for its radioactive waste management programme: - The promotion of studies to improve the data base available in support of national programmes. - The support of Research and Development through co-ordination of national activities and promotion of international projects. - An improvement in the general level of understanding of waste management issues and options, particularly in the field of waste disposal. The management of radioactive waste from nuclear activities covers several sequences of complex technical operations. However, as the ultimate objective of radioactive waste management is the disposal of the waste, the largest part of the work programme is directed towards the analysis of disposal options. In addition, NEA is active in various other areas of waste management, such as the treatment and conditioning of waste, the decommissioning of nuclear facilities and the institutional aspects of the long term management of radioactive waste

  4. National perspective on waste management

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1980-01-01

    Sources of nuclear wastes are listed and the quantities of these wastes per year are given. Methods of processing and disposing of mining and milling wastes, low-level wastes, decommissioning wastes, high-level wastes, reprocessing wastes, spent fuels, and transuranic wastes are discussed. The costs and safeguards involved in the management of this radioactive wastes are briefly covered in this presentation

  5. Radioactive waste management of health services

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Miaw, Sophia Teh Whei

    2001-01-01

    In health care establishment, radioactive waste is generated from the use of radioactive materials in medical applications such as diagnosis, therapy and research. Disused sealed sources are also considered as waste. To get the license to operate from Comissao Nacional de Energia Nuclear - CNEN, the installation has to present a Radiation Protection Plan, in which the Waste Management Programme should be included. The Waste Management Programme should contain detailed description on methodologies and information on technical and administrative control of generated waste. This paper presents the basic guidelines for the implementation of a safe waste management by health care establishments, taking into account the regulations from CNEN and recommendations from the International Atomic Energy Agency - IAEA. (author)

  6. Auditing emergency management programmes: Measuring leading indicators of programme performance.

    Science.gov (United States)

    Tomsic, Heather

    Emergency Management Programmes benefit from review and measurement against established criteria. By measuring current vs required programme elements for their actual currency, completeness and effectiveness, the resulting timely reports of achievements and documentation of identified gaps can effectively be used to rationally support prioritised improvement. Audits, with their detailed, triangulated and objectively weighted processes, are the ultimate approach in terms of programme content measurement. Although Emergency Management is often presented as a wholly separate operational mechanism, distinct and functionally different from the organisation's usual management structure, this characterisation is only completely accurate while managing an emergency itself. Otherwise, an organisation's Emergency Management Programme is embedded within that organisation and dependent upon it. Therefore, the organisation's culture and structure of management, accountability and measurement must be engaged for the programme to exist, much less improve. A wise and successful Emergency Management Coordinator does not let the separate and distinct nature of managing an emergency obscure their realisation of the need for an organisation to understand and manage all of the other programme components as part of its regular business practices. This includes its measurement. Not all organisations are sufficiently large or capable of supporting the use of an audit. This paper proposes that alternate, less formal, yet effective mechanisms can be explored, as long as they reflect and support organisational management norms, including a process of relatively informal measurement focused on the organisation's own perception of key Emergency Management Programme performance indicators.

  7. Clinical waste management in the context of the Kanye community ...

    African Journals Online (AJOL)

    Clinical waste management in the context of the Kanye community home-based care programme, Botswana. ... or clinics; poor storage of the healthcare waste at clinics; lack of incinerators for burning clinical waste; and a high risk of contagion to individuals and the environment at all stages of managing the clinical waste.

  8. Swedish programme for disposal of radioactive waste - geological aspects

    International Nuclear Information System (INIS)

    Baeckblom, G.; Karlsson, Fred

    1990-01-01

    Spent nuclear fuel and radioactive wastes of different types are generated in the course of electrical production. These wastes, which already exist and will continue to exist irrespective of the future for nuclear power in Sweden, are potential hazards if not properly managed. SKB in close co-operation with Swedish and international scientists and engineers have demonstrated the need to construct and operate a waste management system that will ensure very high safety for a long period of time. SKB has further demonstrated that with presently available technology it is possible to construct a final repository for long-lived wastes in Sweden that meets very high standards with respect to safety and radiation protection. SKB has also presented a programme for the research, development and other measures that are required to achieve an optimized disposal site system in Sweden. This programme is comprehensive and the strong support of national and international experts. Examples of research projects discussed in the present paper are: (a) efforts to describe the major zones in the rock mass, (b) characterization of low-conductive rock masses, (c) studies of post-glacial faulting and (d) the importance of natural analogues. The rationale for one of the most important projects in progress - the Hard Rock Laboratory - is also presented. (authors)

  9. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  10. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  11. Swedish waste management

    International Nuclear Information System (INIS)

    Sandwall, L.

    2004-01-01

    Sweden has a well-functioning organization for managing various types of radioactive waste. There is an interim storage facility for spent nuclear fuel, a final repository for low and intermediate level waste, and a specially-built vessel with transport casks and containers for shipping the radioactive waste between the nuclear installations. (author)

  12. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  13. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  16. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  17. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  18. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  20. WASTES: Wastes system transportation and economic simulation: Version 2, Programmer's reference manual

    International Nuclear Information System (INIS)

    Buxbaum, M.E.; Shay, M.R.

    1986-11-01

    The WASTES Version II (WASTES II) Programmer's Reference Manual was written to document code development activities performed under the Monitored Retrievable Storage (MRS) Program at Pacific Northwest Laboratory (PNL). The manual will also serve as a valuable tool for programmers involved in maintenance of and updates to the WASTES II code. The intended audience for this manual are experienced FORTRAN programmers who have only a limited knowledge of nuclear reactor operation, the nuclear fuel cycle, or nuclear waste management practices. It is assumed that the readers of this manual have previously reviewed the WASTES II Users Guide published as PNL Report 5714. The WASTES II code is written in FORTRAN 77 as an extension to the SLAM commercial simulation package. The model is predominately a FORTRAN based model that makes extensive use of the SLAM file maintenance and time management routines. This manual documents the general manner in which the code is constructed and the interactions between SLAM and the WASTES subroutines. The functionality of each of the major WASTES subroutines is illustrated with ''block flow'' diagrams. The basic function of each of these subroutines, the algorithms used in them, and a discussion of items of particular note in the subroutine are reviewed in this manual. The items of note may include an assumption, a coding practice that particularly applies to a subroutine, or sections of the code that are particularly intricate or whose mastery may be difficult. The appendices to the manual provide extensive detail on the use of arrays, subroutines, included common blocks, parameters, variables, and files

  1. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  3. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  4. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November

  5. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  7. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  9. Waste management in NUCEF

    International Nuclear Information System (INIS)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I.

    2000-01-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  10. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  11. Waste management research abstracts volume 27. Information on radioactive waste management research in progress or planned

    International Nuclear Information System (INIS)

    2002-10-01

    This issue of the Waste Management Research Abstracts (WMRA) contains 148 abstracts that describe research in progress in the field of radioactive waste management. The research abstracts contained in Volume 27 (WMRA 27) were collected between July 1, 2001 and September 30, 2002. The abstracts present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, many programmes are actually the result of co-operation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications

  12. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  13. The Radioactive Waste Management Advisory Committee's advice to ministers on the establishment of scientific consensus on the interpretation and significance of the results of science programmes into radioactive waste disposal

    International Nuclear Information System (INIS)

    1999-04-01

    This document presents conclusions and recommendations on establishment of scientific consensus on the interpretation and significance of the results of science programmes into radioactive waste disposal. The topics discussed include: the nature of science and its limitations; societal views of science and the radioactive waste problem; issues upon which consensus will be needed; evidence of past attempts at greater involvement of the public; the linking of scientific and social consensus; communicating the nature of consensus to the public

  14. The waste management implications of decommissioning

    International Nuclear Information System (INIS)

    Passant, F.H.

    1988-01-01

    Decommissioning policy can only be framed in the light of radioactive waste management policy. What can be done with the waste materials, how and when, will determine the overall decommissioning plans and costs. In this paper the waste management options and their costs are reviewed for the decommissioning of the Central Electricity Generating Boards civil nuclear power stations. The paper concentrates on the decommissioning of Magnox stations, although comparative information on waste volumes and costs are given for the AGR programme and a typical PWR. (author)

  15. Recycling and transmutation of nuclear waste. ECN-Petten and Belgonucleaire contributions in the framework of 'Partitioning and transmutation studies of the 4th CEC programme on rad waste management and disposal'

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Gruppelaar, H.; Brusselaers, P.; Evrard, G.; La Fuente, A.; Maldague, T.; Pilate, S.; Renard, A.

    1995-12-01

    A 'Strategy study on nuclear waste transmutation' by Netherlands Energy Research Foundation (ECN) and Belgonucleaire (BN) in the frame of the EU R and D Programme 1990/1994 on management and storage of radioactive waste has been executed in collaboration with AEA Technology, CEA and Siemens. First of all the motivation for transmuting long-lived radioactive products has been formulated, next transmutation of Tc-99 and I-129 in fission reactors has been studied for the PWR, HFR, Superphenix, and the CANDU reactor. Cross section libraries have been improved for ORIGEN-S on the basis of JEF2.2 and EAF3. This study has been amended by a graphical representation of important reactions for activation of cladding and inert matrix materials. By means of the derived new data libraries, some sample calculations on transmutation of americium in thermal reactors have been performed. Implications of recycling plutonium and americium in the form of MOX fuel in light water reactors have been investigated. It became clear from the present study that trasmutation of the existing plutonium has the highest priority and that reduction of minor-actinides is next on the priority list. Thirdly, the (difficult) large-scale transmutation of Tc-99 and of I-129 could reduce the leakage dose risks. It also seems most worthwhile to be careful with naturally occurring U-234 in the waste, as this will in the long run lead to a substantial increase of the 'natural' radon dose in the neighbourhood of the storage facility. (orig.)

  16. Recycling and transmutation of nuclear waste. ECN-Petten and Belgonucleaire contributions in the framework of `Partitioning and transmutation studies of the 4th CEC programme on rad waste management and disposal`

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Gruppelaar, H. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Brusselaers, P. [Belgonucleaire S.A., Brussels (Belgium); Evrard, G. [Belgonucleaire S.A., Brussels (Belgium); La Fuente, A. [Belgonucleaire S.A., Brussels (Belgium); Maldague, T. [Belgonucleaire S.A., Brussels (Belgium); Pilate, S. [Belgonucleaire S.A., Brussels (Belgium); Renard, A. [Belgonucleaire S.A., Brussels (Belgium)

    1995-12-01

    A `Strategy study on nuclear waste transmutation` by Netherlands Energy Research Foundation (ECN) and Belgonucleaire (BN) in the frame of the EU R and D Programme 1990/1994 on management and storage of radioactive waste has been executed in collaboration with AEA Technology, CEA and Siemens. First of all the motivation for transmuting long-lived radioactive products has been formulated, next transmutation of Tc-99 and I-129 in fission reactors has been studied for the PWR, HFR, Superphenix, and the CANDU reactor. Cross section libraries have been improved for ORIGEN-S on the basis of JEF2.2 and EAF3. This study has been amended by a graphical representation of important reactions for activation of cladding and inert matrix materials. By means of the derived new data libraries, some sample calculations on transmutation of americium in thermal reactors have been performed. Implications of recycling plutonium and americium in the form of MOX fuel in light water reactors have been investigated. It became clear from the present study that trasmutation of the existing plutonium has the highest priority and that reduction of minor-actinides is next on the priority list. Thirdly, the (difficult) large-scale transmutation of Tc-99 and of I-129 could reduce the leakage dose risks. It also seems most worthwhile to be careful with naturally occurring U-234 in the waste, as this will in the long run lead to a substantial increase of the `natural` radon dose in the neighbourhood of the storage facility. (orig.).

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  18. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  19. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  20. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  1. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  2. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  3. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  4. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  5. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  6. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Syed Abdul Malik Syed Zain

    2005-01-01

    This chapter discussed the basic subjects covered in the radioactive waste management. The subjects are policy and legislation, pre-treatment, classification, segregation, treatment, conditioning, storage, siting and disposal, and quality assurance

  8. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  9. Conception of spent fuel and radioactive wastes management in Poland based on the results of the previous work performed in the frames of Governmental Strategic Programme realised under patronate of National Atomic Energy Agency

    International Nuclear Information System (INIS)

    Wlodarski, J.; Chwaszczewski, S.; Slizowski, K.; Frankowski, Z.

    1999-01-01

    About 300 cubic meters of solid and solidified radioactive wastes of low and medium activity are produced each year in Poland. Such materials, after processing, are stored in the Institute of Atomic Energy at Swierk or in the National Repository for Radioactive Wastes in Rozan. About 6000 spent fuel elements are temporarily stored in water pools at Swierk. Assumptions and strategy of future spent fuel and radioactive wastes management are presented taking into account operation of the first nuclear power plants (after 2010). Then Governmental Strategic Programme (GSP) for the year 1997-1999 concerning such topic is described and some results of the work performed in the frames of the GSP are given

  10. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  11. The costs assessment of the RENEL's programme for radwaste management

    International Nuclear Information System (INIS)

    Barariu, Gh.; Andreescu, N.

    1995-01-01

    The paper presents first economical assessment of the Radwaste Management Programme of the Romanian Electricity Authority - Nuclear Power Group (RENEL-GEN) until closing all foreseeable activities in the field of nuclear waste processing and disposal. (Author) 1 Tab., 7 Refs

  12. TKS-2006. Nuclear waste management of the Olkiluoto and Loviisa power plants: Programme for research, development and technical design for 2007-2009

    International Nuclear Information System (INIS)

    2006-11-01

    The report at hand describes the status and near-term future plans of the research and technology development (RTD) for the nuclear waste management of the Olkiluoto and Loviisa nuclear power plants. Since the facilities for the management and disposal of low- and intermediate-level wastes have already been built and are in operation, and the decommissioning of the nuclear power plant will only take place far away in the future, the emphasis of this report is on the RTD related to the disposal of spent fuel. For the RTD programme on spent fuel disposal the report is also a part of the interim reporting proposed by the Finnish Radiation and Nuclear Safety Authority (STUK) in the early 2000's. Other reports related to the interim reporting include the updated facility description and the separate reports on the expected evolution of the spent fuel repository, the summary of the biosphere studies and the updated site description ('Site 2006'). Pursuant to the guidelines given by the Ministry of Trade and Industry (KTM) Posiva aims at submission of the application of the construction license for the disposal facility by the end of the year 2012. By the end of 2009 Posiva will present an outline of the whole documentation intended for the application. In practice this requires that the components of the disposal system are specified in sufficient detail for the actual implementation. Accordingly, the principal goals of the next three-year period 2007 - 2009 will be: to define the performance goals for the main components of the disposal system in a way that the system as a whole fulfils the safety requirements set for disposal, and to demonstrate that these requirements can be met by the technology available. The report reviews the present status of the performance goals for the main components. For most main components (release barriers) the principal performance goals have already been defined and their feasibility has been demonstrated. The encapsulation technology

  13. The IAEA's activities in the field of radioactive waste management

    International Nuclear Information System (INIS)

    Semenov, B.A.

    1984-01-01

    The IAEA has been concerned with radioactive waste management since its inception. Its programme in this area was expanded in the mid 1970s as questions related to the management and disposal of radioactive wastes came into focus in conjunction with the further industrial development of nuclear power. The objectives of the Agency's waste management programme are to assist its Member States in the safe and effective management of wastes by organizing the exchange and dissemination of information, providing guidance and technical assistance and supporting research. The current programme addresses all aspects of the industrial use of nuclear power under the aspects (a) technology of handling and treatment of wastes, (b) underground disposal of wastes, (c) environmental aspects of nuclear energy, including sea disposal of radioactive wastes. Systematic reviews have been made and publications issued concerning the technology of handling, treating, conditioning, and storing various categories of wastes, including liquid and gaseous wastes, wastes from nuclear power plants, spent fuel reprocessing and mining and milling of uranium ores, as well as wastes from decommissioning of nuclear facilities. As waste disposal is the current issue of highest interest, an Agency programme was set up in 1977 to develop a set of guidelines on the safe underground disposal of low-, intermediate- and high-level wastes in shallow ground, rock cavities or deep geological repositories. This programme will continue until 1990. Eleven Safety Series and Technical Documents and Reports have been published under this programme so far, which also addresses safety and other criteria for waste disposal. The environmental part of the waste management programme is concerned with the assessment of radiological and non-radiological consequences of discharges from nuclear facilities, including de minimis concepts in waste disposal and environmental models and data for radionuclide releases

  14. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  15. Solid waste management in Khartoum industrial area

    International Nuclear Information System (INIS)

    Elsidig, N. O. A.

    2004-05-01

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  16. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  17. Healthcare liquid waste management.

    Science.gov (United States)

    Sharma, D R; Pradhan, B; Pathak, R P; Shrestha, S C

    2010-04-01

    The management of healthcare liquid waste is an overlooked problem in Nepal with stern repercussions in terms of damaging the environment and affecting the health of people. This study was carried out to explore the healthcare liquid waste management practices in Kathmandu based central hospitals of Nepal. A descriptive prospective study was conducted in 10 central hospitals of Kathmandu during the period of May to December 2008. Primary data were collected through interview, observation and microbiology laboratory works and secondary data were collected by records review. For microbiological laboratory works,waste water specimens cultured for the enumeration of total viable counts using standard protocols. Evidence of waste management guidelines and committees for the management of healthcare liquid wastes could not be found in any of the studied hospitals. Similarly, total viable counts heavily exceeded the standard heterotrophic plate count (p=0.000) with no significant difference in such counts in hospitals with and without treatment plants (p=0.232). Healthcare liquid waste management practice was not found to be satisfactory. Installation of effluent treatment plants and the development of standards for environmental indicators with effective monitoring, evaluation and strict control via relevant legal frameworks were realized.

  18. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  20. UKAEA's programme for the development of waste packages for deep disposal

    International Nuclear Information System (INIS)

    Graham, D.

    1996-01-01

    This paper describes UKAEA ILW, the development programme underpinning the proposed disposals, the case for cement as the immobilising matrix and the waste package performance required by the Deep Repository. The paper also seeks to show that UKAEA is effectively managing its ILW liability through a well managed programme which is convincingly best value whilst meeting appropriate national and international agreed standards for safety and environmental care. (author)

  1. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  2. Management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Faussat, A.

    1995-01-01

    Management of radioactive waste is a matter of public concern. Such management, however, is today handled industrially in France, and when these techniques are well applied, its is possible to create storage centres. Waste having a short half-life is now stored in the Centre de l'Aube, which replaces the one begun in 1969 in the Department de la Manche. For waste with a long half-life, following the law passed in 1991, ANDRA is pursuing its programme of site prospecting to establish two underground laboratories for studying geological storage. (author). 2 figs., 1 tab

  3. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  4. Overview of the United States' nuclear waste repository programme

    International Nuclear Information System (INIS)

    Surles, T.G.

    2002-01-01

    Regardless of the future of civilian or defense-based nuclear materials, the United States will be responsible for a vast array of these materials for generations to come. The cornerstone programme for the disposal of waste materials is the Yucca Mountain Programme. Based on the Nuclear Waste Policy Act of 1982, as amended in 1987, it has been the United States' policy to develop a geological repository for the permanent disposal of radioactive waste materials. This presentation will discuss the process and strategy leading to the present and will include the scientific and management activities required to support the recent Viability Assessment. Also to be discussed are the timeline and milestones leading to the opening of the repository. The focus will be on the scientific and engineering studies required for a successful Site Recommendation, and then for a similarly successful License Application. Both of these activities will require considerable management efforts in addressing legal and regulatory issues. Finally, the presentation will discuss projections for the future operation of the facility, including emplacement projections, coupled with the required locations of nuclear materials. Additional scientific research and engineering studies will also be conducted to determine the longer-term viability of the facility, which is designed, by policy, for permanent storage. Retrievability is currently not an option, although access to the facility will be maintained for several decades. The focus of the discussion will be on the scientific and engineering advances made on understanding the natural systems for preventing migration of radionuclides, coupled with new developments in engineered systems in areas such as cask cladding, drip shields, and related materials engineering developments. The coupling of engineered and natural systems is designed to offer safety factors that are several orders of magnitude greater than what is estimated to be necessary

  5. Current status of the French Radioactive Waste Disposal Programme

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2006-01-01

    The 15 years of research prescribed by the Law of 1991 are now over. Their results led to the promulgation of a new planning act on 28 June 2006 detailing the applicable conditions and process for the pursuit of further programmes. It sets 2015 as the deadline to submit the statutory application in order to commission a deep geological repository for high-level and long-lived radioactive waste by 2025. The new law also sets the prescribed framework for the management programmes of the different waste categories. As the years went by, experience kept accumulating and helped us to advance. Today, we are able to draw some lessons concerning the success factors of the most difficult projects in complex environments. Significant progress was recorded not only on the scientific and technical scales, but also and mainly with regard to governance and decision-making. The Planning Act of 28 June 2006 concerning the sustainable management of radioactive materials and waste marks a new step in the French legislation. It represents the natural outcome of the 15 years of research instigated by the Law of 30 December 1991. It is known also as the 'Bataille Law' from the name of Christian Bataille, MP, who drafted it and monitored its enforcement as a member of the Parliamentary Office for Scientific and Technological Assessment (Office parlementaire d'evaluation des choix scientifiques et techniques - OPECST). Many advances were made concerning not only scientific and technological knowledge, but also governance. The new law opens brand new prospects in relation with those different aspects. (author)

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  7. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  8. Olympic Dam operations - environmental management programme

    International Nuclear Information System (INIS)

    1990-03-01

    This is the 3rd Annual Report pertaining to the Olympic Dam Operations Environmental Management Programme and covers the period 1st March, 1989 to 28th February, 1990. The monitoring programe has provided detailed assessment of meteorological data, vegetation, fauna, soil stability, soil salinity, hydrogeology and well-fields both inside and outside the operations area. Mine site rehabilitation is considered to be progressing satisfactorily. Out of the 851 drill pad sites 72% have been rehabilitated to the stage where natural soil stability and plant cover has been achieved. Drill pad sites that have received good rainfall within one year of being ripped have rehabilitated very succesfully. Sites that receive no significant rainfall for more than two years, particularly on dune slopes may require re-ripping before successful regeneration can occur. To improve the drill pad site rehabilitation monitoring programme it is recommended that 200 drill sites be analysed each year. Air emission and solid waste data are also presented. This program is considered to be particularly successful in relation to SO 2 assessment. 90 tabs., 63 figs., ills

  9. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  10. Radioactive waste management: A status report

    International Nuclear Information System (INIS)

    1985-08-01

    This publication briefly summarizes the activities of the IAEA and its Member States in the area of radioactive waste management. The information is presented in two major sections. One section presents a brief overview of the Agency's programme, and the other section provides a status report on the activities in many of the Agency's Member States

  11. Waste management research abstracts No. 17

    International Nuclear Information System (INIS)

    1986-11-01

    The research data sheets contained in this issue have been collected during the period ending August 1986, and reflect research currently in progress in the field of radioactive waste management. This publication covers a wide range of programmes in the IAEA Member States. Abstracts intended for inclusion in this publication were submitted in the English, French, Russian or Spanish language

  12. Waste management at KKP

    International Nuclear Information System (INIS)

    Blaser, W.; Grundke, E.; Majunke, J.

    1997-01-01

    The smooth management of radioactive plant waste is an integral, essential part of safe and economic operation of a nuclear power plant. The Philippsburg Nuclear Power Station (KKP) addressed these problems early on. The stationary facilities installed, with an organization established in the lights of the objectives to be met, allow problems to be solved largely independent of external factors and make for operational flexibility and optimum utilization of plant and personnel capacities. The good performance achieved in volume reduction and product quality of the conditioned radioactive waste justifies the capital investments made. In this way, KKP has met the ecological and economic requirements of orderly waste management. At KKP, waste management is considered an interdisciplinary duty. Existing resources in KKP's organization were used to achieve synergy effects. The Central Monitoring Unit is responsible for the cooperation of all groups involved with the objective of generating a product fit for final storage. The necessary coordination and monitoring efforts are made by a small team of specialists with extensive know-how in waste management. Four persons are responsible for coordination and monitoring, and another ten or twelve persons for direct execution of the work. (orig.) [de

  13. Waste management research abstracts. Information on radioactive waste management research in progress or planned. Vol. 28

    International Nuclear Information System (INIS)

    2003-11-01

    This issue contains 184 abstracts that describe research in progress in the field of radioactive waste management. The research abstracts contained in the Waste Management Research Abstracts Volume 28 (WMRA 28) were collected between October 1, 2002 and September 30, 2003. The abstracts reflect research in progress, or planned, in the field of radioactive waste management. They present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, some programmes are actually the result of cooperation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications

  14. Competences and life management programmes

    International Nuclear Information System (INIS)

    Brunatti, S.; Bergara, A.; Ranalli, J.; Versaci, R.

    2007-01-01

    Full text: The nuclear industry is, at present, at a crucial juncture, where it has to decide about the future of the first generation of nuclear plants, which are approaching the end of their licensed service life. At the same time, long term experience and new advances have established that it is possible to extend the life of nuclear plants beyond their initially licensed life by another 20-30 years. Extending the operating life of existing nuclear plants will help to reduce the short term need for new generating capacity - without new capital costs. However, these extensions must take place in the context of careful safety analysis and monitoring of equipment ageing concerns. A nuclear power plant must be managed in a safe and efficient manner throughout all the life cycle stages from design through decommissioning. The consequences of management decisions about nuclear power plants can have profound economic impacts for the nuclear power plant owner, and possibly for the national economy. In addition, the consequence of a major failure or accident can have catastrophic national socio-economic effects that may be felt internationally. The safe and effective management of a nuclear power plant therefore requires dramatically different perspectives in time from the majority of other industries. The impact of some decisions extends beyond the normal strategic perspective of both owners and governments. The integration of activities for ageing management, safety management and business management of a nuclear power plant are an essential element of 'life cycle management'. The loss of information at any stage of a nuclear power plants life deprives people, at later stages, of knowledge that could be important to safe, economic completion of work or which could aid the analysis of problems and options. It is costly to go through the learning process again, with a risk of potential events or incidents, programme delays, physical injury and increased regulatory

  15. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  16. The management and regulation of decommissioning wastes

    International Nuclear Information System (INIS)

    Berkhout, F.

    1990-01-01

    Radioactive waste management is an inevitable consequence of nuclear technology. In the past it was often regarded as a peripheral matter, easily dealt with, and having little impact on the economics of the fuel cycle. Gradually, over the last two decades, waste management has asserted itself as one of nuclear power's most intractable problems. First, it is a problem of trying to understand through science the effects of discharging and disposing of man-made radioactivity to the general environment. Second, technologies for treating and disposing of the wastes, as well as techniques to verify their safety, must be developed. Third, and most problematically, a wide spread of public trust in the techniques of management must be nurtured. Disputes over each of these dimensions of the question exist in nearly all countries with nuclear programmes. Some of them may be near resolution, but many others are far from closure. Decommissioning, because it comes last in the nuclear life-cycle, is also the last important aspect of the technology to be considered seriously. In Britain, wastes arising from decommissioning, whether it is done slowly or quickly, are projected to have an important impact on the scale of radioactive waste management programmes, beginning in the mid-1990s. It follows that decommissioning, contentious in itself, is likely to exacerbate the difficulties of waste management. (author)

  17. Conceptual design of radioactive waste repositories in geological formations. Report on a Workshop organized by the Commission of the European Communities in the frame of its R and D programme on radioactive waste management and storage at Brussels, February 13 and 14, 1979. [Clays, granites, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Haytink, B [comp.

    1980-01-01

    Under the R and D programme on radioactive waste management and storage (indirect action 1975-1979) of the Commission of the European Communities, the Commission participates in design studies of waste repositories in different geological formations undertaken in various Member States. In order to achieve an exchange of available information and to discuss technical solutions the Commission organised a workshop which was attended by experts of all the organisations involved in these studies under the Community programme. From the presentations, summarized in this report, it appeared that design and feasibility studies of waste repositories in clay, salt and granite formations are in good progress. It may be concluded that such repositories can be realized with techniques available at present, however experimental facilities are needed to demonstrate the validity of the theoretical studies.

  18. Waste management and disposal in Czechoslovakia: Practices and proposals

    International Nuclear Information System (INIS)

    Marek, J.

    1984-01-01

    An overview is presented on the actual practices and planning for the management of radioactive wastes in Czechoslovakia. Types and specific arisings of wastes, applied immobilization processes, and the planning for disposal of reactor wastes are outlined. A comprehensive R and D programme is focussed on the management of reactor wastes, as the spent fuel is returned to the Sovjet Union after a 10 year cooling time. (orig.)

  19. PROGER - radioactive waste management in Brazilian research institutions

    International Nuclear Information System (INIS)

    Pontedeiro, E.; Ramos, A.C.; Reis e Vaz, S.; Ferreira, R.S.

    1998-01-01

    This article demonstrates the feasibility of a programme, called PROGER, which is aimed at improving the radioactive waste management activities of research institutions in Brazil. PROGER involves the implementation, correction and updating of waste management techniques in those institutions where a waste management system is already being carried out or the introduction and full deployment of such a system in those where a system does not exist. The methodology utilized by the PROGER programme is discussed, and partial results are presented bearing in mind the characteristics and quantities of wastes. (author)

  20. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  1. Integrated refinery waste management

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Y -S [ETG Environmental, Inc., Blue Bell, PA (US); Sheehan, W J [Separation and Recovery Systems, Inc., Irvine, CA (US)

    1992-01-01

    In response to the RCRA land ban regulations and TC rule promulgated by the U.S. Federal Environmental Protection Agency (EPA) in 1988-1990, an Integrated Refinery Waste Management (IRWM) program has been developed to provide cost-effective solutions to petroleum industry customers. The goal of IRWM is to provide technology based remediation treatment services to manage sludges and wastewaters generated from the oil refining processes, soils contaminated with petroleum distillates and groundwater contaminated with fuels. Resource recovery, volume reduction and waste minimization are the primary choices to mitigate environmental problems. Oil recovery has been performed through phase separation (such as centrifugation and filtration) and heating of heavy oils. Volume reduction is achieved by dewatering systems such as centrifuges and filter presses, and low temperature thermal treatment. Waste minimization can be accomplished by bioremediation and resource recovery through a cement kiln. (Author).

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The dossier published in this issue deals with all matters relating to radioactive waste management. It describes in detail the guidelines implemented by France in this field and provides a general overview of actions carried out at international level. The articles are assembled in several chapters, treating the following subjects: I. Upstream storage management. II. Storage (surface and underground). III. Research to back up the management program. There then follows a description of various processes and equipment developed by research laboratories and industrialists to provide, at the different stages, a number of operations required by the management programs [fr

  3. Management of radioactive waste

    International Nuclear Information System (INIS)

    Jahn, P.G.

    1986-01-01

    The text comprises three sections, i.e. theological and moral aspects, scientific and technical aspects, and administrative and political aspects. The book informs on the scientific and legal situation concerning nuclear waste management and intends to give some kind of decision aid from a theological point of view. (PW) [de

  4. K. Radioactive waste management

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive waste management is a controversial and emotive subject. This report discusses radioactivity hazards which arise from each stage of the fuel cycle and then relates these hazards to the New Zealand situation. There are three appendices, two of which are detailed considerations of a paper by Dr. B.L.Cohen

  5. Nuclear waste management

    International Nuclear Information System (INIS)

    Wicks, G.G.; Ross, W.A.

    1984-01-01

    Papers from the Second International Symposium on Ceramics in Nuclear Waste Management, held during the American Ceramic Society's 85th Annual Meeting, comprise this eighth volume in the Advances in Ceramics series. The 81 papers included in this volume were compiled by George G. Wicks, of Savannah River Lab, and Wayne A. Ross, of Battelle, Pacific Northwest Labs

  6. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  7. Eighteenth annual report of: The Radioactive Waste Management Advisory Committee

    International Nuclear Information System (INIS)

    1998-07-01

    This annual report reviews the RWMAC's work programme and progress made in 1997-1998; discusses operational and administrative matters including financial management and policy review; and presents the 1998 RWMAC work programme. Particular chapters are devoted to the management of intermediate and high level radioactive waste and spent fuel; the Dounreay Nuclear Establishment; the radioactive waste discharge authorisations. The document presents the RWMAC's review of the Ministry of Defence's radioactive waste management practices. A separate chapter is devoted to the study of radioactive waste management practices in Spain. Annexes to the report include terms of reference and membership of the Radioactive Waste Management Advisory Committee; RWMAC financial statement; declaration and register of member's interests; the RWMAC's 1998 work programme; the RWMAC's response to the Government on Proposals for the control and remediation of radioactively contaminated land

  8. Implementation of the Environmental Management System in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Fabjan, M.; Kralj, M.; Rojc, J.

    2008-01-01

    Agency for Radwaste Management (ARAO) is a public institution assigned to provide effective, safe and responsible management of all kinds of radioactive waste in Slovenia from the moment they arise to their final disposal. Therefore it holds an important role in environmental protection. Its main assignment is to provide conditions for permanent disposal of radioactive waste. It is also authorised to perform public service of radioactive waste management from small producers that includes: collection of the waste from small producers at the producers' premises, transportation to the storage facility, treatment, conditioning storage of RW from small producers; acceptance of radioactive waste in case of emergency situation (e.g. transport accidents); acceptance of radioactive waste in case of unknown producer; operation and management of Central Interim Storage of Radioactive Waste. The quality of ARAO performance in carrying out its mission is assured by implementing the environmental management system according to the standard ISO 14001:2004. Its effectiveness was confirmed by certification in October 2007. The ISO 14001:2004 certificate represents a permanent commitment of ARAO to implement and improve the environmental management system and to include environmental aspects in all its activities, especially in performing the public service. We developed own evaluation criteria for determination of relevant environmental impacts and aspects. ARAO has defined its environmental policy and objectives, it evaluates its environmental impacts yearly, and defines its environmental programmes that not only fulfil legal requirements but tend even to reduce the impacts below legally set levels. A very important environmental programme in the last few years was the reconstruction of the storage facility. Public information and communication programmes are considered to be important also from the environmental management point of view, because public shows great interest in

  9. Alternatives for radioactive waste management

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-10-01

    The safety aspects of waste management alternatives are emphasized. The options for waste management, their safety characteristics, and the methods that might be used to evaluate the options and their safety are outlined

  10. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  11. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  12. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  13. Solid Waste Management In Kosova

    OpenAIRE

    , F. Tahiri; , A. Maçi; , V. Tahiri; , K. Tahiri

    2016-01-01

    Waste management accordingly from concept and practices that are used in different countries there are differences, particularly between developed and developing countries. Our country takes part in the context of small developing countries where waste management right is almost at the beginning. In order to have better knowledge about waste management in Kosovo is done a research. The research has included the institutions that are responsible for waste management, including central and loca...

  14. Objectives and limitations of scientific studies with reference to the Swedish R ampersand D programme 1992 for handling and final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sjoeblom, R.; Dverstorp, B.; Wingefors, S.

    1994-01-01

    The Swedish Nuclear Power Inspectorate (SKI) has recently concluded its evaluation of the Swedish programme for the development of a system for the management of nuclear waste. The programme was compiled and issued by the Swedish Nuclear Fuel and Waste Management Company (SKB). In this process of programme formulation and review, considerable attention has been paid to the question of how scientific studies should be directed and performed in order to provide the support needed in the programme

  15. Legal framework of radioactive waste management in Indonesia

    International Nuclear Information System (INIS)

    Ridwan, M.

    2000-01-01

    The nuclear programme and the related legal framework in Indonesia is outlined. The provisions and principles concerning the management of radioactive waste are described. Furthermore, aspects of liability for nuclear damage and public involvement are addressed. (author)

  16. The NKS-B Programme for Nordic cooperation on nuclear and radiological emergency preparedness, including measurement strategies, radioecology and waste management

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Leino, Kaisu; Magnússon, Sigurður M.

    2014-01-01

    The NKS platform for Nordic cooperation and competence maintenance in nuclear and radiological safety comprises two parallel programmes: the NKS-R programme on nuclear reactor safety and the NKS-B programme on emergency preparedness. This paper introduces the NKS-B programme and its current...

  17. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  18. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  19. Programme and french realizations concerning alpha wastes

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1978-01-01

    Water reactors and breeder spent fuels are reprocessed to recover plutonium, minimise wastes and decrease irradiation risks. Alloys formation, glass addition and vitrification or metallic matrix are studied to treat cladding hulls. Plutonium content is controlled by alpha spectrometry or prompt neutrons measurements or neutrons activation. Wastes are calcinated or crushed at low temperature to recover transuranium elements by solvent extraction or precipitation or ionic exchange or ultrafiltration. Wastes are calcinated or crushed at low temperature to recover transuranium elements by solvent extraction or precipitation or ionic exchange or ultrafiltration. Wastes are embedded into bitumen or thermosetting resins and long term storage in geologic formation is studied [fr

  20. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  1. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  2. Waste management. Sector 6

    International Nuclear Information System (INIS)

    1994-01-01

    The waste management section of this report deals with two sectors: land disposal of solid waste and wastewater treatment. It provides background information on the type of emissions that contribute to the greenhouse gases from these two sectors, presents both sector current status in Lebanon, describes the methodology followed to estimate the corresponding emissions, and presents the results obtained regarding greenhouse emissions. The total methane emissions from solid waste disposal on land are 42.804 Gg approximately. There are no emissions from wastewater and industrial handling systems because, for the target year 1994, there was no treatment facilities in Lebanon. The wastewater (municipal, commercial and industrial) was directly discharged into the sea, rivers, ravines or septic tanks which indicate that methane or nitrous oxide emissions are significant if not nonexistent. Note that this situation will change in the future as treatment plants are being constructed around the country and are expected to come into operation by the year 2000

  3. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  4. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  5. Status and challenges for radioactive waste management

    International Nuclear Information System (INIS)

    Riotte, H.

    2011-01-01

    In its 2008 Nuclear Energy Outlook the NEA reviewed the status of radioactive waste management world-wide and noted that the technology for disposal of short-lived low- and intermediate-level radioactive waste is well developed. The review concluded that all OECD countries with major nuclear programmes either operate corresponding waste disposal facilities or are in an advanced stage of developing them. By contrast, the developmental progress of HLW/SNF management programmes varies widely between countries; not to mention that there is currently no repository operating that could take spent nuclear fuel or high-level waste from reprocessing. In its collective opinion 'Moving forward with geological disposal' the NEA noted that deep underground disposal in geological formations is seen worldwide as the only sustainable endpoint for the management of these types of waste, as it affords unparalleled protection without reliance on active safety monitoring and controls. While waste management programmes in some countries are well matured and countries like Finland, France and Sweden aim to operate geologic repositories in the next decade, others need to develop their national strategies, plans and corresponding actions for managing radioactive waste further. Periodically reviewed national waste management plans, as legally required for EU member countries by a recent Directive, can provide a co-operation framework for all national institutional players and a means to measure progress. In implementing sustainable solutions for the long-term management of HLW/SNF, specific challenges lay in establishing an efficient policy and regulatory framework that (a) defines a desired level of safety over the various time scales to be considered and (b) allows for sustainable decision making procedures by involving public and stakeholder in a flexible, step-wise implementation process. Technical confidence in the safety of a repository needs to be demonstrated in a modern

  6. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  7. Influence of recycling programmes on waste separation behaviour.

    Science.gov (United States)

    Stoeva, Katya; Alriksson, Stina

    2017-10-01

    To achieve high rates of waste reuse and recycling, waste separation in households is essential. This study aimed to reveal how recycling programmes in Sweden and Bulgaria influenced inhabitants' participation in separation of household waste. The waste separation behaviour of 111 university students from Kalmar, Sweden and 112 students from Plovdiv, Bulgaria was studied using the Theory of Planned Behaviour framework. The results showed that a lack of proper conditions for waste separation can prevent individuals from participating in this process, regardless of their positive attitudes. When respondents were satisfied with the local conditions for waste separation their behaviour instead depended on their personal attitudes towards waste separation and recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  9. Strategic areas in radioactive waste management. The viewpoint and work orientations of the Nea radioactive waste management committee

    International Nuclear Information System (INIS)

    1999-01-01

    The NEA Radioactive Waste Management Committee (RWMC) is a forum of senior operators, regulators, policy makers, and senior representatives of R and D institutions in the field of radioactive waste management. The Committee assists Member countries by providing objective guidance on the solution of radioactive waste problems, and promotes Safety in the short- and long-term management of radioactive waste. This report identifies some of the major challenges currently faced by national waste management programmes, and describes the strategic areas in which the RWMC should focus its efforts in future years. (author)

  10. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  11. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  12. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  13. Management of tritium wastes

    International Nuclear Information System (INIS)

    Kisalu, J.; Mellow, D.G.; Pennington, J.D.; Thompson, H.M.; Wood, E.

    1991-07-01

    This work provides a review of the management of tritium wastes with particular reference to current practice, possible alternatives and to the implications of any alternatives considered. It concludes that reduction in UK emissions from nuclear industry is feasible but at a cost out of all proportion to the reduction in dose commitment achievable. Commercial usage of tritium involves importation at several times the UK nuclear production level although documentation is sparse. (author)

  14. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1982-04-01

    Terminology used in documents published by the IAEA is frequently defined in glossaries in the separate documents so that understanding is enhanced, particularly for terms having unique meanings in the field of radioactive waste management. This has been found to be a good practice but frequently a burdensome one, too. In addition, terms in various documents occasionally were used differently. Thus, a common glossary of terms for radioactive waste management documents is believed to have merit. This glossary has been developed for use in IAEA documentation on radioactive waste management topics. The individual items have been compiled by selecting terms and definitions from thirty sources, listed on the next page, and numerous people. An effort has been made to use the definitions in internationally-accepted glossaries (e.g. ICRP, ICRU, ISO), with minimum modification; similarly, definitions in recently published IAEA documents have been respected. Nevertheless, when modifications were believed appropriate, they have been made. The glossary, stored on magnetic tape, is intended to be used as a standard for terminology for IAEA use; it is hoped that some benefits of common international terminology may result from its use in IAEA documentation

  15. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  16. Research strategy and programmes on the management of long-lived high-level radioactive waste (pursuant to article L542 of the environmental code taken from the law of December 30, 1991)

    International Nuclear Information System (INIS)

    2002-01-01

    This report is made of two parts: the first part is a status report which highlights the main achievements of all research activities conducted in 2001 in the global context of national and international efforts on nuclear waste management (partitioning and transmutation, disposal in deep geological formations, conditioning and storage, national and international collaborations, report no 7 of the national review board (CNE), the Global 201 conference and the year 2001 highlights). The second part is the executive summary of the 2002 edition of the 'Research strategy and programmes' document. The new edition has ben reorganized according to previous editions in an effort to make it more concise, clearer and more comprehensive. Chapter 1 now focusses entirely on the methodology followed by all research partners and stakeholders in structuring and implementing research programmes. Chapter 2 is new and provides a summary of the major research results 10 years after the 1991 law became effective. Chapter 3 is also new and highlights the major milestones yet ahead and identified in terms of both objectives to be attained and key steps leading up to 2006. Chapter 4 contains a detailed description and analysis of the programmes envisaged and the last 2 chapters discuss very broadly the coordination of research activities and the way they are being implemented both at national (chapter 5) and international (chapter 6) levels. (J.S.)

  17. Waste inventory record keeping systems (WIRKS) for the management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-06-01

    This report is intended to serve Member States planning to develop or implement radioactive waste disposal programmes and to discuss possible ways for compiling and managing information about the inventories in their radioactive waste repositories, which includes low and intermediate level waste (short lived and long lived) and high level radioactive waste. This report identifies generic information that may be recorded in a Waste Inventory Record Keeping System (WIRKS), as identified by consultants and based on their collective expertise in radioactive waste management. The report provides examples of WIRKS implementation in some countries

  18. Public concerns and behaviours towards solid waste management in Italy.

    Science.gov (United States)

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  19. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  20. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  1. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  2. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  3. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  4. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  5. Management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  6. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-09-01

    Reports and other Canadian literature on radioactive waste processing and disposal covering the period 1953-1979 are listed. A selected list of international conferences relating to waste management (1959-1979) is attached. (LL)

  7. Waste management research abstracts. Information on radioactive waste management research in progress or planned. Vol. 29

    International Nuclear Information System (INIS)

    2004-11-01

    The twenty-ninth issue of the Waste Management Research Abstracts (WMRA) contains 96 abstracts that describe research in progress in the field of radioactive waste management. These abstracts were collected between May 1 and October 15, 2004 and present ongoing work in Brazil(1), Finland (1), Germany (7), India (11), Mauritius (1), republic of Korea (1), Russian Federation (1) and the United States of America (70). Although the abstracts are indexed by country, some programmes are actually the result of co-operation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications

  8. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  9. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  10. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Werthamer, N.R.

    1977-01-01

    The State of New York, some 15 years ago, became a party to an attempt to commercialize the reprocessing and storage of spent nuclear fuels at the West Valley Reprocessing Facility operated by Nuclear Fuel Services, Inc. (NFS). That attempted commercialization, and the State of New York, have fallen victim to changing Federal policies in the United States, leaving an outstanding and unique radioactive waste management problem unresolved. At the beginning of construction in 1963, the AEC assured both NFS and New York State of the acceptability of long-term liquid tank storage for high level wastes, and New York State ERDA therefore agreed to become the responsible long-lived stable institution whose oversight was needed. It was understood that perpetual care and maintenance of the wastes, as liquid, in on-site underground tanks, would provide for safe and secure storage in perpetuity. All that was thought to be required was the replacement of the tanks near the end of their 40-year design life, and the transferring of the contents; for this purpose, a perpetual care trust fund was established. In March of 1972, NFS shut West Valley down for physical expansion, requiring a new construction permit from the AEC. After four years of administrative proceedings, NFS concluded that changes in Federal regulations since the original operating license had been issued would require about 600 million dollars if operations were to resume. In the fall of 1976, NFS informed the NRC, of its intention of closing the reprocessing business. The inventories of wastes left are listed. The premises upon which the original agreements were based are no longer valid. Federal responsibilities for radioactive wastes require Federal ownership of the West Valley site. The views of New York State ERDA are discussed in detail

  11. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  12. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  13. Radioactive waste management and the nuclear renaissance

    International Nuclear Information System (INIS)

    McCombie, C.

    2006-01-01

    Full text: Full text: For many years, nuclear supporters have been talking of a possible nuclear power renaissance. Today there are definite signs that this is finally beginning to happen. New plants are being built or planned in China, Japan, Korea, Finland, France and even the USA. Phase-out policies are being rethought in countries like Sweden, Belgium and Germany. Countries like Vietnam, Indonesia, the Baltic States and even Australia are choosing or debating initiating a nuclear programme. Support for these nuclear power developments may be strongly influenced by the progress of waste management programmes, especially final disposal. Conversely, the growing realisation of the potential global benefits of nuclear power may well lead to increased support, effort and funding for initiatives to ensure that all nations have access to safe and secure waste management facilities. This implies that large nuclear programmes must make progress with implementation of treatment, storage and disposal facilities for all of their radioactive wastes. For small nuclear programmes (and for countries with nuclear applications other than power generation) such facilities are also necessary. For economic and other reasons, these small programmes may not be able to implement all of the required national facilities. Multinational cooperation is needed. This can be realised by large countries providing back-end services such as reprocessing and disposal, or by small countries forming regional or international partnerships to implement shared facilities for storage and/or disposal. This paper will trace through the past decades the mutual interactions between programmes in nuclear power and in waste management. The relevant issues of concern for both include radiological safety, environmental impacts and, most topically, non-proliferation and security. Debates on these issues have strongly affected national efforts to implement power plants and repositories, and also influenced the

  14. Management of radioactive wastes produced by users of radioactive materials

    International Nuclear Information System (INIS)

    1985-01-01

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  15. CERN Management & Communication Training programme

    CERN Multimedia

    2007-01-01

    Calendrier des cours prévus de septembre à décembre 2007
Calendar of courses for September to December 2007 Please check our Web site to find out the number of places available which may vary. Veuillez consulter notre site Web pour connaître le nombre de places disponibles qui peut varier. Management Curriculum / curriculum Management Personal Awareness & Impact (English) 10, 11, 12 September, (full) Managing by Project (English) 9, 10 October (2 places disponibles) Personal Awareness & Impact (English) 15, 16, 17 October, (full) Introduction to Leadership (English) 17, 18, 19 October, (full) Quality Management (Bilingual) 18, 19 October (10 places available) Managing Teams (English) 13, 14, 15 November (full) Communicating Effectively – residential (Bilingual) 20, 21, 22 November (full) Risk Management (English) 13, 14 December (6 places available) Communication Curriculum / curriculum communication Stress Management (English) 25, 26 September (6 places...

  16. Evaluation of the properties of cemented low level radioactive wastes through an extensive characterization programme

    International Nuclear Information System (INIS)

    Caropreso, G.; De Angelis, G.

    1990-01-01

    The immobilized radioactive wastes have to fulfill the demands for packing, interim storage, trasportation and final disposal. For this purpose the possession of various properties, more or less relevant, are required by authorized agencies. In addition to transport regulations the attention is generally focused on physico-chemical and mechanical properties, thermal, radiation and water stability, as well as confinement ability. The assessment of such requirements needs the set up of experimental procedured. With this in mind an extensive programme for the characterization of cemented low level wastes has been undertaken at ENEA Casaccia in the frame of the Third (1985-1989) Europen Communities Programme on Radioactive Waste Management (Contract No. FI1W-0101-I(A)). Three types of waste streams of general interest have been taken into account: bead ion-exchange resins, BWR evaporator concentrates (Sulphates) and filter sludges. Both labo. and full scale experiments have been carried out

  17. Spent fuel management in France: Programme status

    International Nuclear Information System (INIS)

    Chaudat, J.P.

    1990-01-01

    France's programme is best characterized as a closed fuel cycle including reprocessing, Plutonium recycling in PWR and use of breeder reactors. The current installed nuclear capacity is 52.5 GWe from 55 units. The spent fuel management scheme chosen is reprocessing. This paper describes the national programme, spent nuclear fuel storage, reprocessing and contracts for reprocessing of spent fuel from various countries. (author). 5 figs, 2 tabs

  18. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  19. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.; Smith, G.M.; White, I.F

    1984-01-01

    Carbon-14 occurs in nature, but is also formed in nuclear reactors. Because of its long half-life and the biological significance of carbon, releases from nuclear facilities could have a significant radiological impact. Waste management strategies for carbon-14 are therefore of current concern. Carbon-14 is present in a variety of waste streams both at reactors and at reprocessing plants. A reliable picture of the production and release of carbon-14 from various reactor systems has been built up for the purposes of this study. A possible management strategy for carbon-14 might be the reduction of nitrogen impurity levels in core materials, since the activation of 14 N is usually the dominant source of carbon-14. The key problem in carbon-14 management is its retention of off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. Three alternative trapping processes that convert carbon dioxide into insoluble carbonates have been suggested. The results show that none of the options considered need be rejected on the grounds of potential radiation doses to individuals. All exposures should be as low as reasonably achievable, economic and social factors being taken into account. If, on these grounds, retention and disposal of carbon-14 is found to be beneficial, then, subject to the limitations noted, appropriate retention, immobilization and disposal technologies have been identified

  20. Waste management and licensing

    International Nuclear Information System (INIS)

    Dauk, W.

    1980-01-01

    It is the Court's consideration of the repercussions the regulation on waste management of Sect. 9a of the Atomic Energy Law will have, relating to the licensing of a plant according to Sect. 7 (2) of the Atomic Energy Law which is noteworthy. Overruling its former legal conception, the Administrative Court Schleswig now assumes, together with the public opinion, that the problem of waste management being brought to a point only with the initial operation of a nuclear power station is accordingly to be taken into account in line with the discretion of licensing according to Sect. 7 (2) of the Atomic Energy Law. In addition, the Administrative Court expressed its opinion on the extent to the right of a neighbour to a nuclear power station to file suit. According to the Sections 114 and 42 (2) of the rules of Administrative Courts it is true that a plaintiff cannot take action to set aside the licence because public interests have not been taken into account sufficiently, but he may do so because his own interests have not been included in the discretionary decision. The Administrative Court is reserved when qualifying the regulation on waste management with regard to the intensity of legal control. The Court is not supposed to replace controversial issues of technology and natural sciences on the part of the executive and its experts by its own assessment. According to the proceedings, the judicial review refers to the finding as to whether decisions made by authorities are suited - according to the way in which they were made - to guarantee the safety standard prescribed in Subdivision 3 of Sect. 7 (2) of the Atomic Energy Law. (HSCH) [de

  1. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  2. CERN Management & Communication Training programme

    CERN Multimedia

    2007-01-01

    Calendrier des cours prévus de septembre à décembre 2007 Calendar of courses for September to December 2007 Please check our Web site to find out the number of places available which may vary. Veuillez consulter notre site Web pour connaître le nombre de places disponibles qui peut varier.   Management Curriculum / curriculum Management NEW COURSE - Dealing with Conflict, 5 & 12 October (6 places available) Managing by Project (English) 9, 10 October (Full) Personal Awareness & Impact (English) 15, 16, 17 October\t(Full) Introduction to Leadership (English) 17, 18, 19 October\t(Full) Managing Teams (English) 13, 14, 15 November (1 place available) Communicating Effectively – residential (Bilingual) 20, 21, 22 November (Full) Risk Management (English) 13, 14 December (6 places available) Core Development Package for new Supervisors and Section leaders (MARS exercice) - 
Session to be scheduled from November 2007 to January 2008 &...

  3. International Nuclear Management Programmes -- INMP-- (VNMU)

    International Nuclear Information System (INIS)

    Adachi, Fumio

    2014-01-01

    • INMP is an IAEA-facilitated collaboration for universities to provide master’s degree programs in nuclear management, targeting managers or future managers working in the nuclear sector. • There are currently no full master’s degree programmes specializing in management for the nuclear sector. • Managers at NPP are typically engineers with few chances of formal management education. • In newcomer countries to nuclear energy, working towards the introduction of nuclear power, often lack technical or managerial experience in nuclear energy

  4. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  5. Decommissioning and Waste Disposal Programme of NPP Krsko - How to Proceed in the Future

    International Nuclear Information System (INIS)

    Mele, I.; Zeleznik, N.; Levanat, I.; Lokner, V.

    2006-01-01

    By the agreement between Slovenia and Croatia on the ownership and exploitation of the NPP Krsko, which is effective since March 2003, the decommissioning and the disposal of spent fuel and low and intermediate level waste from NPP Krsko is the responsibility of both countries. In article 10 the agreement requires that within a year after putting it into force both parties jointly prepare a decommissioning and waste disposal programme with more detailed elaboration of these issues. According to these requirements such a programme was prepared by the waste management organisations from both countries - APO from Croatia and ARAO from Slovenia - and in March 2004 submitted to the Intergovernmental Commission for adoption. Later in 2004 the document was accepted also by both Governments and in Croatia also by the Parliament. By the agreement it is also anticipated that the decommissioning and waste disposal programmes be revised at least every 5 years. Such an approach is quite common and practiced in many countries, and some countries prepare revisions even more frequently. The purpose of these new revisions is two folded: on one hand to improve the technical solutions for the decommissioning as well as for waste disposal by including new or better known data and new technological developments and experience, and on the other hand to update the cost calculation of these future nuclear liabilities. Having in mind that these cost estimations are made for the rather distant future it is extremely important that regular updating and adjustment of estimates be performed in order to meet the future needs. Although the Decommissioning and Waste Disposal Programme has just recently passed the adoption procedure and its implementation has not yet been fully achieved, the time of the next revision is approaching fast. To make good progress in the next revision serious preparations including some strategic decisions should start immediately. The programme from 2004 was prepared

  6. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  7. Solid wastes management in Lebanon

    International Nuclear Information System (INIS)

    Daniel, Simon E.

    1999-01-01

    The paper describes the problem of wastes in Lebanon and their management according to international (European and French) descriptions. It presents the situation in Lebanon including the policies taken by the ministry of environment towards the treatment of different types of wastes especially solid wastes. It is estimated that the production of wastes in Lebanon is 5854 tones per day and it is distributed as follows: Domestic wastes 3200 t/d; industrial wastes 1300 t/d; commercial wastes 1000 t/d; slaughter-houses 150 t/d; waste oils 100 t/d; hospital wastes 64 t/d; vehicle wheels 40 t/d. The annual production within regions is also presented in tables. Collection, transportation, recycling, composting and incineration of wastes are included

  8. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  9. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  10. Swedish Nuclear Waste Management from Theory to Practice

    International Nuclear Information System (INIS)

    Holmqvist, Magnus

    2008-01-01

    The programme has evolved from a project of a few experts drawing up the outline of what today is a comprehensive programme of research, development, demonstration, design, construction and operation of facilities for radioactive waste management. The Swedish programme was greatly influenced at an early stage by political actions, which included placing the responsibility with the reactor owners to demonstrate safe disposal of spent nuclear fuel and also to fund a disposal programme. The response of the reactor owners was to immediately start the KBS project. Its third report in 1983 described the KBS-3 concept, which is still the basis for SKB's deep geological repository system. Thus, this year is the 25th anniversary of the creation of the well-known KBS-3 concept. The SKB programme for nuclear waste management is today divided in two sub programmes; LILW Programme and the Nuclear Fuel Programme. The LILW Programme is entering into a new phase with the imminent site investigations for the expansion of the SFR LILW repository, which is in operation since 1988, to accept also decommissioning waste. The expansion of SFR is driven by a government decision urging SKB to investigate when a licensing of a repository for decommissioning waste can be made

  11. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  12. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  13. CERN Management & Communication Training programme

    CERN Multimedia

    2007-01-01

    Calendrier des cours prévus de septembre à décembre 2007 Calendar of courses for September to December 2007 Please check our Web site to find out the number of places available which may vary. Veuillez consulter notre site Web pour connaître le nombre de places disponibles qui peut varier. Management Curriculum / curriculum Management Managing by Project (English)\t9, 10 October (Full) Personal Awareness & Impact (English)\t15, 16, 17 October, (Full) Introduction to Leadership (English)\t17, 18, 19 October, (Full) Managing Teams (English)\t13, 14, 15 November\t(1 place available)) Communicating Effectively – residential (Bilingual)\t20, 21, 22 November (Full) Risk Management (English)\t13, 14 December (6 places available) Core Development Package for new Supervisors and Section leaders (MARS exercice) Session to be scheduled from November 2007 to January 2008 Communication Curriculum / curriculum communication Stress Management (English)\t25, 26 September (4 p...

  14. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  15. The programme and objectives of the Commission of the European Communities concerning radioactive wastes

    International Nuclear Information System (INIS)

    Orlowski, S.; Cricchio, A.; Girardi, F.

    1984-01-01

    The radioactive waste management programme of the Commission of the European Communities offers a good opportunity for co-operation between Member States. The Commission's principal objectives are: (1) to implement a Community action plan adopted in 1980 for a twelve-year period; (2) to promote research and development; (3) to ensure that radioactive waste management is conducted in conformity with environmental concerns and radiation protection norms. Under the action plan the current situation and prospects for radioactive waste management in the Community were evaluated in 1981-82. Other activities under the plan relate to the promotion of Community co-operation in final disposal and to the institution of a mechanism for Community consultations on criteria for the acceptance of conditioned wastes. The promotion of research and development involves a high degree of co-operation and effort to optimize or select procedures and to establish pilot or demonstration facilities. A budget of US$ 20 million at present supports these activities. With regard to radiation protection, in 1982 the Commission issued a recommendation for an investigation, at Community level, into the impact on all the Member States of operations such as waste treatment, dumping at sea, burial in the ground and storage of radioactive wastes. These objectives suggest that the solutions now under consideration for the management of high-level and long-lived wastes will by the end of this century be introduced alongside those already adopted in practice for low- and medium-level wastes. (author)

  16. Waste management plan - plant plan

    International Nuclear Information System (INIS)

    Gaudet, F.

    2008-01-01

    The author summarizes the nuclear activity of the Pierre Fabre Research Institute (sites, used radionuclides, radioprotection organisation), indicates the applied regulation, gives a brief analytical overview of the waste collection, sorting and elimination processes, of the management process for short period wastes and for long period wastes, and of the traceability and control procedures. He briefly presents some characteristics of the storing premises

  17. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from October to December 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Communicating Leadership - 2 October, 29 October + 1 December - (full) CDP-SL for new supervisors, part 1 - 5, 6, 7 October - (2 places available) Introduction to Leadership - 7, 8, 9 October - (4 places available) Voice your Leadership - 13, 14 October - (full) Managing Teams - 10, 11, 12 November - (7 places available) Risk Management - 17, 18 November - (6 places available) Dealing with Conflict - 20, 27 November - (5 places available) CDP pour nouveaux superviseurs, part 1 - 30 novembre, 1, 2 décembre - (4 places disponibles) Communication Curriculum Making presentations - 14, 15 October + 9 November - (Full) Communiquer efficacement dans votre équipe - 19, 20 octobre - (7 places disponibles) Gestion du stress - 20, 21 octobre - (8 places disponibles) Communiquer efficacement - 21, 22 octobre + 9, 10 novemb...

  18. Accomplishing the objectives of NEA in radioactive waste management

    International Nuclear Information System (INIS)

    Olivier, J.P.; Stadie, K.B.

    1984-01-01

    The objectives of the Nuclear Energy Agency of the OECD in the area of radioactive waste management are to promote studies and improve the data available to support national programmes, to co-ordinate national activities, to promote international projects, and to improve the general level of understanding of waste management issues. The NEA programme concentrates on the disposal of waste and responds to objectives at three levels: sharing of information and organization of joint analytical studies through expert meetings, preparation of technical reports and analysis and dissemination of data; establishment of joint research and development projects designed to support national programmes; and discussion of current issues and strategies, particularly through the Radioactive Waste Management Committee acting as a specialized internatonal forum. The paper discusses, through various specific examples, how the objectives are met. In addition, the paper describes current NEA activities which have not been reported in other papers during the Conference. (author)

  19. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  20. Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RDandD Programme 2004. Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, including Social Science Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    integrated into this work to verify the models in time prior to a licence application. Furthermore, the authorities assume that more long-term biosphere issues are being taken into account in SKB's new plan of action. - In its biosphere research, SKB should take into account the possibility of using radionuclide concentrations and flows as complementary safety indicators. - SKB should more clearly explain how it will ensure that studied climate scenarios will shed light on the most important climate-related stresses on the barrier function. - It is justifiable for the research conducted by SKB and Sweden in the area of PandT to maintain its current level so that international developments can be followed and to maintain and develop scientific and technical expertise in areas of importance for nuclear safety. - A clarification of the account of deep boreholes prior to the ultimate choice of a method and prior to licensing under the Environmental Code is needed. A comparison should be made with the KBS-3 method which utilizes safety assessment methodology including simple calculations. - SKB needs to intensify the work on decommissioning issues and in order to present detailed plans and considerations in RDandD Programme 2007. - SKB should investigate the shortest time required for the start of a licensing process for the disposal of decommissioning waste. - In the next RDandD programme, SKB should provide a more detailed description of the programme for long-lived low and intermediate-level waste. - SKB should take into account the viewpoint that long-term interim storage of waste while waiting for the construction of a repository should, as far as possible, be avoided and take this into consideration in its planning. - It is positive that SKB has incorporated social science research into its programme, since the findings from the research should be useful for the stakeholders to apply the research findings in ongoing and future consultation processes for an

  1. French regulations and waste management

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1985-01-01

    The authors describe the organization and the role of safety authorities in France in matter of waste management. They precise the French policy in waste storage and treatment: basic objectives, optimization of waste management. The safety requirements are based upon the barrier principle. Safety requirements about waste conditioning and waste disposal are mentioned. In addition to the safety analysis and studies described above, the Protection and Nuclear Safety Institute assists the ministerial authorities in the drafting of ''basic safety rules (RFS)'', laying down safety objectives. Appendix 1 and Appendix 2 deal with safety aspects in spent fuel storage and in transportation of radioactive materials [fr

  2. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-01-01

    When I first became concerned with radioactive waste management, in the early 1950's, very little was really known about the subject. There was a general feeling that it was a serious 'problem'. Articles were appearing in the press and talks were being given on the radio suggesting that the wastes generated by the proposed nuclear power reactors might be a serious menace to humanity. The prophets pointed with alarm to the enormous quantities of fission products that would accumulate steadily over the years in tank farms associated with reactor fuel reprocessing plants, and calculations were made of the possible results from rupture of the tanks due to corrosion, earthquakes or enemy attack. Responsible people suggested seriously that the waste disposal problem might be fatal to the development of a nuclear power industry, and this attitude was reinforced by the popular outcry that arose from experience with fallout from nuclear weapons testing. The Canadian nuclear power industry was not critically involved in this controversy because our heavy-water reactors are fuelled with natural uranium, and reprocessing of the fuel is not necessary. The spent fuel contains plutonium, a potential fuel, but the cost of recovering it was such that it was not competitive with natural uranium, which is not in short supply in Canada. Our spent fuel is not dissolved in acid - it is stored. still in its zirconium cladding, under water at the reactor site, or placed in sealed concrete-and-steel pipes below ground. If the price of uranium rises sufficiently it will become profitable to recover the plutonium, and only then shall we have an appreciable amount of waste from this source. However. during the first five or six years of research and development at Chalk River we did investigate fuel processing methods, and like everybody else we grad stainless steel tanks containing high and medium level wastes. These were located quite close to the Ottawa River, and we worried about what

  3. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  4. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Calendar of courses for February to June 2009 Please check our Web site to find out the number of places available which may vary. Management Curriculum Core Development Package for new Supervisors and Section leaders (3 + 2 days) 3, 4, 5 February (part 1) + 13, 14 May 2009 (part 2) (full) Core Development Package for Group Leaders (part 2) 24, 25, 26 February (full) Communicating Effectively – Residential\t23, 24, 25 March (2 places available) Quality Management 25, 26 March (10 places available) Introduction to Leadership 1, 2, 3 April (3 places available) Personal Awareness & Impact 5, 6, 7 May (full) 3, 4, 5 June (places available) Dealing with conflict / Gestion des conflits\t5 + 12 June (8 places available) (Session in English or in French) Managing Teams\t9, 10, 11 June (4 places available) Communication Curriculum Managing stress\t23, 24 February (6 places available) Negotiating Effectively\t3, 4 March (2 places available) Négociation efficace\t17, 18 mar...

  5. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from February to June 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Core Development Package for new Supervisors and Section leaders (3 + 2 days) 3, 4, 5 February (part 1) + 13, 14 May 2009 (part 2)\t(full) Core Development Package for Group Leaders (part 2) 24, 25, 26 February (full) Communicating Effectively – Residential\t23, 24, 25 March (2 places available) Quality Management\t25, 26 March (10 places available) Introduction to Leadership\t1, 2, 3 April (3 places available) Personal Awareness & Impact\t5, 6, 7 May (full) 3, 4, 5 June (places available) Dealing with conflict / Gestion des conflits\t5 + 12 June (8 places available) (Session in English or in French) Managing Teams\t9, 10, 11 June (4 places available) Communication Curriculum Managing stress\t23, 24 February (6 places available) Negotiating Effectively\t3, 4 March (2 places available) Négociation efficace\t17, 18 mars (6 places d...

  6. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from September to December 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Project Scheduling & Costing\t3, 4 September (full) Communicating Effectively – Residential\t15, 16, 17 September (5 places available) Personal Awareness & Impact – Follow-up\t17, 18 September (2 places available) Project Management\t22, 23 September (full) Personal Awareness & Impact\t22, 23, 24 September (full) Introduction to Leadership\t7, 8, 9 October (full) Managing Teams\t10, 11, 12 November (full) Communication Curriculum Managing Time\t22 September + 27 October + 18 November (8 places available) Making presentations\t14, 15 October + 9 November (Full) Communiquer efficacement dans votre équipe\t19, 20 octobre (2 places disponibles) Communiquer efficacement\t21, 22 octobre + 9, 10 novembre (1 place disponible) Techniques d’exposé et de présentations\t10, 11 novembre + 8 décembre (1...

  7. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from September to December 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Project Scheduling & Costing\t3, 4 September (2 places available) Communicating Effectively – Residential\t15, 16, 17 September (6 places available) Personal Awareness & Impact – Follow-up\t17, 18 September (full) Project Management\t22, 23 September (full) Personal Awareness & Impact\t22, 23, 24 September (full) Introduction to Leadership\t7, 8, 9 October (full) Managing Teams\t10, 11, 12 November (full) Communication Curriculum Managing Time\t22 September + 27 October + 18 November (3 places available) Making presentations\t14, 15 October + 9 November (Full) Communiquer efficacement dans votre équipe\t19, 20 octobre (complet) Communiquer efficacement\t21, 22 octobre + 9, 10 novembre (complet) Techniques d’exposé et de présentations\t10, 11 novembre + 8 décembre (1 place disponible) Serv...

  8. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from September to December 2009 Please check our web site to find out the number of places available, which may vary. Management Curriculum Project Scheduling & Costing\t3, 4 September (2 places available) Communicating Effectively – Residential\t15, 16, 17 September (6 places available) Personal Awareness & Impact – Follow-up\t17, 18 September (full) Project Management\t22, 23 September (full) Personal Awareness & Impact\t22, 23, 24 September (full) Introduction to Leadership\t7, 8, 9 October (full) Managing Teams\t10, 11, 12 November (full) Communication Curriculum Managing Time\t22 September + 27 October + 18 November (3 places available) Making presentations\t14, 15 October + 9 November (Full) Communiquer efficacement dans votre équipe\t19, 20 octobre (complet) Communiquer efficacement\t21, 22 octobre + 9, 10 novembre (complet) Techniques d’exposé et de présentations\t10, 11 novembre + 8 décembre (1 place disponible) Service Orientation/Orienta...

  9. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from November to December 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Managing Teams\t10, 11, 12 November (4 places available) CDP pour nouveaux superviseurs, part 1\t30 novembre, 1, 2 décembre (2 places disponibles) Managing by Project\t1, 2 December (full) Communication Curriculum Techniques d’exposé et de présentations\t10, 11 novembre + 8 décembre (complet) Managing Stress\t10, 11 November (6 places available) Communicating Effectively\t11, 12 November + 8, 9 December (4 places available) Orientation service\t12, 13 novembre (5 places disponibles) Gestion du stress\t17, 18 novembre (6 places disponibles) Animer ou participer à une réunion de travail\t9, 10, 11 décembre (3 places disponibles) If you are interested in attending any of the above course sessions, please talk to your supervisor and/or your DTO, and apply electronically via EDH from the course description p...

  10. Review and evaluation of the Swedish Nuclear Fuel and Waste Management Company's RDandD Programme 2010. Statement to the Government and summary of the review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    SSM has reviewed and evaluated the RDandD programme 2010, in terms of planned research and development activity, reported research results, alternative handling and storage methods, and intended measures (Section 26 of the Nuclear Activities Ordinance). This report presents the results of the review and the evaluation. The RDandD programme 2010 has been circulated for national consultation by SSM to approximately 70 organisations.

  11. Review and evaluation of the Swedish Nuclear Fuel and Waste Management Company's RDandD Programme 2010. Statement to the Government and summary of the review report

    International Nuclear Information System (INIS)

    2011-03-01

    SSM has reviewed and evaluated the RDandD programme 2010, in terms of planned research and development activity, reported research results, alternative handling and storage methods, and intended measures (Section 26 of the Nuclear Activities Ordinance). This report presents the results of the review and the evaluation. The RDandD programme 2010 has been circulated for national consultation by SSM to approximately 70 organisations

  12. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Kaluzny, Y.

    1994-01-01

    The public has demonstrated interest and even concern for radioactive waste. A fully demonstrated industrial solution already exists for 90% of the waste generated by the nuclear industry. Several solutions are currently under development for long-term management of long-lived waste. They could be implemented on an industrial scale within twenty years. The low volumes of this type of waste mean there is plenty of time to adopt a solution. (author). 5 photos

  13. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  14. Waste management 86. Volume 1:General interest

    International Nuclear Information System (INIS)

    Post, R.G.

    1986-01-01

    This book presents the papers given at a symposium on radioactive waste management. Topics considered at the symposium included the status of radioactive waste disposal, the status of international nuclear waste management, waste management activities at the Idaho National Engineering Laboratory, legal and liability issues, risk perceptions and public involvement, waste transportation, waste processing, remedial action, decontamination, predisposal processing and treatment processes, low-level and mixed waste management, and mixed chemical and radioactive waste disposal

  15. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  16. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from February to June 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Communicating Effectively – Residential\t23, 24, 25 March (Full) Quality Management\t25, 26 March\t(6 places available) Introduction to Leadership\t1, 2, 3 April (2 places available) Personal Awareness & Impact\t5, 6, 7 May (full) 3, 4, 5 June (1 place available) Dealing with conflict / Gestion des conflits\t5 + 12 June (3 places available) (Session in English or in French) Managing Teams\t9, 10, 11 June (3 places available) Communication Curriculum Negotiating Effectively\t3, 4 March (Full) Communiquer efficacement dans votre équipe\t26, 27 mars (4 places disponibles) Gestion de temps\t27 avril + 27 mai + 23 juin (9 places disponibles) Communiquer efficacement\t27, 28 avril + 26, 27 mai (4 places disponibles) Service Orientation\t28, 29 April (6 places available) Communicating Effectively in your Team\t29, 30 April (7 places available) Nég...

  17. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2008-01-01

    Calendar of courses for October to December 2008 Please check our Web site to find out the number of places available which may vary. Management Curriculum Introduction to Leadership\t15, 16, 17 October (Full) Personal Awareness & Impact\t22, 23, 24 October (full) Core Development Package for Group Leaders (part 2)\t11, 12, 13 November (full) Risk Management\t13, 14 November (5 places available) Managing Teams\t18, 19, 20 November (2 places available) Communicating to Convince\t19, 20 November (5 places available) Core Development Package for new Supervisors and Section leaders (3 + 2 days) 25, 26, 27 November (part 1) + 3, 4 March 2009 (part 2) (full) Core Development Package pour nouveaux superviseurs et chefs de section (3 + 2 jours) 9, 10, 11 décembre (partie 1) + 21, 22 avril 2009 (partie 2) (full) Communication Curriculum Communicating Effectively\t21, 22 October + 27, 28 November (4 places available)\tCommuniquer efficacement\t23, 24 octobre + 2...

  18. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from February to June 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Personal Awareness & Impact\t5, 6, 7 May (2 places available) 3, 4, 5 June (full) Quality Management\t12, 13 May (6 places available) Dealing with conflict / Gestion des conflits (Session in English or in French)\t5 + 12 June (2 places available) Managing Teams\t9, 10, 11 June (2 places available) Personal Awareness & Impact – Follow-up\t30 June + 1 July (6 places available) Communicating to Convince\t22, 23 June (7 places available) Communication Curriculum Négociation efficace\t5, 6 mai (3 places disponibles) Gestion de temps\t27 mai + 23 juin + 7 juillet (3 places disponibles) Making presentations\t13, 14 May + 11 June (Full) Writing of Successful FP7 Proposals\t26 May (20 places available) Communicating Effectively\t8, 29 May + 22, 23 June (2 places available) If you are interested in attending any of the above course sessio...

  19. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  20. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  1. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  2. Guide for Industrial Waste Management

    Science.gov (United States)

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  3. Radioactive waste management - v. 2

    International Nuclear Information System (INIS)

    1987-01-01

    In this second part, the program of waste management of non-military origin of the following countries: USA, United Kingdom, France, Canada, Federal Republic of Germany, and Japan, is presented. For each country, a brief overview on its nuclear program, to identify the reason of the major emphasis done by this country for a specific waste management, is presented. The legislation control, the classification, the treatment and, the options for waste disposal are also presented. (M.C.K.) [pt

  4. Radioactive wastes. Management prospects

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    This article describes the perspectives of management of radioactive wastes as defined in the French law from December 30, 1991. This law defines three ways of research: abatement of the radiotoxicity of wastes (first way), reversible geological storage (second way) or long duration geological disposal (third way). This article develops these three solutions: 1 - strategic perspectives; 2 - separation, transmutation and specific conditioning: isotopes to be separated (evolution of the radio-toxicity inventory of spent fuels, migration of long-living radionuclides, abatement of radio-toxicity), research on advanced separation (humid and dry way), research on transmutation of separate elements (transmutation and transmutation systems, realistic scenarios of Pu consumption and actinides transmutation, transmutation performances), research on materials (spallation targets, fuels and transmutation targets), research on conditioning matrices for separated elements; 3 - long-term storage: principles and problems, containers, surface and subsurface facilities; 4 - disposal: reversibility and disposal, geological disposal (principle and problems, site and concept selection), adaptation to reversibility, research on materials (bentonite and cements for geologic barrier, metals for containers), underground research and qualification laboratories, quantity of containers to be stored. (J.S.)

  5. Research programme on radioactive wastes; Forschungsprogramm Radioaktive Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Eckhardt, A. [Eidgenoessische Kommission fuer die Sicherheit der Kernanlagen (KSA), Brugg (Switzerland); Hufschmid, P. [Kommission Nukleare Entsorgung (KNE), Bern (Switzerland); Jordi, S. [Swiss Federal Office of Energy, Berne (Switzerland); Schanne, M. [Institut fuer Angewandte Medienwissenschaft (IAM), Zuercher Hochschule, Winterthur (Switzerland); Vigfusson, J. [Hauptabteilung fuer die Sicherheit der Kernanlagen (HSK), Brugg (Switzerland)

    2009-11-15

    This report for the Swiss Federal Department of the Environment, Transport, Energy and Communication (DETEC) takes a look at work done within the framework of the research programme on radioactive wastes. The paper discusses the development of various projects and the associated organisations involved. Both long-term and short-term topics are examined. The long-term aspects of handling radioactive wastes include organisation and financing as well as the preservation of know-how and concepts for marking the repositories. Communication with the general public on the matter is looked at along with public perception, opinion-making and acceptance. Waste storage concepts are looked at in detail and aspects such as environmental protection, monitoring concepts, retrievability and encasement materials are discussed. Finally, ethical and legal aspects of radioactive waste repositories are examined. The paper is completed with appendixes dealing with planning, co-ordination and the responsibilities involved

  6. Applications to waste management operations

    International Nuclear Information System (INIS)

    Paine, D.; Uresk, V.; Schreckhise, R.G.

    1977-01-01

    Ecological studies of the 200 Area plateau waste management environs have provided preliminary answers to questions concerning the environmental health of associated biota, potential for radionuclide transport through the biotic system and risk to man. More importantly creation of this ecological data base provides visible evidence of environmental expertise so essential for maintenance of continued public confidence in waste management operations

  7. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1986-09-01

    This bibliography is an up-date to AECL-6186(Rev 3), 1952-1982, 'Radioactive Waste Management in Canada AECL Publications and Other Literature' compiled by Dianne Wallace. Canadian publications from outside contractors concerning the Canadian Nuclear Fuel Waste Management Program are included in addition to Atomic Energy of Canada Limited reports and papers. 252 refs

  8. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  9. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  10. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  11. Waste management at LAMPF

    International Nuclear Information System (INIS)

    Lambert, J.E.; Grisham, D.L.

    1982-01-01

    Future major improvements at the Clinto P. Anderson Meson Physics Facility (LAMPF) will require replacement of many large radioactive components. Proper disposal of the components presents special waste management problems caused by component size, weight, geometry, and activity level. A special, large cask trailer (54 metric tons gross) is being constructed for transporting the material to the disposal site. The cask trailer is designed so that the amount of shielding may be individually tailored to suit the geometry and activity level of eah item transported. Special handling techniques and methods of stabilizing loose contamination are being developed to facilitate transport of large radioactive components across open areas. A special Monitor remote-handling system is being constructed to perform the various preparation and rigging operations. Implementation of this equipment will expedite future improvements at LAMPF with minimum impact and/or interference with other ongoing activities

  12. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from February to June 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Communicating Effectively – Residential\t23, 24, 25 March (Full) Introduction to Leadership\t1, 2, 3 April (1 place available) Personal Awareness & Impact\t5, 6, 7 May (full) 3, 4, 5 June (1 place available) Dealing with conflict / Gestion des conflits (Session in English or in French)\t5 + 12 June (3 places available) Managing Teams\t9, 10, 11 June (3 places available) Communication Curriculum Communiquer efficacement dans votre équipe\t26, 27 mars\t(4 places disponibles) Gestion de temps\t27 avril + 27 mai + 23 juin (8 places disponibles) Communiquer efficacement\t27, 28 avril + 26, 27 mai (3 places disponibles) Service Orientation\t28, 29 April (6 places available) Communicating Effectively in your Team\t29, 30 April (7 places available) Négociation efficace\t5, 6 mai (6 places disponibles) Animer ou par...

  13. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from February to June 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Communicating Effectively – Residential\t23, 24, 25 March (Full) Introduction to Leadership\t1, 2, 3 April (1 place available) Personal Awareness & Impact\t5, 6, 7 May (full) 3, 4, 5 June (full) Dealing with conflict / Gestion des conflits (Session in English or in French)\t5 + 12 June (2 places available) Managing Teams\t9, 10, 11 June (3 places available) Communication Curriculum Communiquer efficacement dans votre équipe\t26, 27 mars\t(5 places disponibles) Gestion de temps\t27 avril + 27 mai + 23 juin (7 places disponibles) Communiquer efficacement\t27, 28 avril + 26, 27 mai (3 places disponibles) Service Orientation\t28, 29 April (5 places available) Communicating Effectively in your Team\t29, 30 April (7 places available) Négociation efficace\t5, 6 mai (6 places disponibles) Animer ou participer à une réunion de travail/Chairing ...

  14. CERN Management & Communication Training programme

    CERN Multimedia

    HR Department

    2009-01-01

    Timetable of courses from February to June 2009 Please check our Web site to find out the number of places available, which may vary. Management Curriculum Communicating Effectively – Residential\t23, 24, 25 March (Full) Introduction to Leadership\t1, 2, 3 April (1 place available) Personal Awareness & Impact\t5, 6, 7 May (full) 3, 4, 5 June (full) Dealing with conflict / Gestion des conflits (Session in English or in French)\t5 + 12 June (2 places available) Managing Teams\t9, 10, 11 June (3 places available) Communication Curriculum Communiquer efficacement dans votre équipe\t26, 27 mars\t(5 places disponibles) Gestion de temps\t27 avril + 27 mai + 23 juin (7 places disponibles) Communiquer efficacement\t27, 28 avril + 26, 27 mai (3 places disponibles) Service Orientation\t28, 29 April (5 places available) Communicating Effectively in your Team\t29, 30 April (7 places available) Négociation efficace\t5, 6 mai (6 places disponibles) Animer ou participer à un...

  15. Hospital waste management in Lebanon

    International Nuclear Information System (INIS)

    Chaker, Alissar

    1999-01-01

    Hospital wastes comprises approximately 80% domestic waste components, also known as non-risk waste and 20% hazardous or risk waste. The 20% of the hospital waste stream or the risk waste (also known as infectious, medical, clinical wastes) comprises components which could be potentially contaminated with infections, chemical or radioactive agents. Therefore, it should be handled and disposed of in such a manner as to minimize potential human exposure and cross-contamination. Hospital risk waste and be subdivided into seven general categories as follows: infections, anatomical/pathological, chemical, pharmaceutical, radioactive waste, sharps and pressurised containers. These waste categories are generated by many types of health care establishments, including hospitals, clinics, infirmaries.... The document presents also tables of number of hospitals and estimated bed number in different regions in Lebanon; estimated hospital risk and non-risk waste generation per tonnes per day for the years 1998 until 2010 and finally sensitivity analysis of estimated generation of hospital risk waste in Lebanon per tonnes per day for the years 1998 until 2010. The management, treatment and disposal of hospital risk waste constitute important environmental and public safety issues. It is recognised that there is alack of infrastructure for the safe and environmentally acceptable disposal of hospital waste in Lebanon

  16. CERN Management & Communication Training programme

    CERN Multimedia

    2007-01-01

    Calendar of courses for November to December 2007Calendrier des cours prévus de novembre à décembre 2007 Please check our Web site to find out the number of places available which may vary.Veuillez consulter notre site Web pour connaître le nombre de places disponibles qui peut varier. Managing Teams (English) 13, 14, 15 November (Full) Communicating effectively - residential (Bilingual) 20, 21, 22 November (Full) FP7 Training - How to Negotiate and Administer Framework 7 Grant Agreements (English) 21 November (12 places available) Core Development Package for new Supervisors and Section leaders (MARS exercise) (English) 20, 21, 22 November (Full) Core Development Package for new Supervisors and Section leaders (MARS exercise) (français) 5, 6, 7 décembre (4 places disponibles) Core Development Pa...

  17. CERN Management & Communication Training programme

    CERN Multimedia

    2007-01-01

    Calendar of courses for November to December 2007Calendrier des cours prévus de novembre à décembre 2007 Please check our Web site to find out the number of places available which may vary.Veuillez consulter notre site Web pour connaître le nombre de places disponibles qui peut varier. Managing Teams (English) 13, 14, 15 November (Full) Communicating effectively - residential (Bilingual) 20, 21, 22 November (Full) FP7 Training - How to Negotiate and Administer Framework 7 Grant Agreements (English) 21 November (7 places available) Core Development Package for new Supervisors and Section leaders (MARS exercise) (English) 20, 21, 22 November (Full) Core Development Package for new Supervisors and Section leaders (MARS exercise) (français) 5, 6, 7 décembre (2 places disponibles) Core Development Pac...

  18. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  19. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  20. The role of underground laboratories in nuclear waste disposal programmes

    International Nuclear Information System (INIS)

    2001-01-01

    Underground research laboratories (URLs) are essential to provide the scientific and technical information and practical experience that are needed for the design and construction of nuclear waste disposal facilities, as well as for the development of the safety case that must be presented at various stages of repository development. This report provides an overview of the purpose of URLs within repository development programmes; the range of URLs that have been developed, or are planned, in NEA Member countries to date; the various contributions that such facilities can make to repository development programmes and the development of a safety case; considerations on the timing of developing a URL within a national programme; and the opportunities and benefits of international co-operation in relation to URLs. (author)

  1. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  2. Radioactive waste management profiles. A compilation of data from the Net Enabled Waste Management Database (NEWMDB). No. 6, November 2004 (last updated 2004.12.16)

    International Nuclear Information System (INIS)

    2005-03-01

    This Radioactive Waste Management Profiles report is a compilation of data collected by the Net Enabled Waste Management Database (NEWDB) from March to July 2004. The report contains information on national radioactive waste management programmes, plans and activities, relevant laws and regulations, policies and radioactive waste inventories. It provides or references details of the scope of NEWMDB data collections and it explains the formats of individual NEWMDB report pages

  3. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  4. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  5. Hospital Waste Management - Case Study

    Directory of Open Access Journals (Sweden)

    Beatriz Edra

    2017-07-01

    Full Text Available The importance of waste management in hospitals is indisputable in preserving the environment and protecting public health, but management models are rarely discussed. This study presents the legal and conceptual frameworks of good waste management practices applicable to hospitals and associated indicators. As a case study, the overall performance of Hospital Centre of São João, in Porto, was analysed based on published reports. Data on the production of waste in their different typologies were collected from 2010 to 2016, enabling a correlation of the waste production with the kg/bed/day indicator. The aim of this study was to gather data and discuss trends in a real scenario of evolution over a six-year period in order to contribute to a future research proposal on indicators that can be used as reference for benchmarking the construction of methodological guides for hospital waste management.

  6. Radioactive waste management at nuclear power plant Cernavoda

    International Nuclear Information System (INIS)

    Raducea, D.

    2002-01-01

    Many human activities generate waste, but people are worried about wastes produced in nuclear power plants (NPPs). Their concern is an unjustified fear toward the hazards from radioactive waste, probably because in any country generating electric power by NPPs a lot of attention is paid to relevant parties involved in radioactive waste management. Significant attention is also given to the management of radioactive waste at the Cemavoda NPP. The general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment, is conceptually established. The overall programme provides the necessary facilities to adequately manage solid radioactive waste from Cemavoda NPP Unit 1 and will be capable of expansion when other units are brought into service. (author)

  7. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  8. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  9. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  10. Human factors in waste management

    International Nuclear Information System (INIS)

    Moray, N.

    1994-01-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors

  11. Creating meaningful business continuity management programme metrics.

    Science.gov (United States)

    Strong, Brian

    2010-11-01

    The popular axiom, 'what gets measured gets done', is often applied in the quality management and continuous improvement disciplines. This truism is also useful to business continuity practitioners as they continually strive to prove the value of their organisation's investment in a business continuity management (BCM) programme. BCM practitioners must also remain relevant to their organisations as executives focus on the bottom line and maintaining stakeholder confidence. It seems that executives always find a way, whether in a hallway or elevator, to ask BCM professionals about the company's level of readiness. When asked, they must be ready with an informed response. The establishment of a process to measure business continuity programme performance and organisational readiness has emerged as a key component of US Department of Homeland Security 'Voluntary Private Sector Preparedness (PS-Prep) Program' standards where the overarching goal is to improve private sector preparedness for disasters and emergencies. The purpose of this paper is two-fold: to introduce continuity professionals to best practices that should be considered when developing a BCM metrics programme as well as providing a case study of how a large health insurance company researched, developed and implemented a process to measure BCM programme performance and company readiness.

  12. Quality Management in Slovenian Education Programmes

    Directory of Open Access Journals (Sweden)

    Milena Alič

    2015-05-01

    Full Text Available Product and service quality, effective process management, continuous improvement and innovation are some essential conditions for making a successful business. They are often emphasised by managers of successful organizations, by authors of professional and scientific papers and even by politicians and journalists. Quality management standards and models, such as ISO 9001 and EFQM model appeared in assistance to the needs of organisations to assure stable product and service quality, to improve it and to make the production process and its supporting processes effective. It has been 28 years since the standard ISO 9001 appeared. Now it is the most widely spread global standard implemented in more than 1.100.000 organizations worldwide. If quality management was proved to be an important approach to make organizations operate better and thus to contribute to well-being of the society, it would be expected that it is somehow included in our regular school programmes on all the levels. We expect that learning and living quality approaches in childhood and youth would be the least costly way to improve the culture of quality in the society and to implement it in our organizations as well. The paper gives some insight in the situation by searching for quality management related programmes and approaches in our primary, secondary and tertiary school programmes. The purpose of this paper is only to highlight the issue of teaching for quality in our regular education programmes – just to become aware of it and to find some improvement opportunities. There should be still some more detailed research on this topic to give strong suggestions.

  13. AECL's mixed waste management program

    International Nuclear Information System (INIS)

    Peori, R.; Hulley, V.

    2006-01-01

    Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)

  14. The role of intergenerational influence in waste education programmes: The THAW project

    International Nuclear Information System (INIS)

    Maddox, P.; Doran, C.; Williams, I.D.; Kus, M.

    2011-01-01

    Highlights: → Children can be effective advocates in changing their parents' lifestyles. → We investigated the role of intergenerational influence in waste education programmes. → Waste Watch's Take Home Action on Waste project worked with 6705 children in 39 schools. → The results showed increased participation in recycling and declines in residual waste. → The study shows that recycling behaviour is positively impacted by intergenerational influence. - Abstract: Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity ( (www.wastewatch.org.uk)), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the 'reduce, reuse and recycle message' home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of

  15. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  16. Public perceptions of aspects of radioactive waste management

    International Nuclear Information System (INIS)

    1985-04-01

    The paper concerns a study of peoples' attitude towards the siting of radioactive waste repositories, carried out by the University of Surrey, United Kingdom. The work has been commissioned by the Department of the Environment as part of its radioactive waste management research programme. The people taking part were asked to mark on a map of Great Britain places they felt radioactive waste repositories would be least objectionable. The degree to which people worried about the technology and the management of radioactive waste disposal was monitored. Questions were asked about storage, disposal and transportation aspects, and about present and future worries. (UK)

  17. Radioactive Waste Management Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of radioactive waste management, including decommissioning and environmental remediation, to ensure that the Nuclear Energy Basic Principles are satisfied.

  18. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  19. Solid Waste Management in Jordan

    OpenAIRE

    Aljaradin, Mohammad; Persson, Kenneth M

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced mi...

  20. Solid Waste Management in Jordan

    OpenAIRE

    Mohammad Aljaradin

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced migra...

  1. Planning and Design Considerations for Geological Repository Programmes of Radioactive Waste

    International Nuclear Information System (INIS)

    2014-11-01

    Disposal in a geological repository is the generally accepted solution for the long term management of high level and/or long lived radioactive wastes, in line with the general principles defined in the IAEA Safety Fundamentals. This publication presents practical information on the way a geological repository programme for radioactive waste could be defined and planned, with special attention to all aspects having an impact on the timing. Country specific examples for repository development phases are provided, based on actual experiences from Member States

  2. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  3. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  4. Experience of the Spanish radioactive management programme

    International Nuclear Information System (INIS)

    Beceiro, A.R.; Zuloaga, P.; Espejo, J.M.

    1997-01-01

    The important results achieved in the last 12 years , since the ENRESA inception, are reported. The establishment and start-up of the low and intermediate level waste management system (waste acceptance criteria and verification laboratories, waste collection and transport systems and conditioning facilities, temporary storage and disposal) is capable of managing wastes of these categories forecast to be produced in Spain up to the year 2013. The capacity to store temporarily the spent fuel on site at the operating NPPs is being increased to met practically the needs up to end of these plants' operating lifetime. This is being achieved through the re-racking of spent fuel pools and the use of metallic casks, depending on the technical possibilities of each plant. These increase in the capacity for spent fuel temporary storage will allow work on geological prospecting and technology development to progress over the next two decades, prior to construction of a geological disposal facility. All these tasks are being carried out in accordance with the established program initiated in 1987 which is requiring important technological financial and communication-related efforts. The financial, technological and waste management means required for dismantling of nuclear installations at the end of their operating lifetime have been established; thus, for instance, the works involved in dismantling and tailing dyke remodeling at the disused uranium mill in Andujar were completed. The engineering project for the dismantling of the Vandellos I NPP is going ahead according to schedule and was submitted to the Authorities during the first half of 1994, the starting of work being expected for the end of 1997. This overall set of results represents an appreciable improvement in Spain's capacity to solve environmental problems and a substantial reduction in the potential risk associated with the radioactive wastes accumulation. (authors)

  5. Radioactive waste management profiles. A compilation of data from the Net Enabled Waste Management Database (NEWMDB). No. 9, May 2008

    International Nuclear Information System (INIS)

    2008-05-01

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an Internet-based application which contains information on national radioactive waste management programmes, plans and activities, relevant laws and regulations, policies and radioactive waste inventories in IAEA Member States. It can be accessed via the following Internet address: http://www-newmdb.iaea.org. The Country Waste Profiles provide a concise summary of the information entered into the NEWMDB system by each participating Member State. This Profiles report is based on data collected using the NEWMDB from May to December 2007

  6. Radioactive waste management profiles. A compilation of data from the Net Enabled Waste Management Database (NEWMDB). No. 8, August 2007

    International Nuclear Information System (INIS)

    2007-08-01

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an Internet-based application which contains information on national radioactive waste management programmes, plans and activities, relevant laws and regulations, policies and radioactive waste inventories in IAEA Member States. It can be accessed via the following Internet address: http://www-newmdb.iaea.org. The Country Waste Profiles provide a concise summary of the information entered into the NEWMDB system by each participating Member State. This Profiles report is based on data collected using the NEWMDB from May to December 2006

  7. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BELGOWASTE was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: Purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste; centralization assumes the making of adequate arrangements for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of resiudal material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste; deep clay formations are at present preferred; disposal of low-level treated waste into the Atlantic ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol [fr

  8. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  9. Institutional aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1996-01-01

    Rules and regulations in force, the work of specialized agencies and the control exercised by regulatory authorities in the area of radioactive waste management need to emphasised in public information programmes. Radioactive waste management is a well-regulated area, with government institutions aiming for long-term safety, in particular for the final disposal of wastes, and imposing strict obligations on the nuclear industry. The issue of public perception of the problems involved with the long-term safety of radioactive waste management is sensitive. Given the complexity of this issue, and the public's legitimate doubts regarding the continued efficiency of long- or very long-term waste management policies, public information specialists must seek to reassure. The major factors that need to be made clear to the public are the following: our capacity to master long-term risks will depend upon the quality of the decisions taken today; experience has shown that the functioning of institutional mechanisms is generally efficient and permanent when their purpose is to protect society's vital interests; a well-informed public, together with other factors can contribute to the maintenance of these; the importance of the 'passive' safety of technological systems, as well as institutional instruments with respect to guaranteeing long-term safety, must be underlined; institutional instruments, although indispensable with regard to long-term safety, should only be considered as making a contribution of relative importance and of limited duration, and this must be made clear. Public information policies should therefore underline the relative contribution of institutional instruments, as well as their limited duration, in the safety of long-term radioactive waste management. (authors)

  10. Waste management at WAK

    International Nuclear Information System (INIS)

    Kuhn, K.D.; Willax, H.O.

    1986-01-01

    After a short description of the WAK plant and its reprocessing and intervention activities, types and sources of WAK wastes are described. Roughly half of the waste volume is generated during reprocessing, the other half during intervention periods. Most of the waste is transported to KfK for conditioning. Only waste from the head end cell is cementated on the spot. HLLW is stored in stainless steel tanks. Some results from analyzing this stuff are given. The corrosion behavior is acceptable for medium term storage. (orig.)

  11. Waste Management System Requirements Document

    International Nuclear Information System (INIS)

    1992-02-01

    This DCP establishes an interim plan for the Office of Civilian Radioactive Waste Management (OCRWM) technical baseline until the results of the OCRWM Document Hierarchy Task Force can be implemented. This plan is needed to maintain continuity in the Program for ongoing work in the areas of Waste Acceptance, Transportation, Monitored Retrievable Storage (MRS) and Yucca Mountain Site Characterization

  12. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  13. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  14. Defense waste management plan

    International Nuclear Information System (INIS)

    1983-06-01

    Defense high-level waste (HLW) and defense transuranic (TRU) waste are in interim storage at three sites, namely: at the Savannah River Plant, in South Carolina; at the Hanford Reservation, in Washington; and at the Idaho National Engineering Laboratory, in Idaho. Defense TRU waste is also in interim storage at the Oak Ridge National Laboratory, in Tennessee; at the Los Alamos National Laboratory, in New Mexico; and at the Nevada Test Site, in Nevada. (Figure E-2). This document describes a workable approach for the permanent disposal of high-level and transuranic waste from atomic energy defense activities. The plan does not address the disposal of suspect waste which has been conservatively considered to be high-level or transuranic waste but which can be shown to be low-level waste. This material will be processed and disposed of in accordance with low-level waste practices. The primary goal of this program is to utilize or dispose of high-level and transuranic waste routinely, safely, and effectively. This goal will include the disposal of the backlog of stored defense waste. A Reference Plan for each of the sites describes the sequence of steps leading to permanent disposal. No technological breakthroughs are required to implement the reference plan. Not all final decisions concerning the activities described in this document have been made. These decisions will depend on: completion of the National Environmental Policy Act process, authorization and appropriation of funds, agreements with states as appropriate, and in some cases, the results of pilot plant experiments and operational experience. The major elements of the reference plan for permanent disposal of defense high-level and transuranic waste are summarized

  15. Management of radioactive waste from reprocessing plants

    International Nuclear Information System (INIS)

    Kanwar Raj

    2010-01-01

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  16. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  17. Solid waste management - Pakistan's perspective

    International Nuclear Information System (INIS)

    Hussain, M.

    2003-01-01

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  18. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  19. Waste management and the workplace*

    African Journals Online (AJOL)

    User

    those employed by private contractors or intermediaries providing waste management services to local .... Tension both within this coalition and between the coalition and the ruling ANC has at times been high. 12 A lifeline tariff (also called a ...

  20. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  1. Waste management in Greater Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Carrusca, K. [Greater Vancouver Regional District, Burnaby, BC (Canada); Richter, R. [Montenay Inc., Vancouver, BC (Canada)]|[Veolia Environmental Services, Vancouver, BC (Canada)

    2006-07-01

    An outline of the Greater Vancouver Regional District (GVRD) waste-to-energy program was presented. The GVRD has an annual budget for solid waste management of $90 million. Energy recovery revenues from solid waste currently exceed $10 million. Over 1,660,00 tonnes of GVRD waste is recycled, and another 280,000 tonnes is converted from waste to energy. The GVRD waste-to-energy facility combines state-of-the-art combustion and air pollution control, and has processed over 5 million tonnes of municipal solid waste since it opened in 1988. Its central location minimizes haul distance, and it was originally sited to utilize steam through sales to a recycle paper mill. The facility has won several awards, including the Solid Waste Association of North America award for best facility in 1990. The facility focuses on continual improvement, and has installed a carbon injection system; an ammonia injection system; a flyash stabilization system; and heat capacity upgrades in addition to conducting continuous waste composition studies. Continuous air emissions monitoring is also conducted at the plant, which produces a very small percentage of the total air emissions in metropolitan Vancouver. The GVRD is now seeking options for the management of a further 500,000 tonnes per year of solid waste, and has received 23 submissions from a range of waste energy technologies which are now being evaluated. It was concluded that waste-to-energy plants can be located in densely populated metropolitan areas and provide a local disposal solution as well as a source of renewable energy. Other GVRD waste reduction policies were also reviewed. refs., tabs., figs.

  2. Management of reactor waste

    International Nuclear Information System (INIS)

    Baatz, H.

    1976-01-01

    The author discusses the type, production and amount of radioactive waste produced in a nuclear power station (LWR) as well as its conditioning and disposal. The mobile system developed by STEAG for the solidification of medium-activity waste and sludge is referred to in this connection. (HR) [de

  3. ERDA waste management program

    International Nuclear Information System (INIS)

    Kuhlman, C.W.

    1976-01-01

    The ERDA commercial waste program is summarized. It consists of three parts: terminal storage, processing, and preparation of the Generic Environmental Impact Statement. Emplacement in geologic formations is the best disposal method for high-level waste; migration would be essentially zero, as it was in the Oklo event. Solidification processes are needed. Relations with the states, etc. are touched upon

  4. Developing Tribal Integrated Waste Management Plans

    Science.gov (United States)

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  5. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  6. Radioactive waste management in perspective

    International Nuclear Information System (INIS)

    1996-01-01

    This report drafted by the Nuclear Energy Agency (NEA) deals with the basic principles and the main stages of radioactive waste management. The review more precisely focuses on what relates to environment protection, safety assessment, financing, social issues, public concerns and international co-operation. An annex finally summarises the radioactive waste management programs that are implemented in 15 of the NEA countries. (TEC). figs

  7. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  8. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  9. Management of abnormal radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    As with any other industrial activity, a certain level of risk is associated with the operation of nuclear power plants and other nuclear facilities. That is, on occasions nuclear power plants or nuclear facilities may operate under conditions which were not specifically anticipated during the design and construction of the plant. These abnormal conditions and situations may cause the production of abnormal waste, which can differ in character or quantity from waste produced during normal routine operation of nuclear facilities. Abnormal waste can also occur during decontamination programmes, replacement of a reactor component, de-sludging of storage ponds, etc. The management of such kinds of waste involves the need to evaluate existing waste management systems in order to determine how abnormal wastes should best be handled and processed. There are no known publications on this subject, and the IAEA believes that the development and exchange of such information among its Member States would be useful for specialists working in the waste management area. The main objective of this report is to review existing waste management practices which can be applied to abnormal waste and provide assistance in the selection of appropriate technologies and processes that can be used when abnormal situations occur. Naturally, the subject of abnormal waste is complex and this report can only be considered as a guide for the management of abnormal waste. Refs, figs and tabs.

  10. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Antonioli, S.; Manet, M.

    1985-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled France to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsibilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  11. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Lefevre, J.; Brignon, P.

    1986-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled FRANCE to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning, and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsabilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  13. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  14. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  15. Solutions for Waste Management

    International Nuclear Information System (INIS)

    2013-01-01

    To safely and securely dispose of highlevel and long-lived radioactive waste, this material needs to be stored for a period of time that is very long compared to our everyday experience. Underground disposal facilities need to be designed and constructed in suitable geological conditions that can be confidently demonstrated to contain and isolate the hazardous waste from our environment for hundreds of thousands of years. Over this period of time, during which the safety of an underground waste repository system must be assured, the waste's radioactivity will decay to a level that cannot pose a danger to people or the environment. The archaeological record can help in visualizing such a long period of time. Climates change, oceans rise and vanish, and species evolve in the course of a one hundred millennia. Rocks bear witness to all of these changes. Geologists in their search for safe repositories for the long-term disposal of high level radioactive waste have identified rock formations that have proven stable for millions of years. These geological formations are expected to remain stable for millions of years and can serve as host formations for waste repositories.

  16. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  17. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  18. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  19. N.590 National assembly. Law project of program relative to the sustainable management of radioactive materials and wastes; N. 590 Assemblee Nationale. Projet de loi de programme relatif a la gestion durable des matieres et des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document presents the different articles of the law text n. 590 on the management of the radioactive wastes and materials. It concerns the obligations and the liabilities of producers and users of radioactive spent fuels and wastes. (A.L.B.)

  20. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BelgoWaste was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste, centralization assuming that adequate arrangements are made for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of residual material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste (deep clay formations are at present preferred); and disposal of low-level treated waste into the Atlantic Ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol. (author)

  1. Research programme on the conditioning of nuclear power waste

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1981-01-01

    Main parts of this programme have included the use of zeolites and titanates to improve reactor waste treatment, the fractionation of high level reprocessing waste by extraction, and a study of liquid partition chromotographic technique for the removal of impurities from reactor cooling circuits. Preparation of large crystal zeolites has been continued and refined. For titanate production new routes are tried to produce material of a form suitable for use in a sorption process. The possibility of lithium-7 recovery from spent PWR resins in the elution process is under study. Final products from different routes of heat treatment of loaded zeolites and titanates are characterized and compared. In parallell to this work a full-scale system is under study including transport, system design, integrated process flowsheets and cost estimates. The aim is to have basis early in 1982 to decide on the merits of a plant at the planned repository for low and medium level waste (SFR), to be commissioned around 1990. In the high level waste fractionation project, a demonstration of the developed process has been performed on a fission product solution from the reprocessing of low burn-up fuel. Disregarding some equipment malfunction the design goal of better than 99.99 % actinide removal from the high level waste waste solution was reached. The basic chemistry of the process seems to be quite tolerant against reasonable flow rate deviations in the extraction cycles. Also the concluding sorption step on mordenite-titanate worked quite well. The small scale experiments on liquid partition chromatographic techniques have included studies of the capacity of various carrier materials treated with NH 4 DEHP or Aliquat-336 to sorb radioactive impurities from reactor water, both in the laboratory and at the Ringhals-1 BWR. (author)

  2. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  3. Waste Management Operations Program

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    The major function of the Program is to operate the Laboratory's systems and facilities for collecting and disposing of radioactive gaseous, liquid, and solid wastes. This includes collection and shallow land burial of about 2000 m 3 of β-γ contaminated waste and retrievable storage of about 60 m 3 of transuranium contaminated waste annually; ion-exchange treatment and release to the environment of about 450 x 10 3 m 3 of slightly contaminated water; volume reduction by evaporation of about 5000 m 3 of intermediate-level liquid waste followed by hydrofracture injection of the concentrate; and scrubbing and/or filtration of the gases from radioactive operations prior to release to the atmosphere. In addition, this year disposal of about 350,000 gal of radioactive sludge from the old (no longer in service) gunite tanks began. Operations are in conformance with rules and regulations presently applicable to ORNL. This Program is responsible for planning and for development activities for upgrading the facilities, equipment, and procedures for waste disposal to ensure ORNL work incorporates the latest technology. Major (line-item) new facilities are provided as well as substantial (GPP) upgrading of old facilities. These activities as well as the technical and engineering support to handle them are discussed

  4. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  5. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  6. Regional seminar on approaches and practices in strengthening radiation protection and waste management infrastructure in countries of Eastern Europe and the former USSR. Programme, book of extended synopses, list of participants

    International Nuclear Information System (INIS)

    1998-01-01

    This publication contains 30 extended synopses of presentations given by the participants of the seminar. The scope of the presentations included development of radiation protection laws, radioactive waste management technologies, radiation protection infrastructure and constitution of national regulatory bodies. Recent developments in these areas in a number of Eastern Europe and former USSR countries were presented. The role of international co-operation in development of safe radioactive waste management technologies and in establishing legislative and regulatory frameworks was shown

  7. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  8. Law project of program relative to the management of radioactive materials and wastes; Projet de Loi, de programme relatif a la gestion des matieres et des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Villepin, D. de; Breton, T

    2006-03-15

    The law of the 30 December 1991 defined three axis of researches and fixed a the legal aspects of the researches programs management. Based on these researches results a law project has been defined. The first part of the document presents the objectives of the law project and discusses the different articles. The second part is devoted to the text of the law project. (A.L.B.)

  9. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  10. Management of radioactive wastes at power reactor sites in India

    International Nuclear Information System (INIS)

    Amalraj, R.V.; Balu, K.

    Indian nuclear power programme, at the present stage, is based on natural uranium fuelled heavy water moderated CANDU type reactors except for the first nuclear power station consisting of two units of enriched uranium fuelled, light water moderated, BWR type of reactors. Some of the salient aspects of radioactive waste management at power reactor sites in India are discussed. Brief reviews are presented on treatment of wastes, their disposal and environmental aspects. Indian experience in power reactor waste management is also summarised identifying some of the areas needing further work. (auth.)

  11. Study on the development of an efficient and economical small scale management scheme for low and intermediate level radioactive wastes and its impact on the environment. Part of a coordinated programme

    International Nuclear Information System (INIS)

    Bartolome, Z.

    1976-05-01

    Efforts were made towards the establishment of a pilot-scale management system for the low and intermediate-level radioactive wastes of the Atomic Research Center. Practices in handling radioactive wastes are discussed and the assessment of their capabilities to meet the projections on the waste production is presented. The future waste management requirements of the Center was evaluated and comparative studies on the Lime-Soda and Phosphate Processes were conducted on simulated and raw liquid wastes with initial activity ranging from 10 -4 uCi/ml to 10 -2 uCi/ml, to establish the ideal parameters for best attaining maximum removal of radioactivity in liquids. The effectiveness of treatment was evaluated in terms of the decontamination factor, DF, obtained

  12. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  13. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  14. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Houy, J.C.; Rimbert, J.C.; Bouvet, C.; Laugle, S.

    1997-01-01

    radioactive wastes which do not correspond to the disposal standards will be processed by ANDRA (National Agency for Radioactive Waste Management)

  15. Radiation waste management in Poland

    International Nuclear Information System (INIS)

    Tomczak, W.

    1995-01-01

    Radioactive waste management especially related to storage of spent fuel from Ewa and Maria research nuclear reactors has been presented. The classification and balance of radioactive wastes coming from different branches of nuclear activities have been shown. The methods of their treatment in respect of physical state and radioactive have been performed as well as their storage in Central Polish Repository have been introduced. 2 figs, 4 tabs

  16. Waste management - nuclear style

    International Nuclear Information System (INIS)

    McCall, P.

    1977-01-01

    Possible ways of disposing of highly radioactive wastes arising from the United Kingdom nuclear industry are briefly reviewed: projecting into outer space, dumping in containers in the ocean, or storage on land. The problems in each case and, in particular, the risks of environmental contamination from marine or land disposal, are discussed. (U.K.)

  17. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  18. Safe management of waste from health-care activities

    International Nuclear Information System (INIS)

    Pruess, A.; Giroult, E.; Rushbrook, P.

    1999-01-01

    The waste produced in the course of health-care activities, from contaminated needles to radioactive isotopes, carries a greater potential for causing infection and injury than any other type of waste, and inadequate or inappropriate management is likely to have serious public health consequences and deleterious effects on the environment. This handbook - the result of extensive international consultation and collaboration - provides comprehensive guidance on safe, efficient, and environmentally sound methods for the handling and disposal of health-care wastes. The various categories of waste are clearly defined and the particular hazards that each poses are described. Considerable prominence is given to the careful planning that is essential for the success of waste management; workable means of minimizing waste production are outlined and the role of reuse and recycling of waste is discussed. Most of the text, however, is devoted to the collection, segregation, storage, transport, and disposal of wastes. Details of containers for each category of waste, labelling of waste packages, and storage conditions are provided, and the various technologies for treatment of waste and disposal of final residues are discussed at length. Advice is given on occupational safety for all personnel involved with waste handling, and a separate chapter is devoted to the closely related topic of hospital hygiene and infection control. The handbook pays particular attention to basic processes and technologies that are not only safe but also affordable, sustainable, and culturally appropriate. For health-care settings in which resources are severely limited there is a separate chapter on minimal programmes; this summarizes all the simplest and least costly techniques that can be employed for the safe management of health-care wastes. The guide is aimed at public health managers and policy-makers, hospital managers, environmental health professionals, and all administrators with an

  19. Strategic lessons in high-level waste management planning

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Neil

    1999-07-01

    This presentation discusses some issues in the planning and execution of high-level waste (HLW) disposal. The topics are (1) Initial considerations, (2) Issues in structuring a programme, (3) Disposal concepts, (4) Geological environments, (5) Site selection and characterisation, (6) Waste transport, (7) Performance assessment methodology and application, (8) Some key issues. The options for spent fuel management can give rise to a variety of different wastes. The quantity of waste arising will affect the volume of rock required for deposition, both with respect to rock integrity and requirements for heat dissipation. A repository must not be considered in isolation from the rest of the waste management programme. The repository development plan should be supported by a schedule of activities and related funding mechanisms, implying a long-term commitment in policy terms, and should include a corresponding legal and regulatory framework. The idea that disposed waste might be retrieved by future generations for processing under new technology is discussed. Safeguards requirements on fissile material within spent fuel or any other wastes imply indefinite control. Disposal concepts include the geological environment and the engineered barrier system within it. Site selection involves several steps: regional-scale characterisation, local characterisation, hydrological studies, etc. Key issues are retrieval vs. safeguards, optimisation of repository design, reducing long programme timescales, international collaboration.

  20. Strategic lessons in high-level waste management planning

    International Nuclear Information System (INIS)

    Chapman, Neil

    1999-01-01

    This presentation discusses some issues in the planning and execution of high-level waste (HLW) disposal. The topics are (1) Initial considerations, (2) Issues in structuring a programme, (3) Disposal concepts, (4) Geological environments, (5) Site selection and characterisation, (6) Waste transport, (7) Performance assessment methodology and application, (8) Some key issues. The options for spent fuel management can give rise to a variety of different wastes. The quantity of waste arising will affect the volume of rock required for deposition, both with respect to rock integrity and requirements for heat dissipation. A repository must not be considered in isolation from the rest of the waste management programme. The repository development plan should be supported by a schedule of activities and related funding mechanisms, implying a long-term commitment in policy terms, and should include a corresponding legal and regulatory framework. The idea that disposed waste might be retrieved by future generations for processing under new technology is discussed. Safeguards requirements on fissile material within spent fuel or any other wastes imply indefinite control. Disposal concepts include the geological environment and the engineered barrier system within it. Site selection involves several steps: regional-scale characterisation, local characterisation, hydrological studies, etc. Key issues are retrieval vs. safeguards, optimisation of repository design, reducing long programme timescales, international collaboration

  1. International waste-management symposium

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1977-01-01

    An International Symposium on the Management of Wastes from the LWR Fuel Cycle was held in Denver, Colo., on July 11 to 16, 1976. The symposium covered a broad range of topics, from policy issues to technology. Presentations were made by national and international speakers involved in all aspects of waste management, government and agency officials; laboratory managers, directors, and researchers; and industrial representatives. Many speakers advocated pragmatic action on programs for the management of commercial nuclear wastes to complete the light-water reactor (LWR) fuel cycle. The industrialized nations' demand for increasing supplies of energy and their increasing dependence on nuclear energy to fulfill this demand will necessitate the development of an acceptable solution to the disposal of nuclear wastes within the next decade for some industrial nations. Waste-disposal technology should be implemented on a commercial scale, but the commercialization must be accompanied by the decision to use the technology. An important issue in the use of nuclear energy is the question of sharing the technology with the less industrialized nations and with nations that may not have suitable means to dispose of nuclear wastes. The establishment of international and multinational cooperation will be an important key in realizing this objective. Pressing issues that international organizations or task groups will have to address are ocean disposal, plutonium recycling and safeguards, and disposal criteria. The importance of achieving a viable waste-management program is made evident by the increased funding and attention that the back end of the fuel cycle is now receiving

  2. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  3. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  4. Characterization of low and medium-level radioactive waste forms. Final report - 2nd Programme 1980-84

    International Nuclear Information System (INIS)

    Pottier, P.E.; Glasser, F.P.

    1986-01-01

    The European Communities Second R and D Programme 1980-84 'Management and Disposal of Radioactive Waste (Shared cost action)' included a closely coordinated research activity for the 'Characterization of low and medium-level radioactive waste forms'. This report summarizes the main results obtained during the five years of the programme by laboratories in seven European countries participating in the coordinated RandD efforts. Ten reference waste forms have been selected, based on the most important types of low and medium-level waste arisings and the three commonly used immobilization matrices: cement, bitumen and polymers. The investigated properties were mainly: waste-matrix compatibility, radiation effects, leaching behaviour, leached radionuclides speciation, microbiological resistance and thermal as well as mechanical properties. Extensive experimental results relevant for the qualification of waste products and for application in performance analysis are presented in this final report. The main conclusions are drawn for the confinement properties of these different waste forms. These conclusions have also shown the necessity of selecting several other reference waste forms for the continuation of this RandD action now being launched in the Third EC Programme 1985-89

  5. Providing flexibility in spent fuel and vitrified waste management

    International Nuclear Information System (INIS)

    Bradley, N.; O'Tallamhain, C.; Brown, G.A.

    1986-01-01

    The UK Central Electricity Generating Board is pondering a decision to build a dry vault store as a buffer in its overall AGR spent fuel management programme. The application of the dry vault is not limited to fuel from gas cooled reactors, it can be used for spent LWR fuel and vitrified waste. A cutaway diagram of such a vault is presented. (UK)

  6. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  8. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  9. Waste management policy and its implementation in Argentina

    International Nuclear Information System (INIS)

    Migliori de Beninson, A.; Palacios, E.

    1984-01-01

    The Argentine nuclear programme is an example of an expanding nuclear power development programme which provides for the reprocessing of spent fuel and the recycling of the plutonium produced. It also covers all stages of the natural uranium fuel cycle. The present paper outlines the radioactive waste management policy behind the programme, with particular reference to high-level waste and actinides. The basic criteria are the limitation of individual risks, taking into account the probability of, and doses resulting from, events disrupting the geological insulation, and the optimization of protection engineering aspects, equal monetary weight being given to present and future collective doses. An estimate of the impact (represented by the collective dose due to the repository) per unit of electricity generated by the nuclear programme has been used to analyse the acceptability of the solution adopted. (author)

  10. French regulation and waste management

    International Nuclear Information System (INIS)

    1984-08-01

    The organization and the role played by French safety authorities for waste management are described. The French policy for storage and conditioning: basic objectives and waste management optimization are specified. Safety requirements are based on the barrier principle, they are mentioned for packaging and storage. The ''Institut de Protection et Surete Nucleaire'' deals not only with safety analysis but also help the ''autorites ministerielles'' for the development of fundamental safety rules. Examples for spent fuel storage and radioactive materials transport are treated in appendixes [fr

  11. The waste management program VUB-AZ: An integrated solution for nuclear biomedical waste management

    International Nuclear Information System (INIS)

    Covens, P.; Sonck, M.; Eggermont, G.; Meert, D.

    2001-01-01

    Due to escalating costs and the lack of acceptance of near-surface disposal facilities, the University of Brussels (VUB) and its Academic hospital (AZ) have developed an on-site waste storage program in collaboration with Canberra Europe. This programme is based on selective collection, measurement before decay, storage for decay of short-lived radionuclides, measurement after decay and eventual clearance as non-nuclear waste. It has proved its effectiveness over the past 5 years. Effective characterisation for on-site storage for decay of short-lived radionuclides makes selective collection of waste streams mandatory and requires motivated and trained laboratory staff. Dynamic optimisation of this selective collection increases the efficiency of the storage for decay programme. The accurate qualitative and quantitative measurement of nuclear biomedical waste before decay has several advantages such as verification of correct selective collection, optimisation of the decay period and possibility of clearance below the minimal detectable activity. In the research phase of the program several measurement techniques were investigated. The following measurement concept was selected. Closed PE drums containing low density solid waste materials contaminated with small amounts of β/γ-or pure β-emitting radionuclides are assessed for specific activity by the Canberra measurement unit for nuclear biomedical waste, based on a HPGe-detector. Liquid waste containing (β/γ-emitters are characterised by the same technique while for pure β-emitting liquid waste a Packard liquid scintillation counter is used. Measurement results are obtained by using the gamma-spectroscopy software Genie-2000. A user-friendly interface, based on Procount-2000 and optimised by Canberra for the characterisation of nuclear biomedical waste, has increased the sample throughput of the measurement concept. The MDA (minimal detectable activity) of different radionuclides obtained by the measurement

  12. The CEA's waste management strategy

    International Nuclear Information System (INIS)

    Behar, Ch.; Dall'ava, D.; Fillion, E.

    2011-01-01

    The CEA is tasked with carrying out certain research activities: within the Military Applications Division (DAM), research is focused on the nuclear deterrence and, within the Nuclear Energy Division, on developing the industrial nuclear systems of the future and optimising existing nuclear systems in partnership with EDF and AREVA. These major research and development themes entail a need for nuclear research and support facilities which must be maintained at a high level of performance and safety and, also, constantly upgraded to handle the research activities and programmes for which they are used. The CEA strategy is based on the right packaging of the radioactive liquid or solid waste into a form required for its transport, storage or disposal. The Caraibes software allows an efficient traceability of the waste packages. Most of the radioactive effluent processing stations of CEA are being upgraded

  13. ANALYZING CERTAIN CHRACTERISTICS OF MUNICIPAL SOLID WASTE GENERATION IN THE PROCES S OF WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Gábriel Györgyi T #336;ZSÉR

    2010-01-01

    Full Text Available Based on the regulations of Act XLIII/2000 on Waste Management to implement the strategic objectives and targets in the Act for the prevalence of the basic waste management principles a National Waste Management Plan II will be worked out and then accepted by the Parliament as part of the National Environmental Protection Programme. On the basis of the national plan the administrative bodies of environmental protection in accordance with the regional settlement and d evelopment programmes make a regional waste management project with the inclusion of the regional, local authorities, and other authorities concerned as well as the non governmental organisations for environmental protection. In our research we analyze the correlation between municipal solid waste per capita and urbanisation level. We have conducted similar calculations in the filed of population density and income. The study was carried out on a micro region level. Our analysis can help determine the framework conditions and factors that influence waste generation, and therefore should be taken into consideration when designing waste policies .

  14. The screening approach for review of accident management programmes

    International Nuclear Information System (INIS)

    Misak, J.

    1999-01-01

    In this lecture the screening approach for review of accident management programmes are presented. It contains objective trees for accident management: logic structure of the approach; objectives and safety functions for accident management; safety principles

  15. Study of integral waste management systems and their effects on the environment in Thailand. Part of a coordinated programme on migration and disperios of radionuclides from storage of radioactive waste under various conditions in the terrestrial environment

    International Nuclear Information System (INIS)

    Karasuddhi, P.

    1976-02-01

    The research work carried out is divided into 3 parts: 1. Experimental study of sorption capacity of Sr-90, Cs-137 and radioactive liquid waste of OAEP onto soil and clay. 2. The fixation of radioactive sludge and resin in cement, gumcrete and bitumen. The results show that the sludge from the OAEP waste treatment plant can be fixed very well with concrete, gumcrete and bitumen, but the solidification of resin in concrete, gumcrete and bitumen is not a good method for waste treatment. In the third part, the results of environment studies around the nuclear research center are presented

  16. Report on R and D work on radioactive waste management and dumping of chemical-toxic wastes sponsored by the BMFT in the second half of 1991

    International Nuclear Information System (INIS)

    1992-05-01

    On behalf of the Federal Minister of Research and Technology, the Kernforschungszentrum Karlsruhe has undertaken the projekt management of the R and D programme sector of waste management, subdivided into the programmes decommissioning and nuclear fuel cycle, and ultimate disposal of dangerous wastes. Ultimate disposal of dangerous wastes is understood to be the ultimate disposal of radioactive wastes and the dumping of chemical-toxic wastes. The progress report documents its programme sector of waste management. Its main part contains the formalized interim reports (as of 31.12.1991) on all projects attended by the manager of the waste management project, arranged according to promotion marks (letter C in the promotion mark stands for chemical-toxic, E for ultimate disposal, S for decommisioning, W for reprocessing, and U - for historical reasons - for university project). (orig./BBR) [de

  17. Radioactive waste management in an Australian state - IAEA style

    International Nuclear Information System (INIS)

    Shields, B.; Newbery, S.M.

    1999-01-01

    The IAEA have produced a series of publications within the RADWASS programme. These publications are comprehensive in their coverage and are applicable to all aspects of radioactive waste management - from the individual user level to State and National level. Adherence to the principles contained in these publications is advocated in the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The publications provide a useful check list against which to determine the current status of radioactive management, at various levels (individual level, State, National) and also provide a basis for planning future waste management requirements. In Tasmania, these publications have been utilised to assess the current radioactive waste management system and to determine future management requirements, particularly for storage of radioactive waste. This paper illustrates the application of the publications for auditing individual users' waste management status and for determining future State storage requirements for radioactive waste. A brief outline of the process used and the main issues identified as a result, will be presented. These issues include some requiring a National approach for their resolution. Copyright (1999) Australasian Radiation Protection Society Inc

  18. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  19. An international approach to radioactive waste management

    International Nuclear Information System (INIS)

    Barlett, J.W.

    1994-01-01

    Needs and opportunities for an international approach to management and disposal of radioactive wastes are discussed. Deficiencies in current national radioactive waste management programs are described, and the impacts of management of fissile materials from nuclear weapons on waste management are addressed. Value-added services that can be provided by an international organization for waste management are identified, and candidate organizations that could provide these services are also identified

  20. Progress in waste management technology

    International Nuclear Information System (INIS)

    Hart, R.G.

    1978-08-01

    In a previous paper by the same author, emphasis was placed on the role that 'pathways analysis' would play in providing 'beyond reasonable doubt' that a particular method and a particular formation would be suitable for the safe geologic disposal of nuclear wastes. Since that paper was released, pertinent pathways analyses have been published by Bernard Cohen, de Marsily et al., the American Physical Society's Special Study Group on Nuclear Fuel Cycles and Waste Management, and KBS of Sweden. The present paper reviews and analyses the strengths and weaknesses of each of these papers and their implications for the Canadian plan for the geologic disposal of nuclear waste. The conclusion is that the Canadian plan is on the right track and that the disposal of nuclear wastes is not an intractable problem. Indeed the analyses show that several options, each with large safety factors, are likely eventually to be identified. (author)

  1. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  2. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  3. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  4. Fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Philippone, R.L.; Kaiser, R.A.

    1989-01-01

    Because of different economic, social and political factors, there has been a tendency to compartmentalize the commercial nuclear power industry into separate power and fuel cycle operations to a greater degree in some countries compared to other countries. The purpose of this paper is to describe how actions in one part of the industry can affect the other parts and recommend an overall systems engineering approach which incorporates more cooperation and coordination between individual parts of the fuel cycle. Descriptions are given of the fuel cycle segments and examples are presented of how a systems engineering approach has benefitted the fuel cycle. Descriptions of fuel reprocessing methods and the waste forms generated are given. Illustrations are presented describing how reprocessing options affect waste management operations and how waste management decisions affect reprocessing

  5. Radioactive waste management practices in India

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2016-01-01

    Nuclear technologies are used for generation of electricity and for production of a wide range of radionuclides for use in research and development, health care and industry. One of the special features of nuclear industry is that it uses nuclear fission as source of energy. As a result, a large amount of energy is available from relatively small amount of fuel. The resultant quantities of waste are relatively very small in case of nuclear power as compared to same for conventional thermal power stations. In India, 'closed fuel cycle' has been adopted treating spent nuclear fuel as a material of resource. The closed fuel cycle aims at recovery and recycle of U and Pu, separation of useful isotopes of Cs and Sr for use in health care and industry. This finally leads to a very small percentage of residual material present in spent nuclear fuel requiring their management as radioactive waste. Another special feature of the Indian Atomic Energy Programme is the attention paid from the very beginning to the safe management of radioactive waste

  6. Waste management research abstracts. Information on radioactive waste management research in progress or planned. Vol. 30

    International Nuclear Information System (INIS)

    2005-11-01

    This issue contains 90 abstracts that describe research in progress in the field of radioactive waste management. The abstracts present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, some programmes are actually the result of co-operation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications. Data provided by researchers for publication in WMRA 30 were entered into a research in progress database named IRAIS (International Research Abstracts Information System). The IRAIS database is available via the Internet at the following URL: http://www.iaea.org/programmes/irais/ This database will continue to be updated as new abstracts are submitted by researchers world-wide. The abstracts are listed by country (full name) in alphabetical order. All abstracts are in English. The volume includes six indexes: principal investigator, title, performing organization, descriptors (key words), topic codes and country

  7. Healthcare waste management in Asia

    International Nuclear Information System (INIS)

    Prem Ananth, A.; Prashanthini, V.; Visvanathan, C.

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  8. Healthcare waste management in Asia.

    Science.gov (United States)

    Ananth, A Prem; Prashanthini, V; Visvanathan, C

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  9. International waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  10. International waste management fact book

    International Nuclear Information System (INIS)

    Amaya, J.P.; LaMarche, M.N.; Upton, J.F.

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs

  11. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  12. Benefits of a formal waste management program

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1974-01-01

    The proper management of waste is of vital importance in the conservation of our environment. Mound Laboratory, which is operated by Monsanto Research Corporation for the U. S. Atomic Energy Commission, has embarked upon a waste management program designed to assure that the generation, processing, storage, and disposal of waste is conducted in such a manner as to have a minimum impact on the environment. The organizational approach taken toward waste management is discussed and some of the benefits of the waste management program at Mound Laboratory are described. Ithas been shown that the utilization of proper waste management techniques can have economic, as well as environmental protection, benefits. (U.S.)

  13. Sponsored research on radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The report is in chapters entitled: introduction (background, responsibilities, options, structure of the programme); strategy development; disposal of accumulations; disposal of radioactive waste arisings; quality assurance for waste conditioning quality assurance related to radioactive waste disposal (effectiveness of different rock types as natural barriers to the movement of radioactivity, and non-site specific factors in the design of repositories; radiological assessment; environmental studies; research and development to meet requirements specific to UKAEA wastes; long term research (processes for the solidification of highly active liquid wastes); plutonium contamination waste minimisation. (U.K.)

  14. WasteWise Resource Management: Innovative Solid Waste Contracting Methods

    Science.gov (United States)

    Resource management is an innovative contractual partnership between a waste-generating organization and a qualified contractor that changes the nature of current disposal services to support waste minimization and recycling.

  15. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  16. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Hobart, L.

    1984-01-01

    The Nuclear Waste Fund involves a number of features which make it a unique federal program. Its primary purpose is to finance one of the largest and most controversial public works programs in the history of the United States. Despite the program's indicated size and advance publicity, no one knows exactly where the anticipated projects will be built, who will construct them, what they will look like when they are done or how they will be operated and by whom. Implimentation of this effort, if statutory targets are actually met, covers a 16-year period. To cover the costs of the program, the Federal Government will tax nuclear power at the rate of 1 mil per kilowatt hour generated. This makes it one of the biggest and longest-lived examples of advance collections for construction work in progress in the history of the United States. While the Department of Energy is authorized to collect funds for the program the Nuclear Regulatory Commission has the authority to cut off this revenue stream by the shutdown of particular reactors or particular reactor types. If all goes well, the Federal Government will begin receiving spent nuclear fuel by 1998, continuing to assess a fee which will cover operating and maintenance costs. If all does not go well, the Federal Government and/or utilities will have to take other steps to solve the problem of permanent disposal. Should the latter circumstance prevail, presumably not only used to date but the $7.5 billion would be spent. The Nuclear Waste Policy Act of 1982, contains no clear provision for utility refunds in that case

  17. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  18. The national approach to radioactive waste management: the Philippine experience

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Alamares, A.L.; Salom, D.S.

    1996-01-01

    The Philippine Nuclear Research Institute (PNRI), under the Department of Science and Technology (DOST) is tasked, among others, with the legally-mandated twin function of advancing and regulating the beneficial uses of nuclear energy and radiation technology. The PNRI is also responsible, among others, for the safe management of radioactive wastes generated by all licensed users of radioisotopes, including about 100 medical and industrial users. This papers describes the efforts taken by the PNRI, with technical assistance provided by the International Atomic Energy Agency to establish a low level radioactive waste management facility in the country and the subsequent upgrading of its waste management infrastructure. The conceptual approach and sebsequent implementation of the work programme is presented. Problems attendant to these efforts are briefly outlined including treatment methodologies for specific wastes. The commissioning and operational experiences using a batch type chemical precipitation plant appropriate for the volume of liquid wastes generated in the country is also presented. Data on radioactive waste arisings from 1980 are also presented including anticipated or projected wastes arisings should the repair of the PRR-1 (Philippine Research Reactor-1) research reactor be completed. The government initiatives towards the organizational development of a centralized waste management facility for low level wastes are also discussed. The formulation and adoption of a waste acceptance criteria and the R and D activities on various treatment procedures are also described. The current activities of the PNRI, as the lead agency in two important areas, one of which is in radioactive waste management, will be reported. National, regional and international cooperation in radioactive waste management will also be presented

  19. Online Management of Waste Storage

    Directory of Open Access Journals (Sweden)

    Eugenia IANCU

    2011-01-01

    Full Text Available The paper presents a telematic system designed to monitor the areas affected by the uncontrollable waste storing by using the newest informational and communicational technologies through the elaboration of a GPS/GIS electronic geographical positioning system. Within the system for online management of the affected locations within the built up areas, the following data categories are defined and processed: data regarding the waste management (monitored locations within the built up areas, waste, pollution sources, waste stores, waste processing stations, data describing the environment protection (environmental quality parameters: water, air, soil, spatial data (thematic maps. Using the automatic collection of the data referring to the environment quality, it is aiming at the realization of a monitoring system, equipped with sensors and/or translators capable of measuring and translating (into electrical signals measures with meteorological character (the intensity of the solar radiation, temperature, humidity but also indicators of the ecological system (such as: the concentration of nutrients in water and soil, the pollution in water, air and soil, biomasses. The organization, the description and the processing of the spatial data requires the utilization of a GIS (Geographical Information System type product.

  20. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.